Highlight removal based on the regional-projection fringe projection method
NASA Astrophysics Data System (ADS)
Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin
2018-04-01
In fringe projection profilometry, highlight usually causes the saturation and blooming in captured fringes and reduces the measurement accuracy. To solve the problem, a regional-projection fringe projection (RP-FP) method is proposed. Regional projection patterns (RP patterns) are projected onto the tested object surface to avoid the saturation and blooming. Then, an image inpainting technique is employed to reconstruct the missing phases in the captured RP patterns and a complete surface of the tested object is obtained. Experiments verified the effectiveness of the proposed method. The method can be widely used in industrial inspections and quality controlling in mechanical and manufacturing industries.
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod
2010-04-01
For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.
NASA Astrophysics Data System (ADS)
Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua
2018-03-01
Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.
Fringe-period selection for a multifrequency fringe-projection phase unwrapping method
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Zhao, Hong; Jiang, Kejian
2016-08-01
The multi-frequency fringe-projection phase unwrapping method (MFPPUM) is a typical phase unwrapping algorithm for fringe projection profilometry. It has the advantage of being capable of correctly accomplishing phase unwrapping even in the presence of surface discontinuities. If the fringe frequency ratio of the MFPPUM is too large, fringe order error (FOE) may be triggered. FOE will result in phase unwrapping error. It is preferable for the phase unwrapping to be kept correct while the fewest sets of lower frequency fringe patterns are used. To achieve this goal, in this paper a parameter called fringe order inaccuracy (FOI) is defined, dominant factors which may induce FOE are theoretically analyzed, a method to optimally select the fringe periods for the MFPPUM is proposed with the aid of FOI, and experiments are conducted to research the impact of the dominant factors in phase unwrapping and demonstrate the validity of the proposed method. Some novel phenomena are revealed by these experiments. The proposed method helps to optimally select the fringe periods and detect the phase unwrapping error for the MFPPUM.
NASA Astrophysics Data System (ADS)
Kamagara, Abel; Wang, Xiangzhao; Li, Sikun
2018-03-01
We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.
Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun
2017-08-01
The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.
3D image acquisition by fiber-based fringe projection
NASA Astrophysics Data System (ADS)
Pfeifer, Tilo; Driessen, Sascha
2005-02-01
In macroscopic production processes several measuring methods are used to assure the quality of 3D parts. Definitely, one of the most widespread techniques is the fringe projection. It"s a fast and accurate method to receive the topography of a part as a computer file which can be processed in further steps, e.g. to compare the measured part to a given CAD file. In this article it will be shown how the fringe projection method is applied to a fiber-optic system. The fringes generated by a miniaturized fringe projector (MiniRot) are first projected onto the front-end of an image guide using special optics. The image guide serves as a transmitter for the fringes in order to get them onto the surface of a micro part. A second image guide is used to observe the micro part. It"s mounted under an angle relating to the illuminating image guide so that the triangulation condition is fulfilled. With a CCD camera connected to the second image guide the projected fringes are recorded and those data is analyzed by an image processing system.
Dai, Meiling; Yang, Fujun; He, Xiaoyuan
2012-04-20
A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.
Fringe-projection profilometry based on two-dimensional empirical mode decomposition.
Zheng, Suzhen; Cao, Yiping
2013-11-01
In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.
3D silicon breast surface mapping via structured light profilometry
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.
2017-09-01
Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.
NASA Astrophysics Data System (ADS)
Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen
2018-01-01
This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.
3D mapping of breast surface using digital fringe projection
NASA Astrophysics Data System (ADS)
Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap
2017-02-01
Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.
NASA Astrophysics Data System (ADS)
Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua
2018-05-01
Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.
Fringe image processing based on structured light series
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Li, Hongyan
2009-11-01
The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Three-dimensional displacement measurement by fringe projection and speckle photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrientos, B.; Garcia-Marquez, J.; Cerca, M.
2008-04-15
3D displacement fields are measured by the combination of two optical methods, fringe projection and speckle photography. The use of only one camera recording the necessary information implies that no calibration procedures are necessary as is the case in techniques based on stereoscopy. The out-of-plane displacement is measured by fringe projection whereas speckle photography yields the 2-D in-plane component. To show the feasibility of the technique, we analyze a detailed morphological spatio-temporal evolution of a model of the Earth's crust while subjected to compression forces. The results show that the combination of fringe projection and speckle photography is well suitedmore » for this type of studies.« less
Fringe projection application for surface variation analysis on helical shaped silicon breast
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.
2017-09-01
Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.
High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hongzhi; Zhao, Huijie; Li, Xudong
2012-10-01
This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.
Fast fringe pattern phase demodulation using FIR Hilbert transformers
NASA Astrophysics Data System (ADS)
Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel
2016-01-01
This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.
A calibration method immune to the projector errors in fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Guo, Hongwei
2017-08-01
In fringe projection technique, system calibration is a tedious task to establish the mapping relationship between the object depths and the fringe phases. Especially, it is not easy to accurately determine the parameters of the projector in this system, which may induce errors in the measurement results. To solve this problem, this paper proposes a new calibration by using the cross-ratio invariance in the system geometry for determining the phase-to-depth relations. In it, we analyze the epipolar eometry of the fringe projection system. On each epipolar plane, the depth variation along an incident ray induces the pixel movement along the epipolar line on the image plane of the camera. These depth variations and pixel movements can be connected by use of the projective transformations, under which condition the cross-ratio for each of them keeps invariant. Based on this fact, we suggest measuring the depth map by use of this cross-ratio invariance. Firstly, we shift the reference board in its perpendicular direction to three positions with known depths, and measure their phase maps as the reference phase maps; and secondly, when measuring an object, we calculate the object depth at each pixel by equating the cross-ratio of the depths to that of the corresponding pixels having the same phase on the image plane of the camera. This method is immune to the errors sourced from the projector, including the distortions both in the geometric shapes and in the intensity profiles of the projected fringe patterns.The experimental results demonstrate the proposed method to be feasible and valid.
Topometry of technical and biological objects by fringe projection
NASA Astrophysics Data System (ADS)
Windecker, R.; Tiziani, H. J.
1995-07-01
Fringe projection is a fast and accurate technique for obtaining the topometry of a wide range of surfaces. Here some features of the principle are described, together with the possibilities of adapting this technique for the measurement of vaulted surfaces. We discuss various methods of phase evaluation and compare them with simulated computer data to obtain the resolution limits. Under certain restrictions a semispatial algorithm, called the modified Fourier analysis algorithm, gives the best results. One special subject of interest is the application of fringe projection for the measurement of the three-dimensional surface of the cornea. First results of in vivo measurements are presented.
Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand
2017-01-23
Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Feipeng; Shi Hongjian; Bai Pengxiang
In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less
Carrier and aberrations removal in interferometric fringe projection profilometry
NASA Astrophysics Data System (ADS)
Blain, P.; Michel, F.; Renotte, Y.; Habraken, S.
2012-04-01
A profilometer which takes advantage of polarization states splitting technique and monochromatic light projection method as a way to overcome ambient lighting for in-situ measurement is under development [1, 2]. Because of the Savart plate which refracts two out of axis beams, the device suffers from aberrations (mostly coma and astigmatism). These aberrations affect the quality of the sinusoidal fringe pattern. In fringe projection profilometry, the unwrapped phase distribution map contains the sum of the object's shape-related phase and carrier-fringe-related phase. In order to extract the 3D shape of the object, the carrier phase has to be removed [3, 4]. An easy way to remove both the fringe carrier and the aberrations of the optical system is to measure the phases of the test object and to measure the phase of a reference plane with the same set up and to subtract both phase maps. This time consuming technique is suitable for laboratory but not for industry. We propose a method to numerically remove both the fringe carrier and the aberrations. A first reference phase of a calibration plane is evaluated knowing the position of the different elements in the set up and the orientation of the fringes. Then a fitting of the phase map by Zernike polynomials is computed [5]. As the triangulation parameters are known during the calibration, the computation of Zernike coefficients has only to be made once. The wavefront error can be adjusted by a scale factor which depends on the position of the test object.
Telecentric 3D profilometry based on phase-shifting fringe projection.
Li, Dong; Liu, Chunyang; Tian, Jindong
2014-12-29
Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.
Mathematical expressions using fringe projections for transparent objects
NASA Astrophysics Data System (ADS)
Su, Wei-Hung; Cheng, Chau-Jern
2017-08-01
A setup using fringe projection techniques to perform 3D profile measurements for transparent objects is presented. The related mathematical equations are derived as well. A fringe pattern is illuminated onto the transparent object. Fringes passing through the inspected object are then projected onto a screen. A CCD camera is employed to record the transmitted fringes on the screen. Fringe on the screen are deformed by the refractive index and the surface structure, and therefore are desirable to describe the shape of the inspected sample.
Phase-stepped fringe projection by rotation about the camera's perspective center.
Huddart, Y R; Valera, J D; Weston, N J; Featherstone, T C; Moore, A J
2011-09-12
A technique to produce phase steps in a fringe projection system for shape measurement is presented. Phase steps are produced by introducing relative rotation between the object and the fringe projection probe (comprising a projector and camera) about the camera's perspective center. Relative motion of the object in the camera image can be compensated, because it is independent of the distance of the object from the camera, whilst the phase of the projected fringes is stepped due to the motion of the projector with respect to the object. The technique was validated with a static fringe projection system by moving an object on a coordinate measuring machine (CMM). The alternative approach, of rotating a lightweight and robust CMM-mounted fringe projection probe, is discussed. An experimental accuracy of approximately 1.5% of the projected fringe pitch was achieved, limited by the standard phase-stepping algorithms used rather than by the accuracy of the phase steps produced by the new technique.
NASA Astrophysics Data System (ADS)
Hyun, Jae-Sang; Li, Beiwen; Zhang, Song
2017-07-01
This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
High-speed 3D imaging using digital binary defocusing method vs sinusoidal method
NASA Astrophysics Data System (ADS)
Zhang, Song; Hyun, Jae-Sang; Li, Beiwen
2017-02-01
This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
Suppression of contrast-related artefacts in phase-measuring structured light techniques
NASA Astrophysics Data System (ADS)
Burke, Jan; Zhong, Liang
2017-06-01
Optical metrology using phase measurements has benefited significantly from the introduction of phase-shifting methods, first in interferometry, then also in fringe projection and fringe reflection. As opposed to interferometry, the latter two techniques generally use a spatiotemporal phase-shifting approach: A sequence of fringe patterns with varying spacing is used, and a phase map of each is generated by temporal phase shifting, to allow unique assignments of projector or screen pixels to camera pixels. One ubiquitous problem with phase-shifting structured-light techniques is that phase artefacts appear near regions of the image where the modulation amplitude of the projected or reflected fringes changes abruptly, e.g. near dirt/dust particles on the surface in deflectometry or bright-dark object colour transitions in fringe projection. Near the bright-dark boundaries, responses in the phase maps appear that are not plausible as actual surface features. The phenomenon has been known for a long time but is usually ignored because it does not compromise the overall reliability of results. In deflectometry, however, often the objective is to find and classify small defects, and of course it is then important to distinguish between bogus phase responses caused by fringe modulation changes, and actual surface defects. We present, for what we believe is the first time, an analytical derivation of the error terms, study the parameters influencing the phase artefacts (in particular the fringe period), and suggest some simple algorithms to minimise them.
NASA Astrophysics Data System (ADS)
Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet
2018-06-01
A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.
3D fingerprint imaging system based on full-field fringe projection profilometry
NASA Astrophysics Data System (ADS)
Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili
2014-01-01
As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.
NASA Astrophysics Data System (ADS)
Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi
2017-08-01
Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.
NASA Astrophysics Data System (ADS)
Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen
2013-08-01
This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.
3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.
2018-05-01
In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu
2018-06-01
Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.
Fast 3D shape measurements with reduced motion artifacts
NASA Astrophysics Data System (ADS)
Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua
2017-10-01
Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier
2016-10-01
The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.
NASA Astrophysics Data System (ADS)
Mao, Cuili; Lu, Rongsheng; Liu, Zhijian
2018-07-01
In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.
Automatic Topography Using High Precision Digital Moire Methods
NASA Astrophysics Data System (ADS)
Yatagai, T.; Idesawa, M.; Saito, S.
1983-07-01
Three types of moire topographic methods using digital techniques are proposed. Deformed gratings obtained by projecting a reference grating onto an object under test are subjected to digital analysis. The electronic analysis procedures of deformed gratings described here enable us to distinguish between depression and elevation of the object, so that automatic measurement of 3-D shapes and automatic moire fringe interpolation are performed. Based on the digital moire methods, we have developed a practical measurement system, with a linear photodiode array on a micro-stage as a scanning image sensor. Examples of fringe analysis in medical applications are presented.
NASA Astrophysics Data System (ADS)
Jin, Chengying; Li, Dahai; Kewei, E.; Li, Mengyang; Chen, Pengyu; Wang, Ruiyang; Xiong, Zhao
2018-06-01
In phase measuring deflectometry, two orthogonal sinusoidal fringe patterns are separately projected on the test surface and the distorted fringes reflected by the surface are recorded, each with a sequential phase shift. Then the two components of the local surface gradients are obtained by triangulation. It usually involves some complicated and time-consuming procedures (fringe projection in the orthogonal directions). In addition, the digital light devices (e.g. LCD screen and CCD camera) are not error free. There are quantization errors for each pixel of both LCD and CCD. Therefore, to avoid the complex process and improve the reliability of the phase distribution, a phase extraction algorithm with five-frame crossed fringes is presented in this paper. It is based on a least-squares iterative process. Using the proposed algorithm, phase distributions and phase shift amounts in two orthogonal directions can be simultaneously and successfully determined through an iterative procedure. Both a numerical simulation and a preliminary experiment are conducted to verify the validity and performance of this algorithm. Experimental results obtained by our method are shown, and comparisons between our experimental results and those obtained by the traditional 16-step phase-shifting algorithm and between our experimental results and those measured by the Fizeau interferometer are made.
Takeda, Mitsuo
2013-01-01
The paper reviews a technique for fringe analysis referred to as Fourier fringe analysis (FFA) or the Fourier transform method, with a particular focus on its application to metrology of extreme physical phenomena. Examples include the measurement of extremely small magnetic fields with subfluxon sensitivity by electron wave interferometry, subnanometer wavefront evaluation of projection optics for extreme UV lithography, the detection of sub-Ångstrom distortion of a crystal lattice, and the measurement of ultrashort optical pulses in the femotsecond to attosecond range, which show how the advantages of FFA are exploited in these cutting edge applications.
77 FR 50211 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... taxation of fringe benefits and exclusions from gross income for certain fringe Benefits, listed property...-63-88 (Final and temporary regulations) Taxation of Fringe Benefits and Exclusions From Gross Income... Code section 274(d). The regulation also provides guidance on the taxation of fringe benefits and...
NASA Astrophysics Data System (ADS)
Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi
2016-04-01
As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to +/-10μm, and the scanning time for each surface of an object was less than 15 seconds. This has proved that our system own the potential to be a fast scanning scanner for small object surface profile scanning.
Detection for flatness of large surface based on structured light
NASA Astrophysics Data System (ADS)
He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang
2016-09-01
In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.
Deformation measurement for a rotating deformable lap based on inverse fringe projection
NASA Astrophysics Data System (ADS)
Liao, Min; Zhang, Qican
2015-03-01
The active deformable lap (also namely stressed lap) is an efficient polishing tool in optical manufacturing. To measure the dynamic deformation caused by outside force on a deformable lap is important and helpful to the opticians to ensure the performance of a deformable lap as expected. In this paper, a manual deformable lap was designed to simulate the dynamic deformation of an active stressed lap, and a measurement system was developed based on inverse projected fringe technique to restore the 3D shape. A redesigned inverse fringe has been projected onto the surface of the measured lap, and the deformations of the tested lap become much obvious and can be easily and quickly evaluated by Fourier fringe analysis. Compared with the conventional projection, this technique is more obvious, and it should be a promising one in the deformation measurement of the active stressed lap in optical manufacturing.
Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing
2015-11-10
This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.
Real-time interactive projection system based on infrared structured-light method
NASA Astrophysics Data System (ADS)
Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe
2012-11-01
Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.
Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis
NASA Astrophysics Data System (ADS)
Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad
2017-11-01
Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.
Moire technique utilization for detection and measurement of scoliosis
NASA Astrophysics Data System (ADS)
Zawieska, Dorota; Podlasiak, Piotr
1993-02-01
Moire projection method enables non-contact measurement of the shape or deformation of different surfaces and constructions by fringe pattern analysis. The fringe map acquisition of the whole surface of the object under test is one of the main advantages compared with 'point by point' methods. The computer analyzes the shape of the whole surface and next user can selected different points or cross section of the object map. In this paper a few typical examples of an application of the moire technique in solving different medical problems will be presented. We will also present to you the equipment the moire pattern analysis is done in real time using the phase stepping method with CCD camera.
Non-destructive 3D shape measurement of transparent and black objects with thermal fringes
NASA Astrophysics Data System (ADS)
Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther
2016-05-01
Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.
Reconstruction method for fringe projection profilometry based on light beams.
Li, Xuexing; Zhang, Zhijiang; Yang, Chen
2016-12-01
A novel reconstruction method for fringe projection profilometry, based on light beams, is proposed and verified by experiments. Commonly used calibration techniques require the parameters of projector calibration or the reference planes placed in many known positions. Obviously, introducing the projector calibration can reduce the accuracy of the reconstruction result, and setting the reference planes to many known positions is a time-consuming process. Therefore, in this paper, a reconstruction method without projector's parameters is proposed and only two reference planes are introduced. A series of light beams determined by the subpixel point-to-point map on the two reference planes combined with their reflected light beams determined by the camera model are used to calculate the 3D coordinates of reconstruction points. Furthermore, the bundle adjustment strategy and the complementary gray-code phase-shifting method are utilized to ensure the accuracy and stability. Qualitative and quantitative comparisons as well as experimental tests demonstrate the performance of our proposed approach, and the measurement accuracy can reach about 0.0454 mm.
