Yang, Fuxia; Xu, Jiangchuan
2018-01-01
Low economic profit usually reduces the incentive of producers to operate their wastewater treatment technologies effectively. It is necessary to investigate the performance of environmentally friendly production technologies that reduce wastewater discharges and generate economic outputs simultaneously (EPTWs) in China over the past decade. In this paper, we apply the Malmquist-Luenberger productivity index widely used in the field of economics to evaluate the productivity change of EPTWs for 30 administrative provinces in China during 2003–2015. The pathways of the productivity change are further identified by decomposing the productivity index into two components: technological change and technical efficiency change. The results show that China's environmental productivity index associated with wastewater reduction had undergone a downward trend, and evident spatial disparities are observed among the 30 provincial regions. Moreover, the changes of China's environmental productivity over the whole studied period can mainly be attributed to technological progress, while the technical efficiency component has contributed little, although its annual contributing rate is in an increasing trend. PMID:29789803
Fluorescent Lamp Replacement Study
2017-07-01
friendly products, advances in efficiency, and lower production costs for lamps. The conversion of fluorescent bulbs to LED technology has many benefits ...of 4727 W. An economic analysis was calculated to compare the various lighting technologies that were implemented at ATC and the cost benefits ...the various lighting technologies that were implemented at ATC and the cost benefits of each, a lifecycle comparison was made between the fluorescent
COMPOSITES FROM RECYCLED WOOD AND PLASTICS
The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...
COMPOSITES FROM RECYCLED WOOD AND PLASTICS
The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. wo processing technologies were used to prepare wood-plastic composites: air-laying and melt-...
Environment-friendly drilling operation technology
NASA Astrophysics Data System (ADS)
Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun
2017-01-01
Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.
Biotechnological Processes in Microbial Amylase Production
Arshad, M. K. Md; Lakshmipriya, Thangavel; Hashim, Uda; Chinni, Suresh V.
2017-01-01
Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales. PMID:28280725
Biotechnological Processes in Microbial Amylase Production.
Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V
2017-01-01
Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
Infrared heating as an efficient method for drying foods and agricultural products
USDA-ARS?s Scientific Manuscript database
Because agricultural and food sector demands energy efficient and environmentally friendly drying technologies, the application of infrared (IR) heating for drying has recently been extensively studied. IR drying, as an alternative to current drying technologies, has attractive merits such as unifor...
ERIC Educational Resources Information Center
Villano, Matt
2006-01-01
Technology product procurement can be a daunting task for a college or university--especially a smaller institution--to accomplish alone. Perhaps this is why schools are tackling it by banding together. When it comes to purchasing technology, a little help from friends is the key to economies of scale, which frequently net schools the best…
NASA Astrophysics Data System (ADS)
Chang, Yoon S.; Oh, Chang H.
Nowadays, environmental management becomes a critical business consideration for companies to survive from many regulations and tough business requirements. Most of world-leading companies are now aware that environment friendly technology and management are critical to the sustainable growth of the company. The environment market has seen continuous growth marking 532B in 2000, and 590B in 2004. This growth rate is expected to grow to 700B in 2010. It is not hard to see the environment-friendly efforts in almost all aspects of business operations. Such trends can be easily found in logistics area. Green logistics aims to make environmental friendly decisions throughout a product lifecycle. Therefore for the success of green logistics, it is critical to have real time tracking capability on the product throughout the product lifecycle and smart solution service architecture. In this chapter, we introduce an RFID based green logistics solution and service.
Bienias, Thomas J
2002-10-01
Advances in plastics moulding technology and the use of in-mould decorating are giving medical device manufacturers an opportunity to expand the variety of their products and reduce the cost of the final product. Other industries have tested the waters and found them friendly. The medical device industry could be next.
NASA Astrophysics Data System (ADS)
Murko, Vasily; Hamalainen, Veniamin
2017-11-01
The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.
Evangelisti, Sara; Clift, Roland; Tagliaferri, Carla; Lettieri, Paola
2017-06-01
By means of the life cycle assessment methodology, the purpose of this study is to assess the environmental impact when biomethane from organic waste produced at residential level is used to supply energy to a group of dwellings in the distributed generation paradigm. Three different Combined Heat and Power systems, such as fuel cells, Stirling engine and micro gas turbine, installed at household level are assessed in two different settings: one in Northern Europe (UK) and one in Southern Europe (Italy). Different operating strategies are investigated for each technology. Moreover, marginal electricity production technologies are analysed to assess their influence on the results. This study has demonstrated that the type of bio-methane fed micro-CHP technology employed has a significantly different environmental impact: fuel cells are the most environmentally friendly solution in every category analysed; Stirling engines, although can supply heat to the largest number of dwellings are the least environmentally friendly technology. However, key factors investigated in the model presented in this paper influence the decision making on the type of technology adopted and the operating strategy to be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Defense Systems Modernization and Sustainment Initiative
2014-03-31
research programs focus on sustainable production, sustainable energy, sustainable mobility , and ecologically friendly information technology systems...for Sustainable Mobility (CSM): focused on developing viable technologies for sustainable transportation systems and the support of complex equipment...utilization of mobile devices. The objective of the evaluation was to identify features that the new implementation of LEEDS would require, such as
Gray, S P
1997-01-01
Technology vendors continue to invent new devices, systems and processes to sell to the health care industry. Drugs, instruments and procedures continue to improve and address disease and injury treatment needs. In addition to these direct medical treatment innovations and enhancements, a number of new supporting systems and products have emerged. These support technologies hold significant promise for managers to make day-to-day execution of health care delivery more cost effective and customer friendly.
Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; Carl Houtman; John Klungness
2003-01-01
The biopulping process for treating wood chips prior to mechanical pulping has been scaled up through an extensive development program and has been demonstrated at 50 ton semicommercial scale. Detailed engineering analyses and design studies have been performed for full production-scale mill implementation, and the technology is ready for commercial use. This paper...
ERIC Educational Resources Information Center
Kim, Dong-Joong; Choi, Sang-Ho
2016-01-01
A technology-friendly teacher education program can make pre-service teachers more comfortable with using technology from laggard to innovator and change their learning styles in which they prefer the use of technology in teaching. It is investigated how a technology-friendly mathematics education program, which provided 49 pre-service teachers an…
Making Friends with the Sustainable Livelihoods Framework.
ERIC Educational Resources Information Center
Hinshelwood, Emily
2003-01-01
A renewable energy project in South Wales was enriched by elements of the sustainable livelihood approach: people centered, holistic, and dynamic. The approach shifted the focus from technology to people and from product to process; it combined micro and macro issues. (SK)
Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols.
Liu, Pingping; Zhu, Xinna; Tan, Zaigao; Zhang, Xueli; Ma, Yanhe
2016-01-01
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Wan, Chun; Alam, Md Asraful; Zhao, Xin-Qing; Zhang, Xiao-Yue; Guo, Suo-Lian; Ho, Shih-Hsin; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-01
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recyclable organic solar cells on cellulose nanocrystal substrates
Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333
Recyclable organic solar cells on cellulose nanocrystal substrates.
Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.
Attention Novices: Friendly Intro to Shiny Disks.
ERIC Educational Resources Information Center
Bardes, D'Ellen
1986-01-01
Provides an overview of how optical storage technologies--videodisk, Write-Once disks, and CD-ROM CD-I disks are built into and controlled via DEC, Apple, Atari, Amiga, and IBM PC compatible microcomputers. Several available products are noted and a list of producers is included. (EM)
2003-04-01
friction with friends and allies, particularly given the U.S. prowess at high-tech war. Over- exuberance with technology raises expectations of limited...been successes, and recognizing that fact as the norm for future wars is more productive than the irrational mania surrounding the Vietnam War
Bell pepper rootstock response to Phytophthora capsici under salinity stress
USDA-ARS?s Scientific Manuscript database
Vegetable grafting is currently used as an eco-friendly technology to increase crop productivity and overcome several biotic and abiotic stress conditions that affect Cucurbitaceae and Solanaceae vegetable crops. In recent years, researchers with breeding programs and seed companies have selected ro...
Vázquez, José Antonio; Rodríguez-Amado, Isabel; Montemayor, María Ignacia; Fraguas, Javier; del Pilar González, María; Murado, Miguel Anxo
2013-01-01
In the last decade, an increasing number of glycosaminoglycans (GAGs), chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS), hyaluronic acid (HA) and chitin/chitosan (CH/CHs) with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies. PMID:23478485
Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes
2015-01-01
Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.
Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Bolukbasi, A. O.
1989-01-01
The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.
Effects of Cold Plasma on Food Quality: A Review.
Pankaj, Shashi K; Wan, Zifan; Keener, Kevin M
2018-01-01
Cold plasma (CP) technology has proven very effective as an alternative tool for food decontamination and shelf-life extension. The impact of CP on food quality is very crucial for its acceptance as an alternative food processing technology. Due to the non-thermal nature, CP treatments have shown no or minimal impacts on the physical, chemical, nutritional and sensory attributes of various products. This review also discusses the negative impacts and limitations posed by CP technology for food products. The limited studies on interactions of CP species with food components at the molecular level offers future research opportunities. It also highlights the need for optimization studies to mitigate the negative impacts on visual, chemical, nutritional and functional properties of food products. The design versatility, non-thermal, economical and environmentally friendly nature of CP offers unique advantages over traditional processing technologies. However, CP processing is still in its nascent form and needs further research to reach its potential.
Lignin biopolymer based triboelectric nanogenerators
NASA Astrophysics Data System (ADS)
Bao, Yukai; Wang, Ruoxing; Lu, Yunmei; Wu, Wenzhuo
2017-07-01
Ongoing research in triboelectric nanogenerators (TENGs) focuses on increasing power generation, but obstacles concerning economical and eco-friendly utilization of TENGs continue to prevail. Being the second most abundant biopolymer on earth, lignin offers a valuable opportunity for low-cost TENG applications in biomedical devices, benefitting from its biodegradability and biocompatibility. Here, we develop for the first time a lignin biopolymer based TENGs for harvesting mechanical energy in the environment, which shows great potential for self-powered biomedical devices among other applications and opens doors to new technologies that utilize otherwise wasted materials for economically feasible and ecologically friendly production of energy devices.
Fuel cells are a commercially viable alternative for the production of "clean" energy.
Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G
2016-01-01
Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.
USDA-ARS?s Scientific Manuscript database
Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...
Technology demonstration of space intravehicular automation and robotics
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Barker, L. Keith
1994-01-01
Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.
[PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].
Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K
2015-01-01
The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.
Development of a Web-based financial application System
NASA Astrophysics Data System (ADS)
Hasan, M. R.; Ibrahimy, M. I.; Motakabber, S. M. A.; Ferdaus, M. M.; Khan, M. N. H.; Mostafa, M. G.
2013-12-01
The paper describes a technique to develop a web based financial system, following latest technology and business needs. In the development of web based application, the user friendliness and technology both are very important. It is used ASP .NET MVC 4 platform and SQL 2008 server for development of web based financial system. It shows the technique for the entry system and report monitoring of the application is user friendly. This paper also highlights the critical situations of development, which will help to develop the quality product.
Using Digital Video Production to Meet the Common Core Standards
ERIC Educational Resources Information Center
Nichols, Maura
2012-01-01
The implementation of the Common Core Standards has just begun and these standards will impact a generation that communicates with technology more than anything else. Texting, cell phones, Facebook, YouTube, Skype, etc. are the ways they speak with their friends and the world. The Common Core Standards recognize this. According to the Common Core…
Development and efficiency assessment of process lubrication for hot forging
NASA Astrophysics Data System (ADS)
Kargin, S.; Artyukh, Viktor; Ignatovich, I.; Dikareva, Varvara
2017-10-01
The article considers innovative technologies in testing and production of process lubricants for hot bulk forging. There were developed new compositions of eco-friendly water-graphite process lubricants for hot extrusion and forging. New approaches to efficiency assessment of process lubricants are developed and described in the following article. Laboratory and field results are presented.
Living Lab as an Agile Approach in Developing User-Friendly Welfare Technology.
Holappa, Niina; Sirkka, Andrew
2017-01-01
This paper discusses living lab as a method of developing user-friendly welfare technology, and presents a qualitative evaluation research of how living lab tested technologies impacted on the life of healthcare customers and professionals over test periods.
Development of Technology and Installation for Biohydrogen Production
NASA Astrophysics Data System (ADS)
Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.
2017-11-01
The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.
Activities of the Institute of Chemical Processing of Coal at Zabrze
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreszer, K.
1995-12-31
The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project
NASA Technical Reports Server (NTRS)
1988-01-01
Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.
Ingenbleek, Paul T.M.; van Trijp, Hans C.M.; van der Veen, Gerrita
2017-01-01
Simple Summary Modern production systems aimed at improving animal welfare are more costly than traditional systems. Animal-friendly products are therefore typically more expensive than mainstream products, which presents one of the main barriers to consumer animal-friendly product choice. To overcome this barrier, marketing strategies that associate animal welfare with different types of value, such as taste, healthiness or good feeling, may be useful. This article presents a theoretical framework with marketing strategies using various types of value, suitable for animal-friendly products to encourage consumers to buy animal-friendly instead of mainstream products. We also explain why some consumers, such as those with a rational or an intuitive thinking style, may be more sensitive to some strategies over others, giving directions to marketing managers on how to approach different types of consumers. Because the credibility of animal welfare claims is a critical issue in marketing animal-friendly products, we address this issue as well. Specifically, we propose that, to gain consumer trust, companies selling animal-friendly products need to take into account the impact of their overall strategy on the effectiveness of marketing strategies for individual products and that they may need to collaborate with relevant stakeholders, such as media or animal-interest organizations. Abstract This article presents a conceptual framework that aims to encourage consumer animal-friendly product choice by introducing positioning strategies for animal-friendly products. These strategies reinforce the animal welfare with different types of consumption values and can therefore reduce consumers’ social dilemma, which is a major barrier to animal-friendly consumer choices. The article suggests how animal-friendly products can use various types of consumption values (functional, sensory, emotional, social, epistemic and situational) to create an attractive position relative to their competitors. It also explains why some consumer segments, such as those with a specific thinking style, may experience a stronger effect of some strategies, giving directions on how to approach different types of consumers. Finally, building on research asserting that animal welfare is a credence product attribute, the article proposes moderating effects of two factors that help consumers to evaluate the credibility of animal welfare claims, namely corporate social responsibility strategy and the role of stakeholders. Here it concludes that companies selling animal-friendly products need to be aware of the impact of their overall strategy on the effectiveness of positioning strategies for individual products and that, to gain consumer trust, they may need to collaborate with relevant stakeholders, such as media or animal-interest organizations. PMID:29240686
Microalgal hydrogen production - A review.
Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian
2017-11-01
Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I
2015-11-01
The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances.
Divecha, Zai; Divney, Anna; Ickovics, Jeannette; Kershaw, Trace
2012-09-01
Little research exists about adolescents' and young adults' use of new media technologies to communicate about sexual health. Understanding how young people at high risk for STDs use these technologies can inform media-based interventions. Between October 2010 and March 2011, a sample of 94 low-income, parenting adolescents and young adults recruited at clinics in Connecticut completed an audio computer-assisted self-interview about their use of media technologies, communication with friends about sexual health and willingness to use media technologies for such communication. Descriptive statistics were calculated; characteristics of those willing and those unwilling to communicate were compared in chi-square, t and Mann-Whitney tests. Ninety-three percent of participants had mobile phones; 71% used Facebook regularly. Participants discussed sexual health more often with close friends than with casual friends, and preferred to have such conversations in person (71% with close friends and 68% with casual friends), over the phone (52% and 45%) or via text message (30% and 28%), rather than through social networking sites (0-9% and 2-7%). Fewer than one-third reported being willing to share sexual health information with friends through a specific new media technology. Those who were willing were predominantly black (59%); of those who were unwilling, 51% were Latino. Condom self-efficacy, STD knowledge and number of Facebook friends were greater among those who were willing than among those who were unwilling. For conversations about sexual health, young urban parents prefer private forms of communication; thus, social networking sites may not aid STD interventions. Copyright © 2012 by the Guttmacher Institute.
An Arduino Investigation of Simple Harmonic Motion
ERIC Educational Resources Information Center
Galeriu, Calin; Edwards, Scott; Esper, Geoffrey
2014-01-01
We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment.…
Life cycle assessment of mobile phone housing.
Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru
2004-01-01
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.
Animal-Friendly Affinity Reagents: Replacing the Needless in the Haystack.
Gray, A C; Sidhu, S S; Chandrasekera, P C; Hendriksen, C F M; Borrebaeck, C A K
2016-12-01
The multibillion-dollar global antibody industry produces an indispensable resource but that is generated using millions of animals. Despite the irrefutable maturation and availability of animal-friendly affinity reagents (AFAs) employing naïve B lymphocyte or synthetic recombinant technologies expressed by phage display, animal immunisation is still authorised for antibody production. Remarkably, replacement opportunities have been overlooked, despite the enormous potential reduction in animal use. Directive 2010/63/EU requires that animals are not used where alternatives exist. To ensure its implementation, we have engaged in discussions with the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) and the Directorate General for Environment to carve out an EU-led replacement strategy. Measures must be imposed to avoid outsourcing, regulate commercial production, and ensure that antibody producers are fully supported. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cellulases: Role in Lignocellulosic Biomass Utilization.
Soni, Sanjeev Kumar; Sharma, Amita; Soni, Raman
2018-01-01
Rapid depletion of fossil fuels worldwide presents a dire situation demanding a potential replacement to surmount the current energy crisis. Lignocellulose presents a logical candidate to be exploited at industrial scale owing to its vast availability, inexpensive and renewable nature. Microbial degradation of lignocellulosic biomass is a lucrative, sustainable, and promising approach to obtain valuable commercial commodities at gigantic scale. The enzymatic hydrolysis involving cellulases is fundamental to all the technologies needed to transform lignocellulosic biomass to valuable industry relevant products. Cellulases have enormous potential to utilize cellulosic biomass, thus reducing environmental stress in addition to production of commodity chemicals resolving the current challenge to meet the energy needs globally. The substitution of petroleum-based fuels with bio-based fuels is the subject of thorough research establishing biofuel production as the future technology to achieve a sustainable, eco-friendly society with a zero waste approach.
NASA Astrophysics Data System (ADS)
Ruchkinova, O.; Shchuckin, I.
2017-06-01
Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.
2017-01-09
Deena Dombrosky (Zin Technologies Engineer) is shown here filling a Procter & Gamble (P & G) sample that will be used in ground-testing as NASA prepares for their experiment on the International Space Station (ISS). The sample particles are the size of the wavelength of light and they are dyed orange/pink to glow when illuminated with the laser light enabling a confocal microscope to produce 3D images. The P & G experiment will improve product stabilizers that extend product shelf life. This has the added advantage of leading to more compact environmentally friendly containers.
Ferrentino, Giovanna; Asaduzzaman, Md; Scampicchio, Matteo Mario
2018-02-11
The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.
Adolescents' technology and face-to-face time use predict objective sleep outcomes.
Tavernier, Royette; Heissel, Jennifer A; Sladek, Michael R; Grant, Kathryn E; Adam, Emma K
2017-08-01
The present study examined both within- and between-person associations between adolescents' time use (technology-based activities and face-to-face interactions with friends and family) and sleep behaviors. We also assessed whether age moderated associations between adolescents' time use with friends and family and sleep. Adolescents wore an actigraph monitor and completed brief evening surveys daily for 3 consecutive days. Adolescents (N=71; mean age=14.50 years old, SD=1.84; 43.7% female) were recruited from 3 public high schools in the Midwest. We assessed 8 technology-based activities (eg, texting, working on a computer), as well as time spent engaged in face-to-face interactions with friends and family, via questions on adolescents' evening surveys. Actigraph monitors assessed 3 sleep behaviors: sleep latency, sleep hours, and sleep efficiency. Hierarchical linear models indicated that texting and working on the computer were associated with shorter sleep, whereas time spent talking on the phone predicted longer sleep. Time spent with friends predicted shorter sleep latencies, while family time predicted longer sleep latencies. Age moderated the association between time spent with friends and sleep efficiency, as well as between family time and sleep efficiency. Specifically, longer time spent interacting with friends was associated with higher sleep efficiency but only among younger adolescents. Furthermore, longer family time was associated with higher sleep efficiency but only for older adolescents. Findings are discussed in terms of the importance of regulating adolescents' technology use and improving opportunities for face-to-face interactions with friends, particularly for younger adolescents. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.
The Concept of Ecologically Oriented Progress and Natural Resource Preservation
NASA Astrophysics Data System (ADS)
Gasanov, M. A.; Kolotov, K. A.; Demidenko, K. A.; Podgornaya, E. A.; Kadnikova, O. V.
2017-01-01
The most important issue of scientific and technological progress is considering the environment challenges of industrial development. It means that the progress must be ecologically oriented and environmentally friendly. The most adequate concept for the approach to the issue of “man - society - nature” relations is the ontology of the noosphere - the idea of a common space for human beings and nature. It presents an ideal example of an optimistic attitude towards the coordination between accelerating the scientific and technological development and natural resource saving. However, to maintain the balance between human needs and environmental processes determined by this concept, it is essential to include the lean production training into technological development of society.
NASA Astrophysics Data System (ADS)
Ness, P. H.; Jacobson, H.
1984-10-01
The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.
Roblin, Douglas W
2011-01-01
Productive interactions among patients, friends/family, and health care providers, as outlined by the Chronic Care Model, are important for promoting adherence to recommended care and good health outcomes among adults with a chronic illness. Characteristics of these interactions--active participation, collaboration, and data sharing among constituents--are the same as those of social networks organized around Web 2.0 principles and technology. Thus, the Web 2.0 framework can be used to configure social networks without the inherent spatiotemporal constraints of face-to-face interactions that remain prevalent in health care delivery. In this article, the author outlines various design principles and decisions for a pilot study in which cellular technology was used to mediate interactions between adults with Type 2 diabetes and supporters (i.e., family members or friends selected by the patients who agree provide support) to motivate regular self-monitoring of blood glucose (among the diabetes participants). Participants generally found the network to be relatively easy to use. Some diabetes patients reported improved attention to self-monitoring; and, patient-selected supporters indicated improvements in emotional and instrumental support that should benefit diabetes patients' lifestyle and health.
Feasibility basis for use of new solid household waste processing equipment
NASA Astrophysics Data System (ADS)
Vertakova, Y. V.; Zvyagintsev, G. L.; Babich, T. N.; Polozhentseva, Y. S.
2017-10-01
Economic efficiency assessment of innovative organizational project of solid household waste processing enterprise (SHW) is given. A distinctive feature of this project is new mining and chemical technology use of waste depolymerization. The proved feature is fuel-resource production in portion modules of tubular type. They are patented and approved under laboratory conditions. The main ways of SHW processing in the world including Russia are described. Advantages and disadvantages are revealed. Comparative analysis is carried out. Technology prioritization is a result of this analysis. During organization of such enterprise, it was proved that not only SHW processing is a result of its functioning. The other result is environmentally friendly production using secondary raw materials. These products can be sold and can have bring income. Main investment and current expenses necessary for the offered project implementation are defined. This allows making economic assessment of innovative enterprise efficiency.
Concurrent engineering research center
NASA Technical Reports Server (NTRS)
Callahan, John R.
1995-01-01
The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.
ERIC Educational Resources Information Center
Ranney, John D.; Troop-Gordon, Wendy
2012-01-01
Because of recent technological innovations, college freshmen can readily communicate with friends who they see infrequently (e.g., friends from home). The current study addressed whether computer-mediated communication with these distant friends can compensate for a lack of high-quality on-campus friendships during students' first semester of…
NASA Astrophysics Data System (ADS)
Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.
2017-03-01
A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.
Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology.
Baptista-Pires, Luis; Orozco, Jahir; Guardia, Pablo; Merkoçi, Arben
2018-01-01
A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production.
Zhang, Peng; Chen, Caifa; Shen, Yanhu; Ding, Tielin; Ma, Daifu; Hua, Zichun; Sun, Dongxu
2013-01-01
An energy-saving ethanol fermentation technology was developed using uncooked fresh sweet potato as raw material. A mutant strain of Aspergillus niger isolated from mildewed sweet potato was used to produce abundant raw starch saccharification enzymes for treating uncooked sweet potato storage roots. The viscosity of the fermentation paste of uncooked sweet potato roots was lower than that of the cooked roots. The ethanol fermentation was carried out by Zymomonas mobilis, and 14.4 g of ethanol (87.2% of the theoretical yield) was produced from 100g of fresh sweet potato storage roots. Based on this method, an energy-saving, high efficient and environment-friendly technology can be developed for large-scale production of fuel ethanol from sweet potato roots. Copyright © 2012 Elsevier Ltd. All rights reserved.
van Riemsdijk, Lenka; Ingenbleek, Paul T M; van Trijp, Hans C M; van der Veen, Gerrita
2017-12-14
This article presents a conceptual framework that aims to encourage consumer animal-friendly product choice by introducing positioning strategies for animal-friendly products. These strategies reinforce the animal welfare with different types of consumption values and can therefore reduce consumers' social dilemma, which is a major barrier to animal-friendly consumer choices. The article suggests how animal-friendly products can use various types of consumption values (functional, sensory, emotional, social, epistemic and situational) to create an attractive position relative to their competitors. It also explains why some consumer segments, such as those with a specific thinking style, may experience a stronger effect of some strategies, giving directions on how to approach different types of consumers. Finally, building on research asserting that animal welfare is a credence product attribute, the article proposes moderating effects of two factors that help consumers to evaluate the credibility of animal welfare claims, namely corporate social responsibility strategy and the role of stakeholders. Here it concludes that companies selling animal-friendly products need to be aware of the impact of their overall strategy on the effectiveness of positioning strategies for individual products and that, to gain consumer trust, they may need to collaborate with relevant stakeholders, such as media or animal-interest organizations.
NASA Astrophysics Data System (ADS)
Uglyanitca, Andrey; Solonin, Kirill
2017-11-01
The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.
Scalable graphene production from ethanol decomposition by microwave argon plasma torch
NASA Astrophysics Data System (ADS)
Melero, C.; Rincón, R.; Muñoz, J.; Zhang, G.; Sun, S.; Perez, A.; Royuela, O.; González-Gago, C.; Calzada, M. D.
2018-01-01
A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.
Technical Status and Progress of Lead Recycling of Battery
NASA Astrophysics Data System (ADS)
Li, Wei-feng; Jiang, Li-hua; Zhan, Jing; Zhang, Chuan-fu
The characteristics of various components in waste lead acid battery are analyzed in this paper. The present status and the study progress situation in industry production and research field of recycling of waste lead acid battery and lead paste used broken-separation technology are introduced. The comparison of advantages and disadvantages in different industry processes is carried. The advantages of redox bath smelting of lead concentrate and lead paste are analyzed. The method of redox bath smelting will be a low-carbon, environmentally friendly and efficient processes of secondary lead production and can be intensive to desulfurize for high temperature pool.
Grandin, Karl; Jagers, Peter; Kullander, Sven
2010-01-01
Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.
"Friending Facebook?" A Minicourse on the Use of Social Media by Health Professionals
ERIC Educational Resources Information Center
George, Daniel R.
2011-01-01
Introduction: Health professionals are working in an era of social technologies that empower users to generate content in real time. This article describes a 3-part continuing education minicourse called "Friending Facebook?" undertaken at Penn State Hershey Medical Center that aimed to model the functionality of current technologies in…
The European Market for Animal-Friendly Products in a Societal Context
Ingenbleek, Paul T. M.; Harvey, David; Ilieski, Vlatko; Immink, Victor M.; de Roest, Kees; Schmid, Otto
2013-01-01
Simple Summary This article takes a future focus on the direction in which social forces develop the market for animal-friendly products in Europe. Although many stakeholders believe that the market is the most viable direction to improve farm animal welfare, economic productivity of the chain remains an issue that on a fundamental level conflicts with the objective to improve animal welfare. The European market for animal-friendly products is still largely fragmented and the differences between European countries are considerable. A more animal-friendly future that is achieved through the market will therefore need substantial policy attention from stakeholders in society. Abstract This article takes a future focus on the direction in which social forces develop the market for animal-friendly products in Europe. On the basis of qualitative data gathered in the context of the European EconWelfare project, the differences across eight European countries are studied. The findings suggest that, given international trade barriers that prevent an improvement of animal welfare through legislation, many stakeholders believe that the market is the most viable direction to improve farm animal welfare. Economic productivity of the chain remains, however, an issue that on a fundamental level conflicts with the objective to improve animal welfare. With the help of a deeper conceptual understanding of willingness to pay for animal welfare, the paper finds that the European market for animal-friendly products is still largely fragmented and that the differences between European countries are considerable. A more animal-friendly future that is achieved through the market will therefore need substantial policy attention from stakeholders in society. PMID:26479535
Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie
2010-07-01
The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.
Reassessing Escherichia coli as a cell factory for biofuel production.
Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won
2017-06-01
Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I
2015-12-01
Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.
Fermilab Friends for Science Education | Join Us
Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us photo Fermilab Friends for Science Education (FFSE) needs you now! More than ever our society and improving science (science, technology, engineering and mathematics) education. Your donation allows us to
Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status
NASA Astrophysics Data System (ADS)
Kato, Takuya
2017-04-01
As the largest manufacturer of Cu(In,Ga)(Se,S)2 (CIGS) thin-film photovoltaic modules with more than 1 GW/year production volume, Solar Frontier K.K. has continuously improved module performance and small-area cell efficiencies in the laboratory. Because of our low-cost and environmentally-friendly process, Solar Frontier’s CIGS is a promising technology for the mass production of photovoltaic modules to fill ever-increasing demand. Recently we have achieved certified efficiencies of 22.3 and 22.0% on CdS-buffered and Cd-free buffered small-area cells, respectively, as well as 18.6% on a Cd-free mini-module. In this paper, a review of our CIGS technology and recent progress on the development of the module and the small-area cell is presented.
EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines: Technical Papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, T.
2011-12-01
The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held inmore » Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world.« less
cDNA Microarray Screening in Food Safety
ROY, SASHWATI; SEN, CHANDAN K
2009-01-01
The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests. PMID:16466843
Parenthood and Productivity: A Study of Demands, Resources and Family-Friendly Firms
ERIC Educational Resources Information Center
Wallace, Jean E.; Young, Marisa C.
2008-01-01
We examine how the presence of children is related to women's and men's productivity. We hypothesize family demands, family resources, and family-friendly workplaces are also related to productivity. Productivity for 670 Alberta law firm lawyers is analyzed using a standardized measure of productivity referred to as billable hours. The results…
Bjereld, Y; Daneback, K; Löfstedt, P; Bjarnason, T; Tynjälä, J; Välimaa, R; Petzold, M
2017-05-01
Friends are important in childhood and adolescence, especially to bullied children. Technology mediated communication (TMC) could be used both to develop and maintain friendship. The present study examined (1) trends in the use of TMC with friends between 2001 and 2010; (2) possible differences between bullied and not bullied children and (3) differences between children with few close friends and children with several close friends. Data were obtained from three waves of the serial cross-sectional Health Behaviour in School-Aged Children survey conducted in Denmark, Finland, Iceland and Sweden during 2001/2002, 2005/2006 and 2009/2010. The total sample consisted of 65 953 children aged 11, 13 and 15. Two trends were observed. The first trend showed an increased use of TMC in all countries. Children that were not bullied and/or had several close friends had increased their use of TMC with friends from 2001 to 2010. The second trend was applicable only for bullied children with few close friends; they had not as other children increased their use of TMC and thus remained at the same levels as in 2001/2002. Bullied children with few close friends were excluded from communication forums that usually allow children to maintain and develop friendships. This is a concern because friends are important during childhood and adolescence, especially for bullied children. © 2016 John Wiley & Sons Ltd.
Benevolent technotopias and hitherto unimaginable meats: Tracing the promises of in vitro meat.
Jönsson, Erik
2016-10-01
Today, in vitro (Latin: in glass) meat researchers strive to overhaul meat production technologies by producing meat outside animal bodies, primarily by culturing cells. In the process, meat should become healthier, more environmentally friendly and kinder to animals. In this article, I scrutinize (and problematize) this promissory discourse by examining the world that proponents envision alongside the world from which promises emerge. First, I trace the increasing number of publications striving to pinpoint the nature of in vitro meat to unveil the creation of an in vitro meat canon wherein perceived possibilities become taken for granted. Second, I investigate how the promissory discourse is often relatively silent on key aspects of how this technology could remake the world. Wet laboratories, animals and end products become foregrounded at the expense of political economy and the biophysical properties of cultured cells. Thus, questions concerning how funding requirements shape representations of this new technology, together with in vitro meat's particular socio-spatial and socio-ecological implications, become problematically de-emphasized.
