Science.gov

Sample records for frizzled related protein

  1. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  2. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity

    PubMed Central

    Lagathu, Claire; Christodoulides, Constantinos; Tan, Chong Yew; Virtue, Sam; Laudes, Matthias; Campbell, Mark; Ishikawa, Ko; Ortega, Francisco; Tinahones, Francisco J.; Fernández-Real, Jose-Manuel; Orešič, Matej; Sethi, Jaswinder K.; Vidal-Puig, Antonio

    2014-01-01

    Aim The Wnt/β-catenin signalling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. Here we investigate the role of the Wnt antagonist, secreted Frizzled related protein 1 (SFRP1) in promoting adipogenesis in vitro and adipose tissue expansion in vivo. Methods We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. Results Secreted Frizzled related protein 1 (SFRP1) is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signalling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high fat diet-fed mice we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. Conclusions Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signalling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals. PMID:20514047

  3. Secreted frizzled related proteins inhibit fibrosis in vitro but appear redundant in vivo

    PubMed Central

    2014-01-01

    Background The pathogenesis of pulmonary fibrosis remains poorly understood. The Wnt signaling pathway regulates fibrogenesis in different organs. Here, we studied the role of two extracellular Wnt antagonists, secreted frizzled-related protein-1 (SFRP1) and frizzled-related protein (FRZB) on lung fibrosis in vitro and in vivo. For this purpose, we used an alveolar epithelial cell line and a lung fibroblast cell line, and the bleomycin-induced lung fibrosis model, respectively. Results During the course of bleomycin-induced lung fibrosis, Sfrp1 and Frzb expression are upregulated. Expression of Sfrp1 appears much higher than that of Frzb. In vitro, recombinant SFRP1, but not FRZB, counteracts the transforming growth factor β1 (TGFβ1)-induced upregulation of type I collagen expression both in pulmonary epithelial cells and fibroblasts. Both SFRP1 and FRZB inhibit the TGFβ1-induced increase of active β-catenin, but do not influence the TGFβ1-induced phosphorylation levels of SMAD3, positioning Wnt signaling activity downstream of the active TGFβ signal in lung fibroblasts, but not in alveolar epithelial cells. In vivo, Sfrp1 −/− and Frzb −/− mice showed identical responses to bleomycin in the lung compared to wild-type controls. Conclusions Although SFRP1 counteracts the effect of TGFβ1 in pulmonary cells in vitro; loss of neither SFRP1 nor FRZB alters fibrotic outcomes in the lungs in vivo. The lack of in vivo effect in the absence of specific SFRPs suggests functional redundancy within this family of Wnt antagonists. PMID:25317206

  4. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention.

    PubMed

    Mastri, Michalis; Shah, Zaeem; Hsieh, Karin; Wang, Xiaowen; Wooldridge, Bailey; Martin, Sean; Suzuki, Gen; Lee, Techung

    2014-03-15

    Progressive fibrosis is a pathological hallmark of many chronic diseases responsible for organ failure. Although there is currently no therapy on the market that specifically targets fibrosis, the dynamic fibrogenic process is known to be regulated by multiple soluble mediators that may be therapeutically intervened. The failing hamster heart exhibits marked fibrosis and increased expression of secreted Frizzled-related protein 2 (sFRP2) amenable to reversal by mesenchymal stem cell (MSC) therapy. Given the previous demonstration that sFRP2-null mice subjected to myocardial infarction exhibited reduced fibrosis and improved function, we tested whether antibody-based sFRP2 blockade might counteract the fibrogenic pathway and repair cardiac injury. Cardiomyopathic hamsters were injected intraperitoneally twice a week each with 20 μg of sFRP2 antibody. Echocardiography, histology, and biochemical analyses were performed after 1 mo. sFRP2 antibody increased left ventricular ejection fraction from 40 ± 1.2 to 49 ± 6.5%, whereas saline and IgG control exhibited a further decline to 37 ± 0.9 and 31 ± 3.2%, respectively. Functional improvement is associated with a ∼ 50% reduction in myocardial fibrosis, ∼ 65% decrease in apoptosis, and ∼ 75% increase in wall thickness. Consistent with attenuated fibrosis, both MSC therapy and sFRP2 antibody administration significantly increased the activity of myocardial matrix metalloproteinase-2. Gene expression analysis of the hamster heart and cultured fibroblasts identified Axin2 as a downstream target, the expression of which was activated by sFRP2 but inhibited by therapeutic intervention. sFRP2 blockade also increased myocardial levels of VEGF and hepatocyte growth factor (HGF) along with increased angiogenesis. These findings highlight the pathogenic effect of dysregulated sFRP2, which may be specifically targeted for antifibrotic therapy.

  5. Ultrasound Molecular Imaging of Secreted Frizzled Related Protein-2 Expression in Murine Angiosarcoma

    PubMed Central

    Streeter, Jason; Samples, Jennifer; Patterson, Cam; Mumper, Russell J.; Ketelsen, David; Dayton, Paul

    2014-01-01

    Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6±0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression. PMID:24489757

  6. Role of two single nucleotide polymorphisms in secreted frizzled related protein 1 and bladder cancer risk.

    PubMed

    Rogler, Anja; Hoja, Sabine; Socher, Eileen; Nolte, Elke; Wach, Sven; Wieland, Wolf; Hofstädter, Ferdinand; Goebell, Peter J; Wullich, Bernd; Hartmann, Arndt; Stoehr, Robert

    2013-01-01

    In this study, we determined the genotype distribution of two single nucleotide polymorphisms (SNPs) in secreted frizzled related protein 1 (SFRP1), rs3242 and rs921142, in a Caucasian bladder cancer case-control study. Allelic variants of the SNPs were determined using restriction fragment length polymorphism (RFLP) analysis and partly verified by sequencing analysis. Overall, DNA from 188 consecutive and 215 early-onset bladder cancer patients (≤45 years) as well as from 332 controls was investigated. Potential microRNA binding sites were determined for rs3242, and microRNA expression was analysed in cell lines and tumour specimens. We observed a remarkable distribution difference in rs3242 between bladder cancer patients and healthy controls (p=0.05). Additionally, we found a significant difference in genotype distribution (p=0.032), resulting from the difference of early-onset patients and the control group (p=0.007). The risk allele T showed increased frequency in the early-onset patient group (p=0.002). Genotype-dependent differences of microRNA binding capacity were predicted in SFRP1 mRNA for two microRNAs. Hsa-miR-3646 showed strong expression in cell lines and tumour tissue, whereas hsa-miR-603 exhibited weak expression. The rs921142 SNP showed no significant association with bladder cancer risk. This is the first study to describe an association of the SFRP1 SNP rs3242 and bladder cancer risk as well as the influence of rs3242 on genotype-dependent microRNA capacity on SFRP1 mRNA. The onset of bladder seems to be associated with the increased occurrence of the T-allele in rs3242. PMID:24133576

  7. Role of two single nucleotide polymorphisms in secreted frizzled related protein 1 and bladder cancer risk

    PubMed Central

    Rogler, Anja; Hoja, Sabine; Socher, Eileen; Nolte, Elke; Wach, Sven; Wieland, Wolf; Hofstädter, Ferdinand; Goebell, Peter J; Wullich, Bernd; Hartmann, Arndt; Stoehr, Robert

    2013-01-01

    In this study, we determined the genotype distribution of two single nucleotide polymorphisms (SNPs) in secreted frizzled related protein 1 (SFRP1), rs3242 and rs921142, in a Caucasian bladder cancer case-control study. Allelic variants of the SNPs were determined using restriction fragment length polymorphism (RFLP) analysis and partly verified by sequencing analysis. Overall, DNA from 188 consecutive and 215 early-onset bladder cancer patients (≤45 years) as well as from 332 controls was investigated. Potential microRNA binding sites were determined for rs3242, and microRNA expression was analysed in cell lines and tumour specimens. We observed a remarkable distribution difference in rs3242 between bladder cancer patients and healthy controls (p=0.05). Additionally, we found a significant difference in genotype distribution (p=0.032), resulting from the difference of early-onset patients and the control group (p=0.007). The risk allele T showed increased frequency in the early-onset patient group (p=0.002). Genotype-dependent differences of microRNA binding capacity were predicted in SFRP1 mRNA for two microRNAs. Hsa-miR-3646 showed strong expression in cell lines and tumour tissue, whereas hsa-miR-603 exhibited weak expression. The rs921142 SNP showed no significant association with bladder cancer risk. This is the first study to describe an association of the SFRP1 SNP rs3242 and bladder cancer risk as well as the influence of rs3242 on genotype-dependent microRNA capacity on SFRP1 mRNA. The onset of bladder seems to be associated with the increased occurrence of the T-allele in rs3242. PMID:24133576

  8. Expression patterns of Wnt signaling component, secreted frizzled-related protein 3 in astrocytoma and glioblastoma

    PubMed Central

    PEĆINA-ŠLAUS, NIVES; KAFKA, ANJA; VAROŠANEC, ANA MARIA; MARKOVIĆ, LEON; KRSNIK, ŽELJKA; NJIRIĆ, NIKO; MRAK, GORAN

    2016-01-01

    Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an

  9. Computer aided screening of secreted frizzled-related protein 4 (SFRP4): a potential control for diabetes mellitus.

    PubMed

    Bukhari, Shazia Anwer; Shamshari, Waseem Akhtar; Ur-Rahman, Mahmood; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2014-07-11

    Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril.

  10. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  11. Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury.

    PubMed

    Nakamura, Kazuto; Sano, Soichi; Fuster, José J; Kikuchi, Ryosuke; Shimizu, Ippei; Ohshima, Kousei; Katanasaka, Yasufumi; Ouchi, Noriyuki; Walsh, Kenneth

    2016-02-01

    Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.

  12. Secreted Frizzled Related Protein 2 is a procollagen C proteinase enhancer with a role in myocardial infarction-associated fibrosis

    PubMed Central

    Kobayashi, Koichi; Luo, Min; Zhang, Yue; Wilkes, David C.; Ge, Gaoxiang; Grieskamp, Thomas; Yamada, Chikaomi; Liu, Ting-Chun; Huang, Guorui; Basson, Craig T.; Kispert, Andreas; Greenspan, Daniel S.; Sato, Thomas N.

    2009-01-01

    Secreted frizzled related proteins (sFRPs) have emerged as key regulators of a wide range of developmental and disease processes, with virtually all known functions of mammalian sFRPs attributed to their ability to antagonize Wnt signaling. Recently however, the Xenopus and zebrafish sFRP, Sizzled, was shown to function as an antagonist of Chordin processing by Tolloid-like metalloproteinases, leading to the proposal that sFRPs may function as evolutionarily-conserved antagonists of the chordinase activities of this class of proteinases. Herein, in contrast to this proposal, we show that the mammalian sFRP, sFRP2, does not affect Chordin processing, but instead can serve as a direct enhancer of the procollagen C-proteinase activity of Tolloid-like metalloproteinases. We further show that the level of fibrosis, in which procollagen processing by Tolloid-like proteinases plays a rate-limiting role, is markedly reduced in sFRP2-null mice subjected to myocardial infarction. Importantly, this reduced level of fibrosis is accompanied by significantly improved cardiac function. This study thus uncovers a novel function for sFRP2 and a potential therapeutic application for sFRP2 antagonism in controlling fibrosis in the infarcted heart. PMID:19079247

  13. Epigenetic inactivation of the canonical Wnt antagonist secreted frizzled-related protein 1 in hepatocellular carcinoma cells.

    PubMed

    Wu, Y; Li, J; Sun, C Y; Zhou, Y; Zhao, Y F; Zhang, S J

    2012-01-01

    Secreted Frizzled-related protein 1 (sFRP1), as one of most important Wnt antagonists, is frequently silenced by promoter hypermethylation in many types of tumor, including hepatocellular carcinoma (HCC). In this study, we aimed to investigate whether restoration of sFRP1 affected HCC metastatic behavior. sFRP1 mRNA expression and promoter methylation in HCC tissues and cell lines were examined using RT-PCR and methylation-specific PCR (MS-PCR), respectively. sFRP1 protein expression was assessed by Western Blot. We generated stable HCC cell line restoration of sFRP1 in HepG2 cells, which naturally do not express detectable sFRP1 mRNA. The effects of exogenous sFRP1 on HepG2 cell invasion were investigated using trans-well assay. Also the effects of sFRP1 re-expression on the β-catenin/T-cell factor-dependent transcription activity was measured by luciferase assay.sFRP1 promoter methylation was frequently observed in HCC tissues (60%) and cell lines (75%). All samples with sFRP1 methylation showed down-regulation of sFRP1 expression in HCC cell lines. Demethylation treatment with 5-aza-20-deoxycytidine in HCC cells restored sFRP1 expression. Restoration of sFRP1 substantially impaired the invasive potentials of HepG2 cells. Moreover, exogenous sFRP1 caused significant decrease of β-catenin/T-cell factor-dependent transcription activity.These findings demonstrate that sFRP1 silencing due to promoter hypermethylation is a major event during tumorigenesis. sFRP1 is also a negative modulator of canonical Wnt signaling, which could contribute to metastasis in HCC progression, thus providing a possible therapeutic strategy against HCC. PMID:22296502

  14. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  15. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma

    PubMed Central

    WU, YOUTU; BAI, JIWEI; HONG, LINCHUAN; LIU, CHUNHUI; YU, SHENGYUAN; YU, GUOQIANG; ZHANG, YAZHUO

    2016-01-01

    The identification of a specific molecular marker for aggressiveness of nonfunctioning pituitary adenomas (NFPAs) is urgently required in order to guide the clinical diagnosis and treatment of NFPAs. In the present study, low expression of secreted frizzled-related protein 2 (sFRP2) in NFPAs was demonstrated by reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. The results confirmed an abnormal accumulation of free β-catenin in the nuclei of NFPAs, which is the core step for the activation of the Wnt canonical signaling pathway. Furthermore, cyclin D1 and c-Myc, the downstream proteins of the Wnt canonical signaling pathway, were overexpressed in aggressive NFPAs. These findings demonstrated the activation of the Wnt canonical signaling pathway in aggressive NFPAs. In addition, sFRP2 expression was observed to be inversely correlated to the aggressiveness of NFPAs. Therefore, sFRP2 may act as a tumor suppressor through modulation of the cellular cytosolic pool of β-catenin in NFPAs. Furthermore, the expression of sFRP2 may serve as a biomarker for NFPAs aggressiveness and prognosis. PMID:27347125

  16. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.

    PubMed

    Surendran, Kameswaran; Schiavi, Susan; Hruska, Keith A

    2005-08-01

    beta-Catenin functions as a transducer of Wnt signals to the nucleus, where it interacts with the T cell factor (TCF) family of DNA binding proteins to regulate gene expression. On the basis of the genes regulated by beta-catenin and TCF in various biologic settings, two predicted functions of beta-catenin/TCF-dependent transcription are to mediate the loss of epithelial polarity and to promote fibroblast activities, such as the increased synthesis of fibronectin during chronic renal disease. These predictions were tested by determination of the expression and function of an inhibitor of Wnt signaling, secreted frizzled-related protein 4 (sFRP4), during renal tubular epithelial injury initiated by unilateral ureteral obstruction (UUO). Despite increased sFRP4 gene expression in perivascular regions of injured kidneys, total sFRP4 protein levels decreased after injury. The decreased sFRP4 protein levels after UUO accompanied increased Wnt-dependent beta-catenin signaling in tubular epithelial and interstitial cells, along with increased expression of markers of fibrosis. Administration of recombinant sFRP4 protein caused a reduction in tubular epithelial beta-catenin signaling and suppressed the progression of renal fibrosis, as evidenced by a partial maintenance of E-cadherin mRNA expression and a reduction in the amount of fibronectin and alpha-smooth muscle actin proteins. Furthermore, recombinant sFRP4 reduced the number of myofibroblasts, a central mediator of fibrosis. It is concluded that beta-catenin signaling is activated in tubular epithelial and interstitial cells after renal injury, and recombinant sFRP4 can interfere with epithelial de-differentiation and with fibroblast differentiation and function during progression of renal fibrosis.

  17. DNA methylation analysis of secreted frizzled-related protein 2 gene for the early detection of colorectal cancer in fecal DNA

    PubMed Central

    Babaei, Hadi; Mohammadi, Mohsen; Salehi, Rasoul

    2016-01-01

    Background: The early detection of colorectal cancer (CRC) with high sensitivity screening is essential for the reduction of cancer-specific mortality. Abnormally methylated genes that are responsible for the pathogenesis of cancers can be used as biomarkers for the detection of CRC. The methylation status of the secreted frizzled-related protein 2 (SFRP2) gene was evaluated for their use as a marker in the noninvasive detection of CRC. Materials and Methods: Methylation-specific polymerase chain reaction was performed to analyze the promoter CpG methylation of SFRP2 in the fecal DNA of 25 patients with CRC and 25 individuals exhibiting normal colonoscopy results. Results: Promoter methylation levels of SFRP2 in CRC patients and in healthy controls were 60% and 8%, respectively. Methylation of the SFRP2 promoter in fecal DNA is associated with the presence of colorectal tumors. Conclusion: Hence, the detection of aberrantly methylated DNA in fecal samples may present a promising, noninvasive screening method for CRC. PMID:27630389

  18. Expression Patterns of the Wnt Pathway Inhibitors Dickkopf3 and Secreted Frizzled-Related Proteins 1 and 4 in Endometrial Endometrioid Adenocarcinoma

    PubMed Central

    Eskander, Ramez N.; Ali, Shamshad; Dellinger, Thanh; Lankes, Heather A.; Randall, Leslie M.; Ramirez, Nilsa C.; Monk, Bradley J.; Walker, Joan L.; Eisenhauer, Eric; Hoang, Bang H.

    2016-01-01

    Objective The aim of the study was to determine the differential expression patterns of the wingless-type (Wnt) pathway inhibitors Dkk3 (Dickkopf 3), SFRP1 (secreted frizzled-related protein 1), and SFRP4 in normal müllerian tissue and endometrial endometrioid adenocarcinoma specimens. Methods Messenger RNA (mRNA) and protein levels of the Wnt pathway inhibitors Dkk3, SFRP1, and SFRP4 were evaluated by real-time reverse transcription–polymerase chain reaction and Western blot analysis. A total of 87 human tissue specimens were obtained from 60 women who participated in Gynecologic Oncology Group protocol 210. Twenty-seven normal müllerian tissues, 32 early-stage, and 28 advanced-stage endometrial endometrioid cancer specimens were analyzed. Results Median age for this cohort was 60 years, with median body mass index of 32 kg/m2. There was a difference in Dkk3 protein expression between normal müllerian tissues and primary endometrial endometrioid adenocarcinoma samples (P = 0.05). There was down-regulation of Dkk3, SFRP1, and SFRP4 mRNA expression in patients with high-grade disease (P = 0.08, 0.06, and 0.05, respectfully). Furthermore, a decrease in SFRP1 and SFPR4 mRNA expression was noted in patients with a diagnosis of locoregional and distant disease recurrence. Lastly, a trend toward decreased progression-free survival in patients with low Dkk3, SFRP1, and SFRP4 mRNA expression levels was noted. Conclusions Wnt pathway inhibitor (Dkk3, sFRP1, and/or sFRP4) expression was down-regulated in patients with high-grade disease and was associated with locoregional and distant disease recurrence. Despite sample size (power) limitations, these results support previous preclinical studies and may suggest a therapeutic role for Wnt signaling in endometrial cancer. PMID:26397159

  19. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling

    PubMed Central

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-01-01

    AIM: To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). METHODS: CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. RESULTS: CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed s

  20. Therapeutic approach to target mesothelioma cancer cells using the Wnt antagonist, secreted frizzled-related protein 4: Metabolic state of cancer cells.

    PubMed

    Perumal, Vanathi; Pohl, Sebastian; Keane, Kevin N; Arfuso, Frank; Newsholme, Philip; Fox, Simon; Dharmarajan, Arun

    2016-02-15

    Malignant mesothelioma (MM) is an aggressive cancer, characterized by rapid progression, along with late metastasis and poor patient prognosis. It is resistant to many forms of standard anti-cancer treatment. In this study, we determined the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt pathway inhibitor, on cancer cell proliferation and metabolism using the JU77 mesothelioma cell line. Treatment with sFRP4 (250 pg/ml) resulted in a significant reduction of cell proliferation. The addition of the Wnt activator Wnt3a (250 pg/ml) or sFRP4 had no significant effect on ATP production and glucose utilisation in JU77 cells at both the 24 and 48 h time points examined. We also examined their effect on Akt and Glycogen synthase kinase-3 beta (GSK3β) phosphorylation, which are both important components of Wnt signalling and glucose metabolism. We found that protein phosphorylation of Akt and GSK3β varied over the 24h and 48 h time points, with constitutive phosphorylation of Akt at serine 473 (pAkt) decreasing to its most significant level when treated with Wnt3a+sFRP4 at the 24h time point. A significant reduction in the level of Cytochrome c oxidase was observed at the 48 h time point, when sFRP4 and Wnt3a were added in combination. We conclude that sFRP4 may function, in part, to reduce/alter cancer cell metabolism, which may lead to sensitisation of cancer cells to chemotherapeutics, or even cell death. PMID:26868304

  1. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

    PubMed

    Yan, Jun; Jia, Haibo; Ma, Zhaowu; Ye, Huashan; Zhou, Mi; Su, Li; Liu, Jianfeng; Guo, An-Yuan

    2014-01-01

    Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.

  2. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  3. Membrane frizzled-related protein gene–related ophthalmological syndrome: 30-month follow-up of a sporadic case and review of genotype-phenotype correlation in the literature

    PubMed Central

    Leaci, Rosachiara; Zenteno, Juan C.; Casubolo, Cristina; Delfini, Elisabetta; Macaluso, Claudio

    2012-01-01

    Purpose To report a new sporadic case of membrane frizzled-related protein gene (MFRP)-related syndrome with a 30-month follow-up, and to review the literature for genotype-phenotype correlation in MFRP mutations. Methods A complete ophthalmological evaluation was performed at presentation and 30 months later, including best-corrected visual acuity test, slit lamp examination, fundoscopy, kinetic perimetry, electroretinography, fundus imaging (color, red-free, and autofluorescence), and morphologic-biometric analysis of the eye structures with an optical biometer, anterior-segment optical coherence tomography, retinal optical coherence tomography, and a confocal scanning laser for optic nerve head study. Polymerase chain reaction amplification of DNA obtained from peripheral blood lymphocytes and nucleotide sequencing of the complete MFRP gene were performed. The literature on cases of posterior microphthalmos and retinitis pigmentosa associated with MFRP mutations was reviewed. Results A 33-year-old female patient presented with posterior microphthalmos, retinitis pigmentosa with patches of retinal pigmented epithelium atrophy and scarce pigment mobilization, foveoschisis, and optic nerve drusen. After 30 months, progression of rod-cone retinal degeneration was detected. One obligate carrier showed a normal eye phenotype. A homozygote mutation in the MFRP gene (c.492delC), predicting a truncated protein (P166fsX190), was identified with genetic analysis. To our knowledge, 17 cases of MFRP-related syndrome have been reported in the literature, including the patient described herein. The phenotype of the syndrome, expressivity, and age of onset varied among and within the affected families. However, all patients sharing homozygous mutation c.492delC (alternatively named c.498delC) showed a complete phenotype (including foveoschisis and optic nerve head drusen), and similar fundus characteristics. Conclusions A new sporadic case of MFRP-related syndrome is reported

  4. Change in gene expression profiles of secreted frizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling.

    PubMed

    Shin, Hyunsoo; Kim, Jie-Hyun; Lee, Yeo Song; Lee, Yong Chan

    2012-05-01

    Activation of Wnt signaling without mutation of β-catenin or APC occurs frequently in human gastric cancers. Secreted frizzled-related protein (SFRP), a negative modulator of the Wnt signaling pathway, are frequently inactivated in human gastric cancers. Inhibition of SFRP gene expression may account for the Wnt/β-catenin activation in human gastric cancer. However, the molecular mechanisms of silencing of SFRP genes are not fully understood. Sodium butyrate, a histone deacetylase (HDAC) inhibitor, is known to exhibit anti-cancer effects partly through the differentiation of various cancer cells. In the present study, we investigated: i) the relationship between the silencing of SFRP genes and Wnt signaling; ii) the mechanism of sodium butyrate mediated epigenetic regulation of SFRPs expression in human gastric cancer. We observed that nuclear β-catenin was significantly increased in gastric cancer tissues as compared to adjacent non-cancerous tissues. Nuclear β-catenin accumulation and SFRP promoter methylation in human gastric cancer cells were noted. Treatment with the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC) rapidly restored SFRPs expression. Sodium butyrate (NaB) induced demethylation and histone modification at the promoter region of SFRP1/2 restoring the SFRP expression in human gastric cancer cells. Analysis of general expression revealed that overexpression of SFRPs repressed Wnt target gene expression and induced changes in the proliferation and apoptosis related genes in human gastric cancer cells. These data suggest that aberrant epigenetic modification of SFRP genes is one of the major mechanisms by which Wnt signaling is activated in human gastric cancer cells and sodium butyrate may modulate the SFRP1/2 expression through histone modification and promoter demethylation causing anti-tumor effects.

  5. RING finger protein PLR-1 blocks Wnt signaling by altering trafficking of Wnt Receptors

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan E.

    Secreted Wnt proteins control a wide range of essential developmental processes, including axon guidance and establishment of anteroposterior neuronal polarity. We identified a transmembrane RING finger protein, PLR-1, that governs the response to Wnts by reducing the cell surface levels of Wnt receptors Frizzled, CAM-1 and LIN-18 in Caenorhabditis elegans. Frizzled, CAM-1 and LIN-18 are normally enriched at the plasma membrane where they are capable of detecting and responding to extracellular Wnts. However, when PLR-1 is expressed Frizzled, CAM-1 and LIN-18 are no longer detected at the cell surface and instead colocalize with PLR-1 in endosomes and Golgi. PLR-1 is related to a broad family of transmembrane proteins that contain a lumenal protease associated domain and a cytosolic RING finger. The RING finger is a hallmark of one type of E3 ubiquitin ligase and monoubiquitination is commonly used to regulate protein trafficking. Protease associated domains are largely thought to mediate interactions between proteins. To identify the domains responsible for PLR-1 regulation of Frizzled from the cell surface we utilized a series of fluorescently tagged fusion proteins and protein truncations containing various domains from PLR-1 and Frizzled. Our data suggests that PLR-1 and Frizzled interact and form a complex via their respective extracellular/lumenal domains, and that ubiqiuitination of Frizzled by PLR-1 targets the Frizzled/PLR-1 complex to the endosome.

  6. Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Arenas, Ernest; Rodriguez, Francisco Javier

    2012-01-01

    Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological

  7. Insights into Frizzled evolution and new perspectives.

    PubMed

    Schenkelaars, Quentin; Fierro-Constain, Laura; Renard, Emmanuelle; Hill, April L; Borchiellini, Carole

    2015-01-01

    The Frizzled proteins (FZDs) are a family of trans-membrane receptors that play pivotal roles in Wnt pathways and thus in animal development. Based on evaluation of the Amphimedon queenslandica genome, it has been proposed that two Fzd genes may have been present before the split between demosponges and other animals. The major purpose of this study is to go deeper into the evolution of this family of proteins by evaluating an extended set of available data from bilaterians, cnidarians, and different basally branching animal lineages (Ctenophora, Placozoa, Porifera). The present study provides evidence that the last common ancestor of metazoans did possess two Fzd genes, and that the last common ancestor of cnidarians and bilaterians may have possessed four Fzd. Furthermore, amino acid analyses revealed an accurate diagnostic motif for these four FZD subfamilies facilitating the assignation of Frizzled paralogs to each subfamily. By highlighting conserved amino acids for each FZD subfamily, our study could also provide a framework for further research on the precise mechanisms that have driven FZD neo-functionalization. PMID:25801223

  8. Signaling of human frizzled receptors to the mating pathway in yeast.

    PubMed

    Dirnberger, Dietmar; Seuwen, Klaus

    2007-09-26

    Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  9. The Anti-Helminthic Niclosamide Inhibits Wnt/Frizzled1 Signaling†

    PubMed Central

    Chen, Minyong; Wang, Jiangbo; Lu, Jiuyi; Bond, Michael C.; Ren, Xiu-Rong; Lyerly, H. Kim; Barak, Larry S.; Chen, Wei

    2009-01-01

    Wnt proteins bind to seven-transmembrane Frizzled receptors to mediate the important developmental, morphogenetic, and tissue-regenerative effects of Wnt signaling. Dysregulated Wnt signaling is associated with many cancers. Currently there exist no drug candidates, or even tool compounds that modulate Wnt-mediated receptor trafficking, and subsequent Wnt signaling. We examined libraries of FDA-approved drugs for their utility as Frizzled internalization modulators, employing a primary imaged-based GFP-fluorescence assay that uses Frizzled1 endocytosis as the readout. We now report that the anti-helminthic niclosamide, a drug used for the treatment of tapeworm, promotes Frizzled1 endocytosis, down regulates Dishevelled-2 protein, and inhibits Wnt3A-stimulated β-catenin stabilization and LEF/TCF reporter activity. Additionally, following niclosamide mediated internalization, the Frizzled1 receptor co-localizes in vesicles containing Transferrin and agonist-activated β2-adrenergic receptor. Therefore, niclosamide may serve as a negative modulator of Wnt/Frizzled1 signaling by depleting up-stream signaling molecules (i.e. Frizzled and Dishevelled), and moreover may provide a valuable means to study the physiological consequences of Wnt signaling. PMID:19772353

  10. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling

    NASA Astrophysics Data System (ADS)

    Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale

    2016-07-01

    PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.

  11. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics.

    PubMed

    Schulte, Gunnar

    2015-09-15

    The lipoglycoproteins of the mammalian WNT family induce β-catenin-dependent signaling through interaction with members of the Class Frizzled receptors and LDL receptor-related protein 5/6 (LRP5/6) albeit with unknown selectivity. The 10 mammalian Frizzleds (FZDs) are seven transmembrane (7TM) spanning receptors and have recently been classified as G protein-coupled receptors (GPCRs). This review summarizes the current knowledge about WNT/FZD selectivity and functional selectivity, the role of co-receptors for signal specification, the formation of receptor complexes as well as the kinetics and mechanisms of signal initiation with focus on WNT/β-catenin signaling. In order to exploit the true therapeutic potential of WNT/FZD signaling to treat human disease, it is clear that substantial progress in the understanding of receptor complex formation and signal specification has to precede a mechanism-based drug design targeting WNT receptors. PMID:26003275

  12. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds.

    PubMed

    Madan, Babita; Walker, Matthew P; Young, Robert; Quick, Laura; Orgel, Kelly A; Ryan, Meagan; Gupta, Priti; Henrich, Ian C; Ferrer, Marc; Marine, Shane; Roberts, Brian S; Arthur, William T; Berndt, Jason D; Oliveira, Andre M; Moon, Randall T; Virshup, David M; Chou, Margaret M; Major, Michael B

    2016-05-24

    The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit. PMID:27162353

  13. International Union of Basic and Clinical Pharmacology Review: WNT/Frizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3

    PubMed Central

    Dijksterhuis, J P; Petersen, J; Schulte, G

    2014-01-01

    The wingless/int1 (WNT)/Frizzled (FZD) signalling pathway controls numerous cellular processes such as proliferation, differentiation, cell-fate decisions, migration and plays a crucial role during embryonic development. Nineteen mammalian WNTs can bind to 10 FZDs thereby activating different downstream pathways such as WNT/β-catenin, WNT/planar cell polarity and WNT/Ca2+. However, the mechanisms of signalling specification and the involvement of heterotrimeric G proteins are still unclear. Disturbances in the pathways can lead to various diseases ranging from cancer, inflammatory diseases to metabolic and neurological disorders. Due to the presence of seven-transmembrane segments, evidence for coupling between FZDs and G proteins and substantial structural differences in class A, B or C GPCRs, FZDs were grouped separately in the IUPHAR GPCR database as the class FZD within the superfamily of GPCRs. Recently, important progress has been made pointing to a direct activation of G proteins after WNT stimulation. WNT/FZD and G protein coupling remain to be fully explored, although the basic observation supporting the nature of FZDs as GPCRs is compelling. Because the involvement of different (i) WNTs; (ii) FZDs; and (iii) intracellular binding partners could selectively affect signalling specification, in this review we present the current understanding of receptor/ligand selectivity of FZDs and WNTs. We pinpoint what is known about signalling specification and the physiological relevance of these interactions with special emphasis on FZD–G protein interactions. LINKED ARTICLESThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24032637

  14. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.

  15. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  16. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    SciTech Connect

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  17. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK.

    PubMed

    Stiegler, Amy L; Burden, Steven J; Hubbard, Stevan R

    2009-10-16

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  18. Crystal Structure of the Frizzled-like Cysteine-rich Domain of the Receptor Tyrosine Kinase MuSK

    PubMed Central

    Stiegler, Amy L.; Burden, Steven J.; Hubbard, Stevan R.

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4, the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 Å resolution. The structure reveals a five disulfide-bridged domain similar to CRDs of Frizzled proteins, but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  19. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan

    PubMed Central

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Zebisch, Matthias; Harlos, Karl; Elegheert, Jonathan; Jones, E Yvonne

    2015-01-01

    Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling. DOI: http://dx.doi.org/10.7554/eLife.06554.001 PMID:26158506

  20. Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis.

    PubMed

    Deardorff, M A; Tan, C; Conrad, L J; Klein, P S

    1998-07-01

    Wnts are secreted signaling molecules implicated in a large number of developmental processes. Frizzled proteins have been identified as likely receptors for Wnt ligands in vertebrates and invertebrates, but a functional role for vertebrate frizzleds has not yet been defined. To assess the endogenous role of frizzled proteins during vertebrate development, we have identified and characterized a Xenopus frizzled gene (xfz8). It is highly expressed in the deep cells of the Spemann organizer prior to dorsal lip formation and in the early involuting marginal zone. Ectopic expression of xfz8 in ventral cells leads to complete secondary axis formation and can synergize with Xwnt-8 while an inhibitory form of xfz8 (Nxfz8) blocks axis duplication by Xwnt-8, consistent with a role for xfz8 in Wnt signal transduction. Expression of Nxfz8 in dorsal cells has profound effects on morphogenesis during gastrulation and neurulation that result in dramatic shortening of the anterior-posterior axis. Our results suggest a role for xfz8 in morphogenesis during the gastrula stage of embryogenesis.

  1. Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera.

    PubMed

    Kawai, Narudo; Kuraishi, Ritsu; Kaneko, Hiroyuki

    2016-05-01

    By the initial phase of gastrulation, Wnt pathway regulation mediates endomesoderm specification and establishes the animal-vegetal axis, thereby leading to proper gastrulation in starfish. To provide insight into the ancestral mechanism regulating deuterostome gastrulation, we identified the gene expression patterns of Wnt, Frizzled (Fz), and secreted frizzled-related protein (sFRP) family genes, which play a role in the initial stage of the Wnt pathway, in starfish Patiria (Asterina) pectinifera embryos using whole mount in situ hybridization. We identified ten Wnt, four Fz, and two sFRP paralogues. From the hatching blastula to the late gastrula stage, the majority of the Wnt genes and both Fz5/8 and sFRP1/5 were expressed in the posterior and anterior half of the embryo, respectively. Wnt8, Fz1, and Fz4 showed restricted expression in the lateral ectoderm. On the other hand, several genes were expressed de novo in the restricted domain of the archenteron at the late gastrula stage. These results suggest that the canonical and/or non-canonical Wnt pathway might implicate endomesoderm specification, anterior-posterior axis establishment, anterior-posterior patterning, and archenteron morphogenesis in the developmental context of starfish embryos. From comparison with the expression patterns observed in Patria miniata, we consider that the Wnt pathway is conserved among starfishes.

  2. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation

    PubMed Central

    Pau, Milly S.; Gao, Shujuan; Malbon, Craig C.; Wang, Hsien-yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  3. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation.

    PubMed

    Bertalovitz, Alexander C; Pau, Milly S; Gao, Shujuan; Malbon, Craig C; Wang, Hsien-Yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  4. 76 FR 63316 - Prospective Grant of Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... practice the inventions embodied in the patents and patent applications belonging to the patent families... 4248600 to Achelois BioSciences, Inc., a Delaware corporation having a place of business in Lexington, Massachusetts. The patent rights in these inventions have been assigned to the United States of America....

  5. Molecular Structure of Frizzled, a Drosophila Tissue Polarity Gene

    PubMed Central

    Adler, P. N.; Vinson, C.; Park, W. J.; Conover, S.; Klein, L.

    1990-01-01

    The function of the frizzled (fz) locus is required to coordinate the cytoskeletons of pupal epidermal cells so that a parallel array of cuticular hairs and bristles is produced. We report here the molecular cloning and characterization of the fz locus. The locus is very large. Mutations that inactivate the gene are spread over 100 kb of genomic DNA. The major mRNA product of the gene is a 4-kb RNA that is encoded by 5 exons spread over more than 90 kb of genomic DNA. Conceptual translation of this mRNA indicates that it encodes an integral membrane protein that is likely to contain both extracellular and cytoplasmic domains. PMID:2174014

  6. Frizzled-7 promoter is highly active in tumors and promoter-driven Shiga-like toxin I inhibits hepatocellular carcinoma growth

    PubMed Central

    Xia, Yanyan; Qu, Lili; Li, Qiwen; Pang, Lu; Si, Jin; Li, Zhiyang

    2015-01-01

    Frizzled-7 protein plays a significant role in the formation of several malignant tumors. Up regulation of the Frizzled-7 in cancer cell lines is associated with nuclear accumulation of wild-type β-catenin from the Wnt/β-catenin pathway which is frequently activated in tumors. To analyze activity of the Frizzled-7 promoter in tumor cells, we constructed two recombinant plasmid vectors in which the Frizzled-7 promoter was used to drive the expression of green fluorescent protein (GFP) and Shiga-like toxin I (Stx1) (pFZD7-GFP/Stx1) genes. The Frizzled-7 protein was found to be expressed in the cancer cell lines but not in the normal cell lines. The GFP expression was restricted to the cancer cell lines and xenografts in the BALB/C mice but not to normal cell lines. Moreover, cell proliferation and tumor growth decreased significantly after transfection with the pFZD7-Stx1. Results from this study will help determine a highly effective strategy for gene therapy of tumors. PMID:26498690

  7. Frizzled7: A Promising Achilles’ Heel for Targeting the Wnt Receptor Complex to Treat Cancer

    PubMed Central

    Phesse, Toby; Flanagan, Dustin; Vincan, Elizabeth

    2016-01-01

    Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer. PMID:27196929

  8. Van Gogh and Frizzled act redundantly in the Drosophila sensory organ precursor cell to orient its asymmetric division.

    PubMed

    Gomes, José-Eduardo; Corado, Maria; Schweisguth, François

    2009-01-01

    Drosophila sensory organ precursor cells (SOPs) divide asymmetrically along the anterior-posterior (a-p) body axis to generate two different daughter cells. Planar Cell Polarity (PCP) regulates the a-p orientation of the SOP division. The localization of the PCP proteins Van Gogh (Vang) and Frizzled (Fz) define anterior and posterior apical membrane domains prior to SOP division. Here, we investigate the relative contributions of Vang, Fz and Dishevelled (Dsh), a membrane-associated protein acting downstream of Fz, in orienting SOP polarity. Genetic and live imaging analyses suggest that Dsh restricts the localization of a centrosome-attracting activity to the anterior cortex and that Vang is a target of Dsh in this process. Using a clone border assay, we provide evidence that the Vang and fz genes act redundantly in SOPs to orient its polarity axis in response to extrinsic local PCP cues. Additionally, we find that the activity of Vang is dispensable for the non-autonomous polarizing activity of fz. These observations indicate that both Vang and Fz act as cues for downstream effectors orienting the planar polarity axis of dividing SOPs.

  9. A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia

    PubMed Central

    Saal, Howard M.; Prows, Cynthia A.; Guerreiro, Iris; Donlin, Milene; Knudson, Luke; Sund, Kristen L.; Chang, Ching-Fang; Brugmann, Samantha A.; Stottmann, Rolf W.

    2015-01-01

    Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia. PMID:25759469

  10. Wnt signaling and heterotrimeric G-proteins: strange bedfellows or a classic romance?

    PubMed

    Malbon, C C; Wang, H; Moon, R T

    2001-09-28

    Wnts are secreted ligands with diverse roles in animal development. Wnts bind to cell surface membrane proteins termed Frizzleds. Molecular cloning of members of the Frizzled family revealed hydropathy plots with seven putative, transmembrane-spanning regions, conserved in Frizzleds characterized in mice, humans, flies, and worms. Understanding how Frizzled translates binding of their cognate Wnts into intracellular signals controlling aspects of development has been an elusive goal. Earlier observations gathered from a variety of model systems provided compelling, but indirect, support that the Frizzled receptors may be members of the superfamily of G-protein-coupled receptors that possess seven transmembrane-spanning domains. Search for a linkage between Frizzled and possible downstream heterotrimeric G-proteins has been advanced by the use of bacterial toxins, antisense DNA, and novel chimeric receptor constructs. New data establish that Frizzleds are indeed bona fide G-protein-coupled receptors. Frizzled-1 couples via G-proteins Go and Gq to the canonical beta-catenin-Lef-Tcf pathway. Frizzled-2 couples via Gq and Gt to downstream effectors including calcium mobilization. Frizzleds and G-proteins might once have been considered strange bedfellows, not likely partners in signaling. The new data, consistent with the properties known for virtually all members of the G-protein-coupled receptors, reveal a more classic romance of signaling elements controlling aspects of early development.

  11. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila.

    PubMed

    Kelly, Lindsay K; Wu, Jun; Yanfeng, Wang A; Mlodzik, Marek

    2016-07-12

    Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP). PCP depends upon Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl). We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment.

  12. Frizzled gene expression and development of tissue polarity in the Drosophila wing.

    PubMed

    Park, W J; Liu, J; Adler, P N

    1994-01-01

    Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fz gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fz expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. PMID:7923941

  13. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern

    PubMed Central

    González-Fernández, Carlos; Mancuso, Renzo; del Valle, Jaume; Navarro, Xavier; Rodríguez, Francisco Javier

    2016-01-01

    Background Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. Findings Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. Conclusions Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology. PMID:27192435

  14. Mammalian Sperm Fertility Related Proteins

    PubMed Central

    Ashrafzadeh, Ali; Karsani, Saiful Anuar; Nathan, Sheila

    2013-01-01

    Infertility is an important aspect of human and animal reproduction and still presents with much etiological ambiguity. As fifty percent of infertility is related to the male partner, molecular investigations on sperm and seminal plasma can lead to new knowledge on male infertility. Several comparisons between fertile and infertile human and other species sperm proteome have shown the existence of potential fertility markers. These proteins have been categorized into energy related, structural and other functional proteins which play a major role in sperm motility, capacitation and sperm-oocyte binding. The data from these studies show the impact of sperm proteome studies on identifying different valuable markers for fertility screening. In this article, we review recent development in unraveling sperm fertility related proteins. PMID:24151436

  15. Molecular analysis of EMS-induced frizzled mutations in Drosophila melanogaster.

    PubMed

    Jones, K H; Liu, J; Adler, P N

    1996-01-01

    The frizzled (fz) gene of Drosophila is essential for the development of normal tissue polarity in the adult cuticle of Drosophila. In fz mutants the parallel array of hairs and bristles that decorate the cuticle is disrupted. Previous studies have shown the fz encodes a membrane protein with seven putative transmembrane domains, and that it has a complex role in the development of tissue polarity, as there exist both cell-autonomous and cell nonautonomous alleles. We have now examined a larger number of alleles and found that 15 of 19 alleles display cell nonautonomy. We have examined these and other alleles by Western blot analysis and found that most fz mutations result in altered amounts of Fz protein, and many also result in a Fz protein that migrates aberrantly in SDS-PAGE. We have sequenced a subset of these alleles. Cell nonautonomous fz alleles were found to be associated with mutations that altered amino acids in all regions of the Fz protein. Notably, the four cell-autonomous mutations were all in a proline residue located in the presumptive first cytoplasmic loop of the protein. We have also cloned and sequenced the fz gene from D. virilis. Conceptual translation of the D. virilis open reading frame indicates that the Fz protein is unusually well conserved. Indeed, in the putative cytoplasmic domains the Fz proteins of the two species are identical.

  16. The frizzled/stan Pathway and Planar Cell Polarity in the Drosophila Wing

    PubMed Central

    Adler, Paul N.

    2013-01-01

    Drosophila has been the key model system for studies on Planar Cell Polarity (PCP). The rich morphology of the insect exoskeleton contains many structures that display PCP. Among these are the trichomes (cuticular hairs) that cover much of the exoskeleton, sensory bristles and ommatidia. Many genes have been identified that must function for the development of normal PCP. Among these are the genes that comprise the frizzled/starry night (fz/stan) and dachsous/fat pathways. The mechanisms that underlie the function of the fz/stan pathway are best understood. All of the protein products of these genes accumulate asymmetrically in wing cells and there is good evidence that this involves local intercellular signaling between protein complexes on the distal edge of one cell and the juxtaposed proximal edge of its neighbor. It is thought that a feedback system, directed transport and stabilizing protein-protein interactions mediate the formation of distal and proximal protein complexes. These complexes appear to recruit downstream proteins that function to spatially restrict the activation of the cytoskeleton in wing cells. This leads to the formation of the array of distally pointing hairs found on wings. PMID:23140623

  17. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13.

    PubMed

    Arthofer, Elisa; Hot, Belma; Petersen, Julian; Strakova, Katerina; Jäger, Stefan; Grundmann, Manuel; Kostenis, Evi; Gutkind, J Silvio; Schulte, Gunnar

    2016-10-01

    Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.

  18. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13.