Comment on "Fringe projection profilometry with nonparallel illumination: a least-squares approach"
NASA Astrophysics Data System (ADS)
Wang, Zhaoyang; Bi, Hongbo
2006-07-01
We comment on the recent Letter by Chen and Quan [Opt. Lett.30, 2101 (2005)] in which a least-squares approach was proposed to cope with the nonparallel illumination in fringe projection profilometry. It is noted that the previous mathematical derivations of the fringe pitch and carrier phase functions on the reference plane were incorrect. In addition, we suggest that the variation of carrier phase along the vertical direction should be considered.
Local blur analysis and phase error correction method for fringe projection profilometry systems.
Rao, Li; Da, Feipeng
2018-05-20
We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.
The self-calibration method for multiple systems at the CHARA Array
NASA Astrophysics Data System (ADS)
O'Brien, David
The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
Krafft, Cairn C.; Hammerschlag, Richard S.; Guntenspergen, Glenn R.
2009-01-01
The 6-hectare (ha) freshwater tidal Anacostia River Fringe Wetlands (Fringe Wetlands) were reconstructed along the mainstem of the Anacostia River in Washington, DC (Photograph 1, Figure 1) during the summer of 2003. The Fringe Wetlands consist of two separate planting cells. Fringe A, located adjacent to Lower Kingman Island, on the west bank of the Anacostia River, occupies 1.6 ha; Fringe B, located on the east bank of the Anacostia River, occupies 4.4 ha. This project is the third in a series of freshwater tidal wetland reconstructions on the Anacostia River designed and implemented by the US Army Corps of Engineers (USACE) Baltimore District and District Department of the Environment (DDOE) on lands managed by the National Park Service (NPS). The first was Kenilworth Marsh, reconstructed in 1993 (Syphax and Hammerschlag 2005); the second was Kingman Marsh, reconstructed in 2000 (Hammerschlag et al. 2006). Kenilworth and Kingman were both constructed in low-energy backwaters of the Anacostia. However, the Fringe Wetlands, which were constructed on two pre-existing benches along the high-energy mainstem, required sheet piling to provide protection from erosive impacts of increased flow and volume of water associated with storm events during the establishment phase (Photograph 2). All three projects required the placement of dredged sediment materials to increase elevations enough to support emergent vegetation (Photograph 3). The purpose of all three wetland reconstruction projects was to restore pieces of the once extensive tidal freshwater marsh habitat that bordered the Anacostia River historically, prior to the dredge and fill operations and sea wall installation that took place there in the early to mid-1900's (Photograph 4).
NASA Astrophysics Data System (ADS)
Martin, Guillermo; Heidmann, Samuel; Rauch, Jean-Yves; Jocou, Laurent; Courjal, Nadège
2014-03-01
We present an optimization process to improve the rejection ratio in integrated beam combiners by locking the dark fringe and then monitoring its intensity. The method proposed here uses the electro-optic effect of lithium niobate in order to lock the dark fringe and to real-time balance the photometric flux by means of a two-stage Mach-Zehnder interferometer waveguide. By applying a control voltage on the output Y-junction, we are able to lock the phase and stay in the dark fringe, while an independent second voltage is applied on the first-stage intensity modulator, to finely balance the photometries. We have obtained a rejection ratio of 4600 (36.6 dB) at 3.39 μm in transverse electric polarization, corresponding to 99.98% fringe contrast, and shown that the system can compensate external phase perturbations (a piston variation of 100 nm) up to around 1 kHz. We also show the preliminary results of this process on wide-band modulation, where a contrast of 38% in 3.25- to 3.65-μm spectral range is obtained. These preliminary results on wide-band need to be optimized, in particular, for reducing scattered light of the device at the Y-junction. We expect this active method to be useful in high-contrast interferometry, in particular, for astronomical spatial projects actually under study.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
Rapid matching of stereo vision based on fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei
2016-09-01
As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.
Electronic-projecting Moire method applying CBR-technology
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.
2018-01-01
Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.
4D metrology of flapping-wing micro air vehicle based on fringe projection
NASA Astrophysics Data System (ADS)
Zhang, Qican; Huang, Lei; Chin, Yao-Wei; Keong, Lau-Gih; Asundi, Anand
2013-06-01
Inspired by dominant flight of the natural flyers and driven by civilian and military purposes, micro air vehicle (MAV) has been developed so far by passive wing control but still pales in aerodynamic performance. Better understanding of flapping wing flight mechanism is eager to improve MAV's flight performance. In this paper, a simple and effective 4D metrology technique to measure full-field deformation of flapping membrane wing is presented. Based on fringe projection and 3D Fourier analysis, the fast and complex dynamic deformation, including wing rotation and wing stroke, of a flapping wing during its flight can be accurately reconstructed from the deformed fringe patterns recorded by a highspeed camera. An experiment was carried on a flapping-wing MAV with 5-cm span membrane wing beating at 30 Hz, and the results show that this method is effective and will be useful to the aerodynamicist or micro aircraft designer for visualizing high-speed complex wing deformation and consequently aid the design of flapping wing mechanism to enhanced aerodynamic performance.
NASA Astrophysics Data System (ADS)
Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean
2014-05-01
Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.
NASA Astrophysics Data System (ADS)
Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard
2017-06-01
In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.
NASA Astrophysics Data System (ADS)
Lino, A. C. L.; Dal Fabbro, I. M.
2008-04-01
The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.
NASA Astrophysics Data System (ADS)
Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi
1998-07-01
Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
Constructing a dispersed fringe sensor prototype for the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Frostig, Danielle; McLeod, Brian; AGWS Team
2018-01-01
The Giant Magellan Telescope (GMT) will be the world’s largest telescope upon completion. The GMT employs seven 8 m primary mirror segments and seven 1 m secondary mirror segments. One challenge of the GMT is keeping the seven pairs of mirror segments on the GMT in phase. In this project, we developed and began assembly on a design for a dispersed fringe sensor prototype consisting of an optical and basic mechanical layout. The prototype design will be tested on the Magellan Clay Telescope as an experiment for future phasing methods to be used on the GMT.
Computer-assisted techniques to evaluate fringe patterns
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Bhat, Gopalakrishna K.
1992-01-01
Strain measurement using interferometry requires an efficient way to extract the desired information from interferometric fringes. Availability of digital image processing systems makes it possible to use digital techniques for the analysis of fringes. In the past, there have been several developments in the area of one dimensional and two dimensional fringe analysis techniques, including the carrier fringe method (spatial heterodyning) and the phase stepping (quasi-heterodyning) technique. This paper presents some new developments in the area of two dimensional fringe analysis, including a phase stepping technique supplemented by the carrier fringe method and a two dimensional Fourier transform method to obtain the strain directly from the discontinuous phase contour map.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
On the use of video projectors for three-dimensional scanning
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo
2017-08-01
Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.
Luebberding, Stefanie; Krueger, Nils; Kerscher, Martina
2014-02-01
The assessment of wrinkle severity is an important evaluation criterion to determine the efficacy of aesthetic treatments. Aim of the present study was to compare Validated Assessment Scales (VAS) and 3D fringe projection (PRIMOS(®) ) for the evaluation of facial wrinkles in men and to determine standard values for each level of the VAS. 150 male subjects (20 to 70 years) were selected following strict criteria. Wrinkle severity at periorbital, glabella and forehead lines was evaluated using the 3D fringe projection and 5-point photonumeric VAS. The results of both methods were matched by determining quantitative values for each level of the clinical rating scale. High average correlation with age was found for VAS, Wd, maxWd, lWd, Wv, aWa and pWa. With a Wd of 60 to 70μm crow's feet and forehead lines are pronounced first, whereas glabella lines develop in subject's mid-forties, by an Wd of 180μm. Wrinkle severity increases at all locations every 10 years of age by one level of the VAS. This increase corresponds to an increase of Wd about 100 μm at glabella and forehead lines, and about 50 μm at crow's feet. The presented reference values for the Validated Assessment Scale are an important step towards an optimized assessment of skin aging and aesthetic dermatological treatments. The data helps to combine the precession of a biophysical measurement with the practical relevance of a clinical rating. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review
Zuo, Chao; Huang, Lei; Zhang, Minliang; ...
2016-05-06
In fringe projection pro lometry (FPP), temporal phase unwrapping is an essential procedure to recover an unambiguous absolute phase even in the presence of large discontinuities or spatially isolated surfaces. So far, there are typically three groups of temporal phase unwrapping algorithms proposed in the literature: multi-frequency (hierarchical) approach, multi-wavelength (heterodyne) approach, and number-theoretical approach. In this paper, the three methods are investigated and compared in details by analytical, numerical, and experimental means. The basic principles and recent developments of the three kind of algorithms are firstly reviewed. Then, the reliability of different phase unwrapping algorithms is compared based onmore » a rigorous stochastic noise model. Moreover, this noise model is used to predict the optimum fringe period for each unwrapping approach, which is a key factor governing the phase measurement accuracy in FPP. Simulations and experimental results verified the correctness and validity of the proposed noise model as well as the prediction scheme. The results show that the multi-frequency temporal phase unwrapping provides the best unwrapping reliability, while the multi-wavelength approach is the most susceptible to noise-induced unwrapping errors.« less
Dynamic deformation inspection of a human arm by using a line-scan imaging system
NASA Astrophysics Data System (ADS)
Hu, Eryi
2009-11-01
A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.
Particle measurement systems and methods
Steele, Paul T [Livermore, CA
2011-10-04
A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.
NASA Astrophysics Data System (ADS)
Stoykova, Elena; Gotchev, Atanas; Sainov, Ventseslav
2011-01-01
Real-time accomplishment of a phase-shifting profilometry through simultaneous projection and recording of fringe patterns requires a reliable phase retrieval procedure. In the present work we consider a four-wavelength multi-camera system with four sinusoidal phase gratings for pattern projection that implements a four-step algorithm. Successful operation of the system depends on overcoming two challenges which stem out from the inherent limitations of the phase-shifting algorithm, namely the demand for a sinusoidal fringe profile and the necessity to ensure equal background and contrast of fringes in the recorded fringe patterns. As a first task, we analyze the systematic errors due to the combined influence of the higher harmonics and multi-wavelength illumination in the Fresnel diffraction zone considering the case when the modulation parameters of the four gratings are different. As a second task we simulate the system performance to evaluate the degrading effect of the speckle noise and the spatially varying fringe modulation at non-uniform illumination on the overall accuracy of the profilometric measurement. We consider the case of non-correlated speckle realizations in the recorded fringe patterns due to four-wavelength illumination. Finally, we apply a phase retrieval procedure which includes normalization, background removal and denoising of the recorded fringe patterns to both simulated and measured data obtained for a dome surface.
1998-06-08
This polar projection from NASA Voyager 2 of Triton southern hemisphere provides a view of the southern polar cap and bright equatorial fringe. The margin of the cap is scalloped and ranges in latitude from +10 degrees to -30 degrees. The bright fringe is closely associated with the cap's margin; from it, diffuse bright rays extend north-northeast for hundreds of kilometers. The bright fringe probably consists of very fresh nitrogen frost or snow, and the rays consist of bright-fringe materials that were redistributed by north-moving Coriolis-deflected winds. http://photojournal.jpl.nasa.gov/catalog/PIA00423
Method for 3D profilometry measurement based on contouring moire fringe
NASA Astrophysics Data System (ADS)
Shi, Zhiwei; Lin, Juhua
2007-12-01
3D shape measurement is one of the most active branches of optical research recently. A method of 3D profilometry measurement by the combination of Moire projection method and phase-shifting technology based on SCM (Single Chip Microcomputer) control is presented in the paper. Automatic measurement of 3D surface profiles can be carried out by applying this method with high speed and high precision.
Optical phase distribution evaluation by using zero order Generalized Morse Wavelet
NASA Astrophysics Data System (ADS)
Kocahan, Özlem; Elmas, Merve Naz; Durmuş, ćaǧla; Coşkun, Emre; Tiryaki, Erhan; Özder, Serhat
2017-02-01
When determining the phase from the projected fringes by using continuous wavelet transform (CWT), selection of wavelet is an important step. A new wavelet for phase retrieval from the fringe pattern with the spatial carrier frequency in the x direction is presented. As a mother wavelet, zero order generalized Morse wavelet (GMW) is chosen because of the flexible spatial and frequency localization property, and it is exactly analytic. In this study, GMW method is explained and numerical simulations are carried out to show the validity of this technique for finding the phase distributions. Results for the Morlet and Paul wavelets are compared with the results of GMW analysis.
Accurate characterisation of hole size and location by projected fringe profilometry
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Dantanarayana, Harshana G.; Yue, Huimin; Huntley, Jonathan M.
2018-06-01
The ability to accurately estimate the location and geometry of holes is often required in the field of quality control and automated assembly. Projected fringe profilometry is a potentially attractive technique on account of being non-contacting, of lower cost, and orders of magnitude faster than the traditional coordinate measuring machine. However, we demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is identified based on the finite size of the imaging system’s point spread function and the resulting bias produced near to sample discontinuities in geometry and reflectivity. A mathematical model is proposed, from which a post-processing compensation algorithm is developed to suppress such errors around the holes. The algorithm includes a robust and accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. The proposed algorithm was found to reduce significantly the measurement artefacts near the hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of magnitude, to a few tens of µm for hole radii in the range 2–15 mm, compared to those from the uncompensated measurements.
High-speed 3D surface measurement with a fringe projection based optical sensor
NASA Astrophysics Data System (ADS)
Bräuer-Burchardt, Christian; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther
2014-05-01
A new optical sensor based on fringe projection technique for the accurate and fast measurement of the surface of objects mainly for industrial inspection tasks is introduced. High-speed fringe projection and image recording with 180 Hz allows 3D rates up to 60 Hz. The high measurement velocity was achieved by consequent fringe code reduction and parallel data processing. Reduction of the image sequence length was obtained by omission of the Gray-code sequence by using the geometric restrictions of the measurement objects. The sensor realizes three different measurement fields between 20 x 20 mm2 and 40 x 40 mm2 with lateral spatial solutions between 10 μm and 20 μm with the same working distance. Measurement object height extension is between +/- 0.5 mm and +/- 2 mm. Height resolution between 1 μm and 5 μm can be achieved depending on the properties of the measurement objects. The sensor may be used e.g. for quality inspection of conductor boards or plugs in real-time industrial applications.
NASA Astrophysics Data System (ADS)
Chen, Lujie; Quan, Chenggen
2006-07-01
We have confirmed that a mathematical expression in our previous Letter [Chen and Quan, Opt. Lett.30, 2101 (2005)] should be modified. The modification, however, does not affect the validity of the method reported, the results obtained and the subsequent conclusions made.
Leaf cuticle topography retrieved by using fringe projection
NASA Astrophysics Data System (ADS)
Martínez, Amalia; Rayas, J. A.; Cordero, Raúl R.; Balieiro, Daniela; Labbe, Fernando
2012-02-01
The combination (often referred to as phase-stepping profilometry, PSP) of the fringe projection technique and the phase-stepping method allowed us to retrieve topographic maps of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree ( Malus domestica) of the variety Golden Delicious. The topographic maps enabled us to assess the natural features on the illuminated surface and also to detect the whole-field spatial variations in the thickness of the cuticle. Most of our attention was paid to retrieve the highly-resolved elevation information from the cuticle surface, which included the trace (in the order of tens of micrometers) left by ribs and veins. We expect that the PSP application for retrieving the cuticle topography will facilitate further studies on the dispersion and coverage of state-of-the-art agrochemical compounds meant to improve the defending properties of the cuticle. Methodological details are provided below.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Accuracy and high-speed technique for autoprocessing of Young's fringes
NASA Astrophysics Data System (ADS)
Chen, Wenyi; Tan, Yushan
1991-12-01
In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.
Fringe Land Use Guide and Street Plan
DOT National Transportation Integrated Search
1999-01-01
The Fringe Land Use Guide and Transportation Plan has been developed over the : past two years by the F-M Metropolitan Council of Governments. One of : the primary purposes of the project was to extend arterial and collector street : planning beyond ...
3D palmprint data fast acquisition and recognition
NASA Astrophysics Data System (ADS)
Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua
2014-11-01
This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.
A new method for determining the plasma electron density using three-color interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi
2012-06-15
A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.
Frequency guided methods for demodulation of a single fringe pattern.
Wang, Haixia; Kemao, Qian
2009-08-17
Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America
Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.
Robin, Eric; Valle, Valéry; Brémand, Fabrice
2005-12-01
The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.
NASA Astrophysics Data System (ADS)
Xu, Wenjun; Tang, Chen; Zheng, Tingyue; Qiu, Yue
2018-07-01
Oriented partial differential equations (OPDEs) have been demonstrated to be a powerful tool for preserving the integrity of fringes while filtering electronic speckle pattern interferometry (ESPI) fringe patterns. However, the main drawback of OPDEs-based methods is that many iterations are often needed, which causes the change in the shape of fringes. Change in the shape of fringes will affect the accuracy of subsequent fringe analysis. In this paper, we focus on preserving the shape of fringes while filtering, suggested here for the first time. We propose a shape-preserving OPDE for ESPI fringe patterns denoising by introducing a new fidelity term to the previous second-order single oriented PDE (SOOPDE). In our proposed fidelity term, the evolution image is subtracted from the shrinkage result of original noisy image by shearlet transform. Our proposed shape-preserving OPDE is capable of eliminating noise effectively, keeping the integrity of fringes, and more importantly, preserving the shape of fringes. We test the proposed shape-preserving OPDE on three computer-simulated and three experimentally obtained ESPI fringe patterns with poor quality. Furthermore, we compare our model with three representative filtering methods, including the widely used SOOPDE, shearlet transform and coherence-enhancing diffusion (CED). We also compare our proposed fidelity term with the traditional fidelity term. Experimental results show that the proposed shape-preserving OPDE not only yields filtered images with visual quality on par with those by CED which is the state-of-the-art method for ESPI fringe patterns denoising, but also keeps the shape of ESPI fringe patterns.
