Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO
NASA Astrophysics Data System (ADS)
Catanach, R. A.; Hill, L. G.
2002-07-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm (approximately failure diameter) to 205 mm, with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn, and local total curvature kappa, were generated as a function of radius R, then plotted parametrically to generate a Dn(kappa) function. The observed behavior deviates substantially from that of previous explosives, for which curves for different diameters overlay well for small kappa but diverge for large kappa, and for which kappa increases monotonically with R. For ANFO, we find that Dn(kappa) curves for individual sticks 1) show little or no overlap--with smaller sticks lying to the right of larger ones, 2) exhibit a large velocity deficit with little kappa variation, and 3) reach a peak kappa at an intermediate R.
Diameter effect curve and detonation front curvature measurements for ANFO
Catanach, R. A.; Hill, L. G.
2001-01-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm ({approx} failure diameter) to 205 mm, with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn, and local total curvature {kappa}, were generated as a function of radius R, then plotted parametrically to generate a Dn({kappa}) function. The observed behavior deviates substantially from that of previous explosives, for which curves for different diameters overlay well for small {kappa} but diverge for large {kappa}, and for which {kappa} increases monotonically with R. For ANFO, we find that Dn({kappa}) curves for individual sticks (1) show little or no overlap--with smaller sticks lying to the right of larger ones, (2) exhibit a large velocity deficit with little {kappa} variation, and (3) reach a peak {kappa} at an intermediate R.
Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO
NASA Astrophysics Data System (ADS)
Catanach, R. A.; Hill, L. G.
2001-06-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium nitrate-fuel oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm. (≈ failure diameter) to 200 mm., with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn and total curvature κ were generated as a function of radius R, then plotted parametrically to generate a D_n(κ) function. The resulting behavior deviates substantially from that of previous explosives,(Hill,L.G., Bdzil,J.B., and Aslam,T.D., 11^th) Detonation Symposium, 1998^,(Hill,L.G., Bdzil,J.B., Davis,W.C., and Engelke,R., Shock Compression of Condensed Matter, 1999) in which curves for different stick sizes overlay well for small κ but diverge for large κ, and for which κ increases monotonically with R to achieve a maximum value at the charge edge. For ANFO, we find that κ achieves a maximum at an intermediate R and that D_n(κ) curves for different stick sizes are widely separated with no overlap whatsoever.
Kinetic information from detonation front curvature
Souers, P. C., LLNL
1998-06-15
The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction
Size effect and detonation front curvature
Souers, P. C., LLNL
1997-07-01
Heat flow in a cylinder with internal heating is used as a basis for deriving a simple theory of detonation front curvature, leading to the prediction of quadratic curve shapes. A thermal conductivity of 50 MW/mm{sup 2} is found for TATB samples.
Hill, L.G.; Bdzil, J.B.; Aslam, T.D.
1998-12-31
Detonation velocity and wave shape are measured for PBX 9502 (95 wt.% TATB, 5 wt.% Kel-F 800) rate sticks at the temperatures {minus}55, 25, and 75 C. At each temperature three different diameters were fired: 50 mm, 18 mm, and 8, 10, and 12 mm respectively for the hot, ambient, and cold sticks. The measured wave shapes are fit with an analytic form and the fitting parameters are tabulated along with thermal expansion and diameter effect data. The simplest detonation shock dynamics (DSD) model assumes a unique calibration function relating the local normal wave speed D{sub n} to the local total curvature {kappa}. The data confirm this notion for sufficiently small curvature, but at large curvature the curves for different charge diameters diverge. Global optimization is used to determine a best single D{sub n}-{kappa} function at each initial temperature T{sub 0}. From these curves a D{sub n}({kappa},T{sub 0}) calibration surface is generated that allows computation of problems with temperature gradients.
NASA Astrophysics Data System (ADS)
Hromada, Ivan; Trubko, Raisa; Holmgren, William F.; Gregoire, Maxwell D.; Cronin, Alexander D.
2014-03-01
To improve precision measurements made with atom interferometers, the effect of de Broglie wave-front curvature induced by a lens inside an atom interferometer is experimentally demonstrated and theoretically analyzed. Electrostatic lenses shift, magnify, and distort atom interference fringes, which modifies the phase and the contrast of the interference signals. Informed by these observations, an improved method is presented for analyzing measurements of atomic beam velocity distributions using phase choppers [W. F. Holmgren, I. Hromada, C. E. Klauss, and A. D. Cronin, New J. Phys. 13, 115007 (2011), 10.1088/1367-2630/13/11/115007].
Detonation Front Curvatures and Detonation Rates
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark
2015-06-01
We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Theory for the curvature dependence of delta front progradation
NASA Astrophysics Data System (ADS)
Ke, Wun-Tao; Capart, Hervé
2015-12-01
When Gilbert-type deltas respond to uneven sediment supply or advance over irregular basin bathymetry, they develop curved, creased fronts prograding at speeds that vary with location along the shoreline. Relations governing the progradation rate, however, have so far been proposed only for simple special cases. In this paper, we exploit the special properties of solutions to the eikonal equation to derive a general progradation relation, applicable to delta fronts of finite angle of repose and arbitrary shoreline planform. In these circumstances, the theory explicitly relates the progradation rate to the local shoreline curvature. We illustrate the resulting morphodynamics with numerical and analytical solutions for a sinuous delta front. The proposed relation can be used to model deltaic evolution or deduce spanwise distributions of sediment supply rates from observations of foreset evolution.
Effects of curvature and compressibility on the stability of thermal fronts
Ibanez S, Miguel H.; Bessega L, Maria C.; Shchekinov, Yuri
2006-06-15
The stability of subsonic thermal fronts against corrugation is analyzed and an exact dispersion relation is obtained taking into account the effects of the curvature of the distorted front as well as the compressibility of the gas. At a certain value of the Mach number ahead of the thermal front, unstable rates show a maximum; these rates drop to zero when a Chapman-Jouguet regime is established behind heat fronts. It is shown that curvature effects tend to stabilize conductive heat fronts propagating in a compressible gas.
Influence of the bonding front propagation on the wafer stack curvature
Navarro, E.; Bréchet, Y.; Barthelemy, A.; Radu, I.; Pardoen, T.; Raskin, J.-P.
2014-08-11
The influence of the dynamics of the direct wafer bonding process on the curvature of the final wafer stack is investigated. An analytical model for the final curvature of the bonded wafers is developed, as a function of the different load components acting during the bonding front propagation, using thin plate theory and considering a strain discontinuity locked at the bonding interface. Experimental profiles are measured for different bonding conditions and wafer thicknesses. A very good agreement with the model prediction is obtained and the influence of the thin air layer trapped in-between the two wafers is demonstrated. The proposed model contributes to further improvement of the bonding process, in particular, for the stacking of layers of electronic devices, which requires a high accuracy of wafer-to-wafer alignment and a very low distortion level.
Diameter Effect and Detonation Front Curvature of Ideal and Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Sandstrom, F. W.; Abernathy, R. L.; Leone, M. G.; Banks, M. L.
1999-06-01
Diameter effect and detonation front curvature data are presented for cast TNT, Tritonal, Urea Nitrate, ANFO, and two AN fertilizer/solid fuel explosives, designated Formula α and Formula β. Near ideal explosives, such as TNT, have relatively flat diameter effect curves and large detonation front curvatures. Although Tritonal exhibits a diameter effect curve similar to that of TNT, the presence of aluminum appears to reduce the front curvature. A low density, powdered material, Urea Nitrate, also exhibits near ideal behavior. The AN-based formulations exhibit marked non-ideal explosive characteristics: steeply falling diameter effect curves and small front curvatures. Although the AN-based explosives are similar in chemical composition and appear to have comparable infinite diameter detonation velocities, the failure diameters of Formula α and Formula β are significantly smaller than the failure diameter of ANFO.
Geometry-specific scaling of detonation parameters from front curvature
Jackson, Scott I; Short, Mark
2011-01-20
It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
NASA Astrophysics Data System (ADS)
Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui
2016-08-01
The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
NASA Astrophysics Data System (ADS)
Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui
2016-08-01
The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Diameter effect and detonation front curvature of ideal and non-ideal explosives
NASA Astrophysics Data System (ADS)
Sandstrom, F. W.; Abernathy, R. L.; Leone, M. G.; Banks, M. L.
2000-04-01
Diameter effect and detonation front curvature data are presented for several representative ideal and non-ideal explosives, including cast TNT, Tritonal, urea nitrate (UN), ANFO, and two variants of ammonium nitrate (AN)/solid fuel explosives. The ideal vs. non-ideal detonation characteristics of these various explosives are compared and contrasted with respect to particle size and chemical composition.
Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
NASA Technical Reports Server (NTRS)
Osher, Stanley; Sethian, James A.
1987-01-01
New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.
Tube curvature measuring probe and method
Sokol, George J.
1990-01-01
The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.
Curvature sensor for ocular wavefront measurement.
Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O
2006-08-01
We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes. PMID:16832447
Curvature sensor for ocular wavefront measurement.
Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O
2006-08-01
We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.
