Sample records for friend predator contributions

  1. Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives

    PubMed Central

    Lounibos, L. Philip; Nishimura, Naoya; Greene, Krystle

    2010-01-01

    Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species' success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion. PMID:19841945

  2. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    PubMed

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  3. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities

    PubMed Central

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems. PMID:23840423

  4. PREdator: a python based GUI for data analysis, evaluation and fitting

    PubMed Central

    2014-01-01

    The analysis of a series of experimental data is an essential procedure in virtually every field of research. The information contained in the data is extracted by fitting the experimental data to a mathematical model. The type of the mathematical model (linear, exponential, logarithmic, etc.) reflects the physical laws that underlie the experimental data. Here, we aim to provide a readily accessible, user-friendly python script for data analysis, evaluation and fitting. PREdator is presented at the example of NMR paramagnetic relaxation enhancement analysis.

  5. Does predation contribute to tree diversity?

    Treesearch

    Brian Beckage; James S. Clark

    2005-01-01

    Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), ...

  6. Species and temporal factors affect predator-specific rates of nest predation for forest songbirds in the midwest

    Treesearch

    W. Andrew Cox; Frank R. III Thompson; John Faaborg

    2012-01-01

    Knowledge of the relative contributions of predator species to overall rates of nest predation can improve our understanding of why predation risk varies, but the identity of predators is seldom known. We used video technology to identify nest predators of the tree-nesting Acadian Flycatcher (Empidonax virescens) and the shrub-nesting Indigo Bunting...

  7. Bat Predation by Cercopithecus Monkeys: Implications for Zoonotic Disease Transmission.

    PubMed

    Tapanes, Elizabeth; Detwiler, Kate M; Cords, Marina

    2016-06-01

    The relationship between bats and primates, which may contribute to zoonotic disease transmission, is poorly documented. We provide the first behavioral accounts of predation on bats by Cercopithecus monkeys, both of which are known to harbor zoonotic disease. We witnessed 13 bat predation events over 6.5 years in two forests in Kenya and Tanzania. Monkeys sometimes had prolonged contact with the bat carcass, consuming it entirely. All predation events occurred in forest-edge or plantation habitat. Predator-prey relations between bats and primates are little considered by disease ecologists, but may contribute to transmission of zoonotic disease, including Ebolavirus.

  8. An eco-epidemiological system with infected prey and predator subject to the weak Allee effect.

    PubMed

    Sasmal, Sourav Kumar; Chattopadhyay, Joydev

    2013-12-01

    In this article, we propose a general prey–predator model with disease in prey and predator subject to the weak Allee effects. We make the following assumptions: (i) infected prey competes for resources but does not contribute to reproduction; and (ii) in comparison to the consumption of the susceptible prey, consumption of infected prey would contribute less or negatively to the growth of predator. Based on these assumptions, we provide basic dynamic properties for the full model and corresponding submodels with and without the Allee effects. By comparing the disease free submodels (susceptible prey–predator model) with and without the Allee effects, we conclude that the Allee effects can create or destroy the interior attractors. This enables us to obtain the complete dynamics of the full model and conclude that the model has only one attractor (only susceptible prey survives or susceptible-infected coexist), or two attractors (bi-stability with only susceptible prey and susceptible prey–predator coexist or susceptible prey-infected prey coexists and susceptible prey–predator coexist). This model does not support the coexistence of susceptible-infected-predator, which is caused by the assumption that infected population contributes less or are harmful to the growth of predator in comparison to the consumption of susceptible prey.

  9. Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator.

    PubMed

    Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Chellappandian, Muthiah; Kalaivani, Kandaswamy; Senthil-Nathan, Sengottayan; Benelli, Giovanni

    2018-04-01

    Plant extracts with their enriched chemical constituents have established potential alternative mosquito control agents. In this research, we developed an eco-friendly mosquitocidal agent from Alangium salvifolium leaves against the dengue and Zika virus vector Aedes aegypti and we investigated its biosafety on the mosquito aquatic predator Toxorhynchites splendens. Results showed that the methanolic extract of A. salvifolium leaves was composed by eight main compounds, with major peak area for hexadecenoic acid (21.74%). LC 50 and LC 90 values calculated on Ae. aegypti fourth instar larvae were 104.80 and 269.15 ppm respectively. The methanolic extract tested at 100 ppm decreased the α-β carboxylesterase and SOD ratio significantly and upregulated the GST and CYP450 level. The A. salvifolium methanolic extract displayed significant repellent and adulticidal activity at 100 and 400 ppm respectively. The treatment with 100 ppm of the methanolic extract led to 210 min of protection from Ae. aegypti bites. Four hundred parts per million of the extract showed 98% adult mortality within 30 min from the treatment. Lastly, biosafety assays on the mosquito aquatic predator Tx. splendens showed that the toxicity of the A. salvifolium extract was significantly lower if compared to the cypermethrin-based treatments. The methanolic extract of A. salvifolium showed a maximum of 47.3% mortality rate at the concentration of 1000 ppm, while 0.7 ppm of cypermethrin achieved 91.3% mortality rate on Tx. splendens. Overall, our study enhances basic knowledge on how to improve natural larvicidal agents against dengue and Zika virus mosquito vector with harmless responses on non-target aquatic predators.

  10. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea

    2017-04-01

    Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.

  11. Preliminary results on predation of gypsy moth egg masses in Slovakia

    Treesearch

    Marek Turcani; Andrew Liebhold; Michael McManus; Julius Novotny

    2003-01-01

    Predation of gypsy moth egg masses was studied in Slovakia from 1999-2002. Predation on naturally laid egg masses was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. We also investigated the role of egg mass predation in gypsy moth population dynamics. The relative contribution of...

  12. Predators of the Southern Pine Beetle

    Treesearch

    John D. Reeve

    2011-01-01

    This chapter of the Southern Pine Beetle II reviews the overall influence of predators on southern pine beetle (SPB) population dynamics, as well as recent research on specific predators such as the clerid beetle Thanasimus dubius. Several lines of evidence suggest that predators and other natural enemies generate significant SPB mortality that contributes to outbreak...

  13. Dynamical phase diagrams of a love capacity constrained prey-predator model

    NASA Astrophysics Data System (ADS)

    Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, Cesar Federico; Caram, Facundo; Sonubi, Adeyemi; Arcagni, Alberto; Stefani, Silvana

    2018-02-01

    One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey-predator Verhulst-Lotka-Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a "love dilemma game". We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.

  14. "MySpace" Cadets Are up for Sudden Death

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2006

    2006-01-01

    Reports of teens and pre-teens stalked or abducted by predators who got personal information the students provided on websites like MySpace.com now worry many school officials. These popular websites let students write just about anything about themselves for the world to see. Many don't grasp that not only their friends and classmates are reading…

  15. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    PubMed

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  16. [Predation of micro-protozoa on bacteria in Taihu Lake].

    PubMed

    Chen, Mo; Gao, Guang; Zhu, Li-Ping; Feng, Sheng

    2007-10-01

    With dilution method, this paper studied the predation of different size micro-protozoa on bacteria in Taihu Lake, and approached the effects of the predation on bacterial growth and of the water temperature on the predation. The results showed that in the water body of Taihu Lake, the predation rate of micro-protozoa with its size less than 32 microm was 5.07 d(-1), and the nano-size (less than 16 microm) protozoa contributed about 90.7%. The predation of nano-protozoa reduced the abundance of bacteria significantly. With the increase of water temperature, the predation rate of nano-protozoa and the growth rate of bacteria increased obviously.

  17. Modelling moose—forest interactions under different predation scenarios at Isle Royale National Park, USA

    Treesearch

    Nathan R. De Jager; Jason J. Rohweder; Brian R. Miranda; Brian R. Sturtevant; Timothy J. Fox; Mark C. Romanski

    2017-01-01

    Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic...

  18. Attack risk for butterflies changes with eyespot number and size

    PubMed Central

    Ho, Sebastian; Schachat, Sandra R.; Piel, William H.; Monteiro, Antónia

    2016-01-01

    Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size. PMID:26909190

  19. Smaller predator-prey body size ratios in longer food chains.

    PubMed Central

    Jennings, Simon; Warr, Karema J

    2003-01-01

    Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034

  20. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe?

    PubMed

    Vangansbeke, Dominiek; Nguyen, Duc Tung; Audenaert, Joachim; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2016-03-01

    In integrated pest management systems in greenhouse crops, the predatory mite Amblyseius swirskii is becoming increasingly important as a biological control agent of various pests, especially thrips and whiteflies. An emerging strategy to promote the predator's establishment and retention in the crop consists in providing food supplements. However, when faced with omnivorous pests, such as the western flower thrips, Frankliniella occidentalis, food supplements need to be applied with extreme care, in order not to boost population growth of the pest. This laboratory study was conducted to evaluate the impact of commercial products of Typha angustifolia pollen and decapsulated brine shrimp cysts (Artemia sp.) on populations of both pest and predator and on predator-prey interactions. Pollen was highly supportive for both F. occidentalis and A. swirskii, whereas Artemia cysts supported thrips populations to a lesser extent than those of the predator. Furthermore, a less pronounced reduction in thrips consumption by A. swirskii was observed in the presence of Artemia cysts as compared with T. angustifolia pollen. Artemia might be a valuable alternative to pollen for supporting populations of A. swirskii in order to improve thrips management, as they are less beneficial for the pest but do support population growth of A. swirskii. © 2015 Society of Chemical Industry.

  1. Stage-based mortality of grassland grasshoppers (Acrididae) from wandering spider (Lycosidae) predation

    NASA Astrophysics Data System (ADS)

    Oedekoven, Mark A.; Joern, Anthony

    1998-12-01

    Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland ( Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.

  2. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    PubMed

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  3. Effects of climate and exurban development on nest predation and predator presence in the southern Appalachian Mountains (USA)

    Treesearch

    Heather A. Lumpkin; Scott M. Pearson; Monica G. Turner

    2012-01-01

    In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to...

  4. A two-patch prey-predator model with predator dispersal driven by the predation strength.

    PubMed

    Kang, Yun; Sasmal, Sourav Kumar; Messan, Komi

    2017-08-01

    Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

  5. Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity.

    PubMed

    Long, Elizabeth Y; Finke, Deborah L

    2015-04-01

    A widely cited benefit of predator diversity is greater suppression of insect herbivores, with corresponding increases in plant biomass. In the context of a vector-borne pathogen system, predator species richness may also influence plant disease risk via the direct effects of predators on the abundance and behavior of herbivores that also act as pathogen vectors. Using an assemblage of generalist insect predators, we examined the relationship between predator species richness and the prevalence of the aphid-vectored cereal yellow dwarf virus in wheat. We found that increasing predator richness enhanced suppression of the vector population and that pathogen prevalence was reduced when predators were present, but the reduction in prevalence was independent of predator species richness. To determine the mechanism(s) by which predator species richness contributes to vector suppression, but not pathogen prevalence, we evaluated vector movement and host plant occupancy in response to predator treatments. We found that pathogen prevalence was unrelated to vector suppression because host plant occupancy by vectors did not vary as a function of vector abundance. However, the presence of predators reduced pathogen prevalence because predators stimulated greater plant-to-plant movement by vectors, which likely diminished vector feeding time and reduced the transmission efficiency of this persistent pathogen. We conclude that community structure (i.e., the presence of predators), but not predator diversity, is a potential factor influencing local plant infection by this insect-vectored pathogen.

  6. Invasive predators and global biodiversity loss

    PubMed Central

    Glen, Alistair S.; Nimmo, Dale G.; Ritchie, Euan G.; Dickman, Chris R.

    2016-01-01

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions—58% of these groups’ contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as “possibly extinct.” Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss. PMID:27638204

  7. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    PubMed

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  8. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    PubMed Central

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments. PMID:26624619

  9. High Redundancy as well as Complementary Prey Choice Characterize Generalist Predator Food Webs in Agroecosystems.

    PubMed

    Roubinet, Eve; Jonsson, Tomas; Malsher, Gerard; Staudacher, Karin; Traugott, Michael; Ekbom, Barbara; Jonsson, Mattias

    2018-05-23

    Food web structure influences ecosystem functioning and the strength and stability of associated ecosystem services. With their broad diet, generalist predators represent key nodes in the structure of many food webs and they contribute substantially to ecosystem services such as biological pest control. However, until recently it has been difficult to empirically assess food web structure with generalist predators. We utilized DNA-based molecular gut-content analyses to assess the prey use of a set of generalist invertebrate predator species common in temperate agricultural fields. We investigated the degree of specialization of predator-prey food webs at two key stages of the cropping season and analysed the link temperature of different trophic links, to identify non-random predation. We found a low level of specialization in our food webs, and identified warm and cool links which may result from active prey choice or avoidance. We also found a within-season variation in interaction strength between predators and aphid pests which differed among predator species. Our results show a high time-specific functional redundancy of the predator community, but also suggest temporally complementary prey choice due to within-season succession of some predator species.

  10. Apex predator and the cyclic competition in a rock-paper-scissors game of three species

    NASA Astrophysics Data System (ADS)

    Souza-Filho, C. A.; Bazeia, D.; Ramos, J. G. G. S.

    2017-06-01

    This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species in a system that contains three species that evolve following the standard rules of migration, reproduction, and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.

  11. Sensory-based niche partitioning in a multiple predator - multiple prey community.

    PubMed

    Falk, Jay J; ter Hofstede, Hannah M; Jones, Patricia L; Dixon, Marjorie M; Faure, Paul A; Kalko, Elisabeth K V; Page, Rachel A

    2015-06-07

    Many predators and parasites eavesdrop on the communication signals of their prey. Eavesdropping is typically studied as dyadic predator-prey species interactions; yet in nature, most predators target multiple prey species and most prey must evade multiple predator species. The impact of predator communities on prey signal evolution is not well understood. Predators could converge in their preferences for conspicuous signal properties, generating competition among predators and natural selection on particular prey signal features. Alternatively, predator species could vary in their preferences for prey signal properties, resulting in sensory-based niche partitioning of prey resources. In the Neotropics, many substrate-gleaning bats use the mate-attraction songs of male katydids to locate them as prey. We studied mechanisms of niche partitioning in four substrate-gleaning bat species and found they are similar in morphology, echolocation signal design and prey-handling ability, but each species preferred different acoustic features of male song in 12 sympatric katydid species. This divergence in predator preference probably contributes to the coexistence of many substrate-gleaning bat species in the Neotropics, and the substantial diversity in the mate-attraction signals of katydids. Our results provide insight into how multiple eavesdropping predator species might influence prey signal evolution through sensory-based niche partitioning. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Understanding the influence of predation by introduced fishes on juvenile salmonids in the Columbia River Basin: Closing some knowledge gaps. Interim Report of Research 2010

    USGS Publications Warehouse

    Rose, Brien P.; Hansen, Gabriel S.; Mesa, Matthew G.

    2011-01-01

    In response to these recent concerns about the potential predatory impact of non-native piscivores on salmon survival, the Bonneville Power Administration (BPA) and the Columbia Basin Fish and Wildlife Authority (CBFWA) co-hosted a workshop to address predation on juvenile salmonids in the CRB by non-native fish (Halton 2008). The purpose of the workshop was to review, evaluate, and develop strategies to reduce predation by non-native fishes on juvenile salmonids. In the end, discussion at the workshop and at subsequent meetings considered two potential ideas to reduce predation by non-native fish on juvenile salmonids; (1) understanding the role of juvenile American shad Alosa sapidissima in the diet of non-native predators in the fall; and (2) the effects of localized, intense reductions of smallmouth bass in areas of particularly high salmonid predation. In this report, we describe initial efforts to understand the influence of juvenile American shad as a prey item for introduced predators in the middle Columbia River. Our first objective, addressed in Chapter 1, was to evaluate the efficacy of nonlethal methods to describe the physiological condition of smallmouth bass, walleye, and channel catfish from late summer through late fall. Such information will be used to understand the contribution of juvenile American shad to the energy reserves of predaceous fish prior to winter. In Chapter 2, we describe the results of some limited sampling to document the food habits of smallmouth bass, walleye, and channel catfish in three reservoirs of the middle Columbia River during late fall. Collectively, we hope to increase our understanding of the contribution of juvenile American shad to the diets of introduced predators and the contribution of this diet to their energy reserves, growth, and perhaps over-winter survival. Managers should be able to use this information for deciding whether to control the population of American shad in the CRB or for managing introduced predaceous fish in the CRB. 

  13. Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery

    PubMed Central

    Fleming, Patricia A.; Dundas, Shannon J.; Lau, Yvonne Y. W.; Pluske, John R.

    2016-01-01

    Simple Summary Predation of piglets by red foxes is a significant risk for outdoor/free-range pork producers, but is often difficult to quantify. Using remote sensing cameras, we recorded substantial evidence of red foxes taking piglets from around farrowing huts, and found that piglets were most likely to be recorded as “missing” over their first week. These data suggest that fox predation contributed to the marked production differences between this outdoor farm and a similar-sized intensive farm under the same management, and warrant greater control of this introduced, invasive predator. Abstract Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”), it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant (p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control. PMID:27740601

  14. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).

    PubMed

    Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K

    2012-11-01

    Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  15. Homeland Security: Unmanned Aerial Vehicles and Border Surveillance

    DTIC Science & Technology

    2010-07-08

    outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft

  16. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole

    USGS Publications Warehouse

    McIntyre, P.B.; Baldwin, S.; Flecker, A.S.

    2004-01-01

    Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.

  17. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes

    PubMed Central

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W.; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2018-01-01

    Remediation of Bacillus anthracis-contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms. PMID:29379472

  18. Contribution of predator identity to the suppression of herbivores by a diverse predator assemblage.

    PubMed

    Long, Elizabeth Y; Finke, Deborah L

    2014-06-01

    Studies manipulating predator diversity and measuring the impact on herbivore abundance have found that enhancing predator species richness often increases the strength of prey suppression. This relationship may be due to mechanisms such as complementarity or facilitation, which are considered "true" benefits of diversity because greater prey suppression is an emergent property of the multispecies predator community. Or it may be due to an identity effect, an "apparent" benefit of diversity that results from the greater likelihood of including one particularly voracious predator species as the total number of predator species increases. In separate greenhouse and field experiments, we simultaneously manipulated the species richness and species composition of predators attacking bird cherry-oat aphids (Rhopalosiphum padi) (L.) on wheat (Triticum aestivum L.). We found that on average aphid suppression by species-rich predator assemblages was greater than suppression by single-species monocultures. However, the performance of individual predator species varied and the species-rich assemblages did not outperform all single-species compositions, suggesting an identity effect. In particular, single-species compositions of the lady beetle Coleomegilla maculata (DeGeer) exhibited high performance across experiments, and on average predator assemblages that contained a lady beetle predator had lower overall aphid abundance than compositions where lady beetles were absent. Taken together, these results provide evidence for the dominant role of lady beetles, especially C. maculata, in natural pest suppression and suggest that predator species composition and identity are important factors to consider in efforts to conserve this valuable ecosystem service.

  19. The relationship between direct predation and antipredator responses: a test with multiple predators and multiple prey.

    PubMed

    Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul

    2017-08-01

    Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.

  20. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space.

    PubMed

    von Berg, Karsten; Thies, Carsten; Tscharntke, Teja; Scheu, Stefan

    2010-08-01

    Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.

  1. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis

    USDA-ARS?s Scientific Manuscript database

    Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...

  2. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    PubMed Central

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  3. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor.

    PubMed

    St-Cyr, Sophie; McGowan, Patrick O

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

  4. Testing the effects of perimeter fencing and elephant exclosures on lion predation patterns in a Kenyan wildlife conservancy

    PubMed Central

    Davidson, Zeke; Pratt, Laura; Mwololo, Mary; MacDonald, Suzanne E.

    2016-01-01

    The use of fences to segregate wildlife can change predator and prey behaviour. Predators can learn to incorporate fencing into their hunting strategies and prey can learn to avoid foraging near fences. A twelve-strand electric predator-proof fence surrounds our study site. There are also porous one-strand electric fences used to create exclosures where elephant (and giraffe) cannot enter in order to protect blocs of browse vegetation for two critically endangered species, the black rhinoceros (Diceros bicornis) and the Grevy’s zebra (Equus grevyi). The denser vegetation in these exclosures attracts both browsing prey and ambush predators. In this study we examined if lion predation patterns differed near the perimeter fencing and inside the elephant exclosures by mapping the location of kills. We used a spatial analysis to compare the predation patterns near the perimeter fencing and inside the exclosures to predation in the rest of the conservancy. Predation was not over-represented near the perimeter fence but the pattern of predation near the fence suggests that fences may be a contributing factor to predation success. Overall, we found that predation was over-represented inside and within 50 m of the exclosures. However, by examining individual exclosures in greater detail using a hot spot analysis, we found that only a few exclosures contained lion predation hot spots. Although some exclosures provide good hunting grounds for lions, we concluded that exclosures did not necessarily create prey-traps per se and that managers could continue to use this type of exclusionary fencing to protect stands of dense vegetation. PMID:26893967

  5. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis)

    PubMed Central

    Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja

    2014-01-01

    Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes. PMID:24552840

  6. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    PubMed

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  7. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.

    PubMed

    Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2018-06-01

    The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.

  8. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).

    PubMed

    Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja

    2014-04-07

    Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes.

  9. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.

  10. Integrating immunomarking with ecological and behavioural approaches to assess predation of Helicoverpa spp. larvae by wolf spiders in cotton

    USDA-ARS?s Scientific Manuscript database

    Wolf spiders (Araneae: Lycosidae) are abundant soil-dwelling predators found in cotton fields and can contribute important pest management services. These spiders can kill and consume larvae of the cotton bollworm Helicoverpa spp. (Lepidoptera: Noctuidae) that survive foraging on Bt cotton and desce...

  11. Predator community composition is linked to soil carbon retention across a human land use gradient.

    PubMed

    Schmitz, Oswald J; Buchkowski, Robert W; Smith, Jeffrey R; Telthorst, Mark; Rosenblatt, Adam E

    2017-05-01

    Soil carbon (C) storage is a major component of the carbon cycle. Consensus holds that soil C uptake and storage is regulated by plant-microbe-soil interactions. However, the contribution of animals in aboveground food webs to this process has been overlooked. Using insights from prior long-term experimentation in an old-field ecosystem and mathematical modeling, we predicted that the amount of soil C retention within a field should increase with the proportion of active hunting predators comprising the aboveground community of active hunting and sit-and-wait predators. This comes about because predators with different hunting modes have different cascading effects on plants. Our test of the prediction revealed that the composition of the arthropod predator community and associated cascading effects on the plant community explained 41% of variation in soil C retention among 15 old fields across a human land use gradient. We also evaluated the potential for several other candidate factors to explain variation in soil C retention among fields, independent of among-field variation in the predator community. These included live plant biomass, insect herbivore community composition, soil arthropod decomposer community composition, degree of land use development around the fields, field age, and soil texture. None of these candidate variables significantly explained soil C retention among the fields. The study offers a generalizable understanding of the pathways through which arthropod predator community composition can contribute to old-field ecosystem carbon storage. This insight helps support ongoing efforts to understand and manage the effects of anthropogenic land use change on soil C storage. © 2017 by the Ecological Society of America.

  12. Predator-prey size relationships in an African large-mammal food web.

    PubMed

    Owen-Smith, Norman; Mills, M G L

    2008-01-01

    1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.

  13. What's in a Friendship? Partner Visibility Supports Cognitive Collaboration between Friends.

    PubMed

    Brennan, Allison A; Enns, James T

    2015-01-01

    Not all cognitive collaborations are equally effective. We tested whether friendship and communication influenced collaborative efficiency by randomly assigning participants to complete a cognitive task with a friend or non-friend, while visible to their partner or separated by a partition. Collaborative efficiency was indexed by comparing each pair's performance to an optimal individual performance model of the same two people. The outcome was a strong interaction between friendship and partner visibility. Friends collaborated more efficiently than non-friends when visible to one another, but a partition that prevented pair members from seeing one another reduced the collaborative efficiency of friends and non-friends to a similar lower level. Secondary measures suggested that verbal communication differences, but not psychophysiological arousal, contributed to these effects. Analysis of covariance indicated that females contributed more than males to overall levels of collaboration, but that the interaction of friendship and visibility was independent of that effect. These findings highlight the critical role of partner visibility in the collaborative success of friends.

  14. What’s in a Friendship? Partner Visibility Supports Cognitive Collaboration between Friends

    PubMed Central

    Brennan, Allison A.; Enns, James T.

    2015-01-01

    Not all cognitive collaborations are equally effective. We tested whether friendship and communication influenced collaborative efficiency by randomly assigning participants to complete a cognitive task with a friend or non-friend, while visible to their partner or separated by a partition. Collaborative efficiency was indexed by comparing each pair’s performance to an optimal individual performance model of the same two people. The outcome was a strong interaction between friendship and partner visibility. Friends collaborated more efficiently than non-friends when visible to one another, but a partition that prevented pair members from seeing one another reduced the collaborative efficiency of friends and non-friends to a similar lower level. Secondary measures suggested that verbal communication differences, but not psychophysiological arousal, contributed to these effects. Analysis of covariance indicated that females contributed more than males to overall levels of collaboration, but that the interaction of friendship and visibility was independent of that effect. These findings highlight the critical role of partner visibility in the collaborative success of friends. PMID:26619079

  15. It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption.

    PubMed

    Orlofske, Sarah A; Jadin, Robert C; Johnson, Pieter T J

    2015-06-01

    Understanding the effects of predation on disease dynamics is increasingly important in light of the role ecological communities can play in host-parasite interactions. Surprisingly, however, few studies have characterized direct predation of parasites. Here we used an experimental approach to show that consumption of free-living parasite stages is highly context dependent, with significant influences of parasite size, predator size and foraging mode, as well as environmental condition. Among the four species of larval trematodes and two types of predators (fish and larval damselflies) studied here, parasites with larger infective stages (size >1,000 μm) were most vulnerable to predation by fish, while small-bodied fish and damselflies (size <10 mm) consumed the most infectious stages. Small parasite species (size approx. 500 μm) were less frequently consumed by both fish and larval damselflies. However, these results depended strongly on light availability; trials conducted in the dark led to significantly fewer parasites consumed overall, especially those with a size of <1,000 μm, emphasizing the importance of circadian shedding times of parasite free-living stages for predation risk. Intriguingly, active predation functioned to help limit fishes' infection by directly penetrating parasite species. Our results are consistent with established theory developed for predation on zooplankton that emphasizes the roles of body size, visibility and predation modes and further suggest that consumer-resource theory may provide a predictive framework for when predators should significantly influence parasite transmission. These results contribute to our understanding of transmission in natural systems, the role of predator-parasite links in food webs and the evolution of parasite morphology and behavior.

  16. The enemy of my enemy is my friend: intraguild predation between invaders and natives facilitates coexistence with shared invasive prey.

    PubMed

    MacNeil, Calum; Dick, Jaimie T A

    2014-08-01

    Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the 'enemy' of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator.

    PubMed

    Nifong, James C; Layman, Craig A; Silliman, Brian R

    2015-01-01

    Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  18. Predator-prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): importance of lateral line in nocturnal predation and effects of fenitrothion exposure.

    PubMed

    Junges, Celina M; Lajmanovich, Rafael C; Peltzer, Paola M; Attademo, Andres M; Bassó, Agustín

    2010-11-01

    Environmental contaminants can disrupt interactions between aquatic species by altering community structure. We explored predator-prey interactions between marbled swamp juvenile eels (Synbranchus marmoratus; predator) and anuran tadpoles (Hypsiboas pulchellus; prey) in relation to two aspects: the importance of lateral line in the predator and whether the absence of light modifies predation rates; and the effect of a sub-lethal concentration of fenitrothion on both predator and prey. Eels were tested under two sensory conditions (lateral line intact and lateral line blocked by cobalt chloride) in dark conditions. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to insecticide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were also measured in muscle samples of eels and tadpoles to explore whether fenitrothion affects predator and prey differentially. Marbled swamp eels were more efficient in feeding on tadpoles during the night than during the day, showing that lateral line makes an important contribution to prey detection and capture. Regarding pesticide effects, short-term (6 h) exposure to an ecologically relevant fenitrothion dose of 2.5 mg L(-1) altered the predator-prey relationship by changing prey behaviour, reducing prey detection and therefore increasing tadpole survival. At this concentration, the outcome of the predator-prey relationship appears biased in favor of the exposed tadpoles, which were released from predation risk, despite their altered behaviour and the higher inhibition percentages of tail BChE (70%) and AChE (51%) than in control individuals. Our study involving these model species and agrochemicals demonstrates that fenitrothion affected the outcome of a predator-prey relationship. Further studies are needed, in these species and other native amphibians, to investigate the nature of the mechanisms responsible for the adverse effects of pesticides on antipredator behaviour and predation efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery.

    PubMed

    Fleming, Patricia A; Dundas, Shannon J; Lau, Yvonne Y W; Pluske, John R

    2016-10-08

    Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are "chewed"), it is likely that foxes were contributing substantially to the 20% of piglets that were reported "missing". Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control.

  20. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    PubMed

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  1. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia.

    PubMed

    Kruppert, Sebastian; Horstmann, Martin; Weiss, Linda C; Witzel, Ulrich; Schaber, Clemens F; Gorb, Stanislav N; Tollrian, Ralph

    2017-08-29

    The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. 'neckteeth' in D. pulex and 'crests' in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator's prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure's and shape's contribution to the carapace's mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.

  2. Fear, food and sexual ornamentation: plasticity of colour development in Trinidadian guppies

    PubMed Central

    Ruell, E. W.; Handelsman, C. A.; Hawkins, C. L.; Sofaer, H. R.; Ghalambor, C. K.; Angeloni, L.

    2013-01-01

    The evolution of male ornamentation often reflects compromises between sexual and natural selection, but it may also be influenced by phenotypic plasticity. We investigated the developmental plasticity of male colour ornamentation in Trinidadian guppies in response to two environmental variables that covary in nature: predation risk and food availability. We found that exposure to chemical predator cues delayed the development of pigment-based colour elements, which are conspicuous to visual-oriented predators. Predator cues also reduced the size of colour elements at the time of maturity and caused adult males to be less colourful. To the best of our knowledge, these findings provide the first example of a plastic reduction in the development of a sexually selected male ornament in response to predator cues. The influence of predator cues on ornamentation probably affects individual fitness by reducing conspicuousness to predators, but could reduce attractiveness to females. Reduced food availability during development caused males to delay the development of colour elements and mature later, probably reflecting a physiological constraint, but their coloration at maturity and later in adulthood was largely unaffected, suggesting that variation in food quantity without variation in quality does not contribute to condition dependence of the trait. PMID:23466982

  3. The Interplay Between Predation, Competition, and Nutrient Levels Influences the Survival of Escherichia coli in Aquatic Environments.

    PubMed

    Wanjugi, P; Fox, G A; Harwood, V J

    2016-10-01

    Nutrient levels, competition from autochthonous microorganisms, and protozoan predation may all influence survival of fecal microorganisms as they transition from the gastrointestinal tract to aquatic habitats. Although Escherichia coli is an important indicator of waterborne pathogens, the effects of environmental stressors on its survival in aquatic environments remain poorly understood. We manipulated organic nutrient, predation, and competition levels in outdoor microcosms containing natural river water, sediments, and microbial populations to determine their relative contribution to E. coli survival. The activities of predator (protozoa) and competitor (indigenous bacteria) populations were inhibited by adding cycloheximide or kanamycin. We developed a statistical model of E. coli density over time that fits with the data under all experimental conditions. Predation and competition had significant negative effects on E. coli survival, while higher nutrient levels increased survival. Among the main effects, predation accounted for the greatest variation (40 %) compared with nutrients (25 %) or competition (15 %). The highest nutrient level mitigated the effect of predation on E. coli survival. Thus, elevated organic nutrients may disproportionately enhance the survival of E. coli, and potentially that of other enteric bacteria, in aquatic habitats.

  4. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.

    PubMed

    Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C

    2008-09-01

    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.

  5. Reduction in Predator Defense in the Presence of Neighbors in a Colonial Fish

    PubMed Central

    Schädelin, Franziska C.; Fischer, Stefan; Wagner, Richard H.

    2012-01-01

    Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or without neighbors. Further studies are needed to determine the scope of commensalism as an anti-predator strategy in colonial animals. PMID:22615741

  6. A review of predation as a limiting factor for bird populations in mesopredator-rich landscapes: a case study of the UK.

    PubMed

    Roos, Staffan; Smart, Jennifer; Gibbons, David W; Wilson, Jeremy D

    2018-05-22

    The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high-yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high-quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground-nesting seabirds, waders and gamebirds can be limited by predation. Using life-history characteristics of prey species, we found that mainly long-lived species with high adult survival and late onset of breeding were limited by predation. Single-brooded species were also more likely to be limited by predation than multi-brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non-native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator-prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator-management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time-consuming, we advocate that future research should identify land-use practices and landscape configurations that would reduce predator numbers and predation rates. © 2018 Cambridge Philosophical Society.

  7. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes.

    PubMed

    Tunney, Tyler D; McCann, Kevin S; Jarvis, Lauren; Lester, Nigel P; Shuter, Brian J

    2018-04-01

    Habitat coupling is a concept that refers to consumer integration of resources derived from different habitats. This coupling unites fundamental food web pathways (e.g., cross-habitat trophic linkages) that mediate key ecological processes such as biomass flows, nutrient cycling, and stability. We consider the influence of water transparency, an important environmental driver in aquatic ecosystems, on habitat coupling by a light-sensitive predator, walleye (Sander vitreus), and its prey in 33 Canadian lakes. Our large-scale, across-lake study shows that the contribution of nearshore carbon (δ 13 C) relative to offshore carbon (δ 13 C) to walleye is higher in less transparent lakes. To a lesser degree, the contribution of nearshore carbon increased with a greater proportion of prey in nearshore compared to offshore habitats. Interestingly, water transparency and habitat coupling predict among-lake variation in walleye relative biomass. These findings support the idea that predator responses to changing conditions (e.g., water transparency) can fundamentally alter carbon pathways, and predator biomass, in aquatic ecosystems. Identifying environmental factors that influence habitat coupling is an important step toward understanding spatial food web structure in a changing world.

  8. Separating spatial search and efficiency rates as components of predation risk

    PubMed Central

    DeCesare, Nicholas J.

    2012-01-01

    Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk. PMID:22977145

  9. No smoke without fire: The impact of future friends on adolescent smoking behaviour.

    PubMed

    Mercken, L; Candel, M; van Osch, L; de Vries, H

    2011-02-01

    This study examined the impact of future friends and the contribution of different social influence and selection processes in predicting adolescents' smoking behaviour by extending the theory of planned behaviour (TPB). We investigated the impact of previous smoking, direct pressure from friends, descriptive norms of present and future friends, smoking-based selection of future friends, and distinguished between reciprocal and desired friends. A longitudinal design with three measurements was used. METHODSL: The sample consisted of 1,475 Dutch high school students (mean age = 12.7 years) that participated as a control group in the European Smoking prevention Framework Approach study at three measurements. Structural equation modelling revealed that adolescent smoking was influenced by intention, previous smoking, descriptive norms of parents and siblings, and that desired as well as reciprocal friends were selected based on similar smoking behaviour. Future friends indirectly influenced adolescent smoking through intention, as did attitude, subjective norms of parents and siblings, previous smoking, and descriptive norms of reciprocal friends and siblings. The present results suggest that descriptive norms and selection of friends need to be considered as major factors explaining smoking behaviour among adolescents besides the TPB components. These insights contribute to the further refinement of smoking prevention strategies. ©2010 The British Psychological Society.

  10. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.

    PubMed

    Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C

    2013-10-01

    Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.

  11. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change.

    PubMed

    Pasanen-Mortensen, Marianne; Elmhagen, Bodil; Lindén, Harto; Bergström, Roger; Wallgren, Märtha; van der Velde, Ype; Cousins, Sara A O

    2017-05-01

    Apex predators may buffer bottom-up driven ecosystem change, as top-down suppression may dampen herbivore and mesopredator responses to increased resource availability. However, theory suggests that for this buffering capacity to be realized, the equilibrium abundance of apex predators must increase. This raises the question: will apex predators maintain herbivore/mesopredator limitation, if bottom-up change relaxes resource constraints? Here, we explore changes in mesopredator (red fox Vulpes vulpes) abundance over 220 years in response to eradication and recovery of an apex predator (Eurasian lynx Lynx lynx), and changes in land use and climate which are linked to resource availability. A three-step approach was used. First, recent data from Finland and Sweden were modelled to estimate linear effects of lynx density, land use and winter temperature on fox density. Second, lynx density, land use and winter temperature was estimated in a 22 650 km 2 focal area in boreal and boreo-nemoral Sweden in the years 1830, 1920, 2010 and 2050. Third, the models and estimates were used to project historic and future fox densities in the focal area. Projected fox density was lowest in 1830 when lynx density was high, winters cold and the proportion of cropland low. Fox density peaked in 1920 due to lynx eradication, a mesopredator release boosted by favourable bottom-up changes - milder winters and cropland expansion. By 2010, lynx recolonization had reduced fox density, but it remained higher than in 1830, partly due to the bottom-up changes. Comparing 1830 to 2010, the contribution of top-down limitation decreased, while environment enrichment relaxed bottom-up limitation. Future scenarios indicated that by 2050, lynx density would have to increase by 79% to compensate for a projected climate-driven increase in fox density. We highlight that although top-down limitation in theory can buffer bottom-up change, this requires compensatory changes in apex predator abundance. Hence apex predator recolonization/recovery to historical levels would not be sufficient to compensate for widespread changes in climate and land use, which have relaxed the resource constraints for many herbivores and mesopredators. Variation in bottom-up conditions may also contribute to context dependence in apex predator effects. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Contributions of Racial and Sociobehavioral Homophily to Friendship Stability and Quality among Same-Race and Cross-Race Friends

    ERIC Educational Resources Information Center

    McDonald, Kristina L.; Dashiell-Aje, Ebony; Menzer, Melissa M.; Rubin, Kenneth H.; Oh, Wonjung; Bowker, Julie C.