    PubMed

    Arthofer, Elisa; Hot, Belma; Petersen, Julian; Strakova, Katerina; Jäger, Stefan; Grundmann, Manuel; Kostenis, Evi; Gutkind, J Silvio; Schulte, Gunnar

    2016-10-01

    Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development. PMID:27458145

  19. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  20. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13

    PubMed Central

    Arthofer, Elisa; Hot, Belma; Petersen, Julian; Strakova, Katerina; Jäger, Stefan; Grundmann, Manuel; Kostenis, Evi; Gutkind, J. Silvio

    2016-01-01

    Frizzleds (FZDs) are unconventional G protein–coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD–G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles—in a DVL-independent manner—with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq. The FZD4–G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein–transfected cells depend on Gα12/13. Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development. PMID:27458145

  1. The Drosophila selectin furrowed mediates intercellular planar cell polarity interactions via frizzled stabilization.

    PubMed

    Chin, Mei-Ling; Mlodzik, Marek

    2013-09-16

    Establishment of planar cell polarity (PCP) in a tissue requires coordination of directional signals from cell to cell. It is thought that this is mediated by the core PCP factors, which include cell-adhesion molecules. Here, we demonstrate that furrowed, the Drosophila selectin, is required for PCP generation. Disruption of PCP in furrowed-deficient flies results from a primary defect in Fz levels and cell adhesion. Furrowed localizes at or near apical junctions, largely colocalizing with Frizzled and Flamingo (Fmi). It physically interacts with and stabilizes Frizzled, and it mediates intercellular Frizzled-Van Gogh (Vang)/Strabismus interactions, similarly to Fmi. Furrowed does so through a homophilic cell-adhesion role that is distinct from its known carbohydrate-binding function described during vertebrate blood-cell/endothelial cell interactions. Importantly, the carbohydrate function is dispensable for PCP establishment. In vivo studies suggest that Furrowed functions partially redundantly with Fmi, mediating intercellular Frizzled-Vang interactions between neighboring cells.

  2. Frizzled-9 impairs acetylcholine receptor clustering in skeletal muscle cells

    PubMed Central

    Avilés, Evelyn C.; Pinto, Cristina; Hanna, Patricia; Ojeda, Jorge; Pérez, Viviana; De Ferrari, Giancarlo V.; Zamorano, Pedro; Albistur, Miguel; Sandoval, Daniel; Henríquez, Juan P.

    2014-01-01

    Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain- and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ. PMID:24860427

  3. The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled

    PubMed Central

    Pradhan-Sundd, Tirthadipa; Verheyen, Esther M.

    2015-01-01

    Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells. PMID:26224310

  4. Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.

    PubMed

    Hofmeister, Wolfgang; Devine, Christine A; Rothnagel, Joseph A; Key, Brian

    2012-07-01

    The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain.

  5. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/β-catenin signaling

    PubMed Central

    Leung, Carmen Oi-Ning; Mak, Wing-Nga; Kai, Alan Ka-Lun; Chan, Kwan-Shuen; Lee, Terence Kin-Wah; Ng, Irene Oi-Lin; Lo, Regina Cheuk-Lam

    2016-01-01

    Sox9, an SRY-related HMG box transcription factor, is a progenitor/precursor cell marker of the liver expressed during embryogenesis and following liver injury. In this study, we investigated the role of Sox9 and its molecular mechanism with reference to stemness properties in hepatocellular carcinoma (HCC). Here, we observed upregulation of Sox9 in human HCC tissues compared with the non-tumorous liver counterparts (p < 0.001). Upregulation of Sox9 transcript level was associated with poorer tumor cell differentiation (p = 0.003), venous invasion (p = 0.026), advanced tumor stage (p = 0.044) and shorter overall survival (p = 0.042). Transcript levels of Sox9 and CD24 were positively correlated. Silencing of Sox9 in HCC cells inhibited in vitro cell proliferation and tumorsphere formation, sensitized HCC cells to chemotherapeutic agents, and suppressed in vivo tumorigenicity. In addition, knockdown of Sox9 suppressed HCC cell migration, invasion, and in vivo lung metastasis. Further studies showed that Sox9 endowed stemness features through activation of Wnt/β-catenin signaling, which was confirmed by the partial rescue effect on tumorigenicity and self-renewal upon transfection of active β-catenin in Sox9 knockdown cells. By ChIP and luciferase promoter assays, Frizzled-7 was identified to be the direct transcriptional target of Sox9. In conclusion, Sox9 confers stemness properties of HCC through Frizzled-7 mediated Wnt/β-catenin pathway. PMID:27105493

  6. Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity.

    PubMed

    Struhl, Gary; Casal, José; Lawrence, Peter A

    2012-10-01

    Many epithelia have a common planar cell polarity (PCP), as exemplified by the consistent orientation of hairs on mammalian skin and insect cuticle. One conserved system of PCP depends on Starry night (Stan, also called Flamingo), an atypical cadherin that forms homodimeric bridges between adjacent cells. Stan acts together with other transmembrane proteins, most notably Frizzled (Fz) and Van Gogh (Vang, also called Strabismus). Here, using an in vivo assay for function, we show that the quintessential core of the Stan system is an asymmetric intercellular bridge between Stan in one cell and Stan acting together with Fz in its neighbour: such bridges are necessary and sufficient to polarise hairs in both cells, even in the absence of Vang. By contrast, Vang cannot polarise cells in the absence of Fz; instead, it appears to help Stan in each cell form effective bridges with Stan plus Fz in its neighbours. Finally, we show that cells containing Stan but lacking both Fz and Vang can be polarised to make hairs that point away from abutting cells that express Fz. We deduce that each cell has a mechanism to estimate and compare the numbers of asymmetric bridges, made between Stan and Stan plus Fz, that link it with its neighbouring cells. We propose that cells normally use this mechanism to read the local slope of tissue-wide gradients of Fz activity, so that all cells come to point in the same direction.

  7. Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons

    PubMed Central

    Hua, Zhong L; Smallwood, Philip M; Nathans, Jeremy

    2013-01-01

    Disruption of the Frizzled3 (Fz3) gene leads to defects in axonal growth in the VIIth and XIIth cranial motor nerves, the phrenic nerve, and the dorsal motor nerve in fore- and hindlimbs. In Fz3−/− limbs, dorsal axons stall at a precise location in the nerve plexus, and, in contrast to the phenotypes of several other axon path-finding mutants, Fz3−/− dorsal axons do not reroute to other trajectories. Affected motor neurons undergo cell death 2 days prior to the normal wave of developmental cell death that coincides with innervation of muscle targets, providing in vivo evidence for the idea that developing neurons with long-range axons are programmed to die unless their axons arrive at intermediate targets on schedule. These experiments implicate planar cell polarity (PCP) signaling in motor axon growth and they highlight the question of how PCP proteins, which form cell–cell complexes in epithelia, function in the dynamic context of axonal growth. DOI: http://dx.doi.org/10.7554/eLife.01482.001 PMID:24347548

  8. Investigation of Frizzled-5 during embryonic neural development in mouse

    PubMed Central

    Burns, Carole J.; Zhang, Jianmin; Brown, Erinn C.; Van Bibber, Alyssa M.; Van Es, Johan; Clevers, Hans; Ishikawa, Tomo-o; Taketo, M. Mark; Vetter, Monica L.; Fuhrmann, Sabine

    2008-01-01

    Recent studies revealed that the Wnt receptor Frizzled-5 (Fzd5) is required for eye and retina development in zebrafish and Xenopus, however, its role during mammalian eye development is unknown. In the mouse embryo, Fzd5 is prominently expressed in the pituitary, distal optic vesicle and optic stalk, then later in the progenitor zone of the developing retina. To elucidate the role of Fzd5 during eye development, we analyzed embryos with a germline disruption of the Fzd5 gene at E10.25, just before embryos die due to defects in yolk sac angiogenesis. We observed severe defects in optic cup morphogenesis and lens development. However, in embryos with conditional inactivation of Fzd5 using Six3-Cre we observed no obvious early eye defects. Analysis of Axin2 mRNA expression and TCF/LEF-responsive reporter activation demonstrate that Fzd5 does not regulate the Wnt/β-catenin pathway in the eye. Thus, the function of Fzd5 during eye development appears to be species-dependent. PMID:18489003

  9. Parathyroid hormone-related protein blood test

    MedlinePlus

    ... test is done to find out whether a high blood calcium level is caused by an increase in PTH-related protein. ... may have detectable PTH-related protein values. Normal value ... to your doctor about the meaning of your specific test results.

  10. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  11. Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1

    PubMed Central

    Yu, Shibing; Yerges-Armstrong, Laura M.; Chu, Yanxia; Zmuda, Joseph M.; Zhang, Yingze

    2016-01-01

    The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD) receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteoblast mineralization. To test this hypothesis, we conducted FZD1 promoter assays in Saos2 cells with and without Sp1 overexpression. We found that Sp1 significantly up-regulates FZD1 promoter activity in Saos2 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assays identified a novel and functional Sp1 binding site at -44 to -40 from the translation start site in the FZD1 promoter. The Sp1-dependent activation of the FZD1 promoter was abolished by mithramycin A (MMA), an antibiotic affecting both Sp1 binding and Sp1 protein levels in Saos2 cells. Similarly, down-regulation of Sp1 in hFOB cells resulted in less FZD1 expression and lower alkaline phosphatase activity. Moreover, over-expression of Sp1 increased FZD1 expression and Saos2 cell mineralization while MMA decreased Sp1 and FZD1 expression and Saos2 cell mineralization. Knockdown of FZD1 prior to Sp1 overexpression partially abolished Sp1 stimulation of osteoblast differentiation markers. Taken together, our results suggest that Sp1 plays a role in human osteoblast differentiation and mineralization, which is at least partially mediated by Sp1-dependent transactivation of FZD1. PMID:27695039

  12. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma.

    PubMed

    Pećina-Šlaus, Nives; Kafka, Anja; Varošanec, Ana Maria; Marković, Leon; Krsnik, Željka; Njirić, Niko; Mrak, Goran

    2016-05-01

    Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the

  13. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma.

    PubMed

    Pećina-Šlaus, Nives; Kafka, Anja; Varošanec, Ana Maria; Marković, Leon; Krsnik, Željka; Njirić, Niko; Mrak, Goran

    2016-05-01

    Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the

  14. Isolation and characterization of Wnt pathway-related genes from Porifera.

    PubMed

    Adell, Teresa; Thakur, Archana N; Müller, Werner E G

    2007-09-01

    The Wnt signal acts by binding to Frizzled receptors, with the subsequent activation of two different signal transduction cascades, the canonical and the non-canonical Wnt pathways, involved in cell growth, differentiation, migration and fate. The canonical pathway functions through the translocation of beta-catenin to the nucleus and the activation of TCF/LEF transcription factors; it plays an important role in developmental patterning and cell fate decisions during embryogenesis. The non-canonical Wnt pathway is responsible for the planar cell polarity process in invertebrates, and for the convergent-extension movements during vertebrate gastrulation. The final effect of the non-canonical Wnt pathway is the rearrangement of the cell cytoskeleton, through the activation of the subfamily of Ras-like small GTPases. In a recent report we described for the first time the isolation of a Wnt-related gene, Sd-Frizzled, from the most basal animal phylum, the Porifera. In the present study we report the isolation and phylogenetic characterization of several Wnt pathway-related genes from the sponge Suberites domuncula: Sd-TCF/LEF, Sd-GSK3, a recently discovered molecule with a putative function as a Wnt regulator (Sd-LZIC), the small Rho GTPases Sd-RhoA, Sd-Cdc42, and their effector Sd-mrlc. Also the isolation of a secreted frizzled related protein sFRP from another sponge species (Lubomirskia baicalensis) is reported.

  15. Kinesin-related proteins in eukaryotic flagella.

    PubMed

    Fox, L A; Sawin, K E; Sale, W S

    1994-06-01

    To identify kinesin-related proteins that are important for ciliary and eukaryotic flagellar functions, we used affinity-purified, polyclonal antibodies to synthetic peptides corresponding to conserved sequences in the motor domain of kinesin (Sawin et al. (1992) J. Cell Sci. 101, 303-313). Using immunoblot analysis, two antibodies to distinct sequences (LNLVDLAGSE, 'LAGSE' and, HIPYRESKLT, 'HIPYR') reveal a family of proteins in flagella and axonemes isolated from Chlamydomonas. Similar analysis of axonemes from mutant Chlamydomonas strains or fractionated axonemes indicates that none of the immunoreactive proteins are associated with dynein arm or spoke structures. In contrast, one protein, approximately 110 kDa, is reduced in axonemes from mutant strains defective in the central pair apparatus. Immunoreactive proteins with masses of 96 and 97 kDa (the '97 kDa' proteins) are selectively solubilized from isolated axonemes in 10 mM ATP. The 97 kDa proteins co-sediment in sucrose gradients at about 9 S and bind to axonemes or purified microtubules in a nucleotide-dependent fashion characteristic of kinesin. These results reveal that flagella contain kinesin-related proteins, which may be involved in axonemal central pair function and flagellar motility, or directed transport involved in morphogenesis or mating responses in Chlamydomonas.

  16. The PTK7-Related Transmembrane Proteins Off-track and Off-track 2 Are Co-receptors for Drosophila Wnt2 Required for Male Fertility

    PubMed Central

    Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas

    2014-01-01

    Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract. PMID:25010066

  17. The effect of smoking on myeloid-related protein-8 and myeloid-related protein-14.

    PubMed

    Ertugrul, Abdullah Seckin; Sahin, Hacer

    2016-05-20

    The aim of this study was to determine the myeloid-related protein-8 and myeloid-related protein-14 levels in the gingival crevicular fluid of smoker patients with generalized aggressive periodontitis (SAgP), smoker patients with chronic periodontitis (SCP), smoker patients with gingivitis (SG-smoker control), non-smoker patients with generalized aggressive periodontitis (AgP), non-smoker patients with chronic periodontitis (CP), and non-smoker patients with gingivitis (G-non-smoker control). The periodontal statuses of the patients were determined by periodontal clinical measurements and radiographical evaluations. The levels of myeloid-related protein-8 and myeloid-related protein-14 in the gingival crevicular fluid were assessed using enzyme-linked immuno sorbent assay. The myeloid-related protein-8 and myeloid-related protein-14 levels in the gingival crevicular fluid of patients with generalized aggressive periodontitis (non-smoker and smoker) were found to be statistically higher than patients with chronic periodontitis (non-smoker and smoker) and patients with gingivitis (non-smoker and smoker). Myeloid-related protein-8 and myeloid-related protein-14 levels of non-smokers were significantly higher than smokers in all types of periodontitis and gingivitis. The decreased myeloid-related protein-8 and myeloid-related protein-14 level could have prevented the haemostasis of calcium which plays a significant role in the migration of neutrophiles. Smoking affects myeloid-related protein-8 and myeloid-related protein-14 levels and may inhibit the antimicrobial efficiency against microorganisms. Due to these reasons smoker generalized aggressive periodontitis patients need to be treated in detail and their maintenance durations should be shortened. PMID:27223132

  18. A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1

    SciTech Connect

    Zhao, Z.; Lee, C.C.; Baldini, A.

    1995-05-20

    The frizzled (fz) locus in Drosophila is required for the transmission of polarity signals across the plasma membrane in epidermal cells, as well as to their neighboring cells in the developing wing. The identification of a tissue polarity gene from the fz locus in Drosophila melanogaster has been reported. The fz gene encodes a protein (Fz) with seven putative transmembrane domains, which was suggested to function as a G-protein-coupled receptor. Here the authors report the identification of a human homologue for the fz gene (FZD2). The FZD2 gene was isolated from a human ovarian cDNA library and mapped to 17q21.1 by fluorescent in situ hybridization (FISH) with a corresponding cosmid. The full-length cDNA of human FZD2 encodes a protein (FZD-2) of 565 amino acids that shares 56% sequence identity with Drosophila Fz. The expression of the FZD2 gene seems to be developmentally regulated, with high levels of expression in fetal kidney and lung and in adult colon and ovary. The structure of FZD-2 suggests that it has a role in transmembrane signal transmission, although its precise physiological function and associated pathways are yet to be determined. 9 refs., 2 figs.

  19. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  20. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    SciTech Connect

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  1. Gastric cancer cell proliferation is suppressed by frizzled-2 short hairpin RNA.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2015-03-01

    In order to identify novel targets for the molecular therapy of gastric cancer (GC), we investigated the mRNA and protein expression of frizzled-2 (Fz2), a Wnt signaling pathway receptor. Reverse-transcriptase polymerase chain reaction (PCR) amplification was utilized to determine the expression patterns of Fz genes in normal stomach and in the GC cell lines MKN45 and MKN74. Immunostaining was performed on surgical specimens of GC using an antibody against Fz2. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay was performed on MKN45 cells and MKN74 cells transfected with Fz2 short-hairpin (sh) RNA. Cell motility was analyzed by scratch assay following Fz2 shRNA. Real-time quantitative PCR was performed to analyze the expression levels of cyclin D1 and matrix metallopeptidase 9 (MMP-9). Fz1, 3, 6 and 8 were expressed in normal stomach, and in MKN45 and MKN74 cells. Fz2 was expressed in normal stomach and in MKN45, but not in MKN74 cells. Well-differentiated GC tissue was weakly positive for Fz2 in cell membranes. Fz2 was positive in both the cell membrane and cytoplasm of GC tissues of moderately differentiated and poorly differentiated adenocarcinoma. Signet ring cells were positive for cytoplasmic Fz2. Proliferation of MKN45 and MKN74 cells was suppressed by Fz2 shRNA, and a scratch assay demonstrated that Fz2 shRNA suppressed also MKN45 and MKN74 cell motility. Furthermore, Fz2 shRNA application led to downregulated mRNA expression of both cyclin D1 and MMP-9. Fz2, 3, 6 and 8 were expressed in normal stomach, and in MKN45 and MKN74 GC cells. Fz2 shRNA suppressed cell proliferation and motility of MKN45 and MKN74 cells, and downregulated cyclin D1 and MMP-9 expression in these GC cell lines. PMID:25586465

  2. The Frizzled Extracellular Domain Is a Ligand for Van Gogh/Stbm during Nonautonomous Planar Cell Polarity Signaling

    PubMed Central

    Wu, Jun; Mlodzik, Marek

    2009-01-01

    SUMMARY The Frizzled (Fz) receptor is required cell autonomously in Wnt/β-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz− patches reorient toward the fz− cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field. PMID:18804440

  3. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling.

    PubMed

    Wu, Jun; Mlodzik, Marek

    2008-09-01

    The Frizzled (Fz) receptor is required cell autonomously in Wnt/beta-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz(-) patches reorient toward the fz(-) cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field.

  4. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)-Dynein during Frizzled-Dishevelled spindle orientation.

    PubMed

    Johnston, Christopher A; Manning, Laurina; Lu, Michelle S; Golub, Ognjen; Doe, Chris Q; Prehoda, Kenneth E

    2013-10-01

    To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, 'accessory pathways' are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia-actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two 'modular' spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation.

  5. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  6. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  7. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  8. Drosophila Furrowed/Selectin is a homophilic cell adhesion molecule stabilizing Frizzled and intercellular interactions during PCP establishment

    PubMed Central

    Chin, Mei-Ling; Mlodzik, Marek

    2013-01-01

    Summary Establishment of planar cell polarity (PCP) in a tissue requires coordination of directional signals from cell to cell. It is thought that this is mediated by the core PCP factors, which include cell adhesion molecules. Here, we demonstrate that furrowed, the Drosophila Selectin, is required for PCP generation. Disruption of PCP in furrowed-deficient flies results from a primary defect in Fz levels and cell adhesion. Furrowed localizes at/near apical junctions, largely co-localizing with Frizzled and Flamingo (Fmi). It physically interacts with and stabilizes Frizzled, and further, it mediates intercellular Frizzled-Van Gogh (Vang)/Strabismus interactions, similarly to Fmi. Furrowed does so through a homophilic cell adhesion role that is distinct from its known carbohydrate-binding function described during vertebrate blood-cell/endothelial cell interactions. Importantly, the carbohydrate function is dispensable for PCP establishment. In vivo studies suggest that Furrowed functions partially redundantly with Fmi, mediating intercellular Frizzled-Vang interactions between neighboring cells. PMID:23973164

  9. Nanoimaging for protein misfolding and related diseases

    PubMed Central

    Lyubchenko, Yuri L.; Sherman, Simon; Shlyakhtenko, Luda S.; Uversky, Vladimir N.

    2006-01-01

    Misfolding and aggregation of proteins is a common thread linking a number of important human health problems. The misfolded and aggregated proteins are inducers of cellular stress and activators of immunity in neurodegenerative diseases. They might posses clear cytotoxic properties, being responsible for the dysfunction and loss of cells in the affected organs. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, not to mention the complexities involved in the formation of protein nanoparticles with different morphologies (e.g. the nanopores) in vivo. A better understanding of the molecular mechanisms of misfolding and aggregation might facilitate development of the rational approaches to prevent pathologies mediated by protein misfolding. The conventional tools currently available to researchers can only provide an averaged picture of a living system, whereas much of the subtle or short-lived information is lost. We believe that the existing and emerging nanotools might help solving these problems by opening the entirely novel pathways for the development of early diagnostic and therapeutic approaches. This article summarizes recent advances of the nanoscience in detection and characterization of misfolded protein conformations. Based on these findings we outline our view on the nanoscience development towards identification intracellular nanomachines and/or multicomponent complexes critically involved in protein misfolding. PMID:16823798

  10. ECM Proteins Glycosylation and Relation to Diabetes

    NASA Astrophysics Data System (ADS)

    Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam

    2004-03-01

    The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.

  11. Fibrinogen-Related Proteins (FREPs) in Mollusks.

    PubMed

    Adema, Coen M

    2015-01-01

    Anti-parasite responses of the snail Biomphalaria glabrata involve antigen-reactive plasma lectins termed fibrinogen-related proteins (FREPs) comprising a C-terminal fibrinogen (FBG) domain and one or two upstream immunoglobulin domains. FREPs are highly polymorphic; they derive from several gene families with multiple loci and alleles that are diversified by exon loss, alternative splicing, and random somatic mutation (gene conversion and point mutations). Individual B. glabrata snails have dynamically distinct FREP sequence repertoires. The immune relevance of B. glabrata FREPs is indicated by FREP binding to polymorphic antigens of (snail-specific) digenean parasites and altered resistance of B. glabrata to digeneans following RNAi knockdown of FREPs. The compatibility polymorphism hypothesis proposes that FREP mutation increases the range of germline-encoded immune recognition in B. glabrata to counter antigenically-varied parasites. Somatic mutation may result from sequence exchange among tandemly arranged FREP genes in the genome, and analysis of sequence variants also suggests involvement of cytidine deaminase-like activity or epigenetic regulation. Without current indications of selection or retention of effective sequence variants toward immunological memory, FREP diversification is thought to afford B. glabrata immunity that is anticipatory but not adaptive. More remains to be learned about this system; other mollusks elaborate diversified lectins consisting of single FBG domains, and bona fide FREPs were reported from additional gastropod species, but these may not be diversified. Future comparative immunological studies and gene discovery driven by next-generation sequencing will further clarify taxonomic distribution of FREP diversification and the underlying mutator mechanisms as a component of immune function in mollusks. PMID:26537379

  12. Repeated evolution of identical domain architecture in metazoan netrin domain-containing proteins.

    PubMed

    Leclère, Lucas; Rentzsch, Fabian

    2012-01-01

    The majority of proteins in eukaryotes are composed of multiple domains, and the number and order of these domains is an important determinant of protein function. Although multidomain proteins with a particular domain architecture were initially considered to have a common evolutionary origin, recent comparative studies of protein families or whole genomes have reported that a minority of multidomain proteins could have appeared multiple times independently. Here, we test this scenario in detail for the signaling molecules netrin and secreted frizzled-related proteins (sFRPs), two groups of netrin domain-containing proteins with essential roles in animal development. Our primary phylogenetic analyses suggest that the particular domain architectures of each of these proteins were present in the eumetazoan ancestor and evolved a second time independently within the metazoan lineage from laminin and frizzled proteins, respectively. Using an array of phylogenetic methods, statistical tests, and character sorting analyses, we show that the polyphyly of netrin and sFRP is well supported and cannot be explained by classical phylogenetic reconstruction artifacts. Despite their independent origins, the two groups of netrins and of sFRPs have the same protein interaction partners (Deleted in Colorectal Cancer/neogenin and Unc5 for netrins and Wnts for sFRPs) and similar developmental functions. Thus, these cases of convergent evolution emphasize the importance of domain architecture for protein function by uncoupling shared domain architecture from shared evolutionary history. Therefore, we propose the terms merology to describe the repeated evolution of proteins with similar domain architecture and discuss the potential of merologous proteins to help understanding protein evolution. PMID:22813778

  13. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    PubMed

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin.

  14. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt).

    PubMed

    Yang, Yingzi; Mlodzik, Marek

    2015-01-01

    The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.

  15. A systematic survey of expression and function of zebrafish frizzled genes.

    PubMed

    Nikaido, Masataka; Law, Edward W P; Kelsh, Robert N

    2013-01-01

    Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation.

  16. Rare disease relations through common genes and protein interactions.

    PubMed

    Fernandez-Novo, Sara; Pazos, Florencio; Chagoyen, Monica

    2016-06-01

    ODCs (Orphan Disease Connections), available at http://csbg.cnb.csic.es/odcs, is a novel resource to explore potential molecular relations between rare diseases. These molecular relations have been established through the integration of disease susceptibility genes and human protein-protein interactions. The database currently contains 54,941 relations between 3032 diseases.

  17. Effect of the frizzle gene (F) on egg production and egg quality of laying hens kept in tropical villages.

    PubMed

    Adomako, K; Olympio, O S; Hagan, J K; Hamidu, J A

    2014-01-01

    1. Two experiments were conducted to determine the influence of the frizzle gene (F) on the production and quality of chicken eggs kept on village farms in Ghana. 2. In the first experiment, 144 pullets, 72 each of Ff and ff pullets from F1 birds, were compared in a randomised complete block design (RCBD), with three villages and 4 batches of hatch as blocks and the two feather genotypes (Ff and ff) as the treatments. 3. The Ff pullets were superior (P < 0.05) to their ff counterparts in terms of the number of eggs per clutch, egg mass and hen-housed and hen-d rates of lay, whereas age at first egg was lower (P < 0.05) in ff layers compared to Ff ones. 4. The eggs of the F1 heterozygous frizzle (Ff) layers had higher values for albumen height, Haugh unit and yolk height compared with eggs from their normal feathered counterparts. 5. In the second experiment, 144 pullets, 48 each of FF, Ff and ff pullets, were compared in a RCBD, with three villages and 4 batches of hatch as blocks and the two feather genotypes (Ff and ff) as the treatments. 6. The F2 birds with genotypes Ff and FF were better than their ff counterparts in terms of the number of eggs per clutch, egg mass, and hen-housed and hen-d rates of lay. Age at first egg was significantly lower in ff layers compared to FF and Ff ones. 7. The Haugh unit value was higher in the homozygous and heterozygous frizzles compared to the normal feathered ones. 8. The presence of the frizzle gene (F) in egg type chickens led to an improvement in egg production and egg quality traits in village chickens, and the cross-breeding scheme evaluated in this project could contribute to improved productivity.

  18. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  19. Phylogenetic and Evolutionary Analyses of the Frizzled Gene Family in Common Carp (Cyprinus carpio) Provide Insights into Gene Expansion from Whole-Genome Duplications.

    PubMed

    Dong, Chuanju; Jiang, Likun; Peng, Wenzhu; Xu, Jian; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2015-01-01

    In humans, the frizzled (FZD) gene family encodes 10 homologous proteins that commonly localize to the plasma membrane. Besides being associated with three main signaling pathways for cell development, most FZDs have different physiological effects and are major determinants in the development process of vertebrates and. Here, we identified and annotated the FZD genes in the whole-genome of common carp (Cyprinus carpio), a teleost fish, and determined their phylogenetic relationships to FZDs in other vertebrates. Our analyses revealed extensive gene duplications in the common carp that have led to the 26 FZD genes that we detected in the common carp genome. All 26 FZD genes were assigned orthology to the 10 FZD genes of on-land vertebrates, with none of genes being specific to the fish lineage. We postulated that the expansion of the FZD gene family in common carp was the result of an additional whole genome duplication event and that the FZD gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Through the expression profiling of FZD genes in common carp, we speculate that the ancestral gene was likely capable of performing all functions and was expressed broadly, while some descendant duplicate genes only performed partial functions and were specifically expressed at certain stages of development. PMID:26675214

  20. Amyloid-β Binds to the Extracellular Cysteine-rich Domain of Frizzled and Inhibits Wnt/β-Catenin Signaling*S⃞

    PubMed Central

    Magdesian, Margaret H.; Carvalho, Milena M. V. F.; Mendes, Fabio A.; Saraiva, Leonardo M.; Juliano, Maria A.; Juliano, Luiz; Garcia-Abreu, José; Ferreira, Sérgio T.

    2008-01-01

    The amyloid-β peptide (Aβ) plays a major role in neuronal dysfunction and neurotoxicity in Alzheimer disease. However, the signal transduction mechanisms involved in Aβ-induced neuronal dysfunction remain to be fully elucidated. A major current unknown is the identity of the protein receptor(s) involved in neuronal Aβ binding. Using phage display of peptide libraries, we have identified a number of peptides that bind Aβ and are homologous to neuronal receptors putatively involved in Aβ interactions. We report here on a cysteine-linked cyclic heptapeptide (denominated cSP5) that binds Aβ with high affinity and is homologous to the extracellular cysteine-rich domain of several members of the Frizzled (Fz) family of Wnt receptors. Based on this homology, we investigated the interaction between Aβ and Fz. The results show that Aβ binds to the Fz cysteine-rich domain at or in close proximity to the Wnt-binding site and inhibits the canonical Wnt signaling pathway. Interestingly, the cSP5 peptide completely blocks Aβ binding to Fz and prevents inhibition of Wnt signaling. These results indicate that the Aβ-binding site in Fz is homologous to cSP5 and that this is a relevant target for Aβ-instigated neurotoxicity. Furthermore, they suggest that blocking the interaction of Aβ with Fz might lead to novel therapeutic approaches to prevent neuronal dysfunction in Alzheimer disease. PMID:18234671

  1. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    PubMed

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  2. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  3. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus.

  4. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  5. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling

    PubMed Central

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  6. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-03-29

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.

  7. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus. PMID:24012522

  8. Amino Acid Recycling in Relation to Protein Turnover 1

    PubMed Central

    Davies, David D.; Humphrey, Thomas J.

    1978-01-01

    Methods of measuring amino acid recycling in Lemna minor are described. The extent to which the recycling of individual amino acids may underestimate protein turnover has been measured for a number of amino acids. The methods have been used to study the relationship between protein turnover and amino acid recycling during nitrogen starvation. It is concluded that following the removal of nitrate from the environment, protein turnover is enhanced, the partitioning of amino acids between protein synthesis and amino acid metabolism is relatively constant, but the total amount of amino acids recycling is increased. PMID:16660236

  9. Prediction of disease-related mutations affecting protein localization

    PubMed Central

    Laurila, Kirsti; Vihinen, Mauno

    2009-01-01

    Background Eukaryotic cells contain numerous compartments, which have different protein constituents. Proteins are typically directed to compartments by short peptide sequences that act as targeting signals. Translocation to the proper compartment allows a protein to form the necessary interactions with its partners and take part in biological networks such as signalling and metabolic pathways. If a protein is not transported to the correct intracellular compartment either the reaction performed or information carried by the protein does not reach the proper site, causing either inactivation of central reactions or misregulation of signalling cascades, or the mislocalized active protein has harmful effects by acting in the wrong place. Results Numerous methods have been developed to predict protein subcellular localization with quite high accuracy. We applied bioinformatics methods to investigate the effects of known disease-related mutations on protein targeting and localization by analyzing over 22,000 missense mutations in more than 1,500 proteins with two complementary prediction approaches. Several hundred putative localization affecting mutations were identified and investigated statistically. Conclusion Although alterations to localization signals are rare, these effects should be taken into account when analyzing the consequences of disease-related mutations. PMID:19309509

  10. Oxidative modification of proteins: age-related changes.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2007-01-01

    Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.

  11. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    PubMed

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  12. Relative Quantification of Several Plasma Proteins during Liver Transplantation Surgery

    PubMed Central

    Parviainen, Ville; Joenväärä, Sakari; Tukiainen, Eija; Ilmakunnas, Minna; Isoniemi, Helena; Renkonen, Risto

    2011-01-01

    Plasma proteome is widely used in studying changes occurring in human body during disease or other disturbances. Immunological methods are commonly used in such studies. In recent years, mass spectrometry has gained popularity in high-throughput analysis of plasma proteins. In this study, we tested whether mass spectrometry and iTRAQ-based protein quantification might be used in proteomic analysis of human plasma during liver transplantation surgery to characterize changes in protein abundances occurring during early graft reperfusion. We sampled blood from systemic circulation as well as blood entering and exiting the liver. After immunodepletion of six high-abundant plasma proteins, trypsin digestion, iTRAQ labeling, and cation-exchange fractionation, the peptides were analyzed by reverse phase nano-LC-MS/MS. In total, 72 proteins were identified of which 31 could be quantified in all patient specimens collected. Of these 31 proteins, ten, mostly medium-to-high abundance plasma proteins with a concentration range of 50–2000 mg/L, displayed relative abundance change of more than 10%. The changes in protein abundance observed in this study allow further research on the role of several proteins in ischemia-reperfusion injury during liver transplantation and possibly in other surgery. PMID:22187521

  13. Relative quantification of several plasma proteins during liver transplantation surgery.

    PubMed

    Parviainen, Ville; Joenväärä, Sakari; Tukiainen, Eija; Ilmakunnas, Minna; Isoniemi, Helena; Renkonen, Risto

    2011-01-01

    Plasma proteome is widely used in studying changes occurring in human body during disease or other disturbances. Immunological methods are commonly used in such studies. In recent years, mass spectrometry has gained popularity in high-throughput analysis of plasma proteins. In this study, we tested whether mass spectrometry and iTRAQ-based protein quantification might be used in proteomic analysis of human plasma during liver transplantation surgery to characterize changes in protein abundances occurring during early graft reperfusion. We sampled blood from systemic circulation as well as blood entering and exiting the liver. After immunodepletion of six high-abundant plasma proteins, trypsin digestion, iTRAQ labeling, and cation-exchange fractionation, the peptides were analyzed by reverse phase nano-LC-MS/MS. In total, 72 proteins were identified of which 31 could be quantified in all patient specimens collected. Of these 31 proteins, ten, mostly medium-to-high abundance plasma proteins with a concentration range of 50-2000 mg/L, displayed relative abundance change of more than 10%. The changes in protein abundance observed in this study allow further research on the role of several proteins in ischemia-reperfusion injury during liver transplantation and possibly in other surgery.

  14. Dietary proteins and food-related reward signals

    PubMed Central

    Peuhkuri, Katri; Sihvola, Nora; Korpela, Riitta

    2011-01-01

    Proteins play a crucial role in almost all biological processes. Dietary proteins are generally considered as energy yielding nutrients and as a source of amino acids for various purposes. In addition, they may have a role in food-related reward signals. The purpose of this review was to give an overview of the role of dietary proteins in food-related reward and possible mechanisms behind such effects. Dietary proteins may elicit food-related reward by several different postprandial mechanisms, including neural and humoral signals from the gastrointestinal tract to the brain. In order to exert rewarding effects, protein have to be absorbed from the intestine and reach the target cells in sufficient concentrations, or act via receptors ad cell signalling in the gut without absorption. Complex interactions between different possible mechanisms make it very difficult to gain a clear view on the role and intesity of each mechanism. It is concluded that, in principle, dietary proteins may have a role in food-related reward. However, the evidence is based mostly on experiments with animal models and one should be careful in drawing conclusions of clinical relevance. PMID:21909291

  15. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.

    PubMed

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-05-15

    The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  16. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8

    PubMed Central

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-01-01

    ABSTRACT The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  17. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  18. A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation.

    PubMed Central

    Laloraya, S; Gambill, B D; Craig, E A

    1994-01-01

    The 70-kDa heat shock proteins (hsp70s) function as molecular chaperones in a wide variety of cellular processes through cycles of binding and release from substrate proteins coupled to cycles of ATP hydrolysis. In the prokaryote Escherichia coli, the hsp70 DnaK functions with two other proteins, DnaJ and GrpE, which modulate the activity of DnaK. While numerous hsp70s and DnaJ-related proteins have been identified in eukaryotes, to our knowledge no GrpE-related proteins have been reported. We report the isolation and characterization of a eukaryotic grpE-related gene, MGE1. MGE1, an essential nuclear gene of the yeast Saccharomyces cerevisiae, encodes a soluble protein of the mitochondrial matrix. Cells with reduced expression of Mge1p accumulate the precursor form of a mitochondrial protein. Since mitochondrial hsp70 is required for translocation of precursors of mitochondrial proteins from the cytosol into the matrix of mitochondria, these data suggest that Mge1p acts in concert with mitochondrial hsp70 in protein translocation. Images PMID:8022808

  19. Anatomy of protein disorder, flexibility and disease-related mutations

    PubMed Central

    Lu, Hui-Chun; Chung, Sun Sook; Fornili, Arianna; Fraternali, Franca

    2015-01-01

    Integration of protein structural information with human genetic variation and pathogenic mutations is essential to understand molecular mechanisms associated with the effects of polymorphisms on protein interactions and cellular processes. We investigate occurrences of non-synonymous SNPs in ordered and disordered protein regions by systematic mapping of common variants and disease-related SNPs onto these regions. We show that common variants accumulate in disordered regions; conversely pathogenic variants are significantly depleted in disordered regions. These different occurrences of pathogenic and common SNPs can be attributed to a negative selection on random mutations in structurally highly constrained regions. New approaches in the study of quantitative effects of pathogenic-related mutations should effectively account for all the possible contexts and relative functional constraints in which the sequence variation occurs. PMID:26322316

  20. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  1. Piccolo, a presynaptic zinc finger protein structurally related to bassoon.

    PubMed

    Fenster, S D; Chung, W J; Zhai, R; Cases-Langhoff, C; Voss, B; Garner, A M; Kaempf, U; Kindler, S; Gundelfinger, E D; Garner, C C

    2000-01-01

    Piccolo is a novel component of the presynaptic cytoskeletal matrix (PCM) assembled at the active zone of neurotransmitter release. Analysis of its primary structure reveals that Piccolo is a multidomain zinc finger protein structurally related to Bassoon, another PCM protein. Both proteins were found to be shared components of glutamatergic and GABAergic CNS synapses but not of the cholinergic neuromuscular junction. The Piccolo zinc fingers were found to interact with the dual prenylated rab3A and VAMP2/Synaptobrevin II receptor PRA1. We show that PRA1 is a synaptic vesicle-associated protein that is colocalized with Piccolo in nerve terminals of hippocampal primary neurons. These data suggest that Piccolo plays a role in the trafficking of synaptic vesicles (SVs) at the active zone.

  2. Factor H-related proteins determine complement-activating surfaces.

    PubMed

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  3. Molecular modeling of pathogenesis-related proteins of family 5.

    PubMed

    Thompson, Claudia E; Fernandes, Cláudia L; de Souza, Osmar N; Salzano, Francisco M; Bonatto, Sandro L; Freitas, Loreta B

    2006-01-01

    The family of pathogenesis-related (PR) 5 proteins have diverse functions, and some of them are classified as thaumatins, osmotins, and inhibitors of alpha-amylase or trypsin. Although the specific function of many PR5 in plants is unknown, they are involved in the acquired systemic resistance and response to biotic stress, causing the inhibition of hyphal growth and reduction of spore germination, probably by a membrane permeabilization mechanism or by interaction with pathogen receptors. We have constructed three-dimensional models of four proteins belonging to the Rosaceae and Fagaceae botanical families by using the technique of comparative molecular modelling by homology. There are four main structural differences between all the PR5, corresponding to regions with replacements of amino acids. Folding and the secondary structures are very similar for all of them. However, the isoelectric point and charge distributions differ for each protein.

  4. Chimeragenesis of distantly-related proteins by noncontiguous recombination.

    PubMed

    Smith, Matthew A; Romero, Philip A; Wu, Timothy; Brustad, Eric M; Arnold, Frances H

    2013-02-01

    We introduce a method for identifying elements of a protein structure that can be shuffled to make chimeric proteins from two or more homologous parents. Formulating recombination as a graph-partitioning problem allows us to identify noncontiguous segments of the sequence that should be inherited together in the progeny proteins. We demonstrate this noncontiguous recombination approach by constructing a chimera of β-glucosidases from two different kingdoms of life. Although the protein's alpha-beta barrel fold has no obvious subdomains for recombination, noncontiguous SCHEMA recombination generated a functional chimera that takes approximately half its structure from each parent. The X-ray crystal structure shows that the structural blocks that make up the chimera maintain the backbone conformations found in their respective parental structures. Although the chimera has lower β-glucosidase activity than the parent enzymes, the activity was easily recovered by directed evolution. This simple method, which does not rely on detailed atomic models, can be used to design chimeras that take structural, and functional, elements from distantly-related proteins. PMID:23225662

  5. Cytoskeletal protein kinases: titin and its relations in mechanosensing.

    PubMed

    Gautel, Mathias

    2011-07-01

    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation. PMID:21416260

  6. Nanoparticles in relation to peptide and protein aggregation

    PubMed Central

    Zaman, Masihuz; Ahmad, Ejaz; Qadeer, Atiyatul; Rabbani, Gulam; Khan, Rizwan Hasan

    2014-01-01

    Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle’s surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils). Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro. PMID:24611007

  7. Identifying Gastric Cancer Related Genes Using the Shortest Path Algorithm and Protein-Protein Interaction Network

    PubMed Central

    Shi, Ying; Li, Li-Peng; Ren, Hui

    2014-01-01

    Gastric cancer, as one of the leading causes of cancer related deaths worldwide, causes about 800,000 deaths per year. Up to now, the mechanism underlying this disease is still not totally uncovered. Identification of related genes of this disease is an important step which can help to understand the mechanism underlying this disease, thereby designing effective treatments. In this study, some novel gastric cancer related genes were discovered based on the knowledge of known gastric cancer related ones. These genes were searched by applying the shortest path algorithm in protein-protein interaction network. The analysis results suggest that some of them are indeed involved in the biological process of gastric cancer, which indicates that they are the actual gastric cancer related genes with high probability. It is hopeful that the findings in this study may help promote the study of this disease and the methods can provide new insights to study various diseases. PMID:24729971

  8. Survivin and related proteins in canine mammary tumors: immunohistochemical expression.

    PubMed

    Bongiovanni, L; Romanucci, M; Malatesta, D; D'Andrea, A; Ciccarelli, A; Della Salda, L

    2015-03-01

    Survivin is reexpressed in most human breast cancers, where its expression has been associated with tumor aggressiveness, poor prognosis, and poor response to therapy. Survivin expression was evaluated in 41 malignant canine mammary tumors (CMTs) by immunohistochemistry, in relation to histological grade and stage, and correlated with that of some related molecules (β-catenin, caspase 3, heat shock proteins) to understand their possible role in canine mammary tumorigenesis. An increase in nuclear survivin expression, compared with healthy mammary glands, was observed in CMTs, where nuclear immunolabeling was related to the presence of necrosis. No statistically significant relation was found between the expression of the investigated molecules and the histological grade or stage. The present study may suggest an important involvement of survivin in CMT tumorigenesis. Its overexpression in most of the cases evaluated might suggest that targeting survivin in CMTs may be a valid anticancer therapy. PMID:24686389

  9. Amyloid-related serum component (protein ASC) IN LEPROSY PATIENTS.

    PubMed Central

    Kronvall, G; Husby, G; Samuel, D; Bjune, G; Wheate, H

    1975-01-01

    The presence of amyloid-related serum component, protein ASC, in serum samples from 63 leprosy patients was investigated. Protein ASC was detected in 38% of the patients. A correlation to the disease spectrum of leprosy was apparent: polar lepromatous cases, 64% positive; borderline lepromatous, 50%; borderline tuberculoid, 36%; subpolar tuberculoid, 17%; and polar tuberculoid, negative. Antibody activity against the a antigen of Mycobacterium leprae was also determined, showing a similar correlation to the disease spectrum. Serum samples from 23 apparently healthy Ethiopians serving as controls showed a protein ASC incidence of 22%. This figure is significantly higher than the frequency found by others among healthy Norwegian blood donors. Immunoglobulin M levels among patients were elevated in the borderline lepromatous and poplar lepromatous groups. The three tuberculoid groups did not differ in this respect from the control group but were all elevated as compared to a normal Caucasian serum pool. Although raised immunoglobulin M levels seemed to parallel increased frequencies of protein ASC in the patient groups as well as in controls, this correlation might be only secondary to a primary derangement in T-cell function. PMID:804451

  10. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.

  11. Age-related carbonyl stress and erythrocyte membrane protein carbonylation.

    PubMed

    Li, Guolin; Liu, Li; Hu, Hui; Zhao, Qiong; Xie, Fuxia; Chen, Keke; Liu, Shenglin; Chen, Yaqin; Shi, Wang; Yin, Dazhong

    2010-01-01

    Reactive carbonyl species (RCS) have been widely used as indicators of oxidative stress. However, the associations of carbonyl stress with aging process and biochemical alteration of erythrocyte are still poorly understood. Fresh blood samples in vacutainer tubes containing sodium heparinate were obtained from 874 volunteers who were divided into young, adult and old groups based on their age. Plasma RCS and thiols concentrations between different age groups and erythrocyte membrane protein carbonylation in the adult group were detected within 24h of the blood sampling. Results showed that the plasma thiols concentration decreased gradually during aging process, and the p-values between all three groups are less than 0.05. The plasma RCS concentration in different age groups showed a nonlinear association with age. The levels in the young group were slightly higher than the adult group (not significant) and lower than the old group (p < 0.01). The protein carbonylation of erythrocyte membrane was positively correlated with plasma RCS concentration (p < 0.01), but not plasma thiols concentration. We conclude that higher levels of RCS, not lower levels of thiols, in plasma are a direct risk factor for the protein carbonylation of erythrocyte membrane. Owing to the decrease of thiols levels and increase of RCS levels during aging process, a shift from RCS-related redox allostasis to carbonyl stress would contribute to age-related biological dysfunction and even aging process.