NASA Astrophysics Data System (ADS)
Francois, Elizabeth Green; Sanders, V. Eric; Morris, John
2012-03-01
A test series was conducted on formulations containing TATB and RDX (PBXN-7), TATB and HMX (PBXW-14) and DAAF and HMX where corner turning and detonation propagation data were measured. Corner turning is a function of temperature and can be used to evaluate the completeness of explosive work. In order to show cold temperature performance behavior, this test was developed to compare the front curvature of these materials at a variety of diameters, explosive compositions, and temperatures. Shots were fired at ambient and -55 °C. The test apparatus developed for this lends itself to streak imaging across the pellet face, and time of arrival scope data from magnet wire embedded between the pellets. The test set up, fixturing and data analysis will be discussed. The results of the shots showed interesting diameter effects on the detonation velocity of the formulations and gave an excellent comparison of the relative curvatures as a function of temperature.
Particle trapping at an advancing solidification front with interfacial-curvature effects
NASA Astrophysics Data System (ADS)
Rempel, A. W.; Worster, M. G.
2001-03-01
We predict the maximum solidification rate, or critical velocity, Vc at which an insoluble particle suspended in a melt is pushed ahead of an advancing solidification front by intermolecular forces. At higher solidification rates the particle is incorporated within the solid. The net intermolecular force pushing the particle and the viscous resistance opposing it are both significantly influenced by the shape of the front as it conforms to the particle in response to interfacial pre-melting. We predict the entire shape of the front, within a thin-film approximation, accounting for the freezing-point depression due to curvature. We show how the interface shape varies with the magnitude of the surface energy and the closeness of the particle, and compare these to previous, ad hoc representations of the interface. We confirm the scaling results of previous, more approximate, analyses for the case in which the intermolecular forces are dominated by non-retarded van der Waals interactions, and provide new results for other power-law interactions. We examine how the particle behaviour changes as its radius increases so that the effect of interfacial curvature is diminished.
Development of a curvature wave-front sensor for the GUIELOA adaptive optics system
NASA Astrophysics Data System (ADS)
Chapa, Oscar; Cuevas, Salvador; Sánchez, Beatriz; Cantó, Jordi; Mendoza, Héctor
2006-02-01
GUIELOA is a Curvature type Adaptive Optics system for the 2.1 m San Pedro Martir Telescope. It performs a bimorph 19 actuators deformable mirror and a 19 lens-let array for the wave-front sensor (WFS). GUIELOA corrects effectively the first 8 Zernike polynomials of the aberrated wave-front produced by the atmospheric turbulence. For the closed loop control it performs two SPARC FORCE 5 SBC computers working in concert. The lens-let array + optical fibers send the light from defocused pupil images to 19 avalanche photo-diodes. In this work it is shown how the lens-let array was manufactured at IAUNAM with CIDESI and Centro de Investigaciones en Optica (CIO).
Eddy-Current Measurement Of Turning Or Curvature
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.
Local curvature measurements of a lean, partially premixed swirl-stabilised flame
NASA Astrophysics Data System (ADS)
Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.
2012-04-01
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is
NASA Astrophysics Data System (ADS)
Francois, Elizabeth; Sanders, Eric V.; Morris, John
2011-06-01
A test series was conducted on formulations containing TATB and RDX (PBXN-7), TATB and HMX (PBXW-14) and DAAF and HMX where corner turning and detonation propagation data are measured. Corner turning is a function of temperature and can be used to evaluate the completeness of explosive work. In order to show cold temperature performance behavior, this test was developed to compare the front curvature of these materials at a variety of diameters, explosive compositions, and temperature. Shots were fired at ambient temperatures and -55°C. The test apparatus developed for this lends itself to streak imagining across the pellet face, and time of arrival scope data from magnet wire embedded between the pellets. The test set up, fixturing and data analysis will be discussed. The results of the shots showed interesting diameter effects on the detonation velocity of the formulations and gave an excellent comparison of the relative curvatures. Quantitative data in the form of Dn (κ) curves are generated from the measured detonation velocity (Do) and wave profile.
Measuring Intrinsic Curvature of Space with Electromagnetism
NASA Astrophysics Data System (ADS)
Mabin, Mason; Becker, Maria; Batelaan, Herman
2016-10-01
The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-01
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-01
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
An intuitive approach to measuring protein surface curvature.
Coleman, Ryan G; Burr, Michael A; Souvaine, Diane L; Cheng, Alan C
2005-12-01
A natural way to measure protein surface curvature is to generate the least squares fitted (LSF) sphere to a surface patch and use the radius as the curvature measure. While the concept is simple, the sphere-fitting problem is not trivial and known means of protein surface curvature measurement use alternative schemes that are arguably less straightforward to interpret. We have developed an approach to solve the LSF sphere problem by turning the sphere-fitting problem into a solvable plane-fitting problem using a transformation known as geometric inversion. The approach works on any arbitrary surface patch, and returns a radius of curvature that has direct physical interpretation. Additionally, it is flexible in its ability to find the curvature of an arbitrary surface patch, and the "resolution" can be adjusted to highlight atomic features or larger features such as peptide binding sites. We include examples of applying the method to visualization of peptide recognition pockets and protein conformational change, as well as a comparison with a commonly used solid-angle curvature method showing that the LSF method produces more pronounced curvature results.
Clinical workflow for spinal curvature measurement with portable ultrasound
NASA Astrophysics Data System (ADS)
Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.
Focus retrocollimated interferometry for long-radius-of-curvature measurement
NASA Astrophysics Data System (ADS)
Xiang, Yang
2001-12-01
Focus retrocollimated interferometry is described for measuring long radius of curvature (>1 m), and achievable accuracy is discussed. It is shown that this method can be applied to both concave and convex spherical surfaces and can provide measurement to accuracy of 0.01-0.1%.
Welter, C; Dooley, S; Zang, K D; Blin, N
1989-01-01
DNA bending has been suggested to play a role in the regulation of gene expression, initiation of DNA-replication, site specific recombination, and DNA packaging. In the human mitochondrial DNA we have found a DNA curvature structure within the 3'-region of ther URF2 sequence in front of the L-strand origin of replication. This structure interacts specifically with a protein factor isolated from mitochondria. Based on the localization of this DNA curvature structure and the known function of such structures the data suggest a model in which this DNA signal sequence and its specific protein binding is involved in the regulatory initiation event of L-strand replication. Images PMID:2475854
NASA Astrophysics Data System (ADS)
Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan
2014-11-01
Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.
An analytical investigation of delamination front curvature in double cantilever beam specimens
NASA Technical Reports Server (NTRS)
Davidson, B. D.
1990-01-01
An analytical investigation is conducted to determine the shape of a growing delamination and the distribution of the energy release rate along the delamination front in a laminated composite double cantilever beam specimen. Distributions of the energy release rate for specimens with straight delamination fronts and delamination front contours for delaminations whose growth is governed by the fracture criterion that G = Gc at all points are predicted as a function of material properties and delamination length. The predicted delamination front contours are utilized to ascertain the effect of the changing shape of the delamination front on the value of the critical strain energy release rate as computed from double cantilever beam fracture toughness test data.
Direct and alignment-insensitive measurement of cantilever curvature
Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.
2013-07-15
We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
NASA Astrophysics Data System (ADS)
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-10-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
Residual stress determination from a laser-based curvature measurement
W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright
2000-05-08
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Residual Stress Determination from a Laser-Based Curvature Measurement
Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil
2000-05-01
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
A sensor for the direct measurement of curvature based on flexoelectricity
NASA Astrophysics Data System (ADS)
Yan, Xiang; Huang, Wenbin; Ryung Kwon, Seol; Yang, Shaorui; Jiang, Xiaoning; Yuan, Fuh-Gwo
2013-08-01
A direct curvature sensing measurement based on the flexoelectricity of Ba0.64Sr0.36TiO3 (BST) material through electromechanical coupling is proposed and developed in this paper. The curvature sensing was demonstrated in four point bending tests of a beam with bonded BST curvature sensors under different applied loads with low time-harmonic frequencies from 0.5 to 3 Hz. A shear lag concept which describes the efficiency of the loading transfer from the epoxy bonding layer was taken into account in extracting the actual curvature from the sensor measurement. A finite element analysis has been performed to estimate the curvature transfer efficiency and the bonding layer thickness is found to be a critical parameter in determining the curvature transfer. Experimental results showed a good linearity of charge output dependence on curvature inputs in a limited frequency range and showed a curvature sensitivity of 30.78 pC m, in comparison with 32.48 pC m from theoretical predictions. Using the measured curvature, the bending stiffness of the beam was then obtained from the experimentally obtained moment-curvature curve. This work demonstrated that the flexoelectric BST sensor provides a direct curvature measurement instead of using a traditional strain gage sensor through interpolation, and thus offers an important avenue for on-line and in situ structural health monitoring.
Coherent gradient sensing method and system for measuring surface curvature
NASA Technical Reports Server (NTRS)
Rosakis, Ares J. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor); Moore, Jr., Nicholas R. (Inventor)
2000-01-01
A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology
NASA Technical Reports Server (NTRS)
Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)
2002-01-01
The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.
Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.
2015-01-01
This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943
Mazeh, Nachaat; Haines, David E.; Kay, Matthew W.; Roth, Bradley J.