    2013-01-01

    The current study examined how racial and sociobehavioral similarities were associated with friendship stability and friendship quality. Cross-race friends were not significantly similar to each other in peer-nominated shyness/withdrawal, victimization, exclusion, and popularity/sociability. Relative to same-race friends, cross-race friends were…

  13. Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies.

    PubMed

    Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P

    2016-07-01

    Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Predator contributions to belowground responses to warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maran, A. M.; Pelini, S. L.

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and generality of this pattern to other systems.« less

  15. Predator contributions to belowground responses to warming

    DOE PAGES

    Maran, A. M.; Pelini, S. L.

    2016-09-26

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and generality of this pattern to other systems.« less

  16. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Live coral predation by fish in Tayrona Nature National Park, Colombian Caribbean].

    PubMed

    Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2004-12-01

    Live coral predation by fish was evaluated in two bays of the Tayrona National Natural Park (Colombia), as a possible biological agent causing coral mortality. Visual censuses were used to identify the most important predator. Predation incidence was determined by examining all colonies present in permanent belt transects (20 x 2 m) in two reef environments (one dominated by Colpophyllia natans and the other one by Montastraea faveolata), for two climatic seasons (rainy and dry seasons). The parrotfish Sparisoma viride was the most important predator due to its biting frequency and bite size. S. viride adults of the initial and terminal phases, removed live tissue and part of the calcareous matrix of M. faveolata, M. annularis, Porites astreoides and C. natans, of which, the last one lost a major amount of tissue per area (3.51 cm2) and volume (3.22 cm3) per bite. A negative exponential tendency (r2=0.94), between coral density and volume removed was found, indicating that the coral density determines the bite's damage. There is no clear relationship between predation incidence and climatic seasons at the sites studied. At Chengue and Gayraca bays, live coral predation is one of the factors contributing to coral tissue loss and could have important consequences on the dynamic of these reefs.

  18. Online communication and adolescent relationships.

    PubMed

    Subrahmanyam, Kaveri; Greenfield, Patricia

    2008-01-01

    Over the past decade, technology has become increasingly important in the lives of adolescents. As a group, adolescents are heavy users of newer electronic communication forms such as instant messaging, e-mail, and text messaging, as well as communication-oriented Internet sites such as blogs, social networking, and sites for sharing photos and videos. Kaveri Subrahmanyam and Patricia Greenfield examine adolescents' relationships with friends, romantic partners, strangers, and their families in the context of their online communication activities. The authors show that adolescents are using these communication tools primarily to reinforce existing relationships, both with friends and romantic partners. More and more they are integrating these tools into their "offline" worlds, using, for example, social networking sites to get more information about new entrants into their offline world. Subrahmanyam and Greenfield note that adolescents' online interactions with strangers, while not as common now as during the early years of the Internet, may have benefits, such as relieving social anxiety, as well as costs, such as sexual predation. Likewise, the authors demonstrate that online content itself can be both positive and negative. Although teens find valuable support and information on websites, they can also encounter racism and hate messages. Electronic communication may also be reinforcing peer communication at the expense of communication with parents, who may not be knowledgeable enough about their children's online activities on sites such as the enormously popular MySpace. Although the Internet was once hailed as the savior of education, the authors say that schools today are trying to control the harmful and distracting uses of electronic media while children are at school. The challenge for schools is to eliminate the negative uses of the Internet and cell phones in educational settings while preserving their significant contributions to education and social connection.

  19. Keep calm and don’t stop growing: Non-consumptive effects of a sympatric predator on two invasive Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides

    PubMed Central

    Kobak, Jarosław

    2017-01-01

    Predators shape prey populations by elimination of individuals (consumptive effects) and by inducing modifications in prey behaviour, physiology or morphology (NCE—non-consumptive effects). Due to the resource allocation to defence, decreased feeding and higher stress, the costs of predator NCEs can be considerable. Therefore, the resistance to NCEs may be crucial for population growth and interspecific competition. We tested the resistance of Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides to NCEs imposed by their predator, the racer goby Babka gymnotrachelus. As D. villosus is often avoided by predators in the presence of alternative food, we hypothesised that it would bear lower behavioural and physiological costs of anti-predator responses. We tested gammarid feeding in short-time experiments (2–4 h) with food (chironomid larvae) located at various distances from the stony shelter (to enforce food searching, Experiment I) or in the direct gammarid proximity (no searching needed, Experiment II). Moreover, we checked the predator effect on gammarid growth in a 2-week Experiment III. Both gammarids exposed to predators reduced feeding efficiency outside the shelter (Experiment I). Contrary to our expectations, the response of D. villosus was stronger. When food was provided in their direct proximity (Experiment II), the feeding of both species was unaffected by predators, indicating that a shelter supplied with food can reduce predator NCEs. The growth of P. robustoides was reduced in the presence of predators (Experiment III), whereas that of D. villosus was unaffected. Although D. villosus has a more effective defence strategy than P. robustoides, it bears similar or even higher behavioural costs of NCEs. However, it exhibits the higher resistance to the long-term predator presence, sustaining its growth rate under such conditions. This may be one of the factors contributing to the great invasion success of D. villosus, currently taking place in European fresh waters. PMID:28771578

  20. Keep calm and don't stop growing: Non-consumptive effects of a sympatric predator on two invasive Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides.

    PubMed

    Jermacz, Łukasz; Kobak, Jarosław

    2017-01-01

    Predators shape prey populations by elimination of individuals (consumptive effects) and by inducing modifications in prey behaviour, physiology or morphology (NCE-non-consumptive effects). Due to the resource allocation to defence, decreased feeding and higher stress, the costs of predator NCEs can be considerable. Therefore, the resistance to NCEs may be crucial for population growth and interspecific competition. We tested the resistance of Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides to NCEs imposed by their predator, the racer goby Babka gymnotrachelus. As D. villosus is often avoided by predators in the presence of alternative food, we hypothesised that it would bear lower behavioural and physiological costs of anti-predator responses. We tested gammarid feeding in short-time experiments (2-4 h) with food (chironomid larvae) located at various distances from the stony shelter (to enforce food searching, Experiment I) or in the direct gammarid proximity (no searching needed, Experiment II). Moreover, we checked the predator effect on gammarid growth in a 2-week Experiment III. Both gammarids exposed to predators reduced feeding efficiency outside the shelter (Experiment I). Contrary to our expectations, the response of D. villosus was stronger. When food was provided in their direct proximity (Experiment II), the feeding of both species was unaffected by predators, indicating that a shelter supplied with food can reduce predator NCEs. The growth of P. robustoides was reduced in the presence of predators (Experiment III), whereas that of D. villosus was unaffected. Although D. villosus has a more effective defence strategy than P. robustoides, it bears similar or even higher behavioural costs of NCEs. However, it exhibits the higher resistance to the long-term predator presence, sustaining its growth rate under such conditions. This may be one of the factors contributing to the great invasion success of D. villosus, currently taking place in European fresh waters.

  1. Effects of climate and exurban development on nest predation and predator presence in the southern Appalachian Mountains (USA).

    PubMed

    Lumpkin, Heather A; Pearson, Scott M; Turner, Monica G

    2012-08-01

    In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to determine the effects of exurban development and temperature on predator presence and the average number of days until eggs in an artificial nest were disturbed by predators. We baited artificial nests with quail (Excalfactoria chinensi) eggs and monitored them for 18 days. We used clay eggs, track plates, and motion-triggered cameras to detect and identify nest predators. The average number of days a nest was undisturbed decreased as mean temperature increased and, to a lesser extent, as the density of buildings increased. Nests on the ground were more often depredated than those in trees, likely due to increased predation by opossum (Didelphis virginiana) and other carnivores. Raccoons (Procyon lotor), opossums, corvids (Corvus brachyrhynchos and Cyanocitta cristata), chipmunks (Tamias striatus), black bears (Ursus americanus), and domestic cats (Felis catus) were the most commonly detected predators. Presence of these predators did not vary as a function of mean temperature. Domestic cats and corvids were detected more frequently in plots with high rather than low densities of buildings. Forest-interior specialists and Neotropical migrants often nest in cool, high-elevation areas with low housing density. These bird species, especially those that nest on the ground, may be most vulnerable to increased nest predation if temperature and exurban development increase at higher elevations as anticipated. ©2012 Society for Conservation Biology.

  2. Modelling moose–forest interactions under different predation scenarios at Isle Royale National Park, USA

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason; Miranda, Brian R.; Sturtevant, Brian R.; Fox, Timothy J.; Romanski, Mark C.

    2017-01-01

    Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.

  3. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity

    PubMed Central

    Prudic, Kathleen L.; Stoehr, Andrew M.; Wasik, Bethany R.; Monteiro, Antónia

    2015-01-01

    Some eyespots are thought to deflect attack away from the vulnerable body, yet there is limited empirical evidence for this function and its adaptive advantage. Here, we demonstrate the conspicuous ventral hindwing eyespots found on Bicyclus anynana butterflies protect against invertebrate predators, specifically praying mantids. Wet season (WS) butterflies with larger, brighter eyespots were easier for mantids to detect, but more difficult to capture compared to dry season (DS) butterflies with small, dull eyespots. Mantids attacked the wing eyespots of WS butterflies more frequently resulting in greater butterfly survival and reproductive success. With a reciprocal eyespot transplant, we demonstrated the fitness benefits of eyespots were independent of butterfly behaviour. Regardless of whether the butterfly was WS or DS, large marginal eyespots pasted on the hindwings increased butterfly survival and successful oviposition during predation encounters. In previous studies, DS B. anynana experienced delayed detection by vertebrate predators, but both forms suffered low survival once detected. Our results suggest predator abundance, identity and phenology may all be important selective forces for B. anynana. Thus, reciprocal selection between invertebrate and vertebrate predators across seasons may contribute to the evolution of the B. anynana polyphenism. PMID:25392465

  4. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    PubMed Central

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  5. Ecological explanations to island gigantism: dietary niche divergence, predation, and size in an endemic lizard.

    PubMed

    Runemark, Anna; Sagonas, Kostas; Svensson, Erik I

    2015-08-01

    Although rapid evolution of body size on islands has long been known, the ecological mechanisms behind this island phenomenon remain poorly understood. Diet is an important selective pressure for morphological divergence. Here we investigate if selection for novel diets has contributed to the multiple independent cases of island gigantism in the Skyros wall lizard (Podarcis gaigeae) and if diet, predation, or both factors best explain island gigantism. We combined data on body size, shape, bite force, and realized and available diets to address this. Several lines of evidence suggest that diet has contributed to the island gigantism. The larger islet lizards have relatively wider heads and higher bite performance in relation to mainland lizards than would be expected from size differences alone. The proportions of consumed and available hard prey are higher on islets than mainland localities, and lizard body size is significantly correlated with the proportion of hard prey. Furthermore, the main axis of divergence in head shape is significantly correlated with dietary divergence. Finally, a model with only diet and one including diet and predation regime explain body size divergence equally well. Our results suggest that diet is an important ecological factor behind insular body size divergence, but could be consistent with an additional role for predation.

  6. Links between Friends' Physical Aggression and Adolescents' Physical Aggression: What Happens If Gene-Environment Correlations are Controlled?

    ERIC Educational Resources Information Center

    Vitaro, Frank; Brendgen, Mara; Girard, Alain; Dionne, Ginette; Tremblay, Richard E.; Boivin, Michel

    2016-01-01

    Exposure to deviant friends has been found to be a powerful source of influence on children's and adolescents' aggressive behavior. However, the contribution of deviant friends may have been overestimated because of a possible non-accounted gene-environment correlation (rGE). In this study, we used a cross-lagged design to test whether friends'…

  7. Non-pest prey do not disrupt aphid predation by a web-building spider.

    PubMed

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  8. Patterns of Livestock Predation by Carnivores: Human-Wildlife Conflict in Northwest Yunnan, China

    NASA Astrophysics Data System (ADS)

    Li, Xueyou; Buzzard, Paul; Chen, Yongchun; Jiang, Xuelong

    2013-12-01

    Alleviating human-carnivore conflict is central to large carnivore conservation and is often of economic importance, where people coexist with carnivores. In this article, we report on the patterns of predation and economic losses from wild carnivores preying on livestock in three villages of northern Baima Xueshan Nature Reserve, northwest Yunnan during a 2-year period between January 2010 and December 2011. We analyzed claims from 149 households that 258 head of livestock were predated. Wolves ( Canis lupus) were responsible for 79.1 % of livestock predation; Asiatic black bears ( Selenarctos thibetanus) and dholes ( Cuon alpinus) were the other predators responsible. Predation frequency varied between livestock species. The majority of livestock killed were yak-cattle hybrids or dzo (40.3 %). Wolves killed fewer cattle than expected, and more donkeys and horses than expected. Wolves and bears killed more adult female and fewer adult male livestock than expected. Intensified predation in wet season coincided with livestock being left to graze unattended in alpine meadows far away from villages. On average, carnivore attacks claimed 2.1 % of range stock annually. This predation represented an economic loss of 17 % (SD = 14 %) of the annual household income. Despite this loss and a perceived increase in carnivore conflict, a majority of the herders (66 %) still supported the reserve. This support is primarily due to the benefits from the collection of nontimber resources such as mushrooms and medicinal plants. Our study also suggested that improvement of husbandry techniques and facilities will reduce conflicts and contribute to improved conservation of these threatened predators.

  9. Patterns of livestock predation by carnivores: human-wildlife conflict in northwest Yunnan, China.

    PubMed

    Li, Xueyou; Buzzard, Paul; Chen, Yongchun; Jiang, Xuelong

    2013-12-01

    Alleviating human-carnivore conflict is central to large carnivore conservation and is often of economic importance, where people coexist with carnivores. In this article, we report on the patterns of predation and economic losses from wild carnivores preying on livestock in three villages of northern Baima Xueshan Nature Reserve, northwest Yunnan during a 2-year period between January 2010 and December 2011. We analyzed claims from 149 households that 258 head of livestock were predated. Wolves (Canis lupus) were responsible for 79.1 % of livestock predation; Asiatic black bears (Selenarctos thibetanus) and dholes (Cuon alpinus) were the other predators responsible. Predation frequency varied between livestock species. The majority of livestock killed were yak-cattle hybrids or dzo (40.3 %). Wolves killed fewer cattle than expected, and more donkeys and horses than expected. Wolves and bears killed more adult female and fewer adult male livestock than expected. Intensified predation in wet season coincided with livestock being left to graze unattended in alpine meadows far away from villages. On average, carnivore attacks claimed 2.1 % of range stock annually. This predation represented an economic loss of 17 % (SD = 14 %) of the annual household income. Despite this loss and a perceived increase in carnivore conflict, a majority of the herders (66 %) still supported the reserve. This support is primarily due to the benefits from the collection of nontimber resources such as mushrooms and medicinal plants. Our study also suggested that improvement of husbandry techniques and facilities will reduce conflicts and contribute to improved conservation of these threatened predators.

  10. Interactive Contributions of Attribution Biases and Emotional Intensity to Child-Friend Interaction Quality During Preadolescence.

    PubMed

    Chen, Xi; McElwain, Nancy L; Lansford, Jennifer E

    2017-12-20

    Using data from a subsample of 913 study children and their friends who participated in the NICHD Study of Early Child Care and Youth Development, the interactive contributions of child-reported attribution biases and teacher-reported child emotional intensity (EI) at Grade 4 (M = 9.9 years) to observed child-friend interaction at Grade 6 (M = 11.9 years) were examined. Study children's hostile attribution bias, combined with high EI, predicted more negative child-friend interaction. In contrast, benign attribution bias, combined with high EI, predicted more positive child-friend interaction. The findings are discussed in light of the "fuel" interpretation of EI, in which high-intensity emotions may motivate children to act on their cognitive biases for better or for worse. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  11. Friends and social contexts as unshared environments: a discordant sibling analysis of obesity- and health-related behaviors in young adolescents.

    PubMed

    Salvy, S-J; Feda, D M; Epstein, L H; Roemmich, J N

    2017-04-01

    This study examines the contribution of best friends' weight and the peer social context (time spent alone versus with friends) as sources of unshared environment associated with variability in weight and health behaviors among weight-discordant siblings. Pairs of same-sex biologic siblings (N=40 pairs; ages 13-17) were originally recruited as part of a study evaluating putative factors contributing to differences in adiposity among weight-discordant siblings. Siblings were asked to bring their best friends to the laboratory and siblings and friends' height and weight were objectively measured. Siblings also completed multi-pass dietary recalls to assess energy intake and sugar sweetened beverage (SSB) consumption. Siblings' physical activity was measured using accelerometry. Experience sampling methodology was used to assess sedentary behaviors/screen time and the number of occasions siblings spent alone and in the presence of friends. Multilevel models were used to estimate the relationships between predictors (best friends' zBMI, time spent alone or with friends) and outcomes (siblings' zBMI and obesity-related health behaviors). Best friends' zBMI was the best predictor of participants' zBMI, even when controlling for child's birth weight. Best friends' weight (zBMI) further predicted participants' SSB intake and time engaged in sedentary behaviors. Being active with friends was positively associated with participants' overall physical activity, whereas spending time alone was negatively associated with accelerometer counts regardless of siblings' adiposity. A friends' weight and the social context are unshared environmental factors associated with variability in adiposity among biologically-related weight-discordant siblings.

  12. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed.

    PubMed

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such 'edge effects' have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use.

  13. Where Wolves Kill Moose: The Influence of Prey Life History Dynamics on the Landscape Ecology of Predation

    PubMed Central

    Montgomery, Robert A.; Vucetich, John A.; Roloff, Gary J.; Bump, Joseph K.; Peterson, Rolf O.

    2014-01-01

    The landscape ecology of predation is well studied and known to be influenced by habitat heterogeneity. Little attention has been given to how the influence of habitat heterogeneity on the landscape ecology of predation might be modulated by life history dynamics of prey in mammalian systems. We demonstrate how life history dynamics of moose (Alces alces) contribute to landscape patterns in predation by wolves (Canis lupus) in Isle Royale National Park, Lake Superior, USA. We use pattern analysis and kernel density estimates of moose kill sites to demonstrate that moose in senescent condition and moose in prime condition tend to be wolf-killed in different regions of Isle Royale in winter. Predation on senescent moose was clustered in one kill zone in the northeast portion of the island, whereas predation on prime moose was clustered in 13 separate kill zones distributed throughout the full extent of the island. Moreover, the probability of kill occurrence for senescent moose, in comparison to prime moose, increased in high elevation habitat with patches of dense coniferous trees. These differences can be attributed, at least in part, to senescent moose being more vulnerable to predation and making different risk-sensitive habitat decisions than prime moose. Landscape patterns emerging from prey life history dynamics and habitat heterogeneity have been observed in the predation ecology of fish and insects, but this is the first mammalian system for which such observations have been made. PMID:24622241

  14. "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds.

    PubMed

    Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; Compin, Arthur; Guillaume, Mathieu; Santoul, Frédéric

    2012-01-01

    The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13)C and δ(15)N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

  15. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  16. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period

    PubMed Central

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael

    2017-01-01

    ABSTRACT Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild (n = 5), moderate (n = 9), and severe (n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients’ clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. PMID:28951476

  17. Multiple factors affect a population of Agassiz's desert tortoise (Gopherus agassizii) in the Northwestern Mojave Desert

    USGS Publications Warehouse

    Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.

    2013-01-01

    Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.

  18. Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Schuytema, Gerald S.; Nebeker, A.V.

    2003-01-01

    We compared behavioral responses of larvae of three Pacific Northwest anurans from different hydroperiods to water borne cues of native and introduced predators. Two native anurans (Pacific Treefrog, Pseudacris regilla, and Northern Red-Legged Frog, Rana aurora aurora) and introduced Bullfrogs (Rana catesbeiana) responded to water conditioned by native Redside Shiners (Richardsonius balteatus) by increasing refuge use. The larvae of the two native anurans differed in their response to introduced predator cues. Rana aurora aurora, which occur in temporary and permanent waters, responded to both introduced Bluegill Sunfish (Lepomis macrochirus) and introduced Crayfish (Procambarus clarkii). Pseudacris regilla, which occur primarily in temporary ponds, did not respond to water borne cues from either introduced predator. The broader responses of R. a. aurora may indicate greater behavioral plasticity or more exposure to novel predators than experienced by P. regilla. Larvae of introduced R. catesbeiana responded strongly to cues from two fish native to the Pacific northwest but did not alter behavior in response to any of five potential predators with which they coexist in their native range. Fish that occur with R. catesbeiana in their native range generally find Bullfrog larvae unpalatable. This pattern suggests that Bullfrog larvae can recognize cues of novel predators that may find them palatable, which could contribute to their success as an invasive species in the region.

  19. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    NASA Astrophysics Data System (ADS)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  20. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby

    2014-07-01

    Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential interplay and thereby highlights the complexity of contaminant effects on predator-prey interactions being differentially temperature-dependent pending on the trophic level. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  2. Notes on spider (Theridiidae, Salticidae) predation of the harvester ant, Pogonomyrmex salinus Olsen (Hymenoptera: Formicidae: Myrmicinae), and a possible parasitoid fly (Chloropidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.H.; Blom, P.E.

    1992-12-01

    Spiders are known predators of ants. Pressure exerted by consistent spider predation can alter the behavior of ant colonies (MacKay 1982) and may be a selective pressure contributing to the seed-harvesting behavior of Pogonomyrmex (MacKay and MacKay 1984). The authors observed the spider Euryopis formosa Banks (Araneae: Theridiidae) capture and transport workers of the harvester ant (Pogonomyrmex salinus Olsen [Hymenoptera: Formicidae, Myrmicinae]) in southeastern Idaho. Additional observations revealed a crab spider of the genus Xysticus preying on P. salinus and the presence of a chloropid fly (Incertella) that may have been parasitizing the moribund prey subdued by the spider.

  3. Clarifying the contribution of subjective norm to predicting leisure-time exercise.

    PubMed

    Okun, Morris A; Karoly, Paul; Lutz, Rafer

    2002-01-01

    To clarify the contribution of subjective norm to exercise intention and behavior by considering the influence of descriptive as well as injunctive social norms related to family and friends. A sample of 530 college students completed a questionnaire that assessed descriptive and injunctive social norms related to family and to friends, perceived behavioral control, attitude, intention, and leisure-time exercise. Friend descriptive social norm was a significant predictor of both intention (p<.05) and leisure-time exercise (p<.001). Descriptive norms should be incorporated into tests of the theory of planned behavior in the exercise domain.

  4. Please Write: Using Critical Friend Letter Writing in Teacher Research

    ERIC Educational Resources Information Center

    Samaras, Anastasia P.; Sell, Corey

    2013-01-01

    This study examines students' experiences using letter writing designed as a socio-cultural-based tool for critical friend work to promote dialogue and critique of their self-study teacher research projects. It seeks to understand their diverse experiences to inform future practice and contribute to the knowledge base of critical friend work in…

  5. Effects of large Saduria entomon (Isopoda) on spatial distribution of their small S. entomon and Monoporeia affinis (Amphipoda) prey.

    PubMed

    Sparrevik, Erik; Leonardsson, Kjell

    1995-02-01

    We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.

  6. Carnivore-livestock conflicts: effects of subsidized predator control and economic correlates on the sheep industry.

    PubMed

    Berger, Kim Murray

    2006-06-01

    Despite the importance of carnivores in terrestrial ecosystems, many nations have implemented well-coordinated, state-funded initiatives to remove predators, largely because of conflicts with humans over livestock. Although these control efforts have been successful in terms of the number of carnivores removed, their effects on the viability of the industries they seek to protect are less understood. I assessed the efficacy of long-term efforts by the U.S. government to improve the viability of the sheep industry by reducing predation losses. I used regression analysis and hierarchical partitioning of a 60-year data set to explore associations among changes in sheep numbers and factors such as predator control effort, market prices, and production costs. In addition, I compared trends in the sheep industry in the western United States, where predator control is subsidized and coyotes (Canis latrans) are abundant, with trends in eastern states that lack federally subsidized predator control and that were (1) colonized by coyotes before 1950 or (2) colonized by coyotes between 1950 and 1990. Although control efforts were positively correlated with fluctuations in sheep numbers, production costs and market prices explained most of the model variation, with a combined independent contribution of 77%. Trends in sheep numbers in eastern and western states were highly correlated (r > or = 0.942) independent of the period during which they were colonized by coyotes, indicating either that control has been ineffective at reducing predation losses or that factors other than predation account for the declines in both regions. These results suggest that government-subsidized predator control has failed to prevent the decline in the sheep industry and alternative support mechanisms need to be developed if the goal is to increase sheep production and not simply to kill carnivores.

  7. Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies

    PubMed Central

    Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.

    2013-01-01

    Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063

  8. Shark predation on migrating adult American eels (Anguilla rostrata) in the Gulf of St. Lawrence.

    PubMed

    Béguer-Pon, Mélanie; Benchetrit, José; Castonguay, Martin; Aarestrup, Kim; Campana, Steven E; Stokesbury, Michael J W; Dodson, Julian J

    2012-01-01

    In an attempt to document the migratory pathways and the environmental conditions encountered by American eels during their oceanic migration to the Sargasso Sea, we tagged eight silver eels with miniature satellite pop-up tags during their migration from the St. Lawrence River in Québec, Canada. Surprisingly, of the seven tags that successfully transmitted archived data, six were ingested by warm-gutted predators, as observed by a sudden increase in water temperature. Gut temperatures were in the range of 20 to 25°C-too cold for marine mammals but within the range of endothermic fish. In order to identify the eel predators, we compared their vertical migratory behavior with those of satellite-tagged porbeagle shark and bluefin tuna, the only endothermic fishes occurring non-marginally in the Gulf of St. Lawrence. We accurately distinguished between tuna and shark by using the behavioral criteria generated by comparing the diving behavior of these two species with those of our unknown predators. Depth profile characteristics of most eel predators more closely resembled those of sharks than those of tuna. During the first days following tagging, all eels remained in surface waters and did not exhibit diel vertical migrations. Three eels were eaten at this time. Two eels exhibited inverse diel vertical migrations (at surface during the day) during several days prior to predation. Four eels were eaten during daytime, whereas the two night-predation events occurred at full moon. Although tagging itself may contribute to increasing the eel's susceptibility to predation, we discuss evidence suggesting that predation of silver-stage American eels by porbeagle sharks may represent a significant source of mortality inside the Gulf of St. Lawrence and raises the possibility that eels may represent a reliable, predictable food resource for porbeagle sharks.

  9. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.

  10. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae.

    PubMed

    Errard, Audrey; Ulrichs, Christian; Kühne, Stefan; Mewis, Inga; Mishig, Narantuya; Maul, Ronald; Drungowski, Mario; Parolin, Pia; Schreiner, Monika; Baldermann, Susanne

    2016-01-01

    The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.

  11. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae

    PubMed Central

    Errard, Audrey; Ulrichs, Christian; Kühne, Stefan; Mewis, Inga; Mishig, Narantuya; Maul, Ronald; Drungowski, Mario; Parolin, Pia; Schreiner, Monika; Baldermann, Susanne

    2016-01-01

    The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry. PMID:27610113

  12. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    USGS Publications Warehouse

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  13. A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae.

    PubMed

    Gimonneau, Geoffrey; Bouyer, Jérémy; Morand, Serge; Besansky, Nora J; Diabate, Abdoulaye; Simard, Frédéric

    2010-09-01

    Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, we explored the proximal mechanisms by which predation may contribute to habitat segregation between molecular forms using progeny of female mosquitoes captured in Burkina Faso. We show that the S form suffers higher predation rates than the M form when simultaneously exposed to the widespread predator, Anisops jaczewskii in an experimental arena. Furthermore, behavioral plasticity induced by exposure to the predator was observed in the M form, but not in the S form, and may partially explain its habitat use and ecological divergence from the S form. We discuss the role of adaptive phenotypic plasticity in allowing successful colonization of a new ecological niche by the M form and highlight further research areas that need to be addressed for a better understanding of the ultimate mechanisms underlying ecological speciation in this pest of major medical importance.

  14. Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.

    PubMed

    York, Carly A; Bartol, Ian K; Krueger, Paul S

    2016-09-15

    Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.

  15. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed

    PubMed Central

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such ‘edge effects’ have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use. PMID:26448338

  16. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators

    USGS Publications Warehouse

    McIntyre, Jenifer K.; Baldwin, David H.; Beauchamp, David A.; Scholz, Nathaniel L.

    2012-01-01

    Copper contamination in surface waters is common in watersheds with mining activities or agricultural, industrial, commercial, and residential human land uses. This widespread pollutant is neurotoxic to the chemosensory systems of fish and other aquatic species. Among Pacific salmonids (), copper-induced olfactory impairment has previously been shown to disrupt behaviors reliant on a functioning sense of smell. For juvenile coho salmon (O. kisutch), this includes predator avoidance behaviors triggered by a chemical alarm cue (conspecific skin extract). However, the survival consequences of this sublethal neurobehavioral toxicity have not been explored. In the present study juvenile coho were exposed to low levels of dissolved copper (5–20 μg/L for 3 h) and then presented with cues signaling the proximity of a predator. Unexposed coho showed a sharp reduction in swimming activity in response to both conspecific skin extract and the upstream presence of a cutthroat trout predator (O. clarki clarki) previously fed juvenile coho. This alarm response was absent in prey fish that were exposed to copper. Moreover, cutthroat trout were more effective predators on copper-exposed coho during predation trials, as measured by attack latency, survival time, and capture success rate. The shift in predator–prey dynamics was similar when predators and prey were co-exposed to copper. Overall, we show that copper-exposed coho are unresponsive to their chemosensory environment, unprepared to evade nearby predators, and significantly less likely to survive an attack sequence. Our findings contribute to a growing understanding of how common environmental contaminants alter the chemical ecology of aquatic communities.

  17. Impacts of Northern Pike on stocked Rainbow Trout in Pactola Reservoir, South Dakota

    USGS Publications Warehouse

    Scheibel, Natalie C.; Dembkowski, Daniel J.; Davis, Jacob L.; Chipps, Steven R.

    2016-01-01

    Establishment of nonnative Northern Pike Esox lucius in Pactola Reservoir, South Dakota, has prompted concern among biologists about the influence of this species on the lake’s intensively managed salmonid fisheries. Ancedotal information suggests that catch rates of Rainbow Trout Oncorhynchus mykiss have declined while mean size and abundance of Northern Pike has increased, although quantitative information on diet and growth of the Northern Pike population is lacking. To address potential interactions between Northern Pike and Rainbow Trout, we assessed size-dependent predation by Northern Pike on Rainbow Trout and determined the relative energetic contribution of stocked Rainbow Trout to Northern Pike growth using bioenergetics modeling. Stable isotopes combined with traditional diet analyses revealed that smaller Northern Pike (<600 mm TL) consumed primarily centrarchids and Rainbow Smelt Osmerus mordax, and Rainbow Trout contributed less than 10% to their annual energy consumption. In contrast, larger Northern Pike (≥600 mm TL) consumed primarily Rainbow Trout, which accounted for 56% of their annual energy consumption. Combining estimates of Northern Pike predation with production costs of catchable-size Rainbow Trout revealed that annual economic losses ranged from US$15,259 to $24,801 per year. Over its lifespan, an age-10 Northern Pike was estimated to consume ~117 Rainbow Trout worth approximately $340. Thus, Northern Pike predation substantially influences salmonid management initiatives and is likely a primary factor contributing to reduced Rainbow Trout abundance and return to anglers in Pactola Reservoir. Strategies for reducing Northern Pike predation on Rainbow Trout include increasing the size of stocked fish or altering the timing and spatial distribution of stocking events.

  18. Contribution of insectivorous avifauna to top down control of Lindera benzoin herbivores at forest edge and interior habitats

    NASA Astrophysics Data System (ADS)

    Skoczylas, Daniel R.; Muth, Norris Z.; Niesenbaum, Richard A.

    2007-11-01

    Predation of herbivorous Lepidoptera larvae by insectivorous avifauna was estimated on Lindera benzoin in edge and interior habitats at two sites in eastern Pennsylvania (USA). Clay baits modeled after Epimecis hortaria (Geometridae) larvae, the primary herbivore of L. benzoin at our study sites, were used to estimate predation by birds. In both habitat types, models were placed on uninjured L. benzoin leaves as well as on leaves that had prior insect herbivore damage. Rates of model attack were greater, and model longevity reduced, in forest edge plots compared to interiors. Naturally occurring herbivore damage on L. benzoin was greater in forest interiors. However, model attack was not significantly greater on leaves with prior herbivory damage, suggesting that birds do not effectively use this type of leaf damage as a cue in their foraging. Our findings are consistent with a contribution of bird predation towards top-down control of herbivory in this system. We further discuss these results in a broader context considering the possible effects of habitat type on leaf quality, leaf defense, and herbivore performance.

  19. Climate change, keystone predation, and biodiversity loss.

    PubMed

    Harley, Christopher D G

    2011-11-25

    Climate change can affect organisms both directly via physiological stress and indirectly via changing relationships among species. However, we do not fully understand how changing interspecific relationships contribute to community- and ecosystem-level responses to environmental forcing. I used experiments and spatial and temporal comparisons to demonstrate that warming substantially reduces predator-free space on rocky shores. The vertical extent of mussel beds decreased by 51% in 52 years, and reproductive populations of mussels disappeared at several sites. Prey species were able to occupy a hot, extralimital site if predation pressure was experimentally reduced, and local species richness more than doubled as a result. These results suggest that anthropogenic climate change can alter interspecific interactions and produce unexpected changes in species distributions, community structure, and diversity.

  20. Non-invasive genetics outperforms morphological methods in faecal dietary analysis, revealing wild boar as a considerable conservation concern for ground-nesting birds.

    PubMed

    Oja, Ragne; Soe, Egle; Valdmann, Harri; Saarma, Urmas

    2017-01-01

    Capercaillie (Tetrao urogallus) and other grouse species represent conservation concerns across Europe due to their negative abundance trends. In addition to habitat deterioration, predation is considered a major factor contributing to population declines. While the role of generalist predators on grouse predation is relatively well known, the impact of the omnivorous wild boar has remained elusive. We hypothesize that wild boar is an important predator of ground-nesting birds, but has been neglected as a bird predator because traditional morphological methods underestimate the proportion of birds in wild boar diet. To distinguish between different mammalian predator species, as well as different grouse prey species, we developed a molecular method based on the analysis of mitochondrial DNA that allows accurate species identification. We collected 109 wild boar faeces at protected capercaillie leks and surrounding areas and analysed bird consumption using genetic methods and classical morphological examination. Genetic analysis revealed that the proportion of birds in wild boar faeces was significantly higher (17.3%; 4.5×) than indicated by morphological examination (3.8%). Moreover, the genetic method allowed considerably more precise taxonomic identification of consumed birds compared to morphological analysis. Our results demonstrate: (i) the value of using genetic approaches in faecal dietary analysis due to their higher sensitivity, and (ii) that wild boar is an important predator of ground-nesting birds, deserving serious consideration in conservation planning for capercaillie and other grouse.

  1. The relationships among family, friends, and psychological well-being for Thai elderly.

    PubMed

    Thanakwang, Kattika; Ingersoll-Dayton, Berit; Soonthorndhada, Kusol

    2012-01-01

    The extent to which family and friends contribute to psychological well-being (PWB) may be subject to cultural variability. This study examines the mechanisms by which relationships with family and friends contribute to PWB among Thai elders. Interviews were conducted with 469 men and women aged 60 and older in Nan Province, Thailand. The data were analyzed using structural equation modeling, controlling for age, gender, education, income, marital status, and health status. Family and friendship networks have a significant direct effect on family and friendship support. However, family and friendship networks do not have a significant direct effect on PWB, but rather an indirect effect via social support. Similarly, friendship support mediates the relationship between friendship networks and family support. Both family support and friendship support are significantly related to PWB but family support is the stronger predictor. Using an adapting theoretical framework developed by Berkman, Glass, Brissette, & Seeman (2000) allows researchers to map the various pathways by which relationships with family and friends may contribute to PWB among older Thai adults.