Review: Current international research into cellulosic fibres and composites
S.J. Eichhorn; C.A. Baillie; N. Zafeiropoulos; L.Y. Mwaikambo; M.P. Ansell; A. Dufresne; K.M. Entwistle; P.J. Herrera-Franco; G.C. Escamilla; Leslie H. Groom; M. Hughes; C. Hill; Timothy G. Rials; P.M. Wild
2001-01-01
The following paper summarises a number of international research projects being undertaken to understand the mechanical properties of natural cellulose fibres and composite materials. In particular the use of novel techniques, such as Raman spectroscopy, synchrotron x-ray and half-fringe photoelastic methods of measuring the physical and micromechanical properties of...
NASA Astrophysics Data System (ADS)
Felipe-Sesé, Luis; López-Alba, Elías; Siegmann, Philip; Díaz, Francisco A.
2016-12-01
A low-cost approach for three-dimensional (3-D) full-field displacement measurement is applied for the analysis of large displacements involved in two different mechanical events. The method is based on a combination of fringe projection and two-dimensional digital image correlation (DIC) techniques. The two techniques have been employed simultaneously using an RGB camera and a color encoding method; therefore, it is possible to measure in-plane and out-of-plane displacements at the same time with only one camera even at high speed rates. The potential of the proposed methodology has been employed for the analysis of large displacements during contact experiments in a soft material block. Displacement results have been successfully compared with those obtained using a 3D-DIC commercial system. Moreover, the analysis of displacements during an impact test on a metal plate was performed to emphasize the application of the methodology for dynamics events. Results show a good level of agreement, highlighting the potential of FP + 2D DIC as low-cost alternative for the analysis of large deformations problems.
LaPeyre, Megan K.; Serra, Kayla; Joyner, T. Andrew; Humphries, Austin T.
2015-01-01
Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed) and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y−1. Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, Shi Ling
2014-10-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion does influence the accuracy of the measurement result, which is often overlooked in the existing real-time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of 92.34 frames per second can be achieved.
Phase-stepping fiber-optic projected fringe system for surface topography measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)
1992-01-01
A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Yang, Yanxi
2018-05-01
We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.
Axial resonance of periodic patterns by using a Fresnel biprism.
Doblas, Ana; Saavedra, Genaro; Martinez-Corral, Manuel; Barreiro, Juan C; Sanchez-Ortiga, Emilio; Llavador, Anabel
2013-01-01
This paper proposes a method for the generation of high-contrast localized sinusoidal fringes with spatially noncoherent illumination and relatively high light throughput. The method, somehow similar to the classical Lau effect, is based on the use of a Fresnel biprism. It has some advantages over previous methods for the noncoherent production of interference fringes. One is the flexibility of the method, which allows the control of the fringe period by means of a simple axial shift of the biprism. Second is the rapid axial fall-off in visibility around the high-contrast fringe planes. And third is the possibility of creating fringes with increasing or with constant period as the light beam propagates. Experimental verifications of the theoretical statements are also provided.
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia
2017-04-01
It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.
Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads
NASA Astrophysics Data System (ADS)
Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard
2016-11-01
Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.
NASA Astrophysics Data System (ADS)
Federico, Alejandro; Kaufmann, Guillermo H.
2004-08-01
We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.
Phase demodulation from a single fringe pattern based on a correlation technique.
Robin, Eric; Valle, Valéry
2004-08-01
We present a method for determining the demodulated phase from a single fringe pattern. This method, based on a correlation technique, searches in a zone of interest for the degree of similarity between a real fringe pattern and a mathematical model. This method, named modulated phase correlation, is tested with different examples.
Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method
NASA Astrophysics Data System (ADS)
Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie
2018-07-01
One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.
Shape measurement and vibration analysis of moving speaker cone
NASA Astrophysics Data System (ADS)
Zhang, Qican; Liu, Yuankun; Lehtonen, Petri
2014-06-01
Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.
Fast and low-cost structured light pattern sequence projection.
Wissmann, Patrick; Forster, Frank; Schmitt, Robert
2011-11-21
We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America
ERIC Educational Resources Information Center
Mabry, Rodney H.; And Others
This project measured and evaluated the fringe benefit element of the teacher compensation package available in the 12 Southeastern Regional Council member states: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virgina. Data were collected by contacting members…
Blind phase error suppression for color-encoded digital fringe projection profilometry
NASA Astrophysics Data System (ADS)
Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.
2012-04-01
Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.
Edge Triggered Apparatus and Method for Measuring Strain in Bragg Gratings
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor)
2003-01-01
An apparatus and method for measuring strain of gratings written into an optical fiber. Optical radiation is transmitted over one or more contiguous predetermined wavelength ranges into a reference optical fiber network and an optical fiber network under test to produce a plurality of reference interference fringes and measurement interference fringes, respectively. The reference and measurement fringes are detected, and the reference fringes trigger the sampling of the measurement fringes. This results in the measurement fringes being sampled at 2(pi) increments of the reference fringes. Each sampled measurement fringe of each wavelength sweep is transformed into a spatial domain waveform. The spatial domain waveforms are summed to form a summation spatial domain waveform that is used to determine location of each grating with respect to a reference reflector. A portion of each spatial domain waveform that corresponds to a particular grating is determined and transformed into a corresponding frequency spectrum representation. The strain on the grating at each wavelength of optical radiation is determined by determining the difference between the current wavelength and an earlier, zero-strain wavelength measurement.
High-accuracy contouring using projection moiré
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.
2005-09-01
Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haridas, Divya; P, Vibin Antony; Sajith, V.
2014-10-15
Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.
Digital Processing Of Young's Fringes In Speckle Photography
NASA Astrophysics Data System (ADS)
Chen, D. J.; Chiang, F. P.
1989-01-01
A new technique for fully automatic diffraction fringe measurement in point-wise speckle photograph analysis is presented in this paper. The fringe orientation and spacing are initially estimated with the help of 1-D FFT. A 2-D convolution filter is then applied to enhance the estimated image . High signal-to-noise rate (SNR) fringe pattern is achieved which makes it feasible for precise determination of the displacement components. The halo-effect is also optimally eliminated in a new way. With the computation time compared favorably with those of 2-D autocorrelation method and the iterative 2-D FFT method. High reliability and accurate determination of displacement components are achieved over a wide range of fringe density.
Image projection optical system for measuring pattern electroretinograms
NASA Astrophysics Data System (ADS)
Starkey, Douglas E.; Taboada, John; Peters, Daniel
1994-06-01
The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.
Endoscopic fringe projection for in-situ inspection of a sheet-bulk metal forming process
NASA Astrophysics Data System (ADS)
Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard
2015-05-01
Sheet-bulk metal forming is a new production process capable of performing deep-drawing and massive forming steps in a single operation. However, due to the high forming forces of the forming process, continuous process control is required in order to detect wear on the forming tool before production quality is impacted. To be able to measure the geometry of the forming tool in the limited space of forming presses, a new inspection system is being developed within the SFB/TR 73 collaborative research center. In addition to the limited space, the process restricts the amount of time available for inspection. Existing areal optical measurement systems suffer from shadowing when measuring the tool's inner elements, as they cannot be placed in the limited space next to the tool, while tactile measurement systems cannot meet the time restrictions for measuring the areal geometries. The new inspection system uses the fringe projection optical measurement principle to capture areal geometry data from relevant parts of the forming tool in short time. Highresolution image fibers are used to connect the system's compact sensor head to a base unit containing both camera and projector of the fringe projection system, which can be positioned outside of the moving parts of the press. To enable short measurement times, a high intensity laser source is used in the projector in combination with a digital micro-mirror device. Gradient index lenses are featured in the sensor head to allow for a very compact design that can be used in the narrow space above the forming tool inside the press. The sensor head is attached to an extended arm, which also guides the image fibers to the base unit. A rotation stage offers the possibility to capture measurements of different functional elements on the circular forming tool by changing the orientation of the sensor head next to the forming tool. During operation of the press, the arm can be travelled out of the moving parts of the forming press. To further reduce the measurement times of the fringe projection system, the inverse fringe projection principle has been adapted to the system to detect geometry deviations in a single camera image. Challenges arise from vibrations of both the forming machine and the positioning stages, which are transferred via the extended arm to the sensor head. Vibrations interfere with the analysis algorithms of both encoded and inverse fringe projection and thus impair measurement accuracy. To evaluate the impact of vibrations on the endoscopic system, results of measurements of simple geometries under the influence of vibrations are discussed. The effect of vibrations is imitated by displacing the measurement specimen during the measurement with a linear positioning stage. The concept of the new inspection system is presented within the scope of the TR 73 demonstrational sheet-bulk metal forming process. Finally, the capabilities of the endoscopic fringe projection system are shown by measurements of gearing structures on a forming tool compared to a CAD-reference.
Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.
He, A; Deepan, B; Quan, C
2017-09-01
A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.
High-speed three-dimensional measurements with a fringe projection-based optical sensor
NASA Astrophysics Data System (ADS)
Bräuer-Burchardt, Christian; Breitbarth, Andreas; Kühmstedt, Peter; Notni, Gunther
2014-11-01
An optical three-dimensional (3-D) sensor based on a fringe projection technique that realizes the acquisition of the surface geometry of small objects was developed for highly resolved and ultrafast measurements. It realizes a data acquisition rate up to 60 high-resolution 3-D datasets per second. The high measurement velocity was achieved by consequent fringe code reduction and parallel data processing. The reduction of the length of the fringe image sequence was obtained by omission of the Gray code sequence using the geometric restrictions of the measurement objects and the geometric constraints of the sensor arrangement. The sensor covers three different measurement fields between 20 mm×20 mm and 40 mm×40 mm with a spatial resolution between 10 and 20 μm, respectively. In order to obtain a robust and fast recalibration of the sensor after change of the measurement field, a calibration procedure based on single shot analysis of a special test object was applied which works with low effort and time. The sensor may be used, e.g., for quality inspection of conductor boards or plugs in real-time industrial applications.
Single-shot real-time three dimensional measurement based on hue-height mapping
NASA Astrophysics Data System (ADS)
Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng
2018-06-01
A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.
Optical methods for non-contact measurements of membranes
NASA Astrophysics Data System (ADS)
Roose, S.; Stockman, Y.; Rochus, P.; Kuhn, T.; Lang, M.; Baier, H.; Langlois, S.; Casarosa, G.
2009-11-01
Structures for space applications very often suffer stringent mass constraints. Lightweight structures are developed for this purpose, through the use of deployable and/or inflatable beams, and thin-film membranes. Their inherent properties (low mass and small thickness) preclude the use of conventional measurement methods (accelerometers and displacement transducers for example) during on-ground testing. In this context, innovative non-contact measurement methods need to be investigated for these stretched membranes. The object of the present project is to review existing measurement systems capable of measuring characteristics of membrane space-structures such as: dot-projection videogrammetry (static measurements), stereo-correlation (dynamic and static measurements), fringe projection (wrinkles) and 3D laser scanning vibrometry (dynamic measurements). Therefore, minimum requirements were given for the study in order to have representative test articles covering a wide range of applications. We present test results obtained with the different methods on our test articles.
Determination of skeleton and sign map for phase obtaining from a single ESPI image
NASA Astrophysics Data System (ADS)
Yang, Xia; Yu, Qifeng; Fu, Sihua
2009-06-01
A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.
A procedural method for express bus-fringe parking transit planning.
DOT National Transportation Integrated Search
1976-01-01
The report illustrates a procedural method for planning express bus-fringe parking transit services - a method built upon the findings from previous research, including disaggregate travel choice models and planning guidelines. The methodology addres...
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1993-01-01
This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.
The Impact of Masker Fringe and Masker Sparial Uncertainty on Sound Localization
2010-09-01
spatial uncertainty on sound localization and to examine how such effects might be related to binaural detection and informational masking. 2 Methods...results from the binaural detection literature and suggest that a longer duration fringe provides a more robust context against which to judge the...results from the binaural detection literature, which suggest that forward masker fringe provides a greater benefit than backward masker fringe [2]. The
Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod
2005-05-10
An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
Federico, Alejandro; Kaufmann, Guillermo H
2006-03-20
We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.
Federico, Alejandro; Kaufmann, Guillermo H
2005-05-10
We evaluate the use of smoothing splines with a weighted roughness measure for local denoising of the correlation fringes produced in digital speckle pattern interferometry. In particular, we also evaluate the performance of the multiplicative correlation operation between two speckle patterns that is proposed as an alternative procedure to generate the correlation fringes. It is shown that the application of a normalization algorithm to the smoothed correlation fringes reduces the excessive bias generated in the previous filtering stage. The evaluation is carried out by use of computer-simulated fringes that are generated for different average speckle sizes and intensities of the reference beam, including decorrelation effects. A comparison with filtering methods based on the continuous wavelet transform is also presented. Finally, the performance of the smoothing method in processing experimental data is illustrated.
NASA Technical Reports Server (NTRS)
Bybee, Shannon J.
2001-01-01
Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.
Automatic Fringe Detection for Oil Film Interferometry Measurement of Skin Friction
NASA Technical Reports Server (NTRS)
Naughton, Jonathan W.; Decker, Robert K.; Jafari, Farhad
2001-01-01
This report summarizes two years of work on investigating algorithms for automatically detecting fringe patterns in images acquired using oil-drop interferometry for the determination of skin friction. Several different analysis methods were tested, and a combination of a windowed Fourier transform followed by a correlation was found to be most effective. The implementation of this method is discussed and details of the process are described. The results indicate that this method shows promise for automating the fringe detection process, but further testing is required.
Three-dimensional scanner based on fringe projection
NASA Astrophysics Data System (ADS)
Nouri, Taoufik
1995-07-01
This article presents a way of scanning 3D objects using noninvasive and contact loss techniques. The principle is to project parallel fringes on an object and then to record the object at two viewing angles. With an appropriate treatment one can reconstruct the 3D object even when it has no symmetry planes. The 3D surface data are available immediately in digital form for computer visualization and for analysis software tools. The optical setup for recording the object, the data extraction and treatment, and the reconstruction of the object are reported and commented on. Application is proposed for reconstructive/cosmetic surgery, CAD, animation, and research.
Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices
Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther
2015-01-01
In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given. PMID:26703624
Joshi, Rajiv
2011-01-01
Adamson's fringe is located at the upper margin of the keratogenous zone of the hair follicle where the nucleated hair shaft cornifies completely and gets converted to hard anucleated keratin. It marks also the area of complete keratinization of the cuticle and Henle's layer of the inner root sheath and the beginning of the stem of the follicle. In Tinea capitis, dermatophytic infection of the hair shaft is restricted to this zone and the fungi do not penetrate further down the infected hair in the bulb of the follicle. The fungi in Adamson's words form “a fringe of mycelium surrounding the hair shaft and project below the lower margin of the sheath of spores around the root-stem.” Horatio George Adamson (1865--1955), a British dermatologist first described this phenomenon, in 1895, and this article describes Adamson's fringe with a short biography of Adamson and discusses Kligman's experiments and observations on Tinea capitis which validated the observations of Adamson and the concept of Adamson's Fringe and described the pathogenesis in Tinea capitis. PMID:21769230
Method and apparatus for fringe-scanning chromosome analysis
Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.
1983-08-31
Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.
NASA Astrophysics Data System (ADS)
Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun
2018-02-01
Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.
Fringing in MonoCam Y4 filter images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.; Fisher-Levine, M.; Nomerotski, A.
Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less
Fringing in MonoCam Y4 filter images
Brooks, J.; Fisher-Levine, M.; Nomerotski, A.
2017-05-05
Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less
Projection moire for remote contour analysis
NASA Technical Reports Server (NTRS)
Doty, J. L.
1983-01-01
Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.
Method and apparatus for removing unwanted reflections from an interferometer
NASA Technical Reports Server (NTRS)
Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)
1994-01-01
A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.
High-precision real-time 3D shape measurement based on a quad-camera system
NASA Astrophysics Data System (ADS)
Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Zhang, Minliang; Zuo, Chao
2018-01-01
Phase-shifting profilometry (PSP) based 3D shape measurement is well established in various applications due to its high accuracy, simple implementation, and robustness to environmental illumination and surface texture. In PSP, higher depth resolution generally requires higher fringe density of projected patterns which, in turn, lead to severe phase ambiguities that must be solved with additional information from phase coding and/or geometric constraints. However, in order to guarantee the reliability of phase unwrapping, available techniques are usually accompanied by increased number of patterns, reduced amplitude of fringe, and complicated post-processing algorithms. In this work, we demonstrate that by using a quad-camera multi-view fringe projection system and carefully arranging the relative spatial positions between the cameras and the projector, it becomes possible to completely eliminate the phase ambiguities in conventional three-step PSP patterns with high-fringe-density without projecting any additional patterns or embedding any auxiliary signals. Benefiting from the position-optimized quad-camera system, stereo phase unwrapping can be efficiently and reliably performed by flexible phase consistency checks. Besides, redundant information of multiple phase consistency checks is fully used through a weighted phase difference scheme to further enhance the reliability of phase unwrapping. This paper explains the 3D measurement principle and the basic design of quad-camera system, and finally demonstrates that in a large measurement volume of 200 mm × 200 mm × 400 mm, the resultant dynamic 3D sensing system can realize real-time 3D reconstruction at 60 frames per second with a depth precision of 50 μm.
The classification of LANDSAT data for the Orlando, Florida, urban fringe area
NASA Technical Reports Server (NTRS)
Walthall, C. L.; Knapp, E. M.
1978-01-01
Procedures used to map residential land cover on the Orlando, Florida, Urban fringe zone are detailed. The NASA Bureau of the Census Applications Systems Verification and Transfer project and the test site are described as well as the LANDSAT data used as the land cover information sources. Both single-date LANDSAT data processing and multitemporal principal components LANDSAT data processing are described. A summary of significant findings is included.
Measurement of the configuration of a concave surface by the interference of reflected light
NASA Technical Reports Server (NTRS)
Kumazawa, T.; Sakamoto, T.; Shida, S.