2014-01-01
The velocity and curvature of a wave front are important factors governing the propagation of electrical activity through cardiac tissue, particularly during heart arrhythmias of clinical importance such as fibrillation. Presently, no simple computational model exists to determine these values simultaneously. The proposed model uses the arrival times at four or five sites to determine the wave front speed (v), direction (θ), and radius of curvature (ROC) (r0). If the arrival times are measured, then v, θ, and r0 can be found from differences in arrival times and the distance between these sites. During isotropic conduction, we found good correlation between measured values of the ROC r0 and the distance from the unipolar stimulus (r = 0.9043 and p < 0.0001). The conduction velocity (m/s) was correlated (r = 0.998, p < 0.0001) using our method (mean = 0.2403, SD = 0.0533) and an empirical method (mean = 0.2352, SD = 0.0560). The model was applied to a condition of anisotropy and a complex case of reentry with a high voltage extra stimulus. Again, results show good correlation between our simplified approach and established methods for multiple wavefront morphologies. In conclusion, insignificant measurement errors were observed between this simplified approach and an approach that was more computationally demanding. Accuracy was maintained when the requirement that ε (ε = b/r0, ratio of recording site spacing over wave fronts ROC) was between 0.001 and 0.5. The present simplified model can be applied to a variety of clinical conditions to predict behavior of planar, elliptical, and reentrant wave fronts. It may be used to study the genesis and propagation of rotors in human arrhythmias and could lead to rotor mapping using low density endocardial recording electrodes. PMID:24772193
Spatio-temporal curvature measures for flow-field analysis
NASA Astrophysics Data System (ADS)
Zetzsche, Christoph; Barth, Erhardt; Berkmann, Joachim
1991-09-01
Intrinsic signal dimensionality, a property closely related to Gaussian curvature, is shown to be an important conceptual tool in multi-dimensional image processing for both biological and engineering sciences. Intrinsic dimensionality can reveal the relationship between recent theoretical developments in the definition of optic flow and the basic neurophysiological concept of 'end-stopping' of visual cortical cells. It is further shown how the concept may help to avoid certain problems typically arising from the common belief that an explicit computation of a flow field has to be the essential first step in the processing of spatio- temporal image sequences. Signals which cause difficulties in the computation of optic flow, mainly the discontinuities of the motion vector field, are shown to be detectable directly in the spatio-temporal input by evaluation of its three-dimensional curvature. The relevance of the suggested concept is supported by the fact that fast and efficient detection of such signals is of vital importance for ambulant observers in both the biological and the technical domain.
A method for measuring the radius of curvature of a spherical mirror
NASA Astrophysics Data System (ADS)
Engelen, J.; El-Zaiat, S. Y.; Missotten, L.
1992-01-01
Evan's method for measuring the radius of curvature of both convex and concave spherical mirrors is adapted and applied. The optical set-up is modified by adding a beam splitter, and a screen with two pinholes at a distance d apart. The laser source and the mirror under test remain fixed; this greatly facilitates the displacement measurements. The quartic equation of which one of the roots gives the radius of curvature of the mirror under test is derived without approximation.
Non-scanning measurement of convex and concave curvature with an annular array
NASA Astrophysics Data System (ADS)
Lenz, Michael; Kühnicke, Elfgard
2012-05-01
The paper describes a novel ultrasonic method for measuring local object curvature radii without scanning. For the measurements, an ultrasonic annular array is used, where the phase and amplitude differences on the different receivers are used to determine the object curvature radius and its distance from the transducer simultaneously. The method aims at measurements of spherical or oval inclusions in fluids and solids in general, and of the curvature radius of eye lens and retina in particular. It is intended to work as a supplement to conventional imaging applications. To verify the measurement method, theoretical and experimental results with steel spheres as reflectors are presented. After measuring and taking into account the acoustically effective size of the single transducer elements, good agreement between measurements and simulations could be achieved.
Curvature range measurements of the arcuate fasciculus using diffusion tensor tractography☆
Lee, Dong Hoon; Hong, Cheol Pyo; Kwon, Yong Hyun; Hwang, Yoon Tae; Kim, Joong Hwi; Park, Ji Won
2013-01-01
Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients with aphasia. We measured the horizontal and vertical curvature ranges of the arcuate fasciculus in both hemispheres in 12 healthy subjects using diffusion tensor tractography. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus horizontal part were 121.13 ± 5.89 and 25.99 ± 3.01 degrees, respectively, and in the left hemisphere, the values were 121.83 ± 5.33 and 27.40 ± 2.96 degrees, respectively. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus vertical part were 43.97 ± 7.98 and 30.15 ± 3.82 degrees, respectively, and in the left hemisphere, the values were 39.39 ± 4.42 and 24.08 ± 4.34 degrees, respectively. We believe that the measured curvature ranges are important data for localization and quantitative assessment of specific neuronal pathways in patients presenting with arcuate fasciculus abnormalities. PMID:25206594
Curvature range measurements of the arcuate fasciculus using diffusion tensor tractography.
Lee, Dong Hoon; Hong, Cheol Pyo; Kwon, Yong Hyun; Hwang, Yoon Tae; Kim, Joong Hwi; Park, Ji Won
2013-01-25
Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients with aphasia. We measured the horizontal and vertical curvature ranges of the arcuate fasciculus in both hemispheres in 12 healthy subjects using diffusion tensor tractography. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus horizontal part were 121.13 ± 5.89 and 25.99 ± 3.01 degrees, respectively, and in the left hemisphere, the values were 121.83 ± 5.33 and 27.40 ± 2.96 degrees, respectively. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus vertical part were 43.97 ± 7.98 and 30.15 ± 3.82 degrees, respectively, and in the left hemisphere, the values were 39.39 ± 4.42 and 24.08 ± 4.34 degrees, respectively. We believe that the measured curvature ranges are important data for localization and quantitative assessment of specific neuronal pathways in patients presenting with arcuate fasciculus abnormalities. PMID:25206594
Measuring the Scalar Curvature with Clocks and Photons: Voronoi-Delaunay Lattices in Regge Calculus
NASA Astrophysics Data System (ADS)
Miller, Warner; McDonald, Jonathan
2008-04-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe it is ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge Calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
A new method on measuring radius of curvature of a conic aspherical mirror
NASA Astrophysics Data System (ADS)
Huang, Chuan-ke; Wu, Yong-qian; Fan, Bin; Yan, Feng-tao; Liu, Feng-wei; Zhang, Yong-hong
2014-09-01
We present a method to measure the radius of curvature of a concave conic asphere. By analysis the central area of the asphere, we can measure the radius of an arbitrary point in the central area instead of the vertex of asphere. In the procedure, we firstly adjust the interferometer until the interferogram of the central area approach nulls, then put the laser tracker ball at the beam focus of the interferometer and move the tracker ball to touch the central area of the aspherical surface to get the two positions. With these measurement data, we can calculate the radius of curvature of the aspherical vertex and its uncertainty.
The coherent gradient sensor for film curvature measurements at cryogenic temperature.
Liu, Cong; Zhang, Xingyi; Zhou, Jun; Zhou, Youhe; Feng, Xue
2013-11-01
Coherent Gradient Sensor (CGS) system is presented for measurement of curvatures and nonuniform curvatures changes in film-substrate systems at cryogenic temperature. The influences of the interface of refrigerator and itself on the interferograms which are accounting for the temperature effect are successfully eliminated. Based on the measurement technique, the thermal stresses (including the radial stress, circumferential stress and shear stress) of superconducting YBCO thin-film are obtained by the extended Stoney's formula during the heating process from 30K to 150K. Take the superconducting YBCO thin film as an example, the thermal stresses of which are gained successfully.
Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.
Kay, Matthew W; Gray, Richard A
2005-01-01
Excitable media theory predicts the effect of electrical wavefront morphology on the dynamics of propagation in cardiac tissue. It specifies that a convex wavefront propagates slower and a concave wavefront propagates faster than a planar wavefront. Because of this, wavefront curvature is thought to be an important functional mechanism of cardiac arrhythmias. However, the curvature of wavefronts during an arrhythmia are generally unknown. We introduce a robust, automated method to measure the curvature vector field of discretely characterized, arbitrarily shaped, two-dimensional (2-D) wavefronts. The method relies on generating a smooth, continuous parameterization of the shape of a wave using cubic smoothing splines fitted to an isopotential at a specified level, which we choose to be -30 mV. Twice differentiating the parametric form provides local curvature vectors along the wavefront and waveback. Local conduction velocities are computed as the wave speed along lines normal to the parametric form. In this way, the curvature and velocity vector field for wavefronts and wavebacks can be measured. We applied the method to data sampled from a 2-D numerical model and several examples are provided to illustrate its usefulness for studying the dynamics of cardiac propagation in 2-D media.