  2. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    PubMed

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while interactions with both pollinators and seed predators affect reproductive success, floral enemies can cause inequality in seed set between genders. The next step is to understand how the seed set advantage affects long-term fitness and persistence of females in gynodioecious populations.

  3. Predation by Northern Pikeminnow and tiger muskellunge on juvenile salmonids in a high–head reservoir: Implications for anadromous fish reintroductions

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.

    2016-01-01

    The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to salmonids. This study highlights the importance of evaluating trophic interactions within reservoirs slated for reintroduction with anadromous salmonids, as they can be functional migration corridors and may offer profitable juvenile-rearing habitats despite hosting abundant predator populations.

  4. Impacts of climate change on marine top predators: Advances and future challenges

    NASA Astrophysics Data System (ADS)

    Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Nicol, Simon; Young, Jock W.; Weng, Kevin C.

    2015-03-01

    Oceanic top predators are the subject of studies by researchers under the international Climate Impacts on Oceanic Top Predators (CLIOTOP) program. A wide range of data sets have shown that environmental conditions, such as temperature and marine productivity, affect the distribution and biological processes of these species, and thus the activities of the humans that depend on them. In this special issue, 25 papers arising from the 2nd CLIOTOP symposium, held in Noumea, New Caledonia in February 2013 report the importance of realistic physical descriptions of oceanic processes for climate change projections, demonstrate a wide range of predator responses to historical climate variability, describe new analytical approaches for understanding the physiology, behaviour and trophodynamics, and project future distributions for a range of species. Several contributions discuss the implications for conservation and fisheries and show that resolving ecosystem management challenges and conflicts in the face of climate change is possible, but will require attention by decision-makers to issues that are broader than their traditional mandate. In the coming years, an increased focus on the development of management options to reduce the impacts of climate change on top predators and their dependent industries is needed.

  5. Induced defences in an endangered amphibian in response to an introduced snake predator.

    PubMed

    Moore, Robin D; Griffiths, Richard A; O'Brien, Cliona M; Murphy, Adam; Jay, David

    2004-09-01

    Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes ( Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca ( Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.

  6. In vivo electrophysiological recordings in amygdala subnuclei reveal selective and distinct responses to a behaviorally identified predator odor.

    PubMed

    Govic, Antonina; Paolini, Antonio G

    2015-03-01

    Chemosensory cues signaling predators reliably stimulate innate defensive responses in rodents. Despite the well-documented role of the amygdala in predator odor-induced fear, evidence for the relative contribution of the specific nuclei that comprise this structurally heterogeneous structure is conflicting. In an effort to clarify this we examined neural activity, via electrophysiological recordings, in amygdala subnuclei to controlled and repeated presentations of a predator odor: cat urine. Defensive behaviors, characterized by avoidance, decreased exploration, and increased risk assessment, were observed in adult male hooded Wistar rats (n = 11) exposed to a cloth impregnated with cat urine. Electrophysiological recordings of the amygdala (777 multiunit clusters) were subsequently obtained in freely breathing anesthetized rats exposed to cat urine, distilled water, and eugenol via an air-dilution olfactometer. Recorded units selectively responded to cat urine, and frequencies of responses were distributed differently across amygdala nuclei; medial amygdala (MeA) demonstrated the greatest frequency of responses to cat urine (51.7%), followed by the basolateral and basomedial nuclei (18.8%) and finally the central amygdala (3.0%). Temporally, information transduction occurred primarily from the cortical amygdala and MeA (ventral divisions) to other amygdala nuclei. Interestingly, MeA subnuclei exhibited distinct firing patterns to predator urine, potentially revealing aspects of the underlying neurocircuitry of predator odor processing and defensiveness. These findings highlight the critical involvement of the MeA in processing olfactory cues signaling predator threat and converge with previous studies to indicate that amygdala regulation of predator odor-induced fear is restricted to a particular set of subnuclei that primarily include the MeA, particularly the ventral divisions. Copyright © 2015 the American Physiological Society.

  7. Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring

    PubMed Central

    Bauer, Jessica

    2016-01-01

    Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313

  8. Spider-Venom Peptides as Bioinsecticides

    PubMed Central

    Windley, Monique J.; Herzig, Volker; Dziemborowicz, Sławomir A.; Hardy, Margaret C.; King, Glenn F.; Nicholson, Graham M.

    2012-01-01

    Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides. PMID:22741062

  9. Young friendship in HFASD and typical development: friend versus non-friend comparisons.

    PubMed

    Bauminger-Zviely, Nirit; Agam-Ben-Artzi, Galit

    2014-07-01

    This study conducted comparative assessment of friendship in preschoolers with high-functioning autism spectrum disorder (HFASD, n = 29) versus preschoolers with typical development (n = 30), focusing on interactions with friends versus acquaintances. Groups were matched on SES, verbal/nonverbal MA, IQ, and CA. Multidimensional assessments included: mothers' and teachers' reports about friends' and friendship characteristics and observed individual and dyadic behaviors throughout interactions with friends versus non-friends during construction, drawing, and free-play situations. Findings revealed group differences in peer interaction favoring the typical development group, thus supporting the neuropsychological profile of HFASD. However, both groups' interactions with friends surpassed interactions with acquaintances on several key socio-communicative and intersubjective capabilities, thus suggesting that friendship may contribute to enhancement and practice of social interaction in HFASD.

  10. Understanding the role of uncertainty on learning and retention of predator information.

    PubMed

    Ferrari, Maud C O; Vrtělová, Jana; Brown, Grant E; Chivers, Douglas P

    2012-09-01

    Due to the highly variable nature of predation risk, prey animals need to continuously collect information regarding the risk posed by predators. One question that ensues is how long to use this information for? An adaptive framework of predator-related information use predicted that certainty should influence the duration for which information regarding the threatening nature of a species is used in decision-making. It predicts that uncertainty contributes to the reduction in the duration of information use, due to the cost of displaying antipredator behaviours towards non-threatening species. Here, we test this prediction using repetition of conditioning events as a way to increase the certainty associated with the predatory nature of a novel salamander for woodfrog tadpoles. Tadpoles were conditioned 1, 2 or 4 times to recognize a novel salamander as a predator and subsequently tested for their response to the salamander 1 day or 11 days post-conditioning. We found that conditioning repetition did not affect the intensity with which tadpoles learned to respond to the salamander after 1 day. However, after 11 days, tadpoles with fewer conditionings responded to the salamander with a weaker intensity than those that received more conditionings. Our results provide support for the model prediction that an increase in the certainty associated with correctly identifying a predator leads to longer retention of the threat.

  11. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG.

    PubMed

    Comoli, E; Ribeiro-Barbosa, E R; Canteras, Newton Sabino

    2003-01-06

    Considering the periaqueductal gray's (PAG) general roles in mediating motivational responses, in the present study, we compared the Fos expression pattern in the PAG induced by innate behaviors underlain by opposite motivational drivers, in rats, namely, insect predation and defensive behavior evoked by the confrontation with a live predator (a cat). Exposure to the predator was associated with a striking Fos expression in the PAG, where, at rostral levels, an intense Fos expression was found largely distributed in the dorsomedial and dorsolateral regions, whereas, at caudal levels, Fos-labeled cells tended to be mostly found in the lateral and ventrolateral columns, as well as in the dorsal raphe nucleus. Quite the opposite, insect predation was associated with increased Fos expression predominantly in the rostral two thirds of the lateral PAG, where the majority of the Fos-immunoreactive cells were found at the oculomotor nucleus levels. Remarkably, both exposure to the cat and insect predation upregulated Fos expression in the supraoculomotor region and the laterodorsal tegmental nucleus. Overall, the present results clearly suggest that the PAG activation pattern appears to reflect, at least partly, the animal's motivational status. It is well established that the PAG is critical for the expression of defensive responses, and, considering the present findings, it will be important to investigate how the PAG contributes to the expression of the predatory behavior, as well.

  12. Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes

    NASA Astrophysics Data System (ADS)

    Harborne, A. R.; Renaud, P. G.; Tyler, E. H. M.; Mumby, P. J.

    2009-09-01

    Disease has dramatically reduced populations of the herbivorous urchin Diadema antillarum Philippi on Caribbean reefs, contributing to an increased abundance of macroalgae and reduction of coral cover. Therefore, recovery of D. antillarum populations is critically important, but densities are still low on many reefs. Among the many potential factors limiting these densities, the focus of this study is on predation pressure by fishes. Marine reserves provide opportunities to examine large-scale manipulations of predator-prey interactions and, therefore, D. antillarum densities were compared inside and outside a reserve in The Bahamas (Exuma Cays Land and Sea Park; ECLSP). Urchins and their fish predators were surveyed at nine sites inside and outside the ECLSP. Because of lower fishing effort, the total biomass of urchin predators, weighted by their dietary preferences for urchins, was significantly higher inside the ECLSP. Furthermore, fish community structure was significantly different inside the Park because of the increased biomass of the majority of species. No urchins were seen inside the ECLSP and this was significantly lower than the density of 0.04 urchin m-2 outside the Park. Regression analysis indicated that the relationship between the biomass of urchin predators and the proportion of transects containing urchins was non-linear, suggesting that small increases in fish biomass dramatically reduce urchin abundances. The link between lower density of urchins and higher density of their predators inside the ECLSP is strengthened by discounting five alternative primary mechanisms (variations in macroalgal cover, larval supply, environmental setting, density of other urchin species and abundance of predators not surveyed). Caribbean marine reserves have an important conservation role, but increased fish predation appears to reduce densities of D. antillarum. Urchins currently have limited functional significance on Bahamian reefs, but any future recovery of D. antillarum is likely to be limited in reserves, with potentially important ecological consequences.

  13. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period.

    PubMed

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael; Del Campo, Rosa

    2017-09-26

    Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild ( n = 5), moderate ( n = 9), and severe ( n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients' clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. IMPORTANCE The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were observed, probably related to sampling bias. Bdellovibrio and Vampirovibrio predator bacteria were found for the first time by NGS as part of the CF lung microbiota, although their ecological significance needs to be clarified. The newly designed computational model allows us to hypothesize that inoculation of predators into the lung microbiome can eradicate CF pathogens in early stages of the process. Our data strongly suggest that lower respiratory microbiome fluctuations are not necessarily related to the patient's clinical status. Copyright © 2017 de Dios Caballero et al.

  14. Social support and social norms: do both contribute to predicting leisure-time exercise?

    PubMed

    Okun, Morris A; Ruehlman, Linda; Karoly, Paul; Lutz, Rafer; Fairholme, Chris; Schaub, Rachel

    2003-01-01

    To clarify the contribution of social support and social norms to exercise behavior. A sample of 363 college students completed a questionnaire that assessed social support and social negativity from friends, descriptive and injunctive social norms related to friends, perceived behavioral control, attitude, intention, and leisure-time exercise. Esteem social support was the strongest predictor of total and strenuous leisure-time exercise (P < .001), and descriptive norm was a significant (P < .01 predictor of strenuous leisure-time exercise. Social support and social norms contribute independently to our understanding of variation in the frequency of strenuous leisure-time exercise.

  15. Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage?

    PubMed

    Tan, Eunice J; Li, Daiqin

    2009-06-01

    Many species of the orb-web spider genus Cyclosa often adorn their webs with decorations of prey remains, egg sacs and/or plant detritus, termed ;detritus decorations'. These detritus decorations have been hypothesised to camouflage the spider from predators or prey and thus reduce predation risk or increase foraging success. In the present study, we tested these two alternative hypotheses simultaneously using two types of detritus decorations (prey remain and egg sac) built by Cyclosa mulmeinensis (Thorell). By monitoring the possible responses of predators to spiders on their webs with and without decorations in the field, we tested whether web decorations would reduce the mortality of spiders. Wasp predators were observed to fly in the vicinity of webs with decorations slightly more often than in the vicinity of webs without decorations but there were very few attacks on spiders by wasps. By comparing the insect interception rates of webs with and without decorations in the field, we tested whether web decorations would increase the foraging success. Webs decorated with prey remains or egg sacs intercepted more insects than those without in the field. By calculating colour contrasts of both prey-remain and egg-sac decorations against spiders viewed by bird (blue tits) and hymenopteran (e.g. wasps) predators as well as hymenopteran (bees) prey, we showed that C. mulmeinensis spiders on webs with egg-sac decorations were invisible to both hymenopteran prey and predators and bird predators over short and long distances. While spiders on webs with prey-remain decorations were invisible to both hymenopterans and birds over short distances, spiders on webs with prey-remain decorations were visible to both predators and prey over long distances. Our results thus suggest that decorating webs with prey remains and egg sacs in C. mulmeinensis may primarily function as camouflage to conceal the spider from insects rather than as prey attractants, possibly contributing to the interception of more insect prey. However, the detritus decorations exhibit varying success as camouflage against predators, depending on whether predators are jumping spiders, wasps or birds, as well as on the decoration type.

  16. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.

    PubMed

    Leray, Matthieu; Meyer, Christopher P; Mills, Suzanne C

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators' diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction.

  17. Using group-specific PCR to detect predation of mayflies (Ephemeroptera) by wolf spiders (Lycosidae) at a mercury-contaminated site.

    PubMed

    Northam, Weston T; Allison, Lizabeth A; Cristol, Daniel A

    2012-02-01

    Bioaccumulation of contaminants can occur across ecosystem boundaries via transport by emergent aquatic insects. In the South River, Virginia, USA, aquatic mercury has contaminated songbirds nesting in adjacent riparian forests. Spiders contribute the majority of mercury to these songbirds' diets. We tested the hypothesis that massive annual mayfly emergences provide a vector for mercury from river sediments to the Lycosid spiders most frequently eaten by contaminated songbirds. We designed mayfly-specific PCR primers that amplified mtDNA from 76% of adult mayflies collected at this site. By combining this approach with an Agilent 2100 electrophoresis system, we created a highly sensitive test for mayfly predation by Lycosids, commonly known as wolf spiders. In laboratory spider feeding trials, mayfly DNA could be detected up to 192h post-ingestion; however, we detected no mayfly predation in a sample of 110 wolf spiders collected at the site during mayfly emergence. We suggest that mayfly predation is not an important mechanism for dietary transfer of mercury to wolf spiders and their avian predators at the South River. Instead, floodplain soil should be considered as a potential proximate source for mercury in the terrestrial food web. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population

    PubMed Central

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-01-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023

  19. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    PubMed

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  20. Reconciling actual and perceived rates of predation by domestic cats

    PubMed Central

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  1. Body size and the division of niche space: food and predation differentially shape the distribution of Serengeti grazers.

    PubMed

    Hopcraft, J Grant C; Anderson, T Michael; Pérez-Vila, Saleta; Mayemba, Emilian; Olff, Han

    2012-01-01

    1. Theory predicts that small grazers are regulated by the digestive quality of grass, while large grazers extract sufficient nutrients from low-quality forage and are regulated by its abundance instead. In addition, predation potentially affects populations of small grazers more than large grazers, because predators have difficulty capturing and handling large prey. 2. We analyse the spatial distribution of five grazer species of different body size in relation to gradients of food availability and predation risk. Specifically, we investigate how the quality of grass, the abundance of grass biomass and the associated risks of predation affect the habitat use of small, intermediate and large savanna grazers at a landscape level. 3. Resource selection functions of five mammalian grazer species surveyed over a 21-year period in Serengeti are calculated using logistic regressions. Variables included in the analyses are grass nitrogen, rainfall, topographic wetness index, woody cover, drainage lines, landscape curvature, water and human habitation. Structural equation modelling (SEM) is used to aggregate predictor variables into 'composites' representing food quality, food abundance and predation risk. Subsequently, SEM is used to investigate species' habitat use, defined as their recurrence in 5 × 5 km cells across repeated censuses. 4. The distribution of small grazers is constrained by predation and food quality, whereas the distribution of large grazers is relatively unconstrained. The distribution of the largest grazer (African buffalo) is primarily associated with forage abundance but not predation risk, while the distributions of the smallest grazers (Thomson's gazelle and Grant's gazelle) are associated with high grass quality and negatively with the risk of predation. The distributions of intermediate sized grazers (Coke's hartebeest and topi) suggest they optimize access to grass biomass of sufficient quality in relatively predator-safe areas. 5. The results illustrate how top-down (vegetation-mediated predation risk) and bottom-up factors (biomass and nutrient content of vegetation) predictably contribute to the division of niche space for herbivores that vary in body size. Furthermore, diverse grazing assemblages are composed of herbivores of many body sizes (rather than similar body sizes), because these herbivores best exploit the resources of different habitat types. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  2. Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation.

    PubMed

    Zhang, Chao; Jansen, Mieke; De Meester, Luc; Stoks, Robby

    2016-11-01

    A key challenge for ecologists is to predict how single and joint effects of global warming and predation risk translate from the individual level up to ecosystem functions. Recently, stoichiometric theory linked these levels through changes in body stoichiometry, predicting that both higher temperatures and predation risk induce shifts in energy storage (increases in C-rich carbohydrates and reductions in N-rich proteins) and body stoichiometry (increases in C : N and C : P). This promising theory, however, is rarely tested and assumes that prey will divert energy away from reproduction under predation risk, while under size-selective predation, prey instead increase fecundity. We exposed the water flea Daphnia magna to 4 °C warming and fish predation risk to test whether C-rich carbohydrates increase and N-rich proteins decrease, and as a result, C : N and C : P increase under warming and predation risk. Unexpectedly, warming decreased body C : N, which was driven by reductions in C-rich fat and sugar contents while the protein content did not change. This reflected a trade-off where the accelerated intrinsic growth rate under warming occurred at the cost of a reduced energy storage. Warming reduced C : N less and only increased C : P and N : P in the fish-period Daphnia. These evolved stoichiometric responses to warming were largely driven by stronger warming-induced reductions in P than in C and N and could be explained by the better ability to deal with warming in the fish-period Daphnia. In contrast to theory predictions, body C : N decreased under predation risk due to a strong increase in the N-rich protein content that offsets the increase in C-rich fat content. The higher investment in fecundity (more N-rich eggs) under predation risk contributed to this stronger increase in protein content. Similarly, the lower body C : N of pre-fish Daphnia also matched their higher fecundity. Warming and predation risk independently shaped body stoichiometry, largely by changing levels of energy storage molecules. Our results highlight that two widespread patterns, the trade-off between rapid development and energy storage and the increased investment in reproduction under size-selective predation, cause predictable deviations from current ecological stoichiometry theory. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  3. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    PubMed

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  4. Fear is the mother of invention: anuran embryos exposed to predator cues alter life-history traits, post-hatching behaviour and neuronal activity patterns.

    PubMed

    Gazzola, Andrea; Brandalise, Federico; Rubolini, Diego; Rossi, Paola; Galeotti, Paolo

    2015-12-01

    Neurophysiological modifications associated to phenotypic plasticity in response to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus the control group after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience contributes to shaping the phenotype at later life stages. © 2015. Published by The Company of Biologists Ltd.

  5. Context-Dependent Plastic Response during Egg-Laying in a Widespread Newt Species

    PubMed Central

    Tóth, Zoltán

    2015-01-01

    Previous research on predator-induced phenotypic plasticity mostly focused on responses in morphology, developmental time and/or behaviour during early life stages, but the potential significance of anticipatory parental responses has been investigated less often. In this study I examined behavioural and maternal responses of gravid female smooth newts, Lissotriton vulgaris, in the presence of chemical cues originating from invertebrate predators, Acilius sulcatus water beetles and Aeshna cyanea dragonfly larvae. More specifically, I tested the extent of oviposition preference, plasticity in egg-wrapping behaviour and plasticity in egg size when females had the possibility to lay eggs at oviposition sites with and without predator cues during overnight trials. I found that individuals did not avoid laying eggs in the environment with predator cues; however, individuals that deposited eggs into both environments adjusted the size of the laid eggs to the perceived environment. Females deposited larger eggs earlier in the season but egg size decreased with time in the absence of predator cues, whereas individuals laid eggs of average size throughout the investigated reproductive period when such cues were present. Also, egg size was found to be positively related to hatching success. Individuals did not adjust their wrapping behaviour to the presence of predator cues, but females differed in the extent of egg-wrapping between ponds. Females’ body mass and tail depth were also different between ponds, whereas their body size was positively associated with egg size. According to these results, female smooth newts have the potential to exhibit activational plasticity and invest differently into eggs depending on temporal and environmental factors. Such an anticipatory response may contribute to the success of this caudate species under a wide range of predator regimes at its natural breeding habitats. PMID:26291328

  6. Mitigating road mortality of diamond-backed terrapins (Malaclemy's terrapin) with hybrid barriers at crossing hot spots

    USGS Publications Warehouse

    Crawford, Brian A.; Moore, Clinton; Norton, Terry M.; Maerz, John C.

    2017-01-01

    Roads represent a pervasive feature on most landscapes that can pose multiple threats to wildlife populations and substantial challenges for management. To be effective, management strategies must often target where threats are most concentrated. Road mortality and nest predation are well-documented threats to Diamond-backed Terrapins (Malaclemys terrapin) across the majority of their range, including the 8.7-km causeway to Jekyll Island, Georgia, USA, where both are predicted to contribute to population declines if left unmitigated. From 2009 to 2014, we used intensive road surveying to identify spatial peaks (hot spots) of terrapin crossing activity and road mortality and exploit these as targets for management. In 2011, we deployed a hybrid barrier composed of nest boxes, which were designed to prevent terrapins from accessing the road and mitigate nest predation, at one hot spot while leaving two other hot spots unmanaged. We evaluated the impact of the barrier on terrapin emergences on the causeway under a Before-After-Control-Impact (BACI) design, and a companion study evaluated the effects of nest boxes on nest predation rates. We estimated a 57% reduction in annual terrapin emergences at the barrier site compared to no measurable change at control hot spots. Our findings support the use of hybrid barriers for simultaneously addressing road mortality and nest predation for other terrapin populations at risk to these threats. Our approach highlights the need to design feasible but robust management strategies that target spatial peaks of road mortality while addressing additional threats contributing to population declines of terrapins and other species.

  7. How can mortality increase population size? A test of two mechanistic hypotheses.

    PubMed

    McIntire, Kristina M; Juliano, Steven A

    2018-05-03

    Overcompensation occurs when added mortality increases survival to the next life-cycle stage. Overcompensation can contribute to the Hydra Effect, wherein added mortality increases equilibrium population size. One hypothesis for overcompensation is that added mortality eases density-dependence, increasing survival to adulthood ("temporal separation of mortality and density dependence"). Mortality early in the life cycle is therefore predicted to cause overcompensation, whereas mortality later in the life cycle is not. Another hypothesis for overcompensation is that threat of mortality (e.g., from predation) causes behavioral changes that reduce overexploitation of resources, allowing resource recovery, and increasing production of adults ("prudent resource exploitation"). Behaviorally active predation cues alone are therefore predicted to cause overcompensation. We tested these predictions in two experiments with larvae of two species of Aedes. As predicted, early mortality yielded greater production of adults, and of adult females, and greater estimated rate of population increase than did later mortality. Addition of water-borne predation cues usually reduced browsing on surfaces in late-stage larvae, but contrary to prediction, resulted in neither significantly greater production of adult mosquitoes nor significantly greater estimated rate of increase. Thus we have strong evidence that timing of mortality contributes to overcompensation and the Hydra effect in mosquitoes. Evidence that predation cues alone can result in overcompensation via prudent resource exploitation is lacking. We expect the overcompensation in response to early mortality will be common in organisms with complex life cycles, density dependence among juveniles, and developmental control of populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Mingled Mortality: the Interplay Between Protist Grazing and Viral Lysis on Emiliania huxleyi Cell Fate

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Bidle, K. D.; Johnson, M. D.

    2016-02-01

    The coccolithophore, Emiliania huxleyi plays a prominent role in global carbon cycling, as their calcite coccoliths account for a third of all oceanic calcite production. Mortality due to grazing by microzooplankton is the largest contributor to phytoplankton loss in the marine environment. However, viral infection of E. huxleyi is now thought to be as important as grazing pressure in contributing to its mortality. To understand the influence of viral infection on grazing dynamics, we examined the response of the dinoflagellate predator, Oxyrrhis marina to E. huxleyi infected with four different strains of the E. huxleyi virus (EhV). Grazing rate was significantly slower on E. huxleyi cultures that had been infected for 48 h compared to an uninfected control and this reduction in grazing rate was dependent on the strain identity of infecting EhVs. Additional experimentation indicated that grazing was the primary source of E. huxleyi loss ( 78-98%) during the first 24 h of exposure to both predator and virus. However, as viral infection progressed into the late lytic phase (48 h hour post infection), the relative contribution of grazing to total E. huxleyi mortality decreased ( 5-60%). These results suggest that mortality is partitioned along a gradient between predator-based consumption and virus-induced cell lysis, dependent on the timing of infection. Deciphering the relative importance and interactive nature of these alga-predator-viral interactions will help to elucidate the mechanisms that drive bulk measurements of phytoplankton loss, a necessary understanding to interpret and predict phytoplankton population dynamics and associated biogeochemical cycling.

  9. The need for friendships and information: Dimensions of social support and posttraumatic growth among women with breast cancer.

    PubMed

    Hasson-Ohayon, Ilanit; Tuval-Mashiach, Rivka; Goldzweig, Gil; Levi, Rienat; Pizem, Noam; Kaufman, Bela

    2016-08-01

    Employing a cross-sectional design, the current study examined the relationships between various agents and types of support and posttraumatic growth (PTG) among women with breast cancer. Eighty married women who were coping with breast cancer completed social support and PTG questionnaires. All agents of social support (family, friends, belief-based), excluding spousal support, and all types of social support were found to be related to the various PTG dimensions and its total score. Regression analyses revealed that, among the agents of support, only support provided from friends and belief-based support uniquely contribute to prediction of total PTG score. While examining the contribution of various types of support, only cognitive support had a unique contribution to prediction of total PTG score. Various agents and types of support play different roles in the PTG process following breast cancer. Accordingly, friends as an agent of support and information as a type of support seem to be most important in enhancing PTG among women with breast cancer.

  10. Quantifying fear effects on prey demography in nature.

    PubMed

    Peers, Michael J L; Majchrzak, Yasmine N; Neilson, Eric; Lamb, Clayton T; Hämäläinen, Anni; Haines, Jessica A; Garland, Laura; Doran-Myers, Darcy; Broadley, Kate; Boonstra, Rudy; Boutin, Stan

    2018-06-13

    In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities. © 2018 by the Ecological Society of America.

  11. Boldness in two perch populations - long-term differences and the effect of predation pressure.

    PubMed

    Magnhagen, Carin; Hellström, Gustav; Borcherding, Jost; Heynen, Martina

    2012-11-01

    1. Populations of the same species often display different behaviours, for example, in their response to predators. The question is whether this difference is developed as part of a divergent selection caused by differences in predation pressure, or as a result of phenotypic responses to current environmental conditions. 2. Two populations of Eurasian perch were investigated over a time span of 6 years to see whether risk-taking behaviour in young-of-the-year perch were consistent across cohorts, or if behaviour varied over time with changes in predation regime. 3. Boldness was estimated in aquarium studies by looking at how the fish made trade-offs between foraging in a risky area and staying in shelter. Predation risk of each year and lake was estimated from fishing surveys, using an individual-based model calculating attack rates for cannibalistic perch. 4. The average boldness scores were consistently lower in perch from Fisksjön compared with those in Ängersjön, although the magnitude of the difference varied among years. Variance component analyses showed that differences between lakes in boldness scores only explained 12 per cent of the total variation. Differences between years were contributing at least similarly or more to the total variance, and the variation was higher in Fisksjön than in Ängersjön. 5. The observed risk-taking behaviour of young-of-the-year perch, compared across cohorts, was significantly correlated with the year-specific estimates of cannibalistic attack rates, with lower boldness scores in years with higher predation pressure. In Fisksjön, with significant changes over the years in population structure, the range of both predation risk and boldness scores was wider than in Ängersjön. 6. By following the two perch populations over several years, we have been able to show that the differences in risk-taking behaviour mainly are due to direct phenotypic responses to recent experience of predation risk. Long-term differences in behaviour among perch populations thus reflect consistent differences in predation regime rather than diverging inherent traits. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  12. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.

    PubMed

    Legagneux, P; Gauthier, G; Berteaux, D; Bêty, J; Cadieux, M C; Bilodeau, F; Bolduc, E; McKinnon, L; Tarroux, A; Therrien, J F; Morissette, L; Krebs, C J

    2012-07-01

    Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.

  13. Influence of behavior and mating success on brood-specific contribution to fish recruitment in ponds.

    PubMed

    Parkos, Joseph J; Wahl, David H; Philipp, David P

    2011-10-01

    One source of uncertainty in predicting the response of populations to exploitation is individual differences within a population in both vulnerability to capture and contribution to population renewal. For species with parental care, individuals engaged in nesting behavior are often targeted for exploitation, but predicting outcomes of this nonrandom vulnerability will depend in part on an understanding of how parental traits are related to potential for brood contribution to the population. Variation in brood-specific contribution to recruitment of largemouth bass (Micropterus salmoides), a fish species with extended parental care, was quantified to determine if differences in mating success, parental care behaviors, and timing of reproduction influenced offspring recruitment. Dependence of these relationships on brood predation was tested in communities that differed in the presence of bluegill, Lepomis macrochirus, an important nest predator. Daily snorkel surveys were conducted in experimental ponds during spring to monitor male spawning and parental care behaviors in populations of largemouth bass. Tissue samples collected from larvae in nests were used to develop brood-specific DNA fingerprints for determining nest origins of fall recruits. Largemouth bass spawning period in bluegill ponds was longer and more variable in duration, with lower, more variable mating success, than in ponds without bluegill. In all populations, only one or two broods provided the majority of recruits, and these were broods produced during the earliest days of spawning by the oldest, largest males. In bluegill ponds, brood contribution from earliest nests also increased with brood size. Earliest nesters were the oldest males, and recruits from these nests were often above average in body size. Offspring needed to be guarded to at least swim-up larval stage to contribute any recruits. Termination of parental protection before offspring were free swimming mainly occurred with broods guarded by smaller males in ponds with brood predators. These age- and size-specific differences in timing of spawning and duration of parental care are consistent with influences of residual reproductive value and energetic constraints on reproductive behavior. Furthermore, these patterns of individual contribution to recruitment imply that fisheries that selectively target either nesting individuals or larger, older males could potentially decrease recruitment at the population scale.

  14. New environmentally-friendly antimicrobials and biocides from Andean and Mexican biodiversity.

    PubMed

    Cespedes, Carlos L; Alarcon, Julio; Aqueveque, Pedro M; Lobo, Tatiana; Becerra, Julio; Balbontin, Cristian; Avila, Jose G; Kubo, Isao; Seigler, David S

    2015-10-01

    Persistent application of pesticides often leads to accumulation in the environment and to the development of resistance in various organisms. These chemicals frequently degrade slowly and have the potential to bio-accumulate across the food chain and in top predators. Cancer and neuronal damage at genomic and proteomic levels have been linked to exposure to pesticides in humans. These negative effects encourage search for new sources of biopesticides that are more "environmentally-friendly" to the environment and human health. Many plant or fungal compounds have significant biological activity associated with the presence of secondary metabolites. Plant biotechnology and new molecular methods offer ways to understand regulation and to improve production of secondary metabolites of interest. Naturally occurring crop protection chemicals offer new approaches for pest management by providing new sources of biologically active natural products with biodegradability, low mammalian toxicity and environmentally-friendly qualities. Latin America is one of the world's most biodiverse regions and provide a previously unsuspected reservoir of new and potentially useful molecules. Phytochemicals from a number of families of plants and fungi from the southern Andes and from Mexico have now been evaluated. Andean basidiomycetes are also a great source of scientifically new compounds that are interesting and potentially useful. Use of biopesticides is an important component of integrated pest management (IPM) and can improve the risks and benefits of production of many crops all over the world. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Dispersal of Beauveria bassiana by the activity of nettle insects.

    PubMed

    Meyling, Nicolai V; Pell, Judith K; Eilenberg, Jørgen

    2006-10-01

    Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.

  16. Molecular and chemical dialogues in bacteria-protozoa interactions.

    PubMed

    Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos M

    2015-08-06

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.

  17. Benthic response to water quality and biotic pressures in lower south San Francisco Bay, Alviso Slough, and Coyote Creek

    USGS Publications Warehouse

    Parchaso, Francis; Thompson, Janet K.; Crauder, Jeff S.; Anduaga, Rosa I.; Pearson, Sarah A.

    2015-12-22

    Bivalve biomass is elevated in summer and fall relative to the spring and winter except in Artesian Slough, where bivalves did not establish a signifcant presence. Presence of certain species contributes to the prey value of the community to predators. Potamocorbula amurensis is a shallow-burrowing bivalve and hence is easy prey for bottom-feeding predators. In contrast, Macoma petalum is a deposit feeder and can burrow deeper into the substrate than Potamocorbula amurensis, making it harder to be preyed upon. The quantitative importance of such predator-prey relationships on phytoplankton dynamics requires further investigation. There were also more amphipods in the sloughs in March 2014; this group is another potential contributor to the benthic-pelagic biomass balance. There is no observed reason for Artesian Slough to have low bivalve biomass values and high amphipod abundances. 

  18. Creating the User-Friendly Library by Evaluating Patron Perception of Signage.

    ERIC Educational Resources Information Center

    Bosman, Ellen; Rusinek, Carol

    1997-01-01

    Librarians at Indiana University Northwest Library surveyed patrons on how to make the library's collection and services more accessible by improving signage. Examines the effectiveness of signage to instruct users, reduce difficulties and fears, ameliorate negative experiences, and contribute to a user-friendly environment. (AEF)

  19. Friendship, Social Interaction, and Coping with Stress.

    ERIC Educational Resources Information Center

    Winstead, Barbara A.; And Others

    1992-01-01

    Examines how interacting with a friend as opposed to a stranger in anticipation of a stressful event (giving an extemporaneous speech) affects college students' coping. Finds that subjects perceived more social support after interacting with a friend than with a stranger. Describes specific verbal and nonverbal behaviors contributing to successful…

  20. Potential trophic cascades triggered by the barred owl range expansion

    USGS Publications Warehouse

    Holm, Samantha R.; Noon, Barry R.; Wiens, David; Ripple, William J.

    2016-01-01

    Recently, the barred owl (Strix varia) has expanded its range into the Pacific Northwest of the United States resulting in pronounced effects on the demography and behavior of the northern spotted owl (S. occidentalis caurina). The range expansion has brought together historically allopatric species, creating the potential for significant changes in the avian predator community with possible cascading effects on food-web dynamics. The adverse effects of the barred owl on the behavior and demography of the northern spotted owl are well-documented, but little is known about the immediate and long-term effects changes in the predator community may have on native species composition and ecosystem processes. Based on northern spotted owl and barred owl selection for diet and habitat resources, there is a potential for trophic cascades within the region's predator and prey communities, differing responses by their shared and unique prey species, and possible direct and indirect effects on ecosystem processes. We explored the possible ecological consequences of the barred owl range expansion to wildlife communities of the Pacific Northwest based on the theoretical underpinnings of predator–prey relationships, interspecific competition, intraguild predation, and potential cascading trophic interactions. Negative effects on fitness of northern spotted owls because of interspecific competition with barred owls are strong selection forces that may contribute to the regional extinction of the northern spotted owl. In addition, we posit that shared prey species and those uniquely consumed by barred owls, along with other competing native predators, may experience changes in behavior, abundance, and distribution as a result of increased rates of predation by rapidly expanding populations of barred owls.

  1. Behavioral consequences of predator stress in the rat elevated T-maze.

    PubMed

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  2. Logging cuts the functional importance of invertebrates in tropical rainforest

    PubMed Central

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  3. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  4. The Interactive Influences of Friend Deviance and Reward Dominance on the Development of Externalizing Behavior During Middle Adolescence

    PubMed Central

    Bates, John E.; Newman, Joseph P.; Dodge, Kenneth A.; Pettit, Gregory S.

    2009-01-01

    This study investigated the interactive effects of friend deviance and reward dominance on the development of externalizing behavior of adolescents in the Child Development Project. Reward dominance was assessed at age 16 by performance on a computer-presented card-playing game in which participants had the choice of either continuing or discontinuing the game as the likelihood of reward decreased and the likelihood of punishment increased. At ages 14 and 16, friend deviance and externalizing behavior were assessed through self-report. As expected, based on motivational balance and response modulation theories, path analysis revealed that age 14 friend deviance predicted age 16 externalizing behavior controlling for age 14 externalizing behavior. Reward dominance was a significant moderator of the relationship between friend deviance and externalizing behavior. The contributions of deviant friends to the development of externalizing behavior were enhanced by adolescents' reward dominance. PMID:16823636

  5. The interactive influences of friend deviance and reward dominance on the development of externalizing behavior during middle adolescence.