Improved animal welfare, the right technology and increased business.
Støier, S; Larsen, H D; Aaslyng, M D; Lykke, L
2016-10-01
Animal welfare is receiving increasing attention from the authorities, the public and NGOs. For this reason, the improvement of animal welfare and animal handling systems is of the utmost importance for the meat industry. Technological developments have led to more animal friendly systems that handle animals on the day of slaughter, and these developments will be even more important as consideration for animal welfare and sustainability is no longer just a trend but a licence to operate. Improvement of animal welfare also leads to a higher value of the carcasses due to higher product quality, less cut-off caused by fewer injuries, and reduced working load, which leads to increased business opportunities. Therefore, good animal welfare is good business, and the development and implementation of new technology is the way to obtain improved animal welfare. These subjects will be addressed using examples and cases from the pork and broiler production industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green biorefinery - Industrial implementation.
Kamm, B; Schönicke, P; Hille, Ch
2016-04-15
Oil refineries currently generate a multitude of products for almost every sphere of life at very high efficiency. However, fossil raw materials are just available in limited quantities. The development of comparable BIOREFINERIES is necessary to make a variety of competitive biological products regarding their equivalent products based on fossil raw materials. The product range of a biorefinery comprises products that can be manufactured on the basis of crude oil, as well as such products that cannot be produced on the basis of crude oil (Kamm, Gruber, & Kamm, 2011). GREEN BIOREFINERIES [GBR's] are complex systems of sustainable, environment- and resource-friendly technologies for a comprehensive material and energy use or recovery of renewable raw materials in form of green and waste biomasses from a sustainable land use as target (Kamm et al., 2009; Digman, Runge, Shinners, & Hatfield, 2013). Copyright © 2015. Published by Elsevier Ltd.
Naresh Kumar, Manickam; Ravikumar, Rajarathinam; Thenmozhi, Senniyappan; Kirupa Sankar, Muthuvelu
2017-11-01
Inhibitor mediated intensified bio-pretreatment (IMBP) technology using natural cellulase inhibitor (NCI) for maximum cellulose recovery from paddy straw was studied. Pretreatment was carried out under solid state condition. Supplementation of 8% NCI in pretreatment medium improves cellulose recovery and delignification by 1.2 and 1.5-fold respectively, compared to conventional bio-pretreatment due to inhibition of 61% of cellulase activity in IMBP. Further increase in NCI concentration showed negative effect on Pleurotus florida growth and suppress the laccase productivity by 1.1-fold. Laccase activity in IMBP was found to be 2.0U/mL on 19 th day, which is higher than (1.5U/mL) conventional bio-pretreatment. Physico-chemical modifications in paddy straw before and after pretreatment were analysed by SEM, ATR-FTIR, XRD and TGA. According to these findings, the IMBP technology can be a viable eco-friendly technology for sustainable production of bioethanol with maximum cellulose recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.
2015-07-01
A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.
Social Influences on College Student Use of Tobacco Products, Alcohol, and Marijuana.
Windle, Michael; Haardörfer, Regine; Lloyd, Steven A; Foster, Bruce; Berg, Carla J
2017-07-29
This study investigated associations between the use of alternative tobacco products (e.g., cigarettes, little cigars/cigarillos, hookah, e-cigarettes), alcohol, and marijuana among college students and use by their parents, siblings, and friends. A large literature exists for social influences on adolescent substance use, but few studies have focused on college samples. 3,418 college students from seven universities in the state of Georgia participated in this study. Web-based surveys were completed by students (45-60 minutes) during the fall semester, 2014. Findings largely indicated specificity of associations between college student use and use by social influences for similar tobacco products and other substances. For each tobacco product or substance, the highest associations were for friends' use. Structural equation analyses further supported the specificity of associations and highlighted the relative strength of friends' use on student use. Similar to findings with adolescents, the use of alternative tobacco products, alcohol, and marijuana by parents, siblings, and friends is associated with higher levels of use among college students, and friends' use was the most potent correlate for this phase of the lifespan.
Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti
2014-10-01
Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.
Microalgae as sustainable renewable energy feedstock for biofuel production.
Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M
2015-01-01
The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.
Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production
Yusoff, Fatimah Md.; Shariff, M.
2015-01-01
The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216
Chew, Thiam Leng; Bhatia, Subhash
2008-11-01
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
Pradhan, Biswaprakash; Dash, Sashi K; Sahoo, Sabuj
2013-01-01
Objective To screen and isolate an eco-friendly, a thermophilic and potent L-asparaginase producing bacterium, with novel immunological properties that may obviates hypersensitivity reactions. Methods In the present study bacterial strain isolated for extracellular L-asparaginase production from hotspring, identified by morphological, biochemical and physiological tests followed by 16S rDNA technology and the L-asparaginase production ability was tested by both semi quantitative and quantitative enzymatic assay. Result The bacterial strain was identified as Bacillus subtilis strain hswx88 (GenBank Accession Number: JQ237656.1). The extracellular enzyme yielding capacity isolate Bacillus subtilis strain hswx88 (23.8 IU/mL) was found to be 1.7 and 14.5 times higher than the reference organism Pectobacterium carotovorum MTCC 1428 (14.2 IU/mL) and Bacillus sp. BCCS 034 (1.64 IU/mL). Conclusion The isolate is eco-friendly and useful to produce bulk quantity of extracellular, thermophilic L-asparaginase for the treatment of various tumor cases and for preparation of acrylamide free fry food preparation. PMID:24093783
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf
2011-03-01
Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R
2015-11-01
Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.
1984-03-01
evaluation of powerful support environments are essential if we are to maximize Lanauage Definition the productivity of programmers. CENVTACS provided...quality Policy and Objectives Ada support environment which includes a rich set of powerful tools (in addition to a compiler) The DOD has established Ada...to be easy to learn and easy to use. It will be powerful , efficient, and The MAPSE Command Language (MCL) friendly. This paper describes how these
Attosecond Optics and Technology: Progress to Date and Future Prospects [Invited
2016-06-01
1s electron in the hydrogen atom experiences is 5.14 × 109 V∕cm. In such a strong external field, an electron can be freed from an atom via tunneling ...been replaced by laser diodes , which leads to user-friendly products that deliver either single-longitudinal mode beams for pumping laser oscillators...steps. First, an electron is released by tunneling through the potential barrier formed by the atomic Coulomb field and the driving laser field. Then
Concerning modeling of double-stage water evaporation cooling
NASA Astrophysics Data System (ADS)
Shatskiy, V. P.; Fedulova, L. I.; Gridneva, I. V.
2018-03-01
The matter of need for setting technical norms for production, as well as acceptable microclimate parameters, such as temperature and humidity, at the work place, remains urgent. Use of certain units should be economically sound and that should be taken into account for construction, assembly, operation, technological, and environmental requirements. Water evaporation coolers are simple to maintain, environmentally friendly, and quite cheap, but the development of the most efficient solutions requires mathematical modeling of the heat and mass transfer processes that take place in them.
Branding Helped to Promote Our Library and Its Technology
ERIC Educational Resources Information Center
Yun, Sejan
2004-01-01
The Saint Paul Public Library and its Friends collaborated to create an identity program as part of its public relations efforts. The work started with a team made up of the library's key administrators and its Public Relations and Communications office, plus Friends' staff and the Friends Board's Public Awareness Committee. In this article, the…
Role of ecolabeling in reducing ecotoxicology.
Chakravarthy, Yogita; Potdar, Aditee; Singh, Anju; Unnikrishnan, Seema; Naik, Neelima
2016-12-01
Ecolabeling helps consumers to select environment friendly products, while meeting high demands on occupational health, safety, and usability. Ecolabeling undertakes cradle-to-grave approach which helps in minimizing the toxicological impacts at every stage of the product life cycle. The ecolabeling procedure calls for substitution or reduction of hazardous substances thereby reducing the toxicity caused due to these chemicals. China, Japan, Australia, European Union, and Nordic countries are leading in the race of awareness and implementation of ecolabeling schemes. In India, the ecolabeling scheme (Ecomark) was initiated in 1991. The Ecomark scheme lacked adoption of the green marketing principles and thus failed to create an impact. This study presents an overview of ecolabels in European Union, Nordic countries, Germany, China and India. Furthermore, it assesses the awareness of ecolabels among the retailers and traders of environment friendly products in India through a survey. The study highlights that the ecolabels are a success in most of the countries studied and are applied across a range of industrial sectors. The survey is administered to 80 retailers and traders of stores selling environment friendly products across different Indian cities. A correlation is established with the variables identified. The survey results indicate that although the retailers and traders of environment friendly products have low awareness of the ecolabels on environment friendly products, they are taking considerable efforts to promote and deliver environment friendly products to consumers. Large-scale awareness drives initiated by the Ministry of Environment, Forests & Climate Change permeating at grass root levels with the involvement of stakeholders could prove beneficial for promotion of the ecolabeling schemes. Copyright © 2015 Elsevier Inc. All rights reserved.
Social Influences on College Student Use of Tobacco Products, Alcohol, and Marijuana
Windle, Michael; Haardörfer, Regine; Lloyd, Steven A.; Foster, Bruce; Berg, Carla J.
2017-01-01
Objective This study investigated associations between the use of alternative tobacco products (e.g., cigarettes, little cigars/cigarillos, hookah, e-cigarettes), alcohol, and marijuana among college students and use by their parents, siblings, and friends. A large literature exists for social influences on adolescent substance use, but few studies have focused on college samples. Participants 3,418 college students from seven universities in the state of Georgia participated in this study. Methods Web-based surveys were completed by students (45–60 minutes) during the fall semester, 2014. Results Findings largely indicated specificity of associations between college student use and use by social influences for similar tobacco products and other substances. For each tobacco product or substance, the highest associations were for friends'use. Structural equation analyses further supported the specificity of associations and highlighted the relative strength of friends' use on student use. Conclusion Similar to findings with adolescents, the use of alternative tobacco products, alcohol, and marijuana by parents, siblings, and friends is associated with higher levels of use among college students, and friends' use was the most potent correlate for this phase of the lifespan. PMID:28524716
Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K
2012-01-01
Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.
Ribarits, Alexandra; Mamun, A N K; Li, Shipeng; Resch, Tatiana; Fiers, Martijn; Heberle-Bors, Erwin; Liu, Chun-Ming; Touraev, Alisher
2007-07-01
Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.
MICP and Advances towards Eco-Friendly and Economical Applications
NASA Astrophysics Data System (ADS)
Rajasekar, Adharsh; Moy, Charles K. S.; Wilkinson, Stephen
2017-07-01
Biomineralization is a natural process aided by living organisms. Due to its applicability in ground improvement and bioremediation, Microbially Induced Calcite Precipitation (MICP) is an interdisciplinary field of study combining engineering, chemistry and microbiology. Bioremediation has been applied widely for contamination containment or removal, in this case it will be containment. MICP can also be applied to improve the efficiency of insitu bioremediation. Urease is an enzyme which can facilitate increased calcite precipitation. However the production of urease by bacteria and thus the resulting carbonate precipitation are inhibited by environmental factors including calcium concentration, bacterial concentration, pH and temperature. Under good conditions MICP can be used for heavy metal and radionuclide immobilization. However technologies such as bioconsolidation and biocementation require improvement such as time and cost. This paper highlights the application of MICP in addition to suggested improvements to make it more eco-friendly and sustainable.
Cultured Meat in Islamic Perspective.
Hamdan, Mohammad Naqib; Post, Mark J; Ramli, Mohd Anuar; Mustafa, Amin Rukaini
2017-04-29
Cultured meat is a promising product that is derived through biotechnology that partially circumvents animal physiology, thereby being potentially more sustainable, environmentally friendly and animal friendly than traditional livestock meat. Such a novel technology that can impact many consumers evokes ethical, philosophical and religious discussions. For the Islamic community, the crucial question is whether cultured meat is halal, meaning compliant with Islamic laws. Since the culturing of meat is a new discovery, invention and innovation by scientists that has never been discussed by classical jurists (fuqaha'), an ijtihad by contemporary jurists must look for and provide answers for every technology introduced, whether it comply the requirements of Islamic law or not. So, this article will discuss an Islamic perspective on cultured meat based on the original scripture in the Qur'an and interpretations by authoritative Islamic jurists. The halal status of cultured meat can be resolve through identifying the source cell and culture medium used in culturing the meat. The halal cultured meat can be obtained if the stem cell is extracted from a (Halal) slaughtered animal, and no blood or serum is used in the process. The impact of this innovation will give positive results in the environmental and sustain the livestock industry.
Determinants of consumer intention to purchase animal-friendly milk.
de Graaf, Sophie; Van Loo, Ellen J; Bijttebier, Jo; Vanhonacker, Filiep; Lauwers, Ludwig; Tuyttens, Frank A M; Verbeke, Wim
2016-10-01
Concern about the welfare of production animals is growing among various stakeholders, including the general public. Citizens can influence the market for premium welfare products by expressing public concerns, and consumers-the actors who actually purchase products-can do so through their purchasing behavior. However, current market shares for premium welfare products are small in Europe. To better align purchase behavior with public and individuals' concerns, insight is needed into determinants that influence the intention to purchase premium welfare products. A cross-sectional online survey of 787 Flemish milk consumers was conducted to investigate attitudes toward and intention to purchase animal-friendly milk. More than half of the sample (52.5%) expressed the intention to purchase animal-friendly milk. Linear regression modeling indicated that intention was positively influenced by (1) higher perceived product benefits from animal-friendly milk (milk with more health benefits and higher quality); (2) higher personal importance of extrinsic product attributes such as local production and country of origin; (3) higher personal importance of animal welfare; (4) a more natural living oriented attitude toward cows; and (5) a more positive general attitude toward milk. Intention was negatively influenced by (1) a stronger business-oriented attitude toward cows; and (2) by a higher personal importance attached to price. These insights in key components of purchase intention can assist producers, the dairy industry, and retailers to position and market animal-friendly milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources.
Frutos, Osvaldo D; Quijano, Guillermo; Aizpuru, Aitor; Muñoz, Raúl
This review aims at holistically analyzing the environmental problems associated with nitrous oxide (N 2 O) emissions by evaluating the most important sources of N 2 O and its environmental impacts. Emissions from wastewater treatment processes and the industrial production of nitric and adipic acid represent nowadays the most important anthropogenic point sources of N 2 O. Therefore, state-of-the-art strategies to mitigate the generation and release to the atmosphere of this greenhouse and O 3 -depleting gas in the waste treatment and industrial sectors are also reviewed. An updated review of the end-of-the-pipe technologies for N 2 O abatement, both in the waste treatment and industrial sectors, is herein presented and critically discussed for the first time. Despite the consistent efforts recently conducted in the development of cost-efficient and eco-friendly N 2 O abatement technologies, physical/chemical technologies still constitute the most popular treatments for the control of industrial N 2 O emissions at commercial scale. The recent advances achieved on biological N 2 O abatement based on heterotrophic denitrification have opened new opportunities for the development of eco-friendly alternatives for the treatment of N 2 O emissions. Finally, the main limitations and challenges faced by these novel N 2 O abatement biotechnologies are identified in order to pave the way for market implementation. Copyright © 2018 Elsevier Inc. All rights reserved.
Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.
Cecchi, Franco; Cavinato, Cristina
2015-05-01
Scientific and industrial experiences, together with economical and policies changes of last 30 years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. © The Author(s) 2015.
Biofuels Potential for Transportation Fuels in Vietnam: A Status Quo and SWOT Analysis
NASA Astrophysics Data System (ADS)
Trinh, Tu Anh; Phuong Linh Le, Thi
2018-04-01
Petroleum consumption for road transportation is well-known as the largest source of CO2 emissions. Worldwide, biofuel is becoming more attractive as substitute for crude oil owing to the increasing demand for environmentally friendly energy and its contribution towards petro dependency reduction and climate change mitigation. This paper reviews the facts and prospects of biofuel production in Vietnam. A SWOT model is adopted to study the strengths, weaknesses, opportunities and threats of biofuels production. The conclusion is drawn that with advantages of weather conditions, soil conditions, the availability of biomass and commitment from government, the country has potential to develop biobuels for domestic consumption. However, threats to production are posed by social acceptance, land use, and technology. Thus, biofuels production still need more supports from government through robust policies, regulations, and institutional framework.
Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae
2018-05-01
Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.
NASA Astrophysics Data System (ADS)
Liu, Y. C.; Zhang, A. N.; Wang, X. B.; Xu, J.; Zeng, X. H.; Wang, H. M.
2017-08-01
This paper presents a technique to produce a new kind of fishery drug that is water emulsion suspending agent containing polymeric calcium-iron-dithiocarbamate with heavy metal complexing precipitate ability, good disinfection and auxiliary insecticidal efficacy. The product has good dispersion, high efficiency and low toxicity, as well as no pollution and no harmful residues. It not only can be used in the pond waters and ornamental waters, but also can meet the high requirements of the aquaculture waters. There is non-pollutant emission in the production, which is a green environment-friendly technique without three waste discharges. This technology belongs to the ecological and environmental protection.
My close friends lurk all around the house, and he knows not!
Singh, Shakuntala A
2009-01-01
Technology is a woman's best friend. Gadgets, appliances and contraception make life easy for the present day working woman. Men barely realize the importance of these even if they appear to agree to their use.
Environmental impacts the of production and use of biodiesel.
Živković, Snežana; Veljković, Milan
2018-01-01
Biodiesel as renewable, environmental friendly, less toxic, and biodegradable is an attractive alternative to fossil fuels and is produced mainly from vegetable oils and animal fats. It is expected, globally, that the use of renewable biofuels, in general, will increase rapidly in the near future. The growing biodiesel production and usage have encouraged assessment of its impact on the environment. The present paper reviews various aspects of biodiesel production using commercial processing technology and biodiesel use through evaluation and analysis of the studies concerning environmental impacts of biodiesel. As a general conclusion, it can be said that biodiesel has the potential to offer a series of perceived benefits such as political, economical, and agricultural, as well as environmental (due to its biodegradability, less toxicity, renewability) and health (greenhouse gas-saving, less harmful exhaust emissions).
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Technical Reports Server (NTRS)
Baresi, Larry
1989-01-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Astrophysics Data System (ADS)
Baresi, Larry
1989-03-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
My Close Friends Lurk All Around The House, And He Knows Not!
Singh, Shakuntala A.
2009-01-01
Technology is a woman's best friend. Gadgets, appliances and contraception make life easy for the present day working woman. Men barely realize the importance of these even if they appear to agree to their use. PMID:21836782
Pradhan, Biswaprakash; Dash, Sashi K; Sahoo, Sabuj
2013-12-01
To screen and isolate an eco-friendly, a thermophilic and potent L-asparaginase producing bacterium, with novel immunological properties that may obviates hypersensitivity reactions. In the present study bacterial strain isolated for extracellular L-asparaginase production from hotspring, identified by morphological, biochemical and physiological tests followed by 16S rDNA technology and the L-asparaginase production ability was tested by both semi quantitative and quantitative enzymatic assay. The bacterial strain was identified as Bacillus subtilis strain hswx88 (GenBank Accession Number: JQ237656.1). The extracellular enzyme yielding capacity isolate Bacillus subtilis strain hswx88 (23.8 IU/mL) was found to be 1.7 and 14.5 times higher than the reference organism Pectobacterium carotovorum MTCC 1428 (14.2 IU/mL) and Bacillus sp. BCCS 034 (1.64 IU/mL). The isolate is eco-friendly and useful to produce bulk quantity of extracellular, thermophilic L-asparaginase for the treatment of various tumor cases and for preparation of acrylamide free fry food preparation. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
LCA of greywater management within a water circular economy restorative thinking framework.
Dominguez, Sara; Laso, Jara; Margallo, María; Aldaco, Rubén; Rivero, Maria J; Irabien, Ángel; Ortiz, Inmaculada
2018-04-15
Greywater reuse is an attractive option for the sustainable management of water under water scarcity circumstances, within a water circular economy restorative thinking framework. Its successful deployment relies on the availability of low cost and environmentally friendly technologies. The life cycle assessment (LCA) approach provides the appropriate methodological tool for the evaluation of alternative treatments based on environmental decision criteria and, therefore, it is highly useful during the process conceptual design. This methodology should be employed in the early design phase to select those technologies with lower environmental impact. This work reports the comparative LCA of three scenarios for greywater reuse: photocatalysis, photovoltaic solar-driven photocatalysis and membrane biological reactor, in order to help the selection of the most environmentally friendly technology. The study has been focused on the removal of the surfactant sodium dodecylbenzenesulfonate, which is used in the formulation of detergents and personal care products and, thus, widely present in greywater. LCA was applied using the Environmental Sustainability Assessment methodology to obtain two main environmental indicators in order to simplify the decision making process: natural resources and environmental burdens. Energy consumption is the main contributor to both indicators owing to the high energy consumption of the light source for the photocatalytic greywater treatment. In order to reduce its environmental burdens, the most desirable scenario would be the use of solar light for the photocatalytic transformation. However, while the technological challenge of direct use of solar light is approached, the environmental suitability of the photovoltaic solar energy driven photocatalysis technology to greywater reuse has been demonstrated, as it involves the smallest environmental impact among the three studied alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.
1998-08-01
Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less
NASA Astrophysics Data System (ADS)
Shan, Jia
As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.
NASA Astrophysics Data System (ADS)
Gibson, Wayne H.; Levesque, Daniel
2000-03-01
This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.
Valorization of winery waste vs. the costs of not recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devesa-Rey, R., E-mail: rosa.devesa.rey@uvigo.es; Vecino, X.; Varela-Alende, J.L.
Graphical abstract: Highlights: > Lactic acid, biosurfactants, xylitol or ethanol may be obtained from wine residues. > By-products valorization turns wine wastes into products with industrial applications. > The costs of waste disposal enhances the search of economically viable solutions for valorizing residues. - Abstract: Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimesmore » also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income.« less
ERIC Educational Resources Information Center
Clark, Bob
2006-01-01
Green cleaning is gaining momentum. It is a method of cleaning and maintaining facilities that is friendly to the environment and healthful for students and staff. The process uses environmentally friendly and nontoxic cleaning products and practices that must be third-party-certified. Using green cleaning practices and products can result in…
Technology and Environmental Education: Friend or Foe?
ERIC Educational Resources Information Center
Athman, Julie; Bates, Tim
1998-01-01
Discusses the pros and cons often mentioned concerning technology in education. Describes measures of effectiveness of technology-enhanced educational programs, ranging from active learning and multidisciplinary tasks to performance-based assessments. Argues that technology should enhance rather than replace direct experiences. (PVD)
A Straightforward Approach for 3D Bacterial Printing
2017-01-01
Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials. PMID:28225616
A Straightforward Approach for 3D Bacterial Printing.
Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S
2017-07-21
Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.
DiDonato, Theresa E; Jakubiak, Brittany K
2016-01-01
In the pursuit of love, individuals strategically use luxury products to signal status and other attractive attributes. Might eco-friendly products also signal mate-relevant information? The current research examined inferences from eco-friendly purchases and how they predict perceived suitability for short- and long-term romantic relationships. Participants read descriptions of a stranger's eco-friendly or luxury purchase decisions, reported their perceptions of the purchaser, and indicated their potential romantic interest in the purchaser. The influence of the relative price of the chosen product was also investigated. Compared to luxury purchasers, eco-friendly purchasers were ascribed greater warmth, competence, and good partner traits, but less physical appeal, and they were preferred for long-term but not short-term relationships. The social costs and benefits of "going green" are discussed in light of their implications for environmental sustainability efforts.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites.
Suzuki, Takeshi
2012-10-26
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites
Suzuki, Takeshi
2012-01-01
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies. PMID:26466730
NASA Astrophysics Data System (ADS)
Rushi, B. R.; Ellenburg, W. L.; Adams, E. C.; Flores, A.; Limaye, A. S.; Valdés-Pineda, R.; Roy, T.; Valdés, J. B.; Mithieu, F.; Omondi, S.
2017-12-01
SERVIR, a joint NASA-USAID initiative, works to build capacity in Earth observation technologies in developing countries for improved environmental decision making in the arena of: weather and climate, water and disasters, food security and land use/land cover. SERVIR partners with leading regional organizations in Eastern and Southern Africa, Hindu Kush-Himalaya, Mekong region, and West Africa to achieve its objectives. SERVIR develops hydrological applications to address specific needs articulated by key stakeholders and daily rainfall estimates are a vital input for these applications. Satellite-derived rainfall is subjected to systemic biases which need to be corrected before it can be used for any hydrologic application such as real-time or seasonal forecasting. SERVIR and the SWAAT team at the University of Arizona, have co-developed an open-source and user friendly tool of rainfall bias correction approaches for SPPs. Bias correction tools were developed based on Linear Scaling and Quantile Mapping techniques. A set of SPPs, such as PERSIANN-CCS, TMPA-RT, and CMORPH, are bias corrected using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data which incorporates ground based precipitation observations. This bias correction tools also contains a component, which is included to improve monthly mean of CHIRPS using precipitation products of the Global Surface Summary of the Day (GSOD) database developed by the National Climatic Data Center (NCDC). This tool takes input from command-line which makes it user-friendly and applicable in any operating platform without prior programming skills. This presentation will focus on this bias-correction tool for SPPs, including application scenarios.
Sánchez, Óscar J; Cardona, Carlos A
2012-01-01
In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pheromone-Based Pest Management in China: Past, Present, and Future Prospects.
Cui, Gen Zhong; Zhu, Junwei Jerry
2016-07-01
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologies for the integrated pest management. However, in China, similar research lagged 15 to 20 years and was not initiated until the late 1980s. In this review, we present the early history of pheromone research that has led to the current practical applications in China, particularly in the development of pheromone-based pest management products. We also provide information regarding the current status of pheromone-based product manufacturing, marketing, and regulatory issues related to local semiochemical industries, which may be useful to other international companies interested in pursuing business in China. In addition, we share some research topics that represent new directions of the present pheromone research to explore novel tools for advancing semiochemical-based pest management in China.
Valorization of winery waste vs. the costs of not recycling.
Devesa-Rey, R; Vecino, X; Varela-Alende, J L; Barral, M T; Cruz, J M; Moldes, A B
2011-11-01
Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimes also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income. Copyright © 2011 Elsevier Ltd. All rights reserved.
Snyders, Janus; van Wyk, Elmarie; van Zyl, Hendra
2010-01-01
The Web and Media Technologies Platform (WMTP) of the South African Medical Research Council (MRC) conducted a pilot project amongst community radio stations in South Africa. Based on previous research done in Africa WMTP investigated the following research question: How reliable is the content of health information broadcast by community radio stations? The main objectives of the project were to determine the 1) intervals of health slots on community radio stations, 2) sources used by community radio stations for health slots, 3) type of audio products needed for health slots, and 4) to develop a user friendly Web site in response to the stations' needs for easy access to audio material on health information.
Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo
2018-05-11
Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rasta, IM; Susila, IDM; Subagia, IWA
2018-01-01
The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.
Pike, Emily C.; Fowler, Beth; LeGrand, Sara; Parsons, Jeffrey T.; Bull, Sheana S.; Wilson, Patrick A.; Wohl, David A.; Hightow-Weidman, Lisa B.
2013-01-01
Abstract Young black men who have sex with men (MSM) bear a disproportionate burden of HIV. Rapid expansion of mobile technologies, including smartphone applications (apps), provides a unique opportunity for outreach and tailored health messaging. We collected electronic daily journals and conducted surveys and focus groups with 22 black MSM (age 18–30) at three sites in North Carolina to inform the development of a mobile phone-based intervention. Qualitative data was analyzed thematically using NVivo. Half of the sample earned under $11,000 annually. All participants owned smartphones and had unlimited texting and many had unlimited data plans. Phones were integral to participants' lives and were a primary means of Internet access. Communication was primarily through text messaging and Internet (on-line chatting, social networking sites) rather than calls. Apps were used daily for entertainment, information, productivity, and social networking. Half of participants used their phones to find sex partners; over half used phones to find health information. For an HIV-related app, participants requested user-friendly content about test site locators, sexually transmitted diseases, symptom evaluation, drug and alcohol risk, safe sex, sexuality and relationships, gay-friendly health providers, and connection to other gay/HIV-positive men. For young black MSM in this qualitative study, mobile technologies were a widely used, acceptable means for HIV intervention. Future research is needed to measure patterns and preferences of mobile technology use among broader samples. PMID:23565925
Can I Be Like Marie Curie? Making Science More Friendly to Girls in India.
ERIC Educational Resources Information Center
Mukherjee, Amithabha; Varma, Vijaya S.; Malevri, Maria
2001-01-01
Discusses the educational discrimination females face in India. Explains the Scientific and Technological Literacy (STL) initiative recognized by the United Nations Educational, Scientific and Cultural Organization (UNESCO) and a project targeted to make science friendly for girls in India. (Author/YDS)
NASA Astrophysics Data System (ADS)
Gabriel, Paramo; Adrian, Benitez
2014-07-01
Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production.
The prospect of nuclear energy in Türkiye especially after Fukushima accident
NASA Astrophysics Data System (ADS)
Şahin, Sümer
2014-09-01
Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MWel. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100th anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.
Family Friendly Policies in STEM Departments: Awareness and Determinants
ERIC Educational Resources Information Center
Su, Xuhong; Bozeman, Barry
2016-01-01
Focused on academic departments in science, technology, engineering, and mathematics (STEM) fields in the United States, we attempt to map department chairs' awareness of family friendly policies and investigate possible determinants of their knowledge levels. Based on a sample of STEM department chairs in American research universities, we find…
Maintaining Moore's law: enabling cost-friendly dimensional scaling
NASA Astrophysics Data System (ADS)
Mallik, Arindam; Ryckaert, Julien; Mercha, Abdelkarim; Verkest, Diederik; Ronse, Kurt; Thean, Aaron
2015-03-01
Moore's Law (Moore's Observation) has been driving the progress in semiconductor technology for the past 50 years. The semiconductor industry is at a juncture where significant increase in manufacturing cost is foreseen to sustain the past trend of dimensional scaling. At N10 and N7 technology nodes, the industry is struggling to find a cost-friendly solution. At a device level, technologists have come up with novel devices (finFET, Gate-All-Around), material innovations (SiGe, Ge) to boost performance and reduce power consumption. On the other hand, from the patterning side, the relative slow ramp-up of alternative lithography technologies like EUVL and DSA pushes the industry to adopt a severely multi-patterning-based solution. Both of these technological transformations have a big impact on die yield and eventually die cost. This paper is aimed to analyze the impact on manufacturing cost to keep the Moore's law alive. We have proposed and analyzed various patterning schemes that can enable cost-friendly scaling. We evaluated the impact of EUVL introduction on tackling the high cost of manufacturing. The primary objective of this paper is to maintain Moore's scaling from a patterning perspective and analyzing EUV lithography introduction at a die level.
Multiphase organic synthesis in microchannel reactors.
Kobayashi, Juta; Mori, Yuichiro; Kobayashi, Shū
2006-07-17
"Miniaturization" is one of the most important aspects in today's technology. Organic chemistry is no exception. The search for highly effective, controllable, environmentally friendly methods for preparing products is of prime importance. The development of multiphase organic reactions in microchannel reactors has gained significant importance in recent years to allow novel reactivity, and has led to many fruitful results that are not attainable in conventional reactors. This Focus Review aims to shed light on how effectively multiphase organic reactions can be conducted with microchannel reactors by providing examples of recent remarkable studies, which have been grouped on the basis of the phases involved.
Space Product Development (SPD)
2003-06-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
Wealth generation through recycling of material for reuse
NASA Astrophysics Data System (ADS)
Chukwudum, Okechukw John; Patience I., E.
2018-06-01
Management of solid waste needs appropriate technology, which is economically affordable, socially accepted and environmentally friendly. The public needs to be sensitized on the potential wealth that their inorganic and organic wastes contain. The paper deals with the idea of recycling as a means of solid waste treatment and explores. In developing countries, where standards are often lower and raw materials very expensive, there is a wider scope for use of recycled material. The range of products varies from building materials to shoes, home to office equipment, sewage pipe to beauty aids. Recyclingand reuse issues overlap a range of disciplines.