  12. Parathyroid hormone-related protein promotes epithelial-mesenchymal transition.

    PubMed

    Ardura, Juan Antonio; Rayego-Mateos, Sandra; Rámila, David; Ruiz-Ortega, Marta; Esbrit, Pedro

    2010-02-01

    Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-beta1 in cultured tubuloepithelial cells and TGF-beta blockade inhibited PTHrP-induced EMT-related changes, including upregulation of alpha-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-beta1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-beta1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-beta1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-beta, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells.

  13. Parathyroid Hormone–Related Protein Promotes Epithelial–Mesenchymal Transition

    PubMed Central

    Ardura, Juan Antonio; Rayego-Mateos, Sandra; Rámila, David; Ruiz-Ortega, Marta

    2010-01-01

    Epithelial–mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-β1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone–related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-β and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-β1 in cultured tubuloepithelial cells and TGF-β blockade inhibited PTHrP-induced EMT-related changes, including upregulation of α-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-β1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-β1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-β1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-β, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells. PMID:19959711

  14. Posttranslational modification of autophagy-related proteins in macroautophagy.

    PubMed

    Xie, Yangchun; Kang, Rui; Sun, Xiaofang; Zhong, Meizuo; Huang, Jin; Klionsky, Daniel J; Tang, Daolin

    2015-01-01

    Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.

  15. Perilipin-related protein regulates lipid metabolism in C. elegans

    PubMed Central

    Chughtai, Ahmed Ali; Kaššák, Filip; Kostrouchová, Markéta; Novotný, Jan Philipp; Krause, Michael W.; Kostrouch, Zdenek

    2015-01-01

    Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets similarly as human perilipins 1 and 2. Downregulation or elimination of W01A8.1 affects the appearance of lipid droplets resulting in the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. Visualization of lipid containing structures by CARS microscopy in vivo showed that lipid-containing structures become gradually enlarged during oogenesis and relocate during the first zygotic division around the dividing nucleus. In mutant embryos, the lipid containing structures show defective intracellular distribution in subsequent embryonic divisions and become gradually smaller during further development. In contrast to embryos, lipid-containing structures in enterocytes and in epidermal cells of adult animals are smaller in mutants than in wild type animals. Our results demonstrate the existence of a perilipin-related regulation of fat metabolism in nematodes and provide new possibilities for functional studies of lipid metabolism. PMID:26357594

  16. HPMV: human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes.

    PubMed

    Sherman, Westley Arthur; Kuchibhatla, Durga Bhavani; Limviphuvadh, Vachiranee; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2015-10-01

    Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ .

  17. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    PubMed

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  18. Protein-based organelles in bacteria: carboxysomes and related microcompartments.

    PubMed

    Yeates, Todd O; Kerfeld, Cheryl A; Heinhorst, Sabine; Cannon, Gordon C; Shively, Jessup M

    2008-09-01

    Many bacteria contain intracellular microcompartments with outer shells that are composed of thousands of protein subunits and interiors that are filled with functionally related enzymes. These microcompartments serve as organelles by sequestering specific metabolic pathways in bacterial cells. The carboxysome, a prototypical bacterial microcompartment that is found in cyanobacteria and some chemoautotrophs, encapsulates ribulose-l,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase, and thereby enhances carbon fixation by elevating the levels of CO2 in the vicinity of RuBisCO. Evolutionarily related, but functionally distinct, microcompartments are present in diverse bacteria. Although bacterial microcompartments were first observed more than 40 years ago, a detailed understanding of how they function is only now beginning to emerge.

  19. Prediction of coordination number and relative solvent accessibility in proteins.

    PubMed

    Pollastri, Gianluca; Baldi, Pierre; Fariselli, Pietro; Casadio, Rita

    2002-05-01

    Knowing the coordination number and relative solvent accessibility of all the residues in a protein is crucial for deriving constraints useful in modeling protein folding and protein structure and in scoring remote homology searches. We develop ensembles of bidirectional recurrent neural network architectures to improve the state of the art in both contact and accessibility prediction, leveraging a large corpus of curated data together with evolutionary information. The ensembles are used to discriminate between two different states of residue contacts or relative solvent accessibility, higher or lower than a threshold determined by the average value of the residue distribution or the accessibility cutoff. For coordination numbers, the ensemble achieves performances ranging within 70.6-73.9% depending on the radius adopted to discriminate contacts (6A-12A). These performances represent gains of 16-20% over the baseline statistical predictor, always assigning an amino acid to the largest class, and are 4-7% better than any previous method. A combination of different radius predictors further improves performance. For accessibility thresholds in the relevant 15-30% range, the ensemble consistently achieves a performance above 77%, which is 10-16% above the baseline prediction and better than other existing predictors, by up to several percentage points. For both problems, we quantify the improvement due to evolutionary information in the form of PSI-BLAST-generated profiles over BLAST profiles. The prediction programs are implemented in the form of two web servers, CONpro and ACCpro, available at http://promoter.ics.uci.edu/BRNN-PRED/.

  20. Bacterial expansins and related proteins from the world of microbes.

    PubMed

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J

    2015-05-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  1. Bacterial expansins and related proteins from the world of microbes

    PubMed Central

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J.

    2015-01-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by non-lytic means (‘amorphogenesis’). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly-packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes, but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  2. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol[S

    PubMed Central

    Li, Jiwei; Zheng, Xiuting; Lou, Ning; Zhong, Wenbin; Yan, Daoguang

    2016-01-01

    Oxysterols are 27-carbon oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis that can induce cell apoptosis in addition to a number of other bioactions. However, the mechanisms underlying this cytotoxicity are not completely understood. ORP8 is a member of the oxysterol binding protein-related protein (ORP) family, implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, we report that 25-hydroxycholesterol (OHC) induced apoptosis of the hepatoma cell lines, HepG2 and Huh7, via the endoplasmic reticulum (ER) stress response pathway, and ORP8 overexpression resulted in a similar cell response as 25-OHC, indicating a putative functional relationship between oxysterol cytotoxicity and ORP8. Further experiments demonstrated that ORP8 overexpression significantly enhanced the 25-OHC effect on ER stress and apoptosis in HepG2 cells. A truncated ORP8 construct lacking the ligand-binding domain or a closely related protein, ORP5, was devoid of this activity, evidencing for specificity of the observed effects. Importantly, ORP8 knockdown markedly dampened such responses to 25-OHC. Taken together, the present study suggests that ORP8 may mediate the cytotoxicity of 25-OHC. PMID:27530118

  3. DNA–protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde

    PubMed Central

    Shaham, J; Bomstein, Y; Gurvich, R; Rashkovsky, M; Kaufman, Z

    2003-01-01

    Background: Formaldehyde (FA) is classified as a probable human carcinogen. Aims: To examine DNA protein crosslinks (DPC) and p53, which are generally known to be involved in carcinogenesis, in peripheral blood lymphocytes of workers exposed to FA. Methods: DPC and p53 ("wild type" and mutant) were examined in peripheral blood lymphocytes of 186 workers exposed to FA (mean years of exposure = 16) and 213 unexposed workers. Every worker completed a questionnaire on demographic data, occupational and medical history, smoking, and hygiene. Results: The adjusted mean level of DPC in the exposed and the unexposed workers differed significantly. Adjustment was made for age, sex, years of education, smoking, and origin. Exposure to FA increased the risk of having a higher level of pantropic p53 above 150 pg/ml (OR 1.6, 95% CI 0.8 to 3.1). A significant positive correlation was found between the increase of pantropic p53 protein and mutant p53 protein, as well as between pantropic p53 >150 pg/ml and mutant p53 protein. In the exposed group a significantly higher proportion of p53 >150 pg/ml was found among workers with DPC >0.187 (55.7%) (0.187 = median level of DPC) than among workers with DPC ⩽0.187 (33.3%). The risk of having pantropic p53 protein >150 pg/ml was determined mainly by levels of DPC. Workers with DPC above the median level had a significantly higher risk of having pantropic p53 >150 pg/ml (adjusted OR 2.5, 95% CI 1.2 to 5.4). Conclusions: Results suggest that DPC and mutation in p53 may represent steps in FA carcinogenesis and a possible causal relation between DPC and mutation in p53. These biomarkers can be applied in the assessment of the development of cancer due to FA exposure. PMID:12771391

  4. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway

    PubMed Central

    Fu, Xiao; Li, Hui; Liu, Chunxiao; Hu, Bin; Li, Tong; Wang, Yang

    2016-01-01

    Background Recent studies indicate that long noncoding RNAs (lncRNAs) play a key role in the control of cellular processes such as proliferation, metastasis, and differentiation. The lncRNA dysregulation has been identified in all types of cancer. We previously found that lncRNA AK126698 suppresses cisplatin resistance in A549 cells through the Wnt/β-catenin signaling pathway. However, the clinical significance of lncRNA AK126698 and the molecular mechanisms through which it regulates cancer cell proliferation and migration are largely unknown. Methods We examined the expression of lncRNA AK126698 in 56 non-small cell lung cancer (NSCLC) tissue samples and three NSCLC cell lines using quantitative real-time polymerase chain reaction. Gain and loss of function approaches were used to evaluate the biological function of AK126698 in NSCLC cells. The effects of lncRNA AK126698 on cell proliferation were investigated using cell counting kit-8 and 5-ethynyl-2′-deoxyuridine assays, and apoptosis was measured by flow cytometry. Protein levels of AK126698 targets were evaluated by Western blotting. Results Our results showed that lncRNA AK126698 was significantly downregulated in NSCLC tissues, compared with paired adjacent nontumor tissue samples. Furthermore, lower AK126698 expression was associated with larger tumor size and advanced tumor stage. Ectopic AK126698 expression inhibited cell proliferation and migration and induced apoptosis. Conversely, decreased AK126698 expression promoted cell proliferation and migration and inhibited cell apoptosis. Importantly, we demonstrated that Frizzled-8, a receptor of Wnt/β-catenin pathway, was a target of AK126698. Furthermore, AK126698 could inhibit the activation of Wnt/β-catenin pathway, which was demonstrated by measuring the expression levels of Axin1, β-catenin, c-myc, cyclin D1, and E-cadherin. Conclusion It was found in the study that lncRNA AK126698 inhibits the proliferation and migration of NSCLC cells by

  5. Phylogeny and expression of carbonic anhydrase-related proteins

    PubMed Central

    2010-01-01

    Background Carbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR. Results We collected 84 sequences, of which 22 came from novel or improved gene models which we created from genome data. The distribution of CARP VIII covers vertebrates and deuterostomes, and CARP X appears to be universal in the animal kingdom. CA10-like genes have had a separate history of duplications in the tetrapod and fish lineages. Our phylogenetic analysis showed that duplication of CA10 into CA11 has occurred only in tetrapods (found in mammals, frogs, and lizards), whereas an independent duplication of CA10 was found in fishes. We suggest the name CA10b for the second fish isoform. Immunohistochemical analysis showed a high expression level of CARP VIII in the mouse cerebellum, cerebrum, and also moderate expression in the lung, liver, salivary gland, and stomach. These results also demonstrated low expression in the colon, kidney, and Langerhans islets. CARP X was moderately expressed in the cerebral capillaries and the lung and very weakly in the stomach and heart. Positive signals for CARP XI were observed in the cerebellum, cerebrum, liver, stomach, small intestine, colon, kidney, and testis. In addition, the results of real-time quantitative PCR confirmed a wide distribution for the Car8 and Car11 mRNAs, whereas the expression of the Car10 mRNA was restricted to the frontal cortex, parietal cortex, cerebellum, midbrain

  6. The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2

    PubMed Central

    Warrington, Samantha J.; Strutt, Helen; Strutt, David

    2013-01-01

    Polarised tissue elongation during morphogenesis involves cells within epithelial sheets or tubes making and breaking intercellular contacts in an oriented manner. Growing evidence suggests that cell adhesion can be modulated by endocytic trafficking of E-cadherin (E-cad), but how this process can be polarised within individual cells is poorly understood. The Frizzled (Fz)-dependent core planar polarity pathway is a major regulator of polarised cell rearrangements in processes such as gastrulation, and has also been implicated in regulation of cell adhesion through trafficking of E-cad; however, it is not known how these functions are integrated. We report a novel role for the core planar polarity pathway in promoting cell intercalation during tracheal tube morphogenesis in Drosophila embryogenesis, and present evidence that this is due to regulation of turnover and levels of junctional E-cad by the guanine exchange factor RhoGEF2. Furthermore, we show that core pathway activity leads to planar-polarised recruitment of RhoGEF2 and E-cad turnover in the epidermis of both the embryonic germband and the pupal wing. We thus reveal a general mechanism by which the core planar polarity pathway can promote polarised cell rearrangements. PMID:23364328

  7. Prostacyclin reverses the cigarette smoke-induced decrease in pulmonary Frizzled 9 expression through miR-31

    PubMed Central

    Tennis, M. A.; New, M. L.; McArthur, D. G.; Merrick, D. T.; Dwyer-Nield, L. D.; Keith, R. L.

    2016-01-01

    Half of lung cancers are diagnosed in former smokers, leading to a significant treatment burden in this population. Chemoprevention in former smokers using the prostacyclin analogue iloprost reduces endobronchial dysplasia, a premalignant lung lesion. Iloprost requires the presence of the WNT receptor Frizzled 9 (Fzd9) for inhibition of transformed growth in vitro. To investigate the relationship between iloprost, cigarette smoke, and Fzd9 expression, we used human samples, mouse models, and in vitro studies. Fzd9 expression was low in human lung tumors and in progressive dysplasias. In mouse models and in vitro studies, tobacco smoke carcinogens reduced expression of Fzd9 while prostacyclin maintained or increased expression. Expression of miR-31 repressed Fzd9 expression, which was abrogated by prostacyclin. We propose a model where cigarette smoke exposure increases miR-31 expression, which leads to decreased Fzd9 expression and prevents response to iloprost. When smoke is removed miR-31 is reduced, prostacyclin can increase Fzd9 expression, and progression of dysplasia is inhibited. Fzd9 and miR-31 are candidate biomarkers for precision application of iloprost and monitoring of treatment progress. As we continue to investigate the mechanisms of prostacyclin chemoprevention and identify biomarkers for its use, we will facilitate clinical trials and speed implementation of this valuable prevention approach. PMID:27339092

  8. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins

    PubMed Central

    Tian, Bin; Harrison, Roland; Morton, James; Deb-Choudhury, Santanu

    2015-01-01

    Thaumatin-like proteins (TLPs) and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR) proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and determination of PR

  9. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies.

    PubMed

    Esbrit, Pedro; Herrera, Sabina; Portal-Núñez, Sergio; Nogués, Xavier; Díez-Pérez, Adolfo

    2016-04-01

    The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies. PMID:26259869

  10. Dynamin-related proteins in plant post-Golgi traffic.

    PubMed

    Fujimoto, Masaru; Tsutsumi, Nobuhiro

    2014-01-01

    Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes.

  11. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies.

    PubMed

    Esbrit, Pedro; Herrera, Sabina; Portal-Núñez, Sergio; Nogués, Xavier; Díez-Pérez, Adolfo

    2016-04-01

    The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies.

  12. Alpha shape and Delaunay triangulation in studies of protein-related interactions.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2014-01-01

    In recent years, more 3D protein structures have become available, which has made the analysis of large molecular structures much easier. There is a strong demand for geometric models for the study of protein-related interactions. Alpha shape and Delaunay triangulation are powerful tools to represent protein structures and have advantages in characterizing the surface curvature and atom contacts. This review presents state-of-the-art applications of alpha shape and Delaunay triangulation in the studies on protein-DNA, protein-protein, protein-ligand interactions and protein structure analysis.

  13. Origins of Myc Proteins – Using Intrinsic Protein Disorder to Trace Distant Relatives

    PubMed Central

    Mahani, Amir; Henriksson, Johan; Wright, Anthony P. H.

    2013-01-01

    Mammalian Myc proteins are important determinants of cell proliferation as well as the undifferentiated state of stem cells and their activity is frequently deregulated in cancer. Based mainly on conservation in the C-terminal DNA-binding and dimerization domain, Myc-like proteins have been reported in many simpler organisms within and outside the Metazoa but they have not been found in fungi or plants. Several important signature motifs defining mammalian Myc proteins are found in the N-terminal domain but the extent to which these are found in the Myc-like proteins from simpler organisms is not well established. The extent of N-terminal signature sequence conservation would give important insights about the evolution of Myc proteins and their current function in mammalian physiology and disease. In a systematic study of Myc-like proteins we show that N-terminal signature motifs are not readily detectable in individual Myc-like proteins from invertebrates but that weak similarities to Myc boxes 1 and 2 can be found in the N-termini of the simplest Metazoa as well as the unicellular choanoflagellate, Monosiga brevicollis, using multiple protein alignments. Phylogenetic support for the connections of these proteins to established Myc proteins is however poor. We show that the pattern of predicted protein disorder along the length of Myc proteins can be used as a complementary approach to making dendrograms of Myc proteins that aids the classification of Myc proteins. This suggests that the pattern of disorder within Myc proteins is more conserved through evolution than their amino acid sequence. In the disorder-based dendrograms the Myc-like proteins from simpler organisms, including M. brevicollis, are connected to established Myc proteins with a higher degree of certainty. Our results suggest that protein disorder based dendrograms may be of general significance for studying distant relationships between proteins, such as transcription factors, that have high

  14. Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    PubMed Central

    Hytönen, Vesa P; Määttä, Juha AE; Kidron, Heidi; Halling, Katrin K; Hörhä, Jarno; Kulomaa, Tuomas; Nyholm, Thomas KM; Johnson, Mark S; Salminen, Tiina A; Kulomaa, Markku S; Airenne, Tomi T

    2005-01-01

    Background The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. Results In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. Conclusion Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already

  15. Cellular functions of gamma-secretase-related proteins.

    PubMed

    Haffner, Christof; Haass, Christian

    2006-01-01

    Amyloid-beta peptide (Abeta) is generated by gamma-secretase, a membrane protein complex with an unusual aspartyl protease activity consisting of the four components presenilin, nicastrin, APH-1 and PEN-2. Presenilin is considered the catalytic subunit of this complex since it represents the prototype of the new family of intramembrane-cleaving GxGD-type aspartyl proteases. Recently, five novel members of this family and a nicastrin-like protein were identified. Whereas one of the GxGD-type proteins was shown to be identical with signal peptide peptidase (SPP), the function of the others, now called SPP-like proteins (SPPLs), is not known. We therefore analyzed SPPL2b and SPPL3 and demonstrated that they localize to different subcellular compartments suggesting nonredundant functions. This was supported by different phenotypes obtained in knockdown studies in zebrafish embryos. In addition, these phenotypes could be phenocopied by ectopic expression of putative active site mutants, providing strong evidence for a proteolytic function of SPPL2b and SPPL3. We also identified and characterized the nicastrin-like protein nicalin which, together with the 130-kDa protein NOMO (Nodal modulator), forms a membrane protein complex different from gamma-secretase. We found that during zebrafish embryogenesis this complex is involved in the patterning of the axial mesendoderm, a process controlled by the Nodal signaling pathway. PMID:17047369

  16. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    SciTech Connect

    Chowdhury, Saiful M.; Shi, Liang; Yoon, Hyunjin; Ansong, Charles; Rommereim, Leah M.; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, R. J.; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  17. Heat-induced Protein Structure and Subfractions in Relation to Protein Degradation Kinetics and Intestinal Availability in Dairy Cattle

    SciTech Connect

    Doiron, K.; Yu, P; McKinnon, J; Christensen, D

    2009-01-01

    The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein was used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no differences

  18. [Unfolding chaperone as a prion protein relating molecule].

    PubMed

    Hachiya, Naomi S; Sakasegawa, Yuji; Kaneko, Kiyotoshi

    2003-11-01

    Prion protein exists in two different isoforms, a normal cellular isoform (PrPc) and an abnormal infectious isoform (PrPSc), the latter is a causative agent of prion disease such as mad cow disease and Creutzfeldt-Jakob disease. Amino acid sequences of PrPc and PrPSc are identical, but their conformations are rather different; PrPc rich in non beta-sheet vs. PrPSc rich in beta-sheet isoform. Since the two isoforms have quite different conformation, this host factor might be a molecular chaperone, which enables to override an energy barrier between PrPc and PrPSc. To examine the protein unfolding activities against collectively folded structure exist or not, we constructed an assay system and purified a novel molecular chaperone. Unfolding, from S. cerevisiae. Unfolding consists of oligomeric ring-like structure with the central cavity and has an ATP-dependent protein Unfoldingg activity with broad specificity in vitro, of which targets included PrP in beta-sheet form, alpha-synuclein, and A beta protein. We have also found that mouse neuroblastoma N2a cells contained the activity. Treatment of this factor with an ATP-hydrolyzing enzyme, apyrase, caused the decrease in its protein Unfoldingg activity. It was suggested that the purified protein probably formed homo-oligomer consisting of 4-5 subunits and its activity was ATP-dependent. PMID:15152473

  19. Total protein, animal protein, and physical activity in relation to muscle mass in middle-aged and older Americans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training is recognized as a good strategy for retarding age-related declines in muscle mass and strength. Recent studies have also highlighted the potential value of protein intakes in excess of current recommendations. The roles that leisure-time physical activity and protein quality mig...

  20. Quantitative thermophoretic study of disease-related protein aggregates

    PubMed Central

    Wolff , Manuel; Mittag, Judith J.; Herling, Therese W.; Genst, Erwin De; Dobson, Christopher M.; Knowles, Tuomas P. J.; Braun, Dieter; Buell, Alexander K.

    2016-01-01

    Amyloid fibrils are a hallmark of a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. A detailed understanding of the physico-chemical properties of the different aggregated forms of proteins, and of their interactions with other compounds of diagnostic or therapeutic interest, is crucial for devising effective strategies against such diseases. Protein aggregates are situated at the boundary between soluble and insoluble structures, and are challenging to study because classical biophysical techniques, such as scattering, spectroscopic and calorimetric methods, are not well adapted for their study. Here we present a detailed characterization of the thermophoretic behavior of different forms of the protein α-synuclein, whose aggregation is associated with Parkinson’s disease. Thermophoresis is the directed net diffusional flux of molecules and colloidal particles in a temperature gradient. Because of their low volume requirements and rapidity, analytical methods based on this effect have considerable potential for high throughput screening for drug discovery. In this paper we rationalize and describe in quantitative terms the thermophoretic behavior of monomeric, oligomeric and fibrillar forms of α-synuclein. Furthermore, we demonstrate that microscale thermophoresis (MST) is a valuable method for screening for ligands and binding partners of even such highly challenging samples as supramolecular protein aggregates. PMID:26984748

  1. Relating Structure and Internalization for ROMP-based Protein Mimics

    PubMed Central

    Backlund, Coralie M.; Takeuchi, Toshihide; Futaki, Shiroh; Tew, Gregory N.

    2016-01-01

    Elucidating the predominant cellular entry mechanism for protein transduction domains (PTDs) and their synthetic mimics (PTDMs) is a complicated problem that continues to be a significant source of debate in the literature. Several guanidinium-rich homopolymer structures initially designed to mimic oligoarginine, as well as an amphiphilic block copolymer, were end-labeled with FITC. This enabled the monitoring of PTDM internalization into HeLa cells by flow cytometry and confocal imaging. Additionally, their unlabeled counterparts showed improved ability to deliver proteins into cells with added hydrophobic content. In conjunction, pre-incubation with the protein is required, suggesting that the polymers are not just simply interacting with the membrane, but require association with the cargo of interest. However, the mechanism of cellular entry is not dependent on structure within this study, as punctate fluorescence was prevalent within the cells treated with fluorescently labeled samples and protein-polymer complexes. This suggests that the predominant mode of internalization for the presented PTDM structures is endosomal uptake and does not appear to be affected by concentration or structure. The PTDMs reported here provide a well-controlled platform to vary molecular composition for structure activity relationship studies to further our understanding of PTDs, their non-covalent association with cargo, and their cellular internalization pathways. PMID:27039278

  2. Protein synthesis and consolidation of memory-related synaptic changes.

    PubMed

    Lynch, Gary; Kramár, Enikö A; Gall, Christine M

    2015-09-24

    Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25485773

  3. Relating gas phase to solution conformations: Lessons from disordered proteins

    PubMed Central

    Beveridge, Rebecca; Phillips, Ashley S.; Denbigh, Laetitia; Saleem, Hassan M.; MacPhee, Cait E.

    2015-01-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM‐MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM‐MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM‐MS data of two IDPs; α‐Synuclein (α‐Syn) which is implicated in Parkinson's disease, and Apolipoprotein C‐II (ApoC‐II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC‐II behaves in the gas phase. While most IDPs, including α‐Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC‐II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM‐MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  4. Relating gas phase to solution conformations: Lessons from disordered proteins.

    PubMed

    Beveridge, Rebecca; Phillips, Ashley S; Denbigh, Laetitia; Saleem, Hassan M; MacPhee, Cait E; Barran, Perdita E

    2015-08-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM-MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM-MS data of two IDPs; α-Synuclein (α-Syn) which is implicated in Parkinson's disease, and Apolipoprotein C-II (ApoC-II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC-II behaves in the gas phase. While most IDPs, including α-Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC-II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM-MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  5. Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake.

    PubMed

    Lu, Xin-Yun; Shieh, Kun-Ruey; Kabbaj, Mohamed; Barsh, Gregory S; Akil, Huda; Watson, Stanley J

    2002-10-01

    In the present study we examined the diurnal patterns of agouti-related protein (AGRP) and proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus and their relation to circulating glucocorticoids and food intake. Animals were killed at 4-h intervals throughout the 24-h diurnal cycle, and the expression of AGRP and POMC mRNA was evaluated by semiquantitative in situ hybridization analysis. We observed a significant diurnal rhythm in AGRP mRNA expression, with a marked peak at 2200 h (4 h after lights off) and a trough at 1000 h (4 h after lights on), consistent with the overall day-night rhythm of food intake. In contrast, POMC mRNA levels did not show a significant fluctuation across the diurnal cycle, although there was a tendency for levels to decrease after the onset of the dark cycle. Corticosterone secretion temporally coincided with the rising phase of AGRP mRNA expression. Depletion of corticosterone by adrenalectomy abolished the AGRP diurnal rhythm by suppressing the nighttime expression, but did not alter the feeding rhythm. Exposure of adrenalectomized rats to constant corticosterone replacement (10 or 50 mg continuous release corticosterone pellet) resulted in fixed AGRP mRNA expression throughout the 12-h light, 12-h dark cycle. A relatively high level of corticosterone (50 mg) significantly increased AGRP mRNA expression, with a positive correlation between these two measures. These results indicate that 1) the diurnal expression of AGRP mRNA is regulated by corticosterone independently of the light/dark cue; and 2) a normal endogenous corticosterone rhythm is required for generating the diurnal AGRP rhythm.

  6. DDRprot: a database of DNA damage response-related proteins

    PubMed Central

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M.

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome’s integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used. Database URL: http://ddr.cbbio.es. PMID:27577567

  7. DDRprot: a database of DNA damage response-related proteins.

    PubMed

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. PMID:27577567

  8. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  9. Regulation of Sp1 by cell cycle related proteins

    PubMed Central

    Tapias, Alicia; Ciudad, Carlos J.; Roninson, Igor B.; Noé, Véronique

    2009-01-01

    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression. PMID:18769160

  10. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  11. Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity.

    PubMed

    Marcano, J; Varela, P; Fiszman, S

    2015-02-01

    Since proteins have been shown to have the highest satiation-inducing effects of all the macronutrients, increasing the protein level is one of the main strategies for designing foods with enhanced satiating capacity. However, few studies analyze the effect that protein addition has on the texture and flavor characteristics of the target food item to relate it to the expected satiating capacity it elicits. The present work studied cheese pies with three levels of soy and whey proteins. Since the protein level altered the rheological behavior of the batters before baking and the texture of the baked pies, the feasibility of adding several protein levels for obtaining a range of final products was investigated. A check-all-that-apply questionnaire containing 32 sensory and non-sensory characteristics of the samples was given to consumers (n = 131) who also scored the perceived samples' satiating capacity. The results showed that the type and content of protein contributed distinctive sensory characteristics to the samples that could be related to their satiating capacity perception. Harder and drier samples (high protein levels) were perceived as more satiating with less perceptible sweet and milky cheese pie characteristic flavors. Soy contributed an off-flavour. These results will contribute to a better understanding of the interrelation of all these factors, aiding the development of highly palatable solid foods with enhanced satiating capacities.

  12. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins.

    PubMed

    Okushima, Y; Koizumi, N; Kusano, T; Sano, H

    2000-02-01

    Cultured cells of tobacco BY2 secrete more than 100 proteins into culture medium. Six major proteins were purified, and partial protein sequences were determined. Five of them were found to be similar to an ascorbic acid oxidase, three peroxidase isozymes and a beta-1,3-exoglucanase, respectively. A cDNA clone encoding the remaining polypeptide, whose amino acid sequence showed no similarity with earlier reported proteins, was isolated. It encoded a putative 27 kDa protein of 242 amino acids with resemblance to WCI-5, a wheat protein induced by benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) which activates genes involved in systemic acquired resistance. Transcripts of this clone accumulated upon tobacco mosaic virus infection, mechanical wounding and drought treatment, an induction profile that satisfies the definition of pathogenesis-related (PR) proteins by van Loon et al. (Plant Mol. Biol. Rep. 12 (1994) 245). No similar PR proteins have so far been reported, and therefore our newly designated NtPRp27 points to the existence of a novel PR protein family in tobacco plants.

  13. Arabidopsis scaffold protein RACK1A interacts with diverse environmental stress and photosynthesis related proteins.

    PubMed

    Kundu, Nabanita; Dozier, Uvetta; Deslandes, Laurent; Somssich, Imre E; Ullah, Hemayet

    2013-05-01

    Scaffold proteins are known to regulate important cellular processes by interacting with multiple proteins to modulate molecular responses. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, expresses ubiquitously and plays regulatory roles in diverse signal transduction and stress response pathways. Here we present the use of Arabidopsis RACK1A, the predominant isoform of a 3-member family, as a bait to screen a split-ubiquitin based cDNA library. In total 97 proteins from dehydration, salt stress, ribosomal and photosynthesis pathways are found to potentially interact with RACK1A. False positive interactions were eliminated following extensive selection based growth potentials. Confirmation of a sub-set of selected interactions is demonstrated through the co-transformation with individual plasmid containing cDNA and the respective bait. Interaction of diverse proteins points to a regulatory role of RACK1A in the cross-talk between signaling pathways. Promoter analysis of the stress and photosynthetic pathway genes revealed conserved transcription factor binding sites. RACK1A is known to be a multifunctional protein and the current identification of potential interacting proteins and future in vivo elucidations of the physiological basis of such interactions will shed light on the possible molecular mechanisms that RACK1A uses to regulate diverse signaling pathways.

  14. Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis.

    PubMed

    de Groot, Martijn J; Sijens, Paul E; Reijngoud, Dirk-Jan; Paans, Anne M; van Spronsen, Francjan J

    2015-02-01

    In phenylketonuria, elevated plasma phenylalanine concentrations may disturb blood-to-brain large neutral amino acid (LNAA) transport and cerebral protein synthesis (CPS). We investigated the associations between these processes, using data obtained by positron emission tomography with l-[1-(11)C]-tyrosine ((11)C-Tyr) as a tracer. Blood-to-brain transport of non-Phe LNAAs was modeled by the rate constant for (11)C-Tyr transport from arterial plasma to brain tissue (K1), while CPS was modeled by the rate constant for (11)C-Tyr incorporation into cerebral protein (k3). Brain phenylalanine concentrations were measured by magnetic resonance spectroscopy in three volumes of interest (VOIs): supraventricular brain tissue (VOI 1), ventricular brain tissue (VOI 2), and fluid-containing ventricular voxels (VOI 3). The associations between k3 and each predictor variable were analyzed by multiple linear regression. The rate constant k3 was inversely associated with brain phenylalanine concentrations in VOIs 2 and 3 (adjusted R(2)=0.826, F=19.936, P=0.021). Since brain phenylalanine concentrations in these VOIs highly correlated with each other, the specific associations of each predictor with k3 could not be determined. The associations between k3 and plasma phenylalanine concentration, K1, and brain phenylalanine concentrations in VOI 1 were nonsignificant. In conclusion, our study shows an inverse association between k3 and increased brain phenylalanine concentrations.

  15. Chemical modification of proteins to improve the accuracy of their relative molecular mass determination by electrophoresis.

    PubMed

    Dolnik, Vladislav; Gurske, William A

    2011-10-01

    We studied the electrophoretic behavior of basic proteins (cytochrome c and histone III) and developed a carbamylation method that normalizes their electrophoretic size separation and improves the accuracy of their relative molecular mass determined electrophoretically. In capillary zone electrophoresis with cationic hitchhiking, native cytochrome c does not sufficiently bind cationic surfactants due to electrostatic repulsion between the basic protein and cationic surfactant. Carbamylation suppresses the strong positive charge of the basic proteins and results in more accurate relative molecular masses.

  16. A Novel Inhibitor of the Obesity-Related Protein FTO.

    PubMed

    Qiao, Yan; Zhou, Bin; Zhang, Meizi; Liu, Weijia; Han, Zhifu; Song, Chuanjun; Yu, Wenquan; Yang, Qinghua; Wang, Ruiyong; Wang, Shaomin; Shi, Shuai; Zhao, Renbin; Chai, Jijie; Chang, Junbiao

    2016-03-15

    Fe(II) and α-ketoglutarate-dependent fat mass and obesity associated protein (FTO)-dependent demethylation of m⁶A is important for regulation of mRNA splicing and adipogenesis. Developing FTO-specific inhibitors can help probe the biology of FTO and unravel novel therapeutic targets for treatment of obesity or obesity-associated diseases. In the present paper, we have identified that 4-chloro-6-(6'-chloro-7'-hydroxy-2',4',4'-trimethyl-chroman-2'-yl)benzene-1,3-diol (CHTB) is an inhibitor of FTO. The crystal structure of CHTB complexed with human FTO reveals that the novel small molecule binds to FTO in a specific manner. The identification of the novel small molecule offers opportunities for further development of more selective and potent FTO inhibitors.

  17. Centrin protein and genes in Trichomonas vaginalis and close relatives.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    2000-01-01

    Anti-centrin monoclonal antibodies 20H5 and 11B2 produced against Clamydomononas centrin decorated the group of basal bodies as well as very closely attached structures in all trichomonads studied and in the devescovinids Foaina and Devescovina. Moreover, these antibodies decorated the undulating membrane in Trichomonas vaginalis, Trichomitus batrachorum, and Tritrichomonas foetus, and the cresta in Foaina. Centrin was not demonstrated in the dividing spindle and paradesmosis. Immunogold labeling, both in pre- and post-embedding, confirmed that centrin is associated with the basal body cylinder and is a component of the nine anchoring arms between the terminal plate of flagellar bases and the plasma-membrane. Centrin is also associated with the hook-shaped fibers attached to basal bodies (F1, F3), the X-fiber, and along sigmoid fibers (F2) at the pelta-axostyle junction, which is the microtubule organizing center for pelta-axostyle microtubules. There was no labeling on the striated costa and parabasal fibers nor on microtubular pelta-axostyle, but the fibrous structure inside the undulating membrane was labeled in T. vaginalis. Two proteins of 22-20 kDa corresponding to the centrin molecular mass were recognized by immunoblotting using these antibodies in the three trichomonad species examined. By screening a T. vaginalis cDNA library with 20H5 antibody, two genes encoding identical protein sequences were found. The sequence comprises the 4 typical EF-hand Ca++-binding domains present in every known centrin. Trichomonad centrin is closer to the green algal cluster (70% identity) than to the yeast Cdc31 cluster (55% identity) or the Alveolata cluster (46% identity). PMID:10750840

  18. Protein variation in Adh and Adh-related in Drosophila pseudoobscura. Linkage disequilibrium between single nucleotide polymorphisms and protein alleles.

    PubMed Central

    Schaeffer, S W; Walthour, C S; Toleno, D M; Olek, A T; Miller, E L

    2001-01-01

    A 3.5-kb segment of the alcohol dehydrogenase (Adh) region that includes the Adh and Adh-related genes was sequenced in 139 Drosophila pseudoobscura strains collected from 13 populations. The Adh gene encodes four protein alleles and rejects a neutral model of protein evolution with the McDonald-Kreitman test, although the number of segregating synonymous sites is too high to conclude that adaptive selection has operated. The Adh-related gene encodes 18 protein haplotypes and fails to reject an equilibrium neutral model. The populations fail to show significant geographic differentiation of the Adh-related haplotypes. Eight of 404 single nucleotide polymorphisms (SNPs) in the Adh region were in significant linkage disequilibrium with three ADHR protein alleles. Coalescent simulations with and without recombination were used to derive the expected levels of significant linkage disequilibrium between SNPs and 18 protein haplotypes. Maximum levels of linkage disequilibrium are expected for protein alleles at moderate frequencies. In coalescent models without recombination, linkage disequilibrium decays between SNPs and high frequency haplotypes because common alleles mutate to haplotypes that are rare or that reach moderate frequency. The implication of this study is that linkage disequilibrium mapping has the highest probability of success with disease-causing alleles at frequencies of 10%. PMID:11606543

  19. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments.

    PubMed

    Na, Insung; Meng, Fanchi; Kurgan, Lukasz; Uversky, Vladimir N

    2016-08-16

    Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.

  20. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis.

  1. Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions.

    PubMed

    Hoffman, Laurel; Wang, Xu; Sanabria, Hugo; Cheung, Margaret S; Putkey, John A; Waxham, M Neal

    2015-08-01

    Protein signaling occurs in crowded intracellular environments, and while high concentrations of macromolecules are postulated to modulate protein-protein interactions, analysis of their impact at each step of the reaction pathway has not been systematically addressed. Potential cosolute-induced alterations in target association are particularly important for a signaling molecule like calmodulin (CaM), where competition among >300 targets governs which pathways are selectively activated. To explore how high concentrations of cosolutes influence CaM-target affinity and kinetics, we methodically investigated each step of the CaM-target binding mechanism under crowded or osmolyte-rich environments mimicked by ficoll-70, dextran-10, and sucrose. All cosolutes stabilized compact conformers of CaM and modulated association kinetics by affecting diffusion and rates of conformational change; however, the results showed that differently sized molecules had variable effects to enhance or impede unique steps of the association pathway. On- and off-rates were modulated by all cosolutes in a compensatory fashion, producing little change in steady-state affinity. From this work insights were gained on how high concentrations of inert crowding agents and osmolytes fit into a kinetic framework to describe protein-protein interactions relevant for cellular signaling. PMID:26244733

  2. Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions

    PubMed Central

    Hoffman, Laurel; Wang, Xu; Sanabria, Hugo; Cheung, Margaret S.; Putkey, John A.; Waxham, M. Neal

    2015-01-01

    Protein signaling occurs in crowded intracellular environments, and while high concentrations of macromolecules are postulated to modulate protein-protein interactions, analysis of their impact at each step of the reaction pathway has not been systematically addressed. Potential cosolute-induced alterations in target association are particularly important for a signaling molecule like calmodulin (CaM), where competition among >300 targets governs which pathways are selectively activated. To explore how high concentrations of cosolutes influence CaM-target affinity and kinetics, we methodically investigated each step of the CaM-target binding mechanism under crowded or osmolyte-rich environments mimicked by ficoll-70, dextran-10, and sucrose. All cosolutes stabilized compact conformers of CaM and modulated association kinetics by affecting diffusion and rates of conformational change; however, the results showed that differently sized molecules had variable effects to enhance or impede unique steps of the association pathway. On- and off-rates were modulated by all cosolutes in a compensatory fashion, producing little change in steady-state affinity. From this work insights were gained on how high concentrations of inert crowding agents and osmolytes fit into a kinetic framework to describe protein-protein interactions relevant for cellular signaling. PMID:26244733

  3. PPI-IRO: a two-stage method for protein-protein interaction extraction based on interaction relation ontology.

    PubMed

    Li, Chuan-Xi; Chen, Peng; Wang, Ru-Jing; Wang, Xiu-Jie; Su, Ya-Ru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identification of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifies and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At first, IRO is applied in a binary classifier to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the significant performance of IRO on relation sentences classification and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and BioInfer, respectively, which are superior to most existing extraction methods. PMID:25757257

  4. PPI-IRO: a two-stage method for protein-protein interaction extraction based on interaction relation ontology.

    PubMed

    Li, Chuan-Xi; Chen, Peng; Wang, Ru-Jing; Wang, Xiu-Jie; Su, Ya-Ru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identification of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifies and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At first, IRO is applied in a binary classifier to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the significant performance of IRO on relation sentences classification and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and BioInfer, respectively, which are superior to most existing extraction methods.

  5. Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus.

    PubMed

    Tanabe, Noriaki; Kimura, Ayako; Yoshimura, Kazuya; Shigeoka, Shigeru

    2009-06-01

    Serine/arginine-rich (SR) protein and its homologues (SR-related proteins) are important regulators of constitutive and/or alternative splicing and other aspects of mRNA metabolism. To clarify the contribution of a plant-specific and stress-responsive SR-related protein, atSR45a, to splicing events, here we analyzed the interaction of atSR45a with the other splicing factors by conducting a yeast two-hybrid assay and a bimolecular fluorescence complementation analysis. The atSR45a-1a and -2 proteins, the presumed mature forms produced by alternative splicing of atSR45a, interacted with U1-70K and U2AF(35)b, splicing factors for the initial definition of 5' and 3' splice sites, respectively, in the early stage of spliceosome assembly. Both proteins also interacted with themselves, other SR proteins (atSR45 and atSCL28), and PRP38-like protein, a homologue of the splicing factor essential for cleavage of the 5' splice site. The mapping of deletion mutants of atSR45a proteins revealed that the C-terminal arginine/serine-rich (RS) domain of atSR45a proteins are required for the interaction with U1-70K, U2AF(35)b, atSR45, atSCL28, PRP38-like protein, and themselves, and the N-terminal RS domain enhances the interaction efficiency. Interestingly, the distinctive N-terminal extension in atSR45a-1a protein, but not atSR45a-2 protein, inhibited the interaction with these splicing factors. These findings suggest that the atSR45a proteins help to form the bridge between 5' and 3' splice sites in the spliceosome assembly and the efficiency of spliceosome formation is affected by the expression ratio of atSR45a-1a and atSR45a-2. PMID:19238562

  6. Atherosclerosis-related functions of C-reactive protein

    PubMed Central

    Agrawal, Alok; Hammond, David J.; Singh, Sanjay K.

    2011-01-01

    C-reactive protein (CRP) is secreted by hepatocytes as a pentameric molecule made up of identical monomers, circulates in the plasma as pentamers, and localizes in atherosclerotic lesions. In some cases, localized CRP was detected by using monoclonal antibodies that did not react with native pentameric CRP but were specific for isolated monomeric CRP. It has been reported that, once CRP is bound to certain ligands, the pentameric structure of CRP is altered so that it can dissociate into monomers. Accordingly, the monomeric CRP found in atherosclerotic lesions may be a stationary, ligand-bound, by-product of a ligand-binding function of CRP. CRP binds to modified forms of low-density lipoprotein (LDL). The binding of CRP to oxidized LDL requires acidic pH conditions; the binding at physiological pH is controversial. The binding of CRP to enzymatically-modified LDL occurs at physiological pH; however, the binding is enhanced at acidic pH. Using enzymatically-modified LDL, CRP has been shown to prevent the formation of enzymatically-modified LDL-loaded macrophage foam cells. CRP is neither pro-atherogenic nor atheroprotective in ApoE−/− and ApoB100/100Ldlr −/− murine models of atherosclerosis, except in one study where CRP was found to be slightly atheroprotective in ApoB100/100Ldlr −/− mice. The reasons for the ineffectiveness of human CRP in murine models of atherosclerosis are not defined. It is possible that an inflammatory environment, such as those characterized by acidic pH, is needed for efficient interaction between CRP and atherogenic LDL during the development of atherosclerosis and to observe the possible atheroprotective function of CRP in animal models. PMID:20932269

  7. Large-scale identification of encystment-related proteins and genes in Pseudourostyla cristata

    PubMed Central

    Gao, Xiuxia; Chen, Fenfen; Niu, Tao; Qu, Ruidan; Chen, Jiwu

    2015-01-01

    The transformation of a ciliate into cyst is an advance strategy against an adverse situation. However, the molecular mechanism for the encystation of free-living ciliates is poorly understood. A large-scale identification of the encystment-related proteins and genes in ciliate would provide us with deeper insights into the molecular mechanisms for the encystations of ciliate. We identified the encystment-related proteins and genes in Pseudourostyla cristata with shotgun LC-MS/MS and scale qRT-PCR, respectively, in this report. A total of 668 proteins were detected in the resting cysts, 102 of these proteins were high credible proteins, whereas 88 high credible proteins of the 724 total proteins were found in the vegetative cells. Compared with the vegetative cell, 6 specific proteins were found in the resting cyst. However, the majority of high credible proteins in the resting cyst and the vegetative cell were co-expressed. We compared 47 genes of the co-expressed proteins with known functions in both the cyst and the vegetative cell using scale qRT-PCR. Twenty-seven of 47 genes were differentially expressed in the cyst compared with the vegetative cell. In our identifications, many uncharacterized proteins were also found. These results will help reveal the molecular mechanism for the formation of cyst in ciliates. PMID:26079518

  8. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.