    PubMed

    Goodnight, Jackson A; Bates, John E; Newman, Joseph P; Dodge, Kenneth A; Pettit, Gregory S

    2006-10-01

    This study investigated the interactive effects of friend deviance and reward dominance on the development of externalizing behavior of adolescents in the Child Development Project. Reward dominance was assessed at age 16 by performance on a computer-presented card-playing game in which participants had the choice of either continuing or discontinuing the game as the likelihood of reward decreased and the likelihood of punishment increased. At ages 14 and 16, friend deviance and externalizing behavior were assessed through self-report. As expected, based on motivational balance and response modulation theories, path analysis revealed that age 14 friend deviance predicted age 16 externalizing behavior controlling for age 14 externalizing behavior. Reward dominance was a significant moderator of the relationship between friend deviance and externalizing behavior. The contributions of deviant friends to the development of externalizing behavior were enhanced by adolescents' reward dominance.

  6. Is biodiversity friendly fisheries management possible on Issyk-Kul Lake in the Kyrgyz Republic?

    PubMed

    Alamanov, Azat; Mikkola, Heimo

    2011-07-01

    This paper aims to identify challenges, and threats, and further explore opportunities for a new Biodiversity Friendly Fisheries Management Regime on the Issyk-Kul Lake in the Kyrgyz Republic. This lake is the second largest high-altitude lake in the world providing recreational and small-scale fishing activities as well as cage culture of introduced species. The populations of several indigenous species are seriously threatened, because many of the introduced species are potential predators. We examine the root causes for overfishing and relationships of alien and endemic fish species in Issyk-Kul Lake and give possible policy options that can help remediate or mitigate the biodiversity degradation. This analysis focuses on necessary legal modifications, institutional cooperation, the protection of selected endemic fish species, control of the alien species, the sustainable extension services and management of fish ponds. Fisheries co-management is one option to explore shared stewardship and empowering user groups on the lake. A comprehensive fisheries management plan is also needed, in addition to immediate action and further studies on the following wider aspects: water management/irrigation issues, water-quality assessment near cage cultures, sociocultural issues, resource inventory, and assessing fish biology and the lake ecosystem.

  7. Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae)

    PubMed Central

    Zhu, Xiu-Yun; Ma, Ji-Fang; Dong, Zhi-Ping; Xu, Ji-Wei; Kang, Ke

    2017-01-01

    The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous A. lepigone transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the AlOBPs exhibited antennae-biased expression while many of the AlCSPs were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone and developing environmentally friendly pesticides against this pest in the future. PMID:28382236

  8. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.

    PubMed

    Chandramohan, Balamurugan; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Chandirasekar, Ramachandran; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Aziz, Al Thabiani; Syuhei, Ban; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Wei, Hui; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.

  9. Effect of Trajectories of Friends' and Parents' School Involvement on Adolescents' Engagement and Achievement

    PubMed Central

    Im, Myung Hee; Hughes, Jan N.; West, Stephen G.

    2016-01-01

    In a sample of 527 academically at-risk youth, we investigated trajectories of friends' and parents' school involvement across ages 12–14 and the joint contributions of these trajectories to adolescents' age 15 school engagement and academic achievement. Girls reported higher levels of friends' and parents' school involvement than boys. Both parents' and friends' school involvement declined across ages 12–14. Combined latent growth models and structural equation models showed effects of the trajectories of friends' and parents' school involvement on adolescents' age 15 school engagement and academic achievement, over and above adolescents' prior performance. These effects were additive rather than interactive. Strategies for enhancing parent involvement in school and students' affiliation with peers who are positively engaged in school are discussed. PMID:28239244

  10. Effect of Trajectories of Friends' and Parents' School Involvement on Adolescents' Engagement and Achievement.

    PubMed

    Im, Myung Hee; Hughes, Jan N; West, Stephen G

    2016-12-01

    In a sample of 527 academically at-risk youth, we investigated trajectories of friends' and parents' school involvement across ages 12-14 and the joint contributions of these trajectories to adolescents' age 15 school engagement and academic achievement. Girls reported higher levels of friends' and parents' school involvement than boys. Both parents' and friends' school involvement declined across ages 12-14. Combined latent growth models and structural equation models showed effects of the trajectories of friends' and parents' school involvement on adolescents' age 15 school engagement and academic achievement, over and above adolescents' prior performance. These effects were additive rather than interactive. Strategies for enhancing parent involvement in school and students' affiliation with peers who are positively engaged in school are discussed.

  11. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic Bayesian mixing models in Galapagos pinnipeds.

    PubMed

    Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie

    2014-12-15

    The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Context-dependent consumer control in New England tidal wetlands.

    PubMed

    Moore, Alexandria

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.

  13. Lionfish misidentification circumvents an optimized escape response by prey

    PubMed Central

    McCormick, Mark I.; Allan, Bridie J. M.

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators. PMID:27990292

  14. Lionfish misidentification circumvents an optimized escape response by prey.

    PubMed

    McCormick, Mark I; Allan, Bridie J M

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish ( Pterois volitans ) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel ( Pomacentrus chrysurus ), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod ( Cephalopholis microprion ), a corallivorous butterflyfish ( Chaetodon trifasctiatus ) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators.

  15. Context-dependent consumer control in New England tidal wetlands

    PubMed Central

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline. PMID:29771961

  16. Accumulation of vitamin A in the hepatic stellate cell of arctic top predators.

    PubMed

    Senoo, Haruki; Imai, Katsuyuki; Mezaki, Yoshihiro; Miura, Mitsutaka; Morii, Mayako; Fujiwara, Mutsunori; Blomhoff, Rune

    2012-10-01

    We performed a systematic characterization of the hepatic vitamin A storage in mammals and birds of the Svalbard Archipelago and Greenland. The liver of top predators, including polar bear, Arctic fox, bearded seal, and glaucous gull, contained about 10-20 times more vitamin A than the liver of all other arctic animals studied, as well as their genetically related continental top predators. The values are also high compared to normal human and experimental animals like mouse and rat. This massive amount of hepatic vitamin A was located in large autofluorescent lipid droplets in hepatic stellate cells (HSCs; also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells). The droplets made up most of the cells' cytoplasm. The development of such an efficient vitamin A-storing mechanism in HSCs may have contributed to the survival of top predators in the extreme environment of the arctic. These animals demonstrated no signs of hypervitaminosis A. We suggest that HSCs have capacity to take-up and store large amounts of vitamin A, which may play a pivotal role in maintenance of the food web, food chain, biodiversity, and eventually ecology of the arctic. Copyright © 2012 Wiley Periodicals, Inc.

  17. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    ERIC Educational Resources Information Center

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  18. Individual, Familial, Friends-Related and Contextual Predictors of Early Sexual Intercourse

    ERIC Educational Resources Information Center

    Boislard P., Marie-Aude; Poulin, Francois

    2011-01-01

    This study examined the unique and simultaneous contribution of adolescents' characteristics, parent-child relationship and friends' characteristics on early sexual intercourse, while accounting for family status. A longitudinal multi-sample design was used. The first sample was recruited in a suburban context (n = 265; 62% girls) and the second…

  19. Multi-dimensional Precision Livestock Farming: a potential toolbox for sustainable rangeland management.

    PubMed

    di Virgilio, Agustina; Morales, Juan M; Lambertucci, Sergio A; Shepard, Emily L C; Wilson, Rory P

    2018-01-01

    Precision Livestock Farming (PLF) is a promising approach to minimize the conflicts between socio-economic activities and landscape conservation. However, its application on extensive systems of livestock production can be challenging. The main difficulties arise because animals graze on large natural pastures where they are exposed to competition with wild herbivores for heterogeneous and scarce resources, predation risk, adverse weather, and complex topography. Considering that the 91% of the world's surface devoted to livestock production is composed of extensive systems (i.e., rangelands), our general aim was to develop a PLF methodology that quantifies: (i) detailed behavioural patterns, (ii) feeding rate, and (iii) costs associated with different behaviours and landscape traits. For this, we used Merino sheep in Patagonian rangelands as a case study. We combined data from an animal-attached multi-sensor tag (tri-axial acceleration, tri-axial magnetometry, temperature sensor and Global Positioning System) with landscape layers from a Geographical Information System to acquire data. Then, we used high accuracy decision trees, dead reckoning methods and spatial data processing techniques to show how this combination of tools could be used to assess energy balance, predation risk and competition experienced by livestock through time and space. The combination of methods proposed here are a useful tool to assess livestock behaviour and the different factors that influence extensive livestock production, such as topography, environmental temperature, predation risk and competition for heterogeneous resources. We were able to quantify feeding rate continuously through time and space with high accuracy and show how it could be used to estimate animal production and the intensity of grazing on the landscape. We also assessed the effects of resource heterogeneity (inferred through search times), and the potential costs associated with predation risk, competition, thermoregulation and movement on complex topography. The quantification of feeding rate and behavioural costs provided by our approach could be used to estimate energy balance and to predict individual growth, survival and reproduction. Finally, we discussed how the information provided by this combination of methods can be used to develop wildlife-friendly strategies that also maximize animal welfare, quality and environmental sustainability.

  20. Living with lions: the economics of coexistence in the Gir forests, India.

    PubMed

    Banerjee, Kausik; Jhala, Yadvendradev V; Chauhan, Kartikeya S; Dave, Chittranjan V

    2013-01-01

    Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km(2). Livestock density, estimated by total counts, ranged between 25/km(2)-31/km(2) with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions' biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis' traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence.

  1. Cormorant predation and the population dynamics of walleye and yellow perch in Oneida Lake

    USGS Publications Warehouse

    Rudstam, L. G.; VanDeValk, A.J.; Adams, C.M.; Coleman, J.T.H.; Forney, J.L.; Richmond, M.E.

    2004-01-01

    Double-crested Cormorants (Phalacrocorax auritus) increased dramatically in North America during the 1990s, providing the opportunity to study the effects of an increase of a top predator on an existing predator-prey system. In Oneida Lake, New York, USA, Double-crested Cormorants were first observed nesting in 1984 and had increased to over 360 nesting pairs by 2000. Concomitant with this increase in piscivorous birds was a decrease in the adult walleye (Stizostedion vitreum) and yellow perch (Perca flavescens) populations. Analysis of a 40-yr data series shows higher mortality of subadults (age 1-2 yr perch and age 1-3 yr walleye) for both species in the 1990s compared to the previous three decades. Cormorant diet was investigated from 1995 to 2000 using a combination of cast pellets, regurgitants, and stomach analysis. Walleye and yellow perch were a major portion of the cormorant diet during these years (40-82% by number). The number of subadult walleye and yellow perch consumed by cormorants suggests that the increase in subadult mortality can be explained by predation from cormorants. Mean mortality rates of adult percids attributed to cormorant predation were 1.1% per year for walleye and 7.7% per year for yellow perch. Our analysis suggests that predation by cormorants on subadult percids is a major factor contributing to the decline in both the walleye and the yellow perch populations in Oneida Lake. Other ecosystem changes (zebra mussels, lower nutrient loading, decrease in alternate prey) are not likely explanations because the potential mechanisms involved are not consistent with auxiliary data from the lake and would not affect subadult mortality. The likely impact of bird predation on percid populations in Oneida Lake occurs because cormorants feed on larger fish that are beyond the size range where compensatory mechanisms are important.

  2. Living with Lions: The Economics of Coexistence in the Gir Forests, India

    PubMed Central

    Banerjee, Kausik; Jhala, Yadvendradev V.; Chauhan, Kartikeya S.; Dave, Chittranjan V.

    2013-01-01

    Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km2. Livestock density, estimated by total counts, ranged between 25/km2–31/km2 with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions’ biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis’ traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence. PMID:23341871

  3. Predation Risk versus Pesticide Exposure: Consequences of Fear and Loathing in the Life of Stream Shredders

    NASA Astrophysics Data System (ADS)

    Pestana, J. T.; Baird, D. J.; Soares, A. M.

    2005-05-01

    Stream invertebrates are exposed to complex stressor regimes including both biotic and abiotic factors. Species living in streams in agricultural landscapes are often subjected to episodic or continuous exposures to low levels of agrochemicals, which may approach or exceed specific substance guidelines. Sublethal effects of pesticides may result in direct effects on organisms (e.g. reduced physiological performance), which may in turn contribute to indirect effects relating to survival (e.g. increased predation risk). Here, we investigate the possibility that predator-release kairomones can act additively with low-level pesticide exposure to reduce physiological performance and survival of stream invertebrates in previously unforeseen ways. Feeding, metabolic and behavioural responses of two shredder insects, the North American stonefly Pteronarcys comstockii and the European caddisfly Sericostoma vittatum were measured under exposure to the insecticide imidacloprid at different levels of indirect predation stress using predator-release kairomones from Brown Trout (Salmo trutta). Pteronarcys feeding was measured in terms of mass of naturally conditioned alder leaf discs consumed over a 6-day and 10 -day period in animals held in cages in stream mesocosms. Pteronarcys feeding was impaired at 1 ppb in the 6-day trial and at 0,5 ppb in the 10-day trial relatively to unexposed controls. Metabolic rate was measured in the lab in terms of oxygen consumption of Pteronarcys. Animals exposed to 0.5 and 1 ppb imidacloprid showed elevated respiratory rates compared to controls. Laboratory experiments with Sericostoma, currently in progress, are examining the separate and combined effects of imidacloprid and predator kairomone on similar endpoints. These preliminary results are discussed in relation to the development of the Mechanistic Unifying Stressor Effects (MUSE) model which can be used to predict combined ecological effects of multiple stressors at the population level.

  4. Invertebrate predation on egg masses of the European cuttlefish, Sepia officinalis: An experimental approach

    NASA Astrophysics Data System (ADS)

    Martins, Catarina P. P.; Fernández-Álvarez, Fernando Á.; Villanueva, Roger

    2018-01-01

    The eggs of the European cuttlefish, Sepia officinalis, develop attached to the seafloor in shallow water habitats and possess a relatively thick black capsule that protects them from the surrounding environment. Since embryological development may take several months, eggs are vulnerable to a variety of threats present in shallow waters, including predation. This study investigates predation of S. officinalis eggs by benthic invertebrates. Twenty-eight invertebrate species from 6 different phyla and with diverse feeding habits were tested as potential predators under laboratory conditions. We also investigated how the feeding traits of these species are related to the mechanical ability to break the egg capsule and prey upon cuttlefish embryos. Species that fed on cuttlefish eggs were the sea snail Bolinus brandaris, the crab Cancer pagurus, the hermit crab Dardanus arrosor, the lobster Homarus gammarus, the invasive blue crab Callinectes sapidus, the shrimp Squilla mantis, the sea urchins Echinus melo, Cidaris sp. and Paracentrotus lividus and the starfish Astropecten aranciacus. It is of note that C. sapidus is a potential predatory crab, which raises the concern that this invasive species may constitute a novel threat for cuttlefish eggs as more populations become established in NE Atlantic waters. Of the biological traits examined, prey capture tools in the tested species best explained the experimental feeding results, suggesting that predation of S. officinalis eggs was determined generally by a mechanical factor and highlighting the importance of the protective egg capsule against predators. However, chemosensory factors are likely to be implicated as well. Thus, this work contributes to the understanding of the ecology of early life stages of cuttlefish and the factors that can affect offspring survival and subsequently impact the recruitment of this species.

  5. Interactions in a tritrophic acarine predator-prey metapopulation system V: within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).

    PubMed

    Nachman, Gösta; Zemek, Rostislav

    2003-01-01

    To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.

  6. Synergistic impacts by an invasive amphipod and an invasive fish explain native gammarid extinction.

    PubMed

    Beggel, S; Brandner, J; Cerwenka, A F; Geist, J

    2016-07-14

    Worldwide freshwater ecosystems are increasingly affected by invasive alien species. In particular, Ponto-Caspian gobiid fishes and amphipods are suspected to have pronounced effects on aquatic food webs. However, there is a lack of systematic studies mechanistically testing the potential synergistic effects of invasive species on native fauna. In this study we investigated the interrelations between the invasive amphipod Dikerogammarus villosus and the invasive fish species Neogobius melanostomus in their effects on the native amphipod Gammarus pulex. We hypothesized selective predation by the fish as a driver for displacement of native species resulting in potential extinction of G. pulex. The survival of G. pulex in the presence of N. melanostomus in relation to the presence of D. villosus and availability of shelter was analyzed in the context of behavioural differences between the amphipod species. Gammarus pulex had a significantly higher susceptibility to predation by N. melanostomus compared to D. villosus in all experiments, suggesting preferential predation by this fish on native gammarids. Furthermore, the presence of D. villosus significantly increased the vulnerability of G. pulex to fish predation. Habitat structure was an important factor for swimming activity of amphipods and their mortality, resulting in a threefold decrease in amphipods consumed with shelter habitat structures provided. Behavioral differences in swimming activity were additionally responsible for higher predation rates on G. pulex. Intraguild predation could be neglected within short experimental durations. The results of this study provide evidence for synergistic effects of the two invasive Ponto-Caspian species on the native amphipod as an underlying process of species displacements during invasion processes. Prey behaviour and monotonous habitat structures additionally contribute to the decline of the native gammarid fauna in the upper Danube River and elsewhere.

  7. Ecosystem-based management of predator-prey relationships: piscivorous birds and salmonids.

    PubMed

    Wiese, Francis K; Parrish, Julia K; Thompson, Christopher W; Maranto, Christina

    2008-04-01

    Predator-prey relationships are often altered as a result of human activities. Where prey are legally protected, conservation action may include lethal predator control. In the Columbia River basin (Pacific Northwest, USA and Canada), piscivorous predators have been implicated in contributing to a lack of recovery of several endangered anadromous salmonids (Oncorhynchus spp.), and lethal and nonlethal control programs have been instituted against both piscine and avian species. To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption of salmonid smolts by waterbirds (Common Merganser, California and Ring-billed Gull, Caspian Tern, Double-crested Cormorant) found in the mid-Columbia River from April through August, 2002-2004. We used our model to explore several predator-prey scenarios, including the impact of historical bird abundance, and the effect of preserving vs. removing birds, on smolt abundance. Each year, <1% of the estimated available salmonid smolts (interannual range: 44,830-109,209; 95% CI = 38,000-137,000) were consumed, 85-98% away from dams. Current diet data combined with historical gull abundance at dams suggests that past smolt consumption may have been 1.5-3 times current numbers, depending on the assumed distribution of gulls along the reaches. After the majority (80%) of salmonid smolts have left the study area, birds switch their diet to predominantly juvenile northern pikeminnow (Ptychocheilus oregonensis), which as adults are significant native salmonid predators in the Columbia River. Our models suggest that one consequence of removing birds from the system may be increased pikeminnow abundance, which--even assuming 80% compensatory mortality in juvenile pikeminnow survival--would theoretically result in an annual average savings of just over 180,000 smolts, calculated over a decade. Practically, this suggests that smolt survival could be maximized by deterring birds from the river when smolts are present, allowing bird presence after the diet switch to act as a tool for salmonid-predator control, and conducting adult-pikeminnow control throughout. Our analysis demonstrates that identifying the strength of ecosystem interactions represents a top priority when attempting to manage the abundance of a particular ecosystem constituent, and that the consequences of a single-species view may be counterintuitive, and potentially counterproductive.

  8. Influence of human development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska.

    PubMed

    Liebezeit, J R; Kendall, S J; Brown, S; Johnson, C B; Martin, P; McDonald, T L; Payer, D C; Rea, C L; Streever, B; Wildman, A M; Zack, S

    2009-09-01

    Nest predation may influence population dynamics of birds on the Arctic Coastal Plain (ACP) of Alaska, USA. Anthropogenic development on the ACP is increasing, which may attract nest predators by providing artificial sources of food, perches, den sites, and nest sites. Enhanced populations or concentrations of human-subsidized predators may reduce nest survival for tundra-nesting birds. In this study, we tested the hypothesis that nest survival decreases in proximity to human infrastructure. We monitored 1257 nests of 13 shorebird species and 619 nests of four passerine species at seven sites on the ACP from 2002 to 2005. Study sites were chosen to represent a range of distances to infrastructure from 100 m to 80 km. We used Cox proportional hazards regression models to evaluate the effects of background (i.e., natural) factors and infrastructure on nest survival. We documented high spatial and temporal variability in nest survival, and site and year were both included in the best background model. We did not detect an effect of human infrastructure on nest survival for shorebirds as a group. In contrast, we found evidence that risk of predation for passerine nests increased within 5 km of infrastructure. This finding provides quantitative evidence of a relationship between infrastructure and nest survival for breeding passerines on the ACP. A posteriori finer-scale analyses (within oil field sites and individual species) suggested that Red and Red-necked Phalaropes combined (Phalaropus fulicarius, P. lobatus) had lower productivity closer to infrastructure and in areas with higher abundance of subsidized predators. However, we did not detect such a relationship between infrastructure and nest survival for Semipalmated and Pectoral Sandpipers (Calidris pusilla, C. melanotos), the two most abundant shorebirds. High variability in environmental conditions, nest survival, and predator numbers between sites and years may have contributed to these inconsistent results. We recommend targeted management actions to minimize anthropogenic effects and suggest new research needed on this issue as expanding development is planned for the ACP of Alaska. In particular, we recommend research on demography of key predators and their importance with respect to nest survival, and experimental studies that better address challenges posed by high natural variability.

  9. Psychological and Social Risk Factors in Adolescent Smoking Transitions: A Population-Based Longitudinal Study

    PubMed Central

    Bricker, Jonathan B.; Rajan, K. Bharat; Zalewski, Maureen; Andersen, M. Robyn; Ramey, Madelaine; Peterson, Arthur V.

    2009-01-01

    Objective This study longitudinally investigated psychological and social risk factors consistent with the Theory of Triadic Influence (TTI) as predictors of adolescent smoking transitions. Design Among 4218 adolescents, five psychological risk factors (i.e., parent-noncompliance, friend-compliance, rebelliousness, low achievement motivation, and thrill seeking) were assessed in 9th grade (age 14), two social influence risk factors (i.e., parents’ and close friends’ smoking) were assessed in grades 3 (age 8) and 9 (age 14), respectively. Main Outcome Measures Adolescent smoking transitions occurring between the 9th and 12th (ages 14–17) grade interval. Results There was a 22–27% probability contributed by scoring high on each of these psychological risk factors to the overall probability that an adolescent would try smoking. For predicting trying smoking, the probability contributed by these psychological factors was greater than the probability contributed by each parent’s and close friend’s smoking. Parent-compliance had a higher contribution to the probability of trying smoking when an adolescent’s parent smoked (p < .05), while friend-compliance had a higher contribution to the probability of trying smoking when an adolescent’s friend smoked (p<.001). Conclusion These psychological and social factors have an important influence on adolescent smoking transitions. Implications for TTI and smoking prevention interventions are discussed. PMID:19594268

  10. Kindergarten Children's Genetic Vulnerabilities Interact with Friends' Aggression to Promote Children's Own Aggression

    ERIC Educational Resources Information Center

    van Lier, Pol; Boivin, Michel; Dionne, Ginette; Vitaro, Frank; Brendgen, Mara; Koot, Hans; Tremblay, Richard E.; Perusse, Daniel

    2007-01-01

    Objective: To examine whether kindergarten children's genetic liability to physically aggress moderates the contribution of friends' aggression to their aggressive behaviors. Method: Teacher and peer reports of aggression were available for 359 6-year-old twin pairs (145 MZ, 212 DZ) as well as teacher and peer reports of aggression of the two best…

  11. Youth violence in South Africa: exposure, attitudes, and resilience in Zulu adolescents.

    PubMed

    Choe, Daniel Ewon; Zimmerman, Marc A; Devnarain, Bashi

    2012-01-01

    Exposure to violence is common in South Africa. Yet, few studies examine how violence exposure contributes to South African adolescents' participation in youth violence. The aims of this study were to examine effects of different violence exposures on violent attitudes and behavior, to test whether attitudes mediated effects of violence exposures on violent behavior, and to test whether adult involvement had protective or promotive effects. Questionnaires were administered to 424 Zulu adolescents in township high schools around Durban, South Africa. Structural equation modeling (SEM) was used to test associations among violence exposures and both violent attitudes and behavior. Victimization, witnessing violence, and friends' violent behavior contributed directly to violent behavior. Only family conflict and friends' violence influenced violent attitudes. Attitudes mediated effects of friends' violence on violent behavior. Multiple-group SEM indicated that adult involvement fit a protective model of resilience. These findings are discussed regarding their implications for prevention.

  12. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

    PubMed Central

    Meyer, Christopher P.; Mills, Suzanne C.

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction. PMID:26137428

  13. Bayesian characterization of uncertainty in species interaction strengths.

    PubMed

    Wolf, Christopher; Novak, Mark; Gitelman, Alix I

    2017-06-01

    Considerable effort has been devoted to the estimation of species interaction strengths. This effort has focused primarily on statistical significance testing and obtaining point estimates of parameters that contribute to interaction strength magnitudes, leaving the characterization of uncertainty associated with those estimates unconsidered. We consider a means of characterizing the uncertainty of a generalist predator's interaction strengths by formulating an observational method for estimating a predator's prey-specific per capita attack rates as a Bayesian statistical model. This formulation permits the explicit incorporation of multiple sources of uncertainty. A key insight is the informative nature of several so-called non-informative priors that have been used in modeling the sparse data typical of predator feeding surveys. We introduce to ecology a new neutral prior and provide evidence for its superior performance. We use a case study to consider the attack rates in a New Zealand intertidal whelk predator, and we illustrate not only that Bayesian point estimates can be made to correspond with those obtained by frequentist approaches, but also that estimation uncertainty as described by 95% intervals is more useful and biologically realistic using the Bayesian method. In particular, unlike in bootstrap confidence intervals, the lower bounds of the Bayesian posterior intervals for attack rates do not include zero when a predator-prey interaction is in fact observed. We conclude that the Bayesian framework provides a straightforward, probabilistic characterization of interaction strength uncertainty, enabling future considerations of both the deterministic and stochastic drivers of interaction strength and their impact on food webs.

  14. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis).

    PubMed

    Ercit, Kyla; Martinez-Novoa, Andrew; Gwynne, Darryl T

    2014-01-01

    Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female's ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females' jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.

  15. Selective predation on hantavirus-infected voles by owls and confounding effects from landscape properties.

    PubMed

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Hörnfeldt, Birger

    2016-06-01

    It has been suggested that predators may protect human health through reducing disease-host densities or selectively preying on infected individuals from the population. However, this has not been tested empirically. We hypothesized that Tengmalm's owl (Aegolius funereus) selectively preys on hantavirus-infected individuals of its staple prey, the bank vole (Myodes glareolus). Bank voles are hosts of Puumala hantavirus, which causes a form of hemorrhagic fever in humans. Selective predation by owls on infected voles may reduce human disease risk. We compared the prevalence of anti-Puumala hantavirus antibodies (seroprevalence), in bank voles cached by owls in nest boxes to seroprevalence in voles trapped in closed-canopy forest around each nest box. We found no general difference in seroprevalence. Forest landscape structure could partly account for the observed patterns in seroprevalence. Only in more connected forest patches was seroprevalence in bank voles cached in nest boxes higher than seroprevalence in trapped voles. This effect disappeared with increasing forest patch isolation, as seroprevalence in trapped voles increased with forest patch isolation, but did not in cached voles. Our results suggest a complex relationship between zoonotic disease prevalence in hosts, their predators, and landscape structure. Some mechanisms that may have caused the seroprevalence patterns in our results include higher bank vole density in isolated forest patches. This study offers future research potential to shed further light on the contribution of predators and landscape properties to human health.

  16. Predator-induced flow disturbances alert prey, from the onset of an attack

    PubMed Central

    Casas, Jérôme; Steinmann, Thomas

    2014-01-01

    Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator–prey systems with sensory ecologies based on flow sensing, in air and water. PMID:25030986

  17. Diet of lake trout and burbot in northern Lake Michigan during spring: Evidence of ecological interaction

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Holuszko, Jeffrey D.

    2010-01-01

    We used analyses of burbot (Lota lota) and lake trout (Salvelinus namaycush) diets taken during spring gill-net surveys in northern Lake Michigan in 2006-2008 to investigate the potential for competition and predator-prey interactions between these two species. We also compared our results to historical data from 1932. During 2006-2008, lake trout diet consisted mainly of alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), whereas burbot utilized a much wider prey base including round goby (Neogobius melanostomus), rainbow smelt, alewives, and sculpins. Using the Schoener's diet overlap index, we found a higher potential for interspecific competition in 1932 than in 2006-2008, though diet overlap was not significant in either time period. No evidence of cannibalism by lake trout or lake trout predation on burbot was found in either time period. In 2006-2008, however, lake trout composed 5.4% (by weight) of burbot diet. To determine whether this predation could be having an impact on lake trout rehabilitation efforts in northern Lake Michigan, we developed a bioenergetic-based consumption estimate for burbot on Boulder Reef (a representative reef within the Northern Refuge) and found that burbot alone can consume a considerable proportion of the yearling lake trout stocked annually, depending on burbot density. Overall, we conclude that predation, rather than competition, is the more important ecological interaction between burbot and lake trout, and burbot predation may be contributing to the failed lake trout rehabilitation efforts in Lake Michigan.

  18. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component.

    PubMed

    Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf

    2016-01-01

    In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.

  19. Best friends' interactions and substance use: The role of friend pressure and unsupervised co-deviancy.

    PubMed

    Tsakpinoglou, Florence; Poulin, François

    2017-10-01

    Best friends exert a substantial influence on rising alcohol and marijuana use during adolescence. Two mechanisms occurring within friendship - friend pressure and unsupervised co-deviancy - may partially capture the way friends influence one another. The current study aims to: (1) examine the psychometric properties of a new instrument designed to assess pressure from a youth's best friend and unsupervised co-deviancy; (2) investigate the relative contribution of these processes to alcohol and marijuana use; and (3) determine whether gender moderates these associations. Data were collected through self-report questionnaires completed by 294 Canadian youths (62% female) across two time points (ages 15-16). Principal component analysis yielded a two-factor solution corresponding to friend pressure and unsupervised co-deviancy. Logistic regressions subsequently showed that unsupervised co-deviancy was predictive of an increase in marijuana use one year later. Neither process predicted an increase in alcohol use. Results did not differ as a function of gender. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  20. A comparison of the impact of 'seagrass-friendly' boat mooring systems on Posidonia australis.

    PubMed

    Demers, Marie-Claire A; Davis, Andrew R; Knott, Nathan A

    2013-02-01

    Permanent boat moorings have contributed to the decline of seagrasses worldwide, prompting the development of 'seagrass-friendly' moorings. We contrasted seagrass cover and density (predominantly Posidonia australis) in the vicinity of three mooring types and nearby reference areas lacking moorings in Jervis Bay, Australia. We examined two types of 'seagrass-friendly' mooring and a conventional 'swing' mooring. 'Swing' moorings produced significant seagrass scour, denuding patches of ~9 m radius. Seagrass-friendly 'cyclone' moorings produced extensive denuded patches (average radius of ~18 m). Seagrass-friendly 'screw' moorings, conversely, had similar seagrass cover to nearby reference areas. Our findings reinforce previous work highlighting the negative effects of 'swing' and 'cyclone' moorings. In contrast, the previously unstudied 'screw' moorings were highly effective. We conclude that regular maintenance of moorings and the monitoring of surrounding seagrass are required to ensure that 'seagrass-friendly' moorings are operating effectively. This is important, as following damage Posidonia will take many decades to recover. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator.

    PubMed

    Galicia, Melissa P; Thiemann, Gregory W; Dyck, Markus G; Ferguson, Steven H; Higdon, Jeff W

    2016-08-01

    Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010-2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large-bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice-free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on-ice feeding opportunities for polar bears.

  2. African-American teen girls grieve the loss of friends to homicide: meaning making and resilience.

    PubMed

    Johnson, Celeste M

    2010-01-01

    Few studies have examined the bereavement experiences of African-American teen girls who have mourned the loss of friends due to homicide. This qualitative study examined such bereavement experiences with a sample of 20 African-American teen girls, ages 16-19, living in a large northeastern U.S. city. Meaning making, adolescent developmental theory, ideas regarding traumatic loss, and resilience provided a framework to understand how these teens coped with the tragic loss of a friend. The teen girls in this study demonstrated resilience in their ability to adequately "move on" with their lives. They remained achievement oriented and sustained meaningful relationships with family, valued friends, and others. Early, metaphysical, and motivational meaning constructions contributed to the teens' resilience.

  3. An Experimental Approach to the Joint Effects of Relations with Partner, Friends and Parents on Happiness

    ERIC Educational Resources Information Center

    Theuns, P.; Verresen, N.; Mairesse, O.; Goossens, R.; Michiels, L.; Peeters, E.; Wastiau, M.

    2010-01-01

    Personal relations constitute an important life domain and satisfaction therein affects happiness in people. In an experimental approach with a 3x3x3 vignettes study in which 103 first year psychology students participated, the contribution of the quality of relationships with parents, friends, and a partner are studied. It is found that the…

  4. Adolescents' and Best Friend's Depressive Symptoms and Conflict Management: Intraindividual and Interpersonal Processes Over Time.

    PubMed

    Boersma-van Dam, Elise; Hale, Bill; Koot, Hans; Meeus, Wim; Branje, Susan

    2016-12-12

    This 6-year longitudinal study examined the relation between 3 conflict management styles (i.e., problem solving, conflict engagement, and compliance) and depressive symptoms in adolescent-best friend relationships. Participants were 479 Dutch adolescents and their best friend who reported annually on depressive symptoms and conflict management styles toward each other. Bidirectional effects between conflict management styles and depressive symptoms were studied both within adolescents (intraindividual) and between adolescent best friends (interpersonal). A positive interpersonal effect of depressive symptoms of one dyad member on depressive symptoms of the other member was found. Similarly, higher positive problem solving and conflict engagement of one dyad member predicted respectively higher problem solving and conflict engagement of the other dyad member. Adolescents who reported more depressive symptoms reported more conflict engagement and compliance over time. In addition, for boys, higher levels of depressive symptoms of one dyad member were related to more problem solving by the other member over time. The current study contributed to the literature by showing that depressive symptoms and conflict management are related constructs in adolescents and that both intrapersonal and interpersonal processes contribute to this relation.

  5. Micropredation on sea urchins as a potential stabilizing process for rocky reefs

    NASA Astrophysics Data System (ADS)

    Bonaviri, Chiara; Gianguzza, Paola; Pipitone, Carlo; Hereu, Bernat

    2012-10-01

    Rocky reefs can shift from forest, a state dominated by erect algae with high biodiversity, to barren, an impoverished state dominated by encrusting algae. Sea urchins, abundant in barrens, are usually held responsible for the maintenance of this state. Predation by large fish can revert the barren state to forest by controlling sea urchin populations. However, the persistence of a community state sometimes seems to be independent from the presence of such large predators, suggesting the existence of other unknown mechanisms ensuring their stability. Theoretical studies suggest that the settler stage of sea urchins is determinant for maintaining a given rocky reef state. In this study, we have identified several potential invertebrate micropredators of settlers of the sea urchin Paracentrotus lividus and measured their predation activity. Predation rates showed marked differences among species, possibly due to morphological and/or behavioral traits. Micropredators were more abundant in the forest than in barren, and their potential impact on the sea urchin community differed between the two states by two orders of magnitude. These findings suggest a novel self-perpetuating mechanism stabilizing rocky reef systems, where the abundance of micropredators may contribute to shape the sea urchin population, which in turn is responsible for the persistence of the state.

  6. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  7. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    PubMed

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  8. Unusually high predation on chacma baboons (Papio ursinus) by female leopards (Panthera pardus) in the Waterberg Mountains, South Africa.

    PubMed

    Jooste, E; Pitman, R T; van Hoven, W; Swanepoel, L H

    2012-01-01

    Leopards do not preferentially favour baboons as prey, but they are considered the primary predators of baboons across Africa. Even in areas where baboons are abundant, their contribution to leopard diet seldom exceeds 5% of biomass. It is suggested that the extreme aggressiveness of baboons, group vigilance and their high mobility when escaping may limit leopard predation. Male baboons are particularly aggressive, and retaliation often leads to the death of the leopard. However, evidence suggests that leopards may learn to catch and kill certain dangerous prey. This study reports predation on chacma baboons by 3 female leopards on a private game reserve in the Waterberg Mountains of South Africa. Potential leopard feeding sites were identified using global positioning system (GPS) location clusters obtained from GPS collars. Over a 5-month period, we investigated 200 potential leopard feeding sites and located 96 leopard feeding/kill sites. Baboons constituted 18.7% of the leopards' biomass intake. The majority of baboons preyed upon were adults and 70% of the kills were diurnal. In terms of the measured variables, there were no significant differences in the way the leopards preyed upon baboons, compared to the rest of the prey species. Copyright © 2013 S. Karger AG, Basel.

  9. Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish.