5 CFR 2635.702 - Use of public office for private gain.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the endorsement of any product, service or enterprise, or for the private gain of friends, relatives..., financial or otherwise, to himself or to friends, relatives, or persons with whom the employee is affiliated... his relative. Example 2: An employee of the Department of Commerce was asked by a friend to determine...
The Day-to-Day Co-Production of Ageing in Place.
Procter, Rob; Greenhalgh, Trisha; Wherton, Joe; Sugarhood, Paul; Rouncefield, Mark; Hinder, Sue
We report findings from a study that set out to explore the experience of older people living with assisted living technologies and care services. We find that successful 'ageing in place' is socially and collaboratively accomplished - 'co-produced' - day-to-day by the efforts of older people, and their formal and informal networks of carers (e.g. family, friends, neighbours). First, we reveal how 'bricolage' allows care recipients and family members to customise assisted living technologies to individual needs. We argue that making customisation easier through better design must be part of making assisted living technologies 'work'. Second, we draw attention to the importance of formal and informal carers establishing and maintaining mutual awareness of the older person's circumstances day-to-day so they can act in a concerted and coordinated way when problems arise. Unfortunately, neither the design of most current assisted living technologies, nor the ways care services are typically configured, acknowledges these realities of ageing in place. We conclude that rather than more 'advanced' technologies, the success of ageing in place programmes will depend on effortful alignments in the technical, organisational and social configuration of support.
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
Arevalo-Gallegos, Alejandra; Ahmad, Zanib; Asgher, Muhammad; Parra-Saldivar, Roberto; Iqbal, Hafiz M N
2017-06-01
A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Masaazi, Fred M.
2015-01-01
This article addresses the need to develop a friendly and productive Language learning environment (FPLE) using the learners as a resource in schools in Uganda. This is in light of the persistent challenging reality that the teaching and learning of languages in schools appears to be still largely traditional, teacher-centered and…
User-Friendly Tools for Random Matrices: An Introduction
2012-12-03
T 2011 , Oliveira 2010, Mackey et al . 2012, ... Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 47 To learn more... E...the matrix product Y = AΩ 3. Construct an orthonormal basis Q for the range of Y [Ref] Halko –Martinsson–T, SIAM Rev. 2011 . Joel A. Tropp, User-Friendly...concentration inequalities...” with L. Mackey et al .. Submitted 2012. § “User-Friendly Tools for Random Matrices: An Introduction.” 2012. See also
2017-01-01
Antitick plants and related ethnoknowledge/ethnopractices with potential for integrated tick control and management strategies to improve livestock production are reviewed. About 231 plants reviewed showed a variety of bioactive properties, namely, being toxic, repellent, antifeedant, and antiovipositant and ability to immobilize target tick species. These ethnobotanical substances are potentially useful in developing sustainable, efficient, and effective antitick agents suitable for rural livestock farmers. Majority of these plants are holistic in action, economically affordable, user friendly, easily adaptable and accessible, and environmentally friendly and help develop community-driven tick control interventions well suited to local conditions and specific to different livestock communities. Such a multipurpose intervention best fits the recent ascendancy of individual livestock owners as the key players in tick control programmes, particularly following the withdrawal of subsidies accorded to tick control programmes by most African government agencies since mid-1980s. However, scientific validation of antitick ethnobotanicals on their efficacy and formulation of packages easily handled by local communities is necessary to achieve a significantly increased use of such remedies. It is envisaged that the results of validation may lead to the discovery of effective and affordable antitick products. The effectiveness of these “best bets” ethnopractices can be greatest, if they are appropriately blended with conventional technologies. PMID:28798806
WORKSHOP ON MINING IMPACTED NATIVE AMERICAN LANDS CD
Multimedia Technology is an exciting mix of cutting-edge Information Technologies that utilize a variety of interactive structures, digital video and audio technologies, 3-D animation, high-end graphics, and peer-reviewed content that are then combined in a variety of user-friend...
Heerwagen, Lennart R.; Christensen, Tove; Sandøe, Peter
2013-01-01
Simple Summary Increased consumption of animal welfare-friendly products is suggested as one way of addressing public worries about the welfare of farm animals. However, the factors that drive and limit markets for animal welfare-friendly products are poorly understood. Based on an analysis of market for grass milk in Denmark, we conclude that successful cases of market-driven improvements in animal welfare require the joint presence of a number of positive drivers as well as low consumption barriers. Abstract Citizens in many European countries urge that the welfare of farm animals should be improved. Policy-makers propose that this could, at least to some extent, be achieved through increased consumption of animal products produced under labeling schemes guaranteeing higher standards of animal welfare. Yet considerable uncertainties exist about the ability of the market to promote animal welfare. So far the consumption of most welfare-friendly products has been limited, and the impact of driving and limiting factors is poorly understood. Reviewing market studies, we identify the factors that have shaped the relatively successful market for grass milk in Denmark. We conclude that the positive drivers such as an appealing animal welfare attribute and animal welfare being bundled with other qualities are essentially the same as those operating in connection with less successful animal welfare-friendly products. It is therefore to be expected that other animal welfare-friendly food products marketed via “natural behaviors” in the farm animals will catch the interest of consumers. However, grass milk consumption has been supported by proper labeling, ready availability and low price premiums as well as multifaceted public support. This suggests that successful cases require the joint presence of a number of positive drivers as well as low consumption barriers. PMID:26487414
Boboescu, Iulian Zoltan; Gherman, Vasile Daniel; Lakatos, Gergely; Pap, Bernadett; Bíró, Tibor; Maróti, Gergely
2016-03-01
The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Favre, Leonardo Cristian; Dos Santos, Cristina; López-Fernández, María Paula; Mazzobre, María Florencia; Buera, María Del Pilar
2018-11-01
Thyme (Thymus vulgaris) has been demonstrated to extend the shelf-life of food products, being also a potential source of bioactive compounds. The aim of this research was to optimize the ultrasound assisted extraction employing β-cyclodextrin aqueous solutions as no-contaminant technology and Response Surface Methodology to obtain thyme extracts with the maximum antioxidant capacity. The optimal extraction conditions were: a solution of β-ciclodextrin 15 mM, an ultrasonic treatment time of 5.9 min at a temperature of 36.6 °C. They resulted in an extract with a polyphenolic content of 189.3 mg GAE/mL, an antioxidant activity (DPPH) of 14.8 mg GAE/mL, and ferric reducing/antioxidant power (FRAP) of 3.3 mg GAE/mL. Interestingly, the extract demonstrated to inhibit the production of Maillard browning products and can be considered a potential antiglycant agent. The obtained data is important for developing eco-friendly technologies in order to obtain natural antioxidant extracts with a potential inhibitory capacity of Maillard glycation reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin
2017-10-01
This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Bao, Jie; Ryu, Dewey D Y
2007-09-01
Polymerase chain reaction (PCR) and other PCR applications for DNA synthesis require deoxynucleoside triphosphates (dNTP) as the essential precursors and substrates. Currently, the dNTP is commercially produced by a chemical method which is environmentally hazardous and costly due to its low yields in both the synthetic reaction and purification processes. In this study, a enzyme technology for the total integrated biosynthesis of all dNTP components is presented. The bioprocess technology developed and reported here involves two sequential enzymatic phosphorylation reactions coupled with the cofactor regeneration starting from deoxynucleoside monophosphates (dNMP) to deoxynucleoside diphosphates (dNDP) in the first reaction step and to dNTP in the second reaction step in the same bioreactor. The four genes encoding these deoxynucleoside monophosphate kinases were cloned into the recombinant E. coli and expressed using the recombinant E. coli strains. The reaction mechanisms and kinetics of the four kinase enzymes are studied and reported. The total enzymatic syntheses of the four dNTP products were carried out in four separate operations under the high substrate concentrations which emulate the practical application. The optimal process conditions were carefully investigated and complete conversion of dNMP to dNTP at high substrate concentration have been achieved. The purity and quality of dNTP products obtained from this work were analyzed and found to be at least equivalent or better than the commercially available dNTP products. The PCR application of dNTP products obtained from this work were also evaluated for isolating and amplifying genes of different sizes from different organisms. The PCR performance test also showed an equivalent quality as compared to the commercially available dNTP. The bioprocess technology developed and reported here for production of dNTP will provide economically competitive and environmentally friendly viable technology for the industry and research community as compared to the chemical technology currently in use.
Khan, A R; Al-Awadi, L; Al-Rashidi, M S
2016-06-01
Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.
Technology and Education: Friends or Foes?
ERIC Educational Resources Information Center
Pelton, Joseph N.
The population explosion and developments in information technology have created a powerful need for technological advancement on a global scale. Such advancement must come through education, and such education, given the size and breadth of the need, is best realized through multimedia instruction and distance education. Communications…
The prospect of nuclear energy in Türkiye especially after Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şahin, Sümer, E-mail: ssahin@atilim.edu.tr
2014-09-30
Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MW{sub el}. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100{sup th} anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency onmore » foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.« less
Teaching and Learning "False Friends": A Review of Some Useful Resources
ERIC Educational Resources Information Center
Varela, Maria Luisa Roca
2011-01-01
False friends are words in two languages that are similar in form but different in meaning (e.g. English "library" "place for reading and borrowing books" vs Spanish "libreria" "bookshop"). From the point of view of EFL teaching and learning, false friends are important because they lead us to errors in L2 production and comprehension (e.g. "I am…
Removing ammonium from water and wastewater using cost-effective adsorbents: A review.
Huang, Jianyin; Kankanamge, Nadeeka Rathnayake; Chow, Christopher; Welsh, David T; Li, Tianling; Teasdale, Peter R
2018-01-01
Ammonium is an important nutrient in primary production; however, high ammonium loads can cause eutrophication of natural waterways, contributing to undesirable changes in water quality and ecosystem structure. While ammonium pollution comes from diffuse agricultural sources, making control difficult, industrial or municipal point sources such as wastewater treatment plants also contribute significantly to overall ammonium pollution. These latter sources can be targeted more readily to control ammonium release into water systems. To assist policy makers and researchers in understanding the diversity of treatment options and the best option for their circumstance, this paper produces a comprehensive review of existing treatment options for ammonium removal with a particular focus on those technologies which offer the highest rates of removal and cost-effectiveness. Ion exchange and adsorption material methods are simple to apply, cost-effective, environmentally friendly technologies which are quite efficient at removing ammonium from treated water. The review presents a list of adsorbents from the literature, their adsorption capacities and other parameters needed for ammonium removal. Further, the preparation of adsorbents with high ammonium removal capacities and new adsorbents is discussed in the context of their relative cost, removal efficiencies, and limitations. Efficient, cost-effective, and environmental friendly adsorbents for the removal of ammonium on a large scale for commercial or water treatment plants are provided. In addition, future perspectives on removing ammonium using adsorbents are presented. Copyright © 2017. Published by Elsevier B.V.
Evaluation of Virginia's first heated bridge.
DOT National Transportation Integrated Search
2000-12-01
This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...
Perceived naturalness and evoked disgust influence acceptance of cultured meat.
Siegrist, Michael; Sütterlin, Bernadette; Hartmann, Christina
2018-05-01
Cultured meat could be a more environment- and animal-friendly alternative to conventional meat. However, in addition to the technological challenges, the lack of consumer acceptance could be a major barrier to the introduction of cultured meat. Therefore, it seems wise to take into account consumer concerns at an early stage of product development. In this regard, we conducted two experiments that examined the impact of perceived naturalness and disgust on consumer acceptance of cultured meat. The results of Experiment 1 suggest the participants' low level of acceptance of cultured meat because it is perceived as unnatural. Moreover, informing participants about the production of cultured meat and its benefits has the paradoxical effect of increasing the acceptance of traditional meat. Experiment 2 shows that how cultured meat is described influences the participants' perception. Thus, it is important to explain cultured meat in a nontechnical way that emphasizes the final product, not the production method, to increase acceptance of this novel food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Production of fermented chestnut purees by lactic acid bacteria.
Blaiotta, G; Di Capua, M; Coppola, R; Aponte, M
2012-09-03
The objective of this study was to develop a new chestnut-based puree, in order to seasonally adjust the offer and use the surplus of undersized production, providing, at the same time, a response to the growing demand for healthy and environmentally friendly products. Broken dried chestnuts have been employed to prepare purees to be fermented with six different strains of Lactobacillus (Lb.) rhamnosus and Lactobacillus casei. The fermented purees were characterized by a technological and sensorial point of view, while the employed strains were tested for their probiotic potential. Conventional in vitro tests have indicated the six lactobacilli strains as promising probiotic candidates; moreover, being the strains able to grow and to survive in chestnut puree at a population level higher than 8 log₁₀ CFU/mL along 40 days of storage at 4 °C, the bases for the production of a new food, lactose-free and with reduced fat content, have been laid. Copyright © 2012 Elsevier B.V. All rights reserved.
Methodology for assessing laser-based equipment
NASA Astrophysics Data System (ADS)
Pelegrina-Bonilla, Gabriel; Hermsdorf, Jörg; Thombansen, Ulrich; Abels, Peter; Kaierle, Stefan; Neumann, Jörg
2017-10-01
Methodologies for the assessment of technology's maturity are widely used in industry and research. Probably the best known are technology readiness levels (TRLs), initially pioneered by the National Aeronautics and Space Administration (NASA). At the beginning, only descriptively defined TRLs existed, but over time, automated assessment techniques in the form of questionnaires emerged in order to determine TRLs. Originally TRLs targeted equipment for space applications, but the demands on industrial relevant equipment are partly different in terms of, for example, overall costs, product quantities, or the presence of competitors. Therefore, we present a commonly valid assessment methodology with the aim of assessing laser-based equipment for industrial use, in general. The assessment is carried out with the help of a questionnaire, which allows for a user-friendly and easy accessible way to monitor the progress from the lab-proven state to the application-ready product throughout the complete development period. The assessment result is presented in a multidimensional metric in order to reveal the current specific strengths and weaknesses of the equipment development process, which can be used to direct the remaining development process of the equipment in the right direction.
Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting
NASA Astrophysics Data System (ADS)
Kabra, Dinesh; Lu, Li Ping; Vaynzof, Yana; Song, Myounghoon; Snaith, Henry J.; Friend, Richard H.
2011-07-01
Conventional photovoltaic technology will certainly contribute this century, but to generate a significant fraction of our global power from solar energy, a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon-based solution processible organic semiconductors with power conversion efficiency as high as ˜8.2%, which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices, like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible, flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics, PLED and research path towards realization electrically injectable organic laser diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldon, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. With the increase in emissions, it is necessary to promote and develop alternative energy technologies to meet the needs in a sustainable and eco-friendly manner. Furthermore, Nuclear and Renewable Energy Integration (NREI) may offer an effective and environmentally responsible energy solution that enhances energy use and productivity while reducing emissions. Our study of the NREI system provides background on sustainability and its drivers, outlines methods of developing a strong sustainability platform, and assesses sustainability based on the fundamental pillars of economy, environment, andmore » society—all of which aim to promote future sustainable development.« less
Duncan, R G; Saperia, D; Dulbandzhyan, R; Shabot, M M; Polaschek, J X; Jones, D T
2001-01-01
The advent of the World-Wide-Web protocols and client-server technology has made it easy to build low-cost, user-friendly, platform-independent graphical user interfaces to health information systems and to integrate the presentation of data from multiple systems. The authors describe a Web interface for a clinical data repository (CDR) that was moved from concept to production status in less than six months using a rapid prototyping approach, multi-disciplinary development team, and off-the-shelf hardware and software. The system has since been expanded to provide an integrated display of clinical data from nearly 20 disparate information systems.
Advancements for continuous miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiscor, S.
2007-06-15
Design changes and new technology make the modern continuous miner more user friendly. Two of the major manufacturers, Joy Mining Machinery and DBT, both based near Pittsburgh, PA, USA, have recently acquired other OEMs to offer a greater product line. Joy's biggest development in terms of improving cutting time is the FACEBOSS Control System which has an operator assistance element and Joy Surface Reporting Software (JSRP). Joy's WetHead continuous miners have excellent performance. DBT is researching ways to make the machines more reliable with new drive systems. It has also been experimenting with water sprays to improve dust suppression. 4more » photos.« less
Why Acting Environmentally-Friendly Feels Good: Exploring the Role of Self-Image
Venhoeven, Leonie A.; Bolderdijk, Jan Willem; Steg, Linda
2016-01-01
Recent research suggests that engagement in environmentally-friendly behavior can feel good. Current explanations for such a link do not focus on the nature of environmentally-friendly behavior itself, but rather propose well-being is more or less a side-benefit; behaviors that benefit environmental quality (e.g., spending one's money on people rather than products) also tend to make us feel good. We propose that the moral nature of environmentally-friendly behavior itself may elicit positive emotions as well, because engaging in this behavior can signal one is an environmentally-friendly and thus a good person. Our results show that engagement in environmentally-friendly behavior can indeed affect how people see themselves: participants saw themselves as being more environmentally-friendly when they engaged in more environmentally-friendly behavior (Study 1). Furthermore, environmentally-friendly behavior resulted in a more positive self-image, more strongly when it was voluntarily engaged in, compared to when it was driven by situational constraints (Study 2). In turn, the more environmentally-friendly (Study 1) and positive (Study 2) people saw themselves, the better they felt about acting environmentally-friendly. Together, these results suggest that the specific self-signal that ensues from engaging in environmentally-friendly behavior can explain why environmentally-friendly actions may elicit a good feeling. PMID:27933017
Ribonucleic acid interference (RNAi) Technology for control of Asian citrus psyllid - You Tube
USDA-ARS?s Scientific Manuscript database
RNAi, Ribonucleic acid interference, function and application are described to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry....
Teacher-Friendly Technology Applications for the Twenty-First Century Learner
ERIC Educational Resources Information Center
Coyne, Jaime; Potter, Jalene; Hollas, Tori
2013-01-01
The purpose of this article is to present recent technology applications for teachers as well as share important techniques in setting up a classroom environment that will prepare their students as twenty-first century learners.
Access to mobile communications by older people.
Nguyen, Toan; Irizarry, Carol; Garrett, Rob; Downing, Andrew
2015-06-01
To investigate how older people effectively identify, select and learn to use mobile communications technologies to enhance communication and safety, and support independent living. One hundred and fifty-three older South Australians participated in a purpose-designed survey questionnaire. Older people relied on family and friends for information and advice (76%), and their children's assistance with buying (45%) and learning to use (48%) new technology. The most preferred learning method was face-to-face training (56%). Less than half (44%) were interested in trying out new designs/applications, functions and capabilities that could assist with independent living. The highest need was for personal security and emergencies (88%). Findings suggest that the family and friends of older people play an important role in identifying, selecting and learning to use mobile communication technologies. The safety and emergency capabilities of mobile communications technologies were more important than having functions that could assist with independent living. © 2014 ACOTA.
Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems
NASA Astrophysics Data System (ADS)
Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.
2014-12-01
Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.
Technological challenges for boosting coal production with environmental sustainability.
Ghose, Mrinal K
2009-07-01
The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.
Safety benefits of implementing adaptive signal control technology : survey results.
DOT National Transportation Integrated Search
2013-01-01
The safety benefits and costs associated with implementing adaptive signal control technology (ASCT) were evaluated in : this study. A user-friendly online survey was distributed to 62 agencies that had implemented ASCT in the United States. : Twenty...
The General Atomics low speed urban Maglev technology development program
DOT National Transportation Integrated Search
2003-01-01
The overall objective of this program is to develop magnetic levitation technology that is a cost effective, reliable, : and environmentally friendly option for urban mass transportation in the United States. Maglev is a revolutionary : approach in w...
Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review
Ravindran, Rajeev; Jaiswal, Amit K.
2016-01-01
Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years. PMID:28952592
Liang, Tzu-Wen; Wang, San-Lang
2015-01-01
This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity) of the exopolysaccharides (EPSs) from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields. PMID:25837984
Geodecision system for traceability and sustainable production of beef cattle in Brazil
NASA Astrophysics Data System (ADS)
Victoria, D. D.; Andrade, R. G.; Bolfe, L.; Batistella, M.; Pires, P. P.; Vicente, L. E.; Visoli, M. C.
2011-12-01
Beef cattle production sustainability depends on incorporating innovative tools and technologies which are easy to comprehend, economically viable, and spatially explicit into the registration of precise, reliable data about production practices. This research developed from the needs and demands of food safety and food quality in extensive beef cattle production within the scope of the policies of Southern Cone and European Union's countries. Initially, the OTAG project (Operational Management and Geodecisional Prototype to Track and Trace Agricultural Production) focused on the development of a prototype traceability of cattle. The aim for the project's next phase is to enhance the electronic devices used in the identification and positioning of the animals, and the incorporation of more management and sanitary information. Besides, we intend to structure a database that enables the inclusion of greater amount of geospatial information linked to environmental aspects, such as water deficit, vegetation vigour, degradation indices of pasture areas, among others. For the extraction of knowledge, and the presentation of the results, we propose the development of a friendly interface to facilitate the exploration of the textual, tabular and geospatial information useful for the user.
Liang, Tzu-Wen; Wang, San-Lang
2015-04-01
This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity) of the exopolysaccharides (EPSs) from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields.
Dental impressions using 3D digital scanners: virtual becomes reality.
Birnbaum, Nathan S; Aaronson, Heidi B
2008-10-01
The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.
Copper disinfection ban causes storm.
Lester, Alan
2013-05-01
Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK.
NASA Astrophysics Data System (ADS)
Yu, W. S.; Luo, C. S.; Wei, Q. F.; Zheng, Y. M.; Cao, C. Z.
2017-12-01
To deal with the “last kilometer” problem during the agricultural science and technology information service, the USB flash disk “Zixuntong”, which integrated five major consulting channels, i.e., telephone consultation, mutual video, message consultation, online customer service and QQ group was developed on the bases of capital experts and date resources. Since the products have the computer and telephone USB interface and are combined with localized information resources, users can obtain useful information on any terminal without the restriction of network. Meanwhile, the cartoon appearance make it friendly and attractive to people. The USB flash disk was used to provide agricultural expert consulting services and obtained a good preliminary application achievement. Finally, we concluded the creative application of USB flash disk in agricultural consulting services and prospected the future development direction of agricultural mobile consultation.
NASA Astrophysics Data System (ADS)
Holter, Borre; Kamfjord, Thor G.; Fossum, Richard; Fagerberg, Ragnar
2000-08-01
The Norwegian based company PolyDisplayR ASA, in collaboration with the Norwegian Army Material Command and SINTEF, has refined, developed and shown with color and black/white technology demonstrators an electrically addressed Smectic A reflective LCD technology featuring: (1) Good contrast, all-round viewing angle and readability under all light conditions (no wash-out in direct sunlight). (2) Infinite memory -- image remains without power -- very low power consumption, no or very low radiation ('silent display') and narrow band updating. (3) Clear, sharp and flicker-free images. (4) Large number of gray tones and colors possible. (5) Simple construction and production -- reduced cost, higher yield, more robust and environmentally friendly. (6) Possibility for lighter, more robust and flexible displays based on plastic substrates. The results and future implementation possibilities for cockpit and soldier-system displays are discussed.
[Progress in synthetic biology of pinocembrin].
Guo, Lei; Kong, Jianqiang
2015-04-01
Pinocembrin, belonging to flavanons, was isolated from various plants. Pinocembrin has a variety of pharmacological activities, such as neuroprotective effect, antimicrobial activity, and antioxidant efficacy. Pinocembrin was approved as class I drugs to its phase II clinical trial by CFDA in 2009, mainly used for the treatment of ischemic stroke. As a promising compound, the manufacturing technologies of pinocembrin, including chemical synthesis, extraction from plant and synthetic biology, have attracted many attentions. Compared with the first two technologies, synthetic biology has many advantages, such as environment-friendly and low-cost. Construction of biosynthetic pathway in microorganism offers promising results for large scale pinocembrin production by fermentation after taking lots of effective strategies. This article reviews some of recent strategies in microorganisms to improve the yield, with focus on the selection of appropriate the key enzyme sources, the supply of precursors and cofactors by microorganisms, the choice of substance and the level of the key enzyme expression.
Efficient extraction strategies of tea (Camellia sinensis) biomolecules.
Banerjee, Satarupa; Chatterjee, Jyotirmoy
2015-06-01
Tea is a popular daily beverage worldwide. Modulation and modifications of its basic components like catechins, alkaloids, proteins and carbohydrate during fermentation or extraction process changes organoleptic, gustatory and medicinal properties of tea. Through these processes increase or decrease in yield of desired components are evident. Considering the varied impacts of parameters in tea production, storage and processes that affect the yield, extraction of tea biomolecules at optimized condition is thought to be challenging. Implementation of technological advancements in green chemistry approaches can minimize the deviation retaining maximum qualitative properties in environment friendly way. Existed extraction processes with optimization parameters of tea have been discussed in this paper including its prospects and limitations. This exhaustive review of various extraction parameters, decaffeination process of tea and large scale cost effective isolation of tea components with aid of modern technology can assist people to choose extraction condition of tea according to necessity.
Integration of Supportive Design Features and Technology
ERIC Educational Resources Information Center
Lazaros, Edward J.; Ahmadi, Reza
2008-01-01
Integrating supportive design features and technology into the home are excellent ways to plan to make a home "age-friendly." When an immediate need occurs for eliminating barriers in an existing home, supportive design features and technology will most often need to be examined, and some form of implementation will need to take place. While…
Heat Transfer in Structures: The Development of a M/S/T Construction Experience.
ERIC Educational Resources Information Center
Wescott, Jack; Leduc, Alan
1994-01-01
The objectives of this construction activity are to develop user-friendly instructional modules that apply concepts of mathematics, science, and technology to solve energy problems; develop an exchange between faculty of technology teacher education and manufacturing technology programs; and serve as a pilot for the development of future modules.…
Incentives To Encourage Worker-Friendly Organizations.
ERIC Educational Resources Information Center
Schmidt, Diane E.; Duenas, Gilbert
2002-01-01
Examines quality of life issues for families and the policies and options available to employers to create a family- and worker-friendly organization. Discusses ways in which employers have improved productivity by providing dependent care and flexible working conditions. (Contains 28 references.) (JOW)
Haque, Effi; Taniguchi, Hiroaki; Hassan, Md. Mahmudul; Bhowmik, Pankaj; Karim, M. Rezaul; Śmiech, Magdalena; Zhao, Kaijun; Rahman, Mahfuzur; Islam, Tofazzal
2018-01-01
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Haque, Effi; Taniguchi, Hiroaki; Hassan, Md Mahmudul; Bhowmik, Pankaj; Karim, M Rezaul; Śmiech, Magdalena; Zhao, Kaijun; Rahman, Mahfuzur; Islam, Tofazzal
2018-01-01
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
García-Betances, Rebeca I.; Cabrera-Umpiérrez, María Fernanda; Ottaviano, Manuel; Pastorino, Matteo; Arredondo, María T.
2016-01-01
Despite the speedy evolution of Information and Computer Technology (ICT), and the growing recognition of the importance of the concept of universal design in all domains of daily living, mainstream ICT-based product designers and developers still work without any truly structured tools, guidance or support to effectively adapt their products and services to users’ real needs. This paper presents the approach used to define and evaluate parametric cognitive models that describe interaction and usage of ICT by people with aging- and disability-derived functional impairments. A multisensorial training platform was used to train, based on real user measurements in real conditions, the virtual parameterized user models that act as subjects of the test-bed during all stages of simulated disabilities-friendly ICT-based products design. An analytical study was carried out to identify the relevant cognitive functions involved, together with their corresponding parameters as related to aging- and disability-derived functional impairments. Evaluation of the final cognitive virtual user models in a real application has confirmed that the use of these models produce concrete valuable benefits to the design and testing process of accessible ICT-based applications and services. Parameterization of cognitive virtual user models allows incorporating cognitive and perceptual aspects during the design process. PMID:26907296
The most common friend first immunization
NASA Astrophysics Data System (ADS)
Nian, Fu-Zhong; Hu, Cha-Sheng
2016-12-01
In this paper, a standard susceptible-infected-recovered-susceptible(SIRS) epidemic model based on the Watts-Strogatz (WS) small-world network model and the Barabsi-Albert (BA) scale-free network model is established, and a new immunization scheme — “the most common friend first immunization” is proposed, in which the most common friend’s node is described as being the first immune on the second layer protection of complex networks. The propagation situations of three different immunization schemes — random immunization, high-risk immunization, and the most common friend first immunization are studied. At the same time, the dynamic behaviors are also studied on the WS small-world and the BA scale-free network. Moreover, the analytic and simulated results indicate that the immune effect of the most common friend first immunization is better than random immunization, but slightly worse than high-risk immunization. However, high-risk immunization still has some limitations. For example, it is difficult to accurately define who a direct neighbor in the life is. Compared with the traditional immunization strategies having some shortcomings, the most common friend first immunization is effective, and it is nicely consistent with the actual situation. Project supported by the National Natural Science Foundation of China (Grant No. 61263019), the Program for International Science and Technology Cooperation Projects of Gansu Province, China (Grant No. 144WCGA166), and the Program for Longyuan Young Innovation Talents and the Doctoral Foundation of Lanzhou University of Technology, China.
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.
2013-01-01
The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.
What's in Your Techno-Future? Vendors Share Their Views.
ERIC Educational Resources Information Center
Gerber, Carole
1995-01-01
Examines vendors' views on the future of CD-ROM technology. Topics include the library role, single point access, costs, tape backup, user-friendly library automation systems and databases, improved quality, the growth of Internet access, and perspectives on technology in schools. (AEF)
Ribonucleic acid interference (RNAi) technology for control of Asian citrus psyllid
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry. Two part Video presentation....
2004-04-15
Alabama Department of Transportation workers utilize Convergent Spray Technology to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
2004-04-15
A workman inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
2004-04-15
Alabama Department of Transportation workers utilize Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
Genetic engineering and sustainable production of ornamentals: current status and future directions.
Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate
2012-07-01
Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.
Pini, Martina; Bondioli, Federica; Montecchi, Rita; Neri, Paolo; Ferrari, Anna Maria
2017-01-15
Recently, there has been a rise in the interest in nanotechnology due to its enormous potential for the development of new products and applications with higher performance and new functionalities. However, while nanotechnology might revolutionize a number of industrial and consumer sectors, there are uncertainties and knowledge gaps regarding toxicological effects of this emerging science. The goal of this research concerns the implementation into Life Cycle Assessment (LCA) of preliminary frameworks developed to evaluate human toxicity and exposure factors related to the potential nanoparticle releases that could occur during the life cycle steps of a functionalized building material. The present LCA case study examines the ecodesign of nanoTiO 2 functionalized porcelain stoneware tile production. The aim of this investigation is to manufacture new eco-friendly products in order to protect human health and ecosystem quality and to offer the market, materials with higher technological properties obtained by the addition of specific nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation.
Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau
2018-05-01
Lipase-catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low-cost feedstocks that contain water and free fatty acids, for example non-edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano-materials and the use of whole-cell biocatalysts, as well as the use of cell-surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.
Ren, Nan-Qi; Zhao, Lei; Chen, Chuan; Guo, Wan-Qian; Cao, Guang-Li
2016-09-01
With the increasing energy crisis and rising concern over climate change, the development of clean alternative energy sources is of great importance. Biohydrogen produced from lignocellulosic biomass is a promising candidate, because of its positives such as readily available, no harmful emissions, environment friendly, efficient, and renewable. However, obstacles still exist to enable the commercialization of biological hydrogen production from lignocellulosic biomass. Thus the objective of this work is to provide update information about the recent progress on lignocellulosic hydrogen conversion via dark fermentation. In this review, the most important technologies associated with lignocellulosic hydrogen fermentation were covered. Firstly, pretreatment methods for better utilization of lignocellulosic biomass are presented, at the same time, hydrolysis methods assisting to achieve efficient hydrogen fermentation were discussed. Afterwards, issues related to bioprocesses for hydrogen production purposes were presented. Additionally, the paper gave challenges and new insights of lignocellulosic biohydrogen production. Copyright © 2016. Published by Elsevier Ltd.
Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.