    PubMed

    Kang, Hee Young; Suzuki, Itaru; Lee, Dong Jun; Ha, Jaehyun; Reiniche, Pascale; Aubert, Jérôme; Deret, Sophie; Zugaj, Didier; Voegel, Johannes J; Ortonne, Jean-Paul

    2011-08-01

    Melasma is a commonly acquired hyperpigmentary disorder of the face, but its pathogenesis is poorly understood and its treatment remains challenging. We conducted a comparative histological study on lesional and perilesional normal skin to clarify the histological nature of melasma. Significantly, higher amounts of melanin and of melanogenesis-associated proteins were observed in the epidermis of lesional skin, and the mRNA level of tyrosinase-related protein 1 was higher in lesional skin, indicating regulation at the mRNA level. However, melanocyte numbers were comparable between lesional and perilesional skin. A transcriptomic study was undertaken to identify genes involved in the pathology of melasma. A total of 279 genes were found to be differentially expressed in lesional and perilesional skin. As was expected, the mRNA levels of a number of known melanogenesis-associated genes, such as tyrosinase, were found to be elevated in lesional skin. Bioinformatics analysis revealed that the most lipid metabolism-associated genes were downregulated in lesional skin, and this finding was supported by an impaired barrier function in melasma. Interestingly, a subset of Wnt signaling modulators, including Wnt inhibitory factor 1, secreted frizzled-related protein 2, and Wnt5a, were also found to be upregulated in lesional skin. Immunohistochemistry confirmed the higher expression of these factors in melasma lesions.

  9. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction

    PubMed Central

    Quan, Chanqin

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task. PMID:27493967

  10. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction.

    PubMed

    Hua, Lei; Quan, Chanqin

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task. PMID:27493967

  11. Improved Computation of Protein-Protein Relative Binding Energies with the Nwat-MMGBSA Method.

    PubMed

    Maffucci, Irene; Contini, Alessandro

    2016-09-26

    A MMGBSA variant (here referred to as Nwat-MMGBSA), based on the inclusion of a certain number of explicit water molecules (Nwat) during the calculations, has been tested on a set of 20 protein-protein complexes, using the correlation between predicted and experimental binding energy as the evaluation metric. Besides the Nwat parameter, the effect of the force field, the molecular dynamics simulation length, and the implicit solvent model used in the MMGBSA analysis have been also evaluated. We found that considering 30 interfacial water molecules improved the correlation between predicted and experimental binding energies by up to 30%, compared to the standard approach. Moreover, the correlation resulted in being rather sensitive to the force field and, to a minor extent, to the implicit solvent model and to the length of the MD simulation. PMID:27500550

  12. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction.

    PubMed

    Hua, Lei; Quan, Chanqin

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task.

  13. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    SciTech Connect

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  14. Total protein, animal protein and physical activity in relation to muscle mass in middle-aged and older Americans.

    PubMed

    Morris, Martha Savaria; Jacques, Paul F

    2013-04-14

    Resistance training is recognised as a good strategy for retarding age-related declines in muscle mass and strength. Recent studies have also highlighted the potential value of protein intakes in excess of present recommendations. The roles that leisure-time physical activity and protein quality play in the preservation of skeletal muscle during ageing, and how such influences interact in free-living people are unclear. We sought to clarify these issues using data collected on 2425 participants aged ≥ 50 years in the US National Health and Nutrition Examination Survey (2003-2006). We estimated subjects' usual intakes of total protein and beef from two 24 h diet recalls and computed the appendicular skeletal muscle mass index from anthropometric measures. Participants self-reported their physical activity levels. Analyses accounted for demographic factors and smoking. The association between muscle-strengthening activity and the appendicular skeletal muscle mass index varied with protein intake. Furthermore, among obese subjects with protein intakes < 70 g/d, those who performed such activities had a lower appendicular skeletal muscle mass index than those who were physically inactive. Protein intakes above the present recommendations were associated with benefits to obese subjects only. The appendicular skeletal muscle mass index of non-obese subjects who performed vigorous aerobic activities was consistently high; in obese subjects, it varied with protein intake. High-protein intake was associated with a modest increase in the appendicular skeletal muscle mass index in non-obese, physically inactive subjects. The present findings reinforce the idea that muscle-strengthening exercise preserves muscle when combined with adequate dietary protein. Vigorous aerobic activity may also help.

  15. Proteomics Based Identification of Cell Migration Related Proteins in HBV Expressing HepG2 Cells

    PubMed Central

    Feng, Huixing; Li, Xi; Chan, Vincent; Chen, Wei Ning

    2014-01-01

    Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis. PMID:24763314

  16. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates.

    PubMed

    Panda, Subhamay; Chandra, Goutam

    2012-01-01

    Snake venom contains a diverse array of proteins and polypeptides. Cytotoxins and short neurotoxins are non-enzymatic polypeptide components of snake venom. The three-dimensional structure of cytotoxin and short neurotoxin resembles a three finger appearance of three-finger protein super family. Different family members of three-finger protein super family are employed in diverse biological functions. In this work we analyzed the cytotoxin, short neurotoxin and related non-toxin proteins of other chordates in terms of functional analysis, amino acid compositional (%) profile, number of amino acids, molecular weight, theoretical isoelectric point (pI), number of positively charged and negatively charged amino acid residues, instability index and grand average of hydropathy with the help of different bioinformatical tools. Among all interesting results, profile of amino acid composition (%) depicts that all sequences contain a conserved cysteine amount but differential amount of different amino acid residues which have a family specific pattern. Involvement in different biological functions is one of the driving forces which contribute the vivid amino acid composition profile of these proteins. Different biological system dependent adaptation gives the birth of enriched bio-molecules. Understanding of physicochemical properties of these proteins will help to generate medicinally important therapeutic molecules for betterment of human lives.

  17. Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors.

    PubMed

    Nagano, Kazuya; Imai, Sunao; Zhao, Xiluli; Yamashita, Takuya; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko; Nakagawa, Shinsaku; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2015-07-01

    Metastasis is an important prognosis factor in lung cancer, therefore, it is imperative to identify target molecules and elucidate molecular mechanism of metastasis for developing new therapeutics and diagnosis methods. We searched for metastasis-related proteins by utilizing a novel antibody proteome technology developed in our laboratory that facilitated efficient screening of useful target proteins. Two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis identified sixteen proteins, which were highly expressed in metastatic lung cancer cells, as protein candidates. Monoclonal single-chain variable fragments (scFvs) binding to candidates were isolated from a scFv-displaying phage library by affinity selection. Tissue microarray analysis of scFvs binding to candidates revealed that oxysterol binding protein-like 5 (OSBPL5) and calumenin (CALU) were expressed at a significantly higher levels in the lung tissues of metastasis-positive cases than that in the metastasis-negative cases (OSBPL5; p=0.0156, CALU; p=0.0055). Furthermore, 80% of OSBPL5 and CALU double-positive cases were positive for lymph node metastasis. Consistent with these observations, overexpression of OSBPL5 and CALU promoted invasiveness of lung cancer cells. Conversely, knockdown of these proteins using respective siRNAs reversed the invasiveness of the lung cancer cells. Moreover, these proteins were expressed in lung tumor tissues, but not in normal lung tissues. In conclusion, OSBPL5 and CALU are related to metastatic potential of lung cancer cells, and they could be useful targets for cancer diagnosis and also for development of drugs against metastasis.

  18. The Dishevelled Protein Family: Still Rather a Mystery After Over 20 Years of Molecular Studies

    PubMed Central

    Mlodzik, Marek

    2016-01-01

    Dishevelled (Dsh) is a key component of Wnt-signaling pathways and possibly also has other functional requirements. Dsh appears to be a key factor to interpret Wnt signals coming via the Wnt-receptor family, the Frizzled proteins, from the plasma membrane and route them into the correct intracellular pathways. However, how Dsh is regulated to relay signal flow to specific and distinct cellular responses upon interaction with the same Wnt-receptor family remains very poorly understood. PMID:26969973

  19. Sequence-related human proteins cluster by degree of evolutionary conservation.

    PubMed

    Mrowka, Ralf; Patzak, Andreas; Herzel, Hanspeter; Holste, Dirk

    2004-11-01

    Gene duplication followed by adaptive evolution is thought to be a central mechanism for the emergence of novel genes. To illuminate the contribution of duplicated protein-coding sequences to the complexity of the human genome, we study the connectivity of pairwise sequence-related human proteins and construct a network (N) of linked protein sequences with shared similarities. We find that (i) the connectivity distribution P (k) for k sequence-related proteins decays as a power law P (k) approximately k(-gamma) with gamma approximately 1.2 , (ii) the top rank of N consists of a single large cluster of proteins ( approximately 70%) , while bottom ranks consist of multiple isolated clusters, and (iii) structural characteristics of N show both a high degree of clustering and an intermediate connectivity ("small-world" features). We gain further insight into structural properties of N by studying the relationship between the connectivity distribution and the phylogenetic conservation of proteins in bacteria, plants, invertebrates, and vertebrates. We find that (iv) the proportion of sequence-related proteins increases with increasing extent of evolutionary conservation. Our results support that small-world network properties constitute a footprint of an evolutionary mechanism and extend the traditional interpretation of protein families.

  20. Sequence-related human proteins cluster by degree of evolutionary conservation

    NASA Astrophysics Data System (ADS)

    Mrowka, Ralf; Patzak, Andreas; Herzel, Hanspeter; Holste, Dirk

    2004-11-01

    Gene duplication followed by adaptive evolution is thought to be a central mechanism for the emergence of novel genes. To illuminate the contribution of duplicated protein-coding sequences to the complexity of the human genome, we study the connectivity of pairwise sequence-related human proteins and construct a network (N) of linked protein sequences with shared similarities. We find that (i) the connectivity distribution P(k) for k sequence-related proteins decays as a power law P(k)˜k-γ with γ≈1.2 , (ii) the top rank of N consists of a single large cluster of proteins (≈70%) , while bottom ranks consist of multiple isolated clusters, and (iii) structural characteristics of N show both a high degree of clustering and an intermediate connectivity (“small-world” features). We gain further insight into structural properties of N by studying the relationship between the connectivity distribution and the phylogenetic conservation of proteins in bacteria, plants, invertebrates, and vertebrates. We find that (iv) the proportion of sequence-related proteins increases with increasing extent of evolutionary conservation. Our results support that small-world network properties constitute a footprint of an evolutionary mechanism and extend the traditional interpretation of protein families.

  1. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.

  2. Pathogenesis-Related Proteins Limit the Retention of Condensed Tannin Additions to Red Wines.

    PubMed

    Springer, Lindsay F; Sherwood, Robert W; Sacks, Gavin L

    2016-02-17

    Exogenous additions of condensed tannin (CT) to must or wine are a common winemaking practice, but many studies have reported inexplicably low and variable retention of added CT. We observed that additions of purified CT to red wines can result in the formation of an insoluble precipitate with high nitrogen content. Proteomic analysis of the precipitant identified several classes of pathogenesis-related proteins. Proteins in juices and red wines were quantitated by SDS-PAGE and were highest in native Vitis spp., followed by interspecific hybrids and Vitis vinifera. Wine protein was positively correlated with the ratio of juice protein to the quantity of tannin derived from fruit. The binding of added CT by wine protein could be well modeled by the Freundlich equation. These observations may explain the poor CT retention in previous studies, particularly for interspecific hybrids, and also indicate that protein removal during winemaking may improve exogenous CT retention.

  3. Comparative proteomic analysis of plasma proteins in patients with age-related macular degeneration

    PubMed Central

    Xu, Xin-Rong; Zhong, Lu; Huang, Bing-Lin; Wei, Yuan-Hua; Zhou, Xin; Wang, Ling; Wang, Fu-Qiang

    2014-01-01

    AIM To find the significant altered proteins in age-related macular degeneration (AMD) patients as potential biomarkers of AMD. METHODS A comparative analysis of the protein pattern of AMD patients versus healthy controls was performed by means of proteomic analysis using two-dimensional gel electrophoresis followed by protein identification with MALDI TOF/TOF mass spectrometry. RESULTS We identified 28 proteins that were significantly altered with clinical relevance in AMD patients. These proteins were involved in a wide range of biological functions including immune responses, growth cytokines, cell fate determination, wound healing, metabolism, and anti-oxidance. CONCLUSION These results demonstrate the capacity of proteomic analysis of AMD patient plasma. In addition to the utility of this approach for biomarker discovery, identification of alterations in endogenous proteins in the plasma of AMD patient could improve our understanding of the disease pathogenesis. PMID:24790867

  4. Are Pathogenesis-Related Proteins Induced by Meloidogne javanica or Heterodera avenae lnvasion?

    PubMed Central

    Oka, Y.; Chet, I.; Spiegel, Y.

    1997-01-01

    Changes in root- and leaf-soluble proteins were investigated in tomato after invasion by the root-knot nematode Meloidogyne javanica, or in barley and wheat after invasion by the cereal cyst nematode Heterodera avenae. Infection of susceptible tomato plants by M. javanica did not cause any change in the soluble-protein composition of leaves or roots compared with uninoculated plants at an early infection stage. No pathogenesis-related proteins (chitinase, glucanase, or P-14) were induced in the leaf apoplast. Changes in leaf proteins were not observed after invasion of wheat cultivars by H. avenae, whereas, in barley, a few changes in intercellular leaf proteins were recorded in resistant cultivars. These changes, however, were not the same among different H. avenae-resistant cultivars. Protein changes were found at an early stage of infection in barley and wheat roots infected with H. avenae, but no difference was found between resistant and susceptible cultivars. PMID:19274187

  5. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    PubMed Central

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  6. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  7. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  8. Dysregulation of memory-related proteins in the hippocampus of aged rats and their relation with cognitive impairment.

    PubMed

    Monti, Barbara; Berteotti, Chiara; Contestabile, Antonio

    2005-01-01

    In the present experiments, we used conditioned fear to study whether changes in expression or functional state of proteins known to be involved in hippocampal learning could suggest correlation with age-related memory deficits. We focused on both alterations constitutively present in the hippocampus of aged rats and alterations related to different learning responses. Our results point at the dysregulation of the phosphorylation state of CREB in the hippocampus of aged rats as a primary biochemical correlate of their impaired memory. Other proteins, known to be important for various steps of memory formation and consolidation and linked to CREB, are to some extent altered in their constitutive expression or in the response to learning in the aged hippocampus. In particular, phosphorylated CREB and Arc, a protein functionally related to CREB in memory consolidation, are both present at constitutively higher levels in the hippocampus of aged rats, but they are not susceptible to the learning-related up-regulation occurring in young adults. Two other CREB-regulated proteins involved in memory consolidation, the neurotrophin BDNF and the transcription factor C/EBPbeta, are expressed at similar levels in the hippocampus of young-adult and aged rats, but their response to conditioned fear learning appears dysregulated by aging. Calcineurin, a protein phosphatase having CREB among its substrates and whose expression negatively correlates with learning, is more expressed in the hippocampus of aged rats. However, while calcineurin expression decreases in the hippocampus of young adults after learning, no changes are observed in the hippocampus of aged, learning-impaired rats. PMID:16086428

  9. Divergence of function in sequence-related groups of Escherichia coli proteins.

    PubMed

    Nahum, L A; Riley, M

    2001-08-01

    The most prominent mechanism of molecular evolution is believed to have been duplication and divergence of genes. Proteins that belong to sequence-related groups in any one organism are candidates to have emerged from such a process and to share a common ancestor. Groups of proteins in Escherichia coli having sequence similarity are mostly composed of proteins with closely related function, but some groups comprise proteins with unrelated functions. In order to understand how function can change while sequences remain similar, we have examined some of these groups in detail. The enzymes analyzed in this work include representatives of amidotransferases, phosphotransferases, decarboxylases, and others. Most sequence-related groups contain enzymes that are in the same classes of Enzyme Commission (EC) numbers. We have concentrated on groups that are heterogeneous in that respect, and also on groups containing more than one enzyme of any pathway. We find that although the EC number may differ, the reaction chemistry of these sequence-related proteins is the same or very similar. Some of these families illustrate how diversification has taken place in evolution, using common features of either reaction chemistry or ligand specificity, or both, to create catalysts for different kinds of biochemical reactions. This information has relevance to the area of functional genomics in which the activities of gene products of unknown reading frames are attributed by analogy to the functions of sequence-related proteins of known function.

  10. The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins.

    PubMed

    McElver, J; Patton, D; Rumbaugh, M; Liu, C; Yang, L J; Meinke, D

    2000-08-01

    The titan (ttn) mutants of Arabidopsis exhibit dramatic alterations in mitosis and cell cycle control during seed development. Endosperm development in these mutants is characterized by the formation of giant polyploid nuclei with enlarged nucleoli. Embryo development is accompanied by significant cell enlargement in some mutants (ttn1 and ttn5) but not others (ttn2 and ttn3). We describe here the molecular cloning of TTN5 using a T-DNA-tagged allele. A second allele with a similar phenotype contains a nonsense mutation in the same coding region. The predicted protein is related to ADP ribosylation factors (ARFs), members of the RAS family of small GTP binding proteins that regulate various cellular functions in eukaryotes. TTN5 is most closely related in sequence to the ARL2 class of ARF-like proteins isolated from humans, rats, and mice. Although the cellular functions of ARL proteins remain unclear, the ttn5 phenotype is consistent with the known roles of ARFs in the regulation of intracellular vesicle transport.

  11. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response

    PubMed Central

    Cheng, Jing-Hua; Sun, Ying-Jie; Zhang, Fan-Qing; Zhang, Xiao-Rong; Qiu, Xv-Sheng; Yu, Li-Ping; Wu, Yan-Tao; Ding, Chan

    2016-01-01

    Newcastle disease virus (NDV) can replicate and trigger autophagy in human tumor cells. Our previous study confirmed the critical role of autophagy in NDV infection. Here we studied the role of NDV structural proteins in the induction of autophagy through endoplasmic reticulum (ER) stress-related unfolded protein response (UPR) pathways. Ectopic expression of the NDV nucleocapsid protein (NP) or phosphoprotein (P) was sufficient to induce autophagy. NP or P expression also altered ER homeostasis. The PERK and ATF6 pathways, but not the XBP1 pathway, all of which are components of the UPR, were activated in both NDV-infected and NP or P-transfected cells. Knockdown of PERK or ATF6 inhibited NDV-induced autophagy and reduced the extent of NDV replication. Collectively, these data suggest not only roles for the NDV NP and P proteins in autophagy, but also offer new insights into the mechanisms of NDV-induced autophagy through activation of the ER stress-related UPR pathway. PMID:27097866

  12. Methyl jasmonate induces extracellular pathogenesis-related proteins in cell cultures of Capsicum chinense

    PubMed Central

    Belchí-Navarro, Sarai; Barceló, Alfonso Ros

    2011-01-01

    Suspension cultured cells of Capsicum chinense secrete proteins to the culture medium in both control conditions and under methyl jasmonate treatment. The exogenous application of methyl jasmonate induced the accumulation of putative pathogenesis-related proteins, class I chitinase, leucin-rich repeat protein, NtPRp27-like protein and pectinesterase which were also found in suspension cultured cells of C. annuum elicited with methyl jasmonate. However, a germin-like protein, which has never been described in methyl jasmonate-elicited C. chinense suspension cultured cells, was found. The different effects described as being the result of exogenous application of signalling molecules like methyl jasmonate on the expression of germin-like protein suggest that germin-like proteins may play a variety of roles in protecting plants against pathogen attacks and different stresses. Further studies will be necessary to characterize the differential expression of these pathogenesis-related proteins and to throw light on the complexity of their regulation. PMID:21346408

  13. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease.

    PubMed

    Makioka, Kouki; Yamazaki, Tsuneo; Takatama, Masamitsu; Ikeda, Masaki; Murayama, Shigeo; Okamoto, Koichi; Ikeda, Yoshio

    2016-06-15

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Its pathological hallmarks are senile plaques (SPs), which contain extracellular deposits of amyloid β (Aβ) protein fibrils and dystrophic neurites (DNs), and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. Impairment of protein-degradation systems, including the ubiquitin-proteasome and the autophagy-lysosome systems, has been proposed as one of the causes of the accumulation of these aberrant proteins in AD brains. Tom1 (target of Myb1) was originally identified by the induction of its expression by the v-Myb oncogene and is a part of two major protein-degradation systems. The present study was conducted by immunohistochemical and immunofluorescent stainings to show that Tom1 was localized in DNs, perisomatic granules (PSGs), and NFTs in AD brains. Moreover, in DNs, Tom1 colocalized with ubiquitin, lysosomal proteins, and Tom1-related proteins (Tollip and myosin VI), which act in both protein-degradation systems via Tom1. These results indicate that Tom1 plays important roles in protein-degradation systems in AD pathogenesis.

  14. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease.

    PubMed

    Makioka, Kouki; Yamazaki, Tsuneo; Takatama, Masamitsu; Ikeda, Masaki; Murayama, Shigeo; Okamoto, Koichi; Ikeda, Yoshio

    2016-06-15

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Its pathological hallmarks are senile plaques (SPs), which contain extracellular deposits of amyloid β (Aβ) protein fibrils and dystrophic neurites (DNs), and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. Impairment of protein-degradation systems, including the ubiquitin-proteasome and the autophagy-lysosome systems, has been proposed as one of the causes of the accumulation of these aberrant proteins in AD brains. Tom1 (target of Myb1) was originally identified by the induction of its expression by the v-Myb oncogene and is a part of two major protein-degradation systems. The present study was conducted by immunohistochemical and immunofluorescent stainings to show that Tom1 was localized in DNs, perisomatic granules (PSGs), and NFTs in AD brains. Moreover, in DNs, Tom1 colocalized with ubiquitin, lysosomal proteins, and Tom1-related proteins (Tollip and myosin VI), which act in both protein-degradation systems via Tom1. These results indicate that Tom1 plays important roles in protein-degradation systems in AD pathogenesis. PMID:27206884

  15. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    PubMed

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  16. Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis.

    PubMed

    Aranda-Sicilia, María Nieves; Trusov, Yuri; Maruta, Natsumi; Chakravorty, David; Zhang, Yuelin; Botella, José Ramón

    2015-09-01

    Heterotrimeric G proteins (G-proteins) are versatile signaling elements conserved in Eukaryotes. In animals G-proteins relay signals from 7-transmembrane spanning G protein-coupled receptors (GPCRs) to intracellular downstream effectors; however, the existence of GPCRs in plants is controversial. Contrastingly, a surplus of receptor-like kinases (RLKs) provides signal recognition at the plant cell surface. It is established that G proteins are involved in plant defense and suggested that they relay signals from defense-related RLKs. However, it is unclear how the signaling is conducted, as physical interaction between the RLKs and G proteins has not been demonstrated. Using yeast split-ubiquitin system and Bimolecular Fluorescence Complementation assays, we demonstrate physical interaction between the Gα, Gγ1 and Gγ2 subunits, and the defense-related RD-type receptor like kinases CERK1, BAK1 and BIR1. At the same time, no interaction was detected with the non-RD RLK FLS2. We hypothesize that G-proteins mediate signal transduction immediately downstream of the pathogenesis-related RLKs.

  17. The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles.

    PubMed Central

    Murillo, I; Cavallarin, L; San Segundo, B

    1997-01-01

    Pathogenesis-related (PR) proteins are plant proteins induced in response to infection by pathogens. In this study, an antibody raised against the maize PRms protein was used to localize the protein in fungal-infected maize radicles. The PRms protein was found to be localized at the contact areas between parenchyma cells of the differentiating protoxylem elements. By using immunoelectron microscopy, we found that these immunoreactive regions correspond to plasmodesmal regions. This was also true for the parenchyma cells filling the central pith of the vascular cylinder, although PRms mRNA accumulation was not detected in these cells. These findings suggest that for one cell type, the parenchyma cells of the central pith, the protein is imported rather than synthesized. The localization of the PRms protein indicates the possible existence of mechanisms for sorting of plant proteins to plasmodesmata and suggests that this protein may have a specialized function in the plant defense response. These findings are discussed with respect to the structure and function of plasmodesmata in cell-to-cell communication processes in higher plants. PMID:9061947

  18. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  19. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  20. Interactions between Small Heat Shock Protein α-Crystallin and Galectin-Related Interfiber Protein (GRIFIN) in the Ocular Lens†

    PubMed Central

    Barton, Kelly A.; Hsu, Cheng-Da; Petrash, J. Mark

    2013-01-01

    As a member of the small heat shock protein superfamily, α-crystallin has a chaperone-like ability to recognize and bind denatured or unfolded proteins and prevent their aggregation. Recent studies suggest that α-crystallin may also interact with a variety of proteins under native conditions in vitro. To identify potential binding partners for α-crystallin in the intact ocular lens, we conducted cross-linking studies in transgenic mouse lenses designed for overexpression of His-tagged human αA-crystallin. Interacting proteins were copurified with the epitope-tagged crystallin complexes and were identified by tandem mass spectrometry. This approach identified GRIFIN (galectin-related interfiber protein) as a novel binding partner. Consistent with results from cross-linking, GRIFIN subunits copurified with α-crystallin complexes during size exclusion chromatography of nontransgenic mouse lens extracts prepared without chemical cross-linking. Equilibrium binding to GRIFIN was studied using native α-crystallin isolated from calf lenses as well as oligomeric complexes reconstituted from recombinant αA- and αB-crystallin subunits. Calf lens α-crystallin binds GRIFIN with relatively high affinity (Kd=6.5 ± 0.8 μM) at a stoichiometry of 0.25 ± 0.01 GRIFIN monomer/α-crystallin subunit. The binding interaction between α-crystallin and GRIFIN is enhanced up to 5-fold in the presence of 3 mM ATP. These binding data support the hypothesis that GRIFIN is a novel binding partner of α-crystallin in the lens. PMID:19296714

  1. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    SciTech Connect

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  2. Dimerization of complement factor H-related proteins modulates complement activation in vivo.

    PubMed

    Goicoechea de Jorge, Elena; Caesar, Joseph J E; Malik, Talat H; Patel, Mitali; Colledge, Matthew; Johnson, Steven; Hakobyan, Svetlana; Morgan, B Paul; Harris, Claire L; Pickering, Matthew C; Lea, Susan M

    2013-03-19

    The complement system is a key component regulation influences susceptibility to age-related macular degeneration, meningitis, and kidney disease. Variation includes genomic rearrangements within the complement factor H-related (CFHR) locus. Elucidating the mechanism underlying these associations has been hindered by the lack of understanding of the biological role of CFHR proteins. Here we present unique structural data demonstrating that three of the CFHR proteins contain a shared dimerization motif and that this hitherto unrecognized structural property enables formation of both homodimers and heterodimers. Dimerization confers avidity for tissue-bound complement fragments and enables these proteins to efficiently compete with the physiological complement inhibitor, complement factor H (CFH), for ligand binding. Our data demonstrate that these CFHR proteins function as competitive antagonists of CFH to modulate complement activation in vivo and explain why variation in the CFHRs predisposes to disease.

  3. Identification of a mouse TBP-like protein (TLP) distantly related to the drosophila TBP-related factor.

    PubMed

    Ohbayashi, T; Makino, Y; Tamura, T A

    1999-02-01

    TATA-binding protein (TBP) is an essential factor for eukaryotic transcription. In this study, we demonstrated a mouse cDNA encoding a 21 kDa TBP-like protein (TLP). The TLP ORF, carrying 186 amino acids, covered the entire 180 amino acids of the C-terminal conserved domain of mouse TBP with 39% identity and 76% similarity. Northern blot analysis demonstrated that TLP mRNAs were expressed in various mammalian tissues ubiquitously and that their distribution pattern was analogous to that of TBP. By using anti-TLP antibody, we demonstrated the existence of TLP proteins in various mammalian cells and tissues. The Drosophila TBP-related factor (TRF) is a neurogenesis-related transcription factor that binds to the TATA-box and activates transcription. TLP did not bind to the TATA-box nor direct transcription initiation. Multiple amino acids critical for TBP function were deleted or substituted in TLP, while amino acids in Drosophila TRF much resembled those in TBP. Similarity between Drosophila TRF and mouse TLP was considerably lower (alignment score 35) than that between Drosophila TBP and mouse TBP (alignment score 88). Identity of nucleotide sequences between mouse and putative human TLPs (94%) was higher than that between TBPs (91%) in these two animals. Expression of TLP was nearly constant throughout the P19 differentiation process. Accordingly, we suggest that, even if higher eukaryotes generally contain multiple tbp -related genes, TLP is not a bona fide mammalian counterpart of Drosophila TRF.

  4. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    PubMed Central

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  5. Protein markers for identification of Yersinia pestis and their variation related to culture

    SciTech Connect

    Wunschel, David S.; Engelmann, Heather E.; Victry, Kristin D.; Clowers, Brian H.; Sorensen, Christina M.; Valentine, Nancy B.; Mahoney Fahey, Christine M.; Wietsma, Thomas W.; Wahl, Karen L.

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y. pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.

  6. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    PubMed

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  7. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    PubMed

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  8. Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae

    PubMed Central

    Dick, Jeffrey M

    2009-01-01

    Background Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. Presentation and implications of the hypothesis I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments. Testing the hypothesis Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments. Results The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion – cytoplasm – nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages

  9. A topologically related singularity suggests a maximum preferred size for protein domains.

    PubMed

    Zbilut, Joseph P; Chua, Gek Huey; Krishnan, Arun; Bossa, Cecilia; Rother, Kristian; Webber, Charles L; Giuliani, Alessandro

    2007-02-15

    A variety of protein physicochemical as well as topological properties, demonstrate a scaling behavior relative to chain length. Many of the scalings can be modeled as a power law which is qualitatively similar across the examples. In this article, we suggest a rational explanation to these observations on the basis of both protein connectivity and hydrophobic constraints of residues compactness relative to surface volume. Unexpectedly, in an examination of these relationships, a singularity was shown to exist near 255-270 residues length, and may be associated with an upper limit for domain size. Evaluation of related G-factor data points to a wide range of conformational plasticity near this point. In addition to its theoretical importance, we show by an application of CASP experimental and predicted structures, that the scaling is a practical filter for protein structure prediction. PMID:17154417

  10. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  11. Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; Serroyen, Jan; van Baak, Marleen A

    2014-08-28

    Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised that lower postprandial total peripheral resistance (TPR) and BP levels would be accompanied by higher plasma concentrations of nitric oxide, insulin, glucagon-like peptide 1 (GLP-1) and glucagon. On separate occasions, six meals were tested in a randomised order in forty-eight overweight or obese adults with untreated elevated BP. Postprandial responses of TPR, BP and plasma concentrations of insulin, glucagon, GLP-1 and nitrite, nitroso compounds (RXNO) and S-nitrosothiols (NO(x)) were measured for 4 h. No differences were observed in TPR responses. Postprandial BP levels were higher after the ingestion of the egg-white-protein meal than after that of meals containing the other two proteins (P≤ 0·01). The ingestion of the pea-protein meal induced the highest NO(x) response (P≤ 0·006). Insulin and glucagon concentrations were lowest after the ingestion of the egg-white-protein meal (P≤ 0·009). Postprandial BP levels were lower after the ingestion of the maltodextrin meal than after that of the protein mix and sucrose meals (P≤ 0·004), while postprandial insulin concentrations were higher after the ingestion of the maltodextrin meal than after that of the sucrose and protein mix meals after 1-2 h (P≤ 0·0001). Postprandial NO(x), GLP-1 and glucagon concentrations were lower after the ingestion of the maltodextrin meal than after that of the protein mix meal (P≤ 0·008). In conclusion, different protein and carbohydrate sources induce different postprandial BP-related responses, which may be important for BP management. Lower postprandial BP levels are not

  12. Polyproteins related to the major core protein of mouse mammary tumor virus.

    PubMed Central

    Dickson, C; Atterwill, M

    1978-01-01

    The mouse mammary tumor virus (MuMTV) contains several low-molecular-weight proteins which, together with the genomic RNA, constitute the core structure of the virion. The most abundant protein in the core is the 27,000-dalton protein (p27), and, by analogy to the type C viruses, this protein probably forms the core shell. In mouse mammary tumor cell lines (GR and Mm5MT) producing MuMTV the major p57 antigenic specificity resides in a large protein, which migrates in polyacrylamide gels as a doublet of 77,000 and 75,000 daltons (p 77/75). A series of lower-molecular-weight proteins, p61, p48, p38, and p34, is also present in small amounts and is probably derived by proteolytic cleavage of the p 77/75. These proteins have been identified by immunoprecipitation with monospecific antiserum, and their sequence relatedness to p27 has been determined by an analysis of the peptides after trypsin digestion. After a 15-min pulse with [35S]-methionine, all of the p27-related proteins in these cell lines were labelled and, during a subsequent chase, progressively disappeared. The p27 was labeled poorly during the pulse, but the amount of label in this protein increased during the chase. A quantitation of these experiments suggested that the majority of the p27-related proteins were quite rapidly turned over in these cell lines. Hence, if p27 is derived by a progressive proteolytic cleavage mechanism, then the process is inefficient in the GR cells and only moderately efficient in the Mm5MT cells. When MuMTV was isolated from the culture medium of these cells harvested at 5-min intervals, the major p27-related protein was p34. The p27 accounted for only 29% of the anti-p27 serum immunoprecipitable proteins compared to 95% in virus isolated from an 18-h harvest. Incubation of the rapid-harvest virus at 37 degrees C for 2 h resulted in some conversion of p34 to p27. These results suggest that some of the p27 in MuMTV is formed in the virions by proteolytic cleavage of p34

  13. Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics.

    PubMed

    Liang, Yu; Chen, Hui; Tang, Ming-Juan; Yang, Ping-Fang; Shen, Shi-Hua

    2007-11-01

    Photosynthesis-related proteins and PSII functions of Jatropha curcas seedlings under cold stress were studied using proteomic and chlorophyll fluorescence approaches. The results of chlorophyll fluorescence measurement indicated that electron transport flux per reaction center (ET(o)/RC) and performance index (PI(ABS)) were relatively sensitive to low temperature, especially at early stage of cold stress. The increase in O-J phase and decrease in J-I phase of chlorophyll fluorescence transient indicated a protection mechanism of J. curcas to photoinhibition at early stage of cold stress. Eight photosynthesis-related proteins significantly changed during cold stress were identified using liquid chromatography MS/MS. Results of correlation analyses between photosynthesis-related proteins and chlorophyll fluorescence parameters indicated that (1) ATP synthase and Rieske FeS protein were significantly correlated with electron transport of reaction center in PSII; (2) precursor for 33-kDa protein was positively correlated with fluorescence quenching of the O-J and J-I phases and PI(ABS) during cold stress, which implies that it might be related to multiple process in PSII; (3) contrary correlations were found between F(J) - F(o) and two enzymes in the Calvin cycle, and the relations between these proteins and PSII function were unclear. The combined study using proteomic approaches and chlorophyll fluorescence measurements indicated that the early-stage (0-12 h) acclimation of PSII and the late-stage (after 24 h) H(2)O(2) scavenging might be involved in the cold response mechanisms of J. curcas seedlings.

  14. Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission.

    PubMed

    St-Denis, Nicole; Gupta, Gagan D; Lin, Zhen Yuan; Gonzalez-Badillo, Beatriz; Pelletier, Laurence; Gingras, Anne-Claude

    2015-04-01

    The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein-protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to

  15. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  16. KinetochoreDB: a comprehensive online resource for the kinetochore and its related proteins.

    PubMed

    Li, Chen; Androulakis, Steve; Buckle, Ashley M; Song, Jiangning

    2016-01-01

    KinetochoreDB is an online resource for the kinetochore and its related proteins. It provides comprehensive annotations on 1554 related protein entries in terms of their amino acid sequence, protein domain context, protein 3D structure, predicted intrinsically disordered region, protein-protein interaction, post-translational modification site, functional domain and key metabolic/signaling pathways, integrating several public databases, computational annotations and experimental results. KinetochoreDB provides interactive and customizable search and data display functions that allow users to interrogate the database in an efficient and user-friendly manner. It uses PSI-BLAST searches to retrieve the homologs of all entries and generate multiple sequence alignments that contain important evolutionary information. This knowledgebase also provides annotations of single point mutations for entries with respect to their pathogenicity, which may be useful for generation of new hypotheses on their functions, as well as follow-up studies of human diseases. Database URL: http://lightning.med.monash.edu/kinetochoreDB2/. PMID:26989151

  17. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.

    PubMed

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/ PMID:23325628

  18. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.

    PubMed

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/

  19. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  20. Exploring Sequence Characteristics Related to High-Level Production of Secreted Proteins in Aspergillus niger

    PubMed Central

    van den Berg, Bastiaan A.; Reinders, Marcel J. T.; Hulsman, Marc; Wu, Liang; Pel, Herman J.; Roubos, Johannes A.; de Ridder, Dick

    2012-01-01

    Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and interpretation revealed that, for both homologous and heterologous gene expression, the same features are important: tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a method for increasing expression levels per gene copy. PMID:23049690

  1. A zyxin-related protein whose synthesis is reduced in virally transformed fibroblasts.

    PubMed

    Zumbrunn, J; Trueb, B

    1996-10-15

    We have cloned the gene for a novel LIM-domain protein from human fibroblasts whose expression is substantially decreased in simian-virus-40-(SV40)-transformed cells. This protein has a calculated molecular mass of 61 kDa and comprises a proline-rich domain followed by three LIM motifs. It appears to be identical to the focal adhesion protein p83 that has recently been isolated and characterized from porcine and human platelets. Hybridization experiments demonstrate a very low degree of evolutionary conservation of its sequence between mammals and birds. It is therefore possible that the novel protein represents the human equivalent of the chicken protein zyxin as the two proteins display a very similar overall structure, although their amino acid sequences diverge markedly from each other. The repression of this zyxin-related protein in virally transformed fibroblasts may explain, at least in part, the dramatic morphological changes that occur at the cell surface and in the cytoskeleton of transformed cells.

  2. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    PubMed Central

    2010-01-01

    Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences. PMID:20718947

  3. Food choice by Blue-gray Tanagers in relation to protein content.

    PubMed

    Bosque, Carlos; Calchi, Rosanna

    2003-06-01

    We tested discriminatory ability and food choice in relation to protein content of the diet in wild-caught Blue-gray Tanagers (Thraupis episcopus), a generalist tropical frugivorous bird. In two sets of experiments we offered to five individual birds in pair-wise choice trials two nearly iso-caloric experimental diets differing in their protein content only. Protein contents of the experimental diets were 4.6 vs. 1.4% in the first experiment and 3.2 and 1.5% (dry matter basis) in the second experiment. Response varied among individual tanagers, but 6 of the 10 birds showed a clear preference for the food highest in protein. Two individuals displayed a strong positional preference. When testing each treatment group, birds ate daily significantly more of the food that had higher protein content. We conclude that Blue-gray Tanagers prefer richer nitrogen foods. Our results also demonstrate that Blue-gray Tanagers have remarkable discriminatory abilities, they reacted to differences in protein content as small as 0.09% fresh matter. We show for the first time discriminatory ability and preference of wild frugivorous birds for foods richer in protein under controlled conditions. Our findings support the hypothesis that frugivorous birds can act as selective agents for fruit pulp composition. PMID:12781832

  4. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma

    PubMed Central

    Chiorazzi, Michael; Rui, Lixin; Yang, Yandan; Ceribelli, Michele; Tishbi, Nima; Maurer, Carine W.; Ranuncolo, Stella M.; Zhao, Hong; Xu, Weihong; Chan, Wing-Chung C.; Jaffe, Elaine S.; Gascoyne, Randy D.; Campo, Elias; Rosenwald, Andreas; Ott, German; Delabie, Jan; Rimsza, Lisa M.; Shaham, Shai; Staudt, Louis M.

    2013-01-01

    Cell death is a common metazoan cell fate, and its inactivation is central to human malignancy. In Caenorhabditis elegans, apoptotic cell death occurs via the activation of the caspase CED-3 following binding of the EGL-1/BH3-only protein to the antiapoptotic CED-9/BCL2 protein. Here we report a major alternative mechanism for caspase activation in vivo involving the F-box protein DRE-1. DRE-1 functions in parallel to EGL-1, requires CED-9 for activity, and binds to CED-9, suggesting that DRE-1 promotes apoptosis by inactivating CED-9. FBXO10, a human protein related to DRE-1, binds BCL2 and promotes its degradation, thereby initiating cell death. Moreover, some human diffuse large B-cell lymphomas have inactivating mutations in FBXO10 or express FBXO10 at low levels. Our results suggest that DRE-1/FBXO10 is a conserved regulator of apoptosis. PMID:23431138

  5. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  6. Regulation of pathogenesis-related protein-1a gene expression in tobacco.

    PubMed

    Uknes, S; Dincher, S; Friedrich, L; Negrotto, D; Williams, S; Thompson-Taylor, H; Potter, S; Ward, E; Ryals, J

    1993-02-01

    Pathogenesis-related protein-1a (PR-1a) is a protein of unknown function that is strongly induced during the onset of systemic acquired resistance (SAR) in tobacco. The expression of PR-1a is under complex regulation that is controlled at least partially by the rate of transcription. In this study, we demonstrated that 661 bp of 5' flanking DNA was sufficient to impart tobacco mosaic virus and salicylic acid inducibility to a reporter gene. The PR-1a promoter did not respond significantly to treatments with either auxin or cytokinin. Experiments with the protein synthesis inhibitor cycloheximide indicated that protein synthesis is required for salicylate-dependent mRNA accumulation. At flowering, the PR-1a gene was expressed primarily in the mesophyll and epidermal tissues of the leaf blade and the sepals of the flower. Several artifacts, most importantly ectopic expression in pollen, were associated with the use of the beta-glucuronidase reporter gene.

  7. Combining Phylogenetic Profiling-Based and Machine Learning-Based Techniques to Predict Functional Related Proteins

    PubMed Central

    Lin, Tzu-Wen; Wu, Jian-Wei; Chang, Darby Tien-Hao

    2013-01-01

    Annotating protein functions and linking proteins with similar functions are important in systems biology. The rapid growth rate of newly sequenced genomes calls for the development of computational methods to help experimental techniques. Phylogenetic profiling (PP) is a method that exploits the evolutionary co-occurrence pattern to identify functional related proteins. However, PP-based methods delivered satisfactory performance only on prokaryotes but not on eukaryotes. This study proposed a two-stage framework to predict protein functional linkages, which successfully enhances a PP-based method with machine learning. The experimental results show that the proposed two-stage framework achieved the best overall performance in comparison with three PP-based methods. PMID:24069454

  8. Nonradioactive methods for detecting activation of Ras-related small G proteins.

    PubMed

    Andres, Douglas A

    2004-01-01

    Ras-related small GTPases serve as critical regulators for a wide range of cellular signaling pathways and are activated by the conversion of the GDP-bound state to the GTP-bound conformation. Until recently, measurement of the GTP-bound active form of Ras-related G proteins involved immunoprecipitation of 32P-labeled protein followed by separation of the labeled GTP/GDP bound to GTPase. A new method based on the large affinity difference of the GTP- and GDP-bound form of Ras proteins for specific binding domains of effector proteins in vitro has been developed. By using glutathione S-transferase (GST) fusion proteins containing these binding domains, the GTP-bound form of the GTPase can be precipitated from cell lysates. In principle, this method can be used for all members of the Ras superfamily. Here we describe a general procedure to monitor the GTP-bound form of Ras-related GTPases. PMID:15173615

  9. Bisphenol-A Affects Male Fertility via Fertility-related Proteins in Spermatozoa

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Lee, June-Sub; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2015-01-01

    The xenoestrogen bisphenol-A (BPA) is a widespread environmental contaminant that has been studied for its impact on male fertility in several species of animals and humans. Growing evidence suggests that xenoestrogens can bind to receptors on spermatozoa and thus alter sperm function. The objective of the study was to investigate the effects of varying concentrations of BPA (0.0001, 0.01, 1, and 100 μM for 6 h) on sperm function, fertilization, embryonic development, and on selected fertility-related proteins in spermatozoa. Our results showed that high concentrations of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. High BPA concentrations also increased the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation and induced a precocious acrosome reaction, which resulted in poor fertilization and compromised embryonic development. In addition, BPA induced the down-regulation of β-actin and up-regulated peroxiredoxin-5, glutathione peroxidase 4, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase. Our results suggest that high concentrations of BPA alter sperm function, fertilization, and embryonic development via regulation and/or phosphorylation of fertility-related proteins in spermatozoa. We conclude that BPA-induced changes in fertility-related protein levels in spermatozoa may be provided a potential cue of BPA-mediated disease conditions. PMID:25772901

  10. Estimation of Relative Protein-RNA Binding Strengths from Fluctuations in the Bound State.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Baek, Jung-Un Julia; Gruebele, Martin; Luthey-Schulten, Zaida

    2016-09-13

    Protein-RNA complexes are increasingly important in our understanding of cell signaling, metabolism, and transcription. Electrostatic interactions play dominant role in stabilizing such complexes. Using conventional computational approaches, very long simulations of both bound and unbound states are required to obtain accurate estimates of complex dissociation constants (Kd). Here, we derive a simple formula that offers an alternative approach based on the theory of fluctuations. Our method extracts a strong correlate to experimental Kd values using short molecular dynamics simulations of the bound complex only. To test our method, we compared the computed relative Kd values to our experimentally measured values for the U1A-Stem Loop 2 (SL2) RNA complex, which is one of the most-studied protein-RNA complexes. Additionally we also included several experimental values from the literature, to enlarge the data set. We obtain a correlation of r = 0.93 between theoretical and measured estimates of Kd values of the mutated U1A protein-RNA complexes relative to the wild type dissociation constant. The proposed method increases the efficiency of relative Kd values estimation for multiple protein mutants, allowing its applicability to protein engineering projects. PMID:27529183

  11. CMP-N-acetylneuraminic acid synthetase interacts with fragile X related protein 1

    PubMed Central

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-01-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P-interacting proteins and determine the biological effect of the interaction. The current study identified CMP-N-acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two-hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β-galactosidase assay and growth studies with selective media. Furthermore, co-immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue-specific regulator of GM1 levels in SH-SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS. PMID:27357083

  12. Arabidopsis thaliana AUCSIA-1 Regulates Auxin Biology and Physically Interacts with a Kinesin-Related Protein

    PubMed Central

    Pii, Youry; Korte, Arthur; Spena, Angelo

    2012-01-01

    Aucsia is a green plant gene family encoding 44–54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum) Aucsia genes (SlAucsia-1 and SlAucsia-2) altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA) root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB) ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i) exogenous auxin, ii) an inhibitor of polar auxin transport and iii) ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570). Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP) clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology. PMID:22911780

  13. Yeast hnRNP-related proteins contribute to the maintenance of telomeres

    SciTech Connect

    Lee-Soety, Julia Y.; Jones, Jennifer; MacGibeny, Margaret A.; Remaly, Erin C.; Daniels, Lynsey; Ito, Andrea; Jean, Jessica; Radecki, Hannah; Spencer, Shannon

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Yeast hnRNP-related proteins are able to prevent faster senescence in telomerase-null cells. Black-Right-Pointing-Pointer The conserved RRMs in Npl3 are important for telomere maintenance. Black-Right-Pointing-Pointer Human hnRNP A1 is unable to complement the lack of NPL3 in yeast. Black-Right-Pointing-Pointer Npl3 and Cbc2 may work as telomere capping proteins. -- Abstract: Telomeres protect the ends of linear chromosomes, which if eroded to a critical length can become uncapped and lead to replicative senescence. Telomerase maintains telomere length in some cells, but inappropriate expression facilitates the immortality of cancer cells. Recently, proteins involved in RNA processing and ribosome assembly, such as hnRNP (heterogeneous nuclear ribonucleoprotein) A1, have been found to participate in telomere maintenance in mammals. The Saccharomyces cerevisiae protein Npl3 shares significant amino acid sequence similarities with hnRNP A1. We found that deleting NPL3 accelerated the senescence of telomerase null cells. The highly conserved RNA recognition motifs (RRM) in Npl3 appear to be important for preventing faster senescence. Npl3 preferentially binds telomere sequences in vitro, suggesting that Npl3 may affect telomeres directly. Despite similarities between the two proteins, human hnRNP A1 is unable to complement the lack of Npl3 to rescue accelerated senescence in tlc1 npl3 cells. Deletion of CBC2, which encodes another hnRNP-related protein that associates with Npl3, also accelerates senescence. Potential mechanisms by which hnRNP-related proteins maintain telomeres are discussed.