1985-01-01
A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.
NASA Astrophysics Data System (ADS)
Dong, Zhichao; Cheng, Haobo
2018-01-01
A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Model-based multi-fringe interferometry using Zernike polynomials
NASA Astrophysics Data System (ADS)
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
NASA Astrophysics Data System (ADS)
Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian
2018-03-01
Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Chao; Tao, Tianyang; Feng, Shijie
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second
Zuo, Chao; Tao, Tianyang; Feng, Shijie; ...
2017-11-06
We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less
23 CFR 810.104 - Applicability of other provisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
....104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway... carpools and vanpools. (3) Fringe and transportation corridor parking facilities or portions thereof which...
Optical correlator method and apparatus for particle image velocimetry processing
NASA Technical Reports Server (NTRS)
Farrell, Patrick V. (Inventor)
1991-01-01
Young's fringes are produced from a double exposure image of particles in a flowing fluid by passing laser light through the film and projecting the light onto a screen. A video camera receives the image from the screen and controls a spatial light modulator. The spatial modulator has a two dimensional array of cells the transmissiveness of which are controlled in relation to the brightness of the corresponding pixel of the video camera image of the screen. A collimated beam of laser light is passed through the spatial light modulator to produce a diffraction pattern which is focused onto another video camera, with the output of the camera being digitized and provided to a microcomputer. The diffraction pattern formed when the laser light is passed through the spatial light modulator and is focused to a point corresponds to the two dimensional Fourier transform of the Young's fringe pattern projected onto the screen. The data obtained fro This invention was made with U.S. Government support awarded by the Department of the Army (DOD) and NASA grand number(s): DOD #DAAL03-86-K0174 and NASA #NAG3-718. The U.S. Government has certain rights in this invention.
Imaging with New Classic and Vision at the NPOI
NASA Astrophysics Data System (ADS)
Jorgensen, Anders
2018-04-01
The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.
Wavefront reversal technique for self-referencing collimation testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hii, King Ung; Kwek, Kuan Hiang
2010-02-01
We present a wavefront reversal technique to produce a dual-field fringe pattern for self-referencing collimation testing in wedge-plate lateral-shear interferometry. The method requires only a suitably placed cubic beam splitter to produce two replicas of the fringe field formed by the wedge-plate lateral-shear interferometer. One of the replicas has a fringe pattern that is the reverse of the other. With these two fringe fields, the collimation testing has a built-in reference, and the detection sensitivity is twice that of a single-wedge-plate technique.
In Situ Fringe Projection Profilometry for Laser Power Bed Fusion Process
NASA Astrophysics Data System (ADS)
Zhang, Bin
Additive manufacturing (AM) offers an industrial solution to produce parts with complex geometries and internal structures that conventional manufacturing techniques cannot produce. However, current metal additive process, particularly the laser powder bed fusion (LPBF) process, suffers from poor surface finish and various material defects which hinder its wide applications. One way to solve this problem is by adding in situ metrology sensor onto the machine chamber. Matured manufacturing processes are tightly monitored and controlled, and instrumentation advances are needed to realize this same advantage for metal additive process. This encourages us to develop an in situ fringe projection system for the LPBF process. The development of such a system and the measurement capability are demonstrated in this dissertation. We show that this system can measure various powder bed signatures including powder layer variations, the average height drop between fused metal and unfused powder, and the height variations on the fused surfaces. The ability to measure textured surface is also evaluated through the instrument transfer function (ITF). We analyze the mathematical model of the proposed fringe projection system, and prove the linearity of the system through simulations. A practical ITF measurement technique using a stepped surface is also demonstrated. The measurement results are compared with theoretical predictions generated through the ITF simulations.
Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim
2015-06-21
The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
2013-03-01
holo- graphic recording on photo-thermo-plastic structure ,” J. Modern Opt. 57(10), 854–858 (2010). 6. N. Kukhtarev and T. Kukhtareva, “ Dynamic ...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-10-2013 Journal Article Remote Sensing and Characterization of Oil on Water Using...green-blue region can also degrade oil. This finding indicates that properly structured laser clean-up can be an alternative method of decontamination
FFT swept filtering: a bias-free method for processing fringe signals in absolute gravimeters
NASA Astrophysics Data System (ADS)
Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel; Val'ko, Miloš
2018-05-01
Absolute gravimeters, based on laser interferometry, are widely used for many applications in geoscience and metrology. Although currently the most accurate FG5 and FG5X gravimeters declare standard uncertainties at the level of 2-3 μGal, their inherent systematic errors affect the gravity reference determined by international key comparisons based predominately on the use of FG5-type instruments. The measurement results for FG5-215 and FG5X-251 clearly showed that the measured g-values depend on the size of the fringe signal and that this effect might be approximated by a linear regression with a slope of up to 0.030 μGal/mV . However, these empirical results do not enable one to identify the source of the effect or to determine a reasonable reference fringe level for correcting g-values in an absolute sense. Therefore, both gravimeters were equipped with new measuring systems (according to Křen et al. in Metrologia 53:27-40, 2016. https://doi.org/10.1088/0026-1394/53/1/27 applied for FG5), running in parallel with the original systems. The new systems use an analogue-to-digital converter HS5 to digitize the fringe signal and a new method of fringe signal analysis based on FFT swept bandpass filtering. We demonstrate that the source of the fringe size effect is connected to a distortion of the fringe signal due to the electronic components used in the FG5(X) gravimeters. To obtain a bias-free g-value, the FFT swept method should be applied for the determination of zero-crossings. A comparison of g-values obtained from the new and the original systems clearly shows that the original system might be biased by approximately 3-5 μGal due to improperly distorted fringe signal processing.
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.
Volkov, V V; Han, M G; Zhu, Y
2013-11-01
We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Webster, C. R.
1985-01-01
A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.
NASA Astrophysics Data System (ADS)
Nagarajan, K.; Shashidharan Nair, C. K.
2007-07-01
The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).
Fringe projection profilometry with portable consumer devices
NASA Astrophysics Data System (ADS)
Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin
2018-01-01
A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.
WASH (Water and Sanitation for Health) Rainwater Information Center.
ERIC Educational Resources Information Center
Campbell, D.
1986-01-01
Describes project funded by U.S. Agency for International Development to provide short-term technical assistance (general, technology transfer, institutional development and training, information support) to rural and urban fringe water supply and sanitation projects. Initial steps, special collection, and future components of rainwater network…
Off-axis illumination direct-to-digital holography
Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.
2004-06-08
Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
Injection molding lens metrology using software configurable optical test system
NASA Astrophysics Data System (ADS)
Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian
2016-10-01
Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamsranjav, Erdenetogtokh, E-mail: ja.erdenetogtokh@gmail.com; Shiina, Tatsuo, E-mail: shiina@faculity.chiba-u.jp; Kuge, Kenichi
2016-01-28
Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study,more » we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.« less
Bachim, Brent L; Gaylord, Thomas K
2005-01-20
A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.
Arevalillo-Herraez, Miguel; Cobos, Maximo; Garcia-Pineda, Miguel
2017-03-01
In this paper, we present an effective algorithm to reduce the number of wraps in a 2D phase signal provided as input. The technique is based on an accurate estimate of the fundamental frequency of a 2D complex signal with the phase given by the input, and the removal of a dependent additive term from the phase map. Unlike existing methods based on the discrete Fourier transform (DFT), the frequency is computed by using noise-robust estimates that are not restricted to integer values. Then, to deal with the problem of a non-integer shift in the frequency domain, an equivalent operation is carried out on the original phase signal. This consists of the subtraction of a tilted plane whose slope is computed from the frequency, followed by a re-wrapping operation. The technique has been exhaustively tested on fringe projection profilometry (FPP) and magnetic resonance imaging (MRI) signals. In addition, the performance of several frequency estimation methods has been compared. The proposed methodology is particularly effective on FPP signals, showing a higher performance than the state-of-the-art wrap reduction approaches. In this context, it contributes to canceling the carrier effect at the same time as it eliminates any potential slope that affects the entire signal. Its effectiveness on other carrier-free phase signals, e.g., MRI, is limited to the case that inherent slopes are present in the phase data.
29 CFR 1.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including fringe benefits, to laborers and mechanics engaged in construction activity under contracts... prevailing for the corresponding classes of laborers and mechanics employed on projects similar to the...
29 CFR 1.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including fringe benefits, to laborers and mechanics engaged in construction activity under contracts... prevailing for the corresponding classes of laborers and mechanics employed on projects similar to the...
29 CFR 1.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including fringe benefits, to laborers and mechanics engaged in construction activity under contracts... prevailing for the corresponding classes of laborers and mechanics employed on projects similar to the...
Two dimensional Fourier transform methods for fringe pattern analysis
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Bhat, G.
An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.
Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique
NASA Technical Reports Server (NTRS)
Monson, Daryl J.; Mateer, George G.; Menter, Florian R.
1993-01-01
A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2017-07-04
Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.
Integrated optical 3D digital imaging based on DSP scheme
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.
2008-03-01
We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.
Variational method for integrating radial gradient field
NASA Astrophysics Data System (ADS)
Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo
2014-12-01
We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.
Corneal topometry by fringe projection: limits and possibilities
NASA Astrophysics Data System (ADS)
Windecker, Robert; Tiziani, Hans J.; Thiel, H.; Jean, Benedikt J.
1996-01-01
A fast and accurate measurement of corneal topography is an important task especially since laser induced corneal reshaping has been used for the correction of ametropia. The classical measuring system uses Placido rings for the measurement and calculation of the topography or local curvatures. Another approach is the projection of a known fringe map to be imaged onto the surface under a certain angle of incidence. We present a set-up using telecentric illumination and detection units. With a special grating we get a synthetic wavelength with a nearly sinusoidal profile. In combination with a very fast data acquisition the topography can be evaluated using as special selfnormalizing phase evaluation algorithm. It calculates local Fourier coefficients and corrects errors caused by imperfect illumination or inhomogeneous scattering by fringe normalization. The topography can be determined over 700 by 256 pixel. The set-up is suitable to measure optically rough silicon replica of the human cornea as well as the cornea in vivo over a field of 8 mm and more. The resolution is mainly limited by noise and is better than two micrometers. We discuss the principle benefits and the drawbacks compared with standard Placido technique.
32 CFR 644.7 - Acquisition lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HANDBOOK Project Planning Civil Works § 644.7 Acquisition lines. (a) Tentative acquisition lines. As..., in accordance with sound real estate practices. Accordingly, fringe tracts will not be acquired until...
A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs
Gilbertson, W.; Nomerotski, A.; Takacs, P.
2017-09-07
In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less
A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, W.; Nomerotski, A.; Takacs, P.
In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai
2016-12-01
In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently published methods: co-phased profilometry and two-steps temporal phase-unwrapping. By doing this, we obtain a new and more powerful 3D profilometry technique which overcomes the two main limitations of previous fringe-projection profilometers namely: high phase-sensitivity digitalization of discontinuous objects and solid's self-generated shadow minimization. This new 3D profilometer is demonstrated by an experiment digitizing a discontinuous 3D industrial-solid where the advantages of this new profilometer with respect to previous art are clearly shown.
Price, Jeffery R.; Bingham, Philip R.
2005-11-08
Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Grayscale imbalance correction in real-time phase measuring profilometry
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2016-10-01
Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.
Probing the prodigious strain fringes from Lourdes
NASA Astrophysics Data System (ADS)
Aerden, Domingo G. A. M.; Sayab, Mohammad
2017-12-01
We investigate the kinematics of classic sigmoidal strain fringes from Lourdes (France) and review previous genetic models, strain methods and strain rates for these microstructures. Displacement controlled quartz and calcite fibers within the fringes yield an average strain of 195% with the technique of Ramsay and Huber (1983). This agrees well with strains measured from boudinaged pyrite layers and calcite veins in the same rocks, but conflicts with ca. ∼675% strain in previous analogue models for the studied strain fringes produced by progressive simple shear. We show that the detailed geometry and orientation of fiber patterns are insufficiently explained by simple shear but imply two successive, differently oriented strain fields. Although all strain fringes have the same overall asymmetry, considerable morphological variation resulted from different amounts of rotation of pyrite grains and fringes. Minor rotation led to sharply kinked fibers that record a ca. 70° rotation of the kinematic frame. Larger (up to 145°) rotations, accommodated by antithetic sliding on pyrite-fringe contacts, produced more strongly and smoothly curved fibers. Combined with published Rb-Sr ages for the studied microstructures, our new strain data indicate an average strain rate of 1.41 10-15 s-1 during ca. 37 Myr. continuous growth.
Optical mapping of surface roughness by implementation of a spatial light modulator
NASA Astrophysics Data System (ADS)
Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.
2017-08-01
It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.
NASA Astrophysics Data System (ADS)
Han, Ming
In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either have less resolution, or are not capable of absolute measurement. Previous mathematical models for MMF-EFPI sensors are all based on geometric optics; therefore their applications have many limitations. In this dissertation, a modal theory is developed that can be used in any situations and is more accurate. The mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory. Effect on the fringe visibility of system parameters, including the sensor head structure, the fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors, is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It is shown that, in some situations at which the fringe visibility is important and difficult to achieve, a simple method of launching the light into the MMF-EFPI sensor system from the output of a SMF could be used to improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors. Signal processing methods that are well-understood in white-light SMF-EFPI sensor systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor systems. This dissertation reveals that the variations of mode power distribution (MPD) in the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce measurement errors for a signal processing method in which the phase information is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were experimentally observed and thus the MFD effect is validated.
Topograph for inspection of engine cylinder walls.
Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J
1999-12-20
The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.
Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye
2015-08-01
A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.
Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin
2007-10-20
We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.
Deformation analysis of MEMS structures by modified digital moiré methods
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin
2010-11-01
Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.
ERIC Educational Resources Information Center
Larkin, Timothy
1974-01-01
Coca Cola's Agricultural Labor Project was designed to change the migrant's way of life from very unstable to stable by making migrant housing more habitable, creating permanent jobs, and providing numerous other fringe benefits. (BP)
Evaluation of the Greenwood Drive fringe parking facility.
DOT National Transportation Integrated Search
1978-01-01
The application of a procedural method for planning express bus-fringe parking transit to determine why the Greenwood Drive service in Portsmouth, Virginia, failed to attract more riders than it did is described. The analysis of the study area reveal...
Image Reconstruction from Data Collected with an Imaging Interferometer
NASA Astrophysics Data System (ADS)
DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.
The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.
Simulating interfering fringe displacements by lateral shifts of a camera for educational purposes
NASA Astrophysics Data System (ADS)
Rivera-Ortega, Uriel
2018-07-01
In this manuscript we propose a simple method to emulate fringe displacements in a fringe pattern, due to the interference of two plane waves, by using lateral shifts of a CMOS detector under the scheme of a Twyman–Green interferometric setup, avoiding unwanted vibrations and the need for specific and expensive devices in order to accomplish the task. The simplicity of the proposed experimental setup allows it to be easily replicated and used for teaching or demonstrative purposes, essentially for undergraduate students.
Theoretical fringe profiles with crossed Babinet compensators in testing concave aspheric surfaces.
Saxena, A K; Lancelot, J P
1982-11-15
This paper presents the theory for the use of crossed Babinet compensators in testing concave aspheric surfaces. Theoretical fringe profiles for a sphere and for an aspheric surface with primary aberration are shown. Advantages of this method are discussed.
Analysis of a new phase and height algorithm in phase measurement profilometry
NASA Astrophysics Data System (ADS)
Bian, Xintian; Zuo, Fen; Cheng, Ju
2018-04-01
Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018
A coded structured light system based on primary color stripe projection and monochrome imaging.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-10-14
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.
Goto, Kazufumi; Hayasaki, Yoshio
2015-07-15
In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.
Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun
2016-06-10
We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.
Blind color isolation for color-channel-based fringe pattern profilometry using digital projection
NASA Astrophysics Data System (ADS)
Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai
2007-08-01
We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yubo; School of Physics and Electronic Information Science, Gannan Normal University, Ganzhou 341000; Lei, Yunfei
An image converter tube with a magnetic lens was used to obtain static images of moiré fringes formed by electron beam. These moiré fringes are formed due to the interference between the anode mesh and the photocathode containing slits of various spatial frequencies. Moiré fringes are observed at an accelerating voltage of 3.5 kV requiring the magnetic excitation condition of ∼550 ampere-turns. Not only the features of the fringes are analyzed but also the change of fringe spacing as a function of the rotation angle is investigated. The experimental results are found well in agreement with the theoretical analysis. By changingmore » the rotation angle or adjusting the excitation condition of the magnetic lens, we were able to record parallel moiré and secondary moiré fringes too. The secondary moiré fringes can be observed in the rotation angle range of −39.5° to −50.6°. The theoretical analysis indicates that the secondary moiré is formed by the interference between the photocathode slits and the 2-D periodic structure of the anode mesh. Combining our proposed moiré method with the pulse-dilation technique may potentially open the door for future applications, in various fields including, but not limited to, ultrafast electrical pulse diagnostics.« less
Analysis of contact zones from whole field isochromatics using reflection photoelasticity
NASA Astrophysics Data System (ADS)
Hariprasad, M. P.; Ramesh, K.
2018-06-01
This paper discusses the method for evaluating the unknown contact parameters by post processing the whole field fringe order data obtained from reflection photoelasticity in a nonlinear least squares sense. Recent developments in Twelve Fringe Photoelasticity (TFP) for fringe order evaluation from single isochromatics is utilized for the whole field fringe order evaluation. One of the issues in using TFP for reflection photoelasticity is the smudging of isochromatic data at the contact zone. This leads to error in identifying the origin of contact, which is successfully addressed by implementing a semi-automatic contact point refinement algorithm. The methodologies are initially verified for benchmark problems and demonstrated for two application problems of turbine blade and sheet pile contacting interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.; Lindberg, R.
2017-06-01
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulatingmore » hardedge nonlinear fringe effects in quadrupoles.« less
Atmospheric tomography using a fringe pattern in the sodium layer.