Precise curvature measurement of Yb:YAG thin disk
NASA Astrophysics Data System (ADS)
Muzik, Jiri; Chyla, Michal; Nagisetty, Siva S.; Miura, Taisuke; Mann, Klaus; Endo, Akira; Mocek, Tomas
2015-01-01
We are developing an Yb:YAG thin disk regenerative amplifier operating at 1 kHz repetition rate which should deliver output of 100 W of average power which corresponds to the pulse energy of 100 mJ. In order to achieve such high output energy, large size mode matching on a thin-disk is required to avoid optical damage but on the other hand, larger mode area is more susceptible to the influence of optical phase distortions (OPD's) thus limits achievable pulse energy and beam quality. We developed a compact setup allowing precise measurement of the thin-disk deformations by implementation of a Hartmann-Shack wavefront sensor and a single mode probe laser diode. In comparison to the interferometric measurement methods, our approach brings a number of advantages like simplicity of alignment, compactness and robustness, at the same time keeping the high precision of measurement in a range of few nanometers.
Aligning and measuring the curvature and thickness of high-precision lens
NASA Astrophysics Data System (ADS)
Wu, Kun-Huan; Chang, Shenq-Tsong; Hsu, Ming-Ying; Huang, Ting-Ming; Hsu, Wei-Yao; Tseng, Shih-Feng
2015-09-01
The radius of curvature is one of the most important specifications for spherical optics [1]. There are several methods and devices currently on the market that can be used to measure it, including optical level, non-contact laser interferometer (Interferometer), a probe-contact profiler (Profilometer), the centering machine and three-point contact ball diameter meter (Spherometer). The amount that can be measured with a radius of curvature of the lens aperture range depends on the interferometer standard lens f / number and lens of R / number (radius of curvature divided by the clear aperture of the spherical surface ratio between them). Unfortunately, for lens with diameter greater than 300 mm, the device is limited by the size of the holding fixture lenses or space. This paper aims to provide a novel surface contour detection method and machine, named "CMM spherometry by probe compensation," to measure the radius and thickness of the curvature of the optical surface by a coordinate measurement machine (CMM). In order to obtain more accurate optimization results, we used probe and temperature compensation to discuss the effect. The trace samples and the measurement results of CMM and the centering machine, which has top and bottom autocollimators, are compared.
Pulse front tilt measurement of femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.
2016-07-01
In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.
4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION ...
4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION An addendum to Hanson-Cramer House, Sea Street, south end, Rockport, Knox County, Maine - Hanson-Cramer House, End of Sea Street (moved from Pascal's Avenue), Rockport, Knox County, ME
NASA Astrophysics Data System (ADS)
Chen, Yixuan; Mills, Shaun; Liu, Ying
In monolayer graphene, the local deviation of carbon positions from the perfect lattice has been predicted to lead to a pseudo magnetic field with measurable effects. A striking confirmation of this effect is the observation of Landau levels that are attributed to a pseudo magnetic field in excess of 300 T in graphene nanobubbles. However, typical experimental methods of generating such local deviations in graphene rely on strain accompanied by a surface curvature. Whether a surface curvature alone can produce measurable effects in graphene has not been explored experimentally. It is therefore of interest to study graphene in a system that decouples strain from surface curvature. Of particular interest is its response to an external magnetic field. We developed a grayscale electron beam lithography technique for preparing PMMA substructures with a continuously variable radius of curvature from ~100 nm to ~1 μm. Magnetoelectrical transport measurements on exfoliated graphene supported by these substructures are being carried out. The flexibility of this process may be further exploited in the study of the bilayer and trilayer graphene systems. We will also study hybrid structures of 2D superconductors and graphene.
Subnanosecond measurements of detonation fronts in solid high explosives
NASA Astrophysics Data System (ADS)
Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.
1984-04-01
Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.
Detonation wave curvature of PBXN-111
NASA Astrophysics Data System (ADS)
Forbes, J. W.; Lemar, E. R.; Baker, R. N.
1994-07-01
Spherical curvatures of detonation waves were measured by streak photography over the center 50 percent of PBXN-111 charges. These curvatures range from 54 to 143 mm for charge diameters of 41 to 68 mm and are not spherical near the edges of the charges. The wave fronts appear linear over about the last 3 mm at the charges edges. The angle between the detonation wave front and the edge of the charge was about 62 degrees over this last 3 mm for all the charges. Detonation velocity and wave front curvature data of PBXN-111 were used to calculate CJ zone lengths of 2-4 mm using the Wood-Kirkwood theory.
Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker
NASA Technical Reports Server (NTRS)
Hagopian, John; Connelly, Joseph
2011-01-01
The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.
Bortolotti, Carolina T; Barrozo, Marcos A S
2013-11-01
In the present work, we performed a discrimination analysis of the nonlinear equations used to describe sorption isotherms of the lettuce seeds. The equilibrium data were obtained by the static method using saturated salt solutions. The best model to describe the equilibrium moisture of lettuce seeds was selected using measures of curvature and bias. The obtained results showed that the Copace equation was the best model in terms of nonsignificance for bias and nonlinearity measures. PMID:24804051
Bortolotti, Carolina T; Barrozo, Marcos A S
2013-01-01
In the present work, we performed a discrimination analysis of the nonlinear equations used to describe sorption isotherms of the lettuce seeds. The equilibrium data were obtained by the static method using saturated salt solutions. The best model to describe the equilibrium moisture of lettuce seeds was selected using measures of curvature and bias. The obtained results showed that the Copace equation was the best model in terms of nonsignificance for bias and nonlinearity measures. PMID:24804051
Assessment of scoliosis by direct measurement of the curvature of the spine
NASA Astrophysics Data System (ADS)
Dougherty, Geoff; Johnson, Michael J.
2009-02-01
We present two novel metrics for assessing scoliosis, in which the geometric centers of all the affected vertebrae in an antero-posterior (A-P) radiographic image are used. This is in contradistinction to the existing methods of using selected vertebrae, and determining either their endplates or the intersections of their diagonals, to define a scoliotic angle. Our first metric delivers a scoliotic angle, comparable to the Cobb and Ferguson angles. It measures the sum of the angles between the centers of the affected vertebrae, and avoids the need for an observer to decide on the extent of component curvatures. Our second metric calculates the normalized root-mean-square curvature of the smoothest path comprising piece-wise polynomial splines fitted to the geometric centers of the vertebrae. The smoothest path is useful in modeling the spinal curvature. Our metrics were compared to existing methods using radiographs from a group of twenty subjects with spinal curvatures of varying severity. Their values were strongly correlated with those of the scoliotic angles (r = 0.850 - 0.886), indicating that they are valid surrogates for measuring the severity of scoliosis. Our direct use of positional data removes the vagaries of determining variably shaped endplates, and circumvented the significant interand intra-observer errors of the Cobb and Ferguson methods. Although we applied our metrics to two-dimensional (2- D) data in this paper, they are equally applicable to three-dimensional (3-D) data. We anticipate that they will prove to be the basis for a reliable 3-D measurement and classification system.
Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror
Spiridonov, Maxim; Toebaert, David
2006-09-10
An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.
Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror
NASA Astrophysics Data System (ADS)
Spiridonov, Maxim; Toebaert, David
2006-09-01
An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.
Measurement of the curvature of a surface using parallel light beams
Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.
1999-01-01
Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.
Measurement of the curvature of a surface using parallel light beams
Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.
1999-06-15
Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.
Laser confocal measurement system for curvature radius of lenses based on grating ruler
NASA Astrophysics Data System (ADS)
Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian
2015-02-01
In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.
NASA Astrophysics Data System (ADS)
De Roeck, G.; Reynders, E.
2005-05-01
Vibration monitoring is a well-known technique to determine wether a civil engineering structure is damaged or not. From the vibration tests, natural frequencies, modal displacements, damping ratios and modal curvatures can be determined using system identification methods. These modal parameters are subsequently used for damage identification. If a structure is damaged, the changes in modal curvatures tend to be more local than the changes in modal displacements, so modal curvatures are more useful for damage localization. The possibility of directly measuring modal curvatures using optical fibre strain sensors, instead of calculating them from modal displacements using a numerical integration procedure, is a big step forward in the exploitation of modal curvatures for damage identification. As a practical application, the damage identification at the Tilff bridge is discussed.
Detonation wave velocity and curvature of brass encased PBXN-111
NASA Astrophysics Data System (ADS)
Forbes, J. W.; Lemar, E. R.
1996-05-01
Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees.
NASA Astrophysics Data System (ADS)
Barakat, R.; Sandler, B. H.
1992-10-01
The authors outline a method for the determination of the unknown wave-front aberration function of an optical system from noisy measurements of the corresponding point-spread function. The problem is cast as a nonlinear unconstrained minimization problem, and trust region techniques are employed for its solution in conjunction with analytic evaluations of the Jacobian and Hessian matrices governing slope and curvature information. Some illustrative numerical results are presented and discussed.
Realization of sub-micron radius of curvature measurement in vertical interferometer workstation
NASA Astrophysics Data System (ADS)
Miao, Erlong; Wang, Rudong; Zhang, Wei; Peng, Shijun
2014-09-01
Radius of curvature (ROC) is one of the key parameters for optical elements and it is especially important for high quality optical system, in which the computer-aided integration is wildly used. ROC is one of the main input parameters and its measurement accuracy is a premise for high quality integration. In this paper, sub-micron ROC measurements are realized in a vertical interference workstation based on Fizeau interferometer. The error sources and uncertainty of the system are analyzed. Experiment results based on samples with difference ROC are presented and in accordance with the analysis. At last, a ROC comparing tests between the system and a three-coordinates measuring machine (CMM) are performed on a SiC ball to certify the workstation's measurement uncertainty.