  14. Changes in Relative Thylakoid Protein Abundance Induced by Fluctuating Light in the Diatom Thalassiosira pseudonana.

    PubMed

    Grouneva, Irina; Muth-Pawlak, Dorota; Battchikova, Natalia; Aro, Eva-Mari

    2016-05-01

    One of the hallmarks of marine diatom biology is their ability to cope with rapid changes in light availability due to mixing of the water column and the lens effect. We investigated how irradiance fluctuations influence the relative abundance of key photosynthetic proteins in the centric diatom Thalassiosira pseudonana by means of mass-spectrometry-based approaches for relative protein quantitation. Most notably, fluctuating-light conditions lead to a substantial overall up-regulation of light-harvesting complex proteins as well as several subunits of photosystems II and I. Despite an initial delay in growth under FL, there were no indications of FL-induced photosynthesis limitation, in contrast to other photosynthetic organisms. Our findings further strengthen the notion that diatoms use a qualitatively different mechanism of photosynthetic regulation in which chloroplast-mitochondria interaction has overtaken crucial regulatory processes of photosynthetic light reactions that are typical for the survival of land plants, green algae, and cyanobacteria. PMID:27025989

  15. [Distribution and environmental function of glomalin-related soil protein: A review].

    PubMed

    Wang, Jian; Zhou, Zi-yan; Ling, Wan-ting

    2016-02-01

    Glomalin-related soil protein (GRSP), a glycoprotein secreted by arbuscular mycorrhizal fungi (AMF), is abundant in soil. GRSP can be fractionated into total glomalin-related soil protein (TG), easily extracted glomalin-related soil protein (EEG), immunoreactive total glomalin (IRTG) and immunoreactive easily extracted glomalin (IREEG). The content of GRSP in soil differed with different soil use type, fertilization condition, AMF and host plant species, and environmental conditions. GRSP significantly positively correlates to the aggregate water stability. GRSP may reduce the release of CO2 in agro-ecosystem, benefit the soil carbon fixation, and reduce the bioavailability and plant toxicity of heavy metals in soil. The extraction and characterization of GRSP are of great importance to understanding the basic behaviors of GRSP in soil environments. Further studies are needed to clarify the molecular biology function of GRSP in agro-ecosystem based on the knowledge of proteins and related genes, and impacts of GRSP on the environmental behavior of organic pollutants in soil. PMID:27396140

  16. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  17. [Distribution and environmental function of glomalin-related soil protein: A review].

    PubMed

    Wang, Jian; Zhou, Zi-yan; Ling, Wan-ting

    2016-02-01

    Glomalin-related soil protein (GRSP), a glycoprotein secreted by arbuscular mycorrhizal fungi (AMF), is abundant in soil. GRSP can be fractionated into total glomalin-related soil protein (TG), easily extracted glomalin-related soil protein (EEG), immunoreactive total glomalin (IRTG) and immunoreactive easily extracted glomalin (IREEG). The content of GRSP in soil differed with different soil use type, fertilization condition, AMF and host plant species, and environmental conditions. GRSP significantly positively correlates to the aggregate water stability. GRSP may reduce the release of CO2 in agro-ecosystem, benefit the soil carbon fixation, and reduce the bioavailability and plant toxicity of heavy metals in soil. The extraction and characterization of GRSP are of great importance to understanding the basic behaviors of GRSP in soil environments. Further studies are needed to clarify the molecular biology function of GRSP in agro-ecosystem based on the knowledge of proteins and related genes, and impacts of GRSP on the environmental behavior of organic pollutants in soil.

  18. Oxysterol-binding Protein (OSBP)-related Protein 4 (ORP4) Is Essential for Cell Proliferation and Survival*

    PubMed Central

    Charman, Mark; Colbourne, Terry R.; Pietrangelo, Antonietta; Kreplak, Laurent; Ridgway, Neale D.

    2014-01-01

    Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) comprise a large gene family with sterol/lipid transport and regulatory activities. ORP4 (OSBP2) is a closely related paralogue of OSBP, but its function is unknown. Here we show that ORP4 binds similar sterol and lipid ligands as OSBP and other ORPs but is uniquely required for the proliferation and survival of cultured cells. Recombinant ORP4L and a variant without a pleckstrin homology (PH) domain (ORP4S) bind 25-hydroxycholesterol and extract and transfer cholesterol between liposomes. Two conserved histidine residues in the OSBP homology domain ORP4 are essential for binding phosphatidylinositol 4-phosphate but not sterols. The PH domain of ORP4L also binds phosphatidylinositol 4-phosphate in the Golgi apparatus. However, in the context of ORP4L, the PH domain is required for normal organization of the vimentin network. Unlike OSBP, RNAi silencing of all ORP4 variants (including a partial PH domain truncation termed ORP4M) in HEK293 and HeLa cells resulted in growth arrest but not cell death. ORP4 silencing in non-transformed intestinal epithelial cells (IEC)-18 caused apoptosis characterized by caspase 3 and poly(ADP-ribose) polymerase processing, DNA cleavage, and JNK phosphorylation. IEC-18 transformed with oncogenic H-Ras have increased expression of ORP4L and ORP4S proteins and are resistant to the growth-inhibitory effects of ORP4 silencing. Results suggest that ORP4 promotes the survival of rapidly proliferating cells. PMID:24742681

  19. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  20. KinetochoreDB: a comprehensive online resource for the kinetochore and its related proteins

    PubMed Central

    Li, Chen; Androulakis, Steve; Buckle, Ashley M.; Song, Jiangning

    2016-01-01

    KinetochoreDB is an online resource for the kinetochore and its related proteins. It provides comprehensive annotations on 1554 related protein entries in terms of their amino acid sequence, protein domain context, protein 3D structure, predicted intrinsically disordered region, protein–protein interaction, post-translational modification site, functional domain and key metabolic/signaling pathways, integrating several public databases, computational annotations and experimental results. KinetochoreDB provides interactive and customizable search and data display functions that allow users to interrogate the database in an efficient and user-friendly manner. It uses PSI-BLAST searches to retrieve the homologs of all entries and generate multiple sequence alignments that contain important evolutionary information. This knowledgebase also provides annotations of single point mutations for entries with respect to their pathogenicity, which may be useful for generation of new hypotheses on their functions, as well as follow-up studies of human diseases. Database URL: http://lightning.med.monash.edu/kinetochoreDB2/ PMID:26989151

  1. Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities.

    PubMed

    Réhault-Godbert, Sophie; Labas, Valérie; Helloin, Emmanuelle; Hervé-Grépinet, Virginie; Slugocki, Cindy; Berges, Magali; Bourin, Marie-Christine; Brionne, Aurélien; Poirier, Jean-Claude; Gautron, Joël; Coste, Franck; Nys, Yves

    2013-06-14

    Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys(367)-His(368) is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions.

  2. Ovalbumin-related Protein X Is a Heparin-binding Ov-Serpin Exhibiting Antimicrobial Activities*

    PubMed Central

    Réhault-Godbert, Sophie; Labas, Valérie; Helloin, Emmanuelle; Hervé-Grépinet, Virginie; Slugocki, Cindy; Berges, Magali; Bourin, Marie-Christine; Brionne, Aurélien; Poirier, Jean-Claude; Gautron, Joël; Coste, Franck; Nys, Yves

    2013-01-01

    Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys367-His368 is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions. PMID:23615912

  3. M2SG: mapping human disease-related genetic variants to protein sequences and genomic loci

    PubMed Central

    Ji, Renkai; Cong, Qian; Li, Wenlin; Grishin, Nick V.

    2013-01-01

    Summary: Online Mendelian Inheritance in Man (OMIM) is a manually curated compendium of human genetic variants and the corresponding phenotypes, mostly human diseases. Instead of directly documenting the native sequences for gene entries, OMIM links its entries to protein and DNA sequences in other databases. However, because of the existence of gene isoforms and errors in OMIM records, mapping a specific OMIM mutation to its corresponding protein sequence is not trivial. Combining computer programs and extensive manual curation of OMIM full-text descriptions and original literature, we mapped 98% of OMIM amino acid substitutions (AASs) and all SwissProt Variant (SwissVar) disease-related AASs to reference sequences and confidently mapped 99.96% of all AASs to the genomic loci. Based on the results, we developed an online database and interactive web server (M2SG) to (i) retrieve the mapped OMIM and SwissVar variants for a given protein sequence; and (ii) obtain related proteins and mutations for an input disease phenotype. This database will be useful for analyzing sequences, understanding the effect of mutations, identifying important genetic variations and designing experiments on a protein of interest. Availability and implementation: The database and web server are freely available at http://prodata.swmed.edu/M2S/mut2seq.cgi. Contact: grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24002112

  4. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis

    PubMed Central

    Motley, Alison M.; Galvin, Paul C.; Ekal, Lakhan; Nuttall, James M.

    2015-01-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division. PMID:26644516

  5. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis.

    PubMed

    Motley, Alison M; Galvin, Paul C; Ekal, Lakhan; Nuttall, James M; Hettema, Ewald H

    2015-12-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum-derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.

  6. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.

    PubMed

    Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

    2014-05-16

    Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells.

  7. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2013-11-01

    Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

  8. Structure–Function Relationships of Pre-Fibrillar Protein Assemblies in Alzheimer's Disease and Related Disorders

    PubMed Central

    Rahimi, F.; Shanmugam, A.; Bitan, G.

    2010-01-01

    Several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and prion diseases, are characterized pathognomonically by the presence of intra- and/or extracellular lesions containing proteinaceous aggregates, and by extensive neuronal loss in selective brain regions. Related non-neuropathic systemic diseases, e.g., light-chain and senile systemic amyloidoses, and other organ-specific diseases, such as dialysis-related amyloidosis and type-2 diabetes mellitus, also are characterized by deposition of aberrantly folded, insoluble proteins. It is debated whether the hallmark pathologic lesions are causative. Substantial evidence suggests that these aggregates are the end state of aberrant protein folding whereas the actual culprits likely are transient, pre-fibrillar assemblies preceding the aggregates. In the context of neurodegenerative amyloidoses, the proteinaceous aggregates may eventuate as potentially neuroprotective sinks for the neurotoxic, oligomeric protein assemblies. The pre-fibrillar, oligomeric assemblies are believed to initiate the pathogenic mechanisms that lead to synaptic dysfunction, neuronal loss, and disease-specific regional brain atrophy. The amyloid β-protein (Aβ), which is believed to cause Alzheimer's disease (AD), is considered an archetypal amyloidogenic protein. Intense studies have led to nominal, functional, and structural descriptions of oligomeric Aβ assemblies. However, the dynamic and metastable nature of Aβ oligomers renders their study difficult. Different results generated using different methodologies under different experimental settings further complicate this complex area of research and identification of the exact pathogenic assemblies in vivo seems daunting. Here we review structural, functional, and biological experiments used to produce and study pre-fibrillar Aβ assemblies, and highlight similar studies of proteins involved in related diseases. We discuss challenges that contemporary

  9. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning

    PubMed Central

    Condro, Michael C.; White, Stephanie A.

    2013-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here, we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. PMID:23818387

  10. Cross-talk of membrane lipids and Alzheimer-related proteins

    PubMed Central

    2013-01-01

    Alzheimer’s disease (AD) is neuropathologically characterized by the combined occurrence of extracellular β-amyloid plaques and intracellular neurofibrillary tangles in the brain. While plaques contain aggregated forms of the amyloid β-peptide (Aβ), tangles are formed by fibrillar forms of the microtubule associated protein tau. All mutations identified so far to cause familial forms of early onset AD (FAD) are localized close to or within the Aβ domain of the amyloid precursor protein (APP) or in the presenilin proteins that are essential components of a protease complex involved in the generation of Aβ. Mutations in the tau gene are not associated with FAD, but can cause other forms of dementia. The genetics of FAD together with biochemical and cell biological data, led to the formulation of the amyloid hypothesis, stating that accumulation and aggregation of Aβ is the primary event in the pathogenesis of AD, while tau might mediate its toxicity and neurodegeneration. The generation of Aβ involves sequential proteolytic cleavages of the amyloid precursor protein (APP) by enzymes called β-and γ-secretases. Notably, APP itself as well as the secretases are integral membrane proteins. Thus, it is very likely that membrane lipids are involved in the regulation of subcellular transport, activity, and metabolism of AD related proteins. Indeed, several studies indicate that membrane lipids, including cholesterol and sphingolipids (SLs) affect Aβ generation and aggregation. Interestingly, APP and other AD associated proteins, including β-and γ-secretases can, in turn, influence lipid metabolic pathways. Here, we review the close connection of cellular lipid metabolism and AD associated proteins and discuss potential mechanisms that could contribute to initiation and progression of AD. PMID:24148205

  11. The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling.

    PubMed

    Adler, P N; Taylor, J; Charlton, J

    2000-09-01

    The frizzled (fz) gene is required for the development of distally pointing hairs on the Drosophila wing. It has been suggested that fz is needed for the propagation of a signal along the proximal distal axis of the wing. The directional domineering non-autonomy of fz clones could be a consequence of a failure in the propagation of this signal. We have tested this hypothesis in two ways. In one set of experiments we used the domineering non-autonomy of fz and Vang Gogh (Vang) clones to assess the direction of planar polarity signaling in the wing. prickle (pk) mutations alter wing hair polarity in a cell autonomous way, so pk cannot be altering a global polarity signal. However, we found that pk mutations altered the direction of the domineering non-autonomy of fz and Vang clones, arguing that this domineering non-autonomy is not due to an alteration in a global signal. In a second series of experiments we ablated cells in the pupal wing. We found that a lack of cells that could be propagating a long-range signal did not alter hair polarity. We suggest that fz and Vang clones result in altered levels of a locally acting signal and the domineering non-autonomy results from wild-type cells responding to this abnormal signal.

  12. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti.

    PubMed

    Weng, Shih-Che; Shiao, Shin-Hong

    2015-06-01

    The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis. However, the interactions between these two pathways are poorly understood in the mosquito. In this study, we hypothesized that factors from the TOR and Wnt signaling pathways interacted synergistically in mosquito vitellogenesis. Our results showed that silencing Aedes aegypti Frizzled 2 (AaFz2), a transmembrane receptor of the Wnt signaling pathway, decreased the fecundity of mosquitoes. We showed that AaFz2 was highly expressed at the transcriptional and translational levels in the female mosquito 6 h after a blood meal, indicating amino acid-stimulated expression of AaFz2. Notably, the phosphorylation of S6K, a downstream target of the TOR pathway, and the expression of vitellogenin were inhibited in the absence of AaFz2. A direct link was found in this study between Wnt and TOR signaling in the regulation of mosquito reproduction.

  13. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins.

    PubMed Central

    Machesky, L M; Reeves, E; Wientjes, F; Mattheyse, F J; Grogan, A; Totty, N F; Burlingame, A L; Hsuan, J J; Segal, A W

    1997-01-01

    Human neutrophils contain a complex of proteins similar to the actin-related protein 2/3 (Arp2/3) complex of Acanthamoeba. We have obtained peptide sequence information for each member of the putative seven-protein complex previously described for Acanthamoeba and human platelets. From the peptide sequences we have identified cDNA species encoding three novel proteins in this complex. We find that in addition to Arp2 and Arp3, this complex contains a relative of the human (Suppressor of Profilin) SOP2Hs protein and four previously unknown proteins. These proteins localize in the cytoplasm of fibroblasts that lack lamellipodia, but are enriched in lamellipodia on stimulation with serum or platelet-derived growth factor. We propose a conserved and dynamic role for this complex in the organization of the actin cytoskeleton. PMID:9359840

  14. A cDNA encoding tyrosinase-related protein maps to the brown locus in mouse.

    PubMed Central

    Jackson, I J

    1988-01-01

    A mouse melanoma cDNA clone was isolated by virtue of its reactivity with two antisera raised against tyrosinase (EC 1.14.18.1) from two species, hamster and mouse. The cDNA (5A) cross-hybridizes with another, pMT4 [Shibahara, S., Tomita, V., Sakakura, T., Nager, C., Bhabatosh, C. & Muller, R. (1986) Nucleic Acids Res. 14, 2413-2427], previously thought to encode mouse tyrosinase. Two other cDNAs, one human and one mouse, have been reported recently [Kwon, B. S., Haq, A. K., Pomerantz, S. H. & Halaban, R. (1987) Proc. Natl. Acad. Sci. USA 84, 7473-7477; and Yamamoto, H., Takeuchi, S., Kudo, T., Makino, K., Nakata, A., Shinoda, T. & Takeuchi, T. (1987) Jpn. J. Genet. 62, 271-277] as candidates for tyrosinase, and they map at or very close to the mouse albino (c) locus. The proteins they encode are very similar to each other but are distinct from (although related to) the pMT4-encoded protein. Here I use recombinant inbred strains to localize pMT4 at or close to the mouse brown (b) locus. I suggest that the gene mapping to c is the authentic tyrosinase gene, whereas that mapping to b encodes a tyrosinase-related protein. All b mutations in laboratory strains are associated with the same diagnostic Taq I fragment, suggesting that all derive from the same original mutation. I discuss possible function(s) of the tyrosinase-related protein. Images PMID:3132713

  15. Variable Expression of Pathogenesis-Related Protein Allergen in Mountain Cedar (Juniperus ashei) Pollen1

    PubMed Central

    Midoro-Horiuti, Terumi; Goldblum, Randall M.; Kurosky, Alexander; Wood, Thomas G.; Brooks, Edward G.

    2009-01-01

    Allergic diseases have been increasing in industrialized countries. The environment is thought to have both direct and indirect modulatory effects on disease pathogenesis, including alterating on the allergenicity of pollens. Certain plant proteins known as pathogenesis-related proteins appear to be up-regulated by certain environmental conditions, including pollutants, and some have emerged as important allergens. Thus, the prospect of environmentally regulated expression of plant-derived allergens becomes yet another potential environmental influence on allergic disease. We have identified a novel pathogenesis-related protein allergen, Jun a 3, from mountain cedar (Juniperus ashei) pollen. The serum IgE from patients with hypersensitivity to either mountain cedar or Japanese cedar were shown to bind to native and recombinant Jun a 3 in Western blot analysis and ELISA. Jun a 3 is homologous to members of the thaumatin-like pathogenesis-related (PR-5) plant protein family. The amounts of Jun a 3 extracted from mountain cedar pollen varied up to 5-fold in lots of pollen collected from the same region in different years and between different regions during the same year. Thus, Jun a 3 may contribute not only to the overall allergenicity of mountain cedar pollen, but variable levels of Jun a 3 may alter the allergenic potency of pollens produced under different environmental conditions. PMID:10657673

  16. Functional features, biological pathways, and protein interaction networks of addiction-related genes.

    PubMed

    Sun, Jingchun; Zhao, Zhongming

    2010-05-01

    Addictions are chronic and common brain disorders affected by many genetic, environmental, and behavioral factors. Recent genome-wide linkage and association studies have revealed several promising genomic regions and multiple genes relating to addictions. To explore the underlying biological processes in the development of addictions, we used 62 genes recently reviewed by Li and Burmeister (2009) as representative addiction-related genes, and then we investigated their features in gene function, pathways, and protein interaction networks. We performed enrichment tests of their Gene Ontology (GO) annotations and of their pathways in the Ingenuity Pathways Analysis (IPA) system. The tests revealed that these addiction-related genes were highly enriched in neurodevelopment-related processes. Interestingly, we found circadian rhythm signaling in one of the enriched pathways. Moreover, these addiction-related genes tended to have higher connectivity and shorter characteristic shortest-path distances compared to control genes in the protein-protein interaction (PPI) network. This investigation is the first of such kind in addiction studies, and it is useful for further addiction candidate-gene prioritization and verification, thus helping us to better understand molecular mechanisms of addictions.

  17. VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Wyles, Jessica P; Ridgway, Neale D

    2004-07-15

    We recently showed that oxysterol-binding protein (OSBP), one of twelve related PH domain containing proteins with lipid and sterol binding activity, interacts with VAMP-associated protein (VAP)-A on the endoplasmic reticulum (ER). In addition to OSBP, seven OSBP-related proteins (ORPs) bind VAP-A via a conserved E-F/Y-F/Y-DA 'FFAT' motif. We focused on this interaction for ORP9, which is expressed as a full-length (ORP9L) or truncated version missing the PH domain (ORP9S). Mutation analysis showed that the interaction required the ORP9 FFAT motif and the N-terminal conserved domain of VAP. Endogenous ORP9L displayed Golgi localization, which was partially mediated by the PH domain based on limited localization of OPR9-PH-GFP with the Golgi apparatus. When inducibly overexpressed, ORP9S and ORP9L colocalized with VAP-A and caused vacuolation of the ER as well as retention of the ER-Golgi intermediate compartment marker ERGIC-53/p58 in the ER. ORP9L mutated in the VAP-A binding domain (ORP9L-FY-->AA) did not localize to the ER but appeared with giantin and Sec31 on large vesicular structures, suggesting the presence of a hybrid Golgi-COPII compartment. Normal Golgi localization was also observed for ORP9L-FY-->AA. Results show that VAP binding and PH domains target ORP9 to the ER and a Golgi-COPII compartment, respectively, and that ORP9L overexpression in these compartments severely perturbed their organization.

  18. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    PubMed

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-08-21

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites.

  19. The Arabidopsis HEI10 is a new ZMM protein related to Zip3.

    PubMed

    Chelysheva, Liudmila; Vezon, Daniel; Chambon, Aurélie; Gendrot, Ghislaine; Pereira, Lucie; Lemhemdi, Afef; Vrielynck, Nathalie; Le Guin, Sylvia; Novatchkova, Maria; Grelon, Mathilde

    2012-01-01

    In numerous species, the formation of meiotic crossovers is largely under the control of a group of proteins known as ZMM. Here, we identified a new ZMM protein, HEI10, a RING finger-containing protein that is well conserved among species. We show that HEI10 is structurally and functionally related to the yeast Zip3 ZMM and that it is absolutely required for class I crossover (CO) formation in Arabidopsis thaliana. Furthermore, we show that it is present as numerous foci on the chromosome axes and the synaptonemal complex central element until pachytene. Then, from pachytene to diakinesis, HEI10 is retained at a limited number of sites that correspond to class I COs, where it co-localises with MLH1. Assuming that HEI10 early staining represents an early selection of recombination intermediates to be channelled into the ZMM pathway, HEI10 would therefore draw a continuity between early chosen recombination intermediates and final class I COs.

  20. Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4.

    PubMed

    Repo, Susanna; Paldanius, Tiina A; Hytönen, Vesa P; Nyholm, Thomas K M; Halling, Katrin K; Huuskonen, Juhani; Pentikäinen, Olli T; Rissanen, Kari; Slotte, J Peter; Airenne, Tomi T; Salminen, Tiina A; Kulomaa, Markku S; Johnson, Mark S

    2006-10-01

    The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.

  1. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Livingston, B T; Killian, C E; Wilt, F; Cameron, A; Landrum, M J; Ermolaeva, O; Sapojnikov, V; Maglott, D R; Buchanan, A M; Ettensohn, C A

    2006-12-01

    Biomineralization, the biologically controlled formation of mineral deposits, is of widespread importance in biology, medicine, and engineering. Mineralized structures are found in most metazoan phyla and often have supportive, protective, or feeding functions. Among deuterostomes, only echinoderms and vertebrates produce extensive biomineralized structures. Although skeletons appeared independently in these two groups, ancestors of the vertebrates and echinoderms may have utilized similar components of a shared genetic "toolkit" to carry out biomineralization. The present study had two goals. First, we sought to expand our understanding of the proteins involved in biomineralization in the sea urchin, a powerful model system for analyzing the basic cellular and molecular mechanisms that underlie this process. Second, we sought to shed light on the possible evolutionary relationships between biomineralization in echinoderms and vertebrates. We used several computational methods to survey the genome of the purple sea urchin Strongylocentrotus purpuratus for gene products involved in biomineralization. Our analysis has greatly expanded the collection of biomineralization-related proteins. We have found that these proteins are often members of small families encoded by genes that are clustered in the genome. Most of the proteins are sea urchin-specific; that is, they have no apparent homologues in other invertebrate deuterostomes or vertebrates. Similarly, many of the vertebrate proteins that mediate mineral deposition do not have counterparts in the S. purpuratus genome. Our findings therefore reveal substantial differences in the primary sequences of proteins that mediate biomineral formation in echinoderms and vertebrates, possibly reflecting loose constraints on the primary structures of the proteins involved. On the other hand, certain cellular and molecular processes associated with earlier events in skeletogenesis appear similar in echinoderms and vertebrates

  2. Identification and characterization of a novel human neutrophil protein related to the S100 family.

    PubMed Central

    Guignard, F; Mauel, J; Markert, M

    1995-01-01

    A rabbit polyclonal antibody raised against myeloid-related protein 8 (MRP-8), a protein of the S100 family, recognized another S100 protein (MRP-14) as well as a protein of 6.5 kDa (p6) in the cytosol of resting neutrophils. p6 was found to be a novel member of the S100 family. It consisted of two isoforms with pI values of 6.2 (the minor form, p6a) and 6.3 (the major form, p6b) and constituted 5% of the total cytosolic proteins. Both isoforms were also demonstrated in the cytosol of monocytes, but not in lymphocytes, as previously shown for MRP-8 and MRP-14. Only the major isoform bound radioactive Ca2+, as also observed for MRP-8, whereas the different variants of MRP-14 were all labelled. On neutrophil activation with opsonized zymosan, a stimulant known to require extracellular Ca2+, 58% of p6a and 42% of p6b was translocated to the membrane. With phorbol 12-myristate 13-acetate, a Ca(2+)-independent stimulant, no translocation was detected. This translocation pattern was similar to that observed with MRP-8 and MRP-14. In addition, p6, MRP-8 and MRP-14 were specifically associated with the cytoskeletal fraction of the membrane. The Ca(2+)-dependent translocation of the novel S100 protein in parallel with MRP-8 and MRP-14 suggests a role for these proteins in regulating the Ca2+ signal to the membrane cytoskeleton and thus in regulating neutrophil activation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626002

  3. Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa.

    PubMed

    Mendes, T A O; Lobo, F P; Rodrigues, T S; Rodrigues-Luiz, G F; daRocha, W D; Fujiwara, R T; Teixeira, S M R; Bartholomeu, D C

    2013-04-01

    Proteins containing repetitive amino acid domains are widespread in all life forms. In parasitic organisms, proteins containing repeats play important roles such as cell adhesion and invasion and immune evasion. Therefore, extracellular and intracellular parasites are expected to be under different selective pressures regarding the repetitive content in their genomes. Here, we investigated whether there is a bias in the repetitive content found in the predicted proteomes of 6 exclusively extracellular and 17 obligate intracellular protozoan parasites, as well as 4 free-living protists. We also attempted to correlate the results with the distinct ecological niches they occupy and with distinct protein functions. We found that intracellular parasites have higher repetitive content in their proteomes than do extracellular parasites and free-living protists. In intracellular parasites, these repetitive proteins are located mainly at the parasite surface or are secreted and are enriched in amino acids known to be part of N- and O-glycosylation sites. Furthermore, in intracellular parasites, the developmental stages that are able to invade host cells express a higher proportion of proteins with perfect repeats relative to other life cycle stages, and these proteins have molecular functions associated with cell invasion. In contrast, in extracellular parasites, degenerate repetitive motifs are enriched in proteins that are likely to play roles in evading host immune response. Altogether, our results support the hypothesis that both the ability to invade host cells and to escape the host immune response may have shaped the expansion and maintenance of perfect and degenerate repeats in the genomes of intra- and extracellular parasites.

  4. Investigation of the molecular similarity in closely related protein systems: The PrP case study.

    PubMed

    Storchi, Loriano; Paciotti, Roberto; Re, Nazzareno; Marrone, Alessandro

    2015-10-01

    The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. PMID:26018750

  5. Postnatal changes in Rho and Rho-related proteins in the mouse brain.

    PubMed

    Komagome, R; Kimura, K; Saito, M

    2000-02-01

    To provide information on the role of Rho, a GTP-binding protein, in postnatal development of the brain cells, the change in the levels of Rho protein and Rho-related proteins was examined in the brain of mice for two weeks after birth, in parallel with the changes in the activity of marker enzymes for neuronal and glial cells. The activities of acetylcholine esterase and choline acetyltransferase of whole brain homogenate, both of which are neuronal marker enzymes, were progressively increased in an age-dependent manner. The activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, a glial marker enzyme, increased markedly between one and two weeks after birth. In contrast, the levels of RhoA and RhoB in the membrane fraction were decreased during the postnatal period. The amount of Rho GDP dissociation inhibitor, a regulatory protein for Rho, was unchanged, while those of Rho target proteins, Rock-2 and citron, were gradually increased. Since the inactivation of Rho is known to induce neurite extension and neuronal and glial differentiation in vitro, our results suggest that the Rho signalling pathway plays a regulatory role in the postnatal differentiation of neuronal and glial cells in vivo.

  6. Translationally Controlled Tumor Protein in Prostatic Adenocarcinoma: Correlation with Tumor Grading and Treatment-Related Changes

    PubMed Central

    Rocca, Bruno Jim; Ginori, Alessandro; Barone, Aurora; Calandra, Calogera; Crivelli, Filippo; De Falco, Giulia; Gazaneo, Sara; Tripodi, Sergio; Cevenini, Gabriele; del Vecchio, Maria Teresa; Ambrosio, Maria Raffaella; Tosi, Piero

    2015-01-01

    Prostate cancer is the second leading cause of cancer-related death. The androgen deprivation therapy is the standard treatment for advanced stages. Unfortunately, virtually all tumors become resistant to androgen withdrawal. The progression to castration-resistance is not fully understood, although a recent paper has suggested translationally controlled tumor protein to be implicated in the process. The present study was designed to investigate the role of this protein in prostate cancer, focusing on the correlation between its expression level with tumor differentiation and response to treatment. We retrieved 292 prostatic cancer specimens; of these 153 had been treated only by radical prostatectomy and 139 had undergone radical prostatectomy after neoadjuvant treatment with combined androgen blockade therapy. Non-neoplastic controls were represented by 102 prostatic peripheral zone specimens. In untreated patients, the expression of the protein, evaluated by RT-qPCR and immunohistochemistry, was significantly higher in tumor specimens than in non-neoplastic control, increasing as Gleason pattern and score progressed. In treated prostates, the staining was correlated with the response to treatment. An association between protein expression and the main clinicopathological factors involved in prostate cancer aggressiveness was identified. These findings suggest that the protein may be a promising prognostic factor and a target for therapy. PMID:25667934

  7. A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking

    PubMed Central

    Du, Ximing; Kumar, Jaspal; Ferguson, Charles; Schulz, Timothy A.; Ong, Yan Shan; Hong, Wanjin; Prinz, William A.; Parton, Robert G.; Brown, Andrew J.

    2011-01-01

    Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes. PMID:21220512

  8. Products of DNA, protein and lipid oxidative damage in relation to vitamin C plasma concentration.

    PubMed

    Krajcovicová-Kudlácková, M; Dusinská, M; Valachovicová, M; Blazícek, P; Pauková, V

    2006-01-01

    Oxidative stress plays an important role in the pathogenesis of numerous chronic age-related free radical-induced diseases. Improved antioxidant status minimizes oxidative damage to DNA, proteins, lipids and other biomolecules. Diet-derived antioxidants such as vitamin C, vitamin E, carotenoids and related plant pigments are important in antioxidative defense and maintaining health. The results of long-term epidemiological and clinical studies suggest that protective vitamin C plasma concentration for minimum risk of free radical disease is higher than 50 micromol/l. Products of oxidative damage to DNA (DNA strand breaks with oxidized purines and pyrimidines), proteins (carbonyls) and lipids (conjugated dienes of fatty acids, malondialdehyde) were estimated in a group of apparently healthy adult non-smoking population in dependence on different vitamin C plasma concentrations. Under conditions of protective plasma vitamin C concentrations (>50 micromol/l) significantly lower values of DNA, protein and lipid oxidative damage were found in comparison with the vitamin C-deficient group (<50 micromol/l). The inhibitory effect of higher fruit and vegetable consumption (leading to higher vitamin C intake and higher vitamin C plasma concentrations) on oxidation of DNA, proteins and lipids is also expressed by an inverse significant correlation between plasma vitamin C and products of oxidative damage. The results suggest an important role of higher and frequent consumption of protective food (fruit, vegetables, vegetable oils, nuts, seeds and cereal grains) in prevention of free radical disease.

  9. Dickkopf-Related Protein 1 Inhibits the WNT Signaling Pathway and Improves Pig Oocyte Maturation

    PubMed Central

    Spate, Lee D.; Brown, Alana N.; Redel, Bethany K.; Whitworth, Kristin M.; Murphy, Clifton N.; Prather, Randall S.

    2014-01-01

    The ability to mature oocytes in vitro provides a tool for creating embryos by parthenogenesis, fertilization, and cloning. Unfortunately the quality of oocytes matured in vitro falls behind that of in vivo matured oocytes. To address this difference, transcriptional profiling by deep sequencing was conducted on pig oocytes that were either matured in vitro or in vivo. Alignment of over 18 million reads identified 1,316 transcripts that were differentially represented. One pathway that was overrepresented in the oocytes matured in vitro was for Wingless-type MMTV integration site (WNT) signaling. In an attempt to inhibit the WNT pathway, Dickkopf-related protein 1 was added to the in vitro maturation medium. Addition of Dickkopf-related protein 1 improved the percentage of oocytes that matured to the metaphase II stage, increased the number of nuclei in the resulting blastocyst stage embryos, and reduced the amount of disheveled segment polarity protein 1 protein in oocytes. It is concluded that transcriptional profiling is a powerful method for detecting differences between in vitro and in vivo matured oocytes, and that the WNT signaling pathway is important for proper oocyte maturation. PMID:24739947

  10. Glomalin related soil protein as indicator of fire severity: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Chrenková, Katarina; Arcenegui, Victoria; Jiménez-Pinilla, Patricia; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2015-04-01

    Glomalin Related Soil Protein (GRSP), a glycoprotein produced by arbuscular mycorrhizal fungi (Wright and Upadhyaya, 1996), was studied to determinate its effectiveness as an indicator of fire severity. Laboratory heating treatments were carried out at 180, 200, 250, 300, 400 and 500°C in soil samples from eight different sites of E Spain with different soil characteristics. Soil water repellency (SWR) and soil organic carbon (SOC) content were also studied to compare their sensitivity to temperature between certain parameters. Results showed that GRSP was affected even at low temperature, contrary to SOC, whose concentrations remained without changes at below 250°C. SWR did not appear in wettable soils after heating and disappeared in water repellent ones at temperatures over 200°C. GRSP behavior to temperature was different between soils. Redundancy Analyses divided sandy soils from the others. Silt, SOC, total content of aggregates (TCA) and initial GRSP concentrations were the significant properties explaining the response of GRSP to temperature. GRSP was more sensitive to temperature than SWR and SOC at low temperatures. Our results indicate that GRSP could be a useful indicator of fire severity. Key words: Arbuscular mycorrizhal fungi; Glomalin related soil protein; Soil water repellency; Soil aggregates. References: Wright, S.F, Upadhyaya, A., 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sciences 161, 575-586

  11. The actin-related protein Act3p of Saccharomyces cerevisiae is located in the nucleus.

    PubMed Central

    Weber, V; Harata, M; Hauser, H; Wintersberger, U

    1995-01-01

    Actin-related proteins, a group of protein families that exhibit about 50% sequence identity among each other and to conventional actin, have been found in a variety of eukaryotic organisms. In the budding yeast Saccharomyces cerevisiae, genes for one conventional actin (ACT1) and for three actin-related proteins (ACT2, ACT3, and ACT5) are known. ACT3, which we recently discovered, is an essential gene coding for a polypeptide of 489 amino acids (Act3p), with a calculated molecular mass of 54.8 kDa. Besides its homology to conventional actin, Act3p possesses a domain exhibiting weak similarity to the chromosomal protein HMG-14 as well as a potential nuclear localization signal. An antiserum prepared against a specific segment of the ACT3 gene product recognizes a polypeptide band of approximately 55 kDa in yeast extract. Indirect immunofluorescence experiments with this antiserum revealed that Act3p is located in the nucleus. Nuclear staining was observed in all cells regardless of the stage of the cell cycle. Independently, immunoblotting experiments with subcellular fractions showed that Act3p is indeed highly enriched in the nuclear fraction. We suggest that Act3p is an essential constituent of yeast chromatin. Images PMID:8573785

  12. Lead discovery for Alzheimer's disease related target protein RbAp48 from traditional Chinese medicine.

    PubMed

    Huang, Hung-Jin; Lee, Cheng-Chun; Chen, Calvin Yu-Chian

    2014-01-01

    Deficiency or loss of function of Retinoblastoma-associated proteins (RbAp48) is related with Alzheimer's disease (AD), and AD disease is associated with age-related memory loss. During normal function, RbAp48 forms a complex with the peptide FOG-1 (friend of GATA-1) and has a role in gene transcription, but an unstable complex may affect the function of RbAp48. This study utilizes the world's largest traditional Chinese medicine (TCM) database and virtual screening to provide potential compounds for RbAp48 binding. A molecular dynamics (MD) simulation was employed to understand the variations after protein-ligand interaction. FOG1 was found to exhibit low stability after RbAp48 binding; the peptide displayed significant movement from the initial docking position, a phenomenon which matched the docking results. The protein structure of the other TCM candidates was not variable during MD simulation and had a greater stable affinity for RbAp48 binding than FOG1. Our results reveal that the protein structure does not affect ligand binding, and the top three TCM candidates Bittersweet alkaloid II, Eicosandioic acid, and Perivine might resolve the instability of the RbAp48-FOG1 complex and thus be used in AD therapy. PMID:25165715

  13. Construction of polycythemia vera protein interaction network and prediction of related biological functions.

    PubMed

    Liu, L-J; Cao, X-J; Zhou, C; Sun, Y; Lv, Q-L; Feng, F-B; Zhang, Y-Y; Sun, C-G

    2016-01-01

    Here, polycythemia vera (PV)-related genes were screened by the Online Mendelian Inheritance in Man (OMIM), and literature pertaining to the identified genes was extracted and a protein-protein interaction network was constructed using various Cytoscape plugins. Various molecular complexes were detected using the Clustervize plugin and a gene ontology-enrichment analysis of the biological pathways, molecular functions, and cellular components of the selected molecular complexes were identified using the BiNGo plugin. Fifty-four PV-related genes were identified in OMIM. The protein-protein interaction network contains 5 molecular complexes with correlation integral values >4. These complexes regulated various biological processes (peptide tyrosinase acidification, cell metabolism, and macromolecular biosynthesis), molecular functions (kinase activity, receptor binding, and cytokine activity), and the cellular components were mainly concentrated in the nucleus, intracellular membrane-bounded organelles, and extracellular region. These complexes were associated with the JAK-STAT signal transduction pathway, neurotrophic factor signaling pathway, and Wnt signaling pathway, which were correlated with chronic myeloid leukemia and acute myeloid leukemia. PMID:26909922

  14. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  15. Localization of p0071-interacting proteins, plakophilin-related armadillo-repeat protein-interacting protein (PAPIN) and ERBIN, in epithelial cells.

    PubMed

    Ohno, Hideki; Hirabayashi, Susumu; Iizuka, Toshihiko; Ohnishi, Hirohide; Fujita, Toshiro; Hata, Yutaka

    2002-10-10

    PAPIN has six PDZ domains and interacts with p0071, a catenin-related protein. Recent studies have revealed that catenins determine the subcellular localization of some PDZ proteins. We have examined whether the localization of PAPIN is determined by p0071 in epithelial cells. PAPIN was localized not only on the lateral membrane but also on the apical membrane, where p0071 was absent. The targeting to both membranes was mediated by the middle region of PAPIN and did not require the p0071-interacting PDZ domain. In cells that came into contact, PAPIN was diffusely distributed on the plasma membrane, while p0071 was concentrated at immature cell-cell contacts. When epithelial cells were exposed to the low concentration of calcium, p0071 was internalized, whereas PAPIN remained on the plasma membrane. We also confirmed that the interaction with p0071 was not essential for the membrane targeting of ERBIN, a recently identified p0071- and ErbB2-binding protein. PAPIN, p0071, and ERBIN formed a complex in 293T cells. Furthermore, ERBIN and ErbB2 were colocalized with PAPIN on the lateral membrane. These findings suggest that PAPIN, p0071, and ERBIN come to the cell-cell contacts independently and interact with each other on the lateral membrane.

  16. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote.

    PubMed

    Lévêque, Maude F; Nguyen, Hoa Mai; Besteiro, Sébastien

    2016-01-01

    Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid called the apicoplast, which is essential for their survival. The localization of autophagy-related protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been described, and we have shown this protein is essential for proper inheritance of this complex plastid into daughter cells during cell division. Although the mechanism behind ATG8 association to the apicoplast in T. gondii is related to the canonical conjugation system leading to autophagosome formation, its singular role seems independent from the initial catabolic purpose of autophagy. Here we also discuss further the functional evolution and innovative adaptations of the autophagy machinery to maintain this organelle during parasite division. PMID:27574540

  17. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote

    PubMed Central

    Lévêque, Maude F.; Nguyen, Hoa Mai; Besteiro, Sébastien

    2016-01-01

    ABSTRACT Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid called the apicoplast, which is essential for their survival. The localization of autophagy-related protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been described, and we have shown this protein is essential for proper inheritance of this complex plastid into daughter cells during cell division. Although the mechanism behind ATG8 association to the apicoplast in T. gondii is related to the canonical conjugation system leading to autophagosome formation, its singular role seems independent from the initial catabolic purpose of autophagy. Here we also discuss further the functional evolution and innovative adaptations of the autophagy machinery to maintain this organelle during parasite division. PMID:27574540

  18. Clusters of Dietary Protein and Relation to Bone Mineral Density (BMD) in Men and Women of the Framingham Offspring Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have shown that dietary protein intake may be protective of BMD rather than contributing to calcium loss. We have previously shown a positive relation between BMD and protein in the elderly Framingham Original Cohort. As protein-rich foods are also rich sources of other nutrients, we...

  19. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.

    PubMed

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-08-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.