Baharav, Y; Ribak, E N; Shamir, J
1994-02-15
We wish to measure and separate the contribution of atmospheric turbulent layers for multiconjugate adaptive optics. To this end, we propose to create a periodic fringe pattern in the sodium layer and image it with a modified Hartmann sensor. Overlapping sections of the fringes are imaged by a lenslet array onto contiguous areas in a large-format camera. Low-layer turbulence causes an overall shift of the fringe pattern in each lenslet, and high-attitude turbulence results in internal deformations in the pattern. Parallel Fourier analysis permits separation of the atmospheric layers. Two mirrors, one conjugate to a ground layer and the other conjugate to a single high-altitude layer, are shown to widen the field of view significantly compared with existing methods.
NASA Astrophysics Data System (ADS)
Blain, Pascal; Michel, Fabrice; Piron, Pierre; Renotte, Yvon; Habraken, Serge
2013-08-01
Noncontact optical measurement methods are essential tools in many industrial and research domains. A family of new noncontact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow one to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a charge-coupled device (CCD) camera. This optical measurement system is called a shearography interferometer and allows one to measure microdisplacements between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young's interference patterns with this interferometer, and using a CCD camera, it is possible to build a three-dimensional structured light profilometer.
X-ray Moiré deflectometry using synthetic reference images
Stutman, Dan; Valdivia, Maria Pia; Finkenthal, Michael
2015-06-25
Moiré fringe deflectometry with grating interferometers is a technique that enables refraction-based x-ray imaging using a single exposure of an object. To obtain the refraction image, the method requires a reference fringe pattern (without the object). Our study shows that, in order to avoid artifacts, the reference pattern must be exactly matched in phase with the object fringe pattern. In experiments, however, it is difficult to produce a perfectly matched reference pattern due to unavoidable interferometer drifts. We present a simple method to obtain matched reference patterns using a phase-scan procedure to generate synthetic Moiré images. As a result, themore » method will enable deflectometric diagnostics of transient phenomena such as laser-produced plasmas and could improve the sensitivity and accuracy of medical phase-contrast imaging.« less
Real-time determination of fringe pattern frequencies: An application to pressure measurement
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham
2007-05-01
Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.
Optimized stereo matching in binocular three-dimensional measurement system using structured light.
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Fan, Xin; Ma, Jianyong
2014-09-10
In this paper, we develop an optimized stereo-matching method used in an active binocular three-dimensional measurement system. A traditional dense stereo-matching algorithm is time consuming due to a long search range and the high complexity of a similarity evaluation. We project a binary fringe pattern in combination with a series of N binary band limited patterns. In order to prune the search range, we execute an initial matching before exhaustive matching and evaluate a similarity measure using logical comparison instead of a complicated floating-point operation. Finally, an accurate point cloud can be obtained by triangulation methods and subpixel interpolation. The experiment results verify the computational efficiency and matching accuracy of the method.
Real-time 3D measurement based on structured light illumination considering camera lens distortion
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing
2014-12-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.
Optimum projection pattern generation for grey-level coded structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-04-01
Structured light illumination (SLI) systems are well-established optical inspection techniques for noncontact 3D surface measurements. A common technique is multi-frequency sinusoidal SLI that obtains the phase map at various fringe periods in order to estimate the absolute phase, and hence, the 3D surface information. Nevertheless, multi-frequency SLI systems employ multiple measurement planes (e.g. four phase shifted frames) to obtain the phase at a given fringe period. It is therefore an age old challenge to obtain the absolute surface information using fewer measurement frames. Grey level (GL) coding techniques have been developed as an attempt to reduce the number of planes needed, because a spatio-temporal GL sequence employing p discrete grey-levels and m frames has the potential to unwrap up to pm fringes. Nevertheless, one major disadvantage of GL based SLI techniques is that there are often errors near the border of each stripe, because an ideal stepwise intensity change cannot be measured. If the step-change in intensity is a single discrete grey-level unit, this problem can usually be overcome by applying an appropriate threshold. However, severe errors occur if the intensity change at the border of the stripe exceeds several discrete grey-level units. In this work, an optimum GL based technique is presented that generates a series of projection patterns with a minimal gradient in the intensity. It is shown that when using this technique, the errors near the border of the stripes can be significantly reduced. This improvement is achieved with the choice generated patterns, and does not involve additional hardware or special post-processing techniques. The performance of that method is validated using both simulations and experiments. The reported technique is generic, works with an arbitrary number of frames, and can employ an arbitrary number of grey-levels.
Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan
2017-06-26
Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
Large-mirror testing facility at the National Optical Astronomy Observatories.
NASA Astrophysics Data System (ADS)
Barr, L. D.; Coudé du Foresto, V.; Fox, J.; Poczulp, G. A.; Richardson, J.; Roddier, C.; Roddier, F.
1991-09-01
A method for testing the surfaces of large mirrors has been developed to be used even when conditions of vibration and thermal turbulence in the light path cannot be eliminated. The full aperture of the mirror under test is examined by means of a scatterplate interferometer that has the property of being a quasi-common-path method, although any means for obtaining interference fringes will do. The method uses a remotely operated CCD camera system to record the fringe pattern from the workpiece. The typical test is done with a camera exposure of about a millisecond to "freeze" the fringe pattern on the detector. Averaging up to 10 separate exposures effectively eliminates the turbulence effects. The method described provides the optician with complete numerical information and visual plots for the surface under test and the diffracted image the method will produce, all within a few minutes, to an accuracy of 0.01 μm measured peak-to-valley.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing
2015-03-01
We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.
Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM
Kishchenko, Gregory P.; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin
2015-01-01
Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging. PMID:26210582
Two-dimensional fringe probing of transient liquid temperatures in a mini space.
Xue, Zhenlan; Qiu, Huihe
2011-05-01
A 2D fringe probing transient temperature measurement technique based on photothermal deflection theory was developed. It utilizes material's refractive index dependence on temperature gradient to obtain temperature information from laser deflection. Instead of single beam, this method applies multiple laser beams to obtain 2D temperature information. The laser fringe was generated with a Mach-Zehnder interferometer. A transient heating experiment was conducted using an electric wire to demonstrate this technique. Temperature field around a heating wire and variation with time was obtained utilizing the scattering fringe patterns. This technique provides non-invasive 2D temperature measurements with spatial and temporal resolutions of 3.5 μm and 4 ms, respectively. It is possible to achieve temporal resolution to 500 μs utilizing the existing high speed camera.
A new method for determining the plasma electron density using optical frequency comb interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Hiroyuki, E-mail: arakawa@fmt.teikyo-u.ac.jp; Tojo, Hiroshi; Sasao, Hajime
2014-04-15
A new method of plasma electron density measurement using interferometric phases (fractional fringes) of an optical frequency comb interferometer is proposed. Using the characteristics of the optical frequency comb laser, high density measurement can be achieved without fringe counting errors. Simulations show that the short wavelength and wide wavelength range of the laser source and low noise in interferometric phases measurements are effective to reduce ambiguity of measured density.
Federico, Alejandro; Kaufmann, Guillermo H
2003-12-10
We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.
China Report, Economic Affairs, No. 360.
1983-07-05
extent of replacing the socialist principle of distribution with giving fringe benefits . As a result, egalitarianism is shielded by departmentalism...actually restricting one another in their work. Pay Attention to the Economic Benefit of Construction Projects to Society Jilin Deputy Liu Shulin...Jilin provincial vice governor) said: With regard to investments in fixed assets, many comrades only notice the benefit of construc- tion projects
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2018-07-01
Since the early 1970s, optical two-wavelength phase-metrology (TWPM) has been used in a wide variety of experimental set ups. In TWPM one may compute the phase-sum and the phase-difference of two close phase measurements. Early TWPM optically computed the phase difference and phase sum by double exposure holography. However soon after, TWPM became almost synonymous to calculating the phase-difference only. The more sensitive phase-sum was largely forgotten. The standard application for phase-difference TWPM is to extend the phase measurement depth without phase-unwrapping for discontinuous phase-objects. This phase-difference, while non-wrapped, decreases however the signal-to-noise ratio (SNR) of the estimated phase. On the other hand, the phase-sum increases the phase sensitivity, and the SNR of the estimated phase. In spite of these two great advantages, the use of the phase-sum in TWPM has been almost ignored. In this paper we review and set the stage for digital TWPM for super-sensitive phase-sum estimation. This is coupled with two-sensitivity phase-unwrapping to obtain extended-range super-sensitive fringe-projection profilometry estimations. Here we mathematically prove, and experimentally show that using the phase-sum one obtains a huge increase in SNR with respect to using the phase-difference alone. The pioneer works on double exposure TWPM holography that uses the phase-difference and phase-sum are also properly acknowledged. Finally, two experimental results from fringe-projection profilometry that clearly show the huge SNR gain of the phase-sum, with respect to the phase-difference is now mathematically well established.
Impacts of Climate Change on Malaria Transmission in Africa
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.; Endo, N.; Yamana, T. K.
2017-12-01
Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef
2016-12-01
The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.
Review and New Results of Local Helioseismology
NASA Astrophysics Data System (ADS)
Chou, Dean-Yi
2011-10-01
We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.
Han, Ming; Wang, Anbo
2006-05-01
Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.
Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine
2011-01-01
While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.
NASA Astrophysics Data System (ADS)
Sunderland, Zofia; Patorski, Krzysztof
2016-12-01
A big challenge for standard interferogram analysis methods such as Temporal Phase Shifting or Fourier Transform is a parasitic set of fringes which might occur in the analyzed fringe pattern intensity distribution. It is encountered, for example, when transparent glass plates with quasi-parallel surfaces are tested in Fizeau or Twyman-Green interferometers. Besides the beams reflected from the plate front surface and the interferometer reference the beam reflected from the plate rear surface also plays important role; its amplitude is comparable with the amplitude of other beams. In result we face three families of fringes of high contrast which cannot be easily separated. Earlier we proposed a competitive solution for flatness measurements which relies on eliminating one of those fringe sets from the three-beam interferogram and separating two remaining ones with the use of 2D Continuous Wavelet Transform. In this work we cover the case when the intensity of the reference beam is significantly higher than the intensities of two object beams. The main advantage of differentiating beam intensities is the change in contrast of individual fringe families. Processing of such three-beam interferograms is modified but also takes advantage of 2D CWT. We show how to implement this method in Twyman-Green and Fizeau setups and compare this processing path and measurement procedures with previously proposed solutions.
ERIC Educational Resources Information Center
Castro, Josefina Granja
2008-01-01
This paper focuses on the analysis of certain didactic resources that proliferated on the fringes of schooling during the second half of the nineteenth century in Mexico. The first of these is a method that, according to its author, made it possible to teach a pupil how to read in only six lessons, dated 1830; the second is a writing method from…
Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.
Xie, Xianming
2016-08-22
A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.
Automatic evaluation of interferograms
NASA Technical Reports Server (NTRS)
Becker, F.
1982-01-01
A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given.
High-speed three-dimensional shape measurement using GOBO projection
NASA Astrophysics Data System (ADS)
Heist, Stefan; Lutzke, Peter; Schmidt, Ingo; Dietrich, Patrick; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2016-12-01
A projector which uses a rotating slide structure to project aperiodic sinusoidal fringe patterns at high frame rates and with high radiant flux is introduced. It is used in an optical three-dimensional (3D) sensor based on coded-light projection, thus allowing the analysis of fast processes. Measurements of an inflating airbag, a rope skipper, and a soccer ball kick at a 3D frame rate of more than 1300 independent point clouds per second are presented.
Cordless hand-held optical 3D sensor
NASA Astrophysics Data System (ADS)
Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther
2007-07-01
A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.
29 CFR 5.22 - Effect of the Davis-Bacon fringe benefits provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NONCONSTRUCTION CONTRACTS SUBJECT TO THE CONTRACT WORK HOURS AND SAFETY STANDARDS ACT) Interpretation of the... projects of a character similar to the contract work in the area in which the work is to be performed. See...
29 CFR 5.22 - Effect of the Davis-Bacon fringe benefits provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONCONSTRUCTION CONTRACTS SUBJECT TO THE CONTRACT WORK HOURS AND SAFETY STANDARDS ACT) Interpretation of the... projects of a character similar to the contract work in the area in which the work is to be performed. See...
Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges
NASA Astrophysics Data System (ADS)
Sunderland, Zofia; Patorski, Krzysztof
2015-09-01
When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.
Precision optical device of freeform defects inspection
NASA Astrophysics Data System (ADS)
Meguellati, S.
2015-09-01
This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.
NASA Astrophysics Data System (ADS)
Haellstig, Emil J.; Martin, Torleif; Stigwall, Johan; Sjoqvist, Lars; Lindgren, Mikael
2004-02-01
A commercial linear one-dimensional, 1x4096 pixels, zero-twist nematic liquid crystal spatial light modulator (SLM), giving more than 2π phase modulation at λ = 850 nm, was evaluated for beam steering applications. The large ratio (7:1) between the liquid crystal layer thickness and pixel width gives rise to voltage leakage and fringing fields between pixels. Due to the fringing fields the ideal calculated phase patterns cannot be perfectly realized by the device. Losses in high frequency components in the phase patterns were found to limit the maximum deflection angle. The inhomogeneous optical anisotropy of the SLM was determined by modelling of the liquid crystal director distribution within the electrode-pixel structure. The effects of the fringing fields on the amplitude and phase modulation were studied by full vector finite-difference time-domain simulations. It was found that the fringing fields also resulted in coupling into an unwanted polarization mode. Measurements of how this mode coupling affects the beam steering quality were carried out and the results compared with calculated results. A method to compensate for the fringing field effects is discussed and it is shown how the usable steering range of the SLM can be extended to +/- 2 degrees.
Applicability of Neural Networks to Etalon Fringe Filtering in Laser Spectrometers
NASA Technical Reports Server (NTRS)
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-01-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
Applicability of neural networks to etalon fringe filtering in laser spectrometers
NASA Astrophysics Data System (ADS)
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-05-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J
2014-02-01
The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation.
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-11-23
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-01-01
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements’, such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data. PMID:27886081
Comprehensive time average digital holographic vibrometry
NASA Astrophysics Data System (ADS)
Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan
2016-12-01
This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.
Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.
1986-03-15
angles of attack. Different kinds of bluff bodies are used as vortex generators. Their wake is a Karman vortex street consisting of strong vortices of...Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex -profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex -airfoil interaction and application of *methods for digital fringe analysis . 1 6
NASA Astrophysics Data System (ADS)
Hao, Yudong; Zhao, Yang; Li, Dacheng
1999-11-01
Grating projection 3D profilometry has three major problems that have to be handled with great care. They are local shadows, phase discontinuities and surface isolations. Carrying no information, shadow areas give us no clue about the profile there. Phase discontinuities often baffle phase unwrappers because they may be generated for several reasons difficult to distinguish. Spatial phase unwrapping will inevitably fail if the object under teste have surface isolations. In this paper, a complementary grating projection profilometry is reported, which attempts to tackle the three aforementioned problems simultaneously. This technique involves projecting two grating patterns form both sides of the CCD camera. Phase unwrapping is carried out pixel by pixel using the two phase maps based on the excess fraction method, which is immune to phase discontinuities or surface isolations. Complementary projection makes sure that no area in the visible volume of CCD is devoid of fringe information, although in some cases a small area of the reconstructed profile is of low accuracy compared with others. The system calibration procedures and measurement results are presented in detail, and possible improvement is discussed.
Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song
2013-01-01
This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151
Distance measurement using frequency scanning interferometry with mode-hoped laser
NASA Astrophysics Data System (ADS)
Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.
2016-06-01
In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).
Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng
2012-04-20
This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.
NAOMI: a low-order adaptive optics system for the VLT interferometer
NASA Astrophysics Data System (ADS)
Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves
2016-08-01
The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
Extension of electronic speckle correlation interferometry to large deformations
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Sciammarella, Federico M.
1998-07-01
The process of fringe formation under simultaneous illumination in two orthogonal directions is analyzed. Procedures to extend the applicability of this technique to large deformation and high density of fringes are introduced. The proposed techniques are applied to a number of technical problems. Good agreement is obtained when the experimental results are compared with results obtained by other methods.
A fast point-cloud computing method based on spatial symmetry of Fresnel field
NASA Astrophysics Data System (ADS)
Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui
2017-10-01
Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.
Novel method of detecting movement of the interference fringes using one-dimensional PSD.
Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong
2015-06-02
In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.
New approach for identifying the zero-order fringe in variable wavelength interferometry
NASA Astrophysics Data System (ADS)
Galas, Jacek; Litwin, Dariusz; Daszkiewicz, Marek
2016-12-01
The family of VAWI techniques (for transmitted and reflected light) is especially efficient for characterizing objects, when in the interference system the optical path difference exceeds a few wavelengths. The classical approach that consists in measuring the deflection of interference fringes fails because of strong edge effects. Broken continuity of interference fringes prevents from correct identification of the zero order fringe, which leads to significant errors. The family of these methods has been proposed originally by Professor Pluta in the 1980s but that time image processing facilities and computers were hardly available. Automated devices unfold a completely new approach to the classical measurement procedures. The Institute team has taken that new opportunity and transformed the technique into fully automated measurement devices offering commercial readiness of industry-grade quality. The method itself has been modified and new solutions and algorithms simultaneously have extended the field of application. This has concerned both construction aspects of the systems and software development in context of creating computerized instruments. The VAWI collection of instruments constitutes now the core of the Institute commercial offer. It is now practically applicable in industrial environment for measuring textile and optical fibers, strips of thin films, testing of wave plates and nonlinear affects in different materials. This paper describes new algorithms for identifying the zero order fringe, which increases the performance of the system as a whole and presents some examples of measurements of optical elements.
High-precision angle sensor based on a Köster’s prism with absolute zero-point
NASA Astrophysics Data System (ADS)
Ullmann, V.; Oertel, E.; Manske, E.