    PubMed

    Haddaway, Neal R; Wilcox, Ruth H; Heptonstall, Rachael E A; Griffiths, Hannah M; Mortimer, Robert J G; Christmas, Martin; Dunn, Alison M

    2012-01-01

    Invasive predators may change the structure of invaded communities through predation and competition with native species. In Europe, the invasive signal crayfish Pacifastacus leniusculus is excluding the native white clawed crayfish Austropotamobius pallipes. This study compared the predatory functional responses and prey choice of native and invasive crayfish and measured impacts of parasitism on the predatory strength of the native species. Invasive crayfish showed a higher (>10%) prey (Gammarus pulex) intake rate than (size matched) natives, reflecting a shorter (16%) prey handling time. The native crayfish also showed greater selection for crustacean prey over molluscs and bloodworm, whereas the invasive species was a more generalist predator. A. pallipes parasitised by the microsporidian parasite Thelohania contejeani showed a 30% reduction in prey intake. We suggest that this results from parasite-induced muscle damage, and this is supported by a reduced (38%) attack rate and increased (30%) prey handling time. Our results indicate that the per capita (i.e., functional response) difference between the species may contribute to success of the invader and extinction of the native species, as well as decreased biodiversity and biomass in invaded rivers. In addition, the reduced predatory strength of parasitized natives may impair their competitive abilities, facilitating exclusion by the invader.

  10. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    PubMed Central

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P. J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears. PMID:23677350

  11. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    USGS Publications Warehouse

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  12. How mammalian predation contributes to tropical tree community structure.

    PubMed

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  13. Laboratory studies on the vulnerability of young white sturgeon to predation

    USGS Publications Warehouse

    Gadomski, D.M.; Parsley, M.J.

    2005-01-01

    Despite evidence of annual spawning by white sturgeon Acipenser transmontanus in rivers of the northwestern United States and Canada, in some years and locations little or no recruitment of age-0 white sturgeon has been observed. We examined the vulnerability of white sturgeon larvae and juveniles to predation to further understand possible causes of mortality. We were particularly interested in the vulnerability of older larvae and juveniles because at about 25 mm total length (TL) white sturgeon develop sharp dorsal and lateral scutes that may act as a morphological defense. In the laboratory, white sturgeon ranging from newly hatched larvae to about 170-mm TL juveniles were exposed to predatory fishes they might encounter in the natural environment. We found that channel catfish Ictalurus punctatus (mean TL = 464 mm) and northern pikeminnow Ptychocheilus oregonensis (mean TL = 472 mm) ate white sturgeon up to mean sizes of 121 and 134 mm TL, respectively. Conversely, similarly sized walleyes Sander vitreus ingested almost no white sturgeon, although juvenile walleyes (mean TL = 184 mm) ate white sturgeon up to 59 mm TL. The smallest predator we tested, prickly sculpins Cottus asper (mean TL = 126 mm), ate white sturgeon up to a mean TL of 50 mm. Our study demonstrated that predation is a likely cause of mortality of age-0 white sturgeon and may be contributing to the year-class failures that have been observed. In addition, the results from this study could be used to reduce the predation risk of artificially propagated white sturgeon released to augment declining populations since fish could be reared to sizes where their vulnerability is low.

  14. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding.

    PubMed

    McInnes, Julie C; Alderman, Rachael; Lea, Mary-Anne; Raymond, Ben; Deagle, Bruce E; Phillips, Richard A; Stanworth, Andrew; Thompson, David R; Catry, Paulo; Weimerskirch, Henri; Suazo, Cristián G; Gras, Michaël; Jarman, Simon N

    2017-09-01

    Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black-browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators. © 2017 John Wiley & Sons Ltd.

  15. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  16. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  17. Body Image and the Appearance Culture Among Adolescent Girls and Boys: An Examination of Friend Conversations, Peer Criticism, Appearance Magazines, and the Internalization of Appearance Ideals

    ERIC Educational Resources Information Center

    Jones, Diane Carlson; Vigfusdottir, Thorbjorg Helga; Lee, Yoonsun

    2004-01-01

    This research evaluates the contributions of three dimensions of appearance culture (appearance magazine exposure, appearance conversations with friends, and peer appearance criticism) and body mass index (BMI) to internalization of appearance ideals and body image dissatisfaction. Four hundred thirty-three girls and 347 boys in Grades 7 through…

  18. Large herbivores that strive mightily but eat and drink as friends.

    PubMed

    de Boer, W F; Prins, H H T

    1990-02-01

    Grazing in patches of Cynodon dactylon and of Sporobolus spicatus by four large herbivores, and the interaction between these sedentary herbivores was studied in Lake Manyara National Park, northern Tanzania. The herbivores were the African buffalo, Syncerus caffer; the African elephan, Loxodonta africana; the Burchell's zebra, Equus burchelli; and the wildebeest, Connochaetus taurinus. Four different hypotheses of the interactions between the herbivores were tested, viz., increased predator detection/protection through association of species, facilitation of the food intake through the influence of other species, use by other species of the food manipulation strategy of buffalo, and interspecific competition for food. On the level of a single day, zebra and wildebeest were symbiotic, which could have been caused by an increased chance of predator detection. A similar association between buffalo and wildebeest or zebra was also detected on C. dactylon grasslands. There was no indication of facilitation between any of the herbivores. Buffalo had a despotic relationship with elephant, that is the elephant's consumption was lowered when buffalo had visited a patch prior to their arrival. When elephant and buffalo arrived at the same time there appeared to be scramble competition between them.Habitat overlap was calculated for four pairs of species. In conjunction with the analyses of the patch visits, it was concluded that a small overlap was associated with interspecific competition and a large habitat overlap was associated with symbiosis.

  19. An endemic Taenia from South America: validation of T. Talicei Dollfus, 1960 (Cestoda: Taeniidae) with characterization of metacestodes and adults

    USDA-ARS?s Scientific Manuscript database

    Taeniid tapeworms are characteristic parasites in both domesticated and wild carnivores and life cycles are completed through predator-prey associations with rodent, lagomorph or ungulate intermediate hosts that harbor infective larvae. Globally these tapeworms contribute to morbidity and mortality ...

  20. On the ecological role of salamanders

    Treesearch

    Robert D. Davic; Hartwell H. Welsh Jr.

    2004-01-01

    Salamanders are cryptic and, though largely unrecognized as such, extremely abundant vertebrates in a variety of primarily forest and grassland environments, where they regulate food webs and contribute to ecosystem resilience-resistance (= stability) in several ways: (a) As mid-level vertebrate predators, they provide direct and indirect biotic control of species...

  1. Shared Roles of Halobacteriovorax and Viruses in Bacterial Mortality: The Environment Dictates the Winner

    NASA Astrophysics Data System (ADS)

    Chen, H.; Laws, E. A.; Gulig, P. A.; Berhane, T. K.; Martin, J. L.; Williams, H.

    2016-02-01

    Bacteriophages (phages) are considered to be a major contributor to bacterial mortality. Although recent evidence shows a similar role for the predatory bacterium, Halobacteriovorax (HBx), this organism has been largely ignored. We designed controlled laboratory microcosm studies to examine and compare the predation of a virus and an HBx strain on Vibrio vulnificus (Vv), under a range of environmental conditions. Predator-prey models were used to simulate the results and interpolated using Matlab software. The results show that although the HBx and virus both preyed on Vv, the magnitudes of their respective responses were different and were largely driven by environmental conditions. In low nutrient seawater, HBx was highly active in preying on Vv, resulting in a 4.4 log reduction of prey within 40 hours, whereas phage contributed little to bacterial mortality. However, when nutrients were added to the seawater, phage was the more active predator. At moderate levels of nutrient concentrations (DNB 1:10 and DNB 1:100) both predators were active. Both virus and HBx grew well at salt concentrations ranging from 9 to 30 ppt. Phage reproduction was optimized at 30 ppt and also occurred at higher levels at 40 and 45 ppt. HBx, on the other hand, grew best at 9 ppt and did not grow at 40 and 45 ppt. At temperatures between 15 and 37˚C both predators grew well. The impact of predation on Vv was positively correlated with temperature. The collective results of this study suggest that both HBx and phages can play significant roles in bacterial mortality and hence in shaping microbial communities and cycling nutrients. However, whether HBx or phages play the larger role in any circumstance may be orchestrated by environmental conditions. These results warrant reconsideration of the roles of different biological agents and the environment in bacteria mortality.

  2. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    PubMed

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  3. Mismatched anti-predator behavioral responses in predator-naïve larval anurans.

    PubMed

    Albecker, Molly; Vance-Chalcraft, Heather D

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles.

  4. Mismatched anti-predator behavioral responses in predator-naïve larval anurans

    PubMed Central

    Vance-Chalcraft, Heather D.

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805

  5. Conceptualizing age-friendly community characteristics in a sample of urban elders: an exploratory factor analysis.

    PubMed

    Smith, Richard J; Lehning, Amanda J; Dunkle, Ruth E

    2013-01-01

    Accurate conceptualization and measurement of age-friendly community characteristics would help to reduce barriers to documenting the effects on elders of interventions to create such communities. This article contributes to the measurement of age-friendly communities through an exploratory factor analysis of items reflecting an existing US Environmental Protection Agency policy framework. From a sample of urban elders (n = 1,376), we identified 6 factors associated with demographic and health characteristics: access to business and leisure, social interaction, access to health care, neighborhood problems, social support, and community engagement. Future research should explore the effects of these factors across contexts and populations.

  6. Teen Alcohol Use and Social Networks: The Contributions of Friend Influence and Friendship Selection

    PubMed Central

    Cheadle, Jacob E; Walsemann, Katrina M; Goosby, Bridget J

    2015-01-01

    Background We evaluated the contributions of teen alcohol use to the formation and continuation of new and existing friendships while in turn estimating the influence of friend drinking on individuals’ regular use and heavy drinking. Method Longitudinal network analysis was used to assess the mutual influences between teen drinking and social networks among adolescents in two large Add Health schools where full network data was collected three times. Friendship processes were disaggregated into the formation of new friendships and the continuation of existing friendships in a joint model isolating friendship selection and friend influences. Results Friends have a modest influence on one another when selection is controlled. Selection is more complicated than prior studies suggest, and is only related to new friendships and not their duration in the largest school. Alcohol use predicts decreasing popularity in some cases, and popularity does not predict alcohol consumption. Conclusion Intervention efforts should continue pursuing strategies that mitigate negative peer influences. The development of socializing opportunities that facilitate relationship opportunities to select on healthy behaviors also appears promising. Future work preventing teen substance use should incorporate longitudinal network assessments to determine whether programs promote protective peer relationships in addition to how treatment effects diffuse through social networks. PMID:26692436

  7. Best friends' discussions of social dilemmas.

    PubMed

    McDonald, Kristina L; Malti, Tina; Killen, Melanie; Rubin, Kenneth H

    2014-02-01

    Peer relationships, particularly friendships, have been theorized to contribute to how children and adolescents think about social and moral issues. The current study examined how young adolescent best friends (191 dyads; 53.4% female) reason together about multifaceted social dilemmas and how their reasoning is related to friendship quality. Mutually-recognized friendship dyads were videotaped discussing dilemmas entailing moral, social-conventional and prudential/pragmatic issues. Both dyad members completed a self-report measure of friendship quality. Dyadic data analyses guided by the Actor-Partner Interdependence Model indicated that adolescent and friend reports of friendship qualities were related to the forms of reasoning used during discussion. Friends who both reported that they could resolve conflicts in a constructive way were more likely to use moral reasoning than friends who reported that their conflict resolution was poor or disagreed on the quality of their conflict resolution. The findings provide evidence for the important role that friendship interaction may play in adolescents' social and moral development.

  8. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    PubMed

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  9. Threat visibility modulates the defensive brain circuit underlying fear and anxiety.

    PubMed

    Rigoli, Francesco; Ewbank, Michael; Dalgleish, Tim; Calder, Andrew

    2016-01-26

    Recent theories distinguish anxiety from fear in the brain. Anxiety is associated with activation in ventromedial prefrontal cortex and hippocampus, while fear is associated with activation in periaqueductal gray, with amygdala involved in processing aspects of both emotional responses. These theories propose that the amount of information available about threat determines which of the two defensive responses is elicited, with fear and anxiety associated with well-defined and uncertain threats respectively. However, a direct test of this hypothesis is lacking. Here we provide such a test using fMRI to record participants' brain activity while they performed a computer-based task which required to press a button to move an artificial agent to a target position while an artificial predator chased the agent. In one condition (associated with fear) the predator was visible, while in another condition (associated with anxiety) the predator was invisible. Ventromedial prefrontal cortex, hippocampus, and amygdala showed increased activity when the predator was invisible compared to visible, while the opposite effect was observed in periaqueductal gray. We also observed that participants with high but not low trait-anxiety showed an hippocampal activation with invisible threat at an earlier time stage during the trial. These findings help clarify the neural mechanisms that underlie different defensive emotions and shed light on how these mechanisms may contribute to exaggerated anxiety. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Both Geography and Ecology Contribute to Mating Isolation in Guppies

    PubMed Central

    Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.

    2010-01-01

    Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541

  11. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    PubMed

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  12. First report of predation of Giardia sp. cysts by ciliated protozoa and confirmation of predation of Cryptosporidium spp. oocysts by ciliate species.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Bonatti, Tais Rondello; Yamashiro, Sandra; Franco, Regina Maura Bueno

    2016-06-01

    Ciliated protozoa are important components of the microbial food web in various habitats, especially aquatic environments. These organisms are useful bioindicators for both environmental quality assessment and the wastewater purification process. The pathogenic parasitic protozoan species Giardia and Cryptosporidium represent a significant concern for human health, being responsible for numerous disease outbreaks worldwide. The predation of cysts and oocysts in 15 ciliate species from water and sewage samples collected in Campinas, São Paulo, Brazil were verified under laboratory conditions. The ciliated protozoan species were selected based on their mode of nutrition, and only bacterivorous and suspension-feeders were considered for the experiments. The species Blepharisma sinuosum, Euplotes aediculatus, Sterkiella cavicola, Oxytricha granulifera, Vorticella infusionum, Spirostomum minus, and Stentor coeruleus ingested cysts and oocysts, the resistance forms of Giardia spp. and Cryptosporidium spp., respectively. This is the first time that the ingestion of Giardia cysts by ciliated protozoa has been reported. These findings may contribute to a better understanding of the biological removal of these pathogens from aquatic environments.

  13. Body Size Regression Formulae, Proximate Composition and Energy Density of Eastern Bering Sea Mesopelagic Fish and Squid

    PubMed Central

    2015-01-01

    The ecological significance of fish and squid of the mesopelagic zone (200 m–1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models. PMID:26287534

  14. Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment.

    PubMed

    Beckman, Noelle G; Dybzinski, Ray; Tilman, G David

    2014-02-01

    Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen-Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that-at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude-the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.

  15. Cost-benefit trade-offs of bird activity in apple orchards.

    PubMed

    Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W

    2016-01-01

    Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems.

  16. Body Size Regression Formulae, Proximate Composition and Energy Density of Eastern Bering Sea Mesopelagic Fish and Squid.

    PubMed

    Sinclair, Elizabeth H; Walker, William A; Thomason, James R

    2015-01-01

    The ecological significance of fish and squid of the mesopelagic zone (200 m-1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models.

  17. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Chandramohan, Balamurugan; Suresh, Udaiyan; Nicoletti, Marcello; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Alarfaj, Abdullah A; Munusamy, Murugan A; Messing, Russell H; Benelli, Giovanni

    2015-12-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.

  18. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  19. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    PubMed

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.

  20. Behavioural responses to infrasonic particle acceleration in cuttlefish.

    PubMed

    Wilson, Maria; Haga, Jens Ådne Rekkedal; Karlsen, Hans Erik

    2018-01-11

    Attacks by aquatic predators generate frontal water disturbances characterised by low-frequency gradients in pressure and particle motion. Low-frequency hearing is highly developed in cephalopods. Thus, we examined behavioural responses in juvenile cuttlefish to infrasonic accelerations mimicking main aspects of the hydrodynamic signals created by predators. In the experimental set-up, animals and their surrounding water moved as a unit to minimise lateral line activation and to allow examination of the contribution by the inner ear. Behavioural responses were tested in light versus darkness and after food deprivation following a 'simulated' hunting opportunity. At low acceleration levels, colour change threshold at 3, 5 and 9 Hz was 0.028, 0.038 and 0.035 m s -2 , respectively. At higher stimulus levels, jet-propulsed escape responses thresholds in daylight were 0.043, 0.065 and 0.069 m s -2 at 3, 5 and 9 Hz, respectively, and not significantly different from the corresponding darkness thresholds of 0.043, 0.071 and 0.064 m s -2 In a simulated hunting mode, escape thresholds were significantly higher at 3 Hz (0.118 m s -2 ) but not at 9 Hz (0.134 m s -2 ). Escape responses were directional, and overall followed the direction of the initial particle acceleration, with mean escape angles from 313 to 33 deg for all three experiments. Thus, in the wild, particle acceleration might cause escape responses directed away from striking predators but towards suction-feeding predators. We suggest that cuttlefish jet-propulsed escape behaviour has evolved to be elicited by the early hydrodynamic disturbances generated during predator encounters, and that the inner ear plays an essential role in the acoustic escape responses. © 2018. Published by The Company of Biologists Ltd.

  1. Absence of neurogenic response following robust predator-induced stress response.

    PubMed

    Lau, Catherine; Hebert, Mark; Vani, Marc A; Walling, Sue; Hayley, Shawn; Lagace, Diane C; Blundell, Jacqueline

    2016-12-17

    Traumatic events contribute to a variety of neuropsychiatric disorders including post-traumatic stress disorder (PTSD). Identifying the neural mechanisms that affect the stress response may improve treatment for stress-related disorders. Neurogenesis, the production of neurons, occurs within the adult brain and disturbances in neurogenesis in the subgranular zone (SGZ) of the hippocampus have been linked to mood and anxiety disorders. Chronic stress models have mainly suggested correlations with stress reducing adult SGZ neurogenesis, whereas acute stress models and those with a naturalistic component that are also associated with long-lasting behavioral changes have produced inconsistent results. Therefore, the goal of the current study was to examine the effects of acute predator stress on adult neurogenesis. Predator stress involved a single 10-min unprotected rat to cat exposure that has previously been shown to produce contextual fear, hyperarousal, and anxiety-like behavior lasting at least 3weeks. As expected, predator stress produced a stress response as detected by elevated corticosterone (CORT) levels immediately after stress. Despite this robust stress response, there was no significant difference between stressed and handled control rats in the number of proliferating or surviving cells as assessed by a 5-bromo-2'-deoxyuridine-immunoreactive (BrdU-IR) labeling 2h or 4weeks post-stress throughout the rostro-caudal axis of the SGZ, respectively. Additionally, 90% of 4-week-old BrdU-IR cells in both conditions expressed NeuN, suggesting no change in cell fate with stress exposure. Overall, these data give caution to the notion that acute predator stress can alter the production or survival of adult-generated cells. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  3. Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles

    USGS Publications Warehouse

    Gunzburger, M.S.; Travis, J.

    2005-01-01

    Prey species that occur across a range of habitats may be exposed to variable communities of multiple predator species across habitats. Predicting the combined effects of multiple predators can be complex. Many experiments evaluating the effects of multiple predators on prey confound either variation in predator density with predator identity or variation in relative predator frequency with overall predation rates. We develop a new experimental design of factorial predator combinations that maintains a constant expected predation rate, under the null hypothesis of additive predator effects. We implement this design to evaluate the combined effects of three predator species (bass, aeshnid and libellulid odonate naiads) on mortality rate of a prey species, Hyla cinerea (Schneider, 1799) tadpoles, that occurs across a range of aquatic habitats. Two predator treatments (libellulid and aeshnid + libellulid) resulted in lower tadpole mortality than any of the other predator treatments. Variation in tadpole mortality across treatments was not related to coarse variation in microhabitat use, but was likely due to intraguild predation, which occurred in all predator treatments. Hyla cinerea tadpoles have constant, low survival values when exposed to many different combinations of predator species, and predation rate probably increases linearly with predator density.

  4. Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation.

    PubMed

    Mitchell, Matthew D; Chivers, Douglas P; McCormick, Mark I; Ferrari, Maud C O

    2015-09-11

    It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge.

  5. Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation

    PubMed Central

    Mitchell, Matthew D.; Chivers, Douglas P.; McCormick, Mark I.; Ferrari, Maud C.O.

    2015-01-01

    It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge. PMID:26358861

  6. A Learning Progression Should Address Regression: Insights from Developing Non-Linear Reasoning in Ecology

    ERIC Educational Resources Information Center

    Hovardas, Tasos

    2016-01-01

    Although ecological systems at varying scales involve non-linear interactions, learners insist thinking in a linear fashion when they deal with ecological phenomena. The overall objective of the present contribution was to propose a hypothetical learning progression for developing non-linear reasoning in prey-predator systems and to provide…

  7. Integrating chemical and biological control

    Treesearch

    Scott Salom; Albert Mayfield; Tom McAvoy

    2011-01-01

    Research and management efforts to establish an effective biological control program against HWA has received significant support by the U.S. Forest Service over the past 17 years. Other federal and state agencies, universities, and private entities have also contributed to this overall research and management effort. Although a number of HWA-specific predator species...

  8. Killer whale nuclear genome and mtDNA reveal widespread population bottleneck during the last glacial maximum.

    PubMed

    Moura, Andre E; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B; Thornton, Meredith; Plön, Stephanie; de Bruyn, P J Nico; Worley, Kim C; Gibbs, Richard A; Dahlheim, Marilyn E; Hoelzel, Alan Rus

    2014-05-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.

  9. Co-occurrence of invasive Cuban Treefrogs and native treefrogs in PVC pipe refugia

    USGS Publications Warehouse

    Elston, Laura M.; Waddle, J. Hardin; Rice, Kenneth G.; Percival, H. Franklin

    2013-01-01

    The Cuban Treefrog (Osteopilus septentrionalis) was first introduced to Florida at Key West. Since this introduction, Cuban Treefrogs have spread to Miami and are now established throughout most of peninsular Florida. Cuban Treefrogs can become very abundant in areas they colonize. Several reasons contribute to their success, including a generalist diet, high fecundity and the ability to reproduce year-round, and use of disturbed or human-modified habitats. Scientists and managers are concerned that Cuban Treefrogs may contribute to the decline of native treefrogs. Cuban Treefrogs may exclude native treefrogs through both competition and predation. Because the evidence from our study and others suggests that Green and Squirrel Treefrogs do not alter their behavior to avoid Cuban Treefrogs, there is cause for concern that sampling with PVC pipes may increase the vulnerability of the native species to predation. This possibility needs further research, including whether other species of native treefrogs sympatric to where Cuban Treefrogs have invaded are also naïve to the possible threat posed by these frogs, and also if native treefrogs eventually learn to avoid Cuban Treefrogs.

  10. Human paleoecological integration in subarctic eastern Beringia

    NASA Astrophysics Data System (ADS)

    Lanoë, François B.; Reuther, Joshua D.; Holmes, Charles E.; Hodgins, Gregory W. L.

    2017-11-01

    We contribute to the understanding of megafauna extinction and human dispersal in subarctic eastern Beringia by focusing on changes in the trophic dynamics of the large mammal community as well as the ecological role of humans as a predator and competitor. We reconstruct habitat use by megafauna and humans throughout the Pleistocene-Holocene boundary based on zooarchaeological data and stable isotope ratios of collagen. Our results are consistent with habitat heterogeneity and availability being important factors in the changing abundance of large herbivores. We argue that an increase in herbivore diversity and biomass at the beginning of the Bølling-Allerød interstadial and a relative lack of competitors favored the initial human colonization of subarctic eastern Beringia. As herbivore resources dwindled later in the Late Glacial, people increasingly relied on bison and wapiti. By efficiently extracting some of the highest-ranked resources in the landscape, people are likely to have contributed to the trophic displacement or regional extirpation of other large predators. The ecological patterns that we observe in subarctic eastern Beringia are consistent with a mixture of both top-down and bottom-up controls over biotic turnover.

  11. The capacity for romantic intimacy: exploring the contribution of best friend and marital and parental relationships.

    PubMed

    Scharf, M; Mayseless, O

    2001-06-01

    This study examined, in a longitudinal design, the contributions of three different relationships, namely marital, parent-child and best friend, to the capacity for intimacy in romantic relationships of Israeli male adolescents, as well as the mediating role of socio-emotional capacities. Eighty-four 17-year-old adolescents and their parents filled out questionnaires concerning the quality of these relational contexts. Four years later the Intimacy Status Interview was administered to the adolescents at the conclusion of their mandatory military service to examine closeness, separateness, and commitment within their romantic relationships. Results showed that all relational contexts were related to capacity for intimacy (directly or indirectly), with higher relational qualities associated with better capability for intimacy. The marital relationship was associated with intimacy through its effect on the parent-child relationships. The effects of the parent-child relationships on the capacity for intimacy were mediated through the adolescents' socio-emotional capabilities. The contribution of the parent-adolescent relationships to the capacity for closeness and commitment was further mediated through relationships with the best friend, whereas the contribution to the capacity for separateness was not. A substantial number of our participants showed high capability for intimacy although in the military service context the circumstances for the development of intimacy were quite limited and non-optimal. Exploration of the separateness and closeness facets of intimacy in romantic relationships in the two sexes and in other contexts is recommended. Copyright 2001 The Association for Professionals in Services for Adolescents.

  12. Is a healthy city also an age-friendly city?

    PubMed

    Jackisch, Josephine; Zamaro, Gianna; Green, Geoff; Huber, Manfred

    2015-06-01

    Healthy Ageing is an important focus of the European Healthy Cities Network and has been supported by WHO since 2003 as a key strategic topic, since 2010 in cooperation with the Global Network of Age-friendly Cities and Communities. Based on the methodology of realist evaluation, this article synthesizes qualitative evidence from 33 structured case studies (CS) from 32 WHO European Healthy Cities, 72 annual reports from Network cities and 71 quantitative responses to a General Evaluation Questionnaire. City cases are assigned to three clusters containing the eight domains of an age-friendly city proposed by WHO's Global Age-friendly City Guide published in 2007. The analysis of city's practice and efforts in this article takes stock of how cities have developed the institutional prerequisites and processes necessary for implementing age-friendly strategies, programmes and projects. A content analysis of the CS maps activities across age-friendly domains and illustrates how cities contribute to improving the social and physical environments of older people and enhance the health and social services provided by municipalities and their partners. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Predation of caterpillars on understory saplings in an Ozark forest

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2003-01-01

    Predators of caterpillars (Lepidoptera larvae) can indirectly enhance economic gains from plant resources by reducing herbivore damage to plants. For this study, we directly observed predation of caterpillars on understory trees in the Ozarks. Our objectives were to determine the relative importance of diurnal guilds of caterpillar predators, the time of day most diurnal predation events occur, and whether predators spend more time feeding in open or closed canopy areas. Once per month, June-September, we tethered caterpillars to understory saplings and recorded all predation events. Only invertebrate predators were observed feeding on caterpillars, and most predation events were attributed to ants and vespids (wasps, hornets and yellow jackets). Predation by vertebrate predators such as birds, small mammals, reptiles and amphibians was not observed. Most predation events took place at mid-day between 1200 and 1600 hrs. Predation pressure differed significantly over the four observation dates with peak ant predation in July and peak vespid predation in September. Canopy environment appeared to influence predation events as there was a trend towards higher vespid predation of caterpillars on open canopy as opposed to closed canopy saplings. Ants and vespids accounted for 90% of observed predation events; therefore they appear to be important predators of caterpillars during the summer months. Future studies at earlier sampling dates would be valuable in determining whether the relative importance of other diurnal guilds of caterpillar predators might be greater in the spring.

  14. Altered trophic pathway and parasitism in a native predator (Lepomis gibbosus) feeding on introduced prey (Dreissena polymorpha).

    PubMed

    Locke, Sean A; Bulté, Grégory; Marcogliese, David J; Forbes, Mark R

    2014-05-01

    Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.

  15. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination.

    PubMed

    Sotton, Benoît; Guillard, Jean; Anneville, Orlane; Maréchal, Marjorie; Savichtcheva, Olga; Domaizon, Isabelle

    2014-01-01

    An in situ study was performed to investigate the role of zooplankton as a vector of microcystins (MCs) from Planktothrix rubescens filaments to fish during a metalimnic bloom of P. rubescens in Lake Hallwil (Switzerland). The concentrations of MCs in P. rubescens and various zooplanktonic taxa (filter-feeders and predators) were assessed in different water strata (epi-, meta- and hypolimnion) using replicated sampling over a 24-hour survey. The presence of P. rubescens in the gut content of various zooplanktonic taxa (Daphnia, Bosmina and Chaoborus) was verified by targeting the cyanobacterial nucleic acids (DNA). These results highlighted that cyanobacterial cells constitute a part of food resource for herbivorous zooplanktonic taxa during metalimnic bloom periods. Furthermore, presence of MCs in Chaoborus larvae highlighted the trophic transfer of MCs between herbivorous zooplankton and their invertebrate predators. Our results suggest that zooplanktonic herbivores by diel vertical migration (DVM) act as vectors of MCs by encapsulating grazed cyanobacteria. As a consequence, they largely contribute to the contamination of zooplanktonic predators, and in fine of zooplanktivorous whitefish. Indeed, we estimated the relative contribution of three preys of the whitefish (i.e. Daphnia, Bosmina and Chaoborus) to diet contamination. We showed that Chaoborus and Daphnia were the highest contributor as MC vectors in the whitefish diet (74.6 and 20.5% of MC-LR equivalent concentrations, respectively). The transfer of MCs across the different trophic compartments follows complex trophic pathways involving various trophic levels whose relative importance in fish contamination might vary at daily and seasonal scale. © 2013.

  16. An estimated 400-800 million tons of prey are annually killed by the global spider community.

    PubMed

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  17. An estimated 400-800 million tons of prey are annually killed by the global spider community

    NASA Astrophysics Data System (ADS)

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  18. The lionfish Pterois sp. invasion: Has the worst-case scenario come to pass?

    PubMed

    Côté, I M; Smith, N S

    2018-03-01

    This review revisits the traits thought to have contributed to the success of Indo-Pacific lionfish Pterois sp. as an invader in the western Atlantic Ocean and the worst-case scenario about their potential ecological effects in light of the more than 150 studies conducted in the past 5 years. Fast somatic growth, resistance to parasites, effective anti-predator defences and an ability to circumvent predator recognition mechanisms by prey have probably contributed to rapid population increases of lionfish in the invaded range. However, evidence that lionfish are strong competitors is still ambiguous, in part because demonstrating competition is challenging. Geographic spread has likely been facilitated by the remarkable capacity of lionfish for prolonged fasting in combination with other broad physiological tolerances. Lionfish have had a large detrimental effect on native reef-fish populations in the northern part of the invaded range, but similar effects have yet to be seen in the southern Caribbean. Most other envisaged direct and indirect consequences of lionfish predation and competition, even those that might have been expected to occur rapidly, such as shifts in benthic composition, have yet to be realized. Lionfish populations in some of the first areas invaded have started to decline, perhaps as a result of resource depletion or ongoing fishing and culling, so there is hope that these areas have already experienced the worst of the invasion. In closing, we place lionfish in a broader context and argue that it can serve as a new model to test some fundamental questions in invasion ecology. © 2018 The Fisheries Society of the British Isles.

  19. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator.

    PubMed

    Hall-Aspland, S A; Hall, A P; Rogers, T L

    2005-03-01

    Mixing models are used to determine diets where the number of prey items are greater than one, however, the limitation of the linear mixing method is the lack of a unique solution when the number of potential sources is greater than the number (n) of isotopic signatures +1. Using the IsoSource program all possible combinations of each source contribution (0-100%) in preselected small increments can be examined and a range of values produced for each sample analysed. We propose the use of a Moore Penrose (M-P) pseudoinverse, which involves the inverse of a 2x2 matrix. This is easily generalized to the case of a single isotope with (p) prey sources and produces a specific solution. The Antarctic leopard seal (Hydrurga leptonyx) was used as a model species to test this method. This seal is an opportunistic predator, which preys on a wide range of species including seals, penguins, fish and krill. The M-P method was used to determine the contribution to diet from each of the four prey types based on blood and fur samples collected over three consecutive austral summers. The advantage of the M-P method was the production of a vector of fractions f for each predator isotopic value, allowing us to identify the relative variation in dietary proportions. Comparison of the calculated fractions from this method with 'means' from IsoSource allowed confidence in the new approach for the case of a single isotope, N.

  20. Conceptualizing Age-Friendly Community Characteristics in a Sample of Urban Elders: An Exploratory Factor Analysis

    PubMed Central

    Smith, Richard J.; Lehning, Amanda J.; Dunkle, Ruth E.

    2012-01-01

    Accurate conceptualization and measurement of age-friendly community characteristics would help to reduce barriers to documenting the effects on elders of interventions to create such communities. This article contributes to the measurement of age-friendly communities through an exploratory factor analysis of items reflecting an existing U.S. Environmental Protection Agency policy framework. From a sample of urban elders (n =1,376), we identified six factors associated with demographic and health characteristics: Access to Business and Leisure, Social Interaction, Access to Health Care, Neighborhood Problems, Social Support, and Community Engagement. Future research should explore the effects of these factors across contexts and populations. PMID:23350565

  1. Business as Partners in Development: Building the Public Contribution of Private Enterprise.

    ERIC Educational Resources Information Center

    Nelson, Jane

    1998-01-01

    Outlines ways in which businesses can contribute to sustainable development through core business activities, social investment, and participation in public policy debates. Describes corporate efforts in Latin America and the Caribbean to promote child-friendly companies, provide community access to technology, improve educational quality and…

  2. Gender Differences in Resistance to Schooling: The Role of Dynamic Peer-Influence and Selection Processes.

    PubMed

    Geven, Sara; O Jonsson, Jan; van Tubergen, Frank

    2017-12-01

    Boys engage in notably higher levels of resistance to schooling than girls. While scholars argue that peer processes contribute to this gender gap, this claim has not been tested with longitudinal quantitative data. This study fills this lacuna by examining the role of dynamic peer-selection and influence processes in the gender gap in resistance to schooling (i.e., arguing with teachers, skipping class, not putting effort into school, receiving punishments at school, and coming late to class) with two-wave panel data. We expect that, compared to girls, boys are more exposed and more responsive to peers who exhibit resistant behavior. We estimate hybrid models on 5448 students from 251 school classes in Sweden (14-15 years, 49% boys), and stochastic actor-based models (SIENA) on a subsample of these data (2480 students in 98 classes; 49% boys). We find that boys are more exposed to resistant friends than girls, and that adolescents are influenced by the resistant behavior of friends. These peer processes do not contribute to a widening of the gender gap in resistance to schooling, yet they contribute somewhat to the persistence of the initial gender gap. Boys are not more responsive to the resistant behavior of friends than girls. Instead, girls are influenced more by the resistant behavior of lower status friends than boys. This explains to some extent why boys increase their resistance to schooling more over time. All in all, peer-influence and selection processes seem to play a minor role in gender differences in resistance to schooling. These findings nuance under investigated claims that have been made in the literature.

  3. The role of media and peer influences in Australian women's attitudes towards cosmetic surgery.

    PubMed

    Sharp, Gemma; Tiggemann, Marika; Mattiske, Julie

    2014-09-01

    The study aimed to examine the influence of media and peers on attitudes towards cosmetic surgery using a sociocultural framework. A sample of 351 Australian women aged 18-69 years completed measures of media exposure, friend conversations, internalisation of appearance ideals, appearance comparison, body dissatisfaction, and attitudes towards cosmetic surgery. Correlational analysis showed that almost all media and friend variables were significantly correlated with positive attitudes towards cosmetic surgery. A structural equation model based on the sociocultural model showed a good level of fit to the data. The effects of media exposure and friend conversations on body dissatisfaction and attitudes towards cosmetic surgery were mediated by internalisation. We concluded that media exposure and friend conversations affected attitudes towards cosmetic surgery both directly and indirectly. Our results contribute to the understanding of the sociocultural mechanisms underlying women's motivations for cosmetic surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hunting-mediated predator facilitation and superadditive mortality in a European ungulate.

    PubMed

    Gehr, Benedikt; Hofer, Elizabeth J; Pewsner, Mirjam; Ryser, Andreas; Vimercati, Eric; Vogt, Kristina; Keller, Lukas F

    2018-01-01

    Predator-prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator-prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting-mediated predator facilitation in a hunter-predator-prey system. We found that hunter avoidance by roe deer ( Capreolus capreolus ) exposed them to increase predation risk by Eurasian lynx ( Lynx lynx ). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.

  5. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  6. Influence of predator density on nonindependent effects of multiple predator species.

    PubMed

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  7. Cannibalism and intraguild predation of eggs within a diverse predator assemblage.

    PubMed

    Takizawa, Tadashi; Snyder, William E

    2011-02-01

    Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation. © 2011 Entomological Society of America

  8. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides.

    PubMed

    Kumar, Palanisamy Mahesh; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Amerasan, Duraisamy; Chandramohan, Balamurugan; Dinesh, Devakumar; Suresh, Udaiyan; Nicoletti, Marcello; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Wei, Hui; Kalimuthu, Kandasamy; Hwang, Jiang-Shiou; Lo Iacono, Annalisa; Benelli, Giovanni

    2016-02-01

    Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.

  9. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina

    USGS Publications Warehouse

    Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.