177-207 GHz Radiometer Front End: Single Sideband Measurements
NASA Technical Reports Server (NTRS)
Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.
1999-01-01
Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.
Wavefront Measurement over an Extended Horizontal Path Using a Wavefront Curvature Sensor
NASA Astrophysics Data System (ADS)
Burnett, J.; Woods, S.; Turner, A.; Scott, A.
This paper reports on the results of wavefront curvature sensor measurements over horizontal paths of 66m and 4 km. The wavefront curvature sensor used has been developed at QinetiQ and is based on the use of a quadratically distorted diffraction grating to enable the simultaneous recording of two symmetrically separated planes about the entrance pupil of a telescope. The measurements allow us to characterize the spatio-temporal nature of the wavefront errors and therefore enable us to estimate the wavefront sensor (WFS) and deformable mirror (DM) requirements for the development of an adaptive optic system (AOS). For the 66m path the dynamic range and frame-rate of the WFS camera was found to be adequate to drive the AOS, although the software based control resulted in intermittent performance. The data for the 4 km path suggested that the frame-rate of the WFS camera was at least a factor of 3 slower than would be necessary to either drive the AOS or make any detailed conclusions about the spatial analysis.
Measurement of the time required for termites to pass each other in tunnels of different curvatures.
Sim, Seungwoo; Lee, Sang-Hee
2013-08-01
Subterranean termites construct complex tunnel networks for foraging. During travel in the tunnels, termites often encounter one another when passing in opposite directions. Such encounters are likely to affect the "movement efficiency," which is the time required for a termite to travel a certain distance in a tunnel. In this study, we explored how individual-individual encounters affect movement efficiency in tunnels by measuring the time (τ) taken by two termites to pass one another in tunnels of different curvatures. Artificial tunnels of 5 cm in length and variable widths (W) of 2, 3, or 4 mm were made. Tunnel distance (D) was 2, 3, 4, or 5 cm. When D had a higher value, curvature was lower. When W = 2, τ was significantly shorter in the tunnel with D = 5 than in tunnels of D = 2, 3, or 4, whereas τ was statistically the same for D = 2, 3 and 4. When W = 3, τ was shorter in the tunnel with D = 5 than for D = 3 and 4, while τ was longer in the tunnel with D = 2 than for D = 3 and 4. When W = 4, τ was longer in the tunnels with D = 2 and 3 than for D = 4 and 5. Based on these observations, 3 types of termite behavior were identified: biased walking, backward walking, and zigzag walking. We considered these results in relation to foraging efficiency.
Comparison of portable and conventional ultrasound imaging in spinal curvature measurement
NASA Astrophysics Data System (ADS)
Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.
Measurement of the shock front velocity produced in a T-tube
Djurović, S.; Mijatović, Z.; Vujičić, B.; Kobilarov, R.; Savić, I.; Gavanski, L.
2015-01-15
A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for the incident and reflected shock waves.
NASA Astrophysics Data System (ADS)
Mutter, Markus; Mauer, Georg; Mücke, Robert; Vaßen, Robert; Back, Hyoung Chul; Gibmeier, Jens
2016-04-01
The residual stresses within plasma-sprayed coatings are an important factor that can influence the lifetime as well as the performance in operation. The investigation of stresses evolving during deposition and post-deposition cooling for atmospheric plasma spraying of yttria-stabilized zirconia coatings using in situ measurement of the samples curvature is a powerful tool for identifying the factors that contribute to stress generation. Under various spray conditions, the first deposition pass leads to a significantly larger increase in samples curvature than the subsequent passes. It is shown in this work that the amount of curvature change at the onset of spraying is significantly influenced by the spray conditions, as well as by the substrate material. More information on the origin of this steep curvature increase at the onset of spraying was obtained by single splat experiments, which yielded information on the splat bonding behavior under various conditions. A comparison of the compressive yield strength for different substrate materials indicated the influence of substrate residual stress relaxation. Residual stress measurements using the incremental hole-drilling method and x-ray diffraction confirmed that the coating deposition affects the substrate residual stress level. The yield strength data were combined with the substrate near-surface temperature during deposition, obtained by finite element simulations, and with the measured residual stress-profile. This revealed that residual stress relaxation is the key factor for the initial curvature increase.
Asaoka, Ryo; Nakakura, Shunsuke; Tabuchi, Hitoshi; Murata, Hiroshi; Nakao, Yoshitaka; Ihara, Noriko; Rimayanti, Ulfah; Aihara, Makoto; Kiuchi, Yoshiaki
2015-01-01
The purpose of the study was to investigate the correlation between Corneal Visualization Scheimpflug Technology (Corvis ST tonometry: CST) parameters and various other ocular parameters, including intraocular pressure (IOP) with Goldmann applanation tonometry. IOP with Goldmann applanation tonometry (IOP-G), central corneal thickness (CCT), axial length (AL), corneal curvature, and CST parameters were measured in 94 eyes of 94 normal subjects. The relationship between ten CST parameters against age, gender, IOP-G, AL, CST-determined CCT and average corneal curvature was investigated using linear modeling. In addition, the relationship between IOP-G versus CST-determined CCT, AL, and other CST parameters was also investigated using linear modeling. Linear modeling showed that the CST measurement ‘A time-1’ is dependent on IOP-G, age, AL, and average corneal curvature; ‘A length-1’ depends on age and average corneal curvature; ‘A velocity-1’ depends on IOP-G and AL; ‘A time-2’ depends on IOP-G, age, and AL; ‘A length-2’ depends on CCT; ‘A velocity-2’ depends on IOP-G, age, AL, CCT, and average corneal curvature; ‘peak distance’ depends on gender; ‘maximum deformation amplitude’ depends on IOP-G, age, and AL. In the optimal model for IOP-G, A time-1, A velocity-1, and highest concavity curvature, but not CCT, were selected as the most important explanatory variables. In conclusion, many CST parameters were not significantly related to CCT, but IOP usually was a significant predictor, suggesting that an adjustment should be made to improve their usefulness for clinical investigations. It was also suggested CST parameters were more influential for IOP-G than CCT and average corneal curvature. PMID:26485129
NASA Astrophysics Data System (ADS)
Ding, Xiang; Sun, Ruoduan; Li, Fei; Zhao, Weiqian; Liu, Wenli
2011-11-01
A new approach based on laser differential confocal technique is potential to achieve high accuracy in radius of curvature (ROC) measurement. It utilizes two digital microscopes with virtual pinholes on the CCD detectors to precisely locate the cat's-eye and the confocal positions, which can enhance the focus-identification resolution. An instrumental system was established and experimental research was carried out to determine how error sources contribute to the uncertainty of ROC measurement, such as optical axis misalignment, dead path of the interferometer, surface figure error of tested lenses and temperature fluctuation, etc. Suggestions were also proposed on how these factors could be avoided or suppressed. The system performance was tested by employing four pairs of template lenses with a serial of ROC values. The relative expanded uncertainty was analyzed and calculated based on theoretical analysis and experimental determination, which was smaller than 2x10-5 (k=2). The results were supported by comparison measurement between the differential confocal radius measurement (DCRM) system and an ultra-high accuracy three-dimensional profilometer, showing good consistency. It demonstrated that the DCRM system was capable of high-accuracy ROC measurement.
Shack Hartmann wave-front measurement with a large F-number plastic microlens array
NASA Astrophysics Data System (ADS)
Yoon, Geun Young; Jitsuno, Takahisa; Nakatsuka, Masahiro; Nakai, Sadao
1996-01-01
A new plastic microlens array, consisting of 900 lenslets, has been developed for the Shack Hartmann wave-front sensor. The individual lens, is 300 mu m \\times 300 mu m and has a focal length of 10 mm, which provides the same focal size, 60 mu m in diameter, with a constant peak intensity. One can improve the wave-front measurement accuracy by reducing the spot centroiding error by averaging a few frame memories of an image processor. A deformable mirror for testing the wave-front sensor gives an appropriate defocus and astigmatism, and the laser wave front is measured with a Shack Hartmann wave-front sensor. The measurement accuracy and reproducibility of our wave-front sensor are better than lambda /20 and lambda /50 ( lambda = 632.8 nm), respectively, in rms.
Brown, M.A.; Park, T.-S.; Rosakis, A.; Ustundag, E.; Huang, Y.; Tamura, N.; Valek, B.C.
2006-01-01
Background. The Coherent Gradient Sensor (CGS) is a shearing interferometer which has been proposed for the rapid, full-field measurement of deformation states (slopes and curvatures) in thin film-wafer substrate systems, and for the subsequent inference of stresses in the thin films. This approach needs to be verified using a more well-established but time-consuming grain orientation and stress measurement tool, X-ray microdiffraction. Method of Approach. Both CGS and XRD are used to measure the deformation state of the same W film/Si wafer at room temperature. CGS provides a global, wafer-level measurement of slopes while XRD provides a local micromeasurement of lattice rotations. An extreme case of a circular Si wafer with a circular W film island in its center is used because of the presence of discontinuous system curvatures across the wafer. The results are also compared with a theoretical model based on elastic plate analysis of the axisymmetric biomaterial film-substrate system. Results and Conclusions. Slope and curvature measurements by XRD and by CGS compare very well with each other and with theory. The favorable comparison demonstrates that wafer-level CGS metrology provides a quick and accurate alternative to other measurements. It also demonstrates the accuracy of plate theory in modeling thin film-substrate systems, even in the presence of curvature discontinuities.