2018-06-01
In this publication, a novel approach will be presented to use a compact white-light interferometer based on a Köster’s prism for angle measurements. Experiments show that the resolution of this angle interferometer is in the range of a commercial digital autocollimator, with a focal length of f = 300 mm, but with clearly reduced signal noise and without overshoot artifacts in the signal caused by digital filters. The angle detection of the reference mirror in the Köster’s interferometer is based on analysing the rotation angle of the fringe pattern, which is projected on a CMOS-matrix. The fringe pattern is generated by two displaced spherical wave fronts coming from one fiber-coupled white-light source and getting divided into a reference and a measurement beam by the Köster’s prism. The displacement correlates with the reference angle mirror in one linear direction and with the angle aberrations of the prism in the other orthogonal direction on the CMOS sensor. We will present the experimental and optical setup, the method and algorithms for the image-to-angle processing as well as the experimental results obtained in calibration and long-term measurements.
Advantages of phase retrieval for fast x-ray tomographic microscopy
NASA Astrophysics Data System (ADS)
Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.
2013-12-01
In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.
Generation of mechanical interference fringes by multi-photon counting
NASA Astrophysics Data System (ADS)
Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.
2018-05-01
Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.
Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process.
Li, Beiwen; Zhang, Song
2017-10-30
Scientific research of a stabilized flapping flight process (e.g. hovering) has been of great interest to a variety of fields including biology, aerodynamics, and bio-inspired robotics. Different from the current passive photogrammetry based methods, the digital fringe projection (DFP) technique has the capability of performing dense superfast (e.g. kHz) 3D topological reconstructions with the projection of defocused binary patterns, yet it is still a challenge to measure a flapping flight process with the presence of rapid flapping wings. This paper presents a novel absolute 3D reconstruction method for a stabilized flapping flight process. Essentially, the slow motion parts (e.g. body) and the fast-motion parts (e.g. wings) are segmented and separately reconstructed with phase shifting techniques and the Fourier transform, respectively. The topological relations between the wings and the body are utilized to ensure absolute 3D reconstruction. Experiments demonstrate the success of our computational framework by testing a flapping wing robot at different flapping speeds.
Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter
2007-08-01
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.
NASA Astrophysics Data System (ADS)
Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor
2015-03-01
Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.
NASA Astrophysics Data System (ADS)
Chan, H. M.; Yen, K. S.; Ratnam, M. M.
2008-09-01
The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
Research of spectacle frame measurement system based on structured light method
NASA Astrophysics Data System (ADS)
Guan, Dong; Chen, Xiaodong; Zhang, Xiuda; Yan, Huimin
2016-10-01
Automatic eyeglass lens edging system is now widely used to automatically cut and polish the uncut lens based on the spectacle frame shape data which is obtained from the spectacle frame measuring machine installed on the system. The conventional approach to acquire the frame shape data works in the contact scanning mode with a probe tracing around the groove contour of the spectacle frame which requires a sophisticated mechanical and numerical control system. In this paper, a novel non-contact optical measuring method based on structured light to measure the three dimensional (3D) data of the spectacle frame is proposed. First we focus on the processing approach solving the problem of deterioration of the structured light stripes caused by intense specular reflection on the frame surface. The techniques of bright-dark bi-level fringe projecting, multiple exposuring and high dynamic range imaging are introduced to obtain a high-quality image of structured light stripes. Then, the Gamma transform and median filtering are applied to enhance image contrast. In order to get rid of background noise from the image and extract the region of interest (ROI), an auxiliary lighting system of special design is utilized to help effectively distinguish between the object and the background. In addition, a morphological method with specific morphological structure-elements is adopted to remove noise between stripes and boundary of the spectacle frame. By further fringe center extraction and depth information acquisition through the method of look-up table, the 3D shape of the spectacle frame is recovered.
NASA Astrophysics Data System (ADS)
Ren, Wenyi; Cao, Qizhi; Wu, Dan; Jiang, Jiangang; Yang, Guoan; Xie, Yingge; Wang, Guodong; Zhang, Sheqi
2018-01-01
Many observers using interference imaging spectrometer were plagued by the fringe-like pattern(FP) that occurs for optical wavelengths in red and near-infrared region. It brings us more difficulties in the data processing such as the spectrum calibration, information retrieval, and so on. An adaptive method based on the bi-dimensional empirical mode decomposition was developed to suppress the nonlinear FP in polarization interference imaging spectrometer. The FP and corrected interferogram were separated effectively. Meanwhile, the stripes introduced by CCD mosaic was suppressed. The nonlinear interferogram background removal and the spectrum distortion correction were implemented as well. It provides us an alternative method to adaptively suppress the nonlinear FP without prior experimental data and knowledge. This approach potentially is a powerful tool in the fields of Fourier transform spectroscopy, holographic imaging, optical measurement based on moire fringe, etc.
Fast calculation method for computer-generated cylindrical holograms.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2008-07-01
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R
2017-01-01
Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.
NASA Astrophysics Data System (ADS)
Hu, Yonghua; Qiu, Yaqiong; Li, Yang; Shi, Lin
2018-03-01
Near medium intense (NMI) fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated.
Phase-unwrapping algorithm by a rounding-least-squares approach
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin
2014-02-01
A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.
NASA Astrophysics Data System (ADS)
Szczesna, Dorota H.; Kulas, Zbigniew; Kasprzak, Henryk T.; Stenevi, Ulf
2009-11-01
A lateral shearing interferometer was used to examine the smoothness of the tear film. The information about the distribution and stability of the precorneal tear film is carried out by the wavefront reflected from the surface of tears and coded in interference fringes. Smooth and regular fringes indicate a smooth tear film surface. On corneae after laser in situ keratomileusis (LASIK) or radial keratotomy (RK) surgery, the interference fringes are seldom regular. The fringes are bent on bright lines, which are interpreted as tear film breakups. The high-intensity pattern seems to appear in similar location on the corneal surface after refractive surgery. Our purpose was to extract information about the pattern existing under the interference fringes and calculate its shape reproducibility over time and following eye blinks. A low-pass filter was applied and correlation coefficient was calculated to compare a selected fragment of the template image to each of the following frames in the recorded sequence. High values of the correlation coefficient suggest that irregularities of the corneal epithelium might influence tear film instability and that tear film breakup may be associated with local irregularities of the corneal topography created after the LASIK and RK surgeries.
USE OF SHALLOW WATER HABITATS BY ECONOMICALLY VALUABLE FISHES AND CRUSTACEANS
I investigated nekton use of bay-exposed fringing salt marsh habitats at the Goodwin Islands NERRS location (York River, Virginia) in two separate studies. In a 1995 project, depositional-edged salt marshes and the adjacent non-vegetated habitats were sampled with quantitative 1....
Directly Measuring the Degree of Quantum Coherence using Interference Fringes
NASA Astrophysics Data System (ADS)
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes.
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-13
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Broadband interferometric characterization of divergence and spatial chirp.
Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-09-01
We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).
Barnett, Patrick D; Strange, K Alicia; Angel, S Michael
2017-06-01
This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.
ERIC Educational Resources Information Center
Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona
2013-01-01
The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…
A GIS-BASED WETLAND ASESSMENT MODEL FOR PREDICTING AVIAN HABITAT SUITABILITY UNDER UNCERTAINTY
The Farmington Bay region of the Great Salt Lake is fringed with an array of wetland complexes providing critical avian habitat. Land use and hydrological changes resulting from projected urban population increases and combined with the low topographical relief of the lake basin...
DOT National Transportation Integrated Search
2004-06-01
The goal of this research project was to determine the price elasticity of rideshare with specific objectives of helping to assess what the effect on ridership would be if the effective price paid by the traveler was substantially reduced (i.e., incr...
Early Childhood Education in Turkish Gecekondu.
ERIC Educational Resources Information Center
Savas-Ulkuer, Nurper
A longitudinal research project was initiated in the spring of 1988 in Ankara, Turkey in selected gecekondu settlements. A gecekondu is a hastily constructed dwelling used to house newcomers to large cities. Gecekondu dwellers are predominantly disadvantaged, rural people who have migrated to the fringes of urban areas and whose children usually…
National Environmental/Energy Workforce Assessment for Region VI.
ERIC Educational Resources Information Center
National Field Research Center Inc., Iowa City, IA.
This report represents a detailed summation of existing workforce levels, training programs, career potential, and staffing level projections through 1981 for EPA Region VI. This region serves the Gulf fringe states of Texas, Arkansas, New Mexico, Oklahoma, and Louisiana. The specific pollution programs considered include air, noise, pesticides,…
NASA Astrophysics Data System (ADS)
Hirota, Koji
We demonstrate a computationally-efficient method for optical coherence elastography (OCE) based on fringe washout method for a spectral-domain OCT (SD-OCT) system. By sending short pulses of mechanical perturbation with ultrasound or shock wave during the image acquisition of alternating depth profiles, we can extract cross-sectional mechanical assessment of tissue in real-time. This was achieved through a simple comparison of the intensity in adjacent depth profiles acquired during the states of perturbation and non-perturbation in order to quantify the degree of induced fringe washout. Although the results indicate that our OCE technique based on the fringe washout effect is sensitive enough to detect mechanical property changes in biological samples, there is some loss of sensitivity in comparison to previous techniques in order to achieve computationally efficiency and minimum modification in both hardware and software in the OCT system. The tissue phantom study was carried with various agar density samples to characterize our OCE technique. Young's modulus measurements were achieved with the atomic force microscopy (AFM) to correlate to our OCE assessment. Knee cartilage samples of monosodium iodoacetate (MIA) rat models were utilized to replicate cartilage damage of a human model. Our proposed OCE technique along with intensity and AFM measurements were applied to the MIA models to assess the damage. The results from both the phantom study and MIA model study demonstrated the strong capability to assess the changes in mechanical properties of the OCE technique. The correlation between the OCE measurements and the Young's modulus values demonstrated in the OCE data that the stiffer material had less magnitude of fringe washout effect. This result is attributed to the fringe washout effect caused by axial motion that the displacement of the scatterers in the stiffer samples in response to the external perturbation induces less fringe washout effect.
Four-quadrant gratings moiré fringe alignment measurement in proximity lithography.
Zhu, Jiangping; Hu, Song; Yu, Junsheng; Zhou, Shaolin; Tang, Yan; Zhong, Min; Zhao, Lixin; Chen, Minyong; Li, Lanlan; He, Yu; Jiang, Wei
2013-02-11
This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Ghost fringe removal techniques using Lissajous data presentation
Erskine, David J.; Eggert, J. H.; Celliers, P. M.; ...
2016-03-14
A VISAR (Velocity Interferometer System for Any Reflector) is a Dopplervelocity interferometer which is an important optical diagnostic in shockwave experiments at the national laboratories, used to measureequation of state(EOS) of materials under extreme conditions. Unwanted reflection of laser light from target windows can produce an additional component to the VISAR fringe record that can distort and obscure the true velocity signal. When accurately removing this so-called ghost artifact component is essential for achieving high accuracy EOSmeasurements, especially when the true light signal is only weakly reflected from the shock front. Independent of the choice of algorithm for processing themore » raw data into a complex fringe signal, we have found it beneficial to plot this signal as a Lissajous and seek the proper center of this path, even under time varying intensity which can shift the perceived center. Moreover, the ghost contribution is then solved by a simple translation in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable tool for determining accurate ghost offsets. For discontinuous velocity histories, we have developed graphically inspired methods which relate the results of two VISARs having different velocity per fringe proportionalities or assumptions of constant fringe magnitude to find the ghost offset. The technique can also remove window reflection artifacts in generic interferometers, such as in the metrology of surfaces.« less
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.
2017-01-01
Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134
Spatially-Heterodyned Holography
Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN
2006-02-21
A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan
2013-08-15
A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.
Further Developments of the Fringe-Imaging Skin Friction Technique
NASA Technical Reports Server (NTRS)
Zilliac, Gregory C.
1996-01-01
Various aspects and extensions of the Fringe-Imaging Skin Friction technique (FISF) have been explored through the use of several benchtop experiments and modeling. The technique has been extended to handle three-dimensional flow fields with mild shear gradients. The optical and imaging system has been refined and a PC-based application has been written that has made it possible to obtain high resolution skin friction field measurements in a reasonable period of time. The improved method was tested on a wingtip and compared with Navier-Stokes computations. Additionally, a general approach to interferogram-fringe spacing analysis has been developed that should have applications in other areas of interferometry. A detailed error analysis of the FISF technique is also included.
Civic Action Projects Report, 1 January 1965-31 December 1965. Volume 1
1966-06-22
1400 kilometers of federal highway along the fringes of the Amazon jungle to the border of Brazil and Peru which will provide communications between... Peru Uruguay j ^^ Venezuela MARQUAT MEMORIAL UBRAEY U^. ARMY CIVIL AFFAIBS SCHOOL FOBX GQfiDOM, GA. f US30UTHCOM 1965 CIVIC ACTION PROJECTS...movie has been excellent. The film was also shown at the Conference of American Armies in Lima, Peru in November 1965. The military units are
Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2017-02-01
A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.
Combined dispersive/interference spectroscopy for producing a vector spectrum
Erskine, David J.
2002-01-01
A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.
Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio
2012-10-01
We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.
A quantum radar detection protocol for fringe visibility enhancement
NASA Astrophysics Data System (ADS)
Koltenbah, Benjamin; Parazzoli, Claudio; Capron, Barbara
2016-05-01
We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.
Projection Moire measurement of the deflection of composite plates subject to bird strike impact
NASA Astrophysics Data System (ADS)
Shulev, A.; Van Paepegem, W.; Harizanova, J.; Moentjens, A.; Degrieck, J.; Sainov, V.
2007-06-01
For the new generation aircraft families, the use of fibre-reinforced plastics is considered for the leading edge of the wings. However, this leading edge is very prone to bird strike impact. This paper presents the use of the projection moire technique to measure the out-of-plane deflections of composite plates subject to bird strike. Very strict constraints with regard to: (i) high speed image acquisition, (ii) vibrations of the impact chamber, and (iii) projection and observation angles - complicated substantially the development of the set-up. Moreover, the high frame rates (12000 fps) required a very intensive illumination. In the optimized configuration, a specially designed grating with gradually changing period is projected by means of special Metal Hydride lamps through one of the side windows of the impact chamber onto the composite plate riveted in a steel frame. The digital high speed camera is mounted on the roof of the impact chamber and records through a mirror the object surface with the projected fringe pattern on it. Numerical routines based on Local Fourier Transform were developed to process the digital images, to extract the phase and the out-of-plane displacements. The phase evaluation is possible due to the carrier frequency nature of the projected moire pattern. This carrier frequency allows separation of the unwanted additive and multiplicative fringe pattern components in the frequency domain via the application of a proper mask. The numerical calculations were calibrated for the bird strike of an aluminium plate, where the plastic deformation could be checked after the test.
Unsaturated flow characterization utilizing water content data collected within the capillary fringe
Baehr, Arthur; Reilly, Timothy J.
2014-01-01
An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.
NASA Astrophysics Data System (ADS)
Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; McAlister, H. A.; Raghavan, D.; Turner, N. H.; Sturmann, L.; Sturmann, J.; Ridgway, S. T.
2010-06-01
We present the modification of the orbits of χ Draconis and HD 184467, and a completely new orbit for HD 198084, including data taken at the Center for High Angular Resolution Astronomy (CHARA) Array. These data were obtained using a modification of the technique of separated fringe packets (SFPs). The accuracy of the SFP data surpasses that of data taken by speckle, but the technique is much more time and labor intensive. Additionally, using SFPs with the CHARA Array, it is possible to obtain separations below the detection range of speckle interferometry (>=30 mas) above the range in "classic" long-baseline interferometry where fringes from a binary overlap are no longer separated (<=10 mas). Using spectroscopic binary systems with published speckle orbits, we are able to test our new measurements against their ephemerides to calibrate the method as well as produce entirely new orbits for systems with no current astrometric observations.
A method of reducing background fluctuation in tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang
2018-03-01
Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.
Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.
Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram
NASA Astrophysics Data System (ADS)
Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.
1982-10-01
A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.
49 CFR 25.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
49 CFR 25.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
49 CFR 25.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
49 CFR 25.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
NASA Astrophysics Data System (ADS)
Feng, Shijie; Zhang, Yuzhen; Chen, Qian; Zuo, Chao; Li, Rubin; Shen, Guochen
2014-08-01
This paper presents a general solution for realizing high dynamic range three-dimensional (3-D) shape measurement based on fringe projection. Three concrete techniques are involved in the solution for measuring object with large range of reflectivity (LRR) or one with shiny specular surface. For the first technique, the measured surface reflectivities are sub-divided into several groups based on its histogram distribution, then the optimal exposure time for each group can be predicted adaptively so that the bright as well as dark areas on the measured surface are able to be handled without any compromise. Phase-shifted images are then captured at the calculated exposure times and a composite phase-shifted image is generated by extracting the optimally exposed pixels in the raw fringes images. For the second technique, it is proposed by introducing two orthogonal polarizers which are placed separately in front of the camera and projector into the first technique and the third one is developed by combining the second technique with the strategy of properly altering the angle between the transmission axes of the two polarizers. Experimental results show that the first technique can effectively improve the measurement accuracy of diffuse objects with LRR, the second one is capable of measuring object with weak specular reflection (WSR: e.g. shiny plastic surface) and the third can inspect surface with strong specular reflection (SSR: e.g. highlight on aluminum alloy) precisely. Further, more complex scene, such as the one with LRR and WSR, or even the one simultaneously involving LRR, WSR and SSR, can be measured accurately by the proposed solution.
Phase I Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation
USDA-ARS?s Scientific Manuscript database
Surge and waves generated by hurricanes and other severe storms can cause devastating damage of property and loss of life in coastal areas. Vegetation in wetlands, coastal fringes and stream floodplains can reduce storm surge and waves while providing ecological benefits and complementing traditiona...
Assessment of cumulative exposure to UVA through the study of asymmetrical facial skin aging.