    2007-01-01

    The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.

  10. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  11. "Be kind to young people so they feel at home": a qualitative study of adolescents' and service providers' perceptions of youth-friendly sexual and reproductive health services in Vanuatu.

    PubMed

    Kennedy, Elissa C; Bulu, Siula; Harris, Jennifer; Humphreys, David; Malverus, Jayline; Gray, Natalie J

    2013-10-31

    Sexual activity during adolescence is common in Vanuatu, however many adolescents lack access to sexual and reproductive health (SRH) services and subsequently suffer a disproportionate burden of poor SRH. There is limited peer-reviewed research describing adolescents' SRH service delivery preferences in Vanuatu to inform policy and programs. The aim of this qualitative study was to explore the barriers preventing adolescents from accessing SRH services in Vanuatu and the features of a youth-friendly health service as defined by adolescents. Sixty-six focus group discussions were conducted with 341 male and female adolescents aged 15-19 years in rural and urban communities. Additionally, 12 semi-structured interviews were undertaken with policymakers and service providers. Data were analysed using thematic analysis. Socio-cultural norms and taboos regarding adolescent sexual behaviour were the most significant factors preventing adolescents from accessing services. These contributed to adolescents' own fear and shame, judgmental attitudes of service providers, and disapproval from parents and community gate-keepers. Lack of confidentiality and privacy, costs, and adolescents' lack of SRH knowledge were also important barriers. Adolescents and service providers identified opportunities to make existing services more youth-friendly. The most important feature of a youth-friendly health service described by adolescents was a friendly service provider. Free or affordable services, reliable commodity supply, confidentiality and privacy were also key features. The need to address socio-cultural norms and community knowledge and attitudes was also highlighted. There are significant demand and supply-side barriers contributing to low utilisation of SRH services by adolescents in Vanuatu. However, there are many opportunities to make existing SRH services more youth-friendly, such as improving service provider training. Investment is also required in strategies that aim to create a more supportive environment for adolescent SRH.

  12. A "migrant friendly hospital" initiative in Geneva, Switzerland: evaluation of the effects on staff knowledge and practices.

    PubMed

    Hudelson, Patricia; Dominice Dao, Melissa; Perneger, Thomas; Durieux-Paillard, Sophie

    2014-01-01

    International migration poses important challenges to European health care systems. The development of "migrant friendly hospitals" has been identified as a priority in both Europe and Switzerland. A multi-pronged initiative was developed at Geneva University Hospitals (HUG) to improve staff knowledge and use of existing "migrant friendly" resources. A self-administered questionnaire was sent pre and post-intervention to random samples of 4 major professional groups with direct patient contact at the HUG. The questionnaire assessed staff knowledge, attitudes and reported practices regarding the care of migrant patients. Overall response rate was 51% (N = 1460) in 2010 but only 19% (N = 761) in 2013 owing to an institutionally imposed change in survey method. Despite these difficulties, and after adjusting for sample differences, we found that respondents in 2013 were significantly more likely to have received training in how to organize an appointment with an interpreter, how to work with an interpreter and about health and social services available for migrant patients. Respondents were also significantly more likely to have used several Migrant Friendly structures at the HUG. Use of, preference for and perceived skill at working with professional interpreters all improved, and respondents were both more likely to be encouraged by their supervisors to use professional interpreters, and less likely to be encouraged to look for alternative solutions for communicating with non francophone patients. Finally, 2013 respondents encountered fewer difficulties caring for migrant patients, although lack of time and language barriers continued to be the most important sources of difficulty. Our results suggest that an institution-wide information campaign may contribute to increased awareness and use of migrant friendly resources by clinical staff. Hospital commitment and financing, along with inter-departmental participation in all activities were important in creating and maintaining project visibility, and in contributing to a migrant friendly institutional culture.

  13. Diversity of protists and bacteria determines predation performance and stability.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  14. Habitat complexity and sex-dependent predation of mosquito larvae in containers

    PubMed Central

    Griswold, Marcus W.; Lounibos, L. Philip

    2012-01-01

    Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes. PMID:16041612

  15. Insights into Morphology and Disease from the Dog Genome Project

    PubMed Central

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2017-01-01

    Although most modern dog breeds are less than 200 years old, the symbiosis between man and dog is ancient. Since prehistoric times, repeated selection events have transformed the wolf into man’s guardians, laborers, athletes, and companions. The rapid transformation from pack predator to loyal companion is a feat that is arguably unique among domesticated animals. How this transformation came to pass remained a biological mystery until recently: Within the past decade, the deployment of genomic approaches to study population structure, detect signatures of selection, and identify genetic variants that underlie canine phenotypes is ushering into focus novel biological mechanisms that make dogs remarkable. Ironically, the very practices responsible for breed formation also spurned morbidity; today, many diseases are correlated with breed identity. In this review, we discuss man’s best friend in the context of a genetic model to understand paradigms of heritable phenotypes, both desirable and disadvantageous. PMID:25062362

  16. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control.

    PubMed

    Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas

    2004-10-19

    Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.

  17. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control

    PubMed Central

    Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas

    2004-01-01

    Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71–102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations. PMID:15469918

  18. Chimpanzee Alarm Call Production Meets Key Criteria for Intentionality

    PubMed Central

    Schel, Anne Marijke; Townsend, Simon W.; Machanda, Zarin; Zuberbühler, Klaus; Slocombe, Katie E.

    2013-01-01

    Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i) socially directed and given to the arrival of friends, (ii) associated with visual monitoring of the audience and gaze alternations, and (iii) goal directed, as calling only stopped when recipients were safe from the predator. Our results demonstrate that certain vocalisations of our closest living relatives qualify as intentional signals, in a directly comparable way to many great ape gestures. We conclude that our results undermine a central argument of gestural theories of language evolution and instead support a multimodal origin of human language. PMID:24146908

  19. The role of trees in agroecology and sustainable agriculture in the tropics.

    PubMed

    Leakey, Roger R B

    2014-01-01

    Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.

  20. Short-term effects of springtime prescribed fires on adult populations of soil-emerging weevils in Central Appalachian hardwood stands

    Treesearch

    David P. McCann; David W. McGill; Thomas M. Schuler; W. Mark Ford

    2006-01-01

    Numerous biotic and abiotic factors interact to affect oak regeneration in the central Appalachians. Fire, white-tailed deer, rodents, other vertebrate seed predators, invasive plants, insects, fungi, climate, and tree physiology contribute singularly or additively to oak regeneration problems. Moreover, fire suppression has significantly enhanced the deleterious...

  1. Untangling the effects of predator releases and transient natural enemies on pest populations in strawberry high tunnels in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Evaluating the effectiveness of augmentative releases of natural enemies is crucial to providing convincing evidence that pests can be managed in lieu of pesticides. Separating the contribution of released natural enemies from those that invade high tunnel greenhouses in search of prey/hosts, is cha...

  2. Short-term effects of springtime prescribed fires on adult populations of soil-emerging weevils in Central Appalachian hardwood stands

    Treesearch

    David P. McCann; David W. McGill; Thomas M. Schuler; W. Mark Ford

    2006-01-01

    Numerous biotic and abiotic factors interact to affect oak regeneration in the central Appalachians. Fire, whitetailed deer, rodents, other vertebrate seed predators, invasive plants, insects, fungi, climate, and tree physiology contribute singularly or additively to oak regeneration problems. Moreover, fire suppression has significantly enhanced the deleterious...

  3. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity

    PubMed Central

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-01-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to both the local predators and landscape. Thus, predicting how anthropogenic changes to landscapes affect nesting birds requires that we know more about how landscape changes affect the behavior of nest predators and which nest predators are locally important. PMID:24967077

  4. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to both the local predators and landscape. Thus, predicting how anthropogenic changes to landscapes affect nesting birds requires that we know more about how landscape changes affect the behavior of nest predators and which nest predators are locally important.

  5. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird

    USGS Publications Warehouse

    Massaro, M.; Starling-Windhof, A.; Briskie, J.V.; Martin, T.E.

    2008-01-01

    The introduction of predatory mammals to oceanic islands has led to the extension of many birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthomis melanura). We examined parental behaviour of billbnirds at three woodlands sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behavior of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrates that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  6. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates.

    PubMed

    Thaker, Maria; Vanak, Abi T; Owen, Cailey R; Ogden, Monika B; Niemann, Sophie M; Slotow, Rob

    2011-02-01

    Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.

  7. Measured Environmental Contributions to Cannabis Abuse/Dependence in an Offspring of Twins Design

    PubMed Central

    Scherrer, Jeffrey F.; Grant, Julia D.; Duncan, Alexis E.; Pan, Hui; Waterman, Brian; Jacob, Theodore; Haber, Jon Randolph; True, William R.; Heath, Andrew C.; Bucholz, Kathleen Keenan

    2008-01-01

    Genetic and environmental factors are known to contribute to cannabis abuse/dependence (CAD). We sought to determine the magnitude of the contribution from measured environmental variables to offspring cannabis dependence in a design that controls for familial vulnerability. Data come from a study of 725 twin members of the Vietnam Era Twin Registry, 720 of their biological offspring (age 18–32 years) and 427 mothers. Data were obtained on offspring perception of family and peer support and substance use behaviors and offspring CAD. After adjusting for familial risk, and environmental covariates, CAD was significantly more likely among male offspring (OR=2.73; 95% CI: 1.69–4.41). Offspring CAD was associated with reporting: siblings used illicit drugs (OR=3.40; 95%CI:1.81–6.38), a few friends used drugs (OR=2.72; 95%CI: 1.04–7.09), a quarter or more friends used drugs (OR=8.30; 95% CI:3.09–22.33) and one-half or more 12th grade peers used drugs (OR=3.17; 95%CI: 1.42–7.08). Perceived sibling, friend and school peer substance use are strongly associated with CAD in young adults even after accounting for latent familial risk and for multiple measured intra-family and extra-family environmental influences. PMID:18583065

  8. Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators.

    PubMed

    Dias, Cleide Rosa; Bernardo, Ana Maria Guimarães; Mencalha, Jussara; Freitas, Caelum Woods Carvalho; Sarmento, Renato Almeida; Pallini, Angelo; Janssen, Arne

    2016-07-01

    Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.

  9. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  10. Predator interference and stability of predator-prey dynamics.

    PubMed

    Přibylová, Lenka; Berec, Luděk

    2015-08-01

    Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

  11. The structure of salt marsh soil mesofauna food webs – The prevalence of disturbance

    PubMed Central

    Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial–marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further suggest that Mesostigmata mostly adopt an intraguild predation lifestyle. The high trophic position of a large number of predators suggests that intraguild predation is of significant importance in salt marsh food webs. Presumably, intraguild predation contributes to stabilizing the salt marsh food web against disturbances. PMID:29240806

  12. Overlapping genetic and environmental influences among men's alcohol consumption and problems, romantic quality and social support.

    PubMed

    Salvatore, J E; Prom-Wormley, E; Prescott, C A; Kendler, K S

    2015-08-01

    Alcohol consumption and problems are associated with interpersonal difficulties. We used a twin design to assess in men the degree to which genetic or environmental influences contributed to the covariance between alcohol consumption and problems, romantic quality and social support. The sample included adult male-male twin pairs (697 monozygotic and 487 dizygotic) for whom there were interview-based data on: alcohol consumption (average monthly alcohol consumption in the past year); alcohol problems (lifetime alcohol dependence symptoms); romantic conflict and warmth; friend problems and support; and relative problems and support. Key findings were that genetic and unique environmental factors contributed to the covariance between alcohol consumption and romantic conflict; genetic factors contributed to the covariance between alcohol problems and romantic conflict; and common and unique environmental factors contributed to the covariance between alcohol problems and friend problems. Recognizing and addressing the overlapping genetic and environmental influences that alcohol consumption and problems share with romantic quality and other indicators of social support may have implications for substance use prevention and intervention efforts.

  13. Declining ecosystem health and the dilution effect.

    PubMed

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-08-08

    The "dilution effect" implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may "dilute" infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003-2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm's owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm's owl decline in 1980-2013 may have contributed to higher PUUV infection rates in bank voles in 2003-2013 compared to 1979-1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk.

  14. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs

    NASA Astrophysics Data System (ADS)

    Rothschild, B. M.; Xiaoting, Z.; Martin, L. D.

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15 % of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18 %) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  15. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs.

    PubMed

    Rothschild, B M; Xiaoting, Z; Martin, L D

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15% of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18%) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  16. Ecology of invasive mosquitoes: effects on resident species and on human health

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip

    2007-01-01

    Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849

  17. Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists

    PubMed Central

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D.; McDougald, Diane

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment. PMID:23144127

  18. Cost-benefit trade-offs of bird activity in apple orchards

    PubMed Central

    Saunders, Manu E.; Luck, Gary W.

    2016-01-01

    Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  19. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. © 2016 The Author(s).

  20. Predator diversity reduces habitat colonization by mosquitoes and midges.

    PubMed

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  1. Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses.

    PubMed

    Carlson, Nora V; Pargeter, Helen M; Templeton, Christopher N

    2017-01-01

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator's own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator's state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator-beyond its presence or absence-and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli-those featuring simple head movements and audio playback of vocalizations-changes how prey respond to the predator; these 'robo-raptor' models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators' state and behavior.

  2. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    PubMed

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  3. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.

    PubMed

    Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L

    2017-07-01

    To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.

  4. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support

    PubMed Central

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [−0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors. PMID:26324395

  5. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  6. Flexible architecture of inducible morphological plasticity.

    PubMed

    Kishida, Osamu; Nishimura, Kinya

    2006-05-01

    1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.

  7. Seasonal fecundity and costs to λ are more strongly affected by direct than indirect predation effects across species

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Increased perceived predation risk can cause behavioral and physiological responses to reduce direct predation mortality, but these responses can also cause demographic costs through reduced reproductive output. Such indirect costs of predation risk have received increased attention in recent years, but the relative importance of direct vs. indirect predation costs to population growth (λ) across species remains unclear. We measured direct nest predation rates as well as indirect benefits (i.e., reduced predation rates) and costs (i.e., decreased reproductive output) arising from parental responses to perceived offspring predation risk for 10 songbird species breeding along natural gradients in nest predation risk. We show that reductions in seasonal fecundity from behavioral responses to perceived predation risk represent significant demographic costs for six of the 10 species. However, demographic costs from these indirect predation effects on seasonal fecundity comprised only 12% of cumulative predation costs averaged across species. In contrast, costs from direct predation mortality comprised 88% of cumulative predation costs averaged across species. Demographic costs from direct offspring predation were relatively more important for species with higher within-season residual-reproductive value (i.e., multiple-brooded species) than for species with lower residual-reproductive value (i.e., single-brooded species). Costs from indirect predation effects were significant across single- but not multiple-brooded species. Ultimately, demographic costs from behavioral responses to offspring predation risk differed among species as a function of their life-history strategies. Yet direct predation mortality generally wielded a stronger influence than indirect effects on seasonal fecundity and projected λ across species.

  8. Predation on Japanese quail vs. house sparrow eggs in artificial nests: small eggs reveal small predators

    Treesearch

    Thomas J. Maier; Richard M. DeGraaf

    2000-01-01

    Nest predation studies frequently use eggs such as Japanese Quail (Coturnix japonica) to identify potential predators of Neotropical migrants' eggs, but such eggs may be too large or thick-shelled to identify the full complement of potential predators. We compared predation events and predators of Japanese Quail and smaller House Sparrow (

  9. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior

    PubMed Central

    Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa

    2017-01-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831

  10. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior.

    PubMed

    Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa

    2017-03-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.

  11. Predation risk of artificial ground nests in managed floodplain meadows

    NASA Astrophysics Data System (ADS)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  12. In memory of Jean-François Stéphan

    NASA Astrophysics Data System (ADS)

    Blanchet, René

    2016-01-01

    This thematic issue of Comptes rendus Geoscience has been assembled to honor the memory of our late colleague and friend Jean-François Stéphan, whose remarkable scientific and community-directed activity has left a deep imprint on both the French and the International Earth Science communities. This volume brings together contributions of colleagues of Jean-François who were also close friends. Naturally, tectonics is the common theme of these contributions. Some of the papers presented here focus on tectonic questions and/or regions Jean-François worked on during his career; other papers present studies Jean-François motivated or encouraged in one way or another. Taken together, the papers of this thematic issue take the reader on a beautiful trip, from past to current tectonics.

  13. Christian Raetz: scientist and friend extraordinaire.

    PubMed

    Dowhan, William; Nikaido, Hiroshi; Stubbe, JoAnne; Kozarich, John W; Wickner, William T; Russell, David W; Garrett, Teresa A; Brozek, Kathryn; Modrich, Paul

    2013-01-01

    Chris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the "Raetz pathway for lipid A biosynthesis." His deep understanding of chemistry, coupled with knowledge of medicine, biochemistry, genetics, and structural biology, formed the underpinnings for his contributions to the lipid field. He displayed an intense passion for science and a broad interest that came from a strong commitment to curiosity-driven research, a commitment he imparted to his mentees and colleagues. What follows is a testament to both Chris's science and humanity from his friends and colleagues.

  14. Species diversity and predation strategies in a multiple species predator-prey model

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Glass, David H.; McCartney, Mark

    2015-08-01

    A single predator, single prey ecological model, in which the behaviour of the populations relies upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. The diversity of the ecosystem that develops as the model runs is analysed by assessing how many predator or prey species survive. Predation strategies that dictate how the predators distribute their efforts across the prey are introduced in this multiple species model. The paper analyses various predation strategies and highlights their effect on the survival of the predators and prey species.

  15. An exploitation-competition system with negative effect of prey on its predator.

    PubMed

    Wang, Yuanshi

    2015-05-01

    This paper considers an exploitation-competition system in which exploitation is the dominant interaction when the prey is at low density, while competition is dominant when the prey is at high density due to its negative effect on the predator. The two-species system is characterized by differential equations, which are the combination of Lotka-Volterra competitive and predator-prey models. Global dynamics of the model demonstrate some basic properties of exploitation-competition systems: (i) When the growth rate of prey is extremely small, the prey cannot promote the growth of predator. (ii) When the growth rate is small, an obligate predator can survive by preying on the prey, while a facultative predator can approach a high density by the predation. (iii) When the growth rate is intermediate, the predator can approach the maximal density by an intermediate predation. (iv) When the growth rate is large, the predator can persist only if it has a large density and its predation on the prey is big. (v) Intermediate predation is beneficial to the predator under certain parameter range, while over- or under-predation is not good. Extremely big/small predation would lead to extinction of species. Numerical simulations confirm and extend our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers.

    PubMed

    Semerikov, Vladimir L; Semerikova, Svetlana A; Polezhaeva, Maria A; Kosintsev, Pavel A; Lascoux, Martin

    2013-10-01

    While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold-tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range-wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L. sibirica distribution range; and (ii) date the last major population expansion in both L. sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien-Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre-dates the LGM, with a mode in a range of 220,000-1,340,000 years BP. Hence, L. sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre-dating the Last Glacial Maximum. © 2013 John Wiley & Sons Ltd.

  17. The roles of different sources of social support on emotional well-being among Chinese elderly.

    PubMed

    Li, Haifeng; Ji, Yang; Chen, Tianyong

    2014-01-01

    Social support has been widely known as a protective factor for the emotional well-being (EWB) of older adults, but less studies have investigated the roles of different sources of social support (i.e., family and friend support) on different facets of EWB (i.e., positive affect and negative affect) simultaneously. In this study, the associations between family/friend support and positive/negative affect were investigated in a sample of 700 Chinese elderly. The EWB and social support were measured with a 12-item affective wordlist (Kahneman et al., 2004) and a self-prepared questionnaire. The results showed that (1) the order of contact frequency and mutual support followed a hierarchical order from spouse, children, to friends; (2) zero-order correlations of both family support and friend support were associated with more positive affect and less negative affect; and when compared with the relative role of family and friend support, (3) spouse (children if spouse is not available) support had greater contribution on decreasing negative affect, while friend support had greater influence on increasing positive affect, even after controlling the demographic, self-rated health and life events variables. Family and friend support play different roles on the two facets of EWB of the elderly. These results were better explained in light of the task specificity model rather than the hierarchical compensatory model. Moreover, positive affect may be enhanced by friend support (based on personal interests and selectable) rather than family support (bonded by kinship and not selectable), which added evidences to the socioemotional selectivity theory.

  18. The Roles of Different Sources of Social Support on Emotional Well-Being among Chinese Elderly

    PubMed Central

    Li, Haifeng; Ji, Yang; Chen, Tianyong

    2014-01-01

    Background Social support has been widely known as a protective factor for the emotional well-being (EWB) of older adults, but less studies have investigated the roles of different sources of social support (i.e., family and friend support) on different facets of EWB (i.e., positive affect and negative affect) simultaneously. Methodology and Findings In this study, the associations between family/friend support and positive/negative affect were investigated in a sample of 700 Chinese elderly. The EWB and social support were measured with a 12-item affective wordlist (Kahneman et al., 2004) and a self-prepared questionnaire. The results showed that (1) the order of contact frequency and mutual support followed a hierarchical order from spouse, children, to friends; (2) zero-order correlations of both family support and friend support were associated with more positive affect and less negative affect; and when compared with the relative role of family and friend support, (3) spouse (children if spouse is not available) support had greater contribution on decreasing negative affect, while friend support had greater influence on increasing positive affect, even after controlling the demographic, self-rated health and life events variables. Conclusion Family and friend support play different roles on the two facets of EWB of the elderly. These results were better explained in light of the task specificity model rather than the hierarchical compensatory model. Moreover, positive affect may be enhanced by friend support (based on personal interests and selectable) rather than family support (bonded by kinship and not selectable), which added evidences to the socioemotional selectivity theory. PMID:24594546

  19. A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition.

    PubMed

    Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M

    2004-04-07

    Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.

  20. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites.

    PubMed

    Seiter, Michael; Schausberger, Peter

    2015-10-09

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments.

  1. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    PubMed Central

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  2. Species invasion shifts the importance of predator dependence.

    PubMed

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  3. Predator removal and nesting waterbird success at San Francisco Bay, California

    USGS Publications Warehouse

    Meckstroth, A.M.; Miles, A.K.

    2005-01-01

    The efficacy of long-term predator removal in urbanized areas is poorly understood. The impact of predation on ground-nesting waterbirds, as well as predator abundance and composition in predator removal versus non-removal or reference sites were examined at South San Francisco Bay. The success of natural nests and predator activity was monitored using track plates, trip cameras, wire haircatchers and simulated nests. Removal sites had higher nest densities, but lower hatching success than reference sites. Predator composition and abundance were not different at the removal and reference sites for any predator other than feral Cat (Felis domesticus). Striped Skunk (Mephitis mephitis) comprised the majority (84%) of predators removed, yet remained the most abundant predators in removal and reference sites. Urban environments provide supplemental food that may influence skunks and other nest predators to immigrate into vacancies created by predator removal. Based on the findings from this study, predator removal should be applied intensively over a larger geographic area in order to be a viable management strategy for some mammalian species in urbanized areas.

  4. Predator Diversity Effects in an Exotic Freshwater Food Web

    PubMed Central

    Naddafi, Rahmat; Rudstam, Lars G.

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity. PMID:23991126

  5. Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study

    PubMed Central

    Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard

    2014-01-01

    Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986

  6. Does Predation Risk Affect Mating Behavior? An Experimental Test in Dumpling Squid (Euprymna tasmanica)

    PubMed Central

    Franklin, Amanda M.; Squires, Zoe E.; Stuart-Fox, Devi

    2014-01-01

    Introduction One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness). The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies) and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica). Results Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior) before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis). However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time. Conclusions Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high. PMID:25551378

  7. A predator-prey model with generic birth and death rates for the predator.

    PubMed

    Terry, Alan J

    2014-02-01

    We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Status of the desert tortoise in Red Rock Canyon State Park

    USGS Publications Warehouse

    Berry, Kristin H.; Keith, Kevin; Bailey, Tracy Y.

    2008-01-01

    We surveyed for desert tortoises, Gopherus agassizii, in the western part of Red Rock Canyon State Park and watershed in eastern Kern County, California, between 2002 and 2004. We used two techniques: a single demographic plot (~4 km2 ) and 37 landscape plots (1-ha each). We estimated population densities of tortoises to be between 2.7 and 3.57/km2 and the population in the Park to be 108 tortoises. We estimated the death rate at 67% for subadults and adults during the last 4 yrs. Mortality was high for several reasons: gunshot deaths, avian predation, mammalian predation, and probably disease. Historic and recent anthropogenic impacts from State Highway 14, secondary roads, trash, cross-country vehicle tracks, and livestock have contributed to elevated death rates and degradation of habitat. We propose conservation actions to reduce mortality.

  9. Regulation of body temperature by some Mesozoic marine reptiles.

    PubMed

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  10. Mesopredator suppression by an apex predator alleviates the risk of predation perceived by small prey

    PubMed Central

    Gordon, Christopher E.; Feit, Anna; Grüber, Jennifer; Letnic, Mike

    2015-01-01

    Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators' suppressive effects on mesopredators extend to alleviate both mesopredators' consumptive and non-consumptive effects on prey. PMID:25652837

  11. Characteristics of successful puma kill sites of elk in the Black Hills, South Dakota

    Treesearch

    Chadwick P. Lehman; Christopher T. Rota; Mark A. Rumble; Joshua J. Millspaugh

    2017-01-01

    Elk Cervus canadensis nelsoni in the Black Hills, South Dakota, have been declining since 2006 and there is concern by resource managers and hunters that puma Puma concolor predation may be contributing to declining herds. We evaluated characteristics at sites where puma successfully killed elk in the Black Hills of South Dakota. We evaluated characteristics at coarse...

  12. The Contribution of Microarthropods to Aboveground Food Webs: A Review and Model of Belowground Transfer in a Coniferous Forest

    Treesearch

    John M. Johnston

    1999-01-01

    Although below ground food webs have received much attention, studies concerning microarthropods in nondetrital food webs are scarce. because adult oribatid mites often number between 250.000-500,000/ m2 in coniferous forests, microarthropods are a potential food resource for macroarthropod and vertebrate predators of the forest floor. Although...

  13. Killer Whale Nuclear Genome and mtDNA Reveal Widespread Population Bottleneck during the Last Glacial Maximum

    PubMed Central

    Moura, Andre E.; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B.; Thornton, Meredith; Plön, Stephanie; de Bruyn, P.J. Nico; Worley, Kim C.; Gibbs, Richard A.; Dahlheim, Marilyn E.; Hoelzel, Alan Rus

    2014-01-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline. PMID:24497033

  14. Daytime eyeshine contributes to pupil camouflage in a cryptobenthic marine fish.

    PubMed

    Santon, Matteo; Bitton, Pierre-Paul; Harant, Ulrike K; Michiels, Nico K

    2018-05-09

    Ocular reflectors enhance eye sensitivity in dim light, but can produce reflected eyeshine when illuminated. Some fish can occlude their reflectors during the day. The opposite is observed in cryptic sit-and-wait predators such as scorpionfish and toadfish, where reflectors are occluded at night and exposed during the day. This results in daytime eyeshine, proposed to enhance pupil camouflage by reducing the contrast between the otherwise dark pupil and the surrounding tissue. In this study, we test this hypothesis in the scorpionfish Scorpaena porcus and show that eyeshine is the result of two mechanisms: the previously described Stratum Argenteum Reflected (SAR) eyeshine, and Pigment Epithelium Transmitted (PET) eyeshine, a newly described mechanism for this species. We confirm that the ocular reflector is exposed only when the eye is light-adapted, and present field measurements to show that eyeshine reduces pupil contrast against the iris. We then estimate the relative contribution of SAR and PET eyeshine to pupil brightness. Visual models for different light scenarios in the field show that daytime eyeshine enhances pupil camouflage from the perspective of a prey fish. We propose that the reversed occlusion mechanism of some cryptobenthic predators has evolved as a compromise between camouflage and vision.

  15. Conservation implications when the nest predators are known

    USGS Publications Warehouse

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  16. Landscape heterogeneity shapes predation in a newly restored predator-prey system.

    PubMed

    Kauffman, Matthew J; Varley, Nathan; Smith, Douglas W; Stahler, Daniel R; MacNulty, Daniel R; Boyce, Mark S

    2007-08-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.

  17. Landscape heterogeneity shapes predation in a newly restored predator-prey system

    USGS Publications Warehouse

    Kauffman, M.J.; Varley, N.; Smith, D.W.; Stahler, D.R.; MacNulty, D.R.; Boyce, M.S.

    2007-01-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape. ?? 2007 Blackwell Publishing Ltd/CNRS.

  18. Dynamics of a intraguild predation model with generalist or specialist predator.

    PubMed

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  19. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    PubMed

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.

  20. Friends of friends: are indirect connections in social networks important to animal behaviour?

    PubMed

    Brent, Lauren J N

    2015-05-01

    Friend of a friend relationships, or the indirect connections between people, influence our health, well-being, financial success and reproductive output. As with humans, social behaviours in other animals often occur within a broad interconnected network of social ties. Yet studies of animal social behaviour tend to focus on associations between pairs of individuals. With the increase in popularity of social network analysis, researchers have started to look beyond the dyad to examine the role of indirect connections in animal societies. Here, I provide an overview of the new knowledge that has been uncovered by these studies. I focus on research that has addressed both the causes of social behaviours, i.e. the cognitive and genetic basis of indirect connections, as well as their consequences, i.e. the impact of indirect connections on social cohesion, information transfer, cultural practices and fitness. From these studies, it is apparent that indirect connections play an important role in animal behaviour, although future research is needed to clarify their contribution.

  1. Friends of friends: are indirect connections in social networks important to animal behaviour?

    PubMed Central

    Brent, Lauren J. N.

    2015-01-01

    Friend of a friend relationships, or the indirect connections between people, influence our health, well-being, financial success and reproductive output. As with humans, social behaviours in other animals often occur within a broad interconnected network of social ties. Yet studies of animal social behaviour tend to focus on associations between pairs of individuals. With the increase in popularity of social network analysis, researchers have started to look beyond the dyad to examine the role of indirect connections in animal societies. Here, I provide an overview of the new knowledge that has been uncovered by these studies. I focus on research that has addressed both the causes of social behaviours, i.e. the cognitive and genetic basis of indirect connections, as well as their consequences, i.e. the impact of indirect connections on social cohesion, information transfer, cultural practices and fitness. From these studies, it is apparent that indirect connections play an important role in animal behaviour, although future research is needed to clarify their contribution. PMID:25937639

  2. Best Friends’ Discussions of Social Dilemmas

    PubMed Central

    McDonald, Kristina L.; Malti, Tina; Killen, Melanie; Rubin, Kenneth H.

    2013-01-01

    Peer relationships, particularly friendships, have been theorized to contribute to how children and adolescents think about social and moral issues. The current study examined how young adolescent best friends (191 dyads; 53.4% female) reason together about multifaceted social dilemmas and how their reasoning is related to friendship quality. Mutually-recognized friendship dyads were videotaped discussing dilemmas entailing moral, social-conventional and prudential/pragmatic issues. Both dyad members completed a self-report measure of friendship quality. Dyadic data analyses guided by the Actor-Partner Interdependence Model indicated that adolescent and friend's reports of friendship qualities were related to the forms of reasoning used during discussion. Friends who both reported that they could resolve conflicts in a constructive way were more likely to use moral reasoning than friends who reported that their conflict resolution was poor or disagreed on the quality of their conflict resolution. The findings provide evidence for the important role that friendship interaction may play in adolescents’ social and moral development. PMID:23666555

  3. Understanding predation: implications toward forest management

    Treesearch

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  4. Predator effects on reef fish settlement depend on predator origin and recruit density.

    PubMed

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  5. Are Trade-Offs Among Species’ Ecological Interactions Scale Dependent? A Test Using Pitcher-Plant Inquiline Species

    PubMed Central

    Kneitel, Jamie M.

    2012-01-01

    Trade-offs among species’ ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species’ ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species’ traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526

  6. Recolonizing gray wolves increase parasite infection risk in their prey.

    PubMed

    Lesniak, Ines; Heckmann, Ilja; Franz, Mathias; Greenwood, Alex D; Heitlinger, Emanuel; Hofer, Heribert; Krone, Oliver

    2018-02-01

    The recent recolonization of Central Europe by the European gray wolf ( Canis lupus ) provides an opportunity to study the dynamics of parasite transmission for cases when a definitive host returns after a phase of local extinction. We investigated whether a newly established wolf population increased the prevalence of those parasites in ungulate intermediate hosts representing wolf prey, whether some parasite species are particularly well adapted to wolves, and the potential basis for such adaptations. We recorded Sarcocystis species richness in wolves and Sarcocystis prevalence in ungulates harvested in study sites with and without permanent wolf presence in Germany using microscopy and DNA metabarcoding. Sarcocystis prevalence in red deer ( Cervus elaphus ) was significantly higher in wolf areas (79.7%) than in control areas (26.3%) but not in roe deer ( Capreolus capreolus ) (97.2% vs. 90.4%) or wild boar ( Sus scrofa ) (82.8% vs. 64.9%). Of 11 Sarcocystis species, Sarcocystis taeniata and Sarcocystis grueneri occurred more often in wolves than expected from the Sarcocystis infection patterns of ungulate prey. Both Sarcocystis species showed a higher increase in prevalence in ungulates in wolf areas than other Sarcocystis species, suggesting that they are particularly well adapted to wolves, and are examples of "wolf specialists". Sarcocystis species richness in wolves was significantly higher in pups than in adults. "Wolf specialists" persisted during wolf maturation. The results of this study demonstrate that (1) predator-prey interactions influence parasite prevalence, if both predator and prey are part of the parasite life cycle, (2) mesopredators do not necessarily replace the apex predator in parasite transmission dynamics for particular parasites of which the apex predator is the definitive host, even if meso- and apex predators were from the same taxonomic family (here: Canidae, e.g., red foxes Vulpes vulpes ), and (3) age-dependent immune maturation contributes to the control of protozoan infection in wolves.

  7. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture.

    PubMed

    Favaro, P D N; Gouvêa, T S; de Oliveira, S R; Vautrelle, N; Redgrave, P; Comoli, E

    2011-03-10

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.

    PubMed

    Traas, T P; Luttik, R; Jongbloed, R H

    1996-08-01

    In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.

  9. Influence of olfactory and visual cover on nest site selection and nest success for grassland-nesting birds.

    PubMed

    Fogarty, Dillon T; Elmore, R Dwayne; Fuhlendorf, Samuel D; Loss, Scott R

    2017-08-01

    Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground-nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite ( Colinus virginianus ), Eastern Meadowlark ( Sturnella magna ), and Grasshopper Sparrow ( Ammodramus savannarum ) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory-related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species' nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness-related benefits.

  10. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia

    PubMed Central

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests. PMID:28854258

  11. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    PubMed

    Torralvo, Kelly; Botero-Arias, Robinson; Magnusson, William E

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  12. Predator experience overrides learned aversion to heterospecifics in stickleback species pairs

    PubMed Central

    Kozak, Genevieve M.; Boughman, Janette W.

    2015-01-01

    Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887

  13. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  14. The role of ultraviolet colour in the assessment of mimetic accuracy between Batesian mimics and their models: a case study using ant-mimicking spiders

    NASA Astrophysics Data System (ADS)

    Corcobado, Guadalupe; Herberstein, Marie E.; Pekár, Stano

    2016-12-01

    The use of ultraviolet (UV) cues for intra- and inter-specific communication is common in many animal species. Still, the role of UV signals under some predator-prey contexts, such as Batesian mimicry, is not clear. Batesian mimicry is a defensive strategy by which a palatable species (the mimic) resembles an unpalatable or noxious species (the model) to avoid predation. This strategy has evolved independently in many different taxa that are predated by species capable of UV perception. Moreover, there is considerable variation in how accurately Batesian mimics resemble their models across species. Our aim was to investigate how UV colour contributed to mimetic accuracy using several ant-mimicking spider species as a case study. We measured the reflectance spectrum (300-700 nm) for several species of mimics and models, and we tested whether they differ in visible and UV colour. We modelled whether two different predators could discriminate between mimics and models using colour information. We found that generally, ant-mimicking spiders differed significantly from their ant models in UV colour and that information from the visible range of light cannot be extrapolated into the UV. Our modelling suggested that wasps should be able to discriminate between mimics and models combining information from visible and the UV light, whereas birds may not discriminate between them. Thus, we show that UV colour can influence mimic accuracy and we discuss its potential role in Batesian mimicry. We conclude that colour, especially in the UV range, should be taken into account when measuring mimetic accuracy.

  15. Management intensity and vegetation complexity affect web-building spiders and their prey.

    PubMed

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  16. The Revised Animal Preference Test: An Implicit Probe of Tendencies Toward Psychopathy.