  20. Expression of metabolism-related proteins in triple-negative breast cancer

    PubMed Central

    Kim, Min-Ju; Kim, Do-Hee; Jung, Woo-Hee; Koo, Ja-Seung

    2014-01-01

    To investigate the dominant metabolic type of triple-negative breast cancer (TNBC) and evaluate its clinical implication through analysis of protein expression related to glycolysis, glutaminolysis, and mitochondrial oxidative phosphorylation. Tissue samples from 129 patients with TNBC who underwent mastectomy due to invasive breast cancer from 2000 to 2005 were prepared for tissue microarray. By immunohistochemical staining of the tissue microarrays, the markers of glycolysis-related proteins (Glut-1, CAIX, MCT4), glutaminolysis-related proteins (GLS1, GDH, ASCT2), and mitochondrial enzymes (ATP synthase, SDHA and SDHB) were analyzed. Based on the results, the metabolic phenotypes were defined based on positivity for more than two of three markers for each phenotype as follows: glycolysis type (Glut-1, CAIX and MCT4), glutaminolysis type (GLS1, GDH and ASCT2) and mitochondrial type (ATP synthase, SDHA and SDHB). The percentages of samples with metabolic phenotypes of tumor and stroma of TNBC were as follows: for tumor, mitochondrial type (85.3%) > glutaminolysis type (67.4%) > glycolysis type (63.0%); and for stroma, glutaminolysis type (37.2%) > glycolysis type (16.3%) > mitochondrial type (14.0%). The most common metabolic phenotype of TNBC was glycolysis type for basal-like type and non-glycolysis type for non-basal-like type (p=0.047). The correlation between glutaminolysis and mitochondrial type was statistically significant in both tumor and stroma (p<0.001). In conclusion, tumor cells of TNBC express glycolysis and mitochondrial metabolism-related proteins. Glycolysis type is the most common phenotype of basal-like type, and reversely, non-glycolysis type is the most common phenotype of non basal-like type. PMID:24427351

  1. Protein v. carbohydrate intake differentially affects liking- and wanting-related brain signalling.

    PubMed

    Born, Jurriaan M; Martens, Mieke J I; Lemmens, Sofie G T; Goebel, Rainer; Westerterp-Plantenga, Margriet S

    2013-01-28

    Extreme macronutrient intakes possibly lead to different brain signalling. The aim of the present study was to determine the effects of ingesting high-protein v. high-carbohydrate food on liking and wanting task-related brain signalling (TRS) and subsequent macronutrient intake. A total of thirty female subjects (21.6 (SD 2.2) years, BMI 25.0 (SD 3.7) kg/m²) completed four functional MRI scans: two fasted and two satiated on two different days. During the scans, subjects rated all food items for liking and wanting, thereby choosing the subsequent meal. The results show that high-protein (PROT) v. high-carbohydrate (CARB) conditions were generated using protein or carbohydrate drinks at the first meal. Energy intake and hunger were recorded. PROT (protein: 53.7 (SD 2.1) percentage of energy (En%); carbohydrate: 6.4 (SD 1.3) En%) and CARB conditions (protein: 11.8 (SD 0.6) En%; carbohydrate: 70.0 (SD 2.4) En%) were achieved during the first meal, while the second meals were not different between the conditions. Hunger, energy intake, and behavioural liking and wanting ratings were decreased after the first meal (P< 0.001). Comparing the first with the second meal, the macronutrient content changed: carbohydrate -26.9 En% in the CARB condition, protein -37.8 En% in the PROT condition. After the first meal in the CARB condition, wanting TRS was increased in the hypothalamus. After the first meal in the PROT condition, liking TRS was decreased in the putamen (P< 0.05). The change in energy intake from the first to the second meal was inversely related to the change in liking TRS in the striatum and hypothalamus in the CARB condition and positively related in the PROT condition (P< 0.05). In conclusion, wanting and liking TRS were affected differentially with a change in carbohydrate or protein intake, underscoring subsequent energy intake and shift in macronutrient composition. PMID:22643242

  2. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    PubMed Central

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  3. Mass Spectrometry-Based Proteomics for Relative Protein Quantification and Biomarker Identification in Primary Human Hepatocytes.

    PubMed

    Dietz, Lisa; Sickmann, Albert

    2015-01-01

    Liquid chromatography-tandem mass spectrometry-based proteomics is a highly sensitive and effective tool to identify and quantify potential biomarkers in repeated dose toxicity studies using primary cell culture systems. In this respect, 8-plex isobaric tag for relative and absolute quantification labeling is the method of choice for relative quantification. After cell lysis and tryptic protein digestion, an individual isobaric tag is added to the amine groups of arginine and lysine. Then, up to eight differentially labeled samples are mixed and analyzed together in a mass spectrometry experiment. During peptide fragmentation in the mass spectrometer, the individual tag intensity of each identified peptide could be detected, reflecting the peptide intensities in the eight samples. The identified peptides are matched to their specific protein using specific search engines and finally to eight individual relative protein quantities. The two-dimensional fractionation of complex peptide mixtures minimizes the possibility of co-fragmentation of peptides from different origin in the mass spectrometer, which leads to a higher number of peptide search matches and therefore to better identification and quantification results.

  4. Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases

    PubMed Central

    Krupa, A.; Srinivasan, N.

    2002-01-01

    By means of profile-matching procedures, conservation of functionally important residues, and fold-recognition techniques, we show that two distinct families of lipopolysaccharide kinases encoded in the genomes of Gram-negative bacteria are related to each other and to two distinct classes of proteins, namely eukaryotic protein kinases and right open reading frame (RIO1). Members of one of the lipopolysaccharide kinase families are identified only in pathogenic bacteria. Phosphorylation by these enzymes is relevant in the construction of outer membrane, immune response, and pathogenic virulence. The class of proteins called RIO1, also related to eukaryotic protein kinases and previously known to occur only in archaea and eukaryotes, are now identified in eubacteria as well. It has been suggested here that RIO1 proteins are intermediately related to lipopolysaccharide kinases and eukaryotic protein kinases implying an evolutionary relationship between the three classes of proteins. PMID:12021457

  5. The role of higher protein diets in weight control and obesity-related comorbidities.

    PubMed

    Astrup, A; Raben, A; Geiker, N

    2015-05-01

    The importance of the relative dietary content of protein, carbohydrate and the type of carbohydrate (that is, glycemic index (GI)) for weight control under ad libitum conditions has been controversial owing to the lack of large scale studies with high diet adherence. The Diet, Obesity and Genes (DioGenes) European multicentre trial examined the importance of a slight increase in dietary protein content, reduction in carbohydrate and the importance of choosing low (LGI) vs high GI (HGI) carbohydrates for weight control in 932 obese families. Only the adults underwent a diet of 800 kcal per day for 8 weeks, and after losing ~11kg they were randomized to one of five energy ad libitum diets for 6 months. The diets differed in protein content and GI. The high-protein (HP) diet groups consumed 5.4% points more energy from protein than the normal protein (NP) groups, and the LGI diet groups achieved 5.1% lower GI than the HGI groups. The effect of HP and LGI was additive on weight loss and maintenance, and the combination was successful in preventing weight regain and reducing drop-out rate among the adults after the 11kg weight loss. This diet also reduced body fatness and prevalence of overweight and obesity among their children and had consistent beneficial effects on blood pressure, blood lipids and inflammation in both parents and children. After 1 year, mainly the HP effects were maintained. Putative genes have been identified that suggest this diet to be particularly effective in 67% of the population. In conclusion, the DioGenes diet has shown to be effective for prevention of weight regain and for weight reduction in overweight children under ad libitum conditions. The less-restrictive dietary approach fits into a normal food culture, and has been translated into popular diet and cook books in several languages.

  6. The role of higher protein diets in weight control and obesity-related comorbidities.

    PubMed

    Astrup, A; Raben, A; Geiker, N

    2015-05-01

    The importance of the relative dietary content of protein, carbohydrate and the type of carbohydrate (that is, glycemic index (GI)) for weight control under ad libitum conditions has been controversial owing to the lack of large scale studies with high diet adherence. The Diet, Obesity and Genes (DioGenes) European multicentre trial examined the importance of a slight increase in dietary protein content, reduction in carbohydrate and the importance of choosing low (LGI) vs high GI (HGI) carbohydrates for weight control in 932 obese families. Only the adults underwent a diet of 800 kcal per day for 8 weeks, and after losing ~11kg they were randomized to one of five energy ad libitum diets for 6 months. The diets differed in protein content and GI. The high-protein (HP) diet groups consumed 5.4% points more energy from protein than the normal protein (NP) groups, and the LGI diet groups achieved 5.1% lower GI than the HGI groups. The effect of HP and LGI was additive on weight loss and maintenance, and the combination was successful in preventing weight regain and reducing drop-out rate among the adults after the 11kg weight loss. This diet also reduced body fatness and prevalence of overweight and obesity among their children and had consistent beneficial effects on blood pressure, blood lipids and inflammation in both parents and children. After 1 year, mainly the HP effects were maintained. Putative genes have been identified that suggest this diet to be particularly effective in 67% of the population. In conclusion, the DioGenes diet has shown to be effective for prevention of weight regain and for weight reduction in overweight children under ad libitum conditions. The less-restrictive dietary approach fits into a normal food culture, and has been translated into popular diet and cook books in several languages. PMID:25540980

  7. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia.

    PubMed

    Lozano, Daniel; de Castro, Luis F; Dapía, Sonia; Andrade-Zapata, Irene; Manzarbeitia, Félix; Alvarez-Arroyo, M Victoria; Gómez-Barrena, Enrique; Esbrit, Pedro

    2009-05-01

    A deficit in bone formation is a major factor in diabetes-related osteopenia. We examined here whether diabetes-associated changes in osteoblast phenotype might in part result from a decrease in PTH-related protein (PTHrP). We used a bone marrow ablation model in diabetic mice by multiple streptozotocin injections. PTHrP (1-36) (100 microg/kg, every other day) or vehicle was administered to mice for 13 d starting 1 wk before marrow ablation. Diabetic mice showed bone loss in both the intact femur and the regenerating tibia on d 6 after ablation; in the latter, this was related to decreased bone-forming cells, osteoid surface, and blood vessels, and increased marrow adiposity. Moreover, a decrease in matrix mineralization occurred in ex vivo bone marrow cultures from the unablated tibia from diabetic mice. These skeletal alterations were associated with decreased gene expression (by real-time PCR) of Runx2, osterix, osteocalcin, PTHrP, the PTH type 1 receptor, vascular endothelial growth factor and its receptors, and osteoprotegerin to receptor activator of nuclear factor-kappaB ligand mRNA ratio, and increased peroxisome proliferator-activated receptor-gamma2 mRNA levels. Similar changes were induced by hyperosmotic (high glucose or mannitol) medium in osteoblastic MC3T3-E1 cells, which were mimicked by adding a neutralizing anti-PTHrP antibody or PTH type 1 receptor antagonists to these cells in normal glucose medium. PTHrP (1-36) administration reversed these changes in both intact and regenerating bones from diabetic mice in vivo, and in MC3T3-E1 cells exposed to high glucose. These findings strongly suggest that PTHrP has an important role in the altered osteoblastic function related to diabetes.

  8. Autophagy-related Protein 32 Acts as Autophagic Degron and Directly Initiates Mitophagy*

    PubMed Central

    Kondo-Okamoto, Noriko; Noda, Nobuo N.; Suzuki, Sho W.; Nakatogawa, Hitoshi; Takahashi, Ikuko; Matsunami, Miou; Hashimoto, Ayako; Inagaki, Fuyuhiko; Ohsumi, Yoshinori; Okamoto, Koji

    2012-01-01

    Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy. PMID:22308029

  9. Involvement of a gelsolin-related protein in spermatogenesis of the earthworm Lumbricus terrestris.

    PubMed

    Krüger, Evelyn; Hinssen, Horst; D'Haese, Jochen

    2008-04-01

    A gelsolin-related protein was isolated from seminal vesicles of the annelid Lumbricus terrestris. Compared with the isoforms of the gelsolin-related protein previously found in the muscle of the annelid body wall, the isolated protein was assigned to the first isoform (EWAM-P1) because of its electrophoretic mobility, chromatographic elution behaviour, immunological cross-reactivity and identical nucleotide sequence of segments obtained by reverse transcription/polymerase chain reaction. Immunofluorescence studies with smear preparations of developing male germ cells revealed characteristic changes of the local distribution of actin and EWAM-P1 during spermatogenesis. These changes were correlated with the developmental transport processes and structural alterations. F-actin, as revealed by rhodamine-phalloidin staining, formed a toroid-shaped structure in cytoplasmic bridges connecting the germ cells to a central cytophore during the developmental stages. An actin antibody reacting with both G- and F-actin demonstrated that actin was concentrated at the proximal and distal parts of the spermatocytes. EWAM-P1 was also localized in these regions, with intense staining in the distal part of spermatocytes and young spermatids in which the Golgi complex and proacrosome resided. The anti-actin antibody further stained the periphery of the nucleus. This staining gradually reduced during sperm maturation and covered about half of the length of the nucleus in elongated spermatids. Co-localization of EWAM with actin implied a functional significance of this gelsolin-related protein for the rearrangement of the actin cytoskeleton during earthworm spermiogenesis. PMID:18197420

  10. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate

    SciTech Connect

    Toroser, D.; Plaut, Z.; Huber, S.C.

    2000-05-01

    One of the major protein kinases (PK{sub III}) that phosphorylates serine-158 of spinach sucrose-phosphate synthase (SPS), which is responsible for light/dark modulation of activity, is known to be a member of the SNF1-related family of protein kinases. In the present study, the authors have developed a fluorescence-based continuous assay for measurement of PK{sub III} activity. Using the continuous assay, along with the fixed-time-point {sup 32}P-incorporation assay, they demonstrate that PK{sub III} activity is inhibited by glucose-6-phosphate (Glc-6-P). Relative inhibition by Glc-6-P was increased by decreasing pH from 8.5 to 5.5 and by reducing the concentration of Mg{sup 2+} in the assay from 10 to 2 nM. Under likely physiological conditions (PH 7.0 and 2 mM Mg{sup 2+}), 10 nM Glc-6-P inhibited kinase activity approximately 70%. Inhibition by Glc-6-P could not be ascribed to contaminants in the commercial preparations. Other metabolites inhibited PK{sub III} in the following order: Glc-6-P > mannose-6-P, fructose-1,6P{sub 2} > ribose-5-P, 3-PGA, fructose-6-P. Inorganic phosphate, Glc, and AMP were not inhibitory, and free Glc did not reverse the inhibition by Glc-6-P. Because SNF1-related protein kinases are thought to function broadly in the regulation of enzyme activity and gene expression, Glc-6-P inhibition of PK{sub III} activity potentially provides a mechanism for metabolic regulation of the reactions catalyzed by these important protein kinases.

  11. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia.

    PubMed

    Amir, Mohd; Wahiduzzaman; Dar, Mohammad Aasif; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    Ras related protein (Rab5a) is one of the most important member of the Rab family which regulates the early endosome fusion in endocytosis, and it also helps in the regulation of the budding process. Here, for the first time we report a simple and reproducible method for the purification of the Rab5a from a medicinal plant Tinospora cordifolia. We have used weak cation-exchange (CM-Sepharose-FF) followed by gel-filtration chromatography. A purified protein of 22-kDa was observed on SDS-PAGE which was identified as Rab5a using MALDI-TOF/MS. Our purification procedure is fast and simple with high yield. The purified protein was characterized using circular dichroism for the measurement of secondary structure followed by GdmCl- and urea-induced denaturation to calculate the values of Gibbs free energy change (ΔGD), ΔGD°, midpoint of the denaturation Cm, i.e. molar GdmCl [GdmCl] and molar urea [Urea] concentration at which ΔGD=0; and m, the slope (=∂ΔGD/∂[d]) values. Furthermore, thermodynamic properties of Rab5a were also measured by differential scanning calorimeter. Here, using isothermal calorimeteric measurements we further showed that Rab5a binds with the GTP. This is a first report on the purification and biophysical characterization of Rab5a protein from T. cordifolia. PMID:26517959

  12. Activity-related redistribution of presynaptic proteins at the active zone.

    PubMed

    Tao-Cheng, J-H

    2006-09-01

    Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.

  13. Complement factor H–related hybrid protein deregulates complement in dense deposit disease

    PubMed Central

    Chen, Qian; Wiesener, Michael; Eberhardt, Hannes U.; Hartmann, Andrea; Uzonyi, Barbara; Kirschfink, Michael; Amann, Kerstin; Buettner, Maike; Goodship, Tim; Hugo, Christian; Skerka, Christine; Zipfel, Peter F.

    2013-01-01

    The renal disorder C3 glomerulopathy with dense deposit disease (C3G-DDD) pattern results from complement dysfunction and primarily affects children and young adults. There is no effective treatment, and patients often progress to end-stage renal failure. A small fraction of C3G-DDD cases linked to factor H or C3 gene mutations as well as autoantibodies have been reported. Here, we examined an index family with 2 patients with C3G-DDD and identified a chromosomal deletion in the complement factor H–related (CFHR) gene cluster. This deletion resulted in expression of a hybrid CFHR2-CFHR5 plasma protein. The recombinant hybrid protein stabilized the C3 convertase and reduced factor H–mediated convertase decay. One patient was refractory to plasma replacement and exchange therapy, as evidenced by the hybrid protein quickly returning to pretreatment plasma levels. Subsequently, complement inhibitors were tested on serum from the patient for their ability to block activity of CFHR2-CFHR5. Soluble CR1 restored defective C3 convertase regulation; however, neither eculizumab nor tagged compstatin had any effect. Our findings provide insight into the importance of CFHR proteins for C3 convertase regulation and identify a genetic variation in the CFHR gene cluster that promotes C3G-DDD. Monitoring copy number and sequence variations in the CFHR gene cluster in C3G-DDD and kidney patients with C3G-DDD variations will help guide treatment strategies. PMID:24334459

  14. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites

    PubMed Central

    Olkkonen, Vesa M.

    2015-01-01

    Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling. PMID:26715851

  15. Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa.

    PubMed

    Suzuki, Hitoshi; Vuong, Thu V; Gong, Yunchen; Chan, Kin; Ho, Chi-Yip; Master, Emma R; Kondo, Akihiko

    2014-11-01

    Expansin and expansin-related proteins loosen plant cell wall architectures and are widely distributed in several types of organisms, including plants, fungi and bacteria. Here we describe sequence diversity and unique gene expression profiles of multiple expansin-related proteins identified in the basidiomycete, Phanerochaete carnosa. The protein sequences were homologous to loosenin, an expansin-related protein reported in the basidiomycete, Bjerkandera adusta. We identified homologous sequences of each of those P. carnosa proteins in many basidiomycete species. Twelve P. carnosa loosenin-like proteins (LOOLs) were classified into two subgroups according to sequence homology. Conservation of polysaccharide-binding amino acid residues was stricter in subgroup A. Subgroup A sequences included a conserved 8-9 amino acid insertion in a polysaccharide-binding groove whereas subgroup B contained a 12-18 amino acid insertion next to the binding groove. The P. carnosa genome also encodes the expansin-related protein, DREX1, which adopts a loosenin-like structure but has lower sequence homology to other LOOLs. The gene expression analysis of those proteins showed distinct patterns that were not significantly related to subgroupings. The variation in the protein sequences and gene expression patterns, and wide distribution among the basidiomycota, suggest that the diverse cell wall loosening proteins contribute to effective plant cell wall association and utilization by basidiomycetes.

  16. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris).

    PubMed

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E; Chapman, B Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L; Pauls, Karl P; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  17. Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana.

    PubMed

    Yasmin, Nusrat; Saleem, Mahjabeen

    2014-01-01

    Pathogenesis-related/thaumatin like (PR-5/TL) antifungal protein from basrai banana was purified by using a simple protocol consisting of ammonium sulphate precipitation, affinity chromatography (Affi-gel blue gel), Q-Sepharose chromatography and gel filtration on Sephadex G-75. The purified protein with acidic character (pI 6.67) has molecular weight of 21.155 kDa, as determined by MALDI-TOF mass spectrometry. The purified protein shared N-terminal sequence homology with other TLPs. Crude banana extract inhibited the growth of Fusarium oxysporum, Aspergillus niger, Aspergillus fumigatus and Trichoderma viride with IC₅₀ values (determined by Probit analysis) 15 μM (slope=0.086, χ(2)=17.843, P=0.033), 17 μM (slope=0.183, χ(2)=61.533, P=0.011), 6.5 μM (slope=0.211, χ(2)=14.380, P=0.023) and 29.11 μM (slope=0.072, χ(2)=45.768, P=0.014). The purified antifungal protein repressed the growth of F. oxysporum, A. niger, A. fumigatus and T. viride with IC₅₀ values 9.7 μM (slope=0.056, χ(2)=11.538, P=0.021), 11.83 μM (slope=0.127, χ(2)=42.82, P=0.00), 4.61 μM (slope=0.150, χ(2)=10.199, P=0.017) and 21.43 μM (slope=0.053, χ(2)=33.693, P=0.00), respectively. The IC50 values of antifungal activity of crude banana extract were higher than the purified antifungal protein. It indicated that proteins in crude banana extract have antagonistic effect on the fungal growth. White bread is particularly vulnerable by fungal pathogens. Purified antifungal protein suppressed the growth of Aspergillus phoenicis and Aspergillus flavus on white bread suggesting that this protein can be used as a preservative in the bakery industry as well as in other relevant food processing industries. PMID:24192113

  18. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris).

    PubMed

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E; Chapman, B Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L; Pauls, Karl P; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  19. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris)

    PubMed Central

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E.; Chapman, B. Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L.; Pauls, Karl P.; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  20. Drosophila Hook-Related Protein (Girdin) Is Essential for Sensory Dendrite Formation.

    PubMed

    Ha, Andrew; Polyanovsky, Andrey; Avidor-Reiss, Tomer

    2015-08-01

    The dendrite of the sensory neuron is surrounded by support cells and is composed of two specialized compartments: the inner segment and the sensory cilium. How the sensory dendrite is formed and maintained is not well understood. Hook-related proteins (HkRP) like Girdin, DAPLE, and Gipie are actin-binding proteins, implicated in actin organization and in cell motility. Here, we show that the Drosophila melanogaster single member of the Hook-related protein family, Girdin, is essential for sensory dendrite formation and function. Mutations in girdin were identified during a screen for fly mutants with no mechanosensory function. Physiological, morphological, and ultrastructural studies of girdin mutant flies indicate that the mechanosensory neurons innervating external sensory organs (bristles) initially form a ciliated dendrite that degenerates shortly after, followed by the clustering of their cell bodies. Importantly, we observed that Girdin is expressed transiently during dendrite morphogenesis in three previously unidentified actin-based structures surrounding the inner segment tip and the sensory cilium. These actin structures are largely missing in girdin mutant. Defects in cilia are observed in other sensory organs such as those mediating olfaction and taste, suggesting that Girdin has a general role in forming sensory dendrites in Drosophila. These suggest that Girdin functions temporarily within the sensory organ and that this function is essential for the formation of the sensory dendrites via actin structures.

  1. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction.

    PubMed

    Weatherbee, Scott D; Anderson, Kathryn V; Niswander, Lee A

    2006-12-01

    Low-density lipoprotein receptor-related protein 4 (Lrp4) is a member of a family of structurally related, single-pass transmembrane proteins that carry out a variety of functions in development and physiology, including signal transduction and receptor-mediated endocytosis. Lrp4 is expressed in multiple tissues in the mouse, and is important for the proper development and morphogenesis of limbs, ectodermal organs, lungs and kidneys. We show that Lrp4 is also expressed in the post-synaptic endplate region of muscles and is required to form neuromuscular synapses. Lrp4-mutant mice die at birth with defects in both presynaptic and postsynaptic differentiation, including aberrant motor axon growth and branching, a lack of acetylcholine receptor and postsynaptic protein clustering, and a failure to express postsynaptic genes selectively by myofiber synaptic nuclei. Our data show that Lrp4 is required during the earliest events in postsynaptic neuromuscular junction (NMJ) formation and suggest that it acts in the early, nerveindependent steps of NMJ assembly. The identification of Lrp4 as a crucial factor for NMJ formation may have implications for human neuromuscular diseases such as myasthenia syndromes. PMID:17119023

  2. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos

    PubMed Central

    Etard, Christelle; Roostalu, Urmas; Strähle, Uwe

    2010-01-01

    The chaperones Unc45b and Hsp90a are essential for folding of myosin in organisms ranging from worms to humans. We show here that zebrafish Unc45b, but not Hsp90a, binds to the putative cytidine deaminase Apobec2 (Apo2) in an interaction that requires the Unc45/Cro1p/She4p-related (UCS) and central domains of Unc45b. Morpholino oligonucleotide-mediated knockdown of the two related proteins Apo2a and Apo2b causes a dystrophic phenotype in the zebrafish skeletal musculature and impairs heart function. These phenotypic traits are shared with mutants of unc45b, but not with hsp90a mutants. Apo2a and -2b act nonredundantly and bind to each other in vitro, which suggests a heteromeric functional complex. Our results demonstrate that Unc45b and Apo2 proteins act in a Hsp90a-independent pathway that is required for integrity of the myosepta and myofiber attachment. Because the only known function of Unc45b is that of a chaperone, Apo2 proteins may be clients of Unc45b but other yet unidentified processes cannot be excluded. PMID:20440001

  3. Discovery of New Candidate Genes Related to Brain Development Using Protein Interaction Information

    PubMed Central

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development. PMID:25635857

  4. On the relation of necrosis and inflammation to denaturation of proteins.

    PubMed

    OPIE, E L

    1962-03-01

    Necrosis of the skin was produced by the injection of measured quantities of electrolytes and of amino compounds into the dermis, and the relative ability of these substances to produce it was determined. Inflammation characterized by edema and accumulation of leucocytes accompanied necrosis. The ability of electrolytes to produce necrosis was found to increase with the valence of their basic ion, and in this respect was in accord with their ability to denature proteins. The quantity of different electrolytes needed to produce necrosis varied in the same order as the molar concentration of these electrolytes, that is isotonic with liver or kidney cells. Necrosis caused by amino compounds occurred with similar relation to the isotonicity of liver cells. In this as in other relations the cells acted as osmometers. The foregoing relations indicate that denaturation of proteins, necrosis of living tissue, and osmotic activity of liver or kidney cells are determined by molecular weight, valence, and ion-dissociation of electrolytes, that is, by the factors that determine the colligative properties of electrolytes. Agents such as turpentine, mustard, or croton oil and some halogen substitution compounds of methyl that are insoluble in water and soluble in lipoids have produced skin necrosis and inflammation.

  5. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity.

    PubMed

    Kidd, Ambrose R; Muñiz-Medina, Vanessa; Der, Channing J; Cox, Adrienne D; Reiner, David J

    2015-01-01

    Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system. PMID:26208319

  6. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity

    PubMed Central

    Kidd, Ambrose R.; Muñiz-Medina, Vanessa; Der, Channing J.; Cox, Adrienne D.; Reiner, David J.

    2015-01-01

    Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system. PMID:26208319

  7. Isolation and characterization of adrenoleukodystrophy protein (ALDP) related sequences in the human genome

    SciTech Connect

    Geraghty, M.T.; Stetten, G.; Kearns, W.

    1994-09-01

    X-linked adrenoleukodystrophy (ALD) is a disorder of peroxisomal {beta}-oxidation of very long chain fatty acids. It presents either as progressive dementia in childhood or as progressive paraparesis in later years. Adrenal insufficiency occurs in both phenotypes. The gene of the ALD protein has been mapped to Xq28 and has recently been cloned and characterized. The ALD protein has significant homology to the peroxisomal membrane protein, PMP70 and belongs to the ATP binding cassette superfamily of transporters. We screened a human genomic library with an ALDP cDNA and isolated 5 different but highly similar clones containing sequences corresponding to the 3{prime} end of the ALDP gene. Comparison of the sequences over the region corresponding to exon 9 through the 3{prime} end of the ALDP gene reveals {approximately}96% nucleotide identity in both exonic and intronic regions. Splice sites and open reading frames are maintained. Using both FISH and human-rodent DNA mapping panels, we positively assign these ALDP-related sequences to chromosomes 2, 16 and 22, and provisionally to 1 and 20. Southern blot of primate DNA probed with a partial ALDP cDNA (exon 2-10) shows that expansion of ALDP-related sequences occurred in higher primates (chimp, gorilla and human). Although Northern blots show multiple ALDP-hybridizing transcripts in certain tissues, we have no evidence to date for expression of these ALDP-related sequences. In conclusion, our data show there has been an unusual and recent dispersal to multiple chromosomes of structural gene sequences related to the ALDP gene. The functional significance of these sequences remains to be determined but their existence complicates PCR and mutation analysis of the ALDP gene.

  8. A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro

    PubMed Central

    Wang, Chen; Villion, Manuela; Semper, Cameron; Coros, Colin; Moineau, Sylvain; Zimmerly, Steven

    2011-01-01

    Reverse transcriptases (RTs) are RNA-dependent DNA polymerases that usually function in the replication of selfish DNAs such as retrotransposons and retroviruses. Here, we have biochemically characterized a RT-related protein, AbiK, which is required for abortive phage infection in the Gram-positive bacterium Lactococcus lactis. In vitro, AbiK does not exhibit the properties expected for an RT, but polymerizes long DNAs of ‘random’ sequence, analogous to a terminal transferase. Moreover, the polymerized DNAs appear to be covalently attached to the AbiK protein, presumably because an amino acid serves as a primer. Mutagenesis experiments indicate that the polymerase activity resides in the RT motifs and is essential for phage resistance in vivo. These results establish a novel biochemical property and a non-replicative biological role for a polymerase. PMID:21676997

  9. The La-Related Proteins, a Family with Connections to Cancer

    PubMed Central

    Stavraka, Chara; Blagden, Sarah

    2015-01-01

    The evolutionarily-conserved La-related protein (LARP) family currently comprises Genuine La, LARP1, LARP1b, LARP4, LARP4b, LARP6 and LARP7. Emerging evidence suggests each LARP has a distinct role in transcription and/or mRNA translation that is attributable to subtle sequence variations within their La modules and specific C-terminal domains. As emerging research uncovers the function of each LARP, it is evident that La, LARP1, LARP6, LARP7 and possibly LARP4a and 4b are dysregulated in cancer. Of these, LARP1 is the first to be demonstrated to drive oncogenesis. Here, we review the role of each LARP and the evidence linking it to malignancy. We discuss a future strategy of targeting members of this protein family as cancer therapy. PMID:26501340

  10. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation.

    PubMed

    Raven, John A

    2012-06-01

    Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs. Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein

  11. Energy, protein, and zinc nutriture of rural African children in relation to some anthropometric indices

    SciTech Connect

    Ferguson, E.L.; Gibson, R.S.; Osei-Opare, F.; Opare-Obisaw, C.; Thompson, L.U. Univ. of Ghana, Legon Univ. of Toronto, Ontario )

    1991-03-11

    Heights, weights, arm circumferences, and triceps skinfold thicknesses of 66 Malawian and 148 Ghanaian preschool children were measured during 3 seasons. Their seasonal energy, protein, Ca, Zn, dietary fiber and phytate intakes were estimated from 3-day weighed records, using analyzed and literature food composition values. Seasonal hair Zn concentrations were analyzed by instrumental neutron activation analyses, The mean annual intakes for Malawian compared to Ghanaian children were higher for energy protein, and Zn. Cereals contributed a higher proportion of the total energy intake in the Malawian compared to the Ghanaian diets. A higher percentage of the Malawian children had height-for-age Z-scores below {minus}2SD, but a lower percentage had weight-for-height Z-scores below {minus}1SD compared to their Ghanaian counterparts. These differences may, in part be related to the high cereal intakes of the Malawian children.

  12. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    PubMed

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits. PMID:27189918

  13. Helminth infection alters IgE responses to allergens structurally related to parasite proteins.

    PubMed

    Santiago, Helton da Costa; Ribeiro-Gomes, Flávia L; Bennuru, Sasisekhar; Nutman, Thomas B

    2015-01-01

    Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis." PMID:25404363

  14. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  15. Helminth infection alters IgE responses to allergens structurally related to parasite proteins

    PubMed Central

    Santiago, Helton da Costa; Ribeiro-Gomes, Flávia L.; Bennuru, Sasisekhar; Nutman, Thomas B.

    2014-01-01

    Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, though the clinically-related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in helminth-infected population, we performed Immunocap™ tests in filarial-infected and non-infected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins and IgE against representative recombinant allergens with and without helminth homologues were performed. The impact of helminth infection on the levels and function of the IgE to these specific homologous and non-homologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of Immunocap™ identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologues in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologues in helminths. Mice infected with helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologues in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications altering serologic approaches to allergen testing and brings a new perspective to the Hygiene Hypothesis. PMID:25404363

  16. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    PubMed

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  17. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses

    PubMed Central

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-01-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  18. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes

    PubMed Central

    Noé, Griselda; De Gaudenzi, Javier G; Frasch, Alberto C

    2008-01-01

    Background Trypanosomes mostly control gene expression by post-transcriptional events such as modulation of mRNA stability and translational efficiency. These mechanisms involve RNA-binding proteins (RBPs), which associate with transcripts to form messenger ribonucleoprotein (mRNP) complexes. Results In this study, we report the identification of mRNA targets for Trypanosoma cruzi U-rich RBP 1 (TcUBP1) and T. cruzi RBP 3 (TcRBP3), two phylogenetically conserved proteins among Kinetoplastids. Co-immunoprecipitated RBP-associated RNAs were extracted from mRNP complexes and binding of RBPs to several targets was confirmed by independent experimental assays. Analysis of target transcript sequences allowed the identification of different signature RNA motifs for each protein. Cis-elements for RBP binding have a stem-loop structure of 30–35 bases and are more frequently represented in the 3'-untranslated region (UTR) of mRNAs. Insertion of the correctly folded RNA elements to a non-specific mRNA rendered it into a target transcript, whereas substitution of the RNA elements abolished RBP interaction. In addition, RBPs competed for RNA-binding sites in accordance with the distribution of different and overlapping motifs in the 3'-UTRs of common mRNAs. Conclusion Functionally related transcripts were preferentially associated with a given RBP; TcUBP1 targets were enriched in genes encoding proteins involved in metabolism, whereas ribosomal protein-encoding transcripts were the largest group within TcRBP3 targets. Together, these results suggest coordinated control of different mRNA subsets at the post-transcriptional level by specific RBPs. PMID:19063746

  19. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    PubMed

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  20. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein.

    PubMed

    Ma, Zhong; Thomas, Keena S; Webb, Donna J; Moravec, Radim; Salicioni, Ana Maria; Mars, Wendy M; Gonias, Steven L

    2002-12-23

    The low density lipoprotein receptor-related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1-deficient MEFs demonstrated increased Rac1 activation compared with LRP-1-expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR-/- MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK- cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR-/- MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal-regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked.

  1. A fibrinogen-related protein identified from hepatopancreas of crayfish is a potential pattern recognition receptor.

    PubMed

    Chen, Qiming; Bai, Suhua; Dong, Chaohua

    2016-09-01

    Fibrinogen-related protein (FREP) family is a large group of proteins containing fibrinogen-like (FBG) domain and plays multiple physiological roles in animals. However, their immune functions in crayfish are not fully explored. In the present study, a novel fibrinogen-like protein (designated as PcFBN1) was identified and characterized from hepatopancreas of red swamp crayfish Procambarus clarkii. The cDNA sequence of PcFBN1 contains an open reading frame (ORF) of 1353 bp encoding a protein of 450 amino acids. Sequence and structural analysis indicated that PcFBN1 contains an FBG domain in C-terminal and a putative signal peptide of 19 amino acids in N-terminal. Semi-quantitative PCR revealed that the main expression of PcFBN1 was observed in hepatopancreas and hemocyte. Temporal expression analysis exhibited that PcFBN1 expression could be significantly induced by heat-killed Aeromonas hydrophila. Tissue distribution and temporal change of PcFBN1 suggested that PcFBN1 may be involved in immune responses of red swamp crayfish. Recombinant PcFBN1 protein binds and agglutinates both gram-negative bacteria Escherichia coli and gram-positive bacteria Micrococcus lysodeikticus. Moreover, binding and agglutination is Ca(2+) dependent. Further analysis indicated that PcFBN1 recognizes some acetyl group-containing substance LPS and PGN. RNAi experiment revealed that PcFBN1 is required for bacterial clearance and survival from A. hydrophila infection. Reduction of PcFBN1 expression significantly decreased the survival and enhanced the number of A. hydrophila in the hemolymph. These results indicated that PcFBN1 plays an important role in the innate immunity of red swamp crayfish as a potential pattern recognition receptor. PMID:27417229

  2. Age-related variations of protein carbonyls in human saliva and plasma: is saliva protein carbonyls an alternative biomarker of aging?

    PubMed

    Wang, Zhihui; Wang, Yanyi; Liu, Hongchen; Che, Yuwei; Xu, Yingying; E, Lingling

    2015-06-01

    Free radical hypothesis which is one of the most acknowledged aging theories was developed into oxidative stress hypothesis. Protein carbonylation is by far one of the most widely used markers of protein oxidation. We studied the role of age and gender in protein carbonyl content of saliva and plasma among 273 Chinese healthy subjects (137 females and 136 males aged between 20 and 79) and discussed the correlation between protein carbonyl content of saliva and plasma. Protein carbonyl content of saliva and plasma were, respectively, 2.391 ± 0.639 and 0.838 ± 0.274 nmol/mg. Variations of saliva and plasma different age groups all reached significant differences in both male and female (all p < 0.05) while both saliva and plasma protein carbonyls were found to be significantly correlated with age (r = 0.6582 and r = 0.5176, all p < 0.001). Gender was discovered to be unrelated to saliva and plasma protein carbonyl levels (all p > 0.05). Saliva and plasma protein carbonyls were positively related (r = 0.4405, p < 0.001). Surprisingly, saliva and plasma protein carbonyls/ferric reducing ability of plasma (FRAP) ratios were proved to be significantly correlated with age (r = 0.7796 and r = 0.6938, all p < 0.001) while saliva protein carbonyls/FRAP ratio and plasma protein carbonyls/FRAP ratio were also correlated (r = 0.5573, p < 0.001). We concluded that saliva protein carbonyls seem to be an alternative biomarker of aging while the mechanisms of protein carbonylation and oxidative stress and the relationship between saliva protein carbonyls and diseases need to be further investigated.

  3. The glassy state of crambin and the THz time scale protein-solvent fluctuations possibly related to protein function

    PubMed Central

    2014-01-01

    Background THz experiments have been used to characterize the picosecond time scale fluctuations taking place in the model, globular protein crambin. Results Using both hydration and temperature as an experimental parameter, we have identified collective fluctuations (<= 200 cm−1) in the protein. Observation of the protein dynamics in the THz spectrum from both below and above the glass transition temperature (Tg) has provided unique insight into the microscopic interactions and modes that permit the solvent to effectively couple to the protein thermal fluctuations. Conclusions Our findings suggest that the solvent dynamics on the picosecond time scale not only contribute to protein flexibility but may also delineate the types of fluctuations that are able to form within the protein structure. PMID:25184036

  4. Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins.

    PubMed

    Zhang, Yan; Dong, Zhaoming; Wang, Dandan; Wu, Yong; Song, Qianru; Gu, Peiming; Zhao, Ping; Xia, Qingyou

    2014-04-01

    The silkworm, Bombyx mori, is an important economic insect for its production of silk. The larvae of many lepidopteran insects are major agricultural pests and often silkworm is explored as a model organism for other lepidopteran pest species. The hemolymph of caterpillars contains a lot of nutrient and immune components. In this study, we applied liquid chromatography-tandem mass spectrometry to gain a better understanding of the larval hemolymph proteomics in B. mori. We identified 752 proteins in hemolymph collected from day-4 fourth instar and day-7 fifth instar. Nearly half the identified proteins (49%) were predicted to function as binding proteins and 46% were predicted to have catalytic activities. Apolipophorins, storage proteins, and 30K proteins constituted the most abundant groups of nutrient-storage proteins. Of them, 30K proteins showed large differences between fourth instar larvae and fifth instar larvae. Besides nutrient-storage proteins, protease inhibitors are also expressed very highly in hemolymph. The analysis also revealed lots of immunity-related proteins, including recognition, signaling, effectors and other proteins, comprising multiple immunity pathways in hemolymph. Our data provide an exhaustive research of nutrient-storage proteins and immunity-related proteins in larval hemolymph, and will pave the way for future physiological and pathological studies of caterpillars. PMID:24402669

  5. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4.

    PubMed

    Martinez-Noel, G; Niedenthal, R; Tamura, T; Harbers, K

    1999-07-01

    The ubiquitin-conjugating enzyme UbcM4 was previously shown to be necessary for normal mouse development. As a first step in identifying target proteins or proteins involved in the specificity of UbcM4-mediated ubiquitylation, we have isolated seven cDNAs encoding proteins that specifically interact with UbcM4 but with none of the other Ubcs tested. This interaction was observed in yeast as well as in mammalian cells. With one exception, all UbcM4-interacting proteins (UIPs) belong to a family of proteins that contain a RING finger motif. As they are structurally related to RING finger proteins that have recently been shown to play an essential role in protein ubiquitylation and degradation, the possibility is discussed that UIPs are involved in the specific recognition of substrate proteins of UbcM4.

  6. Amyloid beta-protein induces the cerebrovascular cellular pathology of Alzheimer's disease and related disorders.

    PubMed

    Van Nostrand, W E; Davis-Salinas, J; Saporito-Irwin, S M

    1996-01-17

    One of the hallmark pathologic characteristics of Alzheimer's disease (AD) and related disorders is deposition of the 39-42 amino acid amyloid beta-protein (A beta) in the walls of cerebral blood vessels. The cerebrovascular A beta deposits in these disorders are associated with degenerating smooth muscle cells in the vessel wall which have been implicated in the expression of the amyloid beta-protein precursor (A beta PP) and formation of A beta. We have established primary cultures of human cerebrovascular smooth muscle cells as a model for investigating the cellular pathologic processes involved in the cerebral amyloid angiopathy of AD and related disorders. Recently, we have shown that A beta 1-42, the predominant pathologic cerebrovascular form of A beta, causes extensive cellular degeneration that is accompanied by a striking increase in the levels of cellular A beta PP, potentially amyloidogenic carboxyl terminal A beta PP fragments, and soluble A beta peptide in the cultured human cerebrovascular smooth muscle cells. Together, these studies provide evidence that A beta contributes to the onset and progression of the cerebrovascular pathology associated with AD and related disorders and suggests the mechanism involves a molecular cascade with a novel product-precursor relationship that results in the adverse production and accumulation of A beta.

  7. Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins

    PubMed Central

    Tanaka, Chikara; Tan, Li-Jing; Mochida, Keisuke; Kirisako, Hiromi; Koizumi, Michiko; Asai, Eri; Sakoh-Nakatogawa, Machiko; Ohsumi, Yoshinori

    2014-01-01

    In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy–related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy–related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor–adaptor interaction. PMID:25287303

  8. Determinants of the relative reduction potentials of type-1 copper sites in proteins.

    PubMed

    Li, Hui; Webb, Simon P; Ivanic, Joseph; Jensen, Jan H

    2004-06-30

    The relative Cu(2+)/Cu(+) reduction potentials of six type-1 copper sites (cucumber stellacyanin, P. aeruginosa azurin, poplar plastocyanin, C. cinereus laccase, T. ferrooxidans rusticyanin, and human ceruloplasmin), which lie in a reduction potential range from 260 mV to over 1000 mV, have been studied by quantum mechanical calculations. The range and relative orderings of the reduction potentials are reproduced very well compared to experimental values. The study suggests that the main structural determinants of the relative reduction potentials of the blue copper sites are located within 6 A of the Cu atoms. Further analysis suggests that the reduction potential differences of type-1 copper sites are caused by axial ligand interactions, hydrogen bonding to the S(Cys), and protein constraint on the inner sphere ligand orientations. The low reduction potential of cucumber stellacyanin is due mainly to a glutamine ligand at the axial position, rather than a methionine or a hydrophobic residue as in the other proteins. A stronger interaction with a backbone carbonyl group is a prime contributor to the lower reduction potential of P. aeruginosa azurin as compared to poplar plastocyanin, whereas the reverse is true for C. cinereus laccase and T. ferrooxidans rusticyanin. The lack of an axial methonine ligand also contributes significantly to the increased reduction potentials of C. cinereus laccase and human ceruloplasmin. However, in the case of C. cinereus laccase, this increase is attenuated by the presence of only one amide NH hydrogen bond to the S(Cys) rather than two in the other proteins. In human ceruloplasmin the reduction potential is further increased by the structural distortion of the equatorial ligand orientation. PMID:15212551

  9. Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands.

    PubMed

    Xie, Xiang-Qun; Wang, Lirong; Liu, Haibin; Ouyang, Qin; Fang, Cheng; Su, Weiwei

    2014-01-01

    Drug abuse (DA) and addiction is a complex illness, broadly viewed as a neurobiological impairment with genetic and environmental factors that influence its development and manifestation. Abused substances can disrupt the activity of neurons by interacting with many proteins, particularly G-protein coupled receptors (GPCRs). A few medicines that target the central nervous system (CNS) can also modulate DA related proteins, such as GPCRs, which can act in conjunction with the controlled psychoactive substance(s) and increase side effects. To fully explore the molecular interaction networks that underlie DA and to effectively modulate the GPCRs in these networks with small molecules for DA treatment, we built a drug-abuse domain specific chemogenomics knowledgebase (DA-KB) to centralize the reported chemogenomics research information related to DA and CNS disorders in an effort to benefit researchers across a broad range of disciplines. We then focus on the analysis of GPCRs as many of them are closely related with DA. Their distribution in human tissues was also analyzed for the study of side effects caused by abused drugs. We further implement our computational algorithms/tools to explore DA targets, DA mechanisms and pathways involved in polydrug addiction and to explore polypharmacological effects of the GPCR ligands. Finally, the polypharmacology effects of GPCRs-targeted medicines for DA treatment were investigated and such effects can be exploited for the development of drugs with polypharmacophore for DA intervention. The chemogenomics database and the analysis tools will help us better understand the mechanism of drugs abuse and facilitate to design new medications for system pharmacotherapy of DA. PMID:24567719

  10. Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands

    PubMed Central

    Xie, Xiang-Qun; Wang, Lirong; Liu, Haibin; Ouyang, Qin; Fang, Cheng; Su, Weiwei

    2013-01-01

    Drug abuse (DA) and addiction is a complex illness, broadly viewed as a neurobiological impairment with genetic and environmental factors that influence its development and manifestation. Abused substances can disrupt the activity of neurons by interacting with many proteins, particularly G-protein coupled receptors (GPCRs). A few medicines that target the central nervous system (CNS) can also modulate DA related proteins, such as GPCRs, which can act in conjunction with the controlled psychoactive substance(s) and increase side effects. To fully explore the molecular interaction networks that underlie DA and to effectively modulate the GPCRs in these networks with small molecules for DA treatment, we built a drug-abuse domain specific chemogenomics knowledgebase (DA-KB) to centralize the reported chemogenomics research information related to DA and CNS disorders in an effort to benefit researchers across a broad range of disciplines. We then focus on the analysis of GPCRs as many of them are closely related with DA. Their distribution in human tissues was also analyzed for the study of side effects caused by abused drugs. We further implement our computational algorithms/tools to explore DA targets, DA mechanisms and pathways involved in polydrug addiction and to explore polypharmacological effects of the GPCR ligands. Finally, the polypharmacology effects of GPCRs-targeted medicines for DA treatment were investigated and such effects can be exploited for the development of drugs with polypharmacophore for DA intervention. The chemogenomics database and the analysis tools will help us better understand the mechanism of drugs abuse and facilitate to design new medications for system pharmacotherapy of DA. PMID:24567719

  11. The FMO protein is related to PscA in the reaction center of green sulfur bacteria.

    PubMed

    Olson, John M; Raymond, Jason

    2003-01-01

    The Fenna-Matthews-Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly beta sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning alpha helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA. PMID:16228607

  12. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties.