Rama Mohan, S
2016-09-01
Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Student-Initiated Use of Technology--Friend and Foe
ERIC Educational Resources Information Center
Wiklund, Matilda; Andersson, Annika
2018-01-01
A multitude of different technologies are used in school today. Some are provided by the school and others are brought by the individual teacher or student. In addition, different applications are available. In this study the focus is on student-initiated uses of technology and how it conditions learning. Based on a case study with surveys,…
ERIC Educational Resources Information Center
Uehara, Suwako; Noriega, Edgar Josafat Martinez
2016-01-01
The availability of user-friendly coding software is increasing, yet teachers might hesitate to use this technology to develop for educational needs. This paper discusses studies related to technology for educational uses and introduces an evaluation application being developed. Through questionnaires by student users and open-ended discussion by…
Supporting Friendly Atmosphere in a Classroom by Technology Implementation
ERIC Educational Resources Information Center
Lukaš, Mirko
2014-01-01
Extremely rapid development of information technology and the lack of monopoly in the technological market have resulted in a sudden price reduction of the informatic equipment and gadgets enabling them to be used in all segments of a human life, hence the education as well. In the modern, digital era it is almost impossible to make any…
Proposals for the Future of JCAS Doctrine
2008-01-01
close proximity to friendly forces. GPS-equipped aircraft and munitions, laser range finders/designators and digital system capabilities are...Executive Summary 1 Introduction 2 IIistory of Close Air Support 3 Current Views on JCAS 15 JCAS Doctrine io Conclusion 22 Bibliography 27" r Executive...to be refined. An over-reliance on technology in an evolving Joint Close Air Support (JCAS) dogma increases airpower’s risk of fratricide to friendly
NASA Technical Reports Server (NTRS)
Larsen, D. Gail; Schwieder, Paul R.
1993-01-01
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
NASA Astrophysics Data System (ADS)
Larsen, D. Gail; Schwieder, Paul R.
1993-02-01
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
NASA Astrophysics Data System (ADS)
Larsen, D. G.; Schwieder, P. R.
Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE video conferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hub monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel costs throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.
Challenging/interesting lignin times
Ragauskas, Arthur J.
2016-08-31
Anyone who is working in the fuels industry knows that we are living in challenging times. On a personal note, I recall that ~5 years ago, some of my children's friends headed out into the petroleum industry to start their careers and several have now returned because of the retrenching work force. Despite these challenging times, the cellulosic ethanol industry continues to develop commercial operations, but with today's cost structure, biofuels production facilities have certainly slowed their pace of development and roll-out. Furthermore, the biological technology platform for biorefining plant polysaccharides to biofuels has been reported to have an intrinsicmore » advantage, if it can convert its waste lignin stream to value-added components.[1]« less
Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures
NASA Technical Reports Server (NTRS)
Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Environmentally friendly corrosion preventive compounds for ground support structures
NASA Astrophysics Data System (ADS)
Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
USDA-ARS?s Scientific Manuscript database
Economical and environmentally friendly pretreatment technologies are required for commercial conversion of lignocellulosic feedstocks to fermentable sugars for fermentation to biofuels. In this paper, a novel pretreatment technology was developed for conversion of sugarcane bagasse into ethanol usi...
New Website Helps You Find What You Need | Poster
By Karen Surabian, Contributing Writer The National Cancer Institute’s Technology Transfer Center (NCI’s TTC) recently launched a redesign of its website. New graphics, color scheme, and updated features provide a user-friendly environment for finding information related to technology transfer at NCI.
Educational Technology and the Open University.
ERIC Educational Resources Information Center
Sharples, Mike
1982-01-01
Care must be taken to select technology appropriate to the teaching task in distance education. Five principles of media selection are: increasing student-system interaction, matching the medium with the materials, reducing duplication, choosing the most direct channel, and developing user-friendly systems. Interactiveness and efficiency of…
2004-04-15
A NASA official inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
Empowering the rural poor through EO products and services—An impact assessment
NASA Astrophysics Data System (ADS)
Diwakar, P. G.; Ranganath, B. K.; Gowrisankar, D.; Jayaraman, V.
2008-07-01
With the advent of technology in the form of space-based imaging, network-based computation and information technology, the focus has shifted to how these technologies could change the livelihoods of rural community and put them on the path of developmental processes. Many rural villages in India do not have right kind of infrastructure and connectivity, which makes it difficult for any developmental program to perform successfully. This makes them more vulnerable and further cut off from the mainstream developmental programs in the country. There are large tracts of arid and semi-arid lands in many parts of the country, which requires scientific inputs and improved farming practices for sustenance of poor communities under tough conditions. Unless some simple and cost-effective methods are evolved and taken to the field level, it is difficult to see positive developments in such areas and stop people from migrating to different areas for livelihood options. Integrated watershed development program with innovative practices and holistic approach could bring about positive changes in such poverty stricken areas that host vulnerable groups who experience the hardship due to poor local natural resources conditions and living standards. An optimal combination of space technology and information technology has been successfully used, through participatory methods, to empower the rural poor in realizing better livelihood possibilities. An attempt is made in this paper to find solutions for such problematic areas with some innovative tools and techniques that involve user-friendly delivery of EO products and services for the benefit of the rural community and help them in decision making at local level.
The way ahead--the new technology in an old society.
Sharma, Manju; Swarup, Renu
2003-01-01
Biotechnology is one of the most important scientific and technological revolutions of the last century and has greatly benefited various aspects of human life. The potentials are enormous and many breakthroughs have already been achieved in the area of healthcare, food, agricultural products and environmental production. The developments in this important area provide immediate benefits to mankind and offer environmentally friendly technologies for sustainable development. The Department of Biotechnology, Government of India, set up in 1986, has played an important catalytic role in promoting this revolutionary field. Research and development, technology validation and demonstration, technology transfer, human resource development, setting up of Centers of Excellence and promoting industry-academia interactions have been some of the major achievements during the last 15 years. A unique feature of this Department is the strong interaction with scientists and institutes across the country to promote biotechnology research and development efforts for commercialization and also to benefit the rural population for socio-economic development. A large number of research institutes/universities and organizations across the country have been supported in the areas of agriculture, healthcare, environment and industry. In addition, basic research has also been an important thrust area. In order to ensure that the benefits of biotechnology reach the masses at large, a very stringent biosafety mechanism has been adopted. India is a country rich in biodiversity with two hot spots and has a strong base of expertise available in nearly all fields--thus biotechnology could flourish leading to a Bioindustrial Revolution. We are today poised to be the leaders in this field in the 21st Century.
He, Yunxia; Xu, Zhenming
2014-04-01
A large quantity of waste electrical and electronic equipment (WEEE) is being generated because technical innovation promotes the unceasing renewal of products. China's household appliances and electronic products have entered the peak of obsolescence. Due to lack of technology and equipment, recycling of WEEE is causing serious environment pollution. In order to achieve the harmless disposal and resource utilization of WEEE, researchers have performed large quantities of work, and some demonstration projects have been built recently. In this paper, the treatment techniques of typical WEEE components, including printed circuit boards, refrigerator cabinets, toner cartridges, cathode ray tubes, liquid crystal display panels, batteries (Ni-Cd and Li-ion), hard disk drives, and wires are reviewed. An integrated recycling system with environmentally friendly and highly efficient techniques for processing WEEE is proposed. The orientation of further development for WEEE recycling is also proposed.
Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production
NASA Astrophysics Data System (ADS)
Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan
2017-11-01
Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.
Effects of Incorporation of Jackfruit Rind Powder on Chemical and Functional Properties of Bread.
Felli, Reza; Yang, Tajul Aris; Abdullah, Wan Nadiah Wan; Zzaman, Wahidu
2018-03-01
Nowadays, there is a rising interest towards consuming health beneficial food products. Bread-as one of the most popular food products-could be improved to 'healthy bread' by addition of ingredients high in protein, dietary fiber and low in calorie. Incorporating Jackfruit rind powder (JRP) as a by-product rich in dietary fiber in bread, could not only provide health beneficial bread products, but also lead to develop an environmental friendly technology by solving the problem of waste disposal of residues. In this study, addition of jackfruit rind powder (JRP) as a high dietary fiber and functional ingredient in bread was examined. The results showed that incorporation of JRP in bread improved functional properties of flour such as Oil Holding Capacity (OHC), Water Holding Capacity (WHC) and pasting properties. Addition of 5%, 10% and 15% of JRP in wheat flour caused significantly (p < 0.05) higher insoluble, soluble and total dietary fiber in flour and bread products. Results from proximate composition indicated that all breads substituted with JRP, contained significantly (p < 0.05) higher fiber, moisture and fat. Obtained results confirmed that the JRP has great potential in development of functional foods especially functional bread products.
Jeon, Yongwon; Kim, Sunghyun
2016-12-08
A microbial electrolysis cell, though considered as a promising, environmentally friendly technology for hydrogen production, suffers from concomitant production of methane. The high hydrogen/methane ratio at the initial operation stage decreases with time. Here we report for the first time the photoassisted microbial electrolysis cell (MEC) for persistent hydrogen production using polyaniline nanofibers as a cathode. Under 0.8 V external bias and laboratory fluorescent light illumination in a single-chamber MEC, continuous hydrogen production from acetate at a rate of 1.78 mH2 3 m -3 d -1 with 79.2 % overall hydrogen recovery was achieved with negligible methane formation for six months. Energy efficiencies based on input electricity as well as input electricity plus substrate were 182 and 66.2 %, respectively. This was attributed to the p-type-semiconductor characteristics of polyaniline nanofibers in which photoexcited electrons are used to reduce protons at the surface and holes are reduced with electrons originating from acetate oxidation at the anode. This method can be extended to microbial wastewater treatment for hydrogen production. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions.
Rahman, Ziaur; Rashid, Naim; Nawab, Javed; Ilyas, Muhammad; Sung, Bong Hyun; Kim, Sun Chang
2016-06-01
Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals.
Assessing the value of silicone and hydrocolloid products in stoma care.
Berry, Jeanette; Black, Pat; Smith, Rory; Stuchfield, Barbara
Intact skin among many other functions provides a protective barrier between the body and its environment, which is critical in regulating transepidermal water loss (Wilkinson and Moor, 1982). The frequent application and removal of adhesives can damage skin by stripping away the outer epidermal layers. Older people, very young children and those with an underlying skin disorder may be particularly at risk (Gibelli et al, 1999; Lyons and Smith, 2003). Hydrocolloid adhesives, which hold moisture in the adhesive mass, are more skin friendly than the acrylic adhesives they now replace and have now become the material of choice for ostomy flanges and flange extenders (Smith et al, 2007). To understand stoma care nurses' awareness of the value of technologically advanced silicone and hydrocolloid products, the authors undertook a nationwide postal survey. The survey, commissioned by four companies in the United Kingdom, who make silicone and hydrocolloid products that can be used in stoma care, were keen to evaluate the awareness of these products to confirm their importance to the patient and why they should be appropriately categorized for reimbursement by the Department of Health.
Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder
2015-01-01
Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download. PMID:26029379
Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder
2015-01-01
Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.
Ng, Eng-Poh; Goh, Jia-Yi; Ling, Tau Chuan; Mukti, Rino R
2013-03-04
Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.
2013-01-01
Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level. PMID:23497184
NASA Astrophysics Data System (ADS)
Ng, Eng-Poh; Goh, Jia-Yi; Ling, Tau Chuan; Mukti, Rino R.
2013-03-01
Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.
Freight pipelines: Current status and anticipated future use
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
This report is issued by the Task Committee on Freight Pipelines, Pipeline Division, ASCE. Freight pipelines of various types (including slurry pipeline, pneumatic pipeline, and capsule pipeline) have been used throughout the world for over a century for transporting solid and sometimes even package products. Recent advancements in pipeline technology, aided by advanced computer control systems and trenchless technologies, have greatly facilitated the transportation of solids by pipelines. Today, in many situations, freight pipelines are not only the most economical and practical means for transporting solids, they are also the most reliable, safest and most environmentally friendly transportation mode. Increasedmore » use of underground pipelines to transport freight is anticipated in the future, especially as the technology continues to improve and surface transportation modes such as highways become more congested. This paper describes the state of the art and expected future uses of various types of freight pipelines. Obstacles hindering the development and use of the most advanced freight pipeline systems, such as the pneumatic capsule pipeline for interstate transport of freight, are discussed.« less
Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants.
Panz, Katarzyna; Miksch, Korneliusz
2012-12-30
The large-scale production and processing of munitions has led to vast environmental pollution by the compounds TNT(2,4,6-trinitrotoluene), RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Explosives contain these toxic and mutagenic xenobiotics, which are stable in the environment and recalcitrant to remediation. Certain technologies used thus far (incineration, adsorption, advanced oxidations processes, chemical reduction etc.) have not only been very expensive but also caused additional environmental problems. During recent decades, the most popular technologies have been biotechnological methods, such as phytoremediation, which is relatively cheap, environmentally friendly, and a highly accepted solution by society. The most promising of these technologies is the usage of genetically modified plants, which combines the ability of bacterial genes to detoxify compounds with the phytoremediation benefits of plants. This paper is a review related to the latest and most important achievements in the field of phytoremediation of water and soil contaminated with TNT, RDX and HMX. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dahmash, Eman Z; Mohammed, Afzal R
2015-01-01
Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Chawade, Aakash; Armoniené, Rita; Berg, Gunilla; Brazauskas, Gintaras; Frostgård, Gunilla; Geleta, Mulatu; Gorash, Andrii; Henriksson, Tina; Himanen, Kristiina; Ingver, Anne; Johansson, Eva; Jørgensen, Lise Nistrup; Koppel, Mati; Koppel, Reine; Makela, Pirjo; Ortiz, Rodomiro; Podyma, Wieslaw; Roitsch, Thomas; Ronis, Antanas; Svensson, Jan T; Vallenback, Pernilla; Weih, Martin
2018-03-14
The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate. © 2018 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Group Colocation Behavior in Technological Social Networks
Brown, Chloë; Lathia, Neal; Mascolo, Cecilia; Noulas, Anastasios; Blondel, Vincent
2014-01-01
We analyze two large datasets from technological networks with location and social data: user location records from an online location-based social networking service, and anonymized telecommunications data from a European cellphone operator, in order to investigate the differences between individual and group behavior with respect to physical location. We discover agreements between the two datasets: firstly, that individuals are more likely to meet with one friend at a place they have not visited before, but tend to meet at familiar locations when with a larger group. We also find that groups of individuals are more likely to meet at places that their other friends have visited, and that the type of a place strongly affects the propensity for groups to meet there. These differences between group and solo mobility has potential technological applications, for example, in venue recommendation in location-based social networks. PMID:25148037
Learn More in Less Time: Fundamental Aquatic Skill Acquisition via Video Technology
ERIC Educational Resources Information Center
Roberts, Tom; Brown, Larry
2008-01-01
Recent advances in the technology field have changed the way video support should be considered. It is now much more user-friendly and feasible than it was as recently as 10 years ago. In part because of these significant strides, current literature supports the use of video technology in the classroom. This article focuses on the innovative use…
Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Rousseau, Aymeric
2016-04-01
The U.S. Department of Energy (DOE) Vehicle Technologies Program (VTP) is developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
[Development and perspective of bio-based chemical fiber industry].
Li, Zengjun
2016-06-25
Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.
Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.
Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin
2017-07-01
Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patel, Thaneswer; Sanjog, J.; Karmakar, Sougata
2016-09-01
Computer-aided Design (CAD) and Digital Human Modeling (DHM) (specialized CAD software for virtual human representation) technologies endow unique opportunities to incorporate human factors pro-actively in design development. Challenges of enhancing agricultural productivity through improvement of agricultural tools/machineries and better human-machine compatibility can be ensured by adoption of these modern technologies. Objectives of present work are to provide the detailed scenario of CAD and DHM applications in agricultural sector; and finding out means for wide adoption of these technologies for design and development of cost-effective, user-friendly, efficient and safe agricultural tools/equipment and operator's workplace. Extensive literature review has been conducted for systematic segregation and representation of available information towards drawing inferences. Although applications of various CAD software have momentum in agricultural research particularly for design and manufacturing of agricultural equipment/machinery, use of DHM is still at its infancy in this sector. Current review discusses about reasons of less adoption of these technologies in agricultural sector and steps to be taken for their wide adoption. It also suggests possible future research directions to come up with better ergonomic design strategies for improvement of agricultural equipment/machines and workstations through application of CAD and DHM.
Giwa, Adewale
2017-11-01
The environmental impacts resulting from the cradle-to-grave life cycles of Enteromorpha prolifera macroalgae and cattle manure biorefineries are assessed and compared. Sensitivity analysis is carried out to evaluate the response of the impacts to changes in biogas application by using Simapro 7.3.3. Three scenarios are considered in the biorefineries. In the first and second scenarios, the biogas produced is considered to be used for electricity production and transportation, respectively. In the third scenario, the biogas is considered to be recycled back to the systems. Process energy requirements and transportation of inputs contribute the largest share of the overall impacts. The cattle manure biorefinery is slightly more eco-friendly than the macroalgae biorefinery in Scenarios 1 and 2 because it requires more eco-friendly inputs. However, the macroalgae biorefinery becomes more eco-friendly than the cattle manure biorefinery in Scenario 3 because macroalgae require less energy and water for biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haeckel, M.; Bialas, J.; Wallmann, K. J.
2009-12-01
Gas hydrates occur in nature at all active and passive continental margins as well as in permafrost regions, and vast amounts of natural gas are bound in those deposits. Geologists estimate that twice as much carbon is bound in gas hydrates than in any other fossil fuel reservoir, such as gas, oil and coal. Hence, natural gas hydrates represent a huge potential energy resource that, in addition, could be utilized in a CO2-neutral and therefore environmentally friendly manner. However, the utilization of this natural treasure is not as easy as the conventional production of oil or natural gas and calls for new and innovative techniques. In the framework of the large-scale collaborative research project SUGAR (Submarine Deposits of Gas Hydrates - Exploration, Production and Transportation), we aim to produce gas from methane hydrates and to sequester carbon dioxide from power plants and other industrial sources as CO2 hydrates in the same host sediments. Thus, the SUGAR project addresses two of the most pressing and challenging topics of our time: development of alternative energy strategies and greenhouse gas mitigation techniques. The SUGAR project is funded by two federal German ministries and the German industry for an initial period of three years. In the framework of this project new technologies starting from gas hydrate exploration techniques over drilling technologies and innovative gas production methods to CO2 storage in gas hydrates and gas transportation technologies will be developed and tested. Beside the performance of experiments, numerical simulation studies will generate data regarding the methane production and CO2 sequestration in the natural environment. Reservoir modelling with respect to gas hydrate formation and development of migration pathways complete the project. This contribution will give detailed information about the planned project parts and first results with focus on the production methods.
Wang, Jianbo; Xu, Zhenming
2017-03-15
up to now, the recycling of e-waste should be developed towards more depth and refinement to promote industrial production of e-waste resource recovery. in the present study, the recycling of aluminum electrolytic capacitors (AECs) from waste printed circuit boards (WPCBs) is focused on. First of all, AECs are disassembled from WPCBs by a self-designed machine; meanwhile, the disassembled AECs are subjected to an integrated process, involving heating treatment, crushing, sieving, and magnetic separating, to recover aluminum and iron; finally, the off-gas and residue generated during the aforementioned processes are analyzed to evaluate environmental risks. The results indicate that 96.52% and 98.68% of aluminum and iron, respectively, can be recovered from AECs under the optimal condition. The off-gas generated during the process is mainly composed of elements of C, H, and O, indicating that the off-gas is non-toxic and could be re-utilized as clean energy source. The residue according with toxicity characteristics leaching standard can be landfilled safely in sanitary landfill site. The present study provides an environmentally friendly and industrial application potential strategy to recycle AECs to promote e-waste recycling industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Health Professionals' Attitudes and Educational Needs regarding New Food Processing Technologies
ERIC Educational Resources Information Center
Delgado-Gutierrez, C.; Bruhn, C. M.
2008-01-01
This project evaluates the attitudes of food and health professionals to 3 new food processing technologies that have been developed to respond to consumer demands such as superior taste, longer shelf life, higher nutritional content, health benefits, and environment-friendly processing. Educational brochures for high pressure (HP), pulsed…
Pheromone-based pest management in china: past, present and future prospects
USDA-ARS?s Scientific Manuscript database
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...
In Memoriam: Charles Shive | Poster
Earlier this summer, NCI at Frederick lost a friend and colleague, Charles Shive, to cancer. Mr. Shive, better known to most as Charlie, was a systems architect and information technology manager for the Data Science and Information Technology Program, focused on the re-engineering initiative of the Clinical Trials Reporting System.
Flywheel energy storage system focus of display
replacement for batteries For more information contact: e:mail: Public Affairs Golden, Colo., March 20, 1997 environmentally-friendly, advanced electricity storage technology that can replace lead acid batteries. A flywheel technologies for replacing conventional lead acid batteries as energy storage systems for a variety of
Valorisation of post-sorption materials: Opportunities, strategies, and challenges.
Harikishore Kumar Reddy, D; Vijayaraghavan, K; Kim, Jeong Ae; Yun, Yeoung-Sang
2017-04-01
Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m 2 /g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical evaluation not only delivers essential contextual information to researchers in the field but also stimulates new ideas and applications to further advance post-sorbent applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Product environmental claims include a wide range of marketing claims, labels, declarations, statements and reports that are generally intended to distinguish a product as environmentally friendly or ‘green’. They differ from organizational environmental claims in the...
NASA Astrophysics Data System (ADS)
Peters, Jens F.; Weil, Marcel
2017-10-01
Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.
Effects of Incorporation of Jackfruit Rind Powder on Chemical and Functional Properties of Bread
Felli, Reza; Yang, Tajul Aris; Abdullah, Wan Nadiah Wan; Zzaman, Wahidu
2018-01-01
Nowadays, there is a rising interest towards consuming health beneficial food products. Bread–as one of the most popular food products–could be improved to ‘healthy bread’ by addition of ingredients high in protein, dietary fiber and low in calorie. Incorporating Jackfruit rind powder (JRP) as a by-product rich in dietary fiber in bread, could not only provide health beneficial bread products, but also lead to develop an environmental friendly technology by solving the problem of waste disposal of residues. In this study, addition of jackfruit rind powder (JRP) as a high dietary fiber and functional ingredient in bread was examined. The results showed that incorporation of JRP in bread improved functional properties of flour such as Oil Holding Capacity (OHC), Water Holding Capacity (WHC) and pasting properties. Addition of 5%, 10% and 15% of JRP in wheat flour caused significantly (p < 0.05) higher insoluble, soluble and total dietary fiber in flour and bread products. Results from proximate composition indicated that all breads substituted with JRP, contained significantly (p < 0.05) higher fiber, moisture and fat. Obtained results confirmed that the JRP has great potential in development of functional foods especially functional bread products. PMID:29644019
Chu, Ka Him; Ye, Liqun; Wang, Wei; Wu, Dan; Chan, Donald Ka Long; Zeng, Cuiping; Yip, Ho Yin; Yu, Jimmy C; Wong, Po Keung
2017-09-01
Photocatalytic hydrogen (H 2 ) production was performed by visible-light-driven (VLD) ternary photocatalyst, zinc oxysulfide (ZnO 0.6 S 0.4 ) in the presence of sulfide/sulfite (S 2 2- /SO 3 2- ) sacrificing system, with simultaneous azo-dye Reactive Violet 5 (RV5) degradation. Enhancement in both RV5 degradation and H 2 production was achieved, with the promotion of H 2 production after decolorization of RV5. The effect of initial concentration of RV5 was found to be influential on the enhancement of H 2 during the simultaneous processes, with a maximum of 110% increase of H 2 produced. The mechanism of the simultaneous system was investigated by scavenger study and intermediate analysis, including Fourier transform-infrared (FTIR) spectroscopy and total organic carbon (TOC) analysis. It was confirmed that the partial degradation of RV5 and presence of dynamic organic intermediates contributed to the enhancement in H 2 production. The present study revealed the feasibility of developing VLD photocatalysis as a sustainable and environmentally friendly technology for concurrent organic pollutant degradation with energy generation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Benzhan; Shen, Chen; Gao, Huiying; Zhu, Liya; Shao, Jie; Mao, Li
2017-12-01
The ubiquitous distribution of halogenated aromatic compounds (XAr) coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been considered as an "environmentally-friendly" technology for the remediation and destruction of such recalcitrant and highly toxic XAr. During our study on the mechanism of metal-independent production of hydroxyl radicals (OH) by halogenated quinones and H 2 O 2 , we found, unexpectedly, that an unprecedented OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H 2 O 2 and tetrachloro-p-benzoquinone, the major carcinogenic metabolite of the widely used wood preservative pentachlorophenol. Further investigations showed that, in all OH-generating systems, CL can also be produced not only by pentachlorophenol and all other halogenated phenols, but also by all XAr tested. A systematic structure-activity relationship study for all 19 chlorophenolic congeners showed that the CL increased with an increasing number of Cl-substitution in general. More importantly, a relatively good correlation was observed between the formation of quinoid/semiquinone radical intermediates and CL generation. Based on these results, we propose that OH-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual CL production; and a rapid, sensitive, simple, and effective CL method was developed not only to detect and quantify trace amount of XAr, but also to provide useful information for predicting the toxicity or monitoring real-time degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on halogenated aromatic persistent organic pollutants. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Eberle, J.; Gerlach, R.; Hese, S.; Schmullius, C.
2012-04-01
To provide earth observation products in the area of Siberia, the Siberian Earth System Science Cluster (SIB-ESS-C) was established as a spatial data infrastructure at the University of Jena (Germany), Department for Earth Observation. This spatial data infrastructure implements standards published by the Open Geospatial Consortium (OGC) and the International Organizsation for Standardization (ISO) for data discovery, data access, data processing and data analysis. The objective of SIB-ESS-C is to faciliate environmental research and Earth system science in Siberia. The region for this project covers the entire Asian part of the Russian Federation approximately between 58°E - 170°W and 48°N - 80°N. To provide discovery, access and analysis services a webportal was published for searching and visualisation of available data. This webportal is based on current web technologies like AJAX, Drupal Content Management System as backend software and a user-friendly surface with Drag-n-Drop and further mouse events. To have a wide range of regular updated earth observation products, some products from sensor MODIS at the satellites Aqua and Terra were processed. A direct connection to NASA archive servers makes it possible to download MODIS Level 3 and 4 products and integrate it in the SIB-ESS-C infrastructure. These data can be downloaded in a file format called Hierarchical Data Format (HDF). For visualisation and further analysis, this data is reprojected, converted to GeoTIFF and global products clipped to the project area. All these steps are implemented as an automatic process chain. If new MODIS data is available within the infrastructure this process chain is executed. With the link to a MODIS catalogue system, the system gets new data daily. With the implemented analysis processes, timeseries data can be analysed, for example to plot a trend or different time series against one another. Scientists working in this area and working with MODIS data can make use of this service over the webportal. Both searching manually the NASA archive for MODIS data, processing these data automatically and then download it for further processing and using the regular updated products.
Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming
ERIC Educational Resources Information Center
Azad, Abdul-Majeed; Kesavan, Sathees
2006-01-01
An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…
Going Green: Environmentally Friendly Schools Pay Off
ERIC Educational Resources Information Center
LaFee, Scott
2008-01-01
The notion of campuses that are energy-efficient and ecologically friendly, and that provide a healthy, productive, comfortable environment for students and staff has been around for some time. But for many educators, green schools have remained more good intention than proven approach, a huge risk that few school leaders could--or would--take.…
Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin
2013-09-01
Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-05
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-01-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244
NASA Astrophysics Data System (ADS)
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
The Paradoxical Linkage Of Social Alienation With Technological Advance
NASA Astrophysics Data System (ADS)
Whelchel, Robert J.
1984-08-01
Popular, successful technology contains within itself certain principles which tend to alienate people from technology. A major contributor is user friendly design which produces estrangement by "hiding" the operative technology from the user. This alienation appears to be an irreducible residue of modern technology. This circumstance resonates with the current predominance of technology in our environment to produce a general feeling of estrangement from the world we inhabit. It thus appears prudent to develop strategies for coping with this phenomenon rather than unrealistically planning to eliminate it.
Generation of nano roughness on fibrous materials by atmospheric plasma
NASA Astrophysics Data System (ADS)
Kulyk, I.; Scapinello, M.; Stefan, M.
2012-12-01
Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.
Boldon, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; ...
2015-12-01
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. With the increase in emissions, it is necessary to promote and develop alternative energy technologies to meet the needs in a sustainable and eco-friendly manner. Furthermore, Nuclear and Renewable Energy Integration (NREI) may offer an effective and environmentally responsible energy solution that enhances energy use and productivity while reducing emissions. Our study of the NREI system provides background on sustainability and its drivers, outlines methods of developing a strong sustainability platform, and assesses sustainability based on the fundamental pillars of economy, environment, andmore » society—all of which aim to promote future sustainable development.« less
Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
Bories, Cecile; Borredon, Marie-Elisabeth; Vedrenne, Emeline; Vilarem, Gerard
2014-10-01
Today, clay bricks are facing technological challenges and are uncompetitive compared to materials such as concrete. Their performance must be improved if they are to stand up to the competition. Increasing environmental concerns over the accumulation of unmanaged wastes from agricultural or industrial productions have made these good candidates for incorporation into building materials to improve their performance. This process leads to the formation of pores in the bricks, producing lightweight and sustainable building materials. This paper reviews the different pore-forming agents from renewable or mineral resources as described in the literature. It also presents the impact of pore-forming agents on the physical, mechanical and thermal properties of clay bricks. Copyright © 2014 Elsevier Ltd. All rights reserved.
The need to know caregiver perspectives toward using smart home technology.
Giger, Jarod T; Markward, Martha
2011-01-01
This article reviews the literature on adults with serious mental illness, their caregivers, and smart home technology. The article provides compelling evidence for social workers to undertake research aimed at investigating caregivers' perceptions toward using smart home technology for care of adult family members or friends with a serious mental illness. Empirical support for using smart home technologies with adults with serious mental illness is provided, and recommendations for future social work research are offered.
Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice
NASA Astrophysics Data System (ADS)
Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing
2010-05-01
Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment amount of Novogro and B38, pH, water content, were optimized. Pot experiments showed that this combined technology could reduce the absorption of Cd for several vegetable species, and promote their growth. Finally, the technology was successfully applied to vegetable production in field, and the heavy metal absorption (mainly Cd and Hg) was reduced by 14-66%. This study provides an environment friendly remediation technology with low cost.
Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology.
Ghoshdastidar, Avik J; Tong, Anthony Z
2013-08-01
Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.
Colmenares, Juan Carlos; Luque, Rafael; Campelo, Juan Manuel; Colmenares, Fernando; Karpiński, Zbigniew; Romero, Antonio Angel
2009-01-01
Heterogeneous photocatalysis offer many possibilities for finding appropiate environmentally friendly solutions for many of the the problems affecting our society (i.e., energy issues). Researchers are still looking for novel routes to prepare solid photocatalysts able to transform solar into chemical energy more efficiently. In many developing countries, biomass is a major energy source, but currently such countries lack of the technology to sustainably obtain chemicals and/or fuels from it. The Roadmap for Biomass Technologies, authored by 26 leading experts from academia, industry, and government agencies, has predicted a gradual shift back to a carbohydrate-based economy. Biomass and biofuels appear to hold the key to satisfy the basic needs of our societies for the sustainable production of liquid fuels and high value-added chemicals without compromising the scenario of future generations. In this review, we aim to discuss various design routes for nanostructured photocatalytic solid materials in view of their applications in the selective transformation of lignocellulosic biomass to high value-added chemicals.
Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R
2015-11-01
Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-cleaning geopolymer concrete - A review
NASA Astrophysics Data System (ADS)
Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor
2016-06-01
Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.
Recent advances in yeast cell-surface display technologies for waste biorefineries.
Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko
2016-09-01
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers
Malusá, E.; Sas-Paszt, L.; Ciesielska, J.