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
Barragán Vidal, I. A. Müller, M.; Rosetti, C. M.; Pastorino, C.
2014-11-21
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.
Measurement of Cut Front Properties in Laser Cutting
NASA Astrophysics Data System (ADS)
Thombansen, Ulrich; Hermanns, Torsten; Molitor, Thomas; Pereira, Milton; Schulz, Wolfgang
Cut-front properties are a key variable in laser-cutting and thus of major importance for self-optimization. Within the Cluster of Excellence at RWTH Aachen University, several achievements were made in setting up sensor-systems that provide information on the operating-point of this melt-based manufacturing process. These achievements contribute to a gradual increase in system-transparency which is seen as an enabler for self-optimization. Instead of searching for a single measurand to characterize the course of the process, an approach is being presented which establishesa surrogate criterion to allow determination of the current operating-point. In the depicted area, this is done by joining sources of information from process observation, determining boundary-conditions such as actual feed-rate and modeling of process-variables. Although process-variables like properties of the cutting-front are influenced through more than one process parameter, a concept for a sensor-system is reported showing the correlation between properties of the melt-front and the current feed-rate. The results are compared to a solution derived from process-simulation.
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2009-09-15
Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phase derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.
Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement.
Sun, Bing; Huang, Yijian; Liu, Shen; Wang, Chao; He, Jun; Liao, Changrui; Yin, Guolu; Zhao, Jing; Liu, Yinjie; Tang, Jian; Zhou, Jiangtao; Wang, Yiping
2015-06-01
We demonstrated a compact and highly-sensitive curvature sensor based on a Mach-Zehnder interferometer created in a photonic crystal fiber. Such a Mach-Zehnder interferometer consisted of a peanut-like section and an abrupt taper achieved by use of an optimized electrical arc discharge technique, where only one dominating cladding mode was excited and interfered with the fundamental mode. The unique structure exhibited a high curvature sensitivity of 50.5 nm/m^{-1} within a range from 0 to 2.8 m^{-1}, which made it suitable for high-sensitivity curvature sensing in harsh environments. Moreover, it also exhibited a temperature sensitivity of 11.7 pm/°C. PMID:26072819
Measurement of the Earth's Radius Based on Historical Evidence of Its Curvature
ERIC Educational Resources Information Center
Roura, Pere; Josep, Calbo
2005-01-01
Probably the most direct observation of the Earth's curvature is how objects appear from over the horizon when we approach them and disappear as we get further away from them. Similarly, the portion of a high object (a building or a mountain) that is visible depends on the height of the site where the observation is made. Based upon these very…
Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun
2016-06-10
We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.
Mirror with thermally controlled radius of curvature
Neil, George R.; Shinn, Michelle D.
2010-06-22
A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.
Detonation wave velocity and curvature of brass encased PBXN-111
Forbes, J.W.; Lemar, E.R.
1996-05-01
Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees. {copyright} {ital 1996 American Institute of Physics.}
HIGH RESOLUTION EMITTANCE MEASUREMENTS AT SNS FRONT END
Aleksandrov, Alexander V; Zhukov, Alexander P
2013-01-01
The Spallation Neutron Source (SNS) linac accelerates an H- beam from 2.5MeV up to 1GeV. Recently the emittance scanner in the MEBT (2.5 MeV) was upgraded. In addition to the slit - harp measurement, we now can use a slit installed on the same actuator as the harp. In combination with a faraday cup located downstream in DTL part of the linac, it represents a classical slit-slit emittance measurement device. While a slit slit scan takes much longer, it is immune to harp related problems such as wire cross talk, and thus looks promising for accurate halo measurements. Time resolution of the new device seems to be sufficient to estimate the amount of beam in the chopper gap (the scanner is downstream of the chopper), and probably to measure its emittance. This paper describes the initial measurements with the new device and some model validation data.
NASA Astrophysics Data System (ADS)
Tung, Y. T.; Hsu, C. Y.; Yeh, J. A.; Wang, P. J.
2012-10-01
Liquid lenses based on the principle of driving two dielectric fluids via controlled electric field were investigated with an experimental apparatus designed for analysis of wave front read from a Shack-Hartmann sensor. Due to small available aperture and requirements in dynamic responses, wave front measurement was selected for study of optical characteristics in dielectric lenses. With the advent of commercial electro-optics sensors in wave front measurement, the experimental apparatus was first designed and simulated with the help of ASAP program. The simulated results proved the conceptual design with handful of engineering insights so that less trial and error efforts could be relieved from building the optics system on the bench. In-house built liquid lens modules with driving circuits were then set on the apparatus for initial calibration and functional tests. Since the electric field generated for the control of liquid profile must be alternating current, various frequency and modulation schemes were put through the liquid lens module to further study the influences on dynamic responses in terms of optical characteristics. Furthermore, effects due to material impurity and ambient effects were also carefully studied for established the fundamental phenomena of liquid lenses made of dielectric fluids. More detailed observations were possible with the measured wave-front data. In conclusion, the wave-front measurement proved to be more reliable and less expensive compared to measurement based on interferometer.
NASA Astrophysics Data System (ADS)
Rodriguez-Carranza, Claudia E.; Mukherjee, P.; Vigneron, Daniel; Barkovich, James; Studholme, Colin
2007-03-01
In this work we compare 3D Gyrification Index and our recently proposed area-independent curvature-based surface measures [26] for the in-vivo quantification of brain surface folding in clinically acquired neonatal MR image data. A meaningful comparison of gyrification across brains of different sizes and their subregions will only be possible through the quantification of folding with measures that are independent of the area of the region of analysis. This work uses a 3D implementation of the classical Gyrification Index, a 2D measure that quantifies folding based on the ratio of the inner and outer contours of the brain and which has been used to study gyral patterns in adults with schizophrenia, among other conditions. The new surface curvature-based measures and the 3D Gyrification Index were calculated on twelve premature infants (age 28-37 weeks) from which surfaces of cerebrospinal fluid/gray matter (CSF/GM) interface and gray matter/white matter (GM/WM) interface were extracted. Experimental results show that our measures better quantify folding on the CSF/GM interface than Gyrification Index, and perform similarly on the GM/WM interface.
Measurement of the Earth's radius based on historical evidence of its curvature
NASA Astrophysics Data System (ADS)
Roura, Pere; Calbó, Josep
2005-09-01
Probably the most direct observation of the Earth’s curvature is how objects appear from over the horizon when we approach them and disappear as we get further away from them. Similarly, the portion of a high object (a building or a mountain) that is visible depends on the height of the site where the observation is made. Based upon these very obvious facts, a simple method to estimate the Earth's radius R has been applied. The method does not need either sophisticated instrumentation or complex mathematics. In our application of the method presented here, the result is R = 6600 +/- 600 km in the best case. A discussion is presented about the possible use of this method in ancient times. Surprisingly enough, we have not found any reference to the use of this method despite its being simpler than, for example, the classical approach of Eratosthenes.
Observing Coastal Upwelling Front Dynamics by AUV Tracking, Remote Sensing, and Mooring Measurements
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ryan, J. P.; Godin, M. A.; Bellingham, J. G.
2012-12-01
Coastal upwelling is a wind-driven ocean process that brings cooler, saltier, and usually nutrient-rich deep water upward to replace surface water displaced offshore due to Ekman transport. The nutrients carried up by upwelling are important for primary production and fisheries. The boundary between the stratified water column and the upwelling water column is called the "upwelling front". Upwelling fronts support enriched phytoplankton and zooplankton populations, thus having great influences on ocean ecosystems. Variations of wind and ocean circulation cause an upwelling front to move. In particular, as the upwelling favorable wind weakens, upwelling enters the relaxation phase. Frontal dynamics in this phase is not well understood. Satellite sea surface temperature (SST) images can show evolutions of upwelling fronts, but only their surface expressions. To enable in situ high-resolution tracking of upwelling frontal dynamics, we have developed a method for an autonomous underwater vehicle (AUV) to autonomously detect and track an upwelling front over a long duration. During the June 2012 CANON (Controlled, Agile, and Novel Observing Network) field program, the Tethys long-range AUV ran our algorithm to closely track an upwelling front in northern Monterey Bay over four days. The AUV tracking captured the front's westward movement. A series of satellite SST images show that the stratified water in the upwelling shadow (residing in the northeastern corner of the Bay) was transported westward, thus pushing the upwelling front westward. The westward movement of the upwelling filament followed weakening of the northwesterly wind (i.e., upwelling favorable wind). The AUV observations offered a window into frontal dynamics in the relaxation phase of the upwelling process. Temperature, salinity, and current velocity profiles measured at the MBARI M1 mooring (to the south of the AUV tracking line) showed that the westward frontal movement coincided with intrusion of
Low power analog readout front-end electronics for time and energy measurements
NASA Astrophysics Data System (ADS)
Kleczek, R.; Grybos, P.; Szczygiel, R.