    PubMed

    Penzel, Ian B; Bair, Jessica; Liu, Tianwei; Robinson, Michael D

    2018-05-01

    At least some forms of interpersonal violence could follow from a vision of the self as a fierce, dominant creature. This should be particularly true when psychopathic (more proactive, less reactive) tendencies are involved. Possible relations of this type were examined in two studies (total N = 278) in which college student samples were presented with a new, structured version of an old projective test typically used in psychotherapy contexts. Participants were presented with predator-prey animal pairs (e.g., lion-zebra) that were not explicitly labeled as such. For each pair, the person was asked to choose the animal that they would more prefer to be. Participants who desired to be predator animals more often, on this Revised Animal Preference Test (RAPT), tended toward psychopathy to a greater extent. In Study 1, such relations were manifest in terms of correlations with psychopathic traits and with an interpersonal style marked by hostile dominance. Further analyses, though, revealed that predator self-identifications were more strongly related to primary psychopathy than secondary psychopathy. Study 2 replicated the interpersonal style correlates of the RAPT. In addition, photographs were taken of the participants in the second study and these photographs were rated for apparent hostility and dominance. As hypothesized, participants who wanted to be predator animals to a greater extent also appeared more hostile and dominant in their nonverbal behaviors. These studies suggest that projective preferences can be assessed in a reliable manner through the use of standardizing procedures. Furthermore, the studies point to some of the motivational factors that may contribute to psychopathy and interpersonal violence.

  17. Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine.

    PubMed

    Abad-Moyano, Raquel; Urbaneja, Alberto; Hoffmann, Daniela; Schausberger, Peter

    2010-04-01

    The two-spotted spider mite, Tetranychus urticae, is one of the most problematic phytophagous pests in Spanish clementine orchards. The most abundant predatory mites in this ecosystem are Euseius stipulatus, Phytoseiulus persimilis and Neoseiulus californicus. Euseius stipulatus is dominant but poorly adapted to utilize T. urticae as prey. It mainly persists on pollen and citrus red mite, Panonychus citri. A recent study suggested that the more efficacious T. urticae predators P. persimilis and N. californicus are negatively affected by lethal and non-lethal intraguild interactions with E. stipulatus. Here, we investigated the potential of N. californicus and P. persimilis to colonize and thrive on young clementine trees infested by T. urticae in presence and absence of E. stipulatus. Presence of E. stipulatus interfered with establishment and abundance of P. persimilis and negatively affected the efficacy of N. californicus in T. urticae suppression. In contrast, the abundance of E. stipulatus was not affected by introduction of a second predator. Trait-mediated effects of E. stipulatus changing P. persimilis and N. californicus behavior and/or life history were the most likely explanations for these outcomes. We conclude that superiority of E. stipulatus in intraguild interactions may indeed contribute to the currently observed predator species composition and abundance, rendering natural control of T. urticae in Spanish clementine orchards unsatisfactory. Nonetheless, stronger reduction of T. urticae and/or plant damage in the predator combination treatments as compared to E. stipulatus alone indicates the possibility to improve T. urticae control via repeated releases of N. californicus and/or P. persimilis.

  18. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae.

    PubMed

    Hossie, Thomas John; Murray, Dennis L

    2010-06-01

    The potential role of prey refuges in stabilizing predator-prey interactions is of longstanding interest to ecologists, but mechanisms underlying a sigmoidal predator functional response remain to be fully elucidated. Authors have disagreed on whether the stabilizing effect of prey refuges is driven by prey- versus predator-centric mechanisms, but to date few studies have married predator and prey behavioural observations to distinguish between these possibilities. We used a dragonfly nymph-tadpole system to study the effect of a structural refuge (leaf litter) on the predator's functional response, and paired this with behavioural observations of both predator and prey. Our study confirmed that hyperbolic (type II) functional responses were characteristic of foraging predators when structural cover was low or absent, whereas the functional response was sigmoidal (type III) when prey were provided with sufficient refuge. Prey activity and refuge use were density independent across cover treatments, thereby eliminating a prey-centric mechanism as being the genesis for density-dependent predation. In contrast, the predator's pursuit length, capture success, and handling time were altered by the amount of structure implying that observed shifts in density-dependent predation likely were related to predator hunting efficiency. Our study advances current theory by revealing that despite fixed-proportion refuge use by prey, presence of a prey refuge can induce density-dependent predation through its effect on predator hunting strategy. Ultimately, responses of predator foraging decisions in response to changes in prey availability and search efficiency may be more important in producing density-dependent predation than the form of prey refuge use.

  19. The behavioral response of prey fish to predators: the role of predator size.

    PubMed

    Tang, Zhong-Hua; Huang, Qing; Wu, Hui; Kuang, Lu; Fu, Shi-Jian

    2017-01-01

    Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.

  20. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  1. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  2. Identifying nest predators of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in San Francisco Bay, California

    USGS Publications Warehouse

    Herring, G.; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, J.M.

    2011-01-01

    We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h ?? 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h ?? 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.

  3. Identifying nest predators of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in San Francisco Bay, California

    USGS Publications Warehouse

    Herring, Garth; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, John M.

    2011-01-01

    We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h +/- 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h +/- 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.

  4. Boundaries to the articulation of possible selves through social networking sites: the case of Facebook profilers' social connectedness.

    PubMed

    Zwier, Sandra; Araujo, Theo; Boukes, Mark; Willemsen, Lotte

    2011-10-01

    This study aims to contribute to an emerging literature that seeks to understand how identity markers on social networking sites (SNSs) shape interpersonal impressions, and particularly the boundaries that SNSs present for articulating unconstrained "hoped-for possible selves." An experiment employing mock-up Facebook profiles was conducted, showing that appearing with friends on a Facebook profile picture as well as increasingly higher number of Facebook friends strengthened perceptions of a profiler's hoped-for level of social connectedness. Excessive numbers of friends, however, weakened perceptions of a profiler's real-level social connectedness, particularly among participants with smaller social networks on Facebook themselves. The discussion focuses on when people come to find that reasonable boundaries of self-generated information on an SNS have been exceeded.

  5. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-07

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    PubMed

    Borgmann, Kathi L; Conway, Courtney J; Morrison, Michael L

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  7. Breeding Phenology of Birds: Mechanisms Underlying Seasonal Declines in the Risk of Nest Predation

    PubMed Central

    Borgmann, Kathi L.; Conway, Courtney J.; Morrison, Michael L.

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation. PMID:23776566

  8. The landscape of fear as an emergent property of heterogeneity: Contrasting patterns of predation risk in grassland ecosystems.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-07-01

    The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.

  9. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    PubMed Central

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed. PMID:23301174

  10. Cascading top-down effects of changing oceanic predator abundances.

    PubMed

    Baum, Julia K; Worm, Boris

    2009-07-01

    1. Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2. Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3. In these ecosystems, where controlled manipulations are largely infeasible, 'pseudo-experimental' analyses of predator-prey interactions that treat independent predator populations as 'replicates', and temporal or spatial contrasts in predator populations and climate as 'treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4. Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator-prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5. Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6. Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as mesopredators and invertebrates assume dominance, and recovery of overexploited predators is impaired. Continued research aimed at integrating across trophic levels is needed to understand and forecast the ecosystem effects of changing oceanic predator abundances, the relative strength of top-down and bottom-up control, and interactions with intensifying anthropogenic stressors such as climate change.

  11. Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle--effective hemisphere depends on the behavior.

    PubMed

    Adamec, R E; Burton, P; Shallow, T; Budgell, J

    Lasting increases in anxiety-like behavior (ALB) in the elevated plus-maze are produced by a single 5-min exposure of a rat to a cat. Rats become more anxious in the plus-maze for up to 3 weeks after the exposure. The first study in this series demonstrated that blockade of NMDA receptors in rats with MK-801, AP7, or CPP, given systemically 30 min prior to exposure to a cat prevents the increase in ALB assessed 1 week later in the elevated plus-maze. To localize the site of action of systemic MK-801, MK-801 was injected in the amygdala 30 min prior to predator stress. Injections were given either unilaterally in either hemisphere, or bilaterally in both hemispheres. The target of the injection was the basolateral amygdala. The effects of injection depended on both the type of behavior and the hemisphere of injection. Injections of MK-801 in a variety of sites in the basolateral amygdala had no effect on the suppression of open-arm exploration produced by predator stress. Other amygdala nuclei or other limbic sites likely mediate the effects of systemically administered MK-801 on this behavior. In contrast, NMDA receptors in the left lateral amygdala mediate lasting suppression of risk assessment. MK-801, in a variety of sites in the left but not right lateral amygdala, blocked the effects of predator stress on risk assessment. This is clear evidence of separability of neural mechanisms controlling open-arm exploration and risk assessment. Different NMDA-dependent amygdala circuitry mediated effects of predator stress on unconditioned acoustic startle 1 week after cat exposure. The data indicate that integrity of the left lateral amygdala is necessary for potentiation of startle amplitude by predator stress, though NMDA receptors are not involved in this function. Nevertheless, NMDA receptors in the right, but not the left lateral amygdala, mediate initiation of changes in startle. The data also suggest that the right amygdala action is "downstream" from the left amygdala contribution. These findings are consistent with the view that NMDA receptors are involved in initiation, but not maintenance, of neural changes mediating lasting increases in anxiety following severe stress. Finally, the findings of the importance of the right amygdala in stress-induced enhancement of the startle response provides neurobiological face validity to predator stress as a model of aspects of posttraumatic stress disorder.

  12. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.

    PubMed

    Wang, Xiaoying; Zou, Xingfu

    2017-06-01

    Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.

  13. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  14. Metamorphosing reef fishes avoid predator scent when choosing a home.

    PubMed

    Vail, Alexander L; McCormick, Mark I

    2011-12-23

    Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.

  15. Selective attention in peacocks during predator detection.

    PubMed

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  16. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Treesearch

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  17. Predator identity can explain nest predation patterns. Chapter 11

    Treesearch

    Jennifer L. Reidy; Frank R., III Thompson

    2012-01-01

    Knowledge of dominant predators is necessary to identify predation patterns and mitigate losses to nest predation, especially for endangered songbirds. We monitored songbird nests with timelapse infrared video cameras at Fort Hood Military Reservation, Texas, from 1997 to 2002 and 2005, and in Austin, Texas, during 2005, 2006, 2008, and 2009. Predation was the most...

  18. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.

    PubMed

    Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J

    2014-01-01

    Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  19. Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    PubMed Central

    Limberger, Romana; Wickham, Stephen A.

    2011-01-01

    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation. PMID:22194992

  20. Threats from the past: Barbados green monkeys (Chlorocebus sabaeus) fear leopards after centuries of isolation.

    PubMed

    Burns-Cusato, Melissa; Glueck, Amanda C; Merchak, Andrea R; Palmer, Cristin L; Rieskamp, Joshua D; Duggan, Ivy S; Hinds, Rebecca T; Cusato, Brian

    2016-05-01

    Ability to recognize and differentiate between predators and non-predators is a crucial component of successful anti-predator behavior. While there is evidence that both genetic and experiential mechanisms mediate anti-predator behaviors in various animal species, it is unknown to what extent each of these two mechanisms are utilized by the green monkey (Chlorocebus sabaeus). Green monkeys on the West Indies island of Barbados offer a unique opportunity to investigate the underpinnings of anti-predator behaviors in a species that has been isolated from ancestral predators for over 350 years. In the first experiment, monkeys in two free-ranging troops were presented with photographs of an ancestral predator (leopard, Panthera pardus) and a non-predator (African Buffalo, Syncerus caffer). Relative to non-predator stimuli, images of a leopard elicited less approach, more alarm calls, and more escape responses. Subsequent experiments were conducted to determine whether the monkeys were responding to a leopard-specific feature (spotted fur) or a general predator feature (forward facing eyes). The monkeys showed similar approach to images of an unfamiliar non-predator regardless of whether the image had forward facing predator eyes or side facing non-predator eyes. However, once near the images, the monkeys were less likely to reach for peanuts near the predator eyes than the non-predator eyes. The monkeys avoided an image of spotted leopard fur but approached the same image of fur when the dark spots had been removed. Taken together, the results suggest that green monkey anti-predator behavior is at least partially mediated by genetic factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species.

    PubMed

    Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M

    2017-03-01

    Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.

  2. Predator response to releases of American shad larvae in the Susquehanna River basin

    USGS Publications Warehouse

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  3. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Evaluation of the influence of family and friends, and the Internet on patient perceptions of long-term topical corticosteroid use.

    PubMed

    Smith, Saxon D; Farrugia, Lisa L; Harris, Victoria; Lee, Andrew; Carter, Stephen R; Blaszczynski, Alex; Fischer, Gayle

    2017-11-01

    Topical corticosteroids (TCS) are key to managing chronic inflammatory dermatoses (CID). Parents/patients cite TCS phobia as an impediment to treatment adherence. Family/friends and the Internet are a source of misinformation on TCS which can negatively impact perceptions of TCS safety. To assess information from family/friends and the Internet, as related to and reported by patients/parents using long-term TCS. A multicenter cross-sectional survey of patients (aged >18 years) and parents of patients (aged <18 years) with a history of CID requiring long-term (≥1 month) TCS use assessing messages about TCS received from family/friends and the Internet. A total of 123 patients and 78 parents completed the survey (n = 201). Parents/patients were more likely to be informed by the Internet "[having] my [child's] skin condition means that [I/he/she] will need to use topical corticosteroids" (p < .001) and that "inflamed skin conditions will improve with the topical corticosteroids" (p = .007). Family/friends were more likely to recommend parents/patients "try non-prescription creams/ointments before resorting to the use of prescription topical corticosteroids" (p = .014). High rates of messages about TCS "risk" from family/friends and the Internet may affect patient/parent understanding about TCS safety. This may contribute to treatment non-adherence.

  5. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support.

    PubMed

    Molina, Yamile; Ornelas, India J; Doty, Sarah L; Bishop, Sonia; Beresford, Shirley A A; Coronado, Gloria D

    2015-10-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [-0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  7. Genetically Engineering Entomopathogenic Fungi.

    PubMed

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Automatic detection of animals in mowing operations using thermal cameras.

    PubMed

    Steen, Kim Arild; Villa-Henriksen, Andrés; Therkildsen, Ole Roland; Green, Ole

    2012-01-01

    During the last decades, high-efficiency farming equipment has been developed in the agricultural sector. This has also included efficiency improvement of moving techniques, which include increased working speeds and widths. Therefore, the risk of wild animals being accidentally injured or killed during routine farming operations has increased dramatically over the years. In particular, the nests of ground nesting bird species like grey partridge (Perdix perdix) or pheasant (Phasianus colchicus) are vulnerable to farming operations in their breeding habitat, whereas in mammals, the natural instinct of e.g., leverets of brown hare (Lepus europaeus) and fawns of roe deer (Capreolus capreolus) to lay low and still in the vegetation to avoid predators increase their risk of being killed or injured in farming operations. Various methods and approaches have been used to reduce wildlife mortality resulting from farming operations. However, since wildlife-friendly farming often results in lower efficiency, attempts have been made to develop automatic systems capable of detecting wild animals in the crop. Here we assessed the suitability of thermal imaging in combination with digital image processing to automatically detect a chicken (Gallus domesticus) and a rabbit (Oryctolagus cuniculus) in a grassland habitat. Throughout the different test scenarios, our study animals were detected with a high precision, although the most dense grass cover reduced the detection rate. We conclude that thermal imaging and digital imaging processing may be an important tool for the improvement of wildlife-friendly farming practices in the future.

  9. Facile fabrication of eco-friendly nano-mosquitocides: Biophysical characterization and effectiveness on neglected tropical mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Hoti, S L; Benelli, Giovanni

    2016-12-01

    Mosquito (Diptera: Culicidae) vectors are solely responsible for transmitting important diseases such as malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. Eco-friendly control tools of Culicidae vectors are a priority. In this study, we proposed a facile fabrication process of poly-disperse and stable silver nanoparticles (Ag NPs) using a cheap leaf extract of Ichnocarpus frutescens (Apocyanaceae). Bio-reduced Ag NPs were characterized by UV-vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of I. frutescens leaf extract and green-synthesized Ag NPs was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Compared to the leaf aqueous extract, Ag NPs showed higher toxicity against A. subpictus, A. albopictus, and C. tritaeniorhynchus with LC 50 values of 14.22, 15.84 and 17.26μg/mL, respectively. Ag NPs were found safer to non-target mosquito predators Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC 50 values ranging from 636.61 to 2098.61μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of I. frutescens, a potential bio-resource for rapid, cheap and effective synthesis of poly-disperse and highly stable silver nanocrystals. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Predator identity and time of day interact to shape the risk-reward trade-off for herbivorous coral reef fishes.

    PubMed

    Catano, Laura B; Barton, Mark B; Boswell, Kevin M; Burkepile, Deron E

    2017-03-01

    Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator-prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.

  11. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.

    PubMed

    Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

    2014-01-01

    Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.

  12. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?

    PubMed

    ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C

    2015-03-01

    Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  13. Insect Seed Predators in Erythrina falcata (Fabaceae): Identification of Predatory Species and Ecological Consequences of Asynchronous Flowering.

    PubMed

    Pereira, C M; Moura, M O; Da-Silva, P R

    2014-06-01

    Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.

  14. Deciphering Scavenging Propensity Among Arthropod Predators.

    USDA-ARS?s Scientific Manuscript database

    Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...

  15. Predation of Songbird Nests Differs By Predator and Between Field and Forest Habitats

    Treesearch

    Frank R., III Thompson; Dirk E. Burhans

    2003-01-01

    Our understanding of factors affecting nest predation and ability to mitigate high nest predation rates is hampered by a lack of information on the importance of various nest predator species in different habitats and landscapes. We identified predators of songbird nests in old-field and forest habitats in central Missouri, USA, with miniature video cameras. We used an...

  16. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation.

    PubMed

    Otto, Sally; Harms, Hauke; Wick, Lukas Y

    2017-02-01

    Research into the biodegradation of soil contaminants has rarely addressed the consequences of predator-prey interactions. Here, we investigated the joint effect of predation and dispersal networks on contaminant degradation by linking spatial abundances of degrader (Pseudomonas fluorescens LP6a) and predator (Bdellovibrio bacteriovorus) bacteria to the degradation of the major soil contaminant phenanthrene (PHE). We used a laboratory microcosm with a PHE passive dosing system and a glass fiber network to facilitate bacterial dispersal. Different predator-to-prey ratios and spatial arrangements of prey and predator inoculation were used to study predation pressure effects on PHE degradation. We observed that predation resulted in (i) enhanced PHE-degradation at low predator counts (PC) compared to controls lacking predation, (ii) reduced PHE-degradation at elevated PC relative to low PC, and (iii) significant effects of the spatial arrangement of prey and predator inoculation on PHE degradation. Our data suggest that predation facilitated by dispersal networks (such as fungal mycelia) may support the build-up of an effective bacterial biomass and, hence, contaminant biodegradation in heterogeneous systems such as soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey.

    PubMed

    Orrock, John L; Fletcher, Robert J

    2014-06-07

    Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour.

  18. Intraspecific variation in body size does not alter the effects of mesopredators on prey.

    PubMed

    Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C

    2016-12-01

    As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.

  19. Conceptual Growth in Children and in the Learning Sciences: Giyoo Hatano's Contributions

    ERIC Educational Resources Information Center

    Greeno, James G.; Saxe, Geoffrey B.

    2007-01-01

    In Giyoo Hatano's passing, we have lost an esteemed colleague and a treasured friend. Among his many contributions to our field, our work, and our lives, we honor and build on his and his colleagues' work on conceptual growth. We liken the view developed by Hatano and his colleagues to Toulmin's evolutionary scheme for understanding conceptual…

  20. Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.

    PubMed

    Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P

    2010-12-01

    Agricultural pest control often relies on the ecosystem services provided by the predators of pests. Appropriate landscape and habitat management for pest control services requires an understanding of insect dispersal abilities and the spatial arrangement of source habitats for pests and their predators. Here we explore how dispersal and habitat configuration determine the locations where management actions are likely to have the biggest impact on natural pest control. The study focuses on the early colonization phase before predator reproduction takes place and when pest populations in crops are still relatively low. We developed a spatially explicit simulation model in which pest populations grow exponentially in pest patches and predators disperse across the landscape from predator patches. We generated 1000 computer-simulated landscapes in which the performance of four typical but different predator groups as biological control agents was evaluated. Predator groups represented trait combinations of poor and good dispersal ability and density-independent and density-dependent aggregation responses toward pests. Case studies from the literature were used to inform the parameterization of predator groups. Landscapes with a small nearest-neighbor distance between pest and predator patches had the lowest mean pest density at the landscape scale for all predator groups, but there can be high variation in pest density between the patches within these landscapes. Mobile and strongly aggregating predators provide the best pest suppression in the majority of landscape types. Ironically, this result is true except in landscapes with small nearest-neighbor distances between pest and predator patches. The pest control potential of mobile predators can best be explained by the mean distance between a pest patch and all predator patches in the landscape, whereas for poorly dispersing predators the distance between a pest patch and the nearest predator patch is the best explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.

  1. Beyond diversity: how nested predator effects control ecosystem functions.

    PubMed

    Schneider, Florian Dirk; Brose, Ulrich

    2013-01-01

    The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator diversity on lower trophic level prey is often driven by the increasing chance of including the most influential species. Furthermore, intraguild predation can cause trophic cascades with net positive effects on basal prey. As a consequence, the effects of losing a predator species appear to be idiosyncratic and it becomes unpredictable how the community's net effect on lower trophic levels changes when species number is declining. We performed a full factorial microcosm experiment with litter layer arthropods to measure the effects of predator diversity and context-dependent identity effects on a detritivore population and microbial biomass. We show that major parts of the observed diversity effect can be assigned to the increasing likelihood of including the most influential predator. Further, the presence of a second predator feeding on the first predator dampens this dominant effect. Including this intraguild predator on top of the first predator is more likely with increasing predator diversity as well. Thus, the overall pattern can be explained by a second identity effect, which is nested into the first. When losing a predator from the community, the response of the lower trophic level is highly dependent on the remaining predator species. We mechanistically explain the net effects of the predator community on lower trophic levels by nested effects of predator identities. These identity effects become predictable when taking the species' body masses into account. This provides a new mechanistic perspective describing ecosystem functioning as a consequence of species composition and yields an understanding beyond simple effects of biodiversity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  2. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    USGS Publications Warehouse

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.

  3. The effects of predator odors in mammalian prey species: a review of field and laboratory studies.

    PubMed

    Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S

    2005-01-01

    Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.

  4. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism.

    PubMed

    Rudolf, Volker H W

    2008-06-01

    Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.

  5. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges [A New, Quasi-stationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less

  6. Evolution of male coloration during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi).

    PubMed

    Martin, Ryan A; Riesch, Rüdiger; Heinen-Kay, Justa L; Langerhans, R Brian

    2014-02-01

    Sexual signal evolution can be complex because multiple factors influence the production, transmission, and reception of sexual signals, as well as receivers' responses to them. To grasp the relative importance of these factors in generating signal diversity, we must simultaneously investigate multiple selective agents and signaling traits within a natural system. We use the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to test the effects of resource availability, male body size and other life-history traits, key aspects of the transmission environment, sex ratio, and predation risk on variation in multiple male color traits. Consistent with previous work examining other traits in this system, several color traits have repeatedly diverged between predation regimes, exhibiting greater elaboration in the absence of predators. However, other factors proved influential as well, with variation in resource levels, body size, relative testes size, and background water color being especially important for several color traits. For one prominent signaling trait, orange dorsal fins, we further confirmed a genetic basis underlying population differences using a laboratory common-garden experiment. We illustrate a promising approach for gaining a detailed understanding of the many contributing factors in the evolution of multivariate sexual signals. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. The adaptation of generalist predators' diet in a multi-prey context: insights from new functional responses.

    PubMed

    Baudrot, Virgile; Perasso, Antoine; Fritsch, Clémentine; Giraudoux, Patrick; Raoul, Francis

    2016-07-01

    The ability for a generalist consumer to adapt its foraging strategy (the multi-species functional response, MSFR) is a milestone in ecology as it contributes to the structure of food webs. The trophic interaction between a generalist predator, as the red fox or the barn owl, and its prey community, mainly composed of small mammals, has been empirically and theoretically widely studied. However, the extent to which these predators adapt their diet according to both multi-annual changes in multiple prey species availability (frequency dependence) and the variation of the total prey density (density dependence) is unexplored.We provide a new general model of MSFR disentangling changes in prey preference according to variation of prey frequency (switching) and of total prey density (we propose the new concept of "rank switching"). We apply these models to two large data sets of red fox and barn owl foraging. We show that both frequency-dependent and density-dependent switching are critical properties of these two systems, suggesting that barn owl and red fox have an accurate image of the prey community in terms of frequency and absolute density. Moreover, we show that negative switching, which can lead to prey instability, is a strong property of the two systems. © 2016 by the Ecological Society of America.

  8. Declining ecosystem health and the dilution effect

    PubMed Central

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-01-01

    The “dilution effect” implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may “dilute” infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003–2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm’s owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm’s owl decline in 1980–2013 may have contributed to higher PUUV infection rates in bank voles in 2003–2013 compared to 1979–1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk. PMID:27499001

  9. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges [A New, Quasi-stationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges

    DOE PAGES

    Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.; ...

    2018-03-27

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less

  10. No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates.

    PubMed

    Simkins, Richard M; Belk, Mark C

    2017-08-01

    Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.

  11. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  12. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour

    PubMed Central

    Jones, Katherine A.; Godin, Jean-Guy J.

    2010-01-01

    Response delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation–predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata). Individual focal fish were subjected to a standardized attack by a robotic fish predator while foraging, and separately given two repeated trials of exploration of a novel environment. We found a strong positive correlation between exploration and time taken to respond to the predator model. Fish that were fast to explore the novel environment were slower to respond to the predator. Our study therefore provides some of the first experimental evidence for a link between exploration behaviour and predator-escape behaviour. We suggest that different behavioural types may differ in how they partition their attention between foraging and anti-predator vigilance. PMID:19864291

  13. Olfactory predator recognition in predator-naïve gray mouse lemurs (Microcebus murinus).

    PubMed

    Sündermann, Dina; Scheumann, Marina; Zimmermann, Elke

    2008-05-01

    Olfactory cues of predators, such as feces, are known to elicit antipredator responses in animals (e.g., avoidance, activity). To date, however, there is little information on olfactory predator recognition in primates. We tested whether the odor of feces of different predator categories (historical Malagasy predators and introduced predators) and of Malagasy nonpredators (control) induces antipredator behavior in captive born, predator-naïve gray mouse lemurs. In an olfactory predator experiment a mouse lemur was exposed to a particular odor, fixed at a preferred location, where the animal was trained to get a reward. The behavior of the mouse lemur toward the respective stimulus category was videotaped and quantified. Results showed that mouse lemurs avoided the place of odor presentation when the odor belonged to a predator. They reacted with a significantly enhanced activity when exposed to odors of carnivores compared to those of nonpredatory controls. These findings are in favor of a genetic predisposition of olfactory predator recognition that might be based on the perception of metabolites from meat digestion. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  14. Personality Assessment Inventory scores as predictors of misconduct among sex offenders civilly committed as sexually violent predators.

    PubMed

    Boccaccini, Marcus T; Rufino, Katrina A; Jackson, Rebecca L; Murrie, Daniel C

    2013-12-01

    We examined the usefulness of scores on the Personality Assessment Inventory (PAI; Morey, 1991) in predicting treatment program violations among 76 sexual offenders civilly committed as sexually violent predators. Scores on the Borderline Features scale (area under the curve [AUC] = .69, p = .005) and Negative Relationships subscale (BOR-N: AUC = .71, p < .001) were the strongest predictors of misconduct, outperforming scores on scales designed to predict poor treatment amenability and antisocial behavior. Incremental validity analyses indicated that BOR scores made a significant contribution to the prediction of misconduct after controlling for scores on measures of overall self-reported distress (e.g., Mean Clinical Elevation, Negative Impression), which were also predictive of program violations. Overall, our findings point to the potential utility of integrating components of treatment for borderline personality disorder into sex offender treatment. (c) 2013 APA, all rights reserved.

  15. No complexity–stability relationship in empirical ecosystems

    PubMed Central

    Jacquet, Claire; Moritz, Charlotte; Morissette, Lyne; Legagneux, Pierre; Massol, François; Archambault, Philippe; Gravel, Dominique

    2016-01-01

    Understanding the mechanisms responsible for stability and persistence of ecosystems is one of the greatest challenges in ecology. Robert May showed that, contrary to intuition, complex randomly built ecosystems are less likely to be stable than simpler ones. Few attempts have been tried to test May's prediction empirically, and we still ignore what is the actual complexity–stability relationship in natural ecosystems. Here we perform a stability analysis of 116 quantitative food webs sampled worldwide. We find that classic descriptors of complexity (species richness, connectance and interaction strength) are not associated with stability in empirical food webs. Further analysis reveals that a correlation between the effects of predators on prey and those of prey on predators, combined with a high frequency of weak interactions, stabilize food web dynamics relative to the random expectation. We conclude that empirical food webs have several non-random properties contributing to the absence of a complexity–stability relationship. PMID:27553393

  16. Preliminary results on predation of gypsy moth pupae during a period of latency in Slovakia

    Treesearch

    Marek Turcani; Andrew M. Liebhold; Michael McManus; J& #250; lius Novotn& #253

    2003-01-01

    Predation of gypsy moth pupae was studied from 2000 -2003 in Slovakia. Predation on artificially reared pupae was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. The role of pupal predation in gypsy moth population dynamics was also investigated. The relative importance of predation of...

  17. The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.

    PubMed

    Michalko, Radek; Pekár, Stano

    2017-03-01

    Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.

  18. Predator personality and prey behavioural predictability jointly determine foraging performance.

    PubMed

    Chang, Chia-Chen; Teo, Huey Yee; Norma-Rashid, Y; Li, Daiqin

    2017-01-17

    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions.

  19. Predator personality and prey behavioural predictability jointly determine foraging performance

    PubMed Central

    Chang, Chia-chen; Teo, Huey Yee; Norma-Rashid, Y.; Li, Daiqin

    2017-01-01

    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions. PMID:28094288

  20. A minimal model of predator-swarm interactions.

    PubMed

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  1. Get Involved: Smithsonian Marine Station (SMS) at Fort Pierce

    Science.gov Websites

    Research Online Resources Get Involved Events Calendar NMNH Home Friends of SMS Volunteering Job contributions under Section 170(c). Volunteering Your Time and Talents! We have ongoing volunteer opportunities

  2. Evaluation of Virginia's first heated bridge.

    DOT National Transportation Integrated Search

    2000-12-01

    This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...

  3. Biocontrol in an impulsive predator-prey model.

    PubMed

    Terry, Alan J

    2014-10-01

    We study a model for biological pest control (or "biocontrol") in which a pest population is controlled by a program of periodic releases of a fixed yield of predators that prey on the pest. Releases are represented as impulsive increases in the predator population. Between releases, predator-pest dynamics evolve according to a predator-prey model with some fairly general properties: the pest population grows logistically in the absence of predation; the predator functional response is either of Beddington-DeAngelis type or Holling type II; the predator per capita birth rate is bounded above by a constant multiple of the predator functional response; and the predator per capita death rate is allowed to be decreasing in the predator functional response and increasing in the predator population, though the special case in which it is constant is permitted too. We prove that, when the predator functional response is of Beddington-DeAngelis type and the predators are not sufficiently voracious, then the biocontrol program will fail to reduce the pest population below a particular economic threshold, regardless of the frequency or yield of the releases. We prove also that our model possesses a pest-eradication solution, which is both locally and globally stable provided that predators are sufficiently voracious and that releases occur sufficiently often. We establish, curiously, that the pest-eradication solution can be locally stable whilst not being globally stable, the upshot of which is that, if we delay a biocontrol response to a new pest invasion, then this can change the outcome of the response from pest eradication to pest persistence. Finally, we state a number of specific examples for our model, and, for one of these examples, we corroborate parts of our analysis by numerical simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Predator-induced changes of female mating preferences: innate and experiential effects

    PubMed Central

    2011-01-01

    Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. PMID:21726456

  5. Behavioral responses of native prey to disparate predators: naiveté and predator recognition.

    PubMed

    Anson, Jennifer R; Dickman, Chris R

    2013-02-01

    It is widely accepted that predator recognition and avoidance are important behaviors in allowing prey to mitigate the impacts of their predators. However, while prey species generally develop anti-predator behaviors through coevolution with predators, they sometimes show accelerated adoption of these behaviors under strong selection pressure from novel species. We used a field manipulation experiment to gauge the ability of the common ringtail possum (Pseudocheirus peregrinus), a semi-arboreal Australian marsupial, to recognize and respond to olfactory cues of different predator archetypes. We predicted that ringtails would display stronger anti-predator behaviors to cues of the invasive European red fox (Vulpes vulpes) in areas where fox impacts had been greatest, and to cues of the native lace monitor (Varanus varius) in areas of sympatry compared with allopatry. We found that ringtails fled quickly and were more alert when exposed to the fecal odors of both predators compared to neutral and pungent control odors, confirming that predator odors are recognized and avoided. However, these aversive responses were similar irrespective of predator presence or level of impact. These results suggest that selection pressure from the fox has been sufficient for ringtails to develop anti-predator behaviors over the few generations since foxes have become established. In contrast, we speculate that aversive responses by ringtails to the lace monitor in areas where this predator is absent reflect recent coexistence of the two species. We conclude that rapid evolution of anti-predator behaviors may occur when selection is strong. The maintenance of these behaviors should allow re-establishment of predator-prey relationships if the interactants regain sympatry via range shifts or management actions to reintroduce them to their former ranges.

  6. Landscape-moderated bird nest predation in hedges and forest edges

    NASA Astrophysics Data System (ADS)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  7. Interspecies conflict affects RNA expression.

    PubMed

    Whitworth, David E

    2018-05-01

    Predation is an extreme form of competition between bacteria, involving the secretion of antimicrobial substances by predators, often packaged within outer membrane vesicles (OMVs). Recent studies into the Myxococcus xanthus/Escherichia coli predator/prey relationship have illuminated transcriptional changes during predation, identifying likely targets of predatory attack in the prey and nutrient assimilation strategies of the predator. Abundant non-coding RNAs can be observed in the predator and prey transcriptomes, with evidence of predation-dependent regulation of RNA levels. Given the observed secretion of regulatory RNAs within OMVs by bacteria, it will next be exciting to test whether the intercellular trafficking of regulatory RNAs is employed by predator and/or prey in their survival struggles.

  8. The Use of Protein Markers to Pinpoint Predation Events

    USDA-ARS?s Scientific Manuscript database

    Identifying the feeding choices and amount of prey consumed by generalist predators is difficult. Often the only evidence of arthropod predation is in the stomach contents of predators. Currently, the state-of-the-art predator stomach content assays include prey-specific enzyme-linked immunosorbent...

  9. Neuroendocrine changes upon exposure to predator odors.

    PubMed

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Quantifying predator dependence in the functional response of generalist predators.

    PubMed

    Novak, Mark; Wolf, Christopher; Coblentz, Kyle E; Shepard, Isaac D

    2017-06-01

    A long-standing debate concerns how functional responses are best described. Theory suggests that ratio dependence is consistent with many food web patterns left unexplained by the simplest prey-dependent models. However, for logistical reasons, ratio dependence and predator dependence more generally have seen infrequent empirical evaluation and then only so in specialist predators, which are rare in nature. Here we develop an approach to simultaneously estimate the prey-specific attack rates and predator-specific interference (facilitation) rates of predators interacting with arbitrary numbers of prey and predator species in the field. We apply the approach to surveys and experiments involving two intertidal whelks and their full suite of potential prey. Our study provides strong evidence for predator dependence that is poorly described by the ratio dependent model over manipulated and natural ranges of species abundances. It also indicates how, for generalist predators, even the qualitative nature of predator dependence can be prey-specific. © 2017 John Wiley & Sons Ltd/CNRS.

  11. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    PubMed

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  12. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    PubMed Central

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  13. Habitat selection responses of parents to offspring predation risk: An experimental test

    USGS Publications Warehouse

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  14. Evolution of sprint speed in African savannah herbivores in relation to predation.

    PubMed

    Bro-Jørgensen, Jakob

    2013-11-01

    Predator-prey arms races are widely speculated to underlie fast speed in terrestrial mammals. However, due to lack of empirical testing, both the specificity of any evolutionary coupling between particular predator and prey species, and the relevance of alternative food-based hypotheses of speed evolution, remain obscure. Here I examine the ecological links between the sprint speed of African savannah herbivores, their vulnerability to predators, and their diet. I show that sprint speed is strongly predicted by the vulnerability of prey to their main predators; however, the direction of the link depends on the hunting style of the predator. Speed increases with vulnerability to pursuit predators, whereas vulnerability to ambush predators is associated with particularly slow speed. These findings suggest that differential vulnerability to specific predators can indeed drive interspecific variation in speed within prey communities, but that predator hunting style influences the intensity and consistency with which selection on speed is coupled between particular species. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. How predation shapes the social interaction rules of shoaling fish

    PubMed Central

    Rosén, Emil; Ioannou, Christos C.; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W.; Kolm, Niclas

    2017-01-01

    Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. PMID:28855361

  16. Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass.