    PubMed

    James, Andrew T; Yang, Aijun

    2016-03-01

    The content and globulin subunit composition of soybean proteins are known to affect tofu quality and food-grade soybeans usually have higher levels of proteins. We studied the tofu quality of soybeans with high (44.8%) or low (39.1%) protein content and with or without the 11S globulin polypeptide, 11SA4. Both protein content and 11SA4 significantly affected tofu gel properties. Soybeans containing more protein had smaller seeds which produced significantly firmer (0.663 vs.0.557 N, p<0.001) tofu gels with creamier colour. The absence of 11SA4 was positively correlated with seed size, tofu hardness and water holding capacity and led to significant changes to the profile of storage protein subunits, which may have contributed to the improvement in tofu gel properties. These results suggest that, in combination with higher protein content, certain protein subunits or their polypeptides can also be targeted in selecting soybeans to further improve soy food quality.

  13. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    PubMed Central

    Demine, Stéphane; Michel, Sébastien; Vannuvel, Kayleen; Wanet, Anaïs; Renard, Patricia; Arnould, Thierry

    2012-01-01

    Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion. PMID:24710422

  14. Evolutionary Characteristics of Missing Proteins: Insights into the Evolution of Human Chromosomes Related to Missing-Protein-Encoding Genes.

    PubMed

    Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu

    2015-12-01

    Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.

  15. A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria

    PubMed Central

    Wilson, Adjélé; Ajlani, Ghada; Verbavatz, Jean-Marc; Vass, Imre; Kerfeld, Cheryl A.; Kirilovsky, Diana

    2006-01-01

    Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light–induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not ΔpH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein. PMID:16531492

  16. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection.

    PubMed

    El-kereamy, Ashraf; Jayasankar, S; Taheri, Ali; Errampalli, Deena; Paliyath, Gopinadhan

    2009-01-01

    Plant PR10 is one of the pathogenesis related proteins, induced upon exposure to different stress conditions including fungal infection. PR10 proteins have been implicated in fungal disease resistance in some species; however its transcriptional regulation is not well understood. In the present work we cloned a PR10 gene from European plums (Prunus domestica L.) and monitored the quantitative changes in its transcript levels as a result of fungal infection in two varieties. We also studied the possible involvement of the membrane degrading enzyme phospholipase D-alpha (PLDalpha). In the susceptible variety, 'Veeblue', infection with the brown rot fungus Monilinia fructicola induced PLDalpha and PR10 expression, while in the resistant variety, 'Violette', a constitutive expression of PLDalpha and PR10 transcripts levels were observed. Resistance to M. fructicola also coincides with a sharp decrease in the expression of ABI1, a protein phosphatase and elevated hydrogen peroxide content after infection. Further, inhibition of PLDalpha by hexanal treatment, up-regulated ABI1 and decreased PR10 expression, suggesting a possible relationship between the two. We further confirm these results in Arabidopsis abi1 mutant that shows a higher level of PR10 transcripts.

  17. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  18. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  19. A polymorphism in the human agouti-related protein is associated with late-onset obesity.

    PubMed

    Argyropoulos, George; Rankinen, Tuomo; Neufeld, Doni R; Rice, Treva; Province, Michael A; Leon, Arthur S; Skinner, James S; Wilmore, Jack H; Rao, D C; Bouchard, Claude

    2002-09-01

    The mouse agouti-related protein (AGRP) is a powerful appetite effector that results in hyperphagia and the development of obesity when administered intracerebroventricularly or when overexpressed in transgenic mice. Animal studies have also shown that exogenous administration of AGRP predisposes toward hedonic intake of high fat and high sucrose diets. The human ortholog (hAGRP) maps on chromosome 16q22 and has similar physiological properties, as tested in animal models. A polymorphism was identified in the third exon of hAGRP, c.199G-->A, that resulted in a nonconservative amino acid substitution, Ala(67)Thr. Computational analysis of the protein showed significant differences in the coils of the two polymorphic isoforms of the protein. Human studies showed no genotype effects in individuals with a mean age of 25 yr. However, the G/G genotype was significantly associated with fatness and abdominal adiposity in the parental population with a mean age of 53 yr. The c.199G-->A polymorphism in hAGRP could, therefore, play a role in the development of human obesity in an age-dependent fashion.

  20. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins.

    PubMed

    Baldauf, S L; Palmer, J D

    1993-12-15

    Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor 1 alpha and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, alpha-tubulin, beta-tubulin, and elongation factor 1 alpha, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or fungal-plant clade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage.

  1. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion

    PubMed Central

    Asano, Satoshi; Nemoto, Tomomi; Kitayama, Tomoya; Harada, Kae; Zhang, Jun; Harada, Kana; Tanida, Isei; Hirata, Masato; Kanematsu, Takashi

    2014-01-01

    ABSTRACT We previously reported that phospholipase C-related catalytically inactive protein (PRIP)-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6) cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP), a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms. PMID:24812354

  2. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  3. Alternative splicing of parathyroid hormone-related protein mRNA: expression and stability

    PubMed Central

    Sellers, R S; Luchin, A I; Richard, V; Brena, R M; Lima, D; Rosol, T J

    2011-01-01

    Parathyroid hormone-related protein (PTHrP) is a multifunctional protein that is often dysregulated in cancer. The human PTHrP gene is alternatively spliced into three isoforms, each with a unique 3′-untranslated region (3′-UTR), encoding 139, 173 and 141 amino acid proteins. The regulation of PTHrP mRNA isoform expression has not been completely elucidated, but it may be affected by transforming growth factor-β1 (TGF-β1). In this study, we examined differences in the PTHrP mRNA isoform expression in two squamous carcinoma cell lines (SCC2/88 and HARA), an immortalized keratinocyte cell line (HaCaT), and spontaneous human lung cancer with adjacent normal tissue. In addition, the effect of TGF-β1 on PTHrP mRNA isoform expression and stability was examined. Cell-type specific expression of PTHrP mRNA isoforms occurred between the various cell lines, normal human lung, and immortalized human keratinocytes (HaCaT). PTHrP isoform expression pattern was significantly altered between normal lung tissue and the adjacent lung cancer. In vitro studies revealed that TGF-β1 differentially altered the mRNA steady-state levels and mRNA stability of the PTHrP isoforms. Protein–RNA binding studies identified different proteins binding to the 3′-UTR of the PTHrP isoforms (139) and (141), which may be important in the differential mRNA stability and response to cytokines between the PTHrP isoforms. The data demonstrate that there is cell-type specific expression of PTHrP mRNA isoforms, and disruption of the normal regulation during cancer progression may in part be associated with TGF-β1-induced changes in PTHrP mRNA isoform expression and stability. PMID:15291755

  4. Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells.

    PubMed

    Kusano, Ken-ichi; Thomas, Tamlyn N; Fujiwara, Keigi

    2008-01-01

    Protein-zero related (PZR) is an immunoglobulin V (IgV)-type immunoreceptor with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PZR interacts with Src homology 2 domain-containing tyrosine phosphatase (SHP-2) via its tyrosine-phosphorylated ITIMs, for which c-Src is a putative kinase. Towards elucidating PZR function in endothelial cells (ECs), the authors cloned PZR from bovine aortic endothelial cells (BAECs) and characterized it. Mature bovine PZR had 94.8% and 92.7% sequence identity with canine and human proteins, respectively, and the two ITIM sequences were conserved among higher vertebrates. PZR was expressed in many cell types and was localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. Coimmunoprecipitation revealed that PZR, Grb-2-associated binder-1 (Gab1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) were three major SHP-2-binding proteins in BAECs. H(2)O(2) enhanced PZR tyrosine phosphorylation and PZR/SHP-2 interaction in ECs in a dose-and time-dependent manner. To see if tyrosine kinases other than Src are also capable of phosphorylating PZR, the authors cotransfected HEK293 cells with PZR and one of several tyrosine kinases and found that c-Src, c-Fyn, c-Lyn, Csk, and c-Abl, but not c-Fes, phosphorylated PZR and increased PZR/SHP-2 interaction. These results suggest that PZR is a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts. PMID:18568953

  5. Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii

    PubMed Central

    Lévêque, Maude F.; Berry, Laurence; Cipriano, Michael J.; Nguyen, Hoa-Mai; Striepen, Boris

    2015-01-01

    ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. PMID:26507233

  6. Nonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation

    PubMed Central

    Tran, Giao V. Q.; Luong, Trang T. D.; Park, Eun-Mee; Kim, Jong-Wook; Choi, Jae-Woong; Park, Chorong; Lim, Yun-Sook

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV. PMID:26719254

  7. Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma.

    PubMed

    ten Berge, Rosita L; Meijer, Chris J L M; Dukers, Danny F; Kummer, J Alain; Bladergroen, Bellinda A; Vos, Wim; Hack, C Erik; Ossenkoppele, Gert J; Oudejans, Joost J

    2002-06-15

    In vitro studies suggest that resistance to chemotherapy-induced apoptosis might explain poor response to therapy in fatal cases. Actual execution of apoptosis depends on proper functioning of effector caspases, particularly caspase 3, and on the expression levels of apoptosis-regulating proteins, including Bcl-2 and the recently identified granzyme B- specific protease inhibitor 9 (PI9). Thus, high levels of caspase 3 activation should reflect proper functioning of the apoptosis pathways, resulting in chemotherapy-sensitive neoplastic cells and a favorable prognosis. We tested this hypothesis by quantifying numbers of tumor cells positive for active caspase 3, Bcl-2, and PI9, respectively, in pretreatment biopsies of systemic anaplastic large cell lymphoma (ALCL) patients and by comparing these numbers with clinical outcome. Activation of caspase 3 in more than 5% of the tumor cells was strongly correlated with a highly favorable outcome. High numbers of Bcl-2- and PI9-positive tumor cells were found to predict unfavorable prognosis. This prognostic effect was strongly related to anaplastic lymphoma kinase (ALK) status: ALK-positive ALCL had significantly higher levels of active caspase 3, while high expression of the antiapoptotic proteins Bcl-2 and PI9 was almost completely restricted to ALK-negative cases. In conclusion, high numbers of active caspase 3-positive tumor cells predict a highly favorable prognosis in systemic ALCL patients. Poor prognosis is strongly related to high numbers of Bcl-2- and PI9-positive neoplastic cells. These data support the notion that a favorable response to chemotherapy depends on an intact apoptosis cascade. Moreover, these data indicate that differences in prognosis between ALK-positive and ALK-negative ALCL might be explained by differences in expression of apoptosis-inhibiting proteins.

  8. Involvement of impaired desmosome-related proteins in hypertrophic scar intraepidermal blister formation.

    PubMed

    Tan, Jianglin; He, Weifeng; Luo, Gaoxing; Wu, Jun

    2015-11-01

    Hypertrophic scar is one of the unique fibrotic diseases in human. Intraepidermal blister is a common clinical symptom following the hypertrophic scar formation. However, little is known about the reason of blister creation. In this study, we selected three patients with hypertrophic scar as manifested by raised, erythematous, pruritic, blister and thickened appearance undergoing scar resection. The first scar sample was 6 months after burn from the neck of a 3 years old male patient with 10 score by Vancouver Scar Scale (VSS). The second scar sample was 12 months after burn from the dorsal foot of a 16 years old female patient with 13 score by VSS. The third one was 9 months after burn from the elbow of a 34 years old male patients with 13 score by VSS. In order to understand the molecular mechanism of blister formation, we screened the different protein expression between hypertrophic scar and normal skin tissue by means of isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology and high throughput 2D LC-MS/MS. There were 48 proteins found to be downregulated in hypertrophic scar. Among the downregulated ones, plakophilin1 (PKP1), plakophilin3 (PKP3) and desmoplakin (DSP) were the desmosome-related proteins which were validated by immunohistochemistry and western blotting assay. Transmission electron microscopy further showed the considerably reduced size and intensity of hemidesmosome and desmosome in hypertrophic scar tissue, compared to control normal skin. Our data indicted for the first time that downregulation of DSP, PKP1 and PKP3 in hypertrophic scar might be responsible for intraepidermal blister formation.

  9. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans

    PubMed Central

    Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M.; Mahmoudi, Morteza; De Rooij, Felix W. M.; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs. PMID:26337083

  10. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans.

    PubMed

    Rahimi, Mehran; Vinciguerra, Manlio; Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M; Mahmoudi, Morteza; De Rooij, Felix W M; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-10-01

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs.

  11. Expression of lipid metabolism-related proteins in breast phyllodes tumors.

    PubMed

    Jung, Y Y; Lee, Y K; Koo, J S

    2016-01-01

    The aim of this study was to investigate the expression of lipid metabolism-related proteins and the implications thereof in phyllodes tumor (PT) of the breast. A tissue microarray (TMA) was constructed using paraffin blocks from 194 PT patient tissue samples. Immunohistochemical staining for lipid metabolism-related proteins, namely hormone-sensitive lipase (HSL), perilipin 2, fatty-acid-binding proteins 4 (FABP4), carnitine palmitoyltransferase-1 (CPT-1), acyl-CoA oxidase 1 (ACOX-1), and fatty acid synthase (FASN) was performed, and the immunohistochemical staining results were analyzed with respect to clinicopathologic parameters. The numbers of benign, borderline, and malignant PTs were 151, 27, and 16, respectively. The expression of HSL, perilipin 2, FABP4, CPT-1, and FASN in stromal components was higher in higher grade tumors. On univariate analysis, shorter disease-free survival (DFS) was associated with stromal perilipin 2 positivity (p<0.001) and stromal CPT-1 positivity (p=0.004). Shorter overall survival (OS) was associated with stromal perilipin 2 positivity (p<0.001), stromal FABP4 positivity (p<0.001), stromal CPT-1 positivity (p=0.004), and stromal FASN positivity (p<0.001). Multivariate Cox analysis revealed that stromal perilipin 2 positivity (hazard ratio=31.693, 95% CI: 1.341-748.8, p=0.032) was an independent factor for shorter DFS. In conclusion, higher expressions of HSL, perilipin 2, FABP4, CPT-1 and FASN in the stromal component were observed in higher grade PT. PMID:26774147

  12. [Cloning and identification of a mouse zinc finger protein gene ZF-12-related pseudogene].

    PubMed

    Li, Jian Zhong; Zhang, Ya Zhou; Wang, Shui Liang; Yang, Hua; Li, Jian; Yu, Long; Fu, Ji Liang

    2002-06-01

    The mouse zinc finger protein ZF-12 gene is homologous to human gene and encodes a protein of 368 amino acids, which contains four tandem C2H2-type zinc finger motifs in the N-terminal and one SCAN domain in the C-terminal. Some recent studies suggest that ZNF191 might be a hepatocarcinogenesis-associated gene. We screened a mouse lambda genomic library with a human ZNF191 cDNA probe and isolated a ZF-12-like gene, named ZF12p (GenBank AY040222). This intronless gene closely resembles ZF-12 but displays several mutations, suggesting that ZF12p represents a ZF-12-related pseudogene. RT-PCR analysis on total RNA from mouse tissue and bioinformatis analysis on promoter region of ZF12p gene, suggest the transcripts of ZF12p may be not synthesized. BLAST on the data of the human genome in the GenBank with ZNF191 cDNA and Southern blotting show there is no any psedogene related to ZNF191 gene in the human genome. The high similarity of ZF12p to ZF-12 might be of considerable importance for mutation and evolution analysis of ZF-12.

  13. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    PubMed

    Xiao, Xiaoping; Liu, Yang; Zhang, Xiaoyan; Wang, Jing; Li, Zuofeng; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2014-04-01

    The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE)-containing proteins (TEPs), which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR), belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C), which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs), which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  14. Roles of Autophagy and Autophagy-Related Proteins in Antifungal Immunity

    PubMed Central

    Kanayama, Masashi; Shinohara, Mari L.

    2016-01-01

    Autophagy was initially characterized as a process to digest cellular components, including damaged cell organelles or unused proteins. However, later studies showed that autophagy plays an important role to protect hosts from microbial infections. Accumulating evidences showed the contribution of autophagy itself and autophagy-related proteins (ATGs) in the clearance of bacteria, virus, and parasites. A number of studies also revealed the molecular mechanisms by which autophagy is initiated and developed. Furthermore, it is now understood that some ATGs are shared between two distinct processes; autophagy and LC3-associated phagocytosis (LAP). Thus, our understanding on autophagy has been greatly enhanced in the last decade. By contrast, roles of autophagy and ATGs in fungal infections are still elusive relative to those in bacterial and viral infections. Based on limited numbers of reports, ATG-mediated host responses appear to significantly vary depending on invading fungal species. In this review, we discuss how autophagy and ATGs are involved in antifungal immune responses based on recent discoveries. PMID:26925060

  15. COL18A1 is highly expressed during human adipocyte differentiation and the SNP c.1136C > T in its "frizzled" motif is associated with obesity in diabetes type 2 patients.

    PubMed

    Errera, Flavia I V; Canani, Luís H; Yeh, Erika; Kague, Erika; Armelin-Corrêa, Lucia M; Suzuki, Oscar T; Tschiedel, Balduíno; Silva, Maria Elizabeth R; Sertié, Andréa L; Passos-Bueno, Maria Rita

    2008-03-01

    Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI > or =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5%) than in non-obese individuals (10.9%) [P = 0.02; OR = 2.0 (95%CI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.

  16. [Evaluation of the relations between serum proteins electrophoresis and other laboratory tests in monoclonal gammopathies (author's transl)].

    PubMed

    Ramacciotti, P G; Lazzari, L; Minardi, P

    1976-03-01

    We have considered interesting to determine monoclonal gammopathies incidence, in 2191 serum proteins electrophoresis performed in our laboratory from January to December 1974. We have found 15 cases of monoclonal gammopathies, some cases combined with Mieloma (3 cases), some other with other with non specific diseases. We have considered the relations between type of gammopathy and other laboratory tests useful for any other diagnose: they are: immunochemical analysis, E.S.R., red and white count, total proteins, Bence Jones protein. PMID:65779

  17. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella

    PubMed Central

    Ishikawa, Hiroaki; Ide, Takahiro; Yagi, Toshiki; Jiang, Xue; Hirono, Masafumi; Sasaki, Hiroyuki; Yanagisawa, Haruaki; Wemmer, Kimberly A; Stainier, Didier YR; Qin, Hongmin; Kamiya, Ritsu; Marshall, Wallace F

    2014-01-01

    Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we show that TTC26/DYF13 is an IFT complex B protein in mammalian cells and Chlamydomonas reinhardtii. Knockdown of TTC26/DYF13 in zebrafish embryos or mutation of TTC26/DYF13 in C. reinhardtii, produced short cilia with abnormal motility. Surprisingly, IFT particle assembly and speed were normal in dyf13 mutant flagella, unlike in other IFT complex B mutants. Proteomic and biochemical analyses indicated a particular set of proteins involved in motility was specifically depleted in the dyf13 mutant. These results support the concept that different IFT proteins are responsible for different cargo subsets, providing a possible explanation for the complexity of the IFT machinery. DOI: http://dx.doi.org/10.7554/eLife.01566.001 PMID:24596149

  18. Normal values for 24-h urinary protein excretion: total and low molecular weight proteins with a sex-related difference.

    PubMed

    Kawakami, H; Murakami, T; Kajii, T

    1990-05-01

    Urinary excretion of total and low molecular weight (LMW) (less than 40,000) proteins for a 24-h period was determined in 60 normal individuals, 30 men and 30 women, aged 21 to 44 years. 24-h urinary total protein excretion in men was 91.2 +/- 25.1 mg (mean +/- SD) (range: 40.2-146.8 mg), while that in women was 62.5 +/- 23.6 mg (range: 28.4-130.9 mg), as measured by a biuret method using bicinchoninic acid as a reagent. 24-h urinary LMW protein excretion in men was 37.3 +/- 13.6 mg (range: 12.7-62.7 mg), while that in women was 23.2 +/- 11.8 mg (range: 7.2-54.2 mg), as estimated by sodium dodecylsulfate-polyacrylamide gel electrophoresis of concentrated urine samples. Thus, a significantly higher (t-test, p less than 0.01) excretion of both the total and LMW proteins was found in men than in women. However, the percentage of the LMW proteins among the total proteins did not differ between the sexes: 40.3 +/- 7.5% (range: 21.7-54.9%) for men and 36.5 +/- 9.9% (range: 20.1-56.7%) for women.

  19. Proteomic Identification of Neoadjuvant Chemotherapy-Related Proteins in Bulky Stage IB-IIA Squamous Cervical Cancer

    PubMed Central

    Zou, Shuangwei; Shen, Qi; Hua, Ying; Jiang, Wenxiao; Zhang, Wenwen

    2013-01-01

    Objective: The aim of this study was to investigate the effect of neoadjuvant chemotherapy (NAC) on the human squamous cervical cancer using proteomics profiling and to obtain related proteins to NAC exposure and response. Methods: Paired samples of early-stage bulky squamous cervical cancer before and after NAC treatment from patients who responded to NAC were obtained and submitted to 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The expression and localization of the interesting proteins in additional paired samples were confirmed by Western blot analysis and immunohistochemistry. Results: The comparison of the proteins present before and after NAC revealed that 116 protein spots were significantly changed. In all, 31 proteins were analyzed by MS, and 15 proteins were upregulated in the cancer tissue after NAC relative to the level before NAC, whereas 16 proteins were downregulated after NAC. The significantly higher expression of peroxiredoxin 1 and significantly lower expression of galectin 1 after NAC treatment were confirmed by Western blot. Conclusions: Proteomics can be used to identify the NAC-related proteins in squamous cervical cancer. The change in proteins may be associated with NAC exposure and response, but insight into their relevance requires further study. PMID:23599374

  20. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins

    SciTech Connect

    Matviw, Yu, G.; Young, D. )

    1992-11-01

    The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: The N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expressions of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals. 42 refs., 5 figs.

  1. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    PubMed

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  2. Multivariate Modeling of Proteins Related to Trapezius Myalgia, a Comparative Study of Female Cleaners with or without Pain

    PubMed Central

    Hadrevi, Jenny; Ghafouri, Bijar; Larsson, Britt; Gerdle, Björn; Hellström, Fredrik

    2013-01-01

    The prevalence of chronic trapezius myalgia is high in women with high exposure to awkward working positions, repetitive movements and movements with high precision demands. The mechanisms behind chronic trapezius myalgia are not fully understood. The purpose of this study was to explore the differences in protein content between healthy and myalgic trapezius muscle using proteomics. Muscle biopsies from 12 female cleaners with work-related trapezius myalgia and 12 pain free female cleaners were obtained from the descending part of the trapezius. Proteins were separated with two-dimensional differential gel electrophoresis (2D-DIGE) and selected proteins were identified with mass spectrometry. In order to discriminate the two groups, quantified proteins were fitted to a multivariate analysis: partial least square discriminate analysis. The model separated 28 unique proteins which were related to glycolysis, the tricaboxylic acid cycle, to the contractile apparatus, the cytoskeleton and to acute response proteins. The results suggest altered metabolism, a higher abundance of proteins related to inflammation in myalgic cleaners compared to healthy, and a possible alteration of the contractile apparatus. This explorative proteomic screening of proteins related to chronic pain in the trapezius muscle provides new important aspects of the pathophysiology behind chronic trapezius myalgia. PMID:24023854

  3. PLD1 regulates Xenopus convergent extension movements by mediating Frizzled7 endocytosis for Wnt/PCP signal activation.

    PubMed

    Lee, Hyeyoon; Lee, Seung Joon; Kim, Gun-Hwa; Yeo, Inchul; Han, Jin-Kwan

    2016-03-01

    Phospholipase D (PLD) is involved in the regulation of receptor-associated signaling, cell movement, cell adhesion and endocytosis. However, its physiological role in vertebrate development remains poorly understood. In this study, we show that PLD1 is required for the convergent extension (CE) movements during Xenopus gastrulation by activating Wnt/PCP signaling. Xenopus PLD1 protein is specifically enriched in the dorsal region of Xenopus gastrula embryo and loss or gain-of-function of PLD1 induce defects in gastrulation and CE movements. These defective phenotypes are due to impaired regulation of Wnt/PCP signaling pathway. Biochemical and imaging analysis using Xenopus tissues reveal that PLD1 is required for Fz7 receptor endocytosis upon Wnt11 stimulation. Moreover, we show that Fz7 endocytosis depends on dynamin and regulation of GAP activity of dynamin by PLD1 via its PX domain is crucial for this process. Taken together, our results suggest that PLD1 acts as a new positive mediator of Wnt/PCP signaling by promoting Wnt11-induced Fz7 endocytosis for precise regulation of Xenopus CE movements.

  4. Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of overexpression or amplification of HER2. Despite an increased probability of response to chemotherapy, many patients resistant to current chemotherapy regimens suffer from a worse prognosis compared to other breast cancer subtypes. However, molecular determinants of response to chemotherapy specific to TNBC remain largely unknown. Thus, there is a high demand for biomarkers potentially stratifying triple negative breast cancer patients for neoadjuvant chemotherapies or alternative therapies. Methods In order to identify genes correlating with both the triple negative breast cancer subtype as well as response to neoadjuvant chemotherapy we employed publicly available gene expression profiles of patients, which had received neoadjuvant chemotherapy. Analysis of tissue microarrays as well as breast cancer cell lines revealed correlation to the triple negative breast cancer subtype. Subsequently, effects of siRNA-mediated knockdown on response to standard chemotherapeutic agents as well as radiation therapy were analyzed. Additionally, we evaluated the molecular mechanisms by which SFRP1 alters the carcinogenic properties of breast cancer cells. Results SFRP1 was identified as being significantly overexpressed in TNBC compared to other breast cancer subtypes. Additionally, SFRP1 expression is significantly correlated with an increased probability of positive response to neoadjuvant chemotherapy. Knockdown of SFRP1 in triple negative breast cancer cells renders the cells more resistant to standard chemotherapy. Moreover, tumorigenic properties of the cells are modified by knockdown, as shown by both migration or invasion capacity as well reduced apoptotic events. Surprisingly, we found that these effects do not rely on Wnt signaling. Furthermore, we show that pro-apoptotic as well as migratory pathways are differentially regulated after SFRP1 knockdown. Conclusion We could firstly show that SFRP1 strongly correlates with the triple negative breast cancer subtype and secondly, that SFRP1 might be used as a marker stratifying patients to positively respond to neoadjuvant chemotherapy. The mechanisms by which tumor suppressor SFRP1 influences carcinogenic properties of cancer cells do not rely on Wnt signaling, thereby demonstrating the complexity of tumor associated signaling pathways. PMID:25033833

  5. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains (GST-qUBAs).

    PubMed

    Meng, Qingshi; Rao, Liqun; Pan, Yinghong

    2014-12-01

    Protein ubiquitination is a common posttranslational modification that often occurs on lysine residues. It controls the half-life, interaction and trafficking of intracellular proteins and is involved in different plant development stages and responses to environment stresses. Four Ubiquitin-Associated (UBA) domains were sequentially fused with Glutathione S-transferase (GST) tag (GST-qUBA) as bait protein in this study. A two-step affinity protocol was successfully developed and the identification of ubiquitinated proteins and their interaction proteins increased almost threefold compared to methods that directly identify ubiquitinated proteins from crude samples. A total of 170 ubiquitin-related proteins were identified in GST-qUBAs enriched samples taken from rice seedlings. There were 134 ubiquitinated proteins, 5 ubiquitin-activating enzymes (E1s), 5 ubiquitin-conjugating enzymes (E2s), 19 ubiquitin ligases (E3s) and 7 deubiquitinating enzymes (DUBs), which all contained various key factors that regulated a wide range of biological processes. Moreover, a series of novel ubiquitinated proteins and E3s were identified that had not been previously reported. This study investigated a high-efficiency method for identifying novel ubiquitinated proteins involved in biological processes and a primary mapping of the ubiquitylome during rice seedling development, which could extend our understanding of how ubiquitin modification regulates plant proteins, pathways and cellular processes.

  6. A 75 kd merozoite surface protein of Plasmodium falciparum which is related to the 70 kd heat-shock proteins.

    PubMed Central

    Ardeshir, F; Flint, J E; Richman, S J; Reese, R T

    1987-01-01

    Proteins on the merozoite surface of the human malarial parasite Plasmodium falciparum are targets of the host's immune response. The merozoite surface location of p75, a 75 kd P. falciparum protein, was established by immunoelectron microscopy using antisera raised to the expressed product of a cDNA clone. Immunoprecipitation from protein extracts biosynthetically labeled during different periods of the asexual cycle showed that p75 is made continuously, although ring-stage parasites appear to synthesize larger quantities. p75 is conserved and invariant in size in eight isolates of P. falciparum. The 880 bp cDNA sequence encoding part of p75 reveals one open reading frame containing a repetitive sequence unit of four amino acids. The predicted reading frame is correct since antisera to a synthetic peptide corresponding to the repetitive region recognize p75 in immunoblots. The sequence of p75 is homologous with the sequences of proteins from the ubiquitous, highly conserved family of 70 kd heat-shock proteins, suggesting an important physiological function for p75. The cDNA fragment encoding part of p75 hybridizes with multiple genomic fragments, whose sizes are identical in DNA from nine P. falciparum strains, suggesting that the gene for p75 is well conserved and may be part of a gene family. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. PMID:3556166

  7. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)

    SciTech Connect

    Li, Xiaofeng; Zhang, Rong; Draheim, Kyle M.; Liu, Weizhi; Calderwood, David A.; Boggon, Titus J.

    2012-09-17

    Cerebral cavernous malformations (CCMs) affect 0.1-0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with {approx}40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 {angstrom} co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain 'modules.'

  8. Recognition of distantly related protein sequences using conserved motifs and neural networks.

    PubMed

    Frishman, D; Argos, P

    1992-12-01

    A sensitive technique for protein sequence motif recognition based on neural networks has been developed. It involves three major steps. (1) At each appropriate alignment position of a set of N matched sequences, a set of N aligned oligopeptides is specified with preselected window length. N neural nets are subsequently and successively trained on N-1 amino acid spans after eliminating each ith oligopeptide. A test for recognition of each of the ith spans is performed. The average neural net recognition over N such trials is used as a measure of conservation for the particular windowed region of the multiple alignment. This process is repeated for all possible spans of given length in the multiple alignment. (2) The M most conserved regions are regarded as motifs and the oligopeptides within each are used to train intensively M individual neural networks. (3) The M networks are then applied in a search for related primary structures in a databank of known protein sequences. The oligopeptide spans in the database sequence with strongest neural net output for each of the M networks are saved and then scored according to the output signals and the proper combination that follows the expected N- to C-terminal sequence order. The motifs from the database with highest similarity scores can then be used to retrain the M neural nets, which can be subsequently utilized for further searches in the databank, thus providing even greater sensitivity to recognize distant familial proteins. This technique was successfully applied to the integrase, DNA-polymerase and immunoglobulin families.

  9. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep.

    PubMed

    Mesquita, P; Garcia, V; Marques, M R; Santos Silva, F; Oliveira Sousa, M C; Carolino, I; Pimenta, J; Fontes, C M G A; Horta, A E M; Prates, J A M; Pereira, R M

    2016-02-01

    The objective of this study was to search for polymorphisms in the ovine prion-related protein (testis-specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene-coding region was analyzed by single-strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine-X-X-serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C-112G-129T-144A,17CT-112GC-129CT-144AG and 17T-112C-129C-144G), and the only three animals found homozygous at c.78A had the 17C-112G-129C-144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP).

  10. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep.

    PubMed

    Mesquita, P; Garcia, V; Marques, M R; Santos Silva, F; Oliveira Sousa, M C; Carolino, I; Pimenta, J; Fontes, C M G A; Horta, A E M; Prates, J A M; Pereira, R M

    2016-02-01

    The objective of this study was to search for polymorphisms in the ovine prion-related protein (testis-specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene-coding region was analyzed by single-strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine-X-X-serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C-112G-129T-144A,17CT-112GC-129CT-144AG and 17T-112C-129C-144G), and the only three animals found homozygous at c.78A had the 17C-112G-129C-144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP). PMID:26538093

  11. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages.

    PubMed

    Yan, Daoguang; Mäyränpää, Mikko I; Wong, Jenny; Perttilä, Julia; Lehto, Markku; Jauhiainen, Matti; Kovanen, Petri T; Ehnholm, Christian; Brown, Andrew J; Olkkonen, Vesa M

    2008-01-01

    ORP8 is a previously unexplored member of the family of oxysterol-binding protein-related proteins (ORP). We now report the expression pattern, the subcellular distribution, and data on the ligand binding properties and the physiological function of ORP8. ORP8 is localized in the endoplasmic reticulum (ER) via its C-terminal transmembrane span and binds 25-hydroxycholesterol, identifying it as a new ER oxysterol-binding protein. ORP8 is expressed at highest levels in macrophages, liver, spleen, kidney, and brain. Immunohistochemical analysis revealed ORP8 in the shoulder regions of human coronary atherosclerotic lesions, where it is present in CD68(+) macrophages. In advanced lesions the ORP8 mRNA was up-regulated 2.7-fold as compared with healthy coronary artery wall. Silencing of ORP8 by RNA interference in THP-1 macrophages increased the expression of ATP binding cassette transporter A1 (ABCA1) and concomitantly cholesterol efflux to lipid-free apolipoprotein A-I but had no significant effect on ABCG1 expression or cholesterol efflux to spherical high density lipoprotein HDL(2). Experiments employing an ABCA1 promoter-luciferase reporter confirmed that ORP8 silencing enhances ABCA1 transcription. The silencing effect was partially attenuated by mutation of the DR4 element in the ABCA1 promoter and synergized with that of the liver X receptor agonist T0901317. Furthermore, inactivation of the E-box in the promoter synergized with ORP8 silencing, suggesting that the suppressive effect of ORP8 involves both the liver X receptor and the E-box functions. Our data identify ORP8 as a negative regulator of ABCA1 expression and macrophage cholesterol efflux. ORP8 may, thus, modulate the development of atherosclerosis.

  12. SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress.

    PubMed

    Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymanska, Katarzyna; Zmienko, Agnieszka; Krzywinska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Sklodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grazyna

    2012-10-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd(2+) showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd(2+) treatment. Our data show significantly lower Cd(2+)-induced ROS accumulation in the mutants' roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions.

  13. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways.

    PubMed

    Senese, Rosalba; Valli, Vivien; Moreno, Maria; Lombardi, Assunta; Busiello, Rosa Anna; Cioffi, Federica; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2011-01-01

    Controversy exists on whether uncoupling protein 3 (UCP3) positively or negatively influences insulin sensitivity in vivo, and the underlying signaling pathways have been scarcely studied. We studied how a progressive reduction in UCP3 expression (using UCP3 +/+, UCP3 +/-, and UCP3 -/- mice) modulates insulin sensitivity and related metabolic parameters. In order to further validate our observations, we also studied animals in which insulin resistance was induced by administration of a high-fat diet (HFD). In UCP3 +/- and UCP3 -/- mice, gastrocnemius muscle Akt/protein kinase B (Akt/PKB) (serine 473) and AMP-activated protein kinase (AMPK) (threonine 171) phosphorylation, and glucose transporter 4 (GLUT4) membrane levels were reduced compared to UCP3 +/+ mice. The HOMA-IR index (insulin resistance parameter) was increased both in the UCP3 +/- and UCP3 -/- mice. In these mice, insulin administration normalized Akt/PKB phosphorylation between genotypes while AMPK phosphorylation was further reduced, and sarcolemmal GLUT4 levels were induced but did not reach control levels. Furthermore, non-insulin-stimulated muscle fatty acid oxidation and the expression of several involved genes both in muscle and in liver were reduced. HFD administration induced insulin resistance in UCP3 +/+ mice and the aforementioned parameters resulted similar to those of chow-fed UCP3 +/- and UCP3 -/- mice. In conclusion, high-fat-diet-induced insulin resistance in wild-type mice mimics that of chow-fed UCP3 +/- and UCP3 -/- mice showing that progressive reduction of UCP3 levels results in insulin resistance. This is accompanied by decreased fatty acid oxidation and a less intense Akt/PKB and AMPK signaling.

  14. Momilactione B inhibits protein kinase A signaling and reduces tyrosinase-related proteins 1 and 2 expression in melanocytes.

    PubMed

    Lee, Ji Hae; Cho, Boram; Jun, Hee-jin; Seo, Woo-Duck; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-05-01

    Momilactone B (MB) is a terpenoid phytoalexin present in rice bran that exhibits several biological activities. MB reduced the melanin content in B16 melanocytes melanin content and inhibited tyrosinase activities. Using transcriptome analysis, the genes involved in protein kinase A (PKA) signaling were found to be markedly altered. B16 cells stimulated with MB had decreased concentrations of cAMP protein kinase A activity, and cAMP-response element-binding protein which is a key transcription factor for microphthalmia-associated transcription factor (MITF) expression. Accordingly, the expression of MITF and its target genes, which are essential for melanogenesis, were reduced. MB thus exhibits anti-melanogenic effects by repressing tyrosinase enzyme activity and inhibiting the PKA signaling pathway which, in turn, decreases melanogenic gene expression.

  15. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression.

    PubMed

    Li, Changjun; Wang, Weishan; Xie, Liang; Luo, Xianghang; Cao, Xu; Wan, Mei

    2016-01-01

    Parathyroid hormone (PTH) suppresses the expression of the bone formation inhibitor sclerostin (Sost) in osteocytes by inducing nuclear accumulation of histone deacetylases (HDACs) to inhibit the myocyte enhancer factor 2 (MEF2)-dependent Sost bone enhancer. Previous studies revealed that lipoprotein receptor-related protein 6 (LRP6) mediates the intracellular signaling activation and the anabolic bone effect of PTH. Here, we investigated whether LRP6 mediates the inhibitory effect of PTH on Sost using an osteoblast-specific Lrp6-knockout (LRP6-KO) mouse model. An increased level of Sost mRNA expression was detected in femur tissue from LRP6-KO mice, compared to wild-type littermates. The number of osteocytes expressing sclerostin protein was also increased in bone tissue of LRP6-KO littermates, indicating a negative regulatory role of LRP6 on Sost/sclerostin. In wild-type littermates, intermittent PTH treatment significantly suppressed Sost mRNA expression in bone and the number of sclerostin(+) osteocytes, while the effect of PTH was much less significant in LRP6-KO mice. Additionally, PTH-induced downregulation of MEF2C and 2D, as well as HDAC changes in osteocytes, were abrogated in LRP6-KO mice. These data indicate that LRP6 is required for PTH suppression of Sost expression.

  16. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. PMID:26298750

  17. Phosphorylation Regulates the Endocytic Function of the Yeast Dynamin-Related Protein Vps1.

    PubMed

    Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Palmer, Sarah E; Booth, Wesley I; Mishra, Ritu; Goldberg, Martin W; Ayscough, Kathryn R

    2016-03-01

    The family of dynamin proteins is known to function in many eukaryotic membrane fusion and fission events. The yeast dynamin-related protein Vps1 functions at several stages of membrane trafficking, including Golgi apparatus to endosome and vacuole, peroxisomal fission, and endocytic scission. We have previously shown that in its endocytic role, Vps1 functions with the amphiphysin heterodimer Rvs161/Rvs167 to facilitate scission and release of vesicles. Phosphoproteome studies of Saccharomyces cerevisiae have identified a phosphorylation site in Vps1 at serine 599. In this study, we confirmed this phosphorylation event, and we reveal that, like Rvs167, Vps1 can be phosphorylated by the yeast cyclin-associated kinase Pho85 in vivo and in vitro. The importance of this posttranslational modification was revealed when mutagenesis of S599 to a phosphomimetic or nonphosphorylatable form caused defects in endocytosis but not in other functions associated with Vps1. Mutation to nonphosphorylatable valine inhibited the Rvs167 interaction, while both S599V and S599D caused defects in vesicle scission, as shown by both live-cell imaging and electron microscopy of endocytic invaginations. Our data support a model in which phosphorylation and dephosphorylation of Vps1 promote distinct interactions and highlight the importance of such regulatory events in facilitating sequential progression of the endocytic process. PMID:26711254

  18. Haptoglobin (HP) and Haptoglobin-related protein (HPR) copy number variation, natural selection, and trypanosomiasis.

    PubMed

    Hardwick, Robert J; Ménard, Anne; Sironi, Manuela; Milet, Jacqueline; Garcia, André; Sese, Claude; Yang, Fengtang; Fu, Beiyuan; Courtin, David; Hollox, Edward J

    2014-01-01

    Haptoglobin, coded by the HP gene, is a plasma protein that acts as a scavenger for free heme, and haptoglobin-related protein (coded by the HPR gene) forms part of the trypanolytic factor TLF-1, together with apolipoprotein L1 (ApoL1). We analyse the polymorphic small intragenic duplication of the HP gene, with alleles Hp1 and Hp2, in 52 populations, and find no evidence for natural selection either from extended haplotype analysis or from correlation with pathogen richness matrices. Using fiber-FISH, the paralog ratio test, and array-CGH data, we also confirm that the HPR gene is copy number variable, with duplication of the whole HPR gene at polymorphic frequencies in west and central Africa, up to an allele frequency of 15 %. The geographical distribution of the HPR duplication allele overlaps the region where the pathogen causing chronic human African trypanosomiasis, Trypanosoma brucei gambiense, is endemic. The HPR duplication has occurred on one SNP haplotype, but there is no strong evidence of extended homozygosity, a characteristic of recent natural selection. The HPR duplication shows a slight, non-significant undertransmission to human African trypanosomiasis-affected children of unaffected parents in the Democratic Republic of Congo. However, taken together with alleles of APOL1, there is an overall significant undertransmission of putative protective alleles to human African trypanosomiasis-affected children.

  19. Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration

    PubMed Central

    Ebrahem, Quteba; Renganathan, Kutralanathan; Sears, Jonathan; Vasanji, Amit; Gu, Xiaorong; Lu, Liang; Salomon, Robert G.; Crabb, John W.; Anand-Apte, Bela

    2006-01-01

    Choroidal neovascularization (CNV), the advanced stage of age-related macular degeneration (AMD), accounts for >80% of vision loss in AMD. Carboxyethylpyrrole (CEP) protein modifications, uniquely generated from oxidation of docosahexaenoate-containing lipids, are more abundant in Bruch’s membrane from AMD eyes. We tested the hypothesis that CEP protein adducts stimulate angiogenesis and possibly contribute to CNV in AMD. Human serum albumin (HSA) or acetyl-Gly-Lys-O-methyl ester (dipeptide) were chemically modified to yield CEP-modified HSA (CEP-HSA) or CEP-dipeptide. The in vivo angiogenic properties of CEP-HSA and CEP-dipeptide were demonstrated by using the chick chorioallantoic membrane and rat corneal micropocket assays. Low picomole amounts of CEP-HSA and CEP-dipeptide stimulated neovascularization. Monoclonal anti-CEP antibody neutralized limbal vessel growth stimulated by CEP-HSA, whereas anti-VEGF antibody was found to only partially neutralize vessel growth. Subretinal injections of CEP-modified mouse serum albumin exacerbated laser-induced CNV in mice. In vitro treatments of human retinal pigment epithelial cells with CEP-dipeptide or CEP-HSA did not induce increased VEGF secretion. Overall, these results suggest that CEP-induced angiogenesis utilizes VEGF-independent pathways and that anti-CEP therapeutic modalities might be of value in limiting CNV in AMD. PMID:16938854

  20. Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.

    PubMed

    Peng, Yuancheng; Ma, Wenying; Chen, Liangliang; Yang, Lei; Li, Shengjun; Zhao, Hongtao; Zhao, Yankun; Jin, Weihuan; Li, Na; Bevan, Michael W; Li, Xia; Tong, Yiping; Li, Yunhai

    2013-03-01

    The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance and thus control root meristem size. However, the genetic and molecular mechanisms that determine root meristem size still remain largely unknown. Here, we report that da1-related protein2 (dar2) mutants produce small root meristems due to decreased cell division and early cell differentiation in the root meristem of Arabidopsis (Arabidopsis thaliana). dar2 mutants also exhibit reduced stem cell niche activity in the root meristem. DAR2 encodes a Lin-11, Isl-1, and Mec-3 domain-containing protein and shows an expression peak in the border between the transition zone and the elongation zone. Genetic analyses show that DAR2 functions downstream of cytokinin and SHORT HYPOCOTYL2 to maintain normal auxin distribution by influencing auxin transport. Further results indicate that DAR2 acts through the PLETHORA pathway to influence root stem cell niche activity and therefore control root meristem size. Collectively, our findings identify the role of DAR2 in root meristem size control and provide a novel link between several key regulators influencing root meristem size.

  1. Ring-like oligomers of Synaptotagmins and related C2 domain proteins

    PubMed Central

    Zanetti, Maria N; Bello, Oscar D; Wang, Jing; Coleman, Jeff; Cai, Yiying; Sindelar, Charles V; Rothman, James E; Krishnakumar, Shyam S

    2016-01-01

    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca2+-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca2+ involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca2+ influx. DOI: http://dx.doi.org/10.7554/eLife.17262.001 PMID:27434670

  2. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis.