2012-01-01
The increasing need for environmentaly friendly agricultural practices is driving the use of fertilizers based on beneficial microorganisms. The latter belong to a wide array of genera, classes, and phyla, ranging from bacteria to yeasts and fungi, which can support plant nutrition with different mechanisms. Moreover, studies on the interactions between plant, soil, and the different microorganisms are shedding light on their interrelationships thus providing new possible ways to exploit them for agricultural purposes. However, even though the inoculation of plants with these microorganisms is a well-known practice, the formulation of inocula with a reliable and consistent effect under field conditions is still a bottleneck for their wider use. The choice of the technology for inocula production and of the carrier for the formulation is key to their successful application. This paper focuses on how inoculation issues can be approached to improve the performance of beneficial microorganisms used as a tool for enhancing plant growth and yield. PMID:22547984
COINS: A composites information database system
NASA Technical Reports Server (NTRS)
Siddiqi, Shahid; Vosteen, Louis F.; Edlow, Ralph; Kwa, Teck-Seng
1992-01-01
An automated data abstraction form (ADAF) was developed to collect information on advanced fabrication processes and their related costs. The information will be collected for all components being fabricated as part of the ACT program and include in a COmposites INformation System (COINS) database. The aim of the COINS development effort is to provide future airframe preliminary design and fabrication teams with a tool through which production cost can become a deterministic variable in the design optimization process. The effort was initiated by the Structures Technology Program Office (STPO) of the NASA LaRC to implement the recommendations of a working group comprised of representatives from the commercial airframe companies. The principal working group recommendation was to re-institute collection of composite part fabrication data in a format similar to the DOD/NASA Structural Composites Fabrication Guide. The fabrication information collection form was automated with current user friendly computer technology. This work in progress paper describes the new automated form and features that make the form easy to use by an aircraft structural design-manufacturing team.
He, Ting; Zhu, Jiang; Nie, Yao; Hu, Rui; Wang, Ting; Li, Peiwu; Zhang, Qi; Yang, Yunhuang
2018-04-29
Mycotoxins, which are toxic, carcinogenic, and/or teratogenic, have posed a threat to food safety and public health. Sensitive and effective determination technologies for mycotoxin surveillance are required. Immunoassays have been regarded as useful supplements to chromatographic techniques. However, conventional antibodies involved in immunoassays are difficult to be expressed recombinantly and are susceptible to harsh environments. Nanobodies (or VHH antibodies) are antigen-binding sites of the heavy-chain antibodies produced from Camelidae. They are found to be expressed easily in prokaryotic or eukaryotic expression systems, more robust in extreme conditions, and facile to be used as surrogates for artificial antigens. These properties make them the promising and environmentally friendly immunoreagents in the next generation of immunoassays. This review briefly describes the latest developments in the area of nanobodies used in mycotoxin detection. Moreover, by integrating the introduction of the principle of nanobodies production and the critical assessment of their performance, this paper also proposes the prospect of nanobodies in the field of food safety in the foreseeable future.
Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci
2015-11-01
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
PREFACE: Modern Technologies in Industrial Engineering (ModTech2015)
NASA Astrophysics Data System (ADS)
Oanta, E.; Comaneci, R.; Carausu, C.; Placzek, M.; Cohal, V.; Topala, P.; Nedelcu, D.
2015-11-01
The dominant feature of the current stage of society development is the update, refinement and innovation of the technological processes and products whose ultimate goal is to satisfy the market requirements. New and modern technologies should be considered in terms of their applicability in industry while the materials can lead to an increase in the quality of the end products. Replacing the existing technologies with innovative and eco-efficient technologies can contribute to an added value increase in the production of new materials. Materials are one of the most dynamic and prospective fields, with applications in all other fields. The development of new advanced materials and technologies shall contribute to the procurement of a wide range of reliable products, with competitive prices and worldwide performance, high sensitivity and functionality, user-friendly and reduced energy consumption, for different industrial applications. Research in the field of advanced/intelligent materials supposes a fundamental, experimental, laboratory and technological research and its approach has to be linked to the application. This involves, even for the niche fields, complex projects which result in scientific issues in top journals, patents and functional models. The third edition of ModTech International Conference was held in Mamaia, Romania, between June 17-20, with the Professional Association in Modern Manufacturing Technologies, ModTech, as main organizer, and the Constanta Maritime University, Constanta, Romania, Silesian University of Technology, Gliwice, Poland, the Technical University of Chisinau, Republic of Moldova and the Donetsk National Technical University, Donetsk, Ukraine as co-organizers. The ModTech2015 International Conference brought together representatives of technology and materials manufacturers, various universities, professional associations and research institutes that exchanged the latest knowledge on the conference topics. This edition was attended by 140 participants from 17 countries. The authors and co-authors were from various countries worldwide, namely: Sweden, China, Switzerland, Romania, Serbia, Germany, Netherlands, Belgium, France, South Korea, Taiwan, Poland, USA, Slovenia, Turkey, Republic of Moldova, Russia, Finland, Japan, Ukraine, Portugal, Uzbekistan, Iraq, Italy and India. The Keynote Speakers were as follows: Prof. Esteban Broitman - Linkoping University, Sweden; Prof. Ziyi Ge - NIMTE, Chinese Academy of Sciences, Ningbo, China; Prof. Thomas Graule - EMPA, Switzerland; prof. Razvan Tamas - Constanta Maritime University, Romania; Prof. Rainer Gadow - University of Stuttgart, Germany; Prof. Marcel Van de Voorde - DELFT University of Technology, Netherlands; Prof. Chris Lacor - Vrije University, Brussels, Belgium; Prof. Fiqiri Hodaj - National Polytechnique Institute of Grenoble, France; Prof. Hong Seok Park - University of Ulsan, South Korea; Prof. Der-Jang Liaw - National Taiwan University of Science and Technology, Taiwan; Prof. Petrica Vizureanu - Gheorghe Asachi Technical University of Iasi, Romania. The main publications of ModTech2015 International Conference are as follows: IOP Conference Series: Materials Science and Engineering, United Kingdom, Indian Journal of Engineering & Materials Sciences (IJEMS) and International Journal of Modern Manufacturing Technologies (IJMMT).
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
Nanotechnology is now making it possible to create radically new tiny machines and sensors on par with the size of dust motes. This technology is rapidly progressing and will make profound impacts on the nation's global competitiveness. It promises to be a most pervasive technological advance, comparable to what computers did for an individual's…
Assistive Technology for Young Children: Creating Inclusive Learning Environments
ERIC Educational Resources Information Center
Sadao, Kathleen C.; Robinson, Nancy B.
2010-01-01
Assistive technology (AT) can help young children with disabilities fully participate in natural, inclusive learning environments--but many early childhood professionals don't get the training they need to harness the power of AT. Fill that gap with this unintimidating, reader-friendly resource, the go-to guide to recommended AT practice for…
The Culture of High Technology: Is It "Female Friendly?"
ERIC Educational Resources Information Center
Kelly, Jan Wallace
To better understand the complexity of organizational life as a cultural system whose members share particular values, attitudes, and ways of knowing, and to understand the role of women in this culture, a study was conducted using female managers at 12 high technology companies in California's "Silicon Valley." Informants were selected…
Developing Student Gifts and Talents Using Web-Based Resources
ERIC Educational Resources Information Center
Code, Kimberly P.
2007-01-01
Technology is an essential part of young people's lives. Students today are digital natives who cannot remember a time without electronic media and technologies. Children who use the Internet spend 37 percent less time watching television and 16 percent more time with friends and family. The Internet is an excellent resource for differentiating…
A Poster Experience: From Idea to Presentation
ERIC Educational Resources Information Center
Hires, Will
2010-01-01
This paper describes the creation of a poster for the poster session that was part of the ACRL Science and Technology Section program "Federal Friends: Creating Greater Access to and Support for Science and Technology Information," at the American Library Association Annual Conference in June 2010. Details about the making of the poster up to and…
5th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
ERIC Educational Resources Information Center
Borst Pauwels, H. W. J.; And Others
The integration of existing applications in hypermedia environments is a promising approach towards more flexible and user-friendly hypermedia learning materials. A hypermedia courseware editor, called HyDE (Hypermedia Document Editor) was developed using Microsoft Windows TM OLE technology. OLE (object Linking and Embedding) stands for an…
The Impact of New Technology on the Accounting Curriculum.
ERIC Educational Resources Information Center
Shaoul, Jean
This paper analyzes ways in which the new, relatively cheap, user friendly technology and associated software is changing the way that accounting is being taught. Techniques that have been available, in principle, for years, are now widely available. The newer techniques stress decision making for planning, and, to a lesser extent, control, in…
ASIT--A Problem Solving Strategy for Education and Eco-Friendly Sustainable Design
ERIC Educational Resources Information Center
Turner, Steve
2009-01-01
There is growing recognition of the role teaching and learning experiences in technology education can contribute to Education for Sustainable Development. It appears, however, that in the Technology Education classroom little or no change has been achieved to the practice of designing and problem solving strategies oriented towards sustainable…
Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing
2014-04-01
Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.
Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji
2016-10-20
There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
2017-04-06
including the Korean, Vietnam, and Persian Gulf Wars. However, as the nature of warfare and weaponry technology has transformed with the advent of precision...close support of friendly troops which demanded improved accuracy to reduce the chances of friendly casualties.3 By the advent of the Persian ...armored infantry vehicles, and air assets to locate, fix, and destroy Iraqi artillery and infantry in quick night-time strikes.5 The Persian Gulf
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Coevolution of farming and private property during the early Holocene.
Bowles, Samuel; Choi, Jung-Kyoo
2013-05-28
The advent of farming around 12 millennia ago was a cultural as well as technological revolution, requiring a new system of property rights. Among mobile hunter-gatherers during the late Pleistocene, food was almost certainly widely shared as it was acquired. If a harvested crop or the meat of a domesticated animal were to have been distributed to other group members, a late Pleistocene would-be farmer would have had little incentive to engage in the required investments in clearing, cultivation, animal tending, and storage. However, the new property rights that farming required--secure individual claims to the products of one's labor--were infeasible because most of the mobile and dispersed resources of a forager economy could not cost-effectively be delimited and defended. The resulting chicken-and-egg puzzle might be resolved if farming had been much more productive than foraging, but initially it was not. Our model and simulations explain how, despite being an unlikely event, farming and a new system of farming-friendly property rights nonetheless jointly emerged when they did. This Holocene revolution was not sparked by a superior technology. It occurred because possession of the wealth of farmers--crops, dwellings, and animals--could be unambiguously demarcated and defended. This facilitated the spread of new property rights that were advantageous to the groups adopting them. Our results thus challenge unicausal models of historical dynamics driven by advances in technology, population pressure, or other exogenous changes. Our approach may be applied to other technological and institutional revolutions such as the 18th- and 19th-century industrial revolution and the information revolution today.
Coevolution of farming and private property during the early Holocene
Bowles, Samuel; Choi, Jung-Kyoo
2013-01-01
The advent of farming around 12 millennia ago was a cultural as well as technological revolution, requiring a new system of property rights. Among mobile hunter–gatherers during the late Pleistocene, food was almost certainly widely shared as it was acquired. If a harvested crop or the meat of a domesticated animal were to have been distributed to other group members, a late Pleistocene would-be farmer would have had little incentive to engage in the required investments in clearing, cultivation, animal tending, and storage. However, the new property rights that farming required—secure individual claims to the products of one’s labor—were infeasible because most of the mobile and dispersed resources of a forager economy could not cost-effectively be delimited and defended. The resulting chicken-and-egg puzzle might be resolved if farming had been much more productive than foraging, but initially it was not. Our model and simulations explain how, despite being an unlikely event, farming and a new system of farming-friendly property rights nonetheless jointly emerged when they did. This Holocene revolution was not sparked by a superior technology. It occurred because possession of the wealth of farmers—crops, dwellings, and animals—could be unambiguously demarcated and defended. This facilitated the spread of new property rights that were advantageous to the groups adopting them. Our results thus challenge unicausal models of historical dynamics driven by advances in technology, population pressure, or other exogenous changes. Our approach may be applied to other technological and institutional revolutions such as the 18th- and 19th-century industrial revolution and the information revolution today. PMID:23671111
Schmid, Erwin; Sinabell, Franz
2007-02-01
The Common Agricultural Policy (CAP) was fundamentally reformed in 2003. From 2005, farmers will receive decoupled income support payments instead of production premiums if basic standards for environment, food safety, animal health and welfare are met. Farmers are likely to adjust production and management practices to the new policy framework. We describe how this reform fits into the EU strategy of making agricultural production more environmentally friendly by concentrating on the financial aspects of the reforms. Using an agricultural sector model for Austria, we show that the reform will further decrease agricultural outputs, reduce farm inputs, lessen nitrogen surpluses and make environmentally friendly management practices more attractive for farmers.
NASA Astrophysics Data System (ADS)
Jahandideh, Arash
Increasing attentions toward sustainable development, economic and environmental issues have led to many attempts at replacing the petroleum-based materials with renewables. Substitution of petroleum-based platforms with green alternative technologies is beneficiary in different ways. Using bio-renewables reduces the dependency of the national plastic industry to the petroleum resources and substantially promotes the environmental profile and sustainability of the product. It is expected that the emergence of the corn-based thermosetting industry generates substantial profits for the corn production sector. Developments in the emerging biobased thermosets are spectacular from a technological point of view. However, there are still several disadvantages associated with the current biobased thermosetting resins, e.g. low processability, environmental issues, expensive sources and poor thermomechanical properties. Use of natural fibers not only contributes to the production of a more environmentally friendly product, but also has advantages such as low-weight product and low manufacturing costs. The results of this study show a possibility of production of biocomposites made from natural fibers and star-shaped resin, synthesized from corn-based materials (lactic acid and itaconic acid) and different multihydroxyl core molecules. These resins were synthesized via two-steps strategy: polycondensation of the monomers with the core molecules followed by end-functionalization of the branches by methacrylic anhydride or itaconic acid. The results have shown that these resin are capable of competing with or even surpassing fossil fuel based resins in terms of cost and eco-friendliness aspect. Inexpensive biobased raw material, better environmental profile, low viscosity, and better processability of the matrix along with better thermomechanical properties of the produced biocomposites are of advantages expected for these systems.
Facile, eco-friendly, catalyst-free synthesis of polyfunctionalized quinoxalines.
Zhang, Yaohong; Luo, Mengqiang; Li, Yan; Wang, Hai; Ren, Xiaorong; Qi, Chenze
2018-02-01
A novel, facile and eco-friendly synthesis of quinoxalines from [Formula: see text] and 1,2-diamines was developed. An attractive feature of this protocol is that the desired products could be generated efficiently in water and without any catalyst, which is in accordance with the aim of green chemistry. A plausible mechanism has been proposed.
Saberi, Parya; Ming, Kristin; Dawson-Rose, Carol
2018-01-01
Given the consistent associations between younger age and numerous suboptimal clinical outcomes, there is a critical need for more research in youth living with human immunodeficiency virus (YLWH) and tailoring of health care delivery to the unique and complex needs of this population. The objective of this study was to examine the facilitators of and barriers to engagement in care among YLHW at the system and provider/staff level, as well as the barriers to using technology-based forms of communication with YLWH to improve retention and engagement in care. We conducted in-depth qualitative interviews with health care providers and staff members at the clinics and organizations serving YLWH in the San Francisco Bay Area. We interviewed 17 health care providers and staff members with a mean of 8 years of experience in providing clinical care to YLWH. Interviewees noted various facilitators of and barriers to engagement in care among YLWH, including the environment of the clinic (e.g., clinic location and service setting), provision of youth-friendly services (e.g., flexible hours and use of technology), and youth-friendly providers/staff (e.g., nonjudgmental approach). With regard to barriers to using technology in organizations and clinics, interviewees discussed the challenges at the system level (e.g., availability of technology, clinic capacity, and Health Insurance Portability and Accountability Act compliance), provider/staff level (e.g., time constraints and familiarity with technology), and youth level (e.g., changing of cellular telephones and relationship with provider/staff). Given the need for improved clinical outcomes among YLWH, our results can provide guidance for clinics and institutions providing care for this population to enhance the youth-friendliness of their services and examine their guidelines around the use of technology.
Natural production of biological optical systems
NASA Astrophysics Data System (ADS)
Choi, Seung Ho; Kim, Young L.
2015-03-01
Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.
Increasing water productivity on Vertisols: implications for environmental sustainability.
Jiru, Mintesinot; Van Ranst, Eric
2010-10-01
The availability and quality of irrigation water have become a serious concern because of global climate change and an increased competition for water by industry, domestic users and the environment. Therefore, exploring environmentally friendly water-saving irrigation strategies is essential for achieving food and environmental security. In northern Ethiopia, where traditional furrow irrigation is widely practiced, water mismanagement and its undesirable environmental impact are rampant. A 2-year field study was undertaken to compare the traditional irrigation management with surge and deficit irrigation practices on a Vertisol plot. Results have shown that surge and deficit irrigation practices increase water productivity by 62% and 58%, respectively, when compared to traditional management. The study also found out that these practices reduce the adverse environmental impacts (waterlogging and salinity) of traditional management by minimizing deep percolation and tail water losses. Total irrigation depth was reduced by 12% (for surge) and 27% (for deficit) when compared to traditional management. Based on the results, the study concluded that surge and deficit irrigation technologies not only improve water productivity but also enhance environmental sustainability. Copyright © 2010 Society of Chemical Industry.
The environmental impacts of foamed concrete production and exploitation
NASA Astrophysics Data System (ADS)
Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M.
2017-10-01
This paper presents a study focusing on the environmental impacts of foamed concrete production and exploitation. CO2 emissions are very important factor for describing durability and sustainability of any building material and its life cycle. The building sector is one of the largest energy-consuming sectors in the world. In this study CO2 emissions are evaluated with regard to three types of energy resources (gas, coal and eco-friendly fuel). The related savings on raw materials are up to 120 t of water per 1000 t of traditionally mixed foamed concrete and up to 350 t of sand per 1000 t of foamed concrete produced with intensive mixing technology. In addition, total reduction of CO2 emissions (up to 60 t per 1000 m3 of material) and total energy saving from introduction of foamed concrete production (depending on the type of fuel) were calculated. In order to analyze the conditions of exploitation, both thermal conductivity and thickness of wall was determined. All obtained and calculated results were compared to those of the commercially produced autoclaved aerated concrete.
Combining high biodiversity with high yields in tropical agroforests.
Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja
2011-05-17
Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.
Combining high biodiversity with high yields in tropical agroforests
Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja
2011-01-01
Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873
Lignin: A sustainable biosorbent for heavy metal adsorption from wastewater, a review
NASA Astrophysics Data System (ADS)
Nasrullah, Asma; Bhat, A. H.; Isa, Mohamed Hasnain
2016-11-01
With the recent advancements in science and technology, environmental pollution is a challenging problem due to increased activities in domestic, industrial, and agricultural sector. These activities have led to the release of various types of micropollutants such as heavy metal ions, organic and inorganic ions (detergents, and dye) etc into ground water which badly affects the ecosystem. Among various types of pollutants, heavy metals are the most reported in the recent decade. Water pollution is the most challenging problem, and needs to be controlled for better and healthy ecosystem which requires a healthy, eco-friendly and cheaper technology. In this context. lignin is abundantly available, cheaper and environmentally friendly. For efficient removal of heavy metals, lignin can be modified chemically or thermally to increased its biosorption capacity. In this review merits of adsorption and demerits of other separation technologies are compared. This paper presents the recent state of research on the efficient utilization of lignin, its modification and its adsorption efficiency for heavy metal removal from wastewater.
Piccoli, Giorgina Barbara; Mery, David
2017-11-01
In our high-technology, highly polluted world, medicine plays an important role balancing saving lives with the expenses of growing amounts of waste products, not only biologically dangerous (the potentially "contaminated" or "hazardous" waste) but also potentially harmful for the planet (nonrecyclable, plastic waste). Dialysis, the prototype of high-technology medicine, is central to these problems, as the present treatment of about 2 million patients produces an enormous quantity of waste (considering hazardous waste only about 2 kg per session, with 160 sessions per year, that is 320 kg per patient, or about 640,000 tons of hazardous waste per year for 2 million patients, roughly corresponding to 6 nuclear aircraft carriers). Furthermore, obsolete dialysis machines, and water treatments are discharged, adding to the "technological waste." Water produced by the reverse osmosis is also discharged; this is the only nonhazardous, nonpolluting waste, but in particular in dry areas, wasting water is a great ecologic concern. The present review is aimed at discussing strategies already in place and to be further implemented for reducing this particular "uremic toxin" for the earth: dialysis waste, including dialysis disposables, water, and dialysis machines. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.
2015-05-01
This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.
2nd Congress on applied synthetic biology in Europe (Málaga, Spain, November 2013).
Vetter, Beatrice V; Pantidos, Nikolaos; Edmundson, Matthew
2014-05-25
The second meeting organised by the EFB on the advances of applied synthetic biology in Europe was held in Málaga, Spain in November 2013. The potential for the broad application of synthetic biology was reflected in the five sessions of this meeting: synthetic biology for healthcare applications, tools and technologies for synthetic biology, production of recombinant proteins, synthetic plant biology, and biofuels and other small molecules. Outcomes from the meeting were that synthetic biology offers methods for rapid development of new strains that will result in decreased production costs, sustainable chemical production and new medical applications. Additionally, it also introduced novel ways to produce sustainable energy and biofuels, to find new alternatives for bioremediation and resource recovery, and environmentally friendly foodstuff production. All the above-mentioned advances could enable biotechnology to solve some of the major problems of Society. However, while there are still limitations in terms of lacking tools, standardisation and suitable host organisms, this meeting has laid a foundation providing cutting-edge concepts and techniques to ultimately convert the potential of synthetic biology into practice. Copyright © 2014. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miculescu, Florin; Mocanu, Aura Cătălina; Stan, George E.; Miculescu, Marian; Maidaniuc, Andreea; Cîmpean, Anisoara; Mitran, Valentina; Voicu, Stefan Ioan; Machedon-Pisu, Teodor; Ciocan, Lucian Toma
2018-04-01
Processing calcium-rich natural resources, such as marble and mussel seashells, into biomimetic products could constitute an environmentally-friendly and economically sustainable alternative given their geographical widespread. Hitherto, their value for biomedicine was demonstrated only for seashells, with the technological exploitation approaches still facing challenges with respect to the identification of generic synthesis parameters capable to allow the reproducible and designed synthesis of calcium phosphate at an industrial-ready level. In this study was targeted the optimization of Rathje synthesis method for the fabrication of biogenic calcium phosphates, by conveniently adjusting the chemical composition of employed reagents. It was shown that post-synthesis heat-treatment of compacted powders is the key step for inducing structural transformations suitable to attain biomimetic products for reconstructive orthopedic applications. The sintered materials have been multi-parametricallyevaluated from morpho-compositional, structural, wettability, mechanical and cytocompatibility points of view and the results have been cross-examined and discussed. Convenient and efficient preparation routes to produce biogenic hydroxyapatite have been identified. The functional performances of the as-prepared biogenic ceramics endorse their use as a solid and inexpensive alternative source material for the fabrication of various bone regenerative products and implant coatings.
Dong, Yifan; Slade, Tyler; Stolt, Matthew J; Li, Linsen; Girard, Steven N; Mai, Liqiang; Jin, Song
2017-11-13
Silicon is an extremely important technological material, but its current industrial production by the carbothermic reduction of SiO 2 is energy intensive and generates CO 2 emissions. Herein, we developed a more sustainable method to produce silicon nanowires (Si NWs) in bulk quantities through the direct electrochemical reduction of CaSiO 3 , an abundant and inexpensive Si source soluble in molten salts, at a low temperature of 650 °C by using low-melting-point ternary molten salts CaCl 2 -MgCl 2 -NaCl, which still retains high CaSiO 3 solubility, and a supporting electrolyte of CaO, which facilitates the transport of O 2- anions, drastically improves the reaction kinetics, and enables the electrolysis at low temperatures. The Si nanowire product can be used as high-capacity Li-ion battery anode materials with excellent cycling performance. This environmentally friendly strategy for the practical production of Si at lower temperatures can be applied to other molten salt systems and is also promising for waste glass and coal ash recycling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ergonomic Work Station Design to Improve Workload Quality and Productivity of the Craffsmen
NASA Astrophysics Data System (ADS)
Widana, IK; Wayan Sumetri, Ni; Ketut Sutapa, I.
2018-01-01
This study is a research on ergonomics field, especially for ergonomics work station. This research begins with direct observation on the work process of carving craft. In addition to the aspect of occupational health, the stages of the process are also subject matter in the effort to solve the research problem. In accordance with the master plan of research of Bali State Polytechnic, problem solving will be focused on human aspect and utilization of appropriate technology, so that will get the work process ENASEP (effective, convenient, safe, healthy, efficient and productive) Technical easy to work, economical, ergonomic, energy saving, environmentally friendly and in accordance with the trend of the era. The method to be used in this research is experimental with the same subject design. Involves 9 samples who perform activities on conditions before and after treatment. Data on environmental conditions were analyzed by Mann-Whitney test. Data on work productivity and workload were tested with two pair sample t-test at a significance level of 5%. The results showed that by utilizing ergonomic work stations, occupational health indicators such as workload showed better signs, indicated by decreased the workload. In addition to occupational health, productivity indicators also increased significantly.
The Evolution of Technology: A Decade of Surfing the Net
ERIC Educational Resources Information Center
Berger, Sandra
2005-01-01
The world was a different place when "Understanding Our Gifted" introduced "Surfing the Net" in 1994 as a regular feature. Since then, technology and the Internet have become part of people's culture, permeating almost every aspect of their lives. The Internet has greatly changed the way they conduct business and communicate with friends, it helps…
2006-04-26
technologies might offer us those means. The Means – Securing the Battlespace by Leveraging Information Dominance A suicide bomber intent on achieving his...be a watershed for netcentric warfare – the transition of information dominance from force multiplier to new capability. 67 It would serve as a prime
ERIC Educational Resources Information Center
Kvenild, Cassandra; Shepherd, Craig E.; Smith, Shannon M.; Thielk, Emma
2017-01-01
In a climate of increased interest in science, technology, engineering, and math (STEM), school libraries have unique opportunities to grow collections and cultivate partnerships in the sciences. At the federal level and in many states, STEM initiatives encourage hands-on exposure to technologies and open the door for student-led discovery of…
Student Uses of Technology in Learning: Two Lenses
ERIC Educational Resources Information Center
McNeill, Margot; Diao, Ming Ming; Gosper, Maree
2011-01-01
Purpose: In their 2007 article, "Miranda in the brave new world: learning in a Web 2.0 millennium", Barnes and Tynan tell the story of an imaginary British student who uses technology seamlessly to stay connected almost 24 x 7 with friends, peers and teachers in a global learning environment. Whether she is representative of the majority of…
Challenges of Technology, Social Media, and Information Control
ERIC Educational Resources Information Center
Flaherty, Bill
2013-01-01
Today's youth must deal with friend management 24 hours a day, seven days a week, through smartphones and such social networking sites as Facebook. Technology in the classroom can be valuable, but not without challenges. The key is well-thought-out policies. While school districts can't completely control how students use their…
ERIC Educational Resources Information Center
Bueno de Mesquita, Paul; Dean, Ross F.; Young, Betty J.
2010-01-01
Advances in digital video technology create opportunities for more detailed qualitative analyses of actual teaching practice in science and other subject areas. User-friendly digital cameras and highly developed, flexible video-analysis software programs have made the tasks of video capture, editing, transcription, and subsequent data analysis…
Student Communication and Study Habits of First-Year University Students in the Digital Era
ERIC Educational Resources Information Center
Gallardo-Echenique, Eliana; Bullen, Mark; Marqués-Molías, Luis
2016-01-01
This paper reports on research into the study habits of-university students, their use digital technologies and how they communicate with each other and their professors. We conclude that most students feel comfortable with digital technologies and that they use social media for connecting and interacting with friends rather than for academic…
ERIC Educational Resources Information Center
Wayman, Jeffrey C.; Stringfield, Sam
2006-01-01
Student data are gaining increased attention in education, spurred by accountability policies such as those contained in the federal No Child Left Behind legislation. Student data are useful for informing classroom practice, and user-friendly technologies for organizing and accessing data are enabling access by all teachers. In this study, we…
A Vision for the Net Generation Media Center. Media Matters
ERIC Educational Resources Information Center
Johnson, Doug
2005-01-01
Many children today have never lived in a home without a computer. They are the "Net Generation," constantly "connected" by iPod, cell phone, keyboard, digital video camera, or game controller to various technologies. Recent studies have found that Net Genners see technology as "embedded in society," a primary means of connection with friends, and…
Field-friendly techniques for assessment of biomarkers of nutrition for development1234
Garrett, Dean A; Sangha, Jasbir K; Kothari, Monica T; Boyle, David
2011-01-01
Whereas cost-effective interventions exist for the control of micronutrient malnutrition (MN), in low-resource settings field-friendly tools to assess the effect of these interventions are underutilized or not readily available where they are most needed. Conventional approaches for MN measurement are expensive and require relatively sophisticated laboratory instrumentation, skilled technicians, good infrastructure, and reliable sources of clean water and electricity. Consequently, there is a need to develop and introduce innovative tools that are appropriate for MN assessment in low-resource settings. These diagnostics should be cost-effective, simple to perform, robust, accurate, and capable of being performed with basic laboratory equipment. Currently, such technologies either do not exist or have been applied to the assessment of a few micronutrients. In the Demographic and Health Surveys (DHS), a few such examples for which “biomarkers” of nutrition development have been assessed in low-resource settings using field-friendly approaches are hemoglobin (anemia), retinol-binding protein (vitamin A), and iron (transferrin receptor). In all of these examples, samples were collected mainly by nonmedical staff and analyses were conducted in the survey country by technicians from the local health or research facilities. This article provides information on how the DHS has been able to successfully adapt field-friendly techniques in challenging environments in population-based surveys for the assessment of micronutrient deficiencies. Special emphasis is placed on sample collection, processing, and testing in relation to the availability of local technology, resources, and capacity. PMID:21677055
Rainio, Susanna U; Huhtala, Heini S A; Rimpelä, Arja H
2010-08-01
Limited information is available on the use and acquisition of nicotine replacement therapy (NRT) products in minors after deregulation of the sales. In Finland, deregulation releasing the NRT products for general sale took place in 2006. The sale is prohibited to those under the age of 18 years. We examine underaged adolescents' use, acquisition, and awareness of NRT products after the deregulation. Nationwide mailed survey of 12- to 18-year olds (N = 5,840, response rate 61%) was conducted in 2007. The main outcomes were ever use of NRT, acquisition of NRT products in different locations (retail outlet, family member, friend, health care personnel, and pharmacy), and awareness of NRT. Eighteen-year olds were analyzed as a comparison group as they were at legal age to buy the products. Among 14-year olds, 2% of boys and 2% of girls had used NRT. The corresponding figures for 16-year olds were 7% and 5%, respectively, and for 18-year olds 10% and 8%, respectively. Few 12-year olds had used NRT. Over a quarter of 12-year-old girls and 15% of boys did not know what NRT products were. Awareness increased with age. Of 12- to 16-year-old NRT users, 79% were daily smokers, 10% had smoked >50 but not daily, 10% had smoked <50, and 2% were never-smokers. The underaged NRT users acquired the products mainly not only from friends (42%) but also from retail outlets (13%). One year after deregulation, NRT use among minors is uncommon. Also misuse seems rare. NRT products are sold to minors from retail outlets despite sales ban. However, the underaged NRT users acquired the products mainly from friends.
Latest Trends of Vacuum Circuit Breaker and Related Technologies
NASA Astrophysics Data System (ADS)
Kozono, Hideaki; Tanimizu, Toru
Vacuum Circuit Breakers (VCBs) have been widely used for medium voltage level, because of their performance: compact size, light weight, maintenance free operations and environment-friendly characteristics. They become most comfortable breakers for our needs from other breakers: oil, air, magnetic blast and gas. In this paper the history of vacuum, and latest trends of circuit breakers and related technologies are described, as well as merits or demerits of using vacuum technologies.
ERIC Educational Resources Information Center
Porter, Lon A., Jr.; Chapman, Cole A.; Alaniz, Jacob A.
2017-01-01
In this work, a versatile and user-friendly selection of stereolithography (STL) files and computer-aided design (CAD) models are shared to assist educators and students in the production of simple and inexpensive 3D printed filter fluorometer instruments. These devices are effective resources for supporting active learners in the exploration of…
The benefits of herbicide-resistant crops.
Green, Jerry M
2012-10-01
Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.
Advanced power assessment for Czech lignite. Task 3.6, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondreal, E.A.; Mann, M.D.; Weber, G.W.
1995-12-01
The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is amore » challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.« less
Zhao, Yan; Shang, Jin-cheng; Chen, Chong; Wu, He-nan
2008-04-01
Reasonable structure, adaptive patterns and effective regulation of society, economy and environment subsystems should be taken into account in order to obtain harmonious development of urban eco-industrial system. We simulated and evaluated a redesigned eco-industrial system in Changchun Economic and Technological Development Zone (CCETDZ) in the present work using system dynamics and grey cluster methods. Four typical development strategies were simulated during 2005-2020 via standard system dynamic models. Furthermore, analytic hierarchy process and grey cluster allowed for the eco-industrial system evaluation and scenarios optimizing. Our dynamic simulation and statistical analysis revealed that: (1) CCETDZ would have different development scenarios under different strategies. The total population in scenario 2 grew most rapidly and reached 3.28 x 10(5) in 2020, exceeding its long-term planning expected population. And the GDP differences among these four scenarios would amount to 6.41 x 10(10) RMB. On the other hand, environmental pollution would become serious along with economy increasing. As a restriction factor, positive or negative increment of water resource will occur according to the selected strategy. (2) The fourth strategy would have the best efficiency, which means that the most efficiently development of CCETDZ required to take science, technology, environment progress and economy increase into account at the same time. (3) Positive environment protection measures, such as cleaner production, green manufacture, production life cycle management and environment friendly industries, should be attached great importance the same as economy development during 2005-2020 in CCETDZ.
On eco-efficient technologies to minimize industrial water consumption
NASA Astrophysics Data System (ADS)
Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem
2016-07-01
Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.
NASA Astrophysics Data System (ADS)
Roy, K.; Zwieniecki, M.
2017-12-01
Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.
NASA Technical Reports Server (NTRS)
Jones, Erick C.; Richards, Casey; Herstein, Kelli; Franca, Rodrigo; Yagoda, Evan L.; Vasquez, Reuben
2008-01-01
Current inventory management techniques for consumables and supplies aboard space vehicles are burdensome and time consuming. Inventory of food, clothing, and supplies are taken periodically by manually scanning the barcodes on each item. The inaccuracy of reading barcodes and the excessive amount of time it takes for the astronauts to perform this function would be better spent doing scientific experiments. Therefore, there is a need for an alternative method of inventory control by NASA astronauts. Radio Frequency Identification (RFID) is an automatic data capture technology that has potential to create a more effective and user-friendly inventory management system (IMS). In this paper we introduce a Design for Six Sigma Research (DFSS-R) methodology that allows for reliability testing of RFID systems. The research methodology uses a modified sequential design of experiments process to test and evaluate the quality of commercially available RFID technology. The results from the experimentation are compared to the requirements provided by NASA to evaluate the feasibility of using passive Generation 2 RFID technology to improve inventory control aboard crew exploration vehicles.
A problem-solving approach to nutrition education with Filipino mothers.
Ticao, C J; Aboud, F E
1998-06-01
The study examined Filipino mothers' problem solving on issues related to child feeding, using a dyadic, peer-help approach. The participants were mothers of children under 6 yr of age from a village in the southern Philippines, where malnutrition among children is prevalent. Mothers were paired with a mutual friend (each nominated the other as a best friend) or a unilateral friend (only one nominated the other as a best friend) to discuss a feeding problem to which they initially gave similar solutions (agreed) and one to which they gave different solutions (disagreed). In the final step, they were asked to give privately the solutions they considered best for the problem. The number and quality of these final-step solutions were analyzed as a function of the friend relation, the level of initial agreement with their friend partner, and the source of the solution. Results indicated that the quantity and quality of solutions increased from before to after the dyadic discussion, especially among mothers paired with a mutual friend with whom they agreed. Most of their final-step solutions came from ones they themselves had generated during the discussion, not ones their friend partner had proposed. There was also evidence that high quality solutions were generated by mothers paired with a disagreeing unilateral friend. Implications for nutrition education concern the benefits of a peer-help, dyadic problem-solving approach, taking into account the role of a friend in facilitating a mother's production of new solutions to child feeding problems. The procedure may be used by health promoters who want to build capacities and self-reliance through collective problem solving.
Construction Biotechnology: a new area of biotechnological research and applications.
Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian
2015-09-01
A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.
Wan, Minxi; Hou, Dongmei; Li, Yuanguang; Fan, Jianhua; Huang, Jianke; Liang, Songtao; Wang, Weiliang; Pan, Ronghua; Wang, Jun; Li, Shulan
2014-07-01
As the optimal source of astaxanthin, Haematococcus pluvialis was cultured for commercial production of astaxanthin through two continuous phases: cell growth and astaxanthin induction. In this study, the efficiency of an attached system for producing astaxanthin from H. pluvialis was investigated and compared to that of the suspended system (bubble column bioreactor) under various conditions. Results showed that this attached system is more suitable for photoinduction of H. pluvialis than the suspended bioreactor. Under the optimal conditions, the astaxanthin productivity of the attached system was 65.8 mg m(-2)d(-1) and 2.4-fold of that in the suspended system. This attached approach also offers other advantages over suspended systems, such as, producing astaxanthin under a wide range of light intensities and temperatures, saving water, ease to harvest cells, resisting contamination. Therefore, the attached approach can be considered an economical, environmentally friendly and highly-efficient technology for producing astaxanthin from H. pluvialis. Copyright © 2014 Elsevier Ltd. All rights reserved.
3D-printing and the effect on medical costs: a new era?
Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Kondiah, Pierre P D; Pillay, Viness
2016-01-01
3D-printing (3DP) is the art and science of printing in a new dimension using 3D printers to transform 3D computer aided designs (CAD) into life-changing products. This includes the design of more effective and patient-friendly pharmaceutical products as well as bio-inspired medical devices. It is poised as the next technology revolution for the pharmaceutical and medical-device industries. After decorous implementation scientists in collaboration with CAD designers have produced innovative medical devices ranging from pharmaceutical tablets to surgical transplants of the human face and skull, spinal implants, prosthetics, human organs and other biomaterials. While 3DP may be cost-efficient, a limitation exists in the availability of 3D printable biomaterials for most applications. In addition, the loss of skilled labor in producing medical devices such as prosthetics and other devices may affect developing economies. This review objectively explores the potential growth and impact of 3DP costs in the medical industry.
StreptomycesInforSys: A web-enabled information repository
Jain, Chakresh Kumar; Gupta, Vidhi; Gupta, Ashvarya; Gupta, Sanjay; Wadhwa, Gulshan; Sharma, Sanjeev Kumar; Sarethy, Indira P
2012-01-01
Members of Streptomyces produce 70% of natural bioactive products. There is considerable amount of information available based on polyphasic approach for classification of Streptomyces. However, this information based on phenotypic, genotypic and bioactive component production profiles is crucial for pharmacological screening programmes. This is scattered across various journals, books and other resources, many of which are not freely accessible. The designed database incorporates polyphasic typing information using combinations of search options to aid in efficient screening of new isolates. This will help in the preliminary categorization of appropriate groups. It is a free relational database compatible with existing operating systems. A cross platform technology with XAMPP Web server has been used to develop, manage, and facilitate the user query effectively with database support. Employment of PHP, a platform-independent scripting language, embedded in HTML and the database management software MySQL will facilitate dynamic information storage and retrieval. The user-friendly, open and flexible freeware (PHP, MySQL and Apache) is foreseen to reduce running and maintenance cost. Availability www.sis.biowaves.org PMID:23275736
Khan, M Nisa
2015-07-20
Light-emitting diode (LED) technologies are undergoing very fast developments to enable household lamp products with improved energy efficiency and lighting properties at lower cost. Although many LED replacement lamps are claimed to provide similar or better lighting quality at lower electrical wattage compared with general-purpose incumbent lamps, certain lighting characteristics important to human vision are neglected in this comparison, which include glare-free illumination and omnidirectional or sufficiently broad light distribution with adequate homogeneity. In this paper, we comprehensively investigate the thermal and lighting performance and trade-offs for several commercial LED replacement lamps for the most popular Edison incandescent bulb. We present simulations and analyses for thermal and optical performance trade-offs for various LED lamps at the chip and module granularity levels. In addition, we present a novel, glare-free, and production-friendly LED lamp design optimized to produce very desirable light distribution properties as demonstrated by our simulation results, some of which are verified by experiments.
Cutter, Catherine Nettles
2006-09-01
It has been well documented that vacuum or modified atmosphere packaging materials, made from polyethylene- or other plastic-based materials, have been found to improve the stability and safety of raw or further processed muscle foods. However, recent research developments have demonstrated the feasibility, utilization, and commercial application of a variety of bio-based polymers or bio-polymers made from a variety of materials, including renewable/sustainable agricultural commodities, and applied to muscle foods. A variety of these bio-based materials have been shown to prevent moisture loss, drip, reduce lipid oxidation and improve flavor attributes, as well as enhancing the handling properties, color retention, and microbial stability of foods. With consumers demanding more environmentally friendly packaging and a desire for more natural products, bio-based films or bio-polymers will continue to play an important role in the food industry by improving the quality of many products, including fresh or further processed muscle foods.
StreptomycesInforSys: A web-enabled information repository.
Jain, Chakresh Kumar; Gupta, Vidhi; Gupta, Ashvarya; Gupta, Sanjay; Wadhwa, Gulshan; Sharma, Sanjeev Kumar; Sarethy, Indira P
2012-01-01
Members of Streptomyces produce 70% of natural bioactive products. There is considerable amount of information available based on polyphasic approach for classification of Streptomyces. However, this information based on phenotypic, genotypic and bioactive component production profiles is crucial for pharmacological screening programmes. This is scattered across various journals, books and other resources, many of which are not freely accessible. The designed database incorporates polyphasic typing information using combinations of search options to aid in efficient screening of new isolates. This will help in the preliminary categorization of appropriate groups. It is a free relational database compatible with existing operating systems. A cross platform technology with XAMPP Web server has been used to develop, manage, and facilitate the user query effectively with database support. Employment of PHP, a platform-independent scripting language, embedded in HTML and the database management software MySQL will facilitate dynamic information storage and retrieval. The user-friendly, open and flexible freeware (PHP, MySQL and Apache) is foreseen to reduce running and maintenance cost. www.sis.biowaves.org.
Empowering the impaired through the appropriate use of Information Technology and Internet.
Sanyal, Ishita
2006-01-01
Developments in the fields of science and technology have revolutionized Human Life at material level. But in actuality, this progress is only superficial: underneath modern men and women are living in conditions of great mental and emotional stress, even in developed and affluent countries. People from all over the world irrespective of culture and economic background suffer from mental illness and though a number of researches are carried out worldwide but till date it has not been possible to resolve the problem. In today's world stress is increasing everyday. The individualistic approach towards life; the neonatal family system has increased the burden even further. Without adequate support system of friends and relatives--people are falling prey to mental illness. The insecurities, the inferiority feelings of these persons lead to disruption of communication between the sufferer and the family members and friends. The sufferers prefer to confine themselves within the four walls of their home and remain withdrawn from the whole world. They prefer to stay in touch with their world of fantasy--far away from the world of reality. Disability caused by some of the mental illnesses often remains invisible to the society leading to lack of support system and facilities for them. These unfortunate disabled persons not only need medication and counseling but a thorough rehabilitation programme to bring them back to the main stream of life. The task being not an easy one. According to the research works these persons need some work and income to improve their quality of life. In this scenario where society is adverse towards them, where stigma towards mental illness prevails; where help from friends and community is not available- training them in computer and forming groups through computer was thought to be an ideal option for the solution- a solution to the problems of modern life through modern technology. * It was seen that this insecure disabled persons feel free to experiment with machine more easily than with society and people. * Computer provides them the needed education and information needed for their further developments. * Computers provide them facilities to interact with others and form self-help groups. * Computers also enabled them to earn their livelihood. Thus this modern gadget, which is sometimes believed to make a man loner, has been actually acting as the bridge between the persons suffering from mental illness to the society in general. The disabled person also gains confidence and courage as they gain control over the machine. Gaining control over the machine helps them to gain control over their life. The product of Science and technology has been seen to revolutionized Human Life not only in material level but also on personal level- helping the disabled to gain control over their lives.
Burgarella, Sarah; Cattaneo, Dario; Pinciroli, Francesco; Masseroli, Marco
2005-12-01
Improvements of bio-nano-technologies and biomolecular techniques have led to increasing production of high-throughput experimental data. Spotted cDNA microarray is one of the most diffuse technologies, used in single research laboratories and in biotechnology service facilities. Although they are routinely performed, spotted microarray experiments are complex procedures entailing several experimental steps and actors with different technical skills and roles. During an experiment, involved actors, who can also be located in a distance, need to access and share specific experiment information according to their roles. Furthermore, complete information describing all experimental steps must be orderly collected to allow subsequent correct interpretation of experimental results. We developed MicroGen, a web system for managing information and workflow in the production pipeline of spotted microarray experiments. It is constituted of a core multi-database system able to store all data completely characterizing different spotted microarray experiments according to the Minimum Information About Microarray Experiments (MIAME) standard, and of an intuitive and user-friendly web interface able to support the collaborative work required among multidisciplinary actors and roles involved in spotted microarray experiment production. MicroGen supports six types of user roles: the researcher who designs and requests the experiment, the spotting operator, the hybridisation operator, the image processing operator, the system administrator, and the generic public user who can access the unrestricted part of the system to get information about MicroGen services. MicroGen represents a MIAME compliant information system that enables managing workflow and supporting collaborative work in spotted microarray experiment production.
United States - Japan evaluation tools and methods.
DOT National Transportation Integrated Search
2014-01-01
Cooperative systems based on intelligent transportation system (ITS) technologies can deliver significant benefits for all road users and the public, especially in terms of safer, more energy-efficient, and environmentally friendly surface transporta...
Ribonucleic acid interference (RNAi) and control of citrus pests
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...
Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney
NASA Technical Reports Server (NTRS)
Russell, P.; Flynn, J.; Reddy, T.
1996-01-01
Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.
Balog, Adalbert; Hartel, Tibor; Loxdale, Hugh D; Wilson, Kenneth
2017-11-01
The five-year value in the compound annual growth rate of the biopesticides sector is predicted to be 16% by 2017 and to produce a global market worth $US 10 billion. Despite this, several impediments occur within the EU that negatively affect biopesticide research and innovation. At present, there are fewer biopesticide-active substances registered in the EU compared with the United States, India, Brazil and China. The relatively low level of biopesticide research in the EU (6880 ISI papers) versus the United States (18 839), India (9501) and China (7875) relates to the greater complexity of EU-based biopesticide regulations compared with these other countries. In this light, it is worth noting that tensions may exist between regulators that emphasise the beneficial nature of biopesticides in environmentally friendly crop management and those that adopt a more technologically based approach dependent on a chemical-pesticide-driven model. Compared with the other aforementioned countries, far fewer biopesticide products are available in the EU market, mainly as a direct result of the severe regulatory factors present there. The extent to which this trend will continue depends largely on a range of interacting political and/or regulatory decisions that influence environmentally friendly agricultural industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
El-Amin, Salma El-Tayeb; Nwaru, Bright I; Ginawi, Ibrahim; Pisani, Paola; Hakama, Matti
2011-03-01
To assess the influence of smoking and tombak (local smokeless tobacco) dipping by parents, teachers and friends on cigarette smoking and tombak dipping by school-going Sudanese adolescents. This was a school-based cross-sectional survey was conducted in 2005-2006. Logistic regression was used for the analysis. A total of 4277 Sudanese school-going adolescents (aged 11-17 years) from 23 schools who completed an anonymous self-administered questionnaire on the use of tobacco products. Main outcome measures were self-reported tobacco use during the previous month defined current tobacco use. Ever smoking, tombak dipping and other tobacco products were also considered as outcomes. After adjusting for sex, age and school grade, adolescents' smoking habits were strongly associated with the habit in their parents and friends and, more weakly, with tombak dipping by teachers. When adjusted for each other, the association with smoking in friends was unaffected and remained significant (prevalence OR (POR) of having ever smoked was 1.94, 95% CI 1.64 to 2.29; OR of being current smoker was 3.77, 95% CI 2.80 to 5.07). Tobacco smoking in friends was positively associated with adolescents ever tombak dipping (POR 1.81, 95% CI 1.41 to 2.33) and current dipping (OR 3.33, 95% CI 2.20 to 5.05). The association with parental habits was reduced but still significantly elevated. Tombak dipping by teachers was only associated with adolescents ever tobacco smoking. Tobacco use by parents, teachers and friends was associated with adolescents' tobacco habits. The influence of friends was the strongest. In developing programmes against adolescents' tobacco habits, there is need to target the influence of these 'significant others'. Sudan needs to develop and implement comprehensive anti-smoking and anti-tombak dipping legislation to reduce the growing prevalence of such habits.
Synthetic spider silk production on a laboratory scale.
Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig
2012-07-18
As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.
Synthetic Spider Silk Production on a Laboratory Scale
Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig
2012-01-01
As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722
Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.
2015-04-01
Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.
A Full-Featured User Friendly CO 2-EOR and Sequestration Planning Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill
A Full-Featured, User Friendly CO 2-EOR and Sequestration Planning Software This project addressed the development of an integrated software solution that includes a graphical user interface, numerical simulation, visualization tools and optimization processes for reservoir simulation modeling of CO 2-EOR. The objective was to assist the industry in the development of domestic energy resources by expanding the application of CO 2-EOR technologies, and ultimately to maximize the CO 2} sequestration capacity of the U.S. The software resulted in a field-ready application for the industry to address the current CO 2-EOR technologies. The software has been made available to the publicmore » without restrictions and with user friendly operating documentation and tutorials. The software (executable only) can be downloaded from NITEC’s website at www.nitecllc.com. This integrated solution enables the design, optimization and operation of CO 2-EOR processes for small and mid-sized operators, who currently cannot afford the expensive, time intensive solutions that the major oil companies enjoy. Based on one estimate, small oil fields comprise 30% of the of total economic resource potential for the application of CO 2-EOR processes in the U.S. This corresponds to 21.7 billion barrels of incremental, technically recoverable oil using the current “best practices”, and 31.9 billion barrels using “next-generation” CO 2-EOR techniques. The project included a Case Study of a prospective CO 2-EOR candidate field in Wyoming by a small independent, Linc Energy Petroleum Wyoming, Inc. NITEC LLC has an established track record of developing innovative and user friendly software. The Principle Investigator is an experienced manager and engineer with expertise in software development, numerical techniques, and GUI applications. Unique, presently-proprietary NITEC technologies have been integrated into this application to further its ease of use and technical functionality.« less
Lam, Man Kee; Lee, Keat Teong
2011-01-01
Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.
Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics
Boggia, Raffaella; Turrini, Federica; Villa, Carla; Lacapra, Chiara; Zunin, Paola; Parodi, Brunella
2016-01-01
The aim of this study was to investigate the potential of retrieving polyphenolic antioxidants directly from wet pomegranate marcs: the fresh by-products obtained after pomegranate juice processing. These by-products mainly consist of internal membranes (endocarp) and aril residues. Even if they are still edible, they are usually discharged during juice production and, thus, they represent a great challenge in an eco-sustainable industrial context. Green technologies, such as ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), have been employed to convert these organic residues into recycled products with high added value. UAE and MAE were used both in parallel and in series in order to make a comparison and to ensure exhaustive extractions, respectively. Water, as an environmentally friendly extraction solvent, has been employed. The results were compared with those ones coming from a conventional extraction. The most promising extract, in terms of total polyphenol yield and radical scavenging activity, has been tested both as a potential natural additive and as a functional ingredient after its incorporation in a real food model and in a real cosmetic matrix, respectively. This study represents a proposal to the agro-alimentary sector given the general need of environmental “responsible care”. PMID:27763542
Getting More Value out of the Technology You Already Have
ERIC Educational Resources Information Center
Simkins, Michael
2011-01-01
Finding the money for new technology purchases is not easy in the best budget years. In today's economy, one will be lucky to keep the lights on and the Internet connected. Knowing that the hive as a whole can be wiser than the brightest bee, the author sought the counsel of professional friends and colleagues through an informal survey, to which…
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2004-01-01
Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.
Creating a Learning-Friendly Curriculum.
ERIC Educational Resources Information Center
Donovan, Michael P.
1997-01-01
Argues against a type of program evaluation of undergraduate institutions that assumes students are products. Proposes that if students are products, then students are raw materials. Discusses the philosophical problems of considering students as raw materials. (DDR)
Neale, Joanne; Brown, Caral
2016-09-01
Homeless drug and alcohol users are one of the most marginalised groups in society. They frequently have complex needs and limited social support. In this paper, we explore the role of friendship in the lives of homeless drug and alcohol users living in hostels, using the concepts of 'social capital' and 'recovery capital' to frame the analyses. The study was undertaken in three hostels, each in a different English city, during 2013-2014. Audio recorded semi-structured interviews were conducted with 30 residents (9 females; 21 males) who self-reported drink and/or drug problems; follow-up interviews were completed 4-6 weeks later with 22 participants (6 females; 16 males). Data were transcribed verbatim, coded using the software package MAXQDA, and analysed using Framework. Only 21 participants reported current friends at interview 1, and friendship networks were small and changeable. Despite this, participants desired friendships that were culturally normative. Eight categories of friend emerged from the data: family-like friends; using friends; homeless friends; childhood friends; online-only friends; drug treatment friends; work friends; and mutual interest friends. Routine and regular contact was highly valued, with family-like friends appearing to offer the most constant practical and emotional support. The use of information and communication technologies (ICTs) was central to many participants' friendships, keeping them connected to social support and recovery capital outside homelessness and substance-using worlds. We conclude that those working with homeless drug and alcohol users - and potentially other marginalised populations - could beneficially encourage their clients to identify and build upon their most positive and reliable relationships. Additionally, they might explore ways of promoting the use of ICTs to combat loneliness and isolation. Texting, emailing, online mutual aid meetings, chatrooms, Internet penpals, skyping and other social media all offer potentially valuable opportunities for building friendships that can bolster otherwise limited social and recovery capital. © 2015 The Authors. Health and Social Care in the Community Published by John Wiley & Sons Ltd.
Chemically evolving systems for oil recovery enhancement in heavy oil deposits
NASA Astrophysics Data System (ADS)
Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.
2017-12-01
This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.
Globalization and the new integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, K.L.
1996-12-31
This paper describes topics of importance to energy companies of the future. Topics include: privatization and liberalization in developing countries; deregulation and increased competition; a shift to more environmentally friendly technologies and fuels; and rapid rate of change.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems.
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-04-23
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was "applying frequency vibration lamps and environment-friendly insecticides 8 times" (0.80) < "applying trap devices and environment-friendly insecticides 9 times" (0.83) < "applying common insecticides 14 times" (1.08). The treatment "applying frequency vibration lamps and environment-friendly insecticides 8 times" was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-01-01
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199
Holy Trinity of Instrumentation Development
NASA Astrophysics Data System (ADS)
Uršič, Rok; Šolar, Borut
2004-11-01
Being user friendly should be the main guidance, beside the self-understood high performance, in today's instrumentation development. Here we identify three components of the user-friendly policy: the all-in-one concept, customization, and connectivity. All-in-one is the concept of unification of various building blocks and thus various functionalities in one product. The customization is enabled by the product's reconfigurability that allows a product to grow and support new requirements and applications without changing hardware. The consequence of the two is the capacity of the single instrument to perform a variety of tasks that before were split among different devices. The last of the three is connectivity that improves the relationship between controls and beam diagnostics, brings out-of-the-crate freedom, and opens unforeseen possibilities for intra-accelerator cooperation and remote technical support.
Song, Qingfeng; Chen, Dairui; Long, Stephen P; Zhu, Xin-Guang
2017-01-01
Windows Intuitive Model of Vegetation response to Atmosphere and Climate Change (WIMOVAC) has been used widely as a generic modular mechanistically rich model of plant production. It can predict the responses of leaf and canopy carbon balance, as well as production in different environmental conditions, in particular those relevant to global change. Here, we introduce an open source Java user-friendly version of WIMOVAC. This software is platform independent and can be easily downloaded to a laptop and used without any prior programming skills. In this article, we describe the structure, equations and user guide and illustrate some potential applications of WIMOVAC. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Waste glass as eco-friendly replacement material in construction products
NASA Astrophysics Data System (ADS)
Sharma, Gayatri; Sharma, Anu
2018-05-01
Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.
Xie, Chen; Tang, Xiaofeng; Berlinghof, Marvin; Langner, Stefan; Chen, Shi; Späth, Andreas; Li, Ning; Fink, Rainer H; Unruh, Tobias; Brabec, Christoph J
2018-06-27
Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly(3-hexylthio-phene-2,5-diyl) and indene-C 60 bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80-100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina
2014-01-01
Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.
Self-injury in young people and the help-negation effect.
Frost, Mareka; Casey, Leanne M; O'Gorman, John G
2017-04-01
This study examined the relationship between self-injurious behavior and intentions to seek help from professionals, family and friends, technology based support and from no-one. Participants were 679 young people aged 14-25 years drawn from a larger internet survey (N =1463) on the basis of their reported self-injury. A help-negation effect was found only in relation to intentions to seek help from family and friends. That is, a higher extent or severity of self-injury was independently associated with lower intentions to seek help from family and friends. This effect remained after controlling for psychological distress and suicidal ideation. Establishing avenues for early intervention and providing access to a range of potential avenues for help-seeking may assist young people to seek support in relation to self-injury. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Appiah, Kingsley; Du, Jianguo; Poku, John
2018-06-20
Continuous threat posed by climate change caused by carbon dioxide emission has reignited global advocacy to confront its negative ramification with the greatest possible firmness. Global food security and agriculture face major challenges under climate change as a result of the potential negative effect of production and implementation of sectoral action to limit global warming. Overall, agricultural greenhouse emissions continue to rise and the analysis of superior data on emissions from farming, livestock, and fisheries can help countries identify opportunities to contemporaneously reduce emissions and address their food security. This study seeks to contribute to the recent literature by examining the causal relationship between agriculture production and carbon dioxide emissions in selected emerging economies for the period 1971 to 2013. The study, therefore, disaggregated agriculture production into crop production index and livestock production index to explicate the distinct and to find individual variable contribution to carbon dioxide emissions. By using FMOLS and DOLS, empirical results indicate that 1% increase in economic growth, crop production index, and livestock production index will cause a proportional increase in carbon dioxide emission by 17%, 28%, and 28% correspondingly, while 1% increase in energy consumption and population improves the environment of emerging economies. The direction of causality among the variables was, accordingly, examined using PMG estimator. Potentially, for emerging countries to achieve Sustainable Development Goal of ensuring zero hunger for their citizenry requires the need to alter their farming production techniques and also adopt agricultural technology method, which is more environmentally friendly.
Facing the Long War: Factors that Lead Soldiers to Stay in the Army during Persistent Conflict
2011-05-19
increases productivity, job satisfaction , and organizational commitments, all of which buffer the negative effects of work - life conflicts. Moreover...The predicted relationship with family-friendly work environment as a moderator between work - life conflict and outcome measures. Family Friendly...Command and General Staff College, the United States Army, the Department of Defense, or any other US government agency. Cleared for public release
Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.
Iwata, Tadahisa
2015-03-09
Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Children's Acoustic and Linguistic Adaptations to Peers With Hearing Impairment.
Granlund, Sonia; Hazan, Valerie; Mahon, Merle
2018-05-17
This study aims to examine the clear speaking strategies used by older children when interacting with a peer with hearing loss, focusing on both acoustic and linguistic adaptations in speech. The Grid task, a problem-solving task developed to elicit spontaneous interactive speech, was used to obtain a range of global acoustic and linguistic measures. Eighteen 9- to 14-year-old children with normal hearing (NH) performed the task in pairs, once with a friend with NH and once with a friend with a hearing impairment (HI). In HI-directed speech, children increased their fundamental frequency range and midfrequency intensity, decreased the number of words per phrase, and expanded their vowel space area by increasing F1 and F2 range, relative to NH-directed speech. However, participants did not appear to make changes to their articulation rate, the lexical frequency of content words, or lexical diversity when talking to their friend with HI compared with their friend with NH. Older children show evidence of listener-oriented adaptations to their speech production; although their speech production systems are still developing, they are able to make speech adaptations to benefit the needs of a peer with HI, even without being given a specific instruction to do so. https://doi.org/10.23641/asha.6118817.
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Asfand-e-Yar, Mockford, Steve; Khan, Wasiq; Awan, Irfan
2012-11-01
Mobile technology is among the fastest growing technologies in today's world with low cost and highly effective benefits. Most important and entertaining areas in mobile technology development and usage are location based services, user friendly networked applications and gaming applications. However, concern towards network operator service provision and improvement has been very low. The portable applications available for a range of mobile operating systems which help improve the network operator services are desirable by the mobile operators. This paper proposes a state of the art mobile application Tracesaver, which provides a great achievement over the barriers in gathering device and network related information, for network operators to improve their network service provision. Tracesaver is available for a broad range of mobile devices with different mobile operating systems and computational capabilities. The availability of Tracesaver in market has proliferated over the last year since it was published. The survey and results show that Tracesaver is being used by millions of mobile users and provides novel ways of network service improvement with its highly user friendly interface.
DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE CASE STUDIES
The movement to buy "environmentally-friendly" products was recently reinvigorated by the signing of the 2002 Farm Act that requires all federal agencies to give preference to products that are made (in whole or significant part) from bio-based material. This paper add...
Eco-friendly surface modification on polyester fabrics by esterase treatment
NASA Astrophysics Data System (ADS)
Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping
2014-03-01
Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.
Shuhatovich, Olga M; Sharman, Mathilde P; Mirabal, Yvette N; Earle, Nan R; Follen, Michele; Basen-Engquist, Karen
2005-12-01
In order to improve recruitment for cervical cancer screening trials, it is necessary to analyze the effectiveness of recruitment strategies used in current trials. A trial to test optical spectroscopy for the diagnosis of cervical neoplasia recruited 1000 women from the community; the trial evaluated the emerging technology against Pap smears and colposcopically directed biopsies for cervical dysplasia. We have examined women's reasons for participating as well as the effectiveness and efficiency for each recruitment strategy. Reasons for participation were identified and compared between trials. The recruitment method that resulted in the most contacts was newspaper reportorial coverage and advertising, followed by family and friends, then television news coverage. The most cost-effective method for finding eligible women who attend the research appointment is word of mouth from a family member or friend. Recommendations are given for maximizing the efficiency of recruitment for cervical cancer screening trials.
2007-09-01
Identified in DTSA Guidelines for Military Service Certification and ITAR Exemption Description 8 Table 2: GAO Analysis of DOD Exemption... DTSA Defense Technology Security Administration ITAR International Traffic in Arms Regulations NATO North Atlantic Treaty Organization This is...and friendly nations. To clarify exemption use, DOD’s Defense Technology Security Administration ( DTSA )—which is responsible for developing and
ERIC Educational Resources Information Center
Landerholm, Elizabeth
McCosh Even Start is a federally funded project at McCosh School in an inner-city Chicago neighborhood and is administered as a partnership between Northeastern Illinois University and the Chicago Public Schools. The program's goals are to help parents: (1) become involved with the school by becoming comfortable at the school, making friends, and…
NASA Astrophysics Data System (ADS)
Imron, M. A.; Ahkam, D. N. I.; Hidayat, A. W.
2017-12-01
The number of factories and home industries, both upper and lower middle class certainly adds waste generated, resulting in environmental pollution. The development of buildings is one of the largest contributors to global warming. For that, it takes technological innovations that lead to the criteria of green building. The application of green material is important aspects of environmentally friendly development, the selection of materials on the green material criteria of both roles should be applied continuously in order to realize the environmental sustainability of the material. Utilization Waste eggshell and bagasse which is a community waste, has the potential to become innovative environmentally friendly building materials. The eggshell is composed of 94% calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic material, especially protein, while the bagasse has a high content of silica (SiO2). In this study, the compounds are used as raw material for making alternative drywall in the form of DECO FRECASE. DECO FRECASE is an innovation of environmentally friendly building materials as an interior wall construction. Through DECO FRECASE, it is expected that building material innovation in Indonesia can be improved and of course environmental problems can be minimized by utilizing it as raw material for building construction.
The Managerial Grid; Key Orientations for Achieving Production through People.
ERIC Educational Resources Information Center
Blake, Robert R; Mouton, Jane S.
The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…
Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B
2011-01-01
The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.
HealthBand for Dementia Patients: Fall and Scream Detector and Caretaker Helper
NASA Astrophysics Data System (ADS)
Alam, Zeeshan; Samin, Huma; Samin, Omar Bin
2018-02-01
The ratio of dementia patients is escalating with time and requires proper attention to help the people suffering from it to continue their activities of daily living (ADL). Such patients suffer from the symptoms like irregular sleep patterns, restlessness, wandering, screaming, falling, sadness and depression. Assistive Technology facilitates caretaker to aid the patient efficiently with minimum effort. Advances in technology have made possible state of the art and innovative methods of health care delivery. Home telecare; in which the patient’s health is monitored remotely at home, is one such method. This paper is proposing a cost effective and user friendly wearable product based solution (i.e. HealthBand) that monitors patient’s activities (specifically fall and scream) and notifies the caretaker in case of emergency to take appropriate action(s). These notifications are sent to the caretaker on the basis of predefined threshold and time span over Bluetooth and GSM mediums to android based application. The android app also keeps patient’s medicines’ intake record and reminds caretaker regarding medicine dosage and timings.
Recent Developments in Film and Gas Research in Modified Atmosphere Packaging of Fresh Foods.
Zhang, Min; Meng, Xiangyong; Bhandari, Bhesh; Fang, Zhongxiang
2016-10-02
Due to the rise of consumer's awareness of fresh foods to health, in the past few years, the consumption of fresh and fresh-cut produces has increased sturdily. Modified atmosphere packaging (MAP) possesses a potential to become one of the most appropriate technologies for packaging fresh and fresh-cut produces. The MAP has advantages of extending the shelf-life, preserving or stabilizing the desired properties of fresh produces, and convenience in handing and distribution. The success of MAP-fresh foods depends on many factors including types of fresh foods, storage temperature and humidity, gas composition, and the characteristics of package materials. This paper reviews the recent developments highlighting the most critical factors of film and gas on the quality of MAP fresh foods. Although the innovations and development of food packaging technology will continue to promote the development of novel MAP, concentrated research and endeavors from scientists and engineers are still important to the development of MAP that focuses on consumers' requirements, enhancing product quality, environmental friendly design, and cost-effective application.
Xu, Jianling L; Tang, Zhanhui H; Shang, Jincheng C; Zhao, Yuanhui H
2010-06-01
The environmental issues caused by the municipal solid waste disposal are becoming a worldwide concern. We studied the situations both domestically and abroad by the strategic environmental assessment (SEA) approach and also conducted comprehensive evaluations of garbage disposal in Changchun City. On the basis of this study, we found that SEA is of great importance in the municipal solid waste disposal. Moreover, with the rapid socioeconomic development of Changchun City, municipal solid waste production increases on an annual basis, and thus, good waste management planning is of great significance. Considering the situation of the economic development of Changchun City, garbage disposal was handled mainly in the major sanitary landfills with appropriate use of incineration technology. This plan is environmentally friendly at a relatively high degree and has met the requirements of minimum investment. It also takes into account the requirements of the development of incineration technology. Regarding environmental pollution in terms of groundwater pollution and atmospheric pollution, this plan is a feasible one by meeting various requirements with low environmental impact among the three plans discussed in this study.
Solventless pharmaceutical coating processes: a review.
Bose, Sagarika; Bogner, Robin H
2007-01-01
Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.
Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Matthew Nicholas
2016-07-15
Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility studymore » described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.« less
Comparative development of knowledge-based bioeconomy in the European Union and Turkey.
Celikkanat Ozan, Didem; Baran, Yusuf
2014-09-01
Biotechnology, defined as the technological application that uses biological systems and living organisms, or their derivatives, to create or modify diverse products or processes, is widely used for healthcare, agricultural and environmental applications. The continuity in industrial applications of biotechnology enables the rise and development of the bioeconomy concept. Bioeconomy, including all applications of biotechnology, is defined as translation of knowledge received from life sciences into new, sustainable, environment friendly and competitive products. With the advanced research and eco-efficient processes in the scope of bioeconomy, more healthy and sustainable life is promised. Knowledge-based bioeconomy with its economic, social and environmental potential has already been brought to the research agendas of European Union (EU) countries. The aim of this study is to summarize the development of knowledge-based bioeconomy in EU countries and to evaluate Turkey's current situation compared to them. EU-funded biotechnology research projects under FP6 and FP7 and nationally-funded biotechnology projects under The Scientific and Technological Research Council of Turkey (TUBITAK) Academic Research Funding Program Directorate (ARDEB) and Technology and Innovation Funding Programs Directorate (TEYDEB) were examined. In the context of this study, the main research areas and subfields which have been funded, the budget spent and the number of projects funded since 2003 both nationally and EU-wide and the gaps and overlapping topics were analyzed. In consideration of the results, detailed suggestions for Turkey have been proposed. The research results are expected to be used as a roadmap for coordinating the stakeholders of bioeconomy and integrating Turkish Research Areas into European Research Areas.
NASA Astrophysics Data System (ADS)
Ahmad, N.; Dayana, S. A. S.; Abnisa, F.; Mohd, W. A. W. D.
2018-03-01
Natural rubber is a humid agricultural harvest, which mostly contains hydrocarbon cis-1, 4-Poly isoprene. Through depolymerisation technology, the natural rubber can be changed into liquid product, and then it can be subsequently utilized as a fuel or chemical feedstock. This article aims to provide an outlook on the natural rubber and its sources, which are available globally. Numerous depolymerisation processes, which include pyrolysis, gasification, chemical degradation, catalytic cracking and hydrogenation, were introduced in this paper, while the focus of discussion was emphasized on the hydrous pyrolysis process. Many studies have shown that the use of hydrous pyrolysis able to improve the depolymerisation process, e.g. the raw material can be feed without drying, the process can be carried out at lower temperature, only the water is used as the reaction medium, and it is easy to separate the water from oil product. The effect of operating parameters such as temperature, water to rubber mass ratio, reaction time and type of gases on the product yield and composition were reviewed in this paper. In addition, this paper also highlighted the eco-friendly and economic viability of the hydrous pyrolysis process.
A review on lipase-catalyzed reactions in ultrasound-assisted systems.
Lerin, Lindomar A; Loss, Raquel A; Remonatto, Daniela; Zenevicz, Mara Cristina; Balen, Manuela; Netto, Vendelino Oenning; Ninow, Jorge L; Trentin, Cláudia M; Oliveira, J Vladimir; de Oliveira, Débora
2014-12-01
The named "green chemistry" has been receiving increasing prominence due to its environmentally friendly characteristics. The use of enzymes as catalysts in processes of synthesis to replace the traditional use of chemical catalysts present as main advantage the fact of following the principles of the green chemistry. However, processes of enzymatic nature generally provide lower yields when compared to the conventional chemical processes. Therefore, in the last years, the ultrasound has been extensively used in enzymatic processes, such as the production of esters with desirable characteristics for the pharmaceutical, cosmetics, and food industry, for the hydrolysis and glycerolysis of vegetable oils, production of biodiesel, etc. Several works found in the open literature suggest that the energy released by the ultrasound during the cavitation phenomena can be used to enhance mass transfer (substrate/enzyme), hence increasing the rate of products formation, and also contributing to enhance the enzyme catalytic activity. Furthermore, the ultrasound is considered a "green" technology due to its high efficiency, low instrumental requirement and significant reduction of the processing time in comparison to other techniques. The main goal of this review was to summarize studies available to date regarding the application of ultrasound in enzyme-catalyzed esterification, hydrolysis, glycerolysis and transesterification reactions.
How Memorial Hermann’s Online Payments Are Boosting Patient Loyalty and Revenue.
Ramos Hegwer, Laura
2016-01-01
The Houston-based health system has implemented new workflows and technology in 14 of its hospitals and across its care delivery network to make the payment process more patient-friendly and build consumer loyalty.
BIOVENTING DEVELOPMENT PROGRAM (TREATMENT AND DESTRUCTION BRANCH, LRPCD, NRMRL)
In a continuing effort to develop environment-friendly and cost-effective remediation technologies, the Land Remediation and Pollution Control Division (LRPCD) conducts an aggressive research and development program in bioventing. LRPCD's bioventing program is multi-faceted, with...
Teens, technology, and health care.
Leanza, Francesco; Hauser, Diane
2014-09-01
Teens are avid users of new technologies and social media. Nearly 95% of US adolescents are online at least occasionally. Health care professionals and organizations that work with teens should identify online health information that is both accurate and teen friendly. Early studies indicate that some of the new health technology tools are acceptable to teens, particularly texting, computer-based psychosocial screening, and online interventions. Technology is being used to provide sexual health education, medication reminders for contraception, and information on locally available health care services. This article reviews early and emerging studies of technology use to promote teen health. Copyright © 2014 Elsevier Inc. All rights reserved.
Narrowband infrared emitters for combat ID
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward
2007-04-01
There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.
POLLUTION PREVENTION: THE ROLE OF ENVIRONMENTAL MANAGEMENT AND INFORMATION
The theoretical analysis undertaken here addresses the following issues. First we examine whether firms with high intrinsic quality products would choose to produce more or less environmentally friendly products than their competitors. Second, we investigate how the environmen...
The Effects of Consumer Education on Consumer Search.
ERIC Educational Resources Information Center
Fast, Janet; And Others
1989-01-01
A study investigated the relationship between selected consumer and marketplace characteristics and consumers' prepurchase allocation of search time among information sources (product test reports; dealer sales representatives; advertisements; family and friends). The household production model proved useful; written educational materials appeared…
MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers
Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier
2017-01-01
Background The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. Objective MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. Methods MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. Results MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user’s specific interests and provides an efficient way to share information with collaborators. Furthermore, the user’s behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. Conclusions We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. PMID:28623182
Electrochemical hydrogenation of thiophene on SPE electrodes
NASA Astrophysics Data System (ADS)
Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.
2017-01-01
Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.
Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2012-08-15
The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less
Nguyen, Annie Lu; Berg, Jill; Amin, Alpesh; Bachman, Mark; Guo, Yuqing; Evangelista, Lorraine
2014-01-01
Background Older adults are at substantial risk for cardiovascular disorders that may require anticoagulation therapy. Those on warfarin therapy report dissatisfaction and reduced quality of life (QOL) resulting from the treatment. Advances in the area of mobile health (mHealth) technology have resulted in the design and development of new patient-centric models for the provision of personalized health care services to improve care delivery. However, there is a paucity of research examining the effectiveness of mHealth tools on knowledge, attitudes, and patient satisfaction with treatment, as well as self-management, adherence to therapy, and QOL in older adults with chronic illness conditions requiring long-term warfarin therapy. Objective The objective of the study was to explore the attitudes and preferences of older adults on warfarin therapy regarding the use of mHealth technology and health games to gain skills for self-management. Methods We conducted group and individual interviews with patients (60 years or older) on warfarin therapy at two anticoagulation clinics affiliated with an academic medical center. We held 4 group and 2 individual interviews, resulting in 11 patient participants and 2 family caregiver participants. We used structured questions on three topic areas including medication self-management strategies, mHealth technology use, and health games for exercise. We demonstrated some commercial health apps related to medication management, vitamin K content of food, and a videogame for balance exercise. Discussions were audiotaped and transcribed verbatim. Common themes were drawn using content analysis. Results The participants reported awareness of the importance of staying on schedule with warfarin therapy. They also acknowledged that negative experiences of friends or family members who were taking warfarin influenced their desire to keep on schedule with warfarin therapy. In addition, the participants expressed that the use of mHealth technology may be helpful for medication management. They also expressed the need for family support in the use of health technology devices. Moreover, the participants discussed concerns and challenges to use health technology and health games, and provided suggestions on ways to make mHealth technology and health games elder-friendly. Conclusions These findings indicate that our older adults on warfarin therapy are interested in mHealth technology specific to warfarin medication management and health games. Further research needs to be done to validate these findings. Elder-friendly designs, technology support, and physical safety using mHealth technology may be useful in this population. These findings can be used to inform a larger study to design and test an elder-centered mHealth technology in this target population. PMID:25098413
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
Application of Satellite Data to Develop Wind Potential Model: A Case Study of Pakistan Coastal Belt
NASA Astrophysics Data System (ADS)
Nayyar, Z. A.; Zaigham, N. A.
2010-12-01
Since the independence in 1947, the Pakistan relies on the conventional resources for the generation of electricity. Since the local production of fossil fuel is not sufficient to fulfill the growing need of the country, the major economic burden involves huge import of petroleum products. In such a situation, the renewable energy resources are imperative in view to substantiate the economic burden. Wind energy resource is one of them, which is freely available and environmental friendly in nature. Pakistan is the late starter in the field of wind energy technology mainly because of the unavailability of the baseline wind data. As such, the adequate wind modeling and identification of the potential areas are imperative for the development of wind energy technology in the country. Present research study is carried out, based on the available satellite-collected wind data, to establish the rational wind potential model(s) of lower Indus Plains and Sindh coastal areas of Pakistan. The results of the present study reveals interesting pattern of the wind energy potential demarcating the higher wind energy resource zones and indicating hot spots for the future wind-farm installations. This paper describes the use of available satellite-collected wind data in the demarcation and modeling of wind potential along the lower Indus coastal belt and the methodology could be replicated on other parts of Pakistan and/or other counties.
[Data transparency regarding medical devices - the position of the medical device industry].
Soskuty, Gabriela
2011-01-01
The medical device industry, strongly dominated by medium-sized firms, has significant growth potential and a high number of job opportunities with 170,000 employees in more than 11,000 companies. Approximately one third of the business volume is achieved with innovative products that are less than three years old. The safety, quality and efficiency of the products is tested and approved by CE certification. Due to the heterogeneous field of devices, however, evidence requirements must be differentiated according to the type of device in question. Transparency is as important as the type of evidence, and industry is well aware of the significance of transparency for credibility in the market. Industry believes that all the stakeholders affected must collaborate to define the evidence requirements and decide which data are necessary to assess the benefits of a technology. Before a consistent level of transparency can be achieved, however, it is crucial to jointly develop a framework of requirements including invasiveness, risk potential, patient-relevant endpoints and intended use of the technology, as well as the data source. Transparency is a process that can only be achieved if all stakeholders cooperate successfully. Also, it is important to keep in mind that the development of study designs and reliable evidence needs time. In the interest of all patients it is essential to maintain an innovation-friendly climate in Germany. Copyright © 2011. Published by Elsevier GmbH.
Li, Jia; Wang, Guangxu; Xu, Zhenming
2016-01-25
The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. Copyright © 2015 Elsevier B.V. All rights reserved.
Electronic Cigarettes and Awareness of Their Health Effects.
Daniluk, A; Gawlikowska-Sroka, A; Stępien-Słodkowska, M; Dzięciołowska-Baran, E; Michnik, K
2018-01-01
The use of electronic cigarettes or e-cigarettes is strongly on the rise. The literature confirms that in the process of quitting smoking using an electronic device dispensing nicotine should be a transitional stage before the complete cessation of smoking. The aim of the present study was to assess the popularity of e-cigarettes, the underlying reasons for use of such nicotine products, and the level of awareness of health hazards associated with e-cigarettes. The study is of a survey type. The material consisted of data collected from an anonymous survey distributed among 46 female and 23 male users of e-cigarettes in 2015. We used a questionnaire of our own design. The findings demonstrate that the main reason for a recourse to e-cigarettes is a desire to use fashionable technological innovations, and the conviction that such cigarettes are less harmful than the traditional tobacco products. Some respondents used e-cigarettes to quit smoking; others to minimize the harmful effects of smoking. Most respondents acquired information about e-cigarettes from friends or from the Internet. There was a high awareness of the chemical composition of substances contained in e-cigarettes. An interest in e-cigarettes is caused by an increased knowledge on the negative effects of traditional smoking. Currently, the e-cigarettes remains a technological novelty, so that the exact health effects of their long-term use are open to conjecture.
Xue, Mianqiang; Li, Jia; Xu, Zhenming
2012-03-06
Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.
What is the role of e-technology in mental health services and psychiatric research?
Cleary, Michelle; Walter, Garry; Matheson, Sandra
2008-04-01
In this article, the role of e-technology is explored, with an emphasis on the advantages and disadvantages of its use for health care and mental health research. E-technology is broadly understood to include the Internet and related information technologies, and in recent years, its use has grown rapidly. The Internet is a major source of health information, and there is potential to deliver enhanced services through this medium. In addition, e-technology's role in future mental health service delivery and research will continue to expand as increased numbers of consumers, caregivers, health professionals, and the general population go online, particularly as the technology is refined and made even more user friendly.
Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.
Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik
2016-01-08
As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-recycling of metals: Recycling of technical products using biological applications.
Pollmann, Katrin; Kutschke, Sabine; Matys, Sabine; Raff, Johannes; Hlawacek, Gregor; Lederer, Franziska L
2018-03-16
The increasing demand of different essential metals as a consequence of the development of new technologies, especially in the so called "low carbon technologies" require the development of innovative technologies that enable an economic and environmentally friendly metal recovery from primary and secondary resources. There is serious concern that the demand of some critical elements might exceed the present supply within a few years, thus necessitating the development of novel strategies and technologies to meet the requirements of industry and society. Besides an improvement of exploitation and processing of ores, the more urgent issue of recycling of strategic metals has to be enforced. However, current recycling rates are very low due to the increasing complexity of products and the low content of certain critical elements, thus hindering an economic metal recovery. On the other hand, increasing environmental consciousness as well as limitations of classical methods require innovative recycling methodologies in order to enable a circular economy. Modern biotechnologies can contribute to solve some of the problems related to metal recycling. These approaches use natural properties of organisms, bio-compounds, and biomolecules to interact with minerals, materials, metals, or metal ions such as surface attachment, mineral dissolution, transformation, and metal complexation. Further, modern genetic approaches, e.g. realized by synthetic biology, enable the smart design of new chemicals. The article presents some recent developments in the fields of bioleaching, biosorption, bioreduction, and bioflotation, and their use for metal recovery from different waste materials. Currently only few of these developments are commercialized. Major limitations are high costs in comparison to conventional methods and low element selectivity. The article discusses future trends to overcome these barriers. Especially interdisciplinary approaches, the combination of different technologies, the inclusion of modern genetic methods, as well as the consideration of existing, yet unexplored natural resources will push innovations in these fields. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Klishin, V.; Nikitenko, S.; Opruk, G.
2018-05-01
The paper discusses advanced top coal caving technologies for thick coal seams and addresses some issues of incomplete coal extraction, which can result in the environmental damage, landscape change, air and water pollution and endogenous fires. The authors put forward a fundamentally new, having no equivalent and ecology-friendly method to difficult-to-cave roof coal – directional hydraulic fracturing and nonexplosive disintegration.
FY2010 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.
2007 Disruptive Technologies Conference - Disruptive Technologies: Turning Lists into Capabilities
2007-09-05
Privilege management • Health care, benefits, finance , time and attendance, etc. • Military operations – “Combat Identification” • Friend, Foe, Neutral...Logistics Influence Force Support Corporate Mgt & Support N o im pl ie d pr io ri ti za ti on Movement & Maneuver Surface Warfare Joint Fires Undersea...Starter Generator MEMS Actuators / Valves Atomizer Nozzles Reclaimed Electrical Heat Engine UC Berkely Wankel Engine Exhaust Thermo Electric/Others
MEMS packaging: state of the art and future trends
NASA Astrophysics Data System (ADS)
Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.
1998-07-01
Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.
Zulman, Donna M; Piette, John D; Jenchura, Emily C; Asch, Steven M; Rosland, Ann-Marie
2013-07-10
Many patients with chronic conditions are supported by out-of-home informal caregivers-family members, friends, and other individuals who provide care and support without pay-who, if armed with effective consumer health information technology, could inexpensively facilitate their care. We sought to understand caregivers' use of, interest in, and perceived barriers to health information technology for out-of-home caregiving. We conducted 2 sequential Web-based surveys with a national sample of individuals who provide out-of-home caregiving to an adult family member or friend with a chronic illness. We queried respondents about their use of health information technology for out-of-home caregiving and used multivariable regression to investigate caregiver and care-recipient characteristics associated with caregivers' technology use for caregiving. Among 316 out-of-home caregiver respondents, 34.5% (109/316) reported using health information technology for caregiving activities. The likelihood of a caregiver using technology increased significantly with intensity of caregiving (as measured by number of out-of-home caregiving activities). Compared with very low intensity caregivers, the adjusted odds ratio (OR) of technology use was 1.88 (95% CI 1.01-3.50) for low intensity caregivers, 2.39 (95% CI 1.11-5.15) for moderate intensity caregivers, and 3.70 (95% CI 1.62-8.45) for high intensity caregivers. Over 70% (149/207) of technology nonusers reported interest in using technology in the future to support caregiving. The most commonly cited barriers to technology use for caregiving were health system privacy rules that restrict access to care-recipients' health information and lack of familiarity with programs or websites that facilitate out-of-home caregiving. Health information technology use for out-of-home caregiving is common, especially among individuals who provide more intense caregiving. Health care systems can address the mismatch between caregivers' interest in and use of technology by modifying privacy policies that impede information exchange.
Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina; Contiero, Jonas
2017-01-01
The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(-) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(-) lactic acid production.
Workplace Friendship in the Electronically Connected Organization
ERIC Educational Resources Information Center
Sias, Patricia M.; Pedersen, Hannah; Gallagher, Erin B.; Kopaneva, Irina
2012-01-01
This study examined information communication technologies and workplace friendship dynamics. Employees reported factors that influenced their initiation of friendship with a coworker and reported patterns and perceptions of communication with their workplace friend via different communication methods. Results indicated that personality, shared…
Drivetrain Hybridization, SAE Technical Papers (2001) Modeling Grid-Connected Hybrid Electric Vehicles Using -Friendly Advanced Powertrain Simulation using a Combined Backward/Forward Approach, IEEE Transactions on Vehicular Technology (1999) Using an Advanced Vehicle Simulator (ADVISOR) to Guide Hybrid Vehicle Propulsion
Innovative technologies for anti-flammable cotton fabrics
USDA-ARS?s Scientific Manuscript database
Due to its environmentally friendly properties, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercr...
ERIC Educational Resources Information Center
Dehne, George C.
1997-01-01
Promotional marketing can deliver significant benefits to colleges and universities willing to modify traditional practices to build awareness and recruit students. Emerging college marketing practices focus on service, rely on friends to disseminate information, maximize technology, simplify the message, and are based on knowledge of the…
Magnesium-Based Corrosion Nano-Cells For Reductive Transformation Of Contaminants
Magnesium, with its potential to reduce a variety of aqueous contaminants, unique self-limiting corrosion behavior affording long active life times, natural abundance, low cost, and environmentally friendly nature, promises to be an effective technology. However, nanoparticles o...
Evaluation of the environmental performance of alternatives for polystyrene production in Brazil.
Hansen, Adriana Petrella; da Silva, Gil Anderi; Kulay, Luiz
2015-11-01
The global demand for polystyrene is supposed to reach an overall baseline of 23.5 million tons by 2020. The market has experienced the effects of such growth, especially regarding the environmental performance of the production processes. In Brazil, renewable assets have been used to overcome the adverse consequences of this expansion. This study evaluates this issue for the production of Brazilian polystyrene resins, general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS). The effects of replacing fossil ethylene with a biobased alternative are also investigated. Life Cycle Assessment is applied for ten scenarios, with different technological approaches for renewable ethylene production and an alternative for obtaining bioethanol, which considers the export of electricity. The fossil GPPS and HIPS show a better performance than the partially renewable sources in terms of Climate Change (CC), Terrestrial Acidification (TA), Photochemical Oxidant Formation (POF), and Water Depletion (WD). The exception is Fossil Depletion (FD), a somewhat predictable result. The main environmental loads associated with the renewable options are related to the sugarcane production. Polybutadiene fails to provide greater additional impact to HIPS when compared to GPPS. With regard to obtaining ethylene from ethanol, Adiabatic Dehydration (AD) technology consumes less sugarcane than Adiabatic Dehydration at High Pressure (ADHP), which leads to gains in TA and POF. In contrast, ADHP was more eco-friendly for WD because of its lower water losses and in terms of CC because of the advantageous balance of fossil CO2(eq) at the agricultural stage and the lower consumption of natural gas in ethylene production. The electricity export is an auspicious environmental opportunity because it can counterbalance some of the negative impacts associated with the renewable route. According to a "cradle-to-grave" perspective, the partially renewable resins show a more favorable balance of carbon. This difference increases when sequestration and biogenic carbon emissions are considered. Copyright © 2015 Elsevier B.V. All rights reserved.
An environmental assessment of grass-finishing beef operations in Pennsylvania
USDA-ARS?s Scientific Manuscript database
Concern for the environmental sustainability of traditional beef production has increased consumer interest in alternatively produced beef products perceived to be more environmentally friendly. This includes those marketed under “grassfed beef” labels. However, little information exists on the env...
Biosynthesis of nanoparticles using microbes- a review.
Hulkoti, Nasreen I; Taranath, T C
2014-09-01
The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.
Bio-coal briquettes using low-grade coal
NASA Astrophysics Data System (ADS)
Estiaty, L. M.; Fatimah, D.; Widodo
2018-02-01
The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.
Performance of Electricity Generation from Bryophyllum Leaf for Practical Utilisation
NASA Astrophysics Data System (ADS)
Khan, Md. Kamrul Alam
2017-01-01
Constructing an affordable cost, environment friendly simplified electrical energy source with Pathor Kuchi Leaf (PKL) for power electrifications which will significantly upgrade the life style of 1.6 billion people especially, who live in rural areas of Bangladesh. However, one fifth of the world's population still lack access to electricity-well, mainly in Sub-Saharan Africa and South Asia (Bangladesh, India, Sri Lanka, Pakistan, Nepal and Bhutan). This innovative technology will meet essential requirements as lighting, telecommunication as well as information access. Electrodes are put into the Bryophyllum Pinnatum Leaf (BPL) or Pathor Kuchi Leaf (PKL) sap and they produce substantially sufficient amount of electricity to power energy consumed electronics and electrical appliances. CuSO4.5H2O solution is used as a secondary salt. The role of CuSO4.5H2O solution has been studied. The electrical and chemical properties, a very important factor for PKL electricity generation device have been studied in this research work. The electrical properties are: internal resistance, voltage regulation, energy efficiency, pulse performance, self discharge characteristics, discharge characteristics with load, capacity of the PKL cell, temperature characteristics and life cycle of the PKL cell. The chemical properties are: variation of voltage, current with the variation of [Zn2+], [Cu2+] and time. The performance of the production of the two bi-products (fertilizer and hydrogen gas production) has been studied. Variation of concentration of Zn2+ and Cu2+ with the variation of percentage of the I am grateful to the authority of the Science and technology ministry,Bangladesh for financial support during the research work.
Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A
2013-10-01
The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.
Xiao, Yan; Chen, Xianzhong; Shen, Wei; Yang, Haiquan; Fan, You
2015-12-01
Production of bioethanol using starch as raw material has become a very prominent technology. However, phytate in the raw material not only decreases ethanol production efficiency, but also increases phosphorus discharge. In this study, to decrease phytate content in an ethanol fermentationprocess, Saccharomyces cerevisiae was engineered forheterologous expression of phytase on the cell surface. The phy gene encoding phytase gene was fused with the C-terminal-half region of α-agglutinin and then inserted downstream of the secretion signal gene, to produce a yeast surface-display expression vector pMGK-AG-phy, which was then transformed into S. cerevisiae. The recombinant yeast strain, PHY, successfully displayed phytase on the surface of cells producing 6.4 U/g wet cells and its properties were further characterized. The growthrate and ethanol production of the PHY strain were faster than the parent S. cerevisiae strain in the fermentation medium by simultaneous saccharification and fermentation. Moreover, the phytate concentration decreased by 91% in dry vinasse compared to the control. In summary, we constructed recombinant S. cerevisiae strain displaying phytase on the cell surface, which could effectively reduce the content of phytate, improve the utilization value of vinasse and reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.
Feasibility of Using Lasers and Infrared Heaters as UNREP Icing Countermeasures
1989-12-29
water lance system out of commission, it is likely that the ship’s machine shop could fabricate the necessary parts for temporary repair. No such back...Sturbridge, MA 01566 High powered C02 laser systems and large inductrial machine tools. Coherent Laser Products (800) 527-3786 3210 Porter Drive P.O...friendly LASAG lasers are for user friendly applications The correct Laser Source for a particular in inoustrial apolications. Machining Task Mair
NASA Astrophysics Data System (ADS)
Jørgen Koch, Hans
To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.
NASA Astrophysics Data System (ADS)
Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander
2017-10-01
The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
Gullón, Beatriz; Eibes, Gemma; Dávila, Izaskun; Moreira, María Teresa; Labidi, Jalel; Gullón, Patricia
2018-07-15
Hydrothermal treatment is an environmentally friendly technology that allows the solubilisation of hemicellulosic oligosaccharides with potential for their use as prebiotics. The purpose of this study was to solubilize oligosaccharides and antioxidant compounds from chestnut shells by a hydrothermal processing. The highest content of oligosaccharides (18.3 g/L), with a relatively low level of monosaccharides (2.4 g/L) and degradation products (0.5 g/L) was obtained at 180 °C (severity of 3.08). In addition, the liquors presented a high content of phenolic and flavonoid compounds with good antioxidant properties. The GC-MS revealed that the most abundant phenolic compound was pyrogallol (13.2%). The molecular weight distribution of the solubilization products showed that a 26.5% presented an apparent Mw of 6077 g/mol and a 73.5% presented an apparent Mw of 586 g/mol with a high polydispersity index. MALDI-TOF, FTIR, and TGA analyses revealed structural information of these compounds and their thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genome editing in plants: Advancing crop transformation and overview of tools.
Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali
2018-05-07
Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Urea modified cottonseed protein adhesive for wood composite products
USDA-ARS?s Scientific Manuscript database
Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...
An Overview of U.S. Trends in Educational Software Design.
ERIC Educational Resources Information Center
Colvin, Linda B.
1989-01-01
Describes trends in educational software design in the United States for elementary and secondary education. Highlights include user-friendly software; learner control; interfacing the computer with other media, including television, telecommunications networks, and optical disk technology; microworlds; graphics; word processing; database…
Exploring Identity and Citizenship in a Virtual World
ERIC Educational Resources Information Center
Martin, Stewart
2012-01-01
Digital technology is able to modify deep-rooted views (Martin & Vallance, 2008) and facilitate identity articulation (Bers, 2001). During adolescence young people are developing their personal identity framed through the context of family, friends and cultural and religious inheritance. The complex dynamics between…
Polytobacco, marijuana, and alcohol use patterns in college students: A latent class analysis.
Haardörfer, Regine; Berg, Carla J; Lewis, Michael; Payne, Jackelyn; Pillai, Drishti; McDonald, Bennett; Windle, Michael
2016-08-01
Limited research has examined polysubstance use profiles among young adults focusing on the various tobacco products currently available. We examined use patterns of various tobacco products, marijuana, and alcohol using data from the baseline survey of a multiwave longitudinal study of 3418 students aged 18-25 recruited from seven U.S. college campuses. We assessed sociodemographics, individual-level factors (depression; perceptions of harm and addictiveness,), and sociocontextual factors (parental/friend use). We conducted a latent class analysis and multivariable logistic regression to examine correlates of class membership (Abstainers were referent group). Results indicated five classes: Abstainers (26.1% per past 4-month use), Alcohol only users (38.9%), Heavy polytobacco users (7.3%), Light polytobacco users (17.3%), and little cigar and cigarillo (LCC)/hookah/marijuana co-users (10.4%). The most stable was LCC/hookah/marijuana co-users (77.3% classified as such in past 30-day and 4-month timeframes), followed by Heavy polytobacco users (53.2% classified consistently). Relative to Abstainers, Heavy polytobacco users were less likely to be Black and have no friends using alcohol and perceived harm of tobacco and marijuana use lower. Light polytobacco users were older, more likely to have parents using tobacco, and less likely to have friends using tobacco. LCC/hookah/marijuana co-users were older and more likely to have parents using tobacco. Alcohol only users perceived tobacco and marijuana use to be less socially acceptable, were more likely to have parents using alcohol and friends using marijuana, but less likely to have friends using tobacco. These findings may inform substance use prevention and recovery programs by better characterizing polysubstance use patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polytobacco, marijuana, and alcohol use patterns in college students: A latent class analysis
Haardörfer, Regine; Berg, Carla J.; Lewis, Michael; Payne, Jackelyn; Pillai, Drishti; McDonald, Bennett; Windle, Michael
2016-01-01
Limited research has examined polysubstance use profiles among young adults focusing on the various tobacco products currently available. We examined use patterns of various tobacco products, marijuana, and alcohol using data from the baseline survey of a multiwave longitudinal study of 3418 students aged 18-25 recruited from seven U.S. college campuses. We assessed sociodemographics, individual-level factors (depression; perceptions of harm and addictiveness,), and sociocontextual factors (parental/friend use). We conducted a latent class analysis and multivariable logistic regression to examine correlates of class membership (Abstainers were referent group). Results indicated five classes: Abstainers (26.1% per past 4-month use), Alcohol only users (38.9%), Heavy polytobacco users (7.3%), Light polytobacco users (17.3%), and little cigar and cigarillo (LCC)/hookah/marijuana co-users (10.4%). The most stable was LCC/hookah/marijuana co-users (77.3% classified as such in past 30-day and 4-month timeframes), followed by Heavy polytobacco users (53.2% classified consistently). Relative to Abstainers, Heavy polytobacco users were less likely to be Black and have no friends using alcohol and perceived harm of tobacco and marijuana use lower. Light polytobacco users were older, more likely to have parents using tobacco, and less likely to have friends using tobacco. LCC/hookah/marijuana co-users were older and more likely to have parents using tobacco. Alcohol only users perceived tobacco and marijuana use to be less socially acceptable, were more likely to have parents using alcohol and friends using marijuana, but less likely to have friends using tobacco. These findings may inform substance use prevention and recovery programs by better characterizing polysubstance use patterns. PMID:27074202
How Social Ties Influence Consumer: Evidence from Event-Related Potentials.
Luan, Jing; Yao, Zhong; Bai, Yan
2017-01-01
A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.
How Social Ties Influence Consumer: Evidence from Event-Related Potentials
Yao, Zhong
2017-01-01
A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions. PMID:28081196
Simulation and Experimental Study on Cavitating Water Jet Nozzle
NASA Astrophysics Data System (ADS)
Zhou, Wei; He, Kai; Cai, Jiannan; Hu, Shaojie; Li, Jiuhua; Du, Ruxu
2017-01-01
Cavitating water jet technology is a new kind of water jet technology with many advantages, such as energy-saving, efficient, environmentally-friendly and so on. Based on the numerical simulation and experimental verification in this paper, the research on cavitating nozzle has been carried out, which includes comparison of the cleaning ability of the cavitating jet and the ordinary jet, and comparison of cavitation effects of different structures of cavitating nozzles.
Carbon nanostructures for solar energy conversion schemes.
Guldi, Dirk M; Sgobba, Vito
2011-01-14
Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.
Umaraw, Pramila; Verma, Akhilesh K
2017-04-13
The functions of packaging materials are to prevent moisture loss, drip, reduce lipid oxidation, improve some of their sensorial properties (color, taste and smell) and provide microbial stability of foods. Edible films can be made from protein, polysaccharides and lipids or by combination of any of these to form a composite film. Nanocomposites are composite films made by incorporation of nanoparticles. Edible packaging and coating of the meat and meat products enhances the self-life by the incorporation of the active compound (such as antimicrobial and antioxidant compound) in to the packaging matrix. Incorporation of the some ingredients in the matrix may also improve the nutritional as well as sensory attributes of the packed products. Edible packaging material also reduces environmental pollution by overcoming the burden degradation as edible films are biodegradable and thus eco-friendly.
Trial, Adoption, Usage and Diffusion of Social Media
2011-12-01
Gaming Users Online Forums Users Podcasting Users Ease of use 15 20 3 0 0 0 To stay in contact 11 0 1 0 0 0 Pressure from friends 10 1 2 0 0 0...focused 2 0 0 0 0 0 Ease of use 2 3 0 0 0 0 Kill boredom 2 0 0 0 0 0 Content (self- expression) 1 0 1 0 0 0 Catch people’s attention 1 0 0 0 0 0...Users Online Forums Users Podcasting Users Stay in contact with friends 20 0 0 0 0 0 Ease of use 6 2 0 0 0 0 Technology features 6 8 0 0
Energy cost unit of street and park lighting system with solar technology for a more friendly city
NASA Astrophysics Data System (ADS)
Warman, E.; Nasution, F. S.; Fahmi, F.
2018-03-01
Street and park lighting system is part of a basic infrastructure need to be available in such a friendly city. Enough light will provide more comfort to citizens, especially at night since its function to illuminate roads and park environments around the covered area. The necessity to add more and more lighting around the city caused the rapid growth of the street and park lighting system while the power from PLN (national electricity company) is insufficient and the cost is getting higher. Therefore, it is necessary to consider other energy sources that are economical, environmentally friendly with good continuity. Indonesia, which located on the equator, have benefited from getting solar radiation throughout the year. This free solar radiation can be utilized as an energy source converted by solar cells to empower street and park lighting system. In this study, we planned the street and park lighting with solar technology as alternatives. It was found that for Kota Medan itself, an average solar radiation intensity of 3,454.17 Wh / m2 / day is available. By using prediction and projection method, it was calculated that the energy cost unit for this system was at Rp 3,455.19 per kWh. This cost was higher than normal energy cost unit but can answer the scarcity of energy availability for street and park lighting system
Leung, Doris; Carlson, Elisabeth; Kwong, Enid E Y; Idvall, Ewa; Kumlien, Christine
2017-12-01
Cultural skills are fundamental to developing global academic scholars. Internationalization at home can facilitate the acquisition of these skills without students having to go abroad. However, research on the effect of internationalization of higher education is scarce, despite apparent benefits to incorporating cultural sensitivity in research. Further, little is known about the role information and communication technology plays. In this pilot study, we describe the experience of doctoral students with an internationalization-at-home program, and its impact on developing an understanding about different research cultures. Eight doctoral nursing students from Sweden and Hong Kong participated in five webinars as "critical friends". The study followed a descriptive, qualitative design. The results demonstrated that students observed cultural differences in others' research training programs. However, while cultural differences reinforced friendship among local peers, they challenged engagement with critical friends. Challenges led to the perception of one another not as critical friends but as "distant" friends. We discuss the possible reasons for these outcomes, and emphasize a need to nurture connectivity and common goals. This would prepare students to identify, translate, and recognize cultural differences to help develop knowledge of diverse research cultures. © 2017 John Wiley & Sons Australia, Ltd.
Testing a small UAS for mapping artisanal diamond mining sites in Africa
Malpeli, Katherine C.; Chirico, Peter G.
2015-01-01
Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.
Electricity storage: Friend or foe of the networks?
NASA Astrophysics Data System (ADS)
Jamasb, Tooraj
2017-06-01
As storage technology progresses it offers a range of solutions and services to users and the electricity industry. A new study explores whether or not this will eventually lead to self-sufficient consumers and spell the end of the networks as we know them.
2015-02-01
networking provides 24-hour access to data and information between friends and strangers alike. Technology also has played a significant role in the world’s...economic environment, many or- ganizations look at cyber budgets as areas to cut back. And many top-level managers and members of the acquisition
Information gathering and technology use among low-income minority men at risk for prostate cancer.
Song, Hayeon; Cramer, Emily M; McRoy, Susan
2015-05-01
Health communication researchers, public health workers, and health professionals must learn more about the health information-gathering behavior of low-income minority men at risk for prostate cancer in order to share information effectively with the population. In collaboration with the Milwaukee Health Department Men's Health Referral Network, a total of 90 low-income adult men were recruited to complete a survey gauging information sources, seeking behavior, use of technology, as well as prostate cancer awareness and screening behavior. Results indicated participants primarily relied on health professionals, family, and friends for information about general issues of health as well as prostate cancer. The Internet was the least relied on source of information. A hierarchical regression indicated interpersonal information sources such as family or friends to be the only significant predictor enhancing prostate cancer awareness, controlling for other sources of information. Prostate screening behaviors were predicted by reliance on not only medical professionals but also the Internet. Practical implications of the study are discussed. © The Author(s) 2014.
Criteria for successful uptake of AAL technologies: lessons learned from Norwegian pilot projects.
Svagård, Ingrid; Ausen, Dag; Standal, Kristin
2013-01-01
Implementation of AAL-technology as an integrated part of public health and care services requires a systematic and multidisciplinary approach. There are several challenges that need to be handled in parallel and with sustained effort over time, to tackle the multidimensional problem of building the value chain that is required for widespread uptake of AAL technology. Several pilot projects are on-going in Norway, involving municipalities, technology providers and research partners. Examples are "Home Safety" (NO: Trygghetspakken) and "Safe Tracks" (NO: Trygge spor). This paper will elaborate on our lessons learned with focus on five main points: 1) User-friendly and robust technology 2) Technology adapted organization 3) Service oriented technology providers 4) Care service organizations as demanding customer and 5) Sustainable financial model.
Capturing the emerging market for climate-friendly technologies: opportunities for Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-11-15
This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less
Energy and fuels from electrochemical interfaces
NASA Astrophysics Data System (ADS)
Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.
2017-01-01
Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.
Smith, Alan D; Offodile, O Felix
2008-01-01
The limitations, immeasurable, and seemly unquantifiable aspects of the healthcare service industry, make it imperative that quality assurance programs include total quality management (TQM) and automatic identification and data capture (AIDC)-related technologies. Most of standards used in TQM and AIDC require data, to measure improvement and achieve standardization. Major difference between managing a service firm and managing a product-manufacturing firm is the difficulty of achieving consistently high quality. Examination of two different healthcare service providers in the Pittsburgh, Pennsylvania area offers different views as to the implementation and practice of total quality management techniques and AIDC integration. Since the healthcare service industry must take into account its high customization needs, there are positive steps to make the hospital structure itself more patient friendly and quality related; hence improving its heath-marketing strategies to the general public.
Bio‐palladium: from metal recovery to catalytic applications
De Corte, Simon; Hennebel, Tom; De Gusseme, Bart; Verstraete, Willy; Boon, Nico
2012-01-01
Summary While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment‐friendly way. Biological synthesis of Pd nanoparticles (‘bio‐Pd’) is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio‐Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio‐Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio‐Pd in environmental technology are presented. PMID:21554561
[Preface for special issue on bio-based materials (2016)].
Weng, Yunxuan
2016-06-25
Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.
Using a digital storytelling assignment to teach public health advocacy.
de Castro, A B; Levesque, Salem
2018-03-01
The need and expectation for advocacy is central to public health nursing practice. Advocacy efforts that effectively call attention to population health threats and promote the well-being of communities rely on strategies that deliver influential messaging. The digital story is a lay method to capture meaningful, impactful stories that can be used to advocate for public health concerns. Readily available, user-friendly digital technologies allow engagement in digital media production to create digital stories. This paper describes how digital story making can be utilized as an academic assignment to teach public health advocacy within an undergraduate nursing curriculum. Providing nursing students this artistic outlet can facilitate meeting academic learning goals, while also equipping them with creative skills that can be applied in future professional practice. Nursing educators can take advantage of institutional resources and campus culture to support the use of novel digital media assignments that facilitate application of advocacy concepts. © 2017 Wiley Periodicals, Inc.
Usability of Medical Devices for Patients With Diabetes Who Are Visually Impaired or Blind.
Heinemann, Lutz; Drossel, Diana; Freckmann, Guido; Kulzer, Bernhard
2016-11-01
The estimation is that every third to fourth patient with diabetes suffers from some degree of diabetic retinopathy. Medical products for insulin administration (such as insulin pens and pumps) or glucose monitoring not optimized to the needs of these patients' represent a high barrier for optimal diabetes therapy in daily practice. To date, the number of devices suitable for visually impaired and blind patients with diabetes is scarce. This manuscript outlines the specific needs of this patient group with regard to systems for insulin administration, blood glucose measurement, and continuous glucose monitoring. We see the clear need for a policy requirement for manufacturers to provide accessible/user friendly technical aids for visually impaired and blind patients with diabetes. This would represent an important step toward improving the situation for this impressively large patient group. © 2016 Diabetes Technology Society.
Numerical simulation of mechanical properties tests of tungsten mud waste geopolymer
NASA Astrophysics Data System (ADS)
Paszek, Natalia; Krystek, Małgorzata
2018-03-01
Geopolymers are believed to become in the future an environmental friendly alternative for the concrete. The low CO2 emission during the production process and the possibility of ecological management of the industrial wastes are mentioned as main advantages of geopolymers. The main drawback, causing problems with application of geopolymers as a building material is the lack of the theoretical material model. Indicated problem is being solved now by the group of scientists from the Silesian University of Technology. The series of laboratory tests are carried out within the European research project REMINE. The paper introduces the numerical analyses of tungsten mud waste geopolymer samples which have been performed in the Atena software on the basis of the laboratory tests. Numerical models of bended and compressed samples of different shapes are presented in the paper. The results obtained in Atena software were compared with results obtained in Abaqus and Mafem3D software.
Radiology Architecture Project Primer.
Sze, Raymond W; Hogan, Laurie; Teshima, Satoshi; Davidson, Scott
2017-12-19
The rapid pace of technologic advancement and increasing expectations for patient- and family-friendly environments make it common for radiology leaders to be involved in imaging remodel and construction projects. Most radiologists and business directors lack formal training in architectural and construction processes but are expected to play significant and often leading roles in all phases of an imaging construction project. Avoidable mistakes can result in significant increased costs and scheduling delays; knowledgeable participation and communication can result in a final product that enhances staff workflow and morale and improves patient care and experience. This article presents practical guidelines for preparing for and leading a new imaging architectural and construction project. We share principles derived from the radiology and nonradiology literature and our own experience over the past decade completely remodeling a large pediatric radiology department and building a full-service outpatient imaging center. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Highly Effective Ferroelectric Materials and Technologies for Their Processing
NASA Astrophysics Data System (ADS)
Reznichenko, L. A.; Verbenko, I. A.; Andryushina, I. N.; Andryushin, K. P.; Pavelko, A. A.; Pavlenko, A. A.; Shilkina, L. A.; Dudkina, S. I.; Sudykov, H. A.; Abubakarov, A. G.; Talanov, M. V.; Gershenovich, V. V.; Miller, A. I.; Alyoshin, V. A.
The basis of most commonly ferroelectric ceramic materials (FECMs) used in the modern industry is solid solutions of complex lead oxides. It should be noted that due to significant toxicity of lead compounds there has been an intensive search for alternative materials in recent years. Such efforts resulted from the introduction of a new legislative base aiming at environmental protection [Directive 2002/95/EC of the European Parliament and Council by 27 January 2003 on the restriction of the use of certain hazardous substances in electronic equipment]. In the Research Institute of Physics of SFedU much work has been done for about 30 years to investigate and develop of the environmentally friendly FECMs on the basis of alkali niobate metals. Nowadays such materials are finding more applications in the defense industry rather than other industries. Therefore it is extremely important to promote the production of lead low-cost materials and develop new FECMs.
Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina
2017-01-01
The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(−) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(−) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(−) lactic acid production. PMID:29081803
Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N
2017-07-01
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.
Potential impacts of cropland biofuel production on the provision of avian habitat
Present laws and policies encourage the growth of corn for the production of starch-based and cellulosic ethanol on agricultural lands in the U.S. This has been touted as an environmentally-friendly solution to problems of energy-independence, particularly in the midwestern U.S....
Supercritical Fluid Technologies to Fabricate Proliposomes.
Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei
2015-01-01
Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.
Technical and economic feasibility of integrated video service by satellite
NASA Technical Reports Server (NTRS)
Price, K. M.; Kwan, R. K.; White, L. W.; Garlow, R. K.; Henderson, T. R.
1992-01-01
A feasibility study is presented of utilizing modern satellite technology, or more advanced technology, to create a cost-effective, user-friendly, integrated video service, which can provide videophone, video conference, or other equivalent wideband service on demand. A system is described that permits a user to select a desired audience and establish the required links similar to arranging a teleconference by phone. Attention is given to video standards, video traffic scenarios, satellite system architecture, and user costs.
International Technology Transfer the Rope to Hang the West
1989-03-28
order to provide awareness and appreciation of its importance to the security of the United States. DO R 1473 EOfTION OF V NOV 65 I.; OBSOLETE E - 7I... e Data Eme’e, USAWC MILITARY STUDIES PROGRAM PAPER INTERNATIONAL TECHNOLOGY TRANSFER The Rope To Hang The West AN INDIVIDUAL STUDY PROJECT Intended...notably the Departments of State, Commerce and Defense), and other friendly nations at odds with each other over competing demands and parochial interests
MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.
Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile
2017-06-16
The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis Nevers, Laetitia Poidevin, Arnaud Kress, Raymond Ripp, Julie Dawn Thompson, Olivier Poch, Odile Lecompte. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.06.2017.
Companion and refuge plants to control insect pests
USDA-ARS?s Scientific Manuscript database
Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...
ERIC Educational Resources Information Center
Renard, Lisa
2005-01-01
Instant digital communication is going to say and the wise teacher needs to acknowledge and keep pace with the technology that eases and speeds up the way the DIG (digital immediate gratification) generation learns. Some DIG- friendly strategies that teachers can employ to make learning more attractive and meaningful are presented.
Transportation Deployment Support | Transportation Research | NREL
initiative complements the NPS Climate Friendly Parks program. Commercial Fleets Through the National Clean clearinghouse of medium- and heavy-duty commercial fleet vehicle operating data for optimizing vehicle improvement. Commercial Vehicle Technology Evaluations NREL conducts real-world evaluations of commercial
Rough flows and homogenization in stochastic turbulence
NASA Astrophysics Data System (ADS)
Bailleul, I.; Catellier, R.
2017-10-01
We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the technology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.
Fluorous Compounds and their Role in Separation Chemistry
ERIC Educational Resources Information Center
Ubeda, Maria Angeles; Dembinski, Roman
2006-01-01
The main focus of fluorous chemistry targets resource and time-consuming separation, in order to improve the material economy and thus represents potentially environmentally friendly technology. Fluorous chemistry offers the advantage of easy separation based on different affirmatives of organics and fluorous molecules, where the process called…
Going Online: Helping Technical Communicators Help Translators.
ERIC Educational Resources Information Center
Flint, Patricia; Lord van Slyke, Melanie; Starke-Meyerring, Doreen; Thompson, Aimee
1999-01-01
Explains why technical communicators should help translators. Offers tips for creating "translation-friendly" documentation. Describes the research and design process used by the authors to create an online tutorial that provides technical communicators at a medical technology company the information they need to help them write and…
The Information Society: Friendly to Families by Design or by Accident?
ERIC Educational Resources Information Center
Mirabelli, Alan
Optimistic, "computopian" scenarios of the new information age emphasize the possibility of radically reversing the central tendencies of industrialization through the implementation of computer technologies that increase the ability to recognize and accommodate the needs of individuals. Pessimistic, dystopian scenarios, in contrast,…
The debate over food biotechnology in the United States: is a societal consensus achievable?
Groth, E
2001-07-01
Unless the public comes to agree that the benefits of food biotechnology are desirable and the associated risks are acceptable, our society may fail to realize much of the potential benefits. Three historical cases of major technological innovations whose benefits and risks were the subject of heated public controversy are examined, in search of lessons that may suggest a path toward consensus in the biotechnology debate. In each of the cases--water fluoridation, nuclear power and pesticides--proponents of the technology gathered scientific evidence that they believed established that the innovations were safe. In each case, the federal government was heavily involved in oversight, safety regulation, and in the first two cases, active promotion of the technology. Supporters of the technologies employed a variety of communications strategies, ranging from massive "educational" campaigns (e.g. "Our Friend The Atom") to vituperative ad hominem attacks on leading opponents. None of these strategies succeeded in achieving broad societal acceptance of the technologies. Fluoridation today is opposed as vigorously by activist groups as it was when first introduced around 1950; it has not been universally adopted even in the U.S., and it has been rejected in most other countries. The American nuclear power industry is moribund, and the public has essentially rejected the technology. The pesticide industry is thriving, with new generations of products succeeding older more hazardous chemicals in a constant cycle. However, strong regulation has failed to prevent adverse health and ecological effects, which have been empirically associated with pesticide uses after the chemicals were dispersed in the environment. Debate over whether risks of such effects are acceptable has been heated for four decades, with scientists and the public divided.
Advanced Monopropellant Thruster Technology Tested
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2000-01-01
A new family of environmentally friendly, low-freezing-point, high-density monopropellants is being developed under a NASA Glenn technology program. New monopropellant technology would greatly benefit a range of small (<100 kg) satellites and spacecraft missions. These monopropellants are mixtures of hydroxylammonium nitrate (HAN), fuel, and water. Primex Aerospace Company, under contract to the NASA Glenn Research Center at Lewis Field, tested a 1-lbf thruster using a HAN-based monopropellant formulation. Over 8000 sec of total test time was accumulated on a single thruster using the blowdown duty cycle typical of state-of-the-art monopropellant systems.
Environmental Applications of Biosurfactants: Recent Advances
Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh
2011-01-01
Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005
NASA Astrophysics Data System (ADS)
Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen
2018-06-01
With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.
Cross-laminated timber made of Hungarian raw materials
NASA Astrophysics Data System (ADS)
Marko, G.; Bejo, L.; Takats, P.
2016-04-01
Cross-laminated timber (CLT), generally made out of softwood, enjoys increasing popularity throughout Europe. This material offers a versatile, eco-friendly technology to create strong, lightweight and energy-efficient buildings. Unfortunately, the sites and climatic conditions in Hungary are not suitable for growing high-quality coniferous trees. Transporting raw materials from other countries (sometimes thousands of kilometres away) negates the environmental advantages of wood-based construction. Local options are definitely preferable from an ecological aspect. Poplar wood (populus spp.) is of great economic importance in Hungary. There are several relatively high density, high strength varieties growing in large quantities in Hungary, that may be used as alternatives to softwood, with comparable properties. There is an increasing interest in using poplar as a construction material, especially in regions were there is a shortage of traditional construction timber. This paper presents the results of a preliminary investigation to create CLT using poplar lumber. Laboratory-scale CLT specimens were created in a hot press, and tested for their loadbearing capacity. The MOR values of poplar CLT are comparable to, albeit somewhat lowerthan those of softwood CLT. Further investigations are required to establish the economic viability and technological conditions for the commercial production of poplar CLT.
Occupational health and safety of workers in agriculture and horticulture.
Lundqvist, P
2000-01-01
Working in agriculture and horticulture gives considerable job satisfaction. The tasks are often interesting; you can see the result of your own work, watch your crop grow and mature; you have an affinity with nature and can follow the changes in the seasons. However, today it is a dangerous work environment fraught with occupational injuries and diseases due to hazardous situations and to physiological, physical, biological, chemical, psychological, and sociological factors. The ongoing rapid development may, on the other hand, bring about many changes during the next decades with more farmers and growers switching to organic production. Moreover, increased awareness of animal welfare also may lead to improved working conditions. Large-scale operations with fewer family-operated agricultural businesses might mean fewer injuries among children and older farmers. A consequence of large-scale operations may also be better regulation of working conditions. The greater use of automation technology eliminates many harmful working postures and movements when milking cows and carrying out other tasks. Information technology offers people the opportunity to gain more knowledge about their work. Labeling food produced in a worker-friendly work environment may give the consumers a chance to be involved in the process.
Wang, Jianbo; Xu, Zhenming
2015-01-20
Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.
Albuquerque, Priscilla B S; Malafaia, Carolina B
2018-02-01
Since the last two decades, the use of synthetic materials has increased and become more frequent in this capitalist system. Polymers used as raw materials are usually disposed very rapidly and considered serious damages when they return to the environment. Because of this behaviour, there was an increasing in the global awareness by minimizing the waste generated, in addition to the scientific community concern for technological alternatives to solve this problem. Alternatively, biodegradable polymers are attracting special interest due to their inherent properties, which are similar to the ones of the conventional plastics. Bioplastics covers plastics made from renewable resources, including plastics that biodegrade under controlled conditions at the end of their use phase. Polyhydroxyalkanoates (PHAs) are polyesters composed of hydroxy acids, synthesized by a variety of microorganisms as intracellular carbon and energy storage. These environmentally friendly biopolymers have excellent potential in domestic, agricultural, industrial and medical field, however their production on a large scale is still limited. This review considered the most recent scientific publications on the production of bioplastics based on PHAs, their structural characteristics and the exploitation of different renewable sources of raw materials. In addition, there were also considered the main biotechnological applications of these biopolymers. Copyright © 2017 Elsevier B.V. All rights reserved.
Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work
Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian
2017-01-01
Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437
Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric
2017-03-01
One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong
2017-11-15
This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.
2010 Vehicle Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W
2011-06-01
In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less
Implementing technology to improve medication safety in healthcare facilities: a literature review.
Hidle, Unn
Medication errors remain one of the most common causes of patient injuries in the United States, with detrimental outcomes including adverse reactions and even death. By developing a better understanding of why and how medication errors occur, preventative measures may be implemented including technological advances. In this literature review, potential methods of reducing medication errors were explored. Furthermore, technology tools available for medication orders and administration are described, including advantages and disadvantages of each system. It was found that technology can be an excellent aid in improving safety of medication administration. However, computer technology cannot replace human intellect and intuition. Nurses should be involved when implementing any new computerized system in order to obtain the most appropriate and user-friendly structure.
Colorado Scientists Win National Award
environmentally friendly products, such as biodegradable pesticides and gasoline additives. Dr. Joseph Bozell and manufacture biodegradable herbicides and pesticides and an oxygenate for cleaner burning gasoline. Biomass
Ke, Pei-Chih; Huang, Chun-Kai; Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Shieh, Wann-Yun; Chan, Hsiao-Lung; Chen, Chih-Kuang; Pei, Yu-Cheng
2012-01-01
The key components of caring for the elderly are diet, living, transportation, education, and safety issues, and telemedical systems can offer great assistance. Through the integration of personal to community information technology platforms, we have developed a new Intelligent Comprehensive Interactive Care (ICIC) system to provide comprehensive services for elderly care. The ICIC system consists of six items, including medical care (physiological measuring system, Medication Reminder, and Dr. Ubiquitous), diet, living, transportation, education (Intelligent Watch), entertainment (Sharetouch), and safety (Fall Detection). In this study, we specifically evaluated the users' intention of using the Medication Reminder, Dr. Ubiquitous, Sharetouch, and Intelligent Watch using a modified technological acceptance model (TAM). A total of 121 elderly subjects (48 males and 73 females) were recruited. The modified TAM questionnaires were collected after they had used these products. For most of the ICIC units, the elderly subjects revealed great willingness and/or satisfaction in using this system. The elderly users of the Intelligent Watch showed the greatest willingness and satisfaction, while the elderly users of Dr. Ubiquitous revealed fair willingness in the dimension of perceived ease of use. The old-old age group revealed greater satisfaction in the dimension of result demonstrability for the users of the Medication Reminder as compared to the young-old and oldest-old age groups. The women revealed greater satisfaction in the dimension of perceived ease of use for the users of Dr. Ubiquitous as compared to the men. There were no statistically significant differences in terms of gender, age, and education level in the other dimensions. The modified TAM showed its effectiveness in evaluating the acceptance and characteristics of technologic products for the elderly user. The ICIC system offers a user-friendly solution in telemedical care and improves the quality of care for the elderly. PMID:22870200
Wong, Alice M K; Chang, Wei-Han; Ke, Pei-Chih; Huang, Chun-Kai; Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Shieh, Wann-Yun; Chan, Hsiao-Lung; Chen, Chih-Kuang; Pei, Yu-Cheng
2012-01-01
The key components of caring for the elderly are diet, living, transportation, education, and safety issues, and telemedical systems can offer great assistance. Through the integration of personal to community information technology platforms, we have developed a new Intelligent Comprehensive Interactive Care (ICIC) system to provide comprehensive services for elderly care. The ICIC system consists of six items, including medical care (physiological measuring system, Medication Reminder, and Dr. Ubiquitous), diet, living, transportation, education (Intelligent Watch), entertainment (Sharetouch), and safety (Fall Detection). In this study, we specifically evaluated the users' intention of using the Medication Reminder, Dr. Ubiquitous, Sharetouch, and Intelligent Watch using a modified technological acceptance model (TAM). A total of 121 elderly subjects (48 males and 73 females) were recruited. The modified TAM questionnaires were collected after they had used these products. For most of the ICIC units, the elderly subjects revealed great willingness and/or satisfaction in using this system. The elderly users of the Intelligent Watch showed the greatest willingness and satisfaction, while the elderly users of Dr. Ubiquitous revealed fair willingness in the dimension of perceived ease of use. The old-old age group revealed greater satisfaction in the dimension of result demonstrability for the users of the Medication Reminder as compared to the young-old and oldest-old age groups. The women revealed greater satisfaction in the dimension of perceived ease of use for the users of Dr. Ubiquitous as compared to the men. There were no statistically significant differences in terms of gender, age, and education level in the other dimensions. The modified TAM showed its effectiveness in evaluating the acceptance and characteristics of technologic products for the elderly user. The ICIC system offers a user-friendly solution in telemedical care and improves the quality of care for the elderly.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.
Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran
2014-04-21
One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the economic and ecological aspects of using nanotechnology are briefly introduced.
Involvement in Internet Aggression during Early Adolescence
ERIC Educational Resources Information Center
Werner, Nicole E.; Bumpus, Matthew F.; Rock, Daquarii
2010-01-01
The current study examined concurrent and longitudinal predictors of early adolescents' involvement in Internet aggression. Cross-sectional results (N = 330; 57% female) showed that the likelihood of reporting Internet aggression was higher among youth who spent more time using Internet-based technologies to communicate with friends and who were…
Philosophers and Technologists: Vicarious and Virtual Knowledge Constructs
ERIC Educational Resources Information Center
McNeese, Beverly D.
2007-01-01
In an age of continual technological advancement, user-friendly software, and consumer demand for the latest upgraded gadget, the ethical and moral discoveries derived from a careful reading of any fictional literature by college students is struggling in the American college classroom. Easy-access information systems, coinciding with the…
Congressional Social Darwinism and the American Indian
ERIC Educational Resources Information Center
Blinderman, Abraham
1978-01-01
Summarizing a congressional report on civil and military treatment of American Indians, this article asserts that the social Darwinism of the day prevailed among all congressional committee members ("Even friends of the Indian... knew American expansionism, technology, and racial ideology would reduce the Indian to a pitiful remnant...) (JC)
Study questions environmental impact of fuel-cell vehicles
NASA Astrophysics Data System (ADS)
Stafford, Ned
2015-09-01
Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.
Person-Centered Planning: Strategies to Encourage Participation and Facilitate Communication
ERIC Educational Resources Information Center
Wells, Jenny C.; Sheehey, Patricia H.
2012-01-01
Person-centered planning is a process that allows individuals, family members, and friends an opportunity to share information to develop a personal profile and a future vision for an individual. This article describes strategies and technology that teachers can use to promote parents' participation and facilitate communication while maintaining…
Business as Partners in Development: Building the Public Contribution of Private Enterprise.
ERIC Educational Resources Information Center
Nelson, Jane
1998-01-01
Outlines ways in which businesses can contribute to sustainable development through core business activities, social investment, and participation in public policy debates. Describes corporate efforts in Latin America and the Caribbean to promote child-friendly companies, provide community access to technology, improve educational quality and…
Recyclable organic solar cells on cellulose nanocrystal substrates
Yinhua Zhou; Canek Fuentes-Hernandez; Talha M. Khan; Jen-Chieh Liu; James Hsu; Jae Won Shim; Amir Dindar; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,...
USDA-ARS?s Scientific Manuscript database
The phytomanagement technology is recognized as an inexpensive and environmental friendly strategy for managing natural-occurring selenium (Se) in soils and in poor quality waters. Multi-year field and greenhouse studies were conducted with different plant species in California, USA and Punjab, Indi...
ERIC Educational Resources Information Center
Foster, Andrea L.
2007-01-01
Fullerton, California--College students use technology constantly. They text-message friends, compile playlists for their iPods, and are whizzes at updating their MySpace profiles. But when it comes to one kind of work they are required to do in college--namely, academic research--they can be inept. Too often, college officials say, students rely…
Fermilab Friends for Science Education | Support Us
economy are driven by scientific and technological innovations. We want a strong future and must support our future scientists and their teachers now. We need a scientifically literate and aware society create new, innovative science education programs and make the best use of unique Fermilab resources