    PubMed

    Wilby, Andrew; Orwin, Kate H

    2013-08-01

    Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.

  17. Social cichlid fish change behaviour in response to a visual predator stimulus, but not the odour of damaged conspecifics.

    PubMed

    O'Connor, Constance M; Reddon, Adam R; Odetunde, Aderinsola; Jindal, Shagun; Balshine, Sigal

    2015-12-01

    Predation is one of the primary drivers of fitness for prey species. Therefore, there should be strong selection for accurate assessment of predation risk, and whenever possible, individuals should use all available information to fine-tune their response to the current threat of predation. Here, we used a controlled laboratory experiment to assess the responses of individual Neolamprologus pulcher, a social cichlid fish, to a live predator stimulus, to the odour of damaged conspecifics, or to both indicators of predation risk combined. We found that fish in the presence of the visual predator stimulus showed typical antipredator behaviour. Namely, these fish decreased activity and exploration, spent more time seeking shelter, and more time near conspecifics. Surprisingly, there was no effect of the chemical cue alone, and fish showed a reduced response to the combination of the visual predator stimulus and the odour of damaged conspecifics relative to the visual predator stimulus alone. These results demonstrate that N. pulcher adjust their anti-predator behaviour to the information available about current predation risk, and we suggest a possible role for the use of social information in the assessment of predation risk in a cooperatively breeding fish. Copyright © 2015. Published by Elsevier B.V.

  18. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator.

    PubMed

    Romano, Donato; Benelli, Giovanni; Stefanini, Cesare

    2017-10-09

    Escape and surveillance responses to predators are lateralized in several vertebrate species. However, little is known on the laterality of escapes and predator surveillance in arthropods. In this study, we investigated the lateralization of escape and surveillance responses in young instars and adults of Locusta migratoria during biomimetic interactions with a robot-predator inspired to the Guinea fowl, Numida meleagris. Results showed individual-level lateralization in the jumping escape of locusts exposed to the robot-predator attack. The laterality of this response was higher in L. migratoria adults over young instars. Furthermore, population-level lateralization of predator surveillance was found testing both L. migratoria adults and young instars; locusts used the right compound eye to oversee the robot-predator. Right-biased individuals were more stationary over left-biased ones during surveillance of the robot-predator. Individual-level lateralization could avoid predictability during the jumping escape. Population-level lateralization may improve coordination in the swarm during specific group tasks such as predator surveillance. To the best of our knowledge, this is the first report of lateralized predator-prey interactions in insects. Our findings outline the possibility of using biomimetic robots to study predator-prey interaction, avoiding the use of real predators, thus achieving standardized experimental conditions to investigate complex and flexible behaviours.

  19. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles

    PubMed Central

    Middlemis Maher, Jessica; Werner, Earl E.; Denver, Robert J.

    2013-01-01

    Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes. PMID:23466985

  20. A meta-analysis of predation risk effects on pollinator behaviour.

    PubMed

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  1. Behavioural responses of feral and domestic guppies (Poecilia reticulata) to predators and their cues.

    PubMed

    Swaney, William T; Cabrera-Álvarez, María J; Reader, Simon M

    2015-09-01

    Predation is an important factor during adaptation to novel environments, and the feralisation of introduced domestic species often involves responding appropriately to allopatric predators despite a background of domestication and inbreeding. Twenty years ago, domestic guppies were introduced to a semi-natural environment at Burgers' Zoo in the Netherlands, where they have since been exposed to avian predation. We compared predation-linked behaviours in this feral population and in domestic guppies akin to the original founders. We found that both populations responded to a novel predator and to conspecific alarm cues. However, shoaling, an important anti-predator behaviour, was higher among feral guppies both at baseline and when exposed to the novel predator. We did not observe a linked suite of anti-predator behaviours across shoaling, predator inspection, alarm substance sensitivity and boldness, suggesting that these responses may be decoupled from one another depending on local predation regimes. As we compared two populations, we cannot identify the causal factors determining population differences, however, our results do suggest that shoaling is either a particularly consequential anti-predator adaptation or the most labile of the behaviours we tested. Finally, the behavioural adaptability of domestic guppies may help to explain their success as an invasive species. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Crying tapir: the functionality of errors and accuracy in predator recognition in two neotropical high-canopy primates.

    PubMed

    Mourthé, Ítalo; Barnett, Adrian A

    2014-01-01

    Predation is often considered to be a prime driver in primate evolution, but, as predation is rarely observed in nature, little is known of primate antipredator responses. Time-limited primates should be highly discerning when responding to predators, since time spent in vigilance and avoidance behaviour may supplant other activities. We present data from two independent studies describing and quantifying the frequency, nature and duration of predator-linked behaviours in 2 high-canopy primates, Ateles belzebuth and Cacajao ouakary. We introduce the concept of 'pseudopredators' (harmless species whose appearance is sufficiently similar to that of predators to elicit antipredator responses) and predict that changes in behaviour should increase with risk posed by a perceived predator. We studied primate group encounters with non-primate vertebrates across 14 (Ateles) and 19 (Cacajao) months in 2 undisturbed Amazonian forests. Although preliminary, data on both primates revealed that they distinguished the potential predation capacities of other species, as predicted. They appeared to differentiate predators from non-predators and distinguished when potential predators were not an immediate threat, although they reacted erroneously to pseudopredators, on average in about 20% of the responses given toward other vertebrates. Reacting to pseudopredators would be interesting since, in predation, one error can be fatal to the prey. © 2015 S. Karger AG, Basel.

  3. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  4. The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).

    PubMed

    Nachman, Gösta

    2006-01-01

    The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.

  5. Infection reduces anti-predator behaviors in house finches

    PubMed Central

    Adelman, James S.; Mayer, Corinne; Hawley, Dana M.

    2017-01-01

    Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite’s life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches (Haemorhous mexicanus). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper’s Hawk (Accipiter cooperii)) or control object (a vase or a stuffed, mounted mallard duck (Anas platyrhynchos)), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating. PMID:29242677

  6. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves.

    PubMed

    Canter, Erin J; Cuellar-Gempeler, Catalina; Pastore, Abigail I; Miller, Thomas E; Mason, Olivia U

    2018-03-01

    The importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey. Using this system, we sought to determine whether different predators target distinct microorganisms, how interactions among protozoans affect resource (microorganism) use, and how predator diversity affects prey community diversity. In particular, we endeavored to determine if protozoa followed known ecological patterns such as keystone predation or generalist predation. For these experiments, replicate inquiline microbial communities were maintained for seven days with five protozoan species. Microbial community structure was determined by 16S rRNA gene amplicon sequencing (iTag) and analysis. Compared to the control (no protozoa), two ciliates followed patterns of keystone predation by increasing microbial evenness. In pairwise competition treatments with a generalist flagellate, prey communities resembled the microbial communities of the respective keystone predator in monoculture. The relative abundance of the most common bacterial Operational Taxonomic Unit (OTU) in our system decreased compared to the control in the presence of these ciliates. This OTU was 98% similar to a known chitin degrader and nitrate reducer, important functions for the microbial community and the plant host. Collectively, the data demonstrated that predator identity had a greater effect on prey diversity and composition than overall predator diversity. © 2018 by the Ecological Society of America.

  7. Infection reduces anti-predator behaviors in house finches.

    PubMed

    Adelman, James S; Mayer, Corinne; Hawley, Dana M

    2017-04-01

    Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite's life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches ( Haemorhous mexicanus ). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper's Hawk ( Accipiter cooperii )) or control object (a vase or a stuffed, mounted mallard duck ( Anas platyrhynchos )), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating.

  8. Turbidity interferes with foraging success of visual but not chemosensory predators.

    PubMed

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  9. Taphonomy for taxonomists: Implications of predation in small mammal studies

    NASA Astrophysics Data System (ADS)

    Fernández-Jalvo, Yolanda; Andrews, Peter; Denys, Christiane; Sesé, Carmen; Stoetzel, Emmanuelle; Marin-Monfort, Dolores; Pesquero, Dolores

    2016-05-01

    Predation is one of the most recurrent sources of bone accumulations. The influence of predation is widely studied for large mammal sites where humans, acting as predators, produce bone accumulations similar to carnivore accumulations. Similarly, small mammal fossil sites are mainly occupation levels of predators (nests or dens). In both cases, investigations of past events can be compared with present day equivalents or proxies. Chewing marks are sometimes present on large mammal predator accumulations, but digestion traits are the most direct indication of predation, and evidence for this is always present in small mammal (prey) fossil assemblages. Digestion grades and frequency indicates predator type and this is well established since the publication of Andrews (1990). The identification of the predator provides invaluable information for accurate interpretation of the palaeoenvironment. Traditionally, palaeoenvironmental interpretations are obtained from the taxonomic species identified in the site, but rather than providing direct interpretations of the surrounding palaeoenvironment, this procedure actually describes the dietary preferences of the predators and the type of occupation (nests, marking territory, dens, etc). This paper reviews the identification of traits produced by predators on arvicolins, murins and soricids using a method that may be used equally by taxonomists and taphonomists. It aims to provide the "tools" for taxonomists to identify the predator based on their methodology, which is examining the occlusal surfaces of teeth rather than their lateral aspects. This will greatly benefit both the work of taphonomists and taxonomists to recognize signs of predation and the improvement of subsequent palaeoecological interpretations of past organisms and sites by identifying both the prey and the predator.

  10. Wanted dead or alive: scavenging versus predation by three insect predators

    USDA-ARS?s Scientific Manuscript database

    Many generalist insect predators may engage in facultative scavenging. If an apparent predator frequently consumes dead prey instead of live prey then the biological control services provided by that predator may be overestimated. The use of unique protein markers on live and dead prey of the same s...

  11. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  12. Phenotypically plastic neophobia: a response to variable predation risk.

    PubMed

    Brown, Grant E; Ferrari, Maud C O; Elvidge, Chris K; Ramnarine, Indar; Chivers, Douglas P

    2013-04-07

    Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions.

  13. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  14. Balancing past and present: how experience influences boldness over time in Eurasian perch

    PubMed Central

    Magnhagen, Carin

    2017-01-01

    Abstract Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels. PMID:29491973

  15. Balancing past and present: how experience influences boldness over time in Eurasian perch.

    PubMed

    Hellström, Gustav; Magnhagen, Carin

    2017-04-01

    Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels.

  16. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  17. Predator–prey interactions mediated by prey personality and predator hunting mode

    PubMed Central

    Belgrad, Benjamin A.; Griffen, Blaine D.

    2016-01-01

    Predator–prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator–prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau. We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator–prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. PMID:27075257

  18. Density-dependent adjustment of inducible defenses.

    PubMed

    Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C; Laforsch, Christian; Kopp, Michael

    2015-08-03

    Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators' densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems.

  19. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    PubMed Central

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  20. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Partitioning the non‑consumptive effects of predators on preywith complex life histories

    USGS Publications Warehouse

    Davenport, Jon M.; Hossack, Blake R.; Lowe, Winsor H.

    2014-01-01

    Non-consumptive effects (NCEs) of predators on prey can be as strong as consumptive effects (CEs) and may be driven by numerous mechanisms, including predator characteristics. Previous work has highlighted the importance of predator characteristics in predicting NCEs, but has not addressed how complex life histories of prey could mediate predator NCEs. We conducted a meta-analysis to compare the effects of predator gape limitation (gape limited or not) and hunting mode (active or sit-and-pursue) on the activity, larval period, and size at metamorphosis of larval aquatic amphibians and invertebrates. Larval prey tended to reduce their activity and require more time to reach metamorphosis in the presence of all predator functional groups, but the responses did not differ from zero. Prey metamorphosed at smaller size in response to non-gape-limited, active predators, but counter to expectations, prey metamorphosed larger when confronted by non-gape-limited, sit-and-pursue predators. These results indicate NCEs on larval prey life history can be strongly influenced by predator functional characteristics. More broadly, our results suggest that understanding predator NCEs would benefit from greater consideration of how prey life history attributes mediate population and community-level outcomes.

  2. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  3. Defensive responses of cuttlefish to different teleost predators.

    PubMed

    Staudinger, Michelle D; Buresch, Kendra C; Mäthger, Lydia M; Fry, Charlie; McAnulty, Sarah; Ulmer, Kimberly M; Hanlon, Roger T

    2013-12-01

    We evaluated cuttlefish (Sepia officinalis) responses to three teleost predators: bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus), and black seabass (Centropristis striata). We hypothesized that the distinct body shapes, swimming behaviors, and predation tactics exhibited by the three fishes would elicit markedly different antipredator responses by cuttlefish. Over the course of 25 predator-prey behavioral trials, 3 primary and 15 secondary defense behaviors of cuttlefish were shown to predators. In contrast, secondary defenses were not shown during control trials in which predators were absent. With seabass-a benthic, sit-and-pursue predator-cuttlefish used flight and spent more time swimming in the water column than with other predators. With bluefish-an active, pelagic searching predator-cuttlefish remained closely associated with the substrate and relied more on cryptic behaviors. Startle (deimatic) displays were the most frequent secondary defense shown to seabass and bluefish, particularly the Dark eye ring and Deimatic spot displays. We were unable to evaluate secondary defenses by cuttlefish to flounder-a lie-and-wait predator-because flounder did not pursue cuttlefish or make attacks. Nonetheless, cuttlefish used primary defense during flounder trials, alternating between cryptic still and moving behaviors. Overall, our results suggest that cuttlefish may vary their behavior in the presence of different teleost predators: cryptic behaviors may be more important in the presence of active searching predators (e.g., bluefish), while conspicuous movements such as swimming in the water column and startle displays may be more prevalent with relatively sedentary, bottom-associated predators (e.g., seabass).

  4. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    PubMed

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  5. Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?

    PubMed

    Duffield, Callum; Ioannou, Christos C

    2017-01-01

    Marginal predation, also known as the edge effect, occurs when aggregations of prey are preferentially targeted on their periphery by predators and has long been established in many taxa. Two main processes have been used to explain this phenomenon, the confusion effect and the encounter rate between predators and prey group edges. However, it is unknown at what size a prey group needs to be before marginal predation is detectable and to what extent each mechanism drives the effect. We conducted 2 experiments using groups of virtual prey being preyed upon by 3-spined sticklebacks ( Gasterosteus aculeatus ) to address these questions. In Experiment 1, we show that group sizes do not need to be large for marginal predation to occur, with this being detectable in groups of 16 or more. In Experiment 2, we find that encounter rate is a more likely explanation for marginal predation than the confusion effect in this system. We find that while confusion does affect predatory behaviors (whether or not predators make an attack), it does not affect marginal predation. Our results suggest that marginal predation is a more common phenomenon than originally thought as it also applies to relatively small groups. Similarly, as marginal predation does not need the confusion effect to occur, it may occur in a wider range of predator-prey species pairings, for example those where the predators search for prey using nonvisual sensory modalities.

  6. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.

    PubMed

    Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias

    2017-06-01

    The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to conventionally managed fields. Our study documents that predation by generalist predator communities on aphid pests increases with pest numbers independently of their generally widespread consumption of alternative, non-pest prey. Therefore, conservation strategies in agricultural fields could promote biological control services by promoting high levels of alternative non-pest prey for generalist predator communities. © 2017 by the Ecological Society of America.

  7. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.

    PubMed

    Aukema, Brian H; Raffa, Kenneth F

    2002-12-01

    We used a laboratory assay to partition the effects of predation and intraspecific competition on the establishment, mating success, and brood development of an endophytic herbivore. We selected a system in which the same predator feeds both exophytically and endophytically on the same prey, to evaluate the role of herbivore feeding guild on predator numerical and functional responses. The bark beetle, Ips pini (Coleoptera: Scolytidae) reproduces within the stems of conifers. Males establish mating chambers under the bark, produce aggregation pheromones, and are subsequently joined by females that construct ovipositional galleries. Thanasimus dubius (Coleoptera: Cleridae) adults prey on adults alighting on the bark surface. T. dubius females then oviposit at the bark beetles' entrance sites, and their larvae prey on developing bark beetle larvae within the tree. We imposed a controlled 3×3 factorial design of prey and predator adult densities on red pine logs. Both predation and competition decreased I. pini reproduction. However, the per capita effect of predation was greater than competition, with one adult T. dubius reducing herbivore reproduction by an equivalent amount as four to five competing males and their harems. Increased densities of adult T. dubius on the plant surface reduced the number of prey captured per predator. Total predation on adults and larvae was similar. However, adult T. dubius on the plant surface ate approximately 18-35 times more I. pini per day than did their endophytic larvae. Within the plant, cannibalism among T. dubius, low herbivore densities, limited feeding times, and presumably the complex gallery architecture of I. pini reduced the number of predator progeny. The progeny of I. pini showed even sex ratios in the absence of predators, but were female biased when predators were present. We quantified a relatively narrow set of predator and prey densities that can generate replacement rates greater than one for this predator that specializes on endophytic herbivores. We attribute some of the benefits of an endophytic lifestyle not only to escape from generalist predators, but also to relatively low functional and numerical responses of adapted predators.

  8. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    PubMed

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering predation can have a high impact on recruitment, predation events are very difficult to observe, and predator species are difficult to identify visually from nest remains, molecular approaches that reduce the need to observe or handle animals offer an additional tool to better understand predator-prey dynamics at nesting sites.

  9. Green ergonomics: challenges and opportunities.

    PubMed

    Hanson, Margaret A

    2013-01-01

    Addressing the causes and consequences of environmental degradation presents significant challenges for humankind. This paper considers what ergonomics/human factors (E/HF) professionals can contribute to understanding and tackling some of the issues that arise through the movement towards a more environmentally sustainable economy. These issues are considered in relation to work in green industries (specifically, sustainable energy production, recycling and organic food production), and there is a need to ensure that these jobs are safe and healthy; the design of products and systems that are 'environmentally friendly' to facilitate their acceptability and use and how E/HF professionals can contribute to understanding and promoting behavioural change relating to environmental choices. The activities of some international organisations in this area are identified and the potential for E/HF involvement is considered. The implications for the E/HF profession are discussed. This paper considers how ergonomics/human factors professionals can contribute to the movement towards more sustainable and 'environmentally friendly' design and work. Potential challenges and opportunities are discussed in relation to jobs in green industries, products and systems and behaviour change.

  10. Adopt a Care Home: An intergenerational initiative bringing children into care homes.

    PubMed

    Di Bona, Laura; Kennedy, Sheila; Mountain, Gail

    2017-01-01

    Dementia friendly communities, in which people living with dementia actively participate and those around them are educated about dementia, may improve the wellbeing of those living with dementia and reduce the associated stigma. The Adopt a Care Home scheme aims to contribute towards this by teaching schoolchildren about dementia and linking them with people living with dementia in a local care home. Forty-one children, 10 people living with dementia and 8 school/care home staff participated in a mixed methods (questionnaires, observations, interviews and focus groups) evaluation to assess the scheme's feasibility and impact. Data were analysed statistically and thematically. The scheme was successfully implemented, increased children's dementia awareness and appeared enjoyable for most participants. Findings, therefore, demonstrate the scheme's potential to contribute towards dementia friendly communities by increasing children's knowledge and understanding of dementia and engaging people living with dementia in an enjoyable activity, increasing their social inclusion.

  11. The effect of life-history variation on the population size structure of a rocky intertidal snail ( Littorina sitkana)

    NASA Astrophysics Data System (ADS)

    Rochette, Rémy; Dunmall, Karen; Dill, Lawrence M.

    2003-03-01

    On wave-sheltered shores of the northeastern Pacific, the population size structure of Littorina sitkana varies with intertidal height, as larger snails are mostly found only in the upper intertidal. This pattern has been attributed to high predation rates by crabs (and perhaps fish) on large snails inhabiting low-intertidal areas; i.e., large snails are presumed to be rare there simply because predators kill them. In this study we investigate the hypothesis that predation contributes to the shore-level size gradient displayed by L. sitkana by selecting for (or inducing) earlier sexual maturation and reduced somatic growth in low-shore snails relative to high-shore individuals. In the first part of our study, we carried out laboratory dissections, field experiments (mark-release-recapture and caging), and field surveys on a wave-protected shore in Bamfield Inlet, Barkley Sound (British Columbia, Canada). The principal results were: (1) adult survivorship was greater at higher, than at lower, intertidal level, (2) snails displayed a preference for their shore level of origin, (3) immature adults from the high intertidal displayed greater rates of somatic growth relative to immature adults from the low intertidal, and (4) low-shore snails matured at a smaller size than high-shore individuals. In the second part of the study, a large-scale survey showed intra-specific variation in size at sexual maturity (point 4 above) to be relatively consistent over time (winter of 1999 and 2001 for snails from our main study site) and space (13 different sites in winter 2001), although the magnitude of these differences varied greatly from shore to shore. Our results indicate that L. sitkana individuals inhabiting upper and lower parts of their intertidal range allocate resources differently to somatic and gonadal growth, an intra-specific difference that is best interpreted as a response to spatial and size-dependent variation in predation pressure. Taken together, results of this and other recent studies indicate that phenotypic responses to contrasting selection pressures operating in upper- and lower-intertidal areas contribute to the intertidal size gradient of L. sitkana. We believe that greater consideration of evolutionary processes in ecological studies will lead to a more complete understanding of the mechanisms responsible for structuring marine coastal communities.

  12. Effects of functional constraints and opportunism on the functional structure of a vertebrate predator assemblage.

    PubMed

    Farias, Ariel A; Jaksic, Fabian M

    2007-03-01

    1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.

  13. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    PubMed

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  14. Beyond body size: muscle biochemistry and body shape explain ontogenetic variation of anti-predatory behaviour in the lizard Salvator merianae.

    PubMed

    de Barros, Fábio Cury; de Carvalho, José Eduardo; Abe, Augusto Shinya; Kohlsdorf, Tiana

    2016-06-01

    Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes. © 2016. Published by The Company of Biologists Ltd.

  15. Scatter Hoarding of Seeds Confers Survival Advantages and Disadvantages to Large-Seeded Tropical Plants at Different Life Stages

    PubMed Central

    Kuprewicz, Erin K.

    2015-01-01

    Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed survival do exist. PMID:25970832

  16. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf

    USGS Publications Warehouse

    Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra L.; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.

    2014-01-01

    The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187–207 g C m−2 y−1, which are consistent with observed values (47–351 g C m−2 y−1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.

  17. Demography and decline of the Mentasta Caribou Herd, Alaska

    USGS Publications Warehouse

    Jenkins, Kurt J.; Barten, Neil L.

    2005-01-01

    We evaluated population trends in the Mentasta caribou (Rangifer tarandus (L., 1758)) herd in Wrangell a?? St. Elias National Park and Preserve, Alaska, from 1990 to 1997 and determined factors contributing to its decline. We postulated that predation-related mortality of adult females and juveniles was the proximate cause of the decline, and that survival of juvenile caribou reflected interactions with winter severity, calving distribution, timing of births, density of caribou, and physical condition of neonates at birth. The population declined at its greatest rate from 1990 to 1993 (r = a??0.32) and at a lower rate from 1994 to 1997 (r = a??0.09). Recruitment (number of calves/100 females during September) averaged 4/100 during the rapid population decline from 1990 to 1993 and 13/100 from 1994 to 1997. Parturition rate of adult females ranged from 65% to 97%. Survival of adult females and juveniles ranged from 0.77 to 0.86 and from 0.00 to 0.22, respectively. Approximately 43%, 59%, and 79% of all juvenile mortality occurred by 1, 2, and 4 weeks of age, respectively. We confirmed predation-related mortality as the primary proximate cause of population decline, with gray wolves (Canis lupus L., 1758), bears (species of the genus Ursus L., 1758), and other predators accounting for 57%, 38%, and 5%, respectively, of all juvenile mortality, and bears causing disproportionate mortality among 0- to 1-week-old neonates. We supported the hypotheses that timing of birth and habitat conditions at the birth site, particularly mottled snow patterns, affected vulnerability and survival of neonates, and birth mass affected survival of juveniles through summer. We speculate that the population will continue to decline before reaching a low-density equilibrium that is sustained by density-dependent changes in the functional responses of predators.

  18. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf

    NASA Astrophysics Data System (ADS)

    Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.

    2014-03-01

    The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187-207 g C m-2 y-1, which are consistent with observed values (47-351 g C m-2 y-1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.

  19. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian.

    PubMed

    Sievers, Michael; Hale, Robin; Swearer, Stephen E; Parris, Kirsten M

    2018-06-14

    Global declines in amphibian populations are a significant conservation concern, and environmental contamination is likely a contributing driver. Although direct toxicity may be partly responsible, contaminants are often present at sub-lethal concentrations in the wild. Behavioural end-points are becoming an increasingly useful method to estimate the impact of contaminants, particularly if the behavioural responses manifest to affect individual fitness (i.e. survival, growth, or reproduction). In the wild, most animals are affected by multiple stressors, and determining how these interact to affect behaviour is critical for understanding the ecological implications of contaminant exposure. Here, we examined the individual and interactive effect of the heavy metal copper and the insecticide imidacloprid on mortality rates and anti-predator behaviours of spotted marsh frog (Limnodynastes tasmaniensis) tadpoles. This common species frequently occupies and breeds in contaminated stormwater and agricultural wetlands, where copper and imidacloprid are often present. These contaminants may alter behaviour via physiological and neurological pathways, as well as affecting how tadpoles respond to chemical cues. Tadpoles suffered unexpectedly high mortality rates when exposed to imidacloprid concentrations well below published LC50 concentrations. Only unexposed tadpoles significantly avoided predator cues. Copper and imidacloprid reduced swimming speed and distance, and escape responses, while increasing erratic swimming. We observed an interactive effect of imidacloprid and copper on erratic swimming, but in general imidacloprid and copper did not act synergistically. Our results suggest that as contaminants enter waterbodies, tadpoles will suffer considerable direct mortality, reduced foraging capacity, and increased susceptibility to predation. Our results provide the first evidence of imidacloprid affecting amphibian behaviour, and highlight both the adverse effects of copper and imidacloprid, and the importance of exploring the effect of multiple contaminants simultaneously. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Food resource effects on diel movements and body size of cisco in north-temperate lakes.

    PubMed

    Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L

    2013-12-01

    The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.

  1. The Contribution of Hope to the Quality of Life among Aging African Americans: 1980-1992.

    ERIC Educational Resources Information Center

    Adams, Virgil H., III; Jackson, James S.

    2000-01-01

    Examines age differences between 1979-80 and 1992 in the quality of life of African Americans using data from the National Survey of Black Americans and the role of hope in accounting for variance in general well being. Across waves in all age cohorts, family satisfaction and contact with friends were most important in contributing to life…

  2. Quantifying avian predation on fish populations: integrating predator-specific deposition probabilities in tag-recovery studies

    USGS Publications Warehouse

    Hostetter, Nathan J.; Evans, Allen F.; Cramer, Bradley M.; Collis, Ken; Lyons, Donald E.; Roby, Daniel D.

    2015-01-01

    Accurate assessment of specific mortality factors is vital to prioritize recovery actions for threatened and endangered species. For decades, tag recovery methods have been used to estimate fish mortality due to avian predation. Predation probabilities derived from fish tag recoveries on piscivorous waterbird colonies typically reflect minimum estimates of predation due to an unknown and unaccounted-for fraction of tags that are consumed but not deposited on-colony (i.e., deposition probability). We applied an integrated tag recovery modeling approach in a Bayesian context to estimate predation probabilities that accounted for predator-specific tag detection and deposition probabilities in a multiple-predator system. Studies of PIT tag deposition were conducted across three bird species nesting at seven different colonies in the Columbia River basin, USA. Tag deposition probabilities differed significantly among predator species (Caspian ternsHydroprogne caspia: deposition probability = 0.71, 95% credible interval [CRI] = 0.51–0.89; double-crested cormorants Phalacrocorax auritus: 0.51, 95% CRI = 0.34–0.70; California gulls Larus californicus: 0.15, 95% CRI = 0.11–0.21) but showed little variation across trials within a species or across years. Data from a 6-year study (2008–2013) of PIT-tagged juvenile Snake River steelhead Oncorhynchus mykiss (listed as threatened under the Endangered Species Act) indicated that colony-specific predation probabilities ranged from less than 0.01 to 0.17 and varied by predator species, colony location, and year. Integrating the predator-specific deposition probabilities increased the predation probabilities by a factor of approximately 1.4 for Caspian terns, 2.0 for double-crested cormorants, and 6.7 for California gulls compared with traditional minimum predation rate methods, which do not account for deposition probabilities. Results supported previous findings on the high predation impacts from strictly piscivorous waterbirds nesting in the Columbia River estuary (i.e., terns and cormorants), but our findings also revealed greater impacts of a generalist predator species (i.e., California gulls) than were previously documented. Approaches used in this study allow for direct comparisons among multiple fish mortality factors and considerably improve the reliability of tag recovery models for estimating predation probabilities in multiple-predator systems.

  3. Keeping Up with the Joneses: Friends' Perfectionism and Students' Orientation Toward Extrinsic Aspirations.

    PubMed

    Hope, Nora; Koestner, Richard; Holding, Anne; Harvey, Brenda

    2016-12-01

    Kasser and Ryan (1993,1996) have contrasted two types of life values: intrinsic aspirations, which include community contribution, building close relationships, and self-growth, and extrinsic aspirations, which include fame, wealth, and physical beauty. Prioritization of extrinsic relative to intrinsic aspirations has been related cross-sectionally to decreased well-being (Kasser, 2002). However, the influence of close others in the etiology of young adults' prioritization of extrinsic aspirations, and the prospective effects of aspirations on well-being, are not well understood. In a multiple-informant prospective study of 341 university students (mean age = 19.4; 64% Caucasian; 74% female), we examined the influence of friends' and family members' perfectionism on participants' aspirations, and the outcomes of prioritization of extrinsic aspirations. Having friends high in other-oriented perfectionism was significantly positively related to prioritization of extrinsic over intrinsic aspirations. Furthermore, living with friends amplified the effect. Last, prioritization of extrinsic aspirations at T1 was related to decreased subjective well-being and self-concordance for goals 3 months later. The study provides preliminary evidence for a relationship between friends' other-oriented perfectionism and students' orientation toward extrinsic aspirations, as well as negative prospective consequences of students' orientation to extrinsic aspirations. © 2015 Wiley Periodicals, Inc.

  4. Beautiful friendship: Social sharing of emotions improves subjective feelings and activates the neural reward circuitry

    PubMed Central

    Galli, Lisa; Schott, Björn H.; Wold, Andrew; van der Schalk, Job; Manstead, Antony S. R.; Scherer, Klaus; Walter, Henrik

    2015-01-01

    Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment—with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room—they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. PMID:25298009

  5. Pathways to age-friendly communities in diverse urban neighborhoods: Do social capital and social cohesion matter?

    PubMed

    Parekh, Rupal; Maleku, Arati; Fields, Noelle; Adorno, Gail; Schuman, Donna; Felderhoff, Brandi

    2018-07-01

    Using a social capital and social cohesion lens, we reposition the concept of civic engagement among older adults to examine pathways for building age-friendly communities. We analyzed data drawn from a Community-Based Participatory Research study in the Southern U.S. that explored lived experiences of older adults, age 55 and above, who participated in individual interviews (n = 15) and six focus group discussions (n = 45) to examine their perceptions of social identity, social connectedness, and civic engagement geared toward an age-friendly city. Findings indicated that several older adults had access to social networks and socially invested resources, thereby having opportunities for civic engagement and building age-friendly neighborhoods. However, social, cultural, linguistic, and structural barriers were more evident among certain diverse ethnic populations. Marginalized low-income minorities and immigrants, such as Hispanic participants, felt the lack of social cohesion among the larger society limited their ability to give back, thus decreasing their civic engagement activities. In contrast, Caucasian and African-American older adults were able to contribute to the political process through more civic participation activities. We provide implications for examining the role of social capital and social engagement to bolster civic engagement among older adults in building age-friendly communities.

  6. Beautiful friendship: Social sharing of emotions improves subjective feelings and activates the neural reward circuitry.

    PubMed

    Wagner, Ullrich; Galli, Lisa; Schott, Björn H; Wold, Andrew; van der Schalk, Job; Manstead, Antony S R; Scherer, Klaus; Walter, Henrik

    2015-06-01

    Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment-with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room-they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. © The Author (2014). Published by Oxford University Press.

  7. Predators and Prey

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1975-01-01

    Reviews basic concepts of predator-prey interaction, encourages the presentation of the predator's role and describes a model of predator behavior to be used in secondary school or college classes. (LS)

  8. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    PubMed

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Olfactory systems and neural circuits that modulate predator odor fear

    PubMed Central

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685

  10. Olfactory systems and neural circuits that modulate predator odor fear.

    PubMed

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.

  11. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    USGS Publications Warehouse

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  12. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests

    PubMed Central

    Trottier-Paquet, Myriam; Bêty, Joël; Lamarre, Vincent; Lecomte, Nicolas

    2016-01-01

    Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica) defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter “conspicuous behaviour”), as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada) in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs. PMID:27602257

  13. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests.

    PubMed

    Giroux, Marie-Andrée; Trottier-Paquet, Myriam; Bêty, Joël; Lamarre, Vincent; Lecomte, Nicolas

    2016-01-01

    Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica) defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter "conspicuous behaviour"), as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada) in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs.

  14. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  15. Peer influence and context: the interdependence of friendship groups, schoolmates and network density in predicting substance use.

    PubMed

    McGloin, Jean Marie; Sullivan, Christopher J; Thomas, Kyle J

    2014-09-01

    This article focuses on the degree to which friends' influence on substance use is conditioned by the consistency between their behavior and that of schoolmates (individuals enrolled in the same school, but not identified as friends), contributing to the literature on the complexity of interactive social influences during adolescence. Specifically, it hypothesizes that friends' influence will diminish as their norms become less similar to that of schoolmates. The authors also propose that this conditioning relationship is related to the density of the friendship group. This study uses data from the National Longitudinal Survey of Adolescent Health (AddHealth) (n ~ 8,000, 55% female) to examine the interactive relationship between friend and schoolmate influences on adolescent substance use (smoking and drinking). The sample contains students ranging from age 11 to 22 and is 60% White. The findings demonstrate that, as the substance use of the friendship group becomes more dissimilar from schoolmates' substance use, the friendship group's influence on adolescent substance use diminishes. Further, the results demonstrate that this conditioning relationship does not emerge when the friendship group is highly dense.

  16. Rapid habituation by mosquito larvae to predator kairomones.

    PubMed

    Roberts, Derek

    2014-12-01

    Larvae of some species of mosquitoes have been shown to respond to water-borne kairomones from predators by reducing bottom-feeding and replacing it with surface filter-feeding, which uses less movement and is thus less likely to attract a predator. However, if no predator attack takes place, then it would be more efficient to use a risk allocation strategy of habituating their response depending on the predator and the overall risk. The larvae of Culiseta longiareolata Macquart live in temporary rain-filled pools, where they are exposed to a high level of predation. Within one hour, they responded to kairomones from dragonfly or damselfly nymphs, or to the fish Aphanius, by significantly reducing bottom-feeding activity. Continued exposure to the predator kairomones resulted in habituation of their response to damselflies, a slower habituation to fish, but no habituation to dragonflies even after 30 h. In contrast, the larvae of Culex quinquefasciatus Say normally live in highly polluted and thus anaerobic water, where the predation risk will be much lower. They also showed a significant reduction in bottom-feeding after 1 h of exposure to predator kairomones but had completely habituated this response within 6 h of continuous exposure. Some species of mosquito larvae can thus show a very rapid habituation to predator kairomones, while others only habituate slowly depending on the predator and overall predation risk. © 2014 The Society for Vector Ecology.

  17. Evolution of a predator-induced, nonlinear reaction norm.

    PubMed

    Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P

    2017-08-30

    Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.

  18. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size

    PubMed Central

    Guo, Jing; Martín, Pablo R.; Zhang, Chunxia

    2017-01-01

    The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey. PMID:29136660

  19. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    PubMed

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  20. Foraging decisions and behavioural flexibility in trap-building predators: a review.

    PubMed

    Scharf, Inon; Lubin, Yael; Ovadia, Ofer

    2011-08-01

    Foraging theory was first developed to predict the behaviour of widely-foraging animals that actively search for prey. Although the behaviour of sit-and-wait predators often follows predictions derived from foraging theory, the similarity between these two distinct groups of predators is not always obvious. In this review, we compare foraging activities of trap-building predators (mainly pit-building antlions and web-building spiders), a specific group of sit-and-wait predators that construct traps as a foraging device, with those of widely-foraging predators. We refer to modifications of the trap characteristics as analogous to changes in foraging intensity. Our review illustrates that the responses of trap-building and widely-foraging predators to different internal and external factors, such as hunger level, conspecific density and predation threat are quite similar, calling for additional studies of foraging theory using trap-building predators. In each chapter of this review, we summarize the response of trap-building predators to a different factor, while contrasting it with the equivalent response characterizing widely-foraging predators. We provide here evidence that the behaviour of trap-building predators is not stereotypic or fixed as was once commonly accepted, rather it can vary greatly, depending on the individual's internal state and its interactions with external environmental factors. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

Top