    PubMed

    Muramatsu, Takashi

    2002-09-01

    Midkine (MK) and pleiotrophin (PTN) are low molecular weight proteins with closely related structures. They are mainly composed of two domains held by disulfide bridges, and there are three antiparallel beta-sheets in each domain. MK and PTN promote the growth, survival, and migration of various cells, and play roles in neurogenesis and epithelial mesenchymal interactions during organogenesis. A chondroitin sulfate proteoglycan, protein-tyrosine phosphatase zeta (PTPzeta), is a receptor for MK and PTN. The downstream signaling system includes ERK and PI3 kinase. MK binds to the chondroitin sulfate portion of PTPzeta with high affinity. Among the various chondroitin sulfate structures, the E unit, which has 4,6-disulfated N-acetylgalactosamine, provides the strongest binding site. The expression of MK and PTN is increased in various human tumors, making them promising as tumor markers and as targets for tumor therapy. MK and PTN expression also increases upon ischemic injury. MK enhances the migration of inflammatory cells, and is involved in neointima formation and renal injury following ischemia. MK is also interesting from the viewpoints of the treatment of neurodegenerative diseases, increasing the efficiency of in vitro development, and the prevention of HIV infection.

  3. MELANOCYTIC GALECTIN-3 IS ASSOCIATED WITH TYROSINASE RELATED PROTEIN-1 AND PIGMENT BIOSYNTHESIS

    PubMed Central

    Chalupa, Allison; Koshoffer, Amy; Galan, Emily; Yu, Lan; Liu, Fu-Tong; Boissy, Raymond E.

    2014-01-01

    Galectin-3 is a family member of the carbohydrate binding proteins widely expressed by many cell types and exhibits multiple cellular functions. We demonstrate that melanocytes express galectin-3, which is predominantly localized to the cell body peripherally along the Golgi zone. Downregulation of galectin-3 in human melanocytes using shRNA technology resulted in reduction of both melanin synthesis and expression/activity of Tyrp-1. In the cell body, galectin-3 co-localizes with melanosome destined cargo, specifically tyrosinase and tyrosinase-related protein-1. We studied melanocytes cultured from patients with forms of Hermansky-Pudlak syndrome containing defects in trafficking steps governed by BLOC-2 (HPS5), BLOC-3 (HPS1) and adaptin-3 (HPS2). We found galectin-3 expression mimicked the defective expression of the tyrosinase cargo in dendrites of HPS-5 melanocytes, but was not altered in HPS1 or HPS2 melanocytes. In addition, galectin-3 co-localized predominantly with the HPS-5 component of BLOC-2 in normal human melanocytes. These data indicate that galectin-3 is a regulatory component in melanin synthesis affecting the expression of Tyrp-1. PMID:25054620

  4. Monomeric C-reactive protein and inflammation in age-related macular degeneration.

    PubMed

    Chirco, Kathleen R; Whitmore, S Scott; Wang, Kai; Potempa, Lawrence A; Halder, Jennifer A; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2016-10-01

    Age-related macular degeneration (AMD) is a devastating disease characterized by central vision loss in elderly individuals. Previous studies have suggested a link between elevated levels of total C-reactive protein (CRP) in the choroid, CFH genotype, and AMD status; however, the structural form of CRP present in the choroid, its relationship to CFH genotype, and its functional consequences have not been assessed. In this report, we studied genotyped human donor eyes (n = 60) and found that eyes homozygous for the high-risk CFH (Y402H) allele had elevated monomeric CRP (mCRP) within the choriocapillaris and Bruch's membrane, compared to those with the low-risk genotype. Treatment of choroidal endothelial cells in vitro with mCRP increased migration rate and monolayer permeability compared to treatment with pentameric CRP (pCRP) or medium alone. Organ cultures treated with mCRP exhibited dramatically altered expression of inflammatory genes as assessed by RNA sequencing, including ICAM-1 and CA4, both of which were confirmed at the protein level. Our data indicate that mCRP is the more abundant form of CRP in human choroid, and that mCRP levels are elevated in individuals with the high-risk CFH genotype. Moreover, pro-inflammatory mCRP significantly affects endothelial cell phenotypes in vitro and ex vivo, suggesting a role for mCRP in choroidal vascular dysfunction in AMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases.

    PubMed

    Jensen, Jacob Krüger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

    2014-10-01

    The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by β-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a β-1,4 linkage, establishing this protein as a xylan β-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins. PMID:25139408

  6. Phosphorylation Regulates the Endocytic Function of the Yeast Dynamin-Related Protein Vps1

    PubMed Central

    Smaczynska-de Rooij, Iwona I.; Marklew, Christopher J.; Allwood, Ellen G.; Palmer, Sarah E.; Booth, Wesley I.; Mishra, Ritu; Goldberg, Martin W.

    2015-01-01

    The family of dynamin proteins is known to function in many eukaryotic membrane fusion and fission events. The yeast dynamin-related protein Vps1 functions at several stages of membrane trafficking, including Golgi apparatus to endosome and vacuole, peroxisomal fission, and endocytic scission. We have previously shown that in its endocytic role, Vps1 functions with the amphiphysin heterodimer Rvs161/Rvs167 to facilitate scission and release of vesicles. Phosphoproteome studies of Saccharomyces cerevisiae have identified a phosphorylation site in Vps1 at serine 599. In this study, we confirmed this phosphorylation event, and we reveal that, like Rvs167, Vps1 can be phosphorylated by the yeast cyclin-associated kinase Pho85 in vivo and in vitro. The importance of this posttranslational modification was revealed when mutagenesis of S599 to a phosphomimetic or nonphosphorylatable form caused defects in endocytosis but not in other functions associated with Vps1. Mutation to nonphosphorylatable valine inhibited the Rvs167 interaction, while both S599V and S599D caused defects in vesicle scission, as shown by both live-cell imaging and electron microscopy of endocytic invaginations. Our data support a model in which phosphorylation and dephosphorylation of Vps1 promote distinct interactions and highlight the importance of such regulatory events in facilitating sequential progression of the endocytic process. PMID:26711254

  7. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples

    PubMed Central

    Zamay, Galina S.; Zamay, Tatiana N.; Kolovskii, Vasilii A.; Shabanov, Alexandr V.; Glazyrin, Yury E.; Veprintsev, Dmitry V.; Krat, Alexey V.; Zamay, Sergey S.; Kolovskaya, Olga S.; Gargaun, Ana; Sokolov, Alexey E.; Modestov, Andrey A.; Artyukhov, Ivan P.; Chesnokov, Nikolay V.; Petrova, Marina M.; Berezovski, Maxim V.; Zamay, Anna S.

    2016-01-01

    The development of an aptamer-based electrochemical sensor for lung cancer detection is presented in this work. A highly specific DNA-aptamer, LC-18, selected to postoperative lung cancer tissues was immobilized onto a gold microelectrode and electrochemical measurements were performed in a solution containing the redox marker ferrocyanide/ferricyanide. The aptamer protein targets were harvested from blood plasma of lung cancer patients by using streptavidin paramagnetic beads and square wave voltammetry of the samples was performed at various concentrations. In order to enhance the sensitivity of the aptasensor, silica-coated iron oxide magnetic beads grafted with hydrophobic C8 and C4 alkyl groups were used in a sandwich detection approach. Addition of hydrophobic beads increased the detection limit by 100 times. The detection limit of the LC-18 aptasensor was enhanced by the beads to 0.023 ng/mL. The formation of the aptamer – protein – bead sandwich on the electrode surface was visualized by electron microcopy. As a result, the electrochemical aptasensor was able to detect cancer-related targets in crude blood plasma of lung cancer patients. PMID:27694916

  8. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases.

    PubMed

    Jensen, Jacob Krüger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

    2014-10-01

    The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by β-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a β-1,4 linkage, establishing this protein as a xylan β-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins.

  9. [Snake venom proteins related to "vascular endothelial growth factor": new tools for therapeutic angiogenesis].

    PubMed

    Aloui, Z; Essafi-Benkhadir, K; Karoui, H; Gasmi, A

    2013-01-01

    The Vascular Endothelial Growth Factor "VEGF" plays a pivotal role in the stimulation of angiogenesis. The VEGF isoforms (A-D) and PlGF act in a coordinate fashion to develop the vascular network. Numerous proteins closely related in structure and function to VEGF-A have been reported and were grouped in the VEGF family. Some predators make use of VEGF-like molecules with devastating results for their prey. VEGF-E, investigated in 1994, is encoded by the parapoxvirus (Orf virus). VEGF-F is a common term designating molecules which were isolated from snake venom (also known as svVEGF). These proteins are disulphide-linked homodimers of 110 amino acids each and have a molecular weight of approximately 25 kDa. Their primary structures show approximately 50% identity to VEGF-A. However, unlike VEGF-A, they do not contain any N-linked glycosylation sites. They interact with heparin but have a different binding domain from that of VEGF-A. Among species, these svVEGFs vary extensively in amino acid sequences and in receptor-binding specificities towards endogenous VEGF receptors. Understanding the properties that determine the specificity of these interactions could improve our knowledge of the VEGF-receptor interactions. This knowledge is essential to the development of new drugs in angiogenesis. This knowledge is essential to the development of new drugs in angiogenesis.

  10. Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Ruiz de Escudero, Iñigo; Caballero, Primitivo

    2014-01-01

    This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC50 = 32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm2. This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests. PMID:25384108

  11. Yeast Irc6p is a novel type of conserved clathrin coat accessory factor related to small G proteins.

    PubMed

    Gorynia, Sabine; Lorenz, Todd C; Costaguta, Giancarlo; Daboussi, Lydia; Cascio, Duilio; Payne, Gregory S

    2012-11-01

    Clathrin coat accessory proteins play key roles in transport mediated by clathrin-coated vesicles. Yeast Irc6p and the related mammalian p34 are putative clathrin accessory proteins that interact with clathrin adaptor complexes. We present evidence that Irc6p functions in clathrin-mediated traffic between the trans-Golgi network and endosomes, linking clathrin adaptor complex AP-1 and the Rab GTPase Ypt31p. The crystal structure of the Irc6p N-terminal domain revealed a G-protein fold most related to small G proteins of the Rab and Arf families. However, Irc6p lacks G-protein signature motifs and high-affinity GTP binding. Also, mutant Irc6p lacking candidate GTP-binding residues retained function. Mammalian p34 rescued growth defects in irc6 cells, indicating functional conservation, and modeling predicted a similar N-terminal fold in p34. Irc6p and p34 also contain functionally conserved C-terminal regions. Irc6p/p34-related proteins with the same two-part architecture are encoded in genomes of species as diverse as plants and humans. Together these results define Irc6p/p34 as a novel type of conserved clathrin accessory protein and founding members of a new G protein-like family.

  12. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons.

  13. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    PubMed

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  14. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    PubMed

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties.

  15. The relationship between relative solvent accessibility and evolutionary rate in protein evolution.

    PubMed

    Ramsey, Duncan C; Scherrer, Michael P; Zhou, Tong; Wilke, Claus O

    2011-06-01

    Recent work with Saccharomyces cerevisiae shows a linear relationship between the evolutionary rate of sites and the relative solvent accessibility (RSA) of the corresponding residues in the folded protein. Here, we aim to develop a mathematical model that can reproduce this linear relationship. We first demonstrate that two models that both seem reasonable choices (a simple model in which selection strength correlates with RSA and a more complex model based on RSA-dependent amino acid distributions) fail to reproduce the observed relationship. We then develop a model on the basis of observed site-specific amino acid distributions and show that this model behaves appropriately. We conclude that evolutionary rates are directly linked to the distribution of amino acids at individual sites. Because of this link, any future insight into the biophysical mechanisms that determine amino acid distributions will improve our understanding of evolutionary rates.

  16. A gene and protein expression study on four porcine genes related to intramuscular fat deposition.

    PubMed

    Zappaterra, Martina; Deserti, Marzia; Mazza, Roberta; Braglia, Silvia; Zambonelli, Paolo; Davoli, Roberta

    2016-11-01

    Intramuscular fat (IMF) content has a prominent role in meat quality, affecting sensory attributes such as flavour and texture. In the present research, we studied in samples of porcine Semimembranosus muscle four genes related to lipid metabolism and whose gene expressions have been associated to IMF deposition: FASN, SCD, LIPE and LPL. We analysed both mRNA and protein expressions in two groups of Italian Large White pigs divergent for Semimembranosus IMF deposition, with the aim of comparing the levels of four genes and enzymes between the two groups and identifying possible coexpression links. The obtained results suggest a prominent role of LIPE enzyme in IMF hydrolysis, as the samples with low IMF deposition show a significantly higher amount of this lipase. Finally, a poorly known correlation was found between LIPE and FASN enzymes only in female individuals. These results provide new information for the understanding of IMF deposition. PMID:27236338

  17. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    PubMed

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  18. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    PubMed

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties. PMID:27319138

  19. Mass Spectrometric Immunoassay for Parathyroid Hormone Related Protein (PTHrP)

    SciTech Connect

    Zheng, K.; Rivera, J.D.; Vogel, J.S.; Buchholz, B.A.; Burton, D.W.; Deftos, L.J.; Herold, D.A.; Fitzgerald, R.L.

    2000-06-16

    Many cancers, including prostate, breast and lung express parathyroid hormone related protein (PTHrP). Despite the common tumor overexpression of PTHrP, serum levels of PTHrP are not commonly elevated in affected patients. They postulate that the reasons for the discrepancy between tissue and serum measurements of PTHrP are the inadequate sensitivity and specificity of current PTHrP serum assays. To improve the clinical value of PTHrP serum assays for the cancer patient, they are developing a new generation of novel and ultrasensitive PTHrP serum immunoassays based on immunoaffinity purification, nanospray liquid chromatography tandem mass spectrometry (LC/MS/MS) and accelerator mass spectrometry (AMS).

  20. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  1. Optimisation of a simple and reliable label-free methodology for the relative quantitation of raw pork meat proteins.

    PubMed

    Gallego, Marta; Mora, Leticia; Aristoy, M Concepción; Toldrá, Fidel

    2015-09-01

    Recent advances in proteomics have become an indispensable tool for a fast, precise and sensitive analysis of proteins in complex biological samples at both, qualitative and quantitative level. In this study, a label-free quantitative proteomic methodology has been optimised for the relative quantitation of proteins extracted from raw pork meat. So, after the separation of proteins by one-dimensional gel electrophoresis and trypsin digestion, their identification and quantitation have been done using nanoliquid chromatography coupled to a quadrupole/time-of-flight (Q/ToF) mass spectrometer. Relative quantitation has been based on the measurement of mass spectral peak intensities, which have been described that are correlated with protein abundances. The results obtained regarding linearity, robustness, repeatability and accuracy show that this procedure could be used as a fast, simple, and reliable method to quantify changes in protein abundance in meat samples.

  2. Tocopherol-mediated modulation of age-related changes in microglial cells: turnover of extracellular oxidized protein material.

    PubMed

    Stolzing, Alexandra; Widmer, Rebecca; Jung, Tobias; Voss, Peter; Grune, Tilman

    2006-06-15

    Proteins accumulate during aging and form insoluble protein aggregates. Microglia are responsible for their removal from the brain. During aging, changes within the microglia might play a crucial role in the malfunctioning of these cells. Therefore, we isolated primary microglial cells from adult rats and compared their activation status and their ability to degrade proteins to that of microglial cells isolated from newborn animals. The ability of adult microglial cells to degrade proteins is substantially decreased. However, the preincubation of microglial cells with vitamin E improves significantly the degradation of such modified proteins. The degradation of proteins from apoptotic vesicles is decreased in microglia isolated from adult rats. This might be the result of a suppression of the CD36 receptor due to vitamin E treatment. We concluded that microglial cells isolated from adult organisms have different metabolic properties and seem to be a more valuable model to study age-related diseases.

  3. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma

    PubMed Central

    Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M.; Davies, Anthony J.; Weetman, Malcolm; Garden, Oliver A.; Masters, John R.; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  4. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma.

    PubMed

    Giuliano, Antonio; Swift, Rebecca; Arthurs, Callum; Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M; Davies, Anthony J; Weetman, Malcolm; Garden, Oliver A; Masters, John R; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  5. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.

    PubMed

    García-Borrón, José C; Solano, Francisco

    2002-06-01

    The structure of tyrosinase (Tyr) is reviewed from a double point of view. On the one hand, by comparison of all Tyr found throughout nature, from prokaryotic organisms to mammals and on the other, by comparison with the tyrosinase related proteins (Tyrps) that appeared late in evolution, and are only found in higher animals. Their structures are reviewed as a whole rather than focused on the histidine (His)-bound metal active site, which is the part of the molecule common to all these proteins. The availability of crystallographic data of hemocyanins and recently of sweet potato catechol oxidase has improved the model of the three-dimensional structure of the Tyr family. Accordingly, Tyr has a higher structural disorder than hemocyanins, particularly at the CuA site. The active site seems to be characterized by the formation of a hydrophobic pocket with a number of conserved aromatic residues sited close to the well-known His. Other regions specific of the mammalian enzymes, such as the cytosolic C-terminal tail, the cysteine clusters, and the N-glycosylation sequons, are also discussed. The complete understanding of the Tyr copper-binding domain and the characterization of the residues determinant of the relative substrate affinities of the Tyrps will improve the design of targeted mutagenesis experiments to understand the different catalytic capabilities of Tyr and Tyrps. This may assist future aims, from the design of more efficient bacterial Tyr for biotechnological applications to the design of inhibitors of undesirable fruit browning in vegetables or of color skin modulators in animals. PMID:12028580

  6. Low-density lipoprotein receptor–related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction

    PubMed Central

    2014-01-01

    Introduction Wnt ligands bind to low-density lipoprotein receptor–related protein (LRP) 5 or 6, triggering a cascade of downstream events that include β-catenin signaling. Here we explored the roles of LRP5 in interleukin 1β (IL-1β)- or Wnt-mediated osteoarthritic (OA) cartilage destruction in mice. Methods The expression levels of LRP5, type II collagen, and catabolic factors were determined in mouse articular chondrocytes, human OA cartilage, and mouse experimental OA cartilage. Experimental OA in wild-type, Lrp5 total knockout (Lrp5-/-) and chondrocyte-specific knockout (Lrp5fl/fl;Col2a1-cre) mice was caused by aging, destabilization of the medial meniscus (DMM), or intra-articular injection of collagenase. The role of LRP5 was confirmed in vitro by small interfering RNA–mediated knockdown of Lrp5 or in Lrp5-/- cells treated with IL-1β or Wnt proteins. Results IL-1β treatment increased the expression of LRP5 (but not LRP6) via JNK and NF-κB signaling. LRP5 was upregulated in human and mouse OA cartilage, and Lrp5 deficiency in mice inhibited cartilage destruction. Treatment with IL-1β or Wnt decreased the level of Col2a1 and increased those of Mmp3 or Mmp13, whereas Lrp5 knockdown ameliorated these effects. In addition, we found that the functions of LRP5 in arthritic cartilage were subject to transcriptional activation by β-catenin. Moreover, Lrp5-/- and Lrp5fl/fl;Col2a1-cre mice exhibited decreased cartilage destruction (and related changes in gene expression) in response to experimental OA. Conclusions Our findings indicate that LRP5 (but not LRP6) plays an essential role in Wnt/β-catenin-signaling-mediated OA cartilage destruction in part by regulating the expression levels of type II collagen, MMP3, and MMP13. PMID:24479426

  7. Identification of Differentiation-Related Proteins in Gastric Adenocarcinoma Tissues by Proteomics.

    PubMed

    Zhou, Xin; Yao, Kun; Zhang, Lang; Zhang, Ying; Han, Yin; Liu, Hui-Ling; Liu, Xiang-Wen; Su, Gang; Yuan, Wen-Zhen; Wei, Xiao-Dong; Guan, Quan-Lin; Zhu, Bing-Dong

    2016-10-01

    There is a significant correlation between the degree of tumor differentiation and the survival of patients with gastric cancers. In this report, we compared proteomic differences between poorly differentiated gastric adenocarcinoma tissues and well-differentiated gastric adenocarcinoma tissues in order to identify differentiation-related proteins that may be closely correlated with differentiation of gastric cancer pathogenesis. We identified 7 proteins, of which calreticulin precursor, tapasinERP57 heterodimer, pyruvate kinase isozymes M1/M2 isoform M2, class Pi glutathione S-transferase, and chain A crystal structure of human enolase 1 were upregulated in poorly differentiated gastric adenocarcinoma compared with well-differentiated gastric adenocarcinoma, while myosin-11 isoform SM2A and actin alpha cardiac were downregulated. Two of them, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 are enzymes involved in glycolytic pathway. The upregulation of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 in poorly differentiated gastric adenocarcinoma was confirmed by Western blotting and immunohistochemistry. Furthermore, we observed 107 cases with gastric adenocarcinoma and found that the high expression of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 correlates with tumor size (P = .0001 and P = .0017, respectively), depth of invasion (P = .0024 and P = .0261, respectively), and poor prognosis of patients. In conclusion, with this proteomic analysis, pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 were identified upregulated in poorly differentiated gastric adenocarcinoma comparing with well-differentiated gastric adenocarcinoma. The expression level of pyruvate kinase isozymes M1/M2 isoform M2 and enolase 1 was significantly correlated with overall survival. Some of them would be differentiation-related cancer biomarkers and are associated with tumor metastasis, invasion, and prognosis. PMID:27624754

  8. A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein.

    PubMed

    Starostina, Elena; Xu, Aiguo; Lin, Heping; Pikielny, Claudio W

    2009-01-01

    Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons. PMID:18952610

  9. Effect of ethephon on protein degradation and the accumulation of pathogensis-related (PR) proteins in tomato leaf discs. [Lycopersicon esculentum

    SciTech Connect

    Vera, P.; Conejero, V. )

    1990-01-01

    The effect of ethephon (2-chloroetylphosphonic acid) on the degradation of proteins and on the induction of Lycopersicon esculentum pathogenesis-related (PR) proteins was studied in tomato leaf discs. The rate of ribulose, -1,5-bisphosphate carboxylase/oxygenase (Rubisco) degradation was maximal in discs after 48 hours of incubation with 1 millimolar ethephon, leading to complete disappearance of Rubisco after 96 hours. This effect was correlated with an increase in PR protein synthesis and the induction of the previously reported alkaline proteolytic enzyme PR-P69. In vivo pulse-chase experiments demonstrated that ethephon not only affected Rubisco content but that of many other {sup 35}S-labeled proteins as well, indicating that ethylene activates a general and nonspecific mechanism of protein degradation. This effect was partially inhibited in vivo by the action of pCMB, a selective inhibitor of cysteine-proteinases such as P69. These data reinforce the hypothesis that P69 and perhaps other PR proteins are involved in the mechanism of accelerated protein degradation activated by ethylene.

  10. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  11. Expression of Pokeweed Antiviral Protein in Transgenic Plants Induces Virus Resistance in Grafted Wild-Type Plants Independently of Salicylic Acid Accumulation and Pathogenesis-Related Protein Synthesis.

    PubMed Central

    Smirnov, S.; Shulaev, V.; Tumer, N. E.

    1997-01-01

    Pokeweed antiviral protein (PAP), a 29-kD protein isolated from Phytolacca americana, inhibits translation by catalytically removing a specific adenine residue from the large rRNA of the 60S subunit of eukaryotic ribosomes. Transgenic tobacco (Nicotiana tabacum) plants expressing PAP or a variant (PAP-v) were shown to be resistant to a broad spectrum of plant viruses. Expression of PAP-v in transgenic plants induces synthesis of pathogenesis-related proteins and a very weak (<2-fold) increase in salicylic acid levels. Using reciprocal grafting experiments, we demonstrate here that transgenic tobacco rootstocks expressing PAP-v induce resistance to tobacco mosaic virus infection in both N. tabacum NN and nn scions. Increased resistance to potato virus X was also observed in N. tabacum nn scions grafted on transgenic rootstocks. PAP expression was not detected in the wild-type scions or rootstocks that showed virus resistance, nor was there any increase in salicylic acid levels or pathogenesis-related protein synthesis. Grafting experiments with transgenic plants expressing an inactive PAP mutant demonstrated that an intact active site of PAP is necessary for induction of virus resistance in wild-type scions. These results indicate that enzymatic activity of PAP is responsible for generating a signal that renders wild-type scions resistant to virus infection in the absence of increased salicylic acid levels and pathogenesis-related protein synthesis. PMID:12223762

  12. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy.

    PubMed

    Stobäus, Nicole; Müller, Manfred J; Küpferling, Susanne; Schulzke, Jörg-Dieter; Norman, Kristina

    2015-01-01

    Cancer patients, in general, suffer from anorexia hence diminished nutritional intake. In a prospective observational study, we investigated the impact of recent energy and protein intake on cancer-related fatigue and 6-month mortality in patients undergoing chemotherapy. Recent protein and energy intake was assessed by 24-h recall in 285 patients. Cancer-related fatigue was determined by Brief Fatigue Inventory, and fat free mass index (FFMI) was assessed with bioelectrical impedance analysis. Symptoms with the validated German version of European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (30 questions) and 6-month mortality was documented. Risk factors of cancer-related fatigue and predictors of mortality were investigated with logistic regression analysis and stepwise Cox regression analysis, respectively. Low protein intake (<1 g/kg body weight) was found in 66% of patients, who were characterized by higher age, weight, and body mass index. Recent protein intake emerged as the strongest contributor to cancer-related fatigue followed by nausea/vomiting, insomnia, and age. Reduced protein intake, male sex, number of comorbidities, and FFMI were identified as significant predictors for increased 6-month mortality. In conclusion, a low recent protein intake assessed by 24-h recall is associated with a more than twofold higher risk of cancer-related fatigue and 6-month mortality. Every effort should be taken to assess and guarantee proper nutritional intake in patients undergoing chemotherapy.

  13. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy.

    PubMed

    Stobäus, Nicole; Müller, Manfred J; Küpferling, Susanne; Schulzke, Jörg-Dieter; Norman, Kristina

    2015-01-01

    Cancer patients, in general, suffer from anorexia hence diminished nutritional intake. In a prospective observational study, we investigated the impact of recent energy and protein intake on cancer-related fatigue and 6-month mortality in patients undergoing chemotherapy. Recent protein and energy intake was assessed by 24-h recall in 285 patients. Cancer-related fatigue was determined by Brief Fatigue Inventory, and fat free mass index (FFMI) was assessed with bioelectrical impedance analysis. Symptoms with the validated German version of European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (30 questions) and 6-month mortality was documented. Risk factors of cancer-related fatigue and predictors of mortality were investigated with logistic regression analysis and stepwise Cox regression analysis, respectively. Low protein intake (<1 g/kg body weight) was found in 66% of patients, who were characterized by higher age, weight, and body mass index. Recent protein intake emerged as the strongest contributor to cancer-related fatigue followed by nausea/vomiting, insomnia, and age. Reduced protein intake, male sex, number of comorbidities, and FFMI were identified as significant predictors for increased 6-month mortality. In conclusion, a low recent protein intake assessed by 24-h recall is associated with a more than twofold higher risk of cancer-related fatigue and 6-month mortality. Every effort should be taken to assess and guarantee proper nutritional intake in patients undergoing chemotherapy. PMID:25996582

  14. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  15. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  16. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor.

    PubMed

    Kurisaki, Akira; Hamazaki, Tatsuo S; Okabayashi, Koji; Iida, Tetsuo; Nishine, Tsutomu; Chonan, Ritsu; Kido, Hiroshi; Tsunasawa, Susumu; Nishimura, Osamu; Asashima, Makoto; Sugino, Hiromu

    2005-09-30

    Embryonic stem (ES) cells have generated enormous interest due to their capacity to self-renew and the potential for growing many different cell types in vitro. Leukemia inhibitory factor (LIF), bone morphogenetic proteins, octamer-binding protein 3 or 4, and Nanog are important factors in the maintenance of pluripotency in mouse ES cells. However, the mechanisms by which these factors regulate the pluripotency remain poorly understood. To identify other proteins involved in this process, we did a proteomic analysis of mouse ES cells that were cultured in the presence or absence of LIF. More than 100 proteins were found to be involved specifically in either the differentiation process or the maintenance of undifferentiated state. Among these, chromatin-related proteins were identified as the major proteins in nuclear extracts of undifferentiated cells. Analysis with real-time RT-PCR revealed that enrichment of these proteins in pluripotent ES cells was regulated at the transcriptional levels. These results suggest that specific chromatin-related proteins may be involved in maintaining the unique properties of pluripotent ES cells.

  17. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    PubMed

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior. PMID:27337384

  18. Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3.

    PubMed Central

    Mendelman, P M; Campos, J; Chaffin, D O; Serfass, D A; Smith, A L; Sáez-Nieto, J A

    1988-01-01

    We examined clinical isolates of Neisseria meningitidis relatively resistant to penicillin G (mean MIC, 0.3 micrograms/ml; range, 0.1 to 0.7 micrograms/ml), which were isolated from blood and cerebrospinal fluid for resistance mechanisms, by using susceptible isolates (mean MIC, less than or equal to 0.06 micrograms/ml) for comparison. The resistant strains did not produce detectable beta-lactamase activity, otherwise modify penicillin G, or bind less total penicillin. Penicillin-binding protein (PBP) 3 of the six resistant isolates tested uniformly bound less penicillin G in comparison to the same PBP of four susceptible isolates. Reflecting the reduced binding affinity of PBP 3 of the two resistant strains tested, the amount of 3H-labeled penicillin G required for half-maximal binding was increased in comparison with that of PBP 3 of the two susceptible isolates. We conclude that the mechanism of resistance in these meningococci relatively resistant to penicillin G was decreased affinity of PBP 3. Images PMID:3134848

  19. PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan.

    PubMed

    Kinjo, Akira R; Yamashita, Reiko; Nakamura, Haruki

    2010-01-01

    This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/ PMID:20798081

  20. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    PubMed

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  1. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS.

    PubMed

    Heredia, Fabiola Fernandes; de Sousa, Juliana Cordeiro; Ribeiro Junior, Howard Lopes; Carvalho, Alex Fiorini; Magalhaes, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2014-02-01

    Some studies show that alterations in expression of proteins related to mitotic spindle (AURORAS KINASE A and B) and mitotic checkpoint (CDC20 and MAD2L1) are involved in chromosomal instability and tumor progression in various solid and hematologic malignancies. This study aimed to evaluate these genes in MDS patients. The cytogenetics analysis was carried out by G-banding, AURKA and AURKB amplification was performed using FISH, and AURKA, AURKB, CDC20 and MAD2L1 gene expression was performed by qRT-PCR in 61 samples of bone marrow from MDS patients. AURKA gene amplification was observed in 10% of the cases, which also showed higher expression levels than the control group (p=0.038). Patients with normo/hypercellular BM presented significantly higher expression levels than hypocellular BM patients, but normo and hypercellular BM groups did not differ. After logistic regression analysis, our results showed that HIGH expression levels were associated with increased risk of developing normo/hypercellular MDS. It also indicated that age is associated with AURKA, CDC20 and MAD2L1 HIGH expression levels. The distinct expression of hypocellular patients emphasizes the prognostic importance of cellularity to MDS. The amplification/high expression of AURKA suggests that the increased expression of this gene may be related to the pathogenesis of disease. PMID:24314588

  2. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS.

    PubMed

    Heredia, Fabiola Fernandes; de Sousa, Juliana Cordeiro; Ribeiro Junior, Howard Lopes; Carvalho, Alex Fiorini; Magalhaes, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2014-02-01

    Some studies show that alterations in expression of proteins related to mitotic spindle (AURORAS KINASE A and B) and mitotic checkpoint (CDC20 and MAD2L1) are involved in chromosomal instability and tumor progression in various solid and hematologic malignancies. This study aimed to evaluate these genes in MDS patients. The cytogenetics analysis was carried out by G-banding, AURKA and AURKB amplification was performed using FISH, and AURKA, AURKB, CDC20 and MAD2L1 gene expression was performed by qRT-PCR in 61 samples of bone marrow from MDS patients. AURKA gene amplification was observed in 10% of the cases, which also showed higher expression levels than the control group (p=0.038). Patients with normo/hypercellular BM presented significantly higher expression levels than hypocellular BM patients, but normo and hypercellular BM groups did not differ. After logistic regression analysis, our results showed that HIGH expression levels were associated with increased risk of developing normo/hypercellular MDS. It also indicated that age is associated with AURKA, CDC20 and MAD2L1 HIGH expression levels. The distinct expression of hypocellular patients emphasizes the prognostic importance of cellularity to MDS. The amplification/high expression of AURKA suggests that the increased expression of this gene may be related to the pathogenesis of disease.

  3. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  4. Carbon and Nitrogen Storage in Glomalin-Related Soil Protein During Grassland-to- Woodland Succession

    NASA Astrophysics Data System (ADS)

    Ariza, M. C.; Boutton, T. W.; Gonzalez-Chavez, M. C.; Filley, T. R.

    2008-12-01

    Glomalin is a hyphal glycoprotein produced by arbuscular mycorrhizal fungi that has been found to make a significant contribution to soil organic matter and to play a key role in the process of soil aggregation. However, little is known regarding the effects of land cover changes on glomalin storage in soil. To evaluate this, we quantified glomalin in soils along a grassland-to-woodland chronosequence in a subtropical mesquite savanna located in southern Texas. Soil cores (0-10 cm) were collected from remnant grasslands (age 0) and from adjacent woody plant stands (ages 14 to 86 yr). Glomalin-related soil protein (GRSP), operationally defined as Bradford reactive soil protein was extracted from soil as easily extractable glomalin (EE-GRSP) and as total glomalin (T-GRSP). EE-GRSP was extracted from 1 g soil with 8 ml of 20 mM citrate-buffer, pH 7.0 at 121 °C for 30 minutes. T-GRSP was extracted from 1 g soil with 8 ml of 50 mM citrate-buffer, pH 8.0 at 121 °C for 60 minutes; extractions were repeated up to 4 times. Extracts were purified by precipitation at pH 2.5, reconstituted in 0.1 NaOH, dialyzed against dH2O, freeze-dried, and analyzed for %C and N. EE-GRSP concentrations ranged from 1.0-1.4 mg/g in remnant grasslands, and from 1.7-2.3 mg/g in wooded areas. Similarly, T-GRSP concentrations ranged from 1.2-2.6 mg/g in remnant grasslands, and from 2.8-4.3 mg/g. Both GRSP fractions increased linearly during the first 40 years of woody plant encroachment, and then remained relatively constant at approximately 4 mg/g in woody clusters ranging in age from 50-90 years. Carbon and nitrogen concentrations in T-GRSP (C = 10-25%; N = 1-3%) were similar in both remnant grasslands and woody plant stands. C and N in T-GRSP accounted for 6% of total soil organic carbon (SOC) and 5% of soil total N in remnant grasslands, and 4% of both SOC and total N in wooded areas. Our results show that woody plant cover significantly affects GRSP concentrations, likely due to increased

  5. Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. A group of commonly found metabolites implicated in protection against stresses such as chilling stress constitute ubiquitous biogenic amines calle...

  6. Relating diseases by integrating gene associations and information flow through protein interaction network.

    PubMed

    Hamaneh, Mehdi Bagheri; Yu, Yi-Kuo

    2014-01-01

    Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.

  7. Identification and immunological characterization of thioredoxin transmembrane-related protein from Clonorchis sinensis.

    PubMed

    Zhou, Chenhui; Bian, Meng; Liao, Hua; Mao, Qiong; Li, Ran; Zhou, Juanjuan; Wang, Xiaoyun; Li, Shan; Liang, Chi; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2013-04-01

    Thioredoxin transmembrane related protein (TMX), a member of thioredoxin superfamily, is localized to the endoplasmic reticulum and possesses a thioredoxin-like domain that plays an important role as an oxidoreductase. The functions of TMX in Clonorchis sinensis remain to be elucidated. In this study, we cloned and characterized a novel TMX of C. sinensis (CsTMX). The CsTMX cDNA sequence contained a 414-nucleotide open-reading frame encoding a protein of 137 amino acids. A thioredoxin domain was found in the position of aa21-117 and contained the putative active-site motif Cys-Pro-Ala-Cys. BLASTx analysis showed that CsTMX shared 39-57% amino acid identities with TMX of other organisms. Quantitative RT-PCR analysis demonstrated that CsTMX was differentially transcribed, with the highest level of expression in the adult worm stage and the lowest expression in egg stage. In addition, immunofluorescence assay showed CsTMX was localized in the tegument, vitelline gland, intestine, and intrauterine eggs of adult worm. Besides, immunoblot assay revealed that the recombinant CsTMX (rCsTMX) could be recognized by the sera from rats infected with C. sinensis and the sera from rats immunized by excretory-secretory products. Furthermore, analysis of the antibody isotype profile revealed that rats subcutaneously immunized with rCsTMX developed rCsTMX-specific antibody, which is dominance of IgG2a in sera. Meanwhile, production of IFN-γ was elevated strongly in the supernatants of spleen cell. The results collectively indicated that CsTMX might play an important role in the host-parasite interaction, as well as CsTMX probably involved in immunoregulation of host by inducing Th1-type dominated immune response in rats. PMID:23403994

  8. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    SciTech Connect

    Sickles, Dale W. . E-mail: dsickles@mcg.edu; Sperry, Ann O. . E-mail: sperrya@ecu.edu; Testino, Angie; Friedman, Marvin

    2007-07-01

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.

  9. Whey protein isolate decreases murine stomach weight and intestinal length and alters the expression of Wnt signalling-associated genes.

    PubMed

    McAllan, Liam; Speakman, John R; Cryan, John F; Nilaweera, Kanishka N

    2015-01-28

    The present study examined the underlying mechanisms by which whey protein isolate (WPI) affects energy balance. C57BL/6J mice were fed a diet containing 10% energy from fat, 70% energy from carbohydrate (35% energy from sucrose) and 20% energy from casein or WPI for 15 weeks. Mice fed with WPI had reduced weight gain, cumulative energy intake and dark-phase VO2 compared with casein-fed mice (P< 0.05); however, WPI intake had no significant effects on body composition, meal size/number, water intake or RER. Plasma levels of insulin, TAG, leptin, glucose and glucagon-like peptide 1 remained unchanged. Notably, the intake of WPI reduced stomach weight and both length and weight of the small intestine (P< 0.05). WPI intake reduced the gastric expression of Wingless/int-1 5a (Wnt5a) (P< 0.01) and frizzled 4 (Fzd4) (P< 0.01), with no change in the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) and LDL receptor-related protein 5 (Lrp5). In the ileum, WPI increased the mRNA expression of Wnt5a (P< 0.01) and caused a trend towards an increase in the expression of Fzd4 (P= 0.094), with no change in the expression of Ror2 and Lrp5. These genes were unresponsive in the duodenum. Among the nutrient-responsive genes, WPI specifically reduced ileal mRNA expression of peptide YY (P< 0.01) and fatty acid transporter protein 4 (P< 0.05), and decreased duodenal mRNA expression of the insulin receptor (P= 0.05), with a trend towards a decreased expression of Na-glucose co-transporter 1 (P= 0.07). The effects of WPI on gastrointestinal Wnt signalling may explain how this protein affects gastrointestinal structure and function and, in turn, energy intake and balance.

  10. Diagnostic value of serum Golgi protein 73 for HBV-related primary hepatic carcinoma

    PubMed Central

    Gao, Guosheng; Dong, Feibo; Xu, Xiaozhen; Hu, Airong; Hu, Yaoren

    2015-01-01

    Background: Alpha-fetoprotein (AFP) levels are routinely used for diagnosis and monitoring of hepatic diseases, but it has a limited value. Golgi protein 73 (GP73) has been suggested as a new marker for hepatic diseases. Objective: To explore the clinical value of serum GP73 in different diseases associated with hepatitis B virus (HBV) infection. Method: Between January 2010 and August 2014, serum samples from 88 patients with chronic hepatitis B (CHB), 78 patients with HBV-related liver cirrhosis (LC), and 194 patients with HBV-related primary hepatic cancer (PHC) were collected. Serum samples from 30 healthy volunteers were used as controls. ELISA and microparticle enzyme immunoassay were used to measure serum GP73 and AFP levels. Receiver operating characteristic (ROC) curves were used to analyze the diagnostic value of serum GP73 and AFP for PHC. Results: For the diagnosis of PHC, GP73 showed a sensitivity of 65.5% and specificity of 66.3%, while AFP levels showed sensitivity of 64.4% and specificity of 76.5%. Serial testing (both tests are positive) could increase the specificity (sensitivity of 45.9% and specificity of 85.5%) while parallel testing (any single positive test result) could increase the sensitivity (sensitivity of 84.0% and specificity of 57.2%). Serum GP73 and AFP levels were significantly different between Child-Pugh grades (P<0.001 for GP73 and P=0.044 for AFP). Significant differences in serum GP73 and AFP were found between TNM stages (all P<0.001). Conclusion: Serum GP73 had limited diagnostic value for HBV-related PHC. The combined use of serum GP73 and AFP levels improved the diagnostic efficacy. PMID:26617863

  11. Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C

    PubMed Central

    Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis. PMID:23349696

  12. Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome.

    PubMed

    Rubio, Marta; Valdeolivas, Sara; Piscitelli, Fabiana; Verde, Roberta; Satta, Valentina; Barroso, Eva; Montolio, Marisol; Aras, Luis Miguel; Di Marzo, Vincenzo; Sagredo, Onintza; Fernández-Ruiz, Javier

    2016-04-01

    Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders. We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well as endocannabinoid genes. Plasma endocannabinoid levels were also analyzed. There were no differences between DS patients and controls in most of the CBD targets analyzed, except an increase in the voltage-dependent calcium channel α-1h subunit. We also found that cannabinoid type-2 (CB 2) receptor gene expression was elevated in DS patients, with no changes in other endocannabinoid-related receptors and enzymes, as well as in plasma levels of endocannabinoids. Such elevation was paralleled by an increase in CD70, a marker of lymphocyte activation, and certain trends in inflammation-related proteins (e.g., peroxisome proliferator-activated receptor-γ receptors, cytokines). In conclusion, together with changes in the voltage-dependent calcium channel α-1h subunit, we found an upregulation of CB 2 receptors, associated with an activation of lymphocytes and changes in inflammation-related genes, in DS patients. Such changes were also reported in inflammatory disorders and may indirectly support the occurrence of a potential dysregulation of the endocannabinoid system in the brain. PMID:27069631

  13. Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    PubMed Central

    Xing, Yazhi; Samuvel, Devadoss J.; Stevens, Shawn M.; Dubno, Judy R.; Schulte, Bradley A.; Lang, Hainan

    2012-01-01

    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis. PMID:22496821

  14. Nucleic acid encoding DS-CAM proteins and products related thereto

    SciTech Connect

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  15. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

    PubMed

    Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L

    2013-07-19

    Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

  16. Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains.

    PubMed

    Nakayama, Minoru; Hama, Chihiro

    2011-02-01

    Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.

  17. Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins.

    PubMed

    Bialas, Nathan J; Inglis, Peter N; Li, Chunmei; Robinson, Jon F; Parker, Jeremy D K; Healey, Michael P; Davis, Erica E; Inglis, Chrystal D; Toivonen, Tiina; Cottell, David C; Blacque, Oliver E; Quarmby, Lynne M; Katsanis, Nicholas; Leroux, Michel R

    2009-03-01

    Meckel syndrome (MKS) is a ciliopathy characterized by encephalocele, cystic renal disease, liver fibrosis and polydactyly. An identifying feature of MKS1, one of six MKS-associated proteins, is the presence of a B9 domain of unknown function. Using phylogenetic analyses, we show that this domain occurs exclusively within a family of three proteins distributed widely in ciliated organisms. Consistent with a ciliary role, all Caenorhabditis elegans B9-domain-containing proteins, MKS-1 and MKS-1-related proteins 1 and 2 (MKSR-1, MKSR-2), localize to transition zones/basal bodies of sensory cilia. Their subcellular localization is largely co-dependent, pointing to a functional relationship between the proteins. This localization is evolutionarily conserved, because the human orthologues also localize to basal bodies, as well as cilia. As reported for MKS1, disrupting human MKSR1 or MKSR2 causes ciliogenesis defects. By contrast, single, double and triple C. elegans mks/mksr mutants do not display overt defects in ciliary structure, intraflagellar transport or chemosensation. However, we find genetic interactions between all double mks/mksr mutant combinations, manifesting as an increased lifespan phenotype, which is due to abnormal insulin-IGF-I signaling. Our findings therefore demonstrate functional interactions between a novel family of proteins associated with basal bodies or cilia, providing new insights into the molecular etiology of a pleiotropic human disorder. PMID:19208769

  18. A systematic evaluation of mechanisms, material effects, and protein-dependent differences on friction-related protein particle formation in formulation and filling steps.

    PubMed

    Brückl, Lukas; Hahn, Rainer; Sergi, Mauro; Scheler, Stefan

    2016-09-25

    Particle formation by physical degradation during the compounding step of biopharmaceuticals is a common concern and found in vessels with bottom mounted stirrers. It was potentially linked to sliding bearings, however, the exact mechanism was still unclear. In this study, custom designed small scale bearings in combination with an IgG1 antibody as model protein were used for investigations of the degradation mechanism inside a bearing. Thereby, abrasion of adsorbed proteins by contact sliding was identified as prevailing protein degradation mechanism and was quantified by an increase in turbidity and by monomer loss. As the protein degradation was highly dependent on combinations of the material of the bearing and the buffer solution, a test system was introduced which allowed to study these effects. Results from the test system using IgG1 and recombinant human growth hormone confirmed a protective effect of Polysorbate 80 by a reduction of protein adsorption, which was strongest in combination with a highly hydrophobic sliding material (PTFE). Finally, a comparison of degradation products from various stresses by ATR-FTIR revealed a high similarity between friction-related degradation products. Therefore, abrasion of adsorbed proteins is very likely the prevailing physical degradation mechanism in processing steps where contact sliding occurs. PMID:27497997

  19. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  20. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.

    PubMed

    Chan, James Chun Yip; Zhou, Lei; Chan, Eric Chun Yong

    2015-11-02

    The isotope-coded affinity tag (ICAT) technique has been applied to measure pairwise changes in protein expression through differential stable isotopic labeling of proteins or peptides followed by identification and quantification using a mass spectrometer. Changes in protein expression are observed when the identical peptide from each of two biological conditions is identified and a difference is detected in the measurements comparing the peptide labeled with the