Mac-Mary, Sophie; Sainthillier, Jean-Marie; Jeudy, Adeline; Sladen, Christelle; Williams, Cara; Bell, Mike; Humbert, Philippe
2010-09-23
Published studies assessing whether asymmetrical facial ultraviolet light exposure leads to underlying differences in skin physiology and morphology report only clinical observations. The aim of this study was to assess the visual impact on the skin of repeated ultraviolet-A (UVA) exposure through a window. Eight women and two men presenting with asymmetrical signs of photoaging due to overexposure of one side of their face to the sun through a window over a long period of time were enrolled in the study. Split-face biometrologic assessments were performed (clinical scoring, hydration with Corneometer, mechanical properties with Cutometer, transepidermal water loss with AquaFlux, skin relief with fringe projection, photography, stripping, and then lipid peroxidation analysis). Significant differences were observed in clinical scores for wrinkles, skin roughness assessed by fringe projection on the cheek, and skin heterogeneity assessed with spectrocolorimetry on the cheekbone. Other differences were observed for skin hydration, as well as skin laxity, which tended towards significance. This study suggests the potential benefit of daily UVA protection during nondeliberate exposure indoors as well as outside.
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
10 CFR 1042.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...
36 CFR 1211.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
22 CFR 146.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
44 CFR 19.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...
22 CFR 146.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
22 CFR 229.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
22 CFR 229.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
44 CFR 19.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...
36 CFR 1211.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
44 CFR 19.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...
36 CFR 1211.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
28 CFR 54.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
10 CFR 1042.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...
32 CFR 196.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
22 CFR 229.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
22 CFR 229.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
32 CFR 196.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
36 CFR 1211.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
22 CFR 146.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
28 CFR 54.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
44 CFR 19.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...
32 CFR 196.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
28 CFR 54.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
22 CFR 146.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
22 CFR 229.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
32 CFR 196.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
28 CFR 54.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
10 CFR 1042.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...
22 CFR 146.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
32 CFR 196.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
44 CFR 19.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...
10 CFR 1042.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...
10 CFR 1042.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...
Detailed analysis of an optimized FPP-based 3D imaging system
NASA Astrophysics Data System (ADS)
Tran, Dat; Thai, Anh; Duong, Kiet; Nguyen, Thanh; Nehmetallah, Georges
2016-05-01
In this paper, we present detail analysis and a step-by-step implementation of an optimized fringe projection profilometry (FPP) based 3D shape measurement system. First, we propose a multi-frequency and multi-phase shifting sinusoidal fringe pattern reconstruction approach to increase accuracy and sensitivity of the system. Second, phase error compensation caused by the nonlinear transfer function of the projector and camera is performed through polynomial approximation. Third, phase unwrapping is performed using spatial and temporal techniques and the tradeoff between processing speed and high accuracy is discussed in details. Fourth, generalized camera and system calibration are developed for phase to real world coordinate transformation. The calibration coefficients are estimated accurately using a reference plane and several gauge blocks with precisely known heights and by employing a nonlinear least square fitting method. Fifth, a texture will be attached to the height profile by registering a 2D real photo to the 3D height map. The last step is to perform 3D image fusion and registration using an iterative closest point (ICP) algorithm for a full field of view reconstruction. The system is experimentally constructed using compact, portable, and low cost off-the-shelf components. A MATLAB® based GUI is developed to control and synchronize the whole system.
31 CFR 28.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...
6 CFR 17.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 6 Domestic Security 1 2014-01-01 2014-01-01 false Fringe benefits. 17.525 Section 17.525 Domestic... in Employment in Education Programs or Activities Prohibited § 17.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, the term fringe benefits means any medical...
40 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Fringe benefits. 5.525 Section 5.525... in Employment in Education Programs or Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
29 CFR 36.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 1 2010-07-01 2010-07-01 true Fringe benefits. 36.525 Section 36.525 Labor Office of the... Activities Prohibited § 36.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
41 CFR 101-4.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Fringe benefits. 101-4... in Employment in Education Programs or Activities Prohibited § 101-4.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
43 CFR 41.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Fringe benefits. 41.525 Section 41.525... in Employment in Education Programs or Activities Prohibited § 41.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
43 CFR 41.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Fringe benefits. 41.525 Section 41.525... in Employment in Education Programs or Activities Prohibited § 41.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
14 CFR 1253.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Fringe benefits. 1253.525 Section 1253.525... in Employment in Education Programs or Activities Prohibited § 1253.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
41 CFR 101-4.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Fringe benefits. 101-4... in Employment in Education Programs or Activities Prohibited § 101-4.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
31 CFR 28.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...
10 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Fringe benefits. 5.525 Section 5.525 Energy NUCLEAR... Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
31 CFR 28.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...
45 CFR 86.56 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital...
40 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Fringe benefits. 5.525 Section 5.525... in Employment in Education Programs or Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
41 CFR 101-4.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Fringe benefits. 101-4... in Employment in Education Programs or Activities Prohibited § 101-4.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
45 CFR 86.56 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital...
45 CFR 86.56 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital...
29 CFR 36.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 1 2013-07-01 2013-07-01 false Fringe benefits. 36.525 Section 36.525 Labor Office of the... Activities Prohibited § 36.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
41 CFR 101-4.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Fringe benefits. 101-4... in Employment in Education Programs or Activities Prohibited § 101-4.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
10 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Fringe benefits. 5.525 Section 5.525 Energy NUCLEAR... Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
45 CFR 86.56 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital...
36 CFR § 1211.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Fringe benefits. § 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
10 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Fringe benefits. 5.525 Section 5.525 Energy NUCLEAR... Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
31 CFR 28.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...
10 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Fringe benefits. 5.525 Section 5.525 Energy NUCLEAR... Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
14 CFR 1253.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Fringe benefits. 1253.525 Section 1253.525... in Employment in Education Programs or Activities Prohibited § 1253.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
31 CFR 28.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...
29 CFR 36.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 1 2014-07-01 2013-07-01 true Fringe benefits. 36.525 Section 36.525 Labor Office of the... Activities Prohibited § 36.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
6 CFR 17.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 6 Domestic Security 1 2011-01-01 2011-01-01 false Fringe benefits. 17.525 Section 17.525 Domestic... in Employment in Education Programs or Activities Prohibited § 17.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, the term fringe benefits means any medical...
14 CFR 1253.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Fringe benefits. 1253.525 Section 1253.525... in Employment in Education Programs or Activities Prohibited § 1253.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
10 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Fringe benefits. 5.525 Section 5.525 Energy NUCLEAR... Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...
45 CFR 86.56 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital...
43 CFR 41.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Fringe benefits. 41.525 Section 41.525... in Employment in Education Programs or Activities Prohibited § 41.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
14 CFR 1253.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Fringe benefits. 1253.525 Section 1253.525... in Employment in Education Programs or Activities Prohibited § 1253.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
40 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Fringe benefits. 5.525 Section 5.525... in Employment in Education Programs or Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
6 CFR 17.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 6 Domestic Security 1 2013-01-01 2013-01-01 false Fringe benefits. 17.525 Section 17.525 Domestic... in Employment in Education Programs or Activities Prohibited § 17.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, the term fringe benefits means any medical...
6 CFR 17.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 6 Domestic Security 1 2010-01-01 2010-01-01 false Fringe benefits. 17.525 Section 17.525 Domestic... in Employment in Education Programs or Activities Prohibited § 17.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, the term fringe benefits means any medical...
6 CFR 17.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 6 Domestic Security 1 2012-01-01 2012-01-01 false Fringe benefits. 17.525 Section 17.525 Domestic... in Employment in Education Programs or Activities Prohibited § 17.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, the term fringe benefits means any medical...
43 CFR 41.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Fringe benefits. 41.525 Section 41.525... in Employment in Education Programs or Activities Prohibited § 41.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
41 CFR 101-4.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Fringe benefits. 101-4... in Employment in Education Programs or Activities Prohibited § 101-4.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
43 CFR 41.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Fringe benefits. 41.525 Section 41.525... in Employment in Education Programs or Activities Prohibited § 41.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
40 CFR 5.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Fringe benefits. 5.525 Section 5.525... in Employment in Education Programs or Activities Prohibited § 5.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
Patwary, Nurmohammed; Doblas, Ana; Preza, Chrysanthe
2018-01-01
The performance of structured illumination microscopy (SIM) is hampered in many biological applications due to the inability to modulate the light when imaging deep into the sample. This is in part because sample-induced aberration reduces the modulation contrast of the structured pattern. In this paper, we present an image restoration approach suitable for processing raw incoherent-grid-projection SIM data with a low fringe contrast. Restoration results from simulated and experimental ApoTome SIM data show results with improved signal-to-noise ratio (SNR) and optical sectioning compared to the results obtained from existing methods, such as 2D demodulation and 3D SIM deconvolution. Our proposed method provides satisfactory results (quantified by the achieved SNR and normalized mean square error) even when the modulation contrast of the illumination pattern is as low as 7%. PMID:29675307
Encoder fault analysis system based on Moire fringe error signal
NASA Astrophysics Data System (ADS)
Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu
2018-02-01
Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.
15 CFR 8a.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Fringe benefits. 8a.525 Section 8a.525... in Employment in Education Programs or Activities Prohibited § 8a.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
29 CFR 5.29 - Specific fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 1 2014-07-01 2013-07-01 true Specific fringe benefits. 5.29 Section 5.29 Labor Office of... SUBJECT TO THE CONTRACT WORK HOURS AND SAFETY STANDARDS ACT) Interpretation of the Fringe Benefits Provisions of the Davis-Bacon Act § 5.29 Specific fringe benefits. (a) The act lists all types of fringe...
15 CFR 8a.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Fringe benefits. 8a.525 Section 8a.525... in Employment in Education Programs or Activities Prohibited § 8a.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
15 CFR 8a.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Fringe benefits. 8a.525 Section 8a.525... in Employment in Education Programs or Activities Prohibited § 8a.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
26 CFR 1.61-21 - Taxation of fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Taxation of fringe benefits. 1.61-21 Section 1... § 1.61-21 Taxation of fringe benefits. (a) Fringe benefits—(1) In general. Section 61(a)(1) provides... includes compensation for services, including fees, commissions, fringe benefits, and similar items. For an...
15 CFR 8a.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Fringe benefits. 8a.525 Section 8a.525... in Employment in Education Programs or Activities Prohibited § 8a.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...
Pavlovčič, Urban; Diaci, Janez; Možina, Janez; Jezeršek, Matija
2013-09-26
Knowing the orientation of the head is important in many fields, including medicine. Many methods and measuring systems exist, but usually they use different markers or sensors attached to the subject's head for head orientation determination. In certain applications these attachments may represent a burden or a distraction to the subject under study which may have an unfavourable impact on the measurement. We propose a non-contact optical method for head-to-trunk orientation measurement that does not require any attachments to the subject under study. An innovative handheld 3D apparatus has been developed for non-invasive and fast 3D shape measurements. It is based on the triangulation principle in combination with fringe projection. The shape of the subject's upper trunk and head is reconstructed from a single image using the Fourier transform profilometry method. Two shape measurements are required to determine the head-to-trunk orientation angles: one in the reference (neutral) position and the other one in the position of interest. The algorithm for the head-to-trunk orientation angle extraction is based on the separate alignment of the shape of the subject's upper trunk and head against the corresponding shape in the reference pose. Single factor analysis of variance (ANOVA) was used for statistical characterisation of the method precision. The method and the 3D apparatus were verified in-vitro using a mannequin and a reference orientation tracker. The uncertainty of the calculated orientation was 2°. During the in-vivo test with a human subject diagnosed with cervical dystonia (aged 60), the repeatability of the measurements was 3°. In-vitro and in-vivo comparison was done on the basis of an experiment with the mannequin and a healthy male (aged 29). These results show that only the difference between flexion/extension measured angles was statistically significant. The differences between means were less than 1° for all ranges. The new non-contact method enables the compensation of the movement of the measuring instrument or the subject's body as a whole, is non-invasive, requires little additional equipment and causes little stress for the subject and operator. We find that it is appropriate for measurements of the head orientation with respect to the trunk for the characterization of the cervical dystonia.
Validating Laser-Induced Birefringence Theory with Plasma Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cecilia; Cornell Univ., Ithaca, NY
2015-09-02
Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variationsmore » of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.« less
Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.
Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian
2017-05-06
The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.
2018-03-01
We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.
NASA Technical Reports Server (NTRS)
2000-01-01
This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science
DSPI technique for nanometer vibration mode measurement
NASA Astrophysics Data System (ADS)
Yue, Kaiduan; Jia, Shuhai; Tan, Yushan
2000-05-01
A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.
A curved surface micro-moiré method and its application in evaluating curved surface residual stress
NASA Astrophysics Data System (ADS)
Zhang, Hongye; Wu, Chenlong; Liu, Zhanwei; Xie, Huimin
2014-09-01
The moiré method is typically applied to the measurement of deformations of a flat surface while, for a curved surface, this method is rarely used other than for projection moiré or moiré interferometry. Here, a novel colour charge-coupled device (CCD) micro-moiré method has been developed, based on which a curved surface micro-moiré (CSMM) method is proposed with a colour CCD and optical microscope (OM). In the CSMM method, no additional reference grating is needed as a Bayer colour filter array (CFA) installed on the OM in front of the colour CCD image sensor performs this role. Micro-moiré fringes with high contrast are directly observed with the OM through the Bayer CFA under the special condition of observing a curved specimen grating. The principle of the CSMM method based on a colour CCD micro-moiré method and its application range and error analysis are all described in detail. In an experiment, the curved surface residual stress near a welded seam on a stainless steel tube was investigated using the CSMM method.
29 CFR 4.171 - “Bona fide” fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 1 2014-07-01 2013-07-01 true âBona fideâ fringe benefits. 4.171 Section 4.171 Labor... Compliance with Compensation Standards § 4.171 “Bona fide” fringe benefits. (a) To be considered a “bona fide” fringe benefit for purposes of the Act, a fringe benefit plan, fund, or program must constitute a legally...
On-Line Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)
1999-01-01
The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.
NASA Astrophysics Data System (ADS)
Cong, Lin-xiao; Huang, Min; Cai, Qi-sheng
2017-10-01
In this paper, a multi-line interferogram stitching method based on orthogonal shear using the Wollaston prism(WP) was proposed with a 2D projection interferogram recorded through the rotation of CCD, making the spectral resolution of Fourier-Transform spectrometer(FTS) of a limited spatial size increase by at least three times. The fringes on multi-lines were linked with the pixels of equal optical path difference (OPD). Ideally, the error of sampled phase within one pixel was less than half the wavelength, ensuring consecutive values in the over-sampled dimension while aliasing in another. In the simulation, with the calibration of 1.064μm, spectral lines at 1.31μm and 1.56μm of equal intensity were tested and observed. The result showed a bias of 0.13% at 1.31μm and 1.15% at 1.56μm in amplitude, and the FWHM at 1.31μm reduced from 25nm to 8nm after the sample points increased from 320 to 960. In the comparison of reflectance spectrum of carnauba wax within near infrared(NIR) band, the absorption peak at 1.2μm was more obvious and zoom of the band 1.38 1.43μm closer to the reference, although some fluctuation was in the short-wavelength region arousing the spectral crosstalk. In conclusion, with orthogonal shear based on the rotation of the CCD relative to the axis of WP, the spectral resolution of static FTS was enhanced by the projection of fringes to the grid coordinates and stitching the interferograms into a larger OPD, which showed the advantages of cost and miniaturization in the space-constrained NIR applications.
NASA Astrophysics Data System (ADS)
Chatterjee, Julius
This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
NASA Astrophysics Data System (ADS)
Zhou, Xiang
Using an innovative portable holographic inspection and testing system (PHITS) developed at the Australian Defence Force Academy, fatigue cracks in riveted lap joints can be detected by visually inspecting the abnormal fringe changes recorded on holographic interferograms. In this thesis, for automatic crack detection, some modern digital image processing techniques are investigated and applied to holographic interferogram evaluation. Fringe analysis algorithms are developed for identification of the crack-induced fringe changes. Theoretical analysis of PHITS and riveted lap joints and two typical experiments demonstrate that the fatigue cracks in lightly-clamped joints induce two characteristic fringe changes: local fringe discontinuities at the cracking sites; and the global crescent fringe distribution near to the edge of the rivet hole. Both of the fringe features are used for crack detection in this thesis. As a basis of the fringe feature extraction, an algorithm for local fringe orientation calculation is proposed. For high orientation accuracy and computational efficiency, Gaussian gradient filtering and neighboring direction averaging are used to minimize the effects of image background variations and random noise. The neighboring direction averaging is also used to approximate the fringe directions in centerlines of bright and dark fringes. Experimental results indicate that for high orientation accuracy the scales of the Gaussian filter and neighboring direction averaging should be chosen according to the local fringe spacings. The orientation histogram technique is applied to detect the local fringe discontinuity due to the fatigue cracks. The Fourier descriptor technique is used to characterize the global fringe distribution change from a circular to a crescent distribution with the fatigue crack growth. Experiments and computer simulations are conducted to analyze the detectability and reliability of crack detection using the two techniques. Results demonstrate that the Fourier descriptor technique is more promising in the detection of the short cracks near the edge of the rivet head. However, it is not as reliable as the fringe orientation technique for detection of the long through cracks. For reliability, both techniques should be used in practical crack detection. Neither the Fourier descriptor technique nor the orientation histogram technique have been previously applied to holographic interferometry. While this work related primarily to interferograms of cracked rivets, the techniques would be readily applied to other areas of fringe pattern analysis.
48 CFR 731.372 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Fringe benefits. 731.372 Section 731.372 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL....372 Fringe benefits. USAID's policies on certain fringe benefits related to overseas service...
48 CFR 731.372 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Fringe benefits. 731.372 Section 731.372 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL....372 Fringe benefits. USAID's policies on certain fringe benefits related to overseas service...
48 CFR 731.372 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Fringe benefits. 731.372 Section 731.372 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL....372 Fringe benefits. USAID's policies on certain fringe benefits related to overseas service...