2014-06-01
We report on the design and measurements of an analog front-end readout electronics dedicated for silicon microstrip detectors with relatively large capacitance of the order of tens pF for time and energy measurements of incoming pulses. The front-end readout electronics is required to process input pulses with an average rate of 150 kHz/channel with low both power consumption and noise at the same time. In the presented solution the single channel is built of two different parallel processing paths: fast and slow. The fast path includes the fast CR-RC shaper with the peaking time tp=40 ns and is optimized to determine the input charge arrival time. The slow path, which consists of the slow CR-(RC)2 shaper with the peaking time tp=80 ns, is dedicated for low noise accurate energy measurement. The analog front-end electronics was implemented in UMC 180 nm CMOS technology as a prototype ASIC AFE. The AFE chip contains 8 channels with the size of 58 μm×1150 μm each. It has low power dissipation Pdiss=3.1 mW per single channel. The article presents the details of the front-end architecture and the measurement results.
Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan
Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.
2015-09-16
The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.
NASA Astrophysics Data System (ADS)
Candoré, Jean Charles; Bodnar, J. L.; Detalle, Vincent; Remy, B.; Grossel, Philippe
2010-03-01
In this paper we present, in an experimental way, the possibilities of front face photothermal radiometry to measure, in situ, the longitudinal thermal diffusivity of mural paintings. First, we present the principle of the method of measurement. Then, we present the experimental device implemented for the study. Finally, we show, using the experimental study of a plaster sample, the photothermal method allows in a particular case, a good approximation of the parameter longitudinal thermal diffusivity.
Ground based radar measurements in a marine environment for glacier calving front studies.
NASA Astrophysics Data System (ADS)
Rolstad Denby, C.; Gundersen, R.
2012-04-01
A ground-based radar has been used successfully for monitoring velocities and calving events at Kronebreen, Svalbard, for four test seasons in 2007,2008, 2009 and 2010. The radar is placed ~4 km from the glacier front and it transmits the signal across Kongsfjorden. It transmits at 5.75 GHz and measures at high temporal rate (2 Hz). The antenna lobe covers a width of~700m of the calving front, and a range of 300 m. The latter includes the calving front and 250m up-glacier. We find that the glacier surface provides natural permanent scatterers, so spatially continuous movements at the front and at locations further up-glacier can be tracked. High frequent noise is present in the velocity data. We used daily terrestrial optical photogrammetry and continuous visual observation to validate the identification of calving events in a 116 hour record of amplitude of return signal data measured from 26 to 30 August 2008. Calving events were detected applying an automated change-detection technique to the radar dataset. This technique allowed us to detect 92% of the events that were observed during the same time. We also observe that the marine environment affects the radar signal in several ways. Destructive interference due to multipath scattering covers an enlarged area in the amplitude data set due to the tidal cycles. The transmitted and received radar signal is disturbed due to variations in the refraction index over the fjord. High frequent noise as observed on the velocity measurements may be due to ocean water waves in the fjord. The observed noise may be affected by the choice of antenna polarization. Plans for an improved version of the radar system designed for calving front monitoring and 2D mapping of glacier velocities will also be presented.
Automated measurement of human body shape and curvature using computer vision
NASA Astrophysics Data System (ADS)
Pearson, Jeremy D.; Hobson, Clifford A.; Dangerfield, Peter H.
1993-06-01
A system to measure the surface shape of the human body has been constructed. The system uses a fringe pattern generated by projection of multi-stripe structured light. The optical methodology used is fully described and the algorithms used to process acquired digital images are outlined. The system has been applied to the measurement of the shape of the human back in scoliosis.
Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine
1996-01-01
A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,
Curvature-Based Method for Measuring Numerical Black-Hole Spins
NASA Astrophysics Data System (ADS)
Kelly, Bernard; Finch, Tehani; van Meter, James; Baker, John
2015-04-01
Accurate determination of spin magnitude and direction over time is crucial for the development of gravitational-wave templates that faithfully reflect the dynamics of generic comparable-mass black-hole binary mergers. We report on the development of a new method for measuring black-hole spins during numerical-relativity simulations of black-hole binary mergers. This method is based on the ``spin scalar,'' a complex scalar field derived from the Coulomb scalar of Beetle & Burko (2002). Our new method can be used to derive both spin magnitude and direction, and can be combined with other techniques, such as isolated-horizon methods. We present convergence studies, and demonstrations of behavior during precessing mergers of spinning black holes.
NASA Astrophysics Data System (ADS)
Congedo, Giuseppe
2015-04-01
The measurement of frequency shifts for light beams exchanged between two test masses nearly in free fall is at the heart of gravitational-wave detection. It is envisaged that the derivative of the frequency shift is in fact limited by differential forces acting on those test masses. We calculate the derivative of the frequency shift with a fully covariant, gauge-independent and coordinate-free method. This method is general and does not require a congruence of nearby beams' null geodesics as done in previous work. We show that the derivative of the parallel transport is the only means by which gravitational effects shows up in the frequency shift. This contribution is given as an integral of the Riemann tensor—the only physical observable of curvature—along the beam's geodesic. The remaining contributions are the difference of velocities, the difference of nongravitational forces, and finally fictitious forces, either locally at the test masses or nonlocally integrated along the beam's geodesic. As an application relevant to gravitational-wave detection, we work out the frequency shift in the local Lorentz frame of nearby geodesics.
Ground based mobile isotopic methane measurements in the Front Range, Colorado
NASA Astrophysics Data System (ADS)
Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.
2014-12-01
Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.
Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit
Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P.; Aminian, Kamiar
2012-01-01
Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique. PMID:23201978
Classification and quantification of leaf curvature
Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke
2010-01-01
Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533
ANALOG FRONT-END ELECTRONICS FOR BEAM POSITION MEASUREMENT ON THE BEAM HALO MEASUREMENT
R.B. SHURTER; T.J. COTE; J.D. GILPATRICK
2001-06-01
Enhancements have been made to the log-ratio analog front-end electronics based on the Analog Devices 8307 logarithmic amplifier as used on the LEDA accelerator. The dynamic range of greater than 85 dB, has been extended to nearly the full capability of the AD8307 from the previous design of approximately 65 dB through the addition of a 350 MHz band-pass filter, careful use of ground and power plane placement, signal routing, and power supply bypassing. Additionally, selection of high-isolation RF switches (55dB) has been an integral part of a new calibration technique, which is fully described in another paper submitted to this conference. Provision has also been made for insertion of a first-stage low-noise amplifier for using the circuit under low-signal conditions.
Sigma models with negative curvature
NASA Astrophysics Data System (ADS)
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-05-01
We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
NASA Astrophysics Data System (ADS)
Gunn, J. P.; Fuchs, V.; Petržílka, V.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Hillairet, J.
2016-03-01
Measurements in the tokamak scrape-off layer show the existence of fast electrons as far as a few centimeters radially in front of a lower hybrid antenna grill, which is one order of magnitude further than earlier predictions of interaction zones not exceeding 5 mm in width (Rantamäki et al 2000 Nucl. Fusion 40 1477). The present contribution aims at understanding these experimental results on the basis of electron Landau damping in a turbulent scrape-off layer. A crucial guiding element from the experiments is the observation of temporal intermittency of the fast electron signal at positions radially away from the grill mouth at a rate comparable with the detachment rate of relatively hot and dense field-aligned plasma filaments, or ‘blobs,’ from the last closed flux surface. When the dynamic character of the scrape-off layer is taken into account, transient low density and low temperature states occur during which the Landau damping can be weak enough to allow the radiated spectrum to penetrate radially deep inward. When the lower hybrid wave intercepts a dense and hot ‘blob’ a few cm in front of the antenna, then strong damping of the high wave number components can occur. This is the scenario we propose for explaining the generation of fast electrons far away from the grill mouth.
Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation
Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.; Smith, Leon E.
2015-07-01
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, a technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.
Zemp, Roland; List, Renate; Gülay, Turgut; Elsig, Jean Pierre; Naxera, Jaroslav; Taylor, William R; Lorenzetti, Silvio
2014-01-01
Soft tissue artefact affects the determination of skeletal kinematics. Thus, it is important to know the accuracy and limitations of kinematic parameters determined and modelled based on skin marker data. Here, the curvature angles, as well as the rotations of the lumbar and thoracic segments, of seven healthy subjects were determined in the sagittal plane using a skin marker set and compared to measurements taken in an open upright MRI scanner in order to understand the influence of soft tissue artefact at the back. The mean STA in the flexed compared to the extended positions were 10.2±6.1 mm (lumbar)/9.3±4.2 mm (thoracic) and 10.7±4.8 mm (lumbar)/9.2±4.9 mm (thoracic) respectively. A linear regression of the lumbar and thoracic curvatures between the marker-based measurements and MRI-based measurements resulted in coefficients of determination, R2, of 0.552 and 0.385 respectively. Skin marker measurements therefore allow for the assessment of changes in the lumbar and thoracic curvature angles, but the absolute values suffer from uncertainty. Nevertheless, this marker set appears to be suitable for quantifying lumbar and thoracic spinal changes between quasi-static whole body postural changes.
Poyneer, Lisa A; Bauman, Brian J
2015-03-31
Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.
Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert
2015-01-01
Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural
Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert
2015-01-01
Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural
Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert
2015-01-01
Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural
Nitrogen oxides measurements in an Amazon site and enhancements associated with a cold front
NASA Astrophysics Data System (ADS)
Cordova, A. M.; Longo, K.; Freitas, S.; Gatti, L. V.; Artaxo, P.; Procópio, A.; Silva Dias, M. A. F.; Freitas, E. D.
2004-05-01
An intensive atmospheric chemistry study was carried out in a pristine Amazonian forest site (Balbina), Amazonas state, Brazil during the 2001 wet season, as part of the LBA/CLAIRE 2001 (The Large Scale Biosphere Atmosphere Experiment in Amazonia/Cooperative LBA Airborne Regional Experiment) field campaign. Measurements of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simultaneously with aerosol particles and black carbon concentrations and meteorological parameters observations. Very low trace gases and aerosol concentrations are typically observed at this pristine tropical site. During the measurement period, there was a three-day episode of enhancement of NO2 and black carbon concentration. NO2 concentration reached a maximum value of 4 ppbv, which corresponds to three times the background concentration observed for this site. Black carbon concentration increased from the approximated 100 ng/m3 average value to a 200 ng/m3 maximum during the same period. Biomass burning spots were detected southward, between latitudes 15 to 10° S, 5-6 days before this episode from GOES-8 WF_ABBA (Wildfire Automated Biomass Burning Algorithm). An atmospheric numerical simulation of the whole measurement period was carried out using the RAMS model coupled to a biomass burning emission and transport model. The simulation results pictured a smoke transport event from Central Brazil associated to an approach of a mid-latitude cold front, reinforcing the hypothesis of biomass burning products being long-range transported from the South by the cold front and crossing the Equator. This transport event shows how the pristine atmosphere pattern in Amazonia is impacted by biomass burning emissions from sites very far away.
Theoretical and measured power density in front of VHF/UHF broadcasting antennas.
Jokela, K
1988-05-01
A simple and easy-to-use model based on more rigorous computations was formulated for the prediction of power density levels in front of dipole array-type VHF (very high frequency) and UHF (ultra high frequency) broadcasting antennas. Measurements on site verified the usefulness of the model. The distance at which the power density begins to exceed 10 W.m-2--the value established by standards as a limit--is roughly 40 m for UHF-TV antennas, 30 m for FM (frequency modulated) radio antennas and 15 m for VHF-TV antennas. Typical average input powers of antennas are 20 kW, 4 kW and 10 kW for FM radio, VHF-TV and UHF transmissions, respectively.
Theoretical and measured power density in front of VHF/UHF broadcasting antennas
Jokela, K.
1988-05-01
A simple and easy-to-use model based on more rigorous computations was formulated for the prediction of power density levels in front of dipole array-type VHF (very high frequency) and UHF (ultra high frequency) broadcasting antennas. Measurements on site verified the usefulness of the model. The distance at which the power density begins to exceed 10 W.m-2--the value established by standards as a limit--is roughly 40 m for UHF-TV antennas, 30 m for FM (frequency modulated) radio antennas and 15 m for VHF-TV antennas. Typical average input powers of antennas are 20 kW, 4 kW and 10 kW for FM radio, VHF-TV and UHF transmissions, respectively.
Novel front-surface thermal-diffusivity measurement method based on phase analysis
NASA Astrophysics Data System (ADS)
Braggiotti, Alberto; Marinetti, Sergio
2000-05-01
The technique described in this paper is for one-side thermal diffusivity measurement. A single stripe-shaped pulse provided by a flash lamp is used to heat the front surface of a specimen slab. Classical methods for estimating a parameter out of a distribution involve fitting the temperature distribution with its theoretical model. With the technique described in this paper the evolution of the temperature distribution along a line perpendicular to the heated stripe is analyzed in the frequency domain. An estimate of the thermal diffusivity is then obtained from comparison of the phase component behavior with an abacus similarly built from the theoretical model. This technique is valid for any shape of flash lamp pulse (i.e. laser spot), and can be used also for estimating the thermal diffusivity of anisotropic materials. The choice of the stripe shape is due to the limitations of the simulation environment used.
Estimating back to front ratio of wire screen for measurement of thoron decay products.
Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B K
2016-01-01
Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work.
Estimating back to front ratio of wire screen for measurement of thoron decay products.
Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B K
2016-01-01
Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work. PMID:26595797
Detonation wave velocity and curvature of IRX-4 and PBXN-110
NASA Astrophysics Data System (ADS)
Lemar, E. R.; Forbes, J. W.; Sutherland, G. T.
1996-05-01
Detonation velocities and wave front curvatures were measured for bare cylindrical charges of IRX-4 and PBXN-110 charges. Steady detonation waves propagated in IRX-4 charges with diameters as small as 33 mm. The failure diameter of IRX-4 is between 25 and 33 mm. A fit of detonation velocity data gives 5.83 mm/μs for IRX-4's infinite diameter velocity. Detonation wave curvature experiments have been done on 48 mm diameter cylindrical IRX-4 charges with lengths from 9 to 28 cm. The data have been fitted accurately over the entire charge diameters using the natural logarithm of a Bessel function.
Measures of the environmental footprint of the front end of the nuclear fuel cycle
E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom
2013-11-01
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up
NASA Astrophysics Data System (ADS)
Pérez, D.; Miñano, J. C.; Benítez, P.; Muñoz, F.; Mohedano, R.
2005-08-01
A novel photovoltaic concentrator has been developed in the framework of the European project "High efficiency silicon solar cells concentrator". In this project, front-contacted silicon solar cell have also been designed and manufactured by the project leader (the French LETI). This silicon cell concept is potentially capable to perform well (24% efficiency has been predicted) for much higher concentration levels than the back-contacted cells (and, of course, than the two-side contacted cells). The concentrator is formed by one lens of squared contour with flat entry surface and large-facet Fresnel exit surface, and a secondary that encapsulates the solar cell. On the contrary to the conventional Fresnel lens plus nonimaging secondary concentrators, the primary and secondary are designed simultaneously, leading to better concentration-acceptance angle product without compromise with the compactness. The grid lines in the front-contacted cells are aluminium prisms (which contact the p+ and n+ emitters, alternatively), acting as a linear cone concentrator that concentrates Cg =1.52× in the cross sectional dimension of the prisms. The secondary concentrator has a refractive rotational symmetric top surface that is crossed with two linear flow-line TIR mirror. Then, in the cross section normal to the aluminium prisms, the secondary provides a 2D concentration of Cg =12×, while in the cross section parallel to the prisms it provides a 2D concentration of Cg =24.16× as the grid lines in this dimension. Therefore, the cell is rectangular (1:2.08 aspect ratio), being the grid lines parallel to the shorter rectangle side. The total 3D geometrical concentration is 24.16×(12×1.52) = 455× for the square aperture and rectangular cell, and gets a design acceptance angle α=+/-1.8 degrees. Injection moulded prototypes are have been manufactured and measured, proving an optical efficiency of 79%. Computer modelling of the concentrator performance will also be presented.
Spatial curvature falsifies eternal inflation
Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu
2012-06-01
Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.
Excitation ahead of shock fronts in krypton measured by single line laser absorption
NASA Astrophysics Data System (ADS)
Boetticher, W.; Kilpin, D.
1984-12-01
The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.
NASA Astrophysics Data System (ADS)
Jing, Zhiyou; Qi, Yiquan; Fox-Kemper, Baylor; Du, Yan; Lian, Shumin
2016-03-01
Seasonal thermal fronts associated with wind-driven coastal downwelling/upwelling in the northern South China Sea are investigated using satellite measurements and three repeated fine-resolution mapping surveys in winter, spring, and summer. The results show that vigorous thermal fronts develop over the broad shelf with variable widths and intensities in different seasons, which tend to be approximately aligned with the 20-100 m isobaths. Driven by the prevailing winter/summer monsoon, the band-shaped fronts were observed with a magnitude exceeding 0.1°C/km in the subsurface, and accompanied by energetic coastal downwelling/upwelling due to shoreward/offshore Ekman transport. The downward/upward tilting of seasonal thermoclines across the shelf exceeds 20 m, significantly contributing to the development of thermal fronts over the shelf. In addition, the diagnostic analysis of Potential Vorticity (PV) suggests that the summer frontal activities induced by the coastal upwelling are more stable to convection and symmetric instabilities in comparison to the winter fronts associated with downwelling-favorable monsoon forcing. This is primarily due to their essential differences in the upper ocean stratification and horizontal buoyancy gradients arising from wind forcing. At the same time, the coastal currents are substantially regulated by the seasonal winds. An expected lag correlation between the velocity from mooring measurements and alongshore wind stress is detected near the frontal region. These results indicate that seasonal wind forcing plays an important role in the frontal activities and coastal water transport over the shelf.
Spatial curvature endgame: Reaching the limit of curvature determination
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Bull, Philip; Allison, Rupert
2016-07-01
Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.
Measuring Kinematic Variables in Front Crawl Swimming Using Accelerometers: A Validation Study
Callaway, Andrew J.
2015-01-01
Objective data on swimming performance