48 CFR 731.372 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Fringe benefits. 731.372 Section 731.372 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL....372 Fringe benefits. USAID's policies on certain fringe benefits related to overseas service...
48 CFR 731.372 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Fringe benefits. 731.372 Section 731.372 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL....372 Fringe benefits. USAID's policies on certain fringe benefits related to overseas service...
Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian
2018-03-20
The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R.; Bingham, Philip R.
2006-10-03
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Faster processing of multiple spatially-heterodyned direct to digital holograms
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-09-09
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Control of the coherence behavior in a SFG interferometer through the multipump phases command.
Darré, P; Lehmann, L; Grossard, L; Delage, L; Reynaud, F
2018-03-19
In this paper, we report on a novel method to control the coherence behavior in a sum frequency generation interferometer powered by two independent pump lines. At the output of the interferometer, the two incoherent fringe patterns must be superimposed to maximize the contrast. The first step consists in canceling the differential group delay. The second one uses the phase control on one pump to synchronize the fringe patterns. This innovative method is experimentally demonstrated with a setup involving a 1544 nm signal and two pump lines around 1064 nm leading to a converted signal around 630 nm. It can be easily extended to a greater number of pump lines.
Color moiré simulations in contact-type 3-D displays.
Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K
2015-06-01
A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-03-31
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-01-01
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349
NASA Astrophysics Data System (ADS)
Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.
2016-09-01
3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.
2014-12-01
No affects to interior least tern or piping plover would occur as a result of the proposed project. Western prairie fringed orchid (Platanthera...praeclara) – This orchid occurs in mesic to wet unplowed tallgrass prairies. The project site is located in the city of Omaha on a bank with...grasses and weeds that are regularly maintained. The orchid does not occur on-site. No affects to orchids would occur as a result of the proposed
DOT National Transportation Integrated Search
1975-01-01
Tripmaker reactions to two recent express bus-fringe parking operations in Richmond and Norfolk-Virginia Beach Virginia are examined. This travel behavior's interpreted to establish planning and design guidelines for locating and designing fringe lot...
Edge detection for optical synthetic aperture based on deep neural network
NASA Astrophysics Data System (ADS)
Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2017-09-01
Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.
Undersampled digital holographic interferometry
NASA Astrophysics Data System (ADS)
Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.
2008-04-01
In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.
NASA Astrophysics Data System (ADS)
Rössler, Tomáš; Hrabovský, Miroslav; Pluháček, František
2005-08-01
The cotyle implantate is abraded in the body of patient and its shape changes. Information about the magnitude of abrasion is contained in the result contour map of the implantate. The locations and dimensions of abraded areas can be computed from the contours deformation. The method called the single-projector moire topography was used for the contour lines determination. The theoretical description of method is given at first. The design of the experimental set-up follows. The light grating projector was developed to realize the periodic structure on the measured surface. The method of fringe-shifting was carried out to increase the data quantity. The description of digital processing applied to the moire grating images is introduced at the end together with the examples of processed images.
Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles
NASA Technical Reports Server (NTRS)
Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.
1989-01-01
The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.
Localization of Interference Fringes.
ERIC Educational Resources Information Center
Simon, J. M.; Comastri, Silvia A.
1980-01-01
Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)
18 CFR 1317.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fringe benefits. 1317... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
24 CFR 3.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Fringe benefits. 3.525 Section 3... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
24 CFR 3.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Fringe benefits. 3.525 Section 3... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
45 CFR 2555.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Fringe benefits. 2555.525 Section 2555.525 Public... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
13 CFR 113.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Fringe benefits. 113.525 Section... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
34 CFR 106.56 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 1 2014-07-01 2014-07-01 false Fringe benefits. 106.56 Section 106.56 Education... benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital, accident, life insurance or retirement benefit, service, policy or plan, any profit-sharing or...
24 CFR 3.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Fringe benefits. 3.525 Section 3... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
38 CFR 23.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Fringe benefits. 23.525... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
13 CFR 113.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Fringe benefits. 113.525 Section... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
34 CFR 106.56 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 1 2013-07-01 2013-07-01 false Fringe benefits. 106.56 Section 106.56 Education... benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital, accident, life insurance or retirement benefit, service, policy or plan, any profit-sharing or...
45 CFR 2555.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Fringe benefits. 2555.525 Section 2555.525 Public... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
34 CFR 106.56 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 1 2012-07-01 2012-07-01 false Fringe benefits. 106.56 Section 106.56 Education... benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital, accident, life insurance or retirement benefit, service, policy or plan, any profit-sharing or...
18 CFR 1317.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Fringe benefits. 1317... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
13 CFR 113.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Fringe benefits. 113.525 Section... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
18 CFR 1317.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fringe benefits. 1317... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
18 CFR 1317.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fringe benefits. 1317... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
24 CFR 3.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Fringe benefits. 3.525 Section 3... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
34 CFR 106.56 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 1 2011-07-01 2011-07-01 false Fringe benefits. 106.56 Section 106.56 Education... benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital, accident, life insurance or retirement benefit, service, policy or plan, any profit-sharing or...
34 CFR 106.56 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Fringe benefits. 106.56 Section 106.56 Education... benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical, hospital, accident, life insurance or retirement benefit, service, policy or plan, any profit-sharing or...
38 CFR 23.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Fringe benefits. 23.525... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
45 CFR 2555.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Fringe benefits. 2555.525 Section 2555.525 Public... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
45 CFR 2555.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Fringe benefits. 2555.525 Section 2555.525 Public... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
24 CFR 3.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Fringe benefits. 3.525 Section 3... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
38 CFR 23.525 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Fringe benefits. 23.525... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
18 CFR 1317.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fringe benefits. 1317... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
13 CFR 113.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Fringe benefits. 113.525 Section... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
38 CFR 23.525 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Fringe benefits. 23.525... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
13 CFR 113.525 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Fringe benefits. 113.525 Section... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
38 CFR 23.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Fringe benefits. 23.525... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
45 CFR 2555.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Fringe benefits. 2555.525 Section 2555.525 Public... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi
2017-05-23
This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Redding, David C.
2006-01-01
Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of a segmented primary mirror such as the James Webb Space Telescope (JWST). In this paper, modeling and simulations are used to study the effect of segmented mirror aberrations on the fringe image, DFS signals and DFS detection accuracy. The study has shown due to the pixilation spatial filter effect from DFS signal extraction the effect of wavefront error is reduced and DFS algorithm will be more robust against wavefront aberration by using multi-trace DFS approach. We also studied the JWST Dispersed Hartmann Sensor (DHS) performance in presence of wavefront aberrations caused by the gravity sag and we use the scaled gravity sag to explore the JWST DHS performance relationship with the level of the wavefront aberration. This also includes the effect from line-of-sight jitter.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
The role of photographic parameters in laser speckle or particle image displacement velocimetry
NASA Technical Reports Server (NTRS)
Lourenco, L.; Krothapalli, A.
1987-01-01
The parameters involved in obtaining the multiple exposure photographs in the laser speckle velocimetry method (to record the light scattering by the seeding particles) were optimized. The effects of the type, concentration, and dimensions of the tracer, the exposure conditions (time between exposures, exposure time, and number of exposures), and the sensitivity and resolution of the film on the quality of the final results were investigated, photographing an experimental flow behind an impulsively started circular cylinder. The velocity data were acquired by digital processing of Young's fringes, produced by point-by-point scanning of a photographic negative. Using the optimal photographing conditions, the errors involved in the estimation of the fringe angle and spacing were of the order of 1 percent for the spacing and +/1 deg for the fringe orientation. The resulting accuracy in the velocity was of the order of 2-3 percent of the maximum velocity in the field.
Wavefront division digital holography
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan
2018-05-01
Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.
NASA Astrophysics Data System (ADS)
Cao, Qing; Han, Shu-Jen; Tulevski, George S.
2014-09-01
One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.
Maddali, S.; Calvo-Almazan, I.; Almer, J.; ...
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddali, S.; Calvo-Almazan, I.; Almer, J.
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
Maddali, S; Calvo-Almazan, I; Almer, J; Kenesei, P; Park, J-S; Harder, R; Nashed, Y; Hruszkewycz, S O
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this data set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. We use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.
7 CFR 15a.56 - Fringe benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 1 2011-01-01 2011-01-01 false Fringe benefits. 15a.56 Section 15a.56 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.56 Fringe benefits. (a) “Fringe benefits” defined. For purposes of this part...
7 CFR 15a.56 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 1 2014-01-01 2014-01-01 false Fringe benefits. 15a.56 Section 15a.56 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.56 Fringe benefits. (a) “Fringe benefits” defined. For purposes of this part...
14 CFR § 1253.525 - Fringe benefits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Fringe benefits. § 1253.525 Section Â... benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit, service, policy or plan, any...
7 CFR 15a.56 - Fringe benefits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 1 2013-01-01 2013-01-01 false Fringe benefits. 15a.56 Section 15a.56 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.56 Fringe benefits. (a) “Fringe benefits” defined. For purposes of this part...
7 CFR 15a.56 - Fringe benefits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 1 2012-01-01 2012-01-01 false Fringe benefits. 15a.56 Section 15a.56 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.56 Fringe benefits. (a) “Fringe benefits” defined. For purposes of this part...
44 CFR 208.40 - Reimbursement of fringe benefit costs during Activation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... reimbursement sought from DHS. (c) DHS will not reimburse the Sponsoring Agency for fringe benefit costs for... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Reimbursement of fringe... RESCUE RESPONSE SYSTEM Response Cooperative Agreements § 208.40 Reimbursement of fringe benefit costs...
Multiple rotation assessment through isothetic fringes in speckle photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angel, Luciano; Tebaldi, Myrian; Bolognini, Nestor
2007-05-10
The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four-exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of six isothetics in order to measure either six different angles or three nonparallel components for two local general in-plane displacements.
NASA Astrophysics Data System (ADS)
Xu, Luopeng; Dan, Youquan; Wang, Qingyuan
2015-10-01
The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.
Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.
2011-01-01
Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.
Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe
NASA Astrophysics Data System (ADS)
Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao
2017-10-01
Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.
Observations of infragravity motions for reef fringed islands and atolls
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2012-12-01
The frequency of flooding events that affect low lying islands and atolls in the Pacific is expected to increase under current sea level rise projections. Infragravity (IG) motions, with periods ranging from approximately 25 to 400 seconds, are an important component of wave driven flooding events for reef fringed islands and atolls. The IG variability during wave events is analyzed and interpreted dynamically from pressure and current observations at four cross-reef transects in the North Pacific Ocean that include sites in the Republic of the Marshall Islands and Guam. The IG motions are shown to depend upon the spectral properties of the incident wave forcing and reef flat characteristics that include reef flat length (ranging from 100m to 450m at the four sites) and total water level due to setup and tides. A small inundation event at one of the sites is shown to occur due to large shoreline infragravity energy.
32 GHz Celestial Reference Frame Survey for Dec < -45 deg.
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina
2014-04-01
(We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. During the last scheduled LBA session for this project we discovered ATCA/Mopra had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.
Sub-atomic dimensional metrology: developments in the control of x-ray interferometers
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Kuetgens, Ulrich
2012-07-01
Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.
20 CFR 641.565 - What policies govern the provision of wages and fringe benefits to participants?
Code of Federal Regulations, 2010 CFR
2010-04-01
... covered employment. (2) Allowable fringe benefit costs. Grantees may provide the following fringe benefits... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What policies govern the provision of wages and fringe benefits to participants? 641.565 Section 641.565 Employees' Benefits EMPLOYMENT AND...
15 CFR 8a.525 - Fringe benefits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Fringe benefits. 8a.525 Section 8a.525 Commerce and Foreign Trade Office of the Secretary of Commerce NONDISCRIMINATION ON THE BASIS OF SEX IN... in Employment in Education Programs or Activities Prohibited § 8a.525 Fringe benefits. (a) “Fringe...
26 CFR 1.132-9 - Qualified transportation fringes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Qualified transportation fringes. 1.132-9... Qualified transportation fringes. (a) Table of contents. This section contains a list of the questions and answers in § 1.132-9. (1) General rules. Q-1. What is a qualified transportation fringe? Q-2. What is...
26 CFR 1.132-9 - Qualified transportation fringes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Qualified transportation fringes. 1.132-9... Qualified transportation fringes. (a) Table of contents. This section contains a list of the questions and answers in § 1.132-9. (1) General rules. Q-1. What is a qualified transportation fringe? Q-2. What is...
26 CFR 1.132-9 - Qualified transportation fringes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Qualified transportation fringes. 1.132-9... Qualified transportation fringes. (a) Table of contents. This section contains a list of the questions and answers in § 1.132-9. (1) General rules. Q-1. What is a qualified transportation fringe? Q-2. What is...
Tang, Jie; Suga, Nobuo
2009-01-01
In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF) and ventral fringe (VF) areas consist of “combination-sensitive” neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes “centrifugal” BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes “centripetal” BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feed forward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target-distance, whereas the centripetal BD shifts expand the representation of the selected specific target-distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feed forward and feedback projections promote finer analysis of a target at shorter distances. PMID:19494145
NASA Technical Reports Server (NTRS)
Decker, A. J.; Stricker, J.
1985-01-01
Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.
NASA Astrophysics Data System (ADS)
Daemi, Mohammad Hossein; Rasouli, Saifollah
2018-07-01
In this work, a three-point spatial phase shifting (SPS) method is implemented for chasing of the moving interference fringes in the homodyne laser Doppler vibrometry (HoLDV). By the use of SPS method, we remove disability of the HoLDV in the discrimination of the motion direction for long-range displacements. From the phase increments histogram, phase unwrapping tolerance value is selected, and adequacy of the data acquisition rate and required bandwidth limit are determined. Also in this paper, a detailed investigation on the effect of detectors positioning errors and influence of the Gaussian profile of the interfering beams on the measurements are presented. Performance of the method is verified by measuring a given harmonic vibration produced by a loudspeaker. Also, by the proposed method, vibration of mounting system of a disk laser gain medium is characterized.
Crude Oil Remote Sensing, Characterization and Cleaning with CW and Pulsed Lasers
NASA Technical Reports Server (NTRS)
Kukhtareva, Tatiana; Chirita, Arc; Gallegos, Sonia C.
2014-01-01
For detection, identification and characterization of crude oil we combine several optical methods of remote sensing of crude oil films and emulsions (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), and laser induced fluorescence). These methods allow the three-dimensional characterization of oil spills, important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. It is shown, that in addition to detection/identification laser illumination in the green-blue region can also degrade oil slicks. Different types of surfaces contaminated by oil spills are tested: oil on the water, oil on the flat solid surfaces and oil on the curved surfaces of pipes. For the detection and monitoring of the laser-induced oil degradation in pipes, coherent fiber bundles were used. Both continuous-wave (CW) and pulsed lasers are tested using pump-probe schemes. This finding suggests that properly structured laser clean-up can be an alternative environmentally-friendly method of decontamination, as compared to the currently used chemical methods that are dangerous to environment.
M-X Environmental Technical Report. Economic Model.
1980-12-22
TABLE PAGE C-4. Estimated off base school facility costs. 147 C-5. Estimated development costs to other public facilities. 148 C-6. Estimated utility... development costs. 149 C-7. Estimated non-residential building development . 151 E-1. Adjustments to baseline population projections to account for...the fringes of the rural deployment areas themselves. These metropolitan areas potentially would experience significant indirect employment growth as a
Automated measurement of human body shape and curvature using computer vision
NASA Astrophysics Data System (ADS)
Pearson, Jeremy D.; Hobson, Clifford A.; Dangerfield, Peter H.
1993-06-01
A system to measure the surface shape of the human body has been constructed. The system uses a fringe pattern generated by projection of multi-stripe structured light. The optical methodology used is fully described and the algorithms used to process acquired digital images are outlined. The system has been applied to the measurement of the shape of the human back in scoliosis.
Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern
NASA Astrophysics Data System (ADS)
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike
2018-03-01
Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.
24 CFR 3280.504 - Condensation control and installation of vapor retarders.
Code of Federal Regulations, 2011 CFR
2011-04-01
... these cavities; or (4) Homes manufactured to be sited in “humid climates” or “fringe climates” as shown on the Humid and Fringe Climate Map in this paragraph are permitted to have a vapor retarder... the humid and fringe climate areas shown on the Humid and Fringe Climate Map in paragraph (b)(4) of...
24 CFR 3280.504 - Condensation control and installation of vapor retarders.
Code of Federal Regulations, 2013 CFR
2013-04-01
... these cavities; or (4) Homes manufactured to be sited in “humid climates” or “fringe climates” as shown on the Humid and Fringe Climate Map in this paragraph are permitted to have a vapor retarder... the humid and fringe climate areas shown on the Humid and Fringe Climate Map in paragraph (b)(4) of...
24 CFR 3280.504 - Condensation control and installation of vapor retarders.
Code of Federal Regulations, 2014 CFR
2014-04-01
... be sited in “humid climates” or “fringe climates” as shown on the Humid and Fringe Climate Map in... specified), listed by state are deemed to be within the humid and fringe climate areas shown on the Humid and Fringe Climate Map in paragraph (b)(4) of this section, and the vapor retarder or construction...
24 CFR 3280.504 - Condensation control and installation of vapor retarders.
Code of Federal Regulations, 2012 CFR
2012-04-01
... these cavities; or (4) Homes manufactured to be sited in “humid climates” or “fringe climates” as shown on the Humid and Fringe Climate Map in this paragraph are permitted to have a vapor retarder... the humid and fringe climate areas shown on the Humid and Fringe Climate Map in paragraph (b)(4) of...
ERIC Educational Resources Information Center
Narayanamurthy, C. S.
2009-01-01
Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…
24 CFR 3280.504 - Condensation control and installation of vapor retarders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... these cavities; or (4) Homes manufactured to be sited in “humid climates” or “fringe climates” as shown on the Humid and Fringe Climate Map in this paragraph are permitted to have a vapor retarder... the humid and fringe climate areas shown on the Humid and Fringe Climate Map in paragraph (b)(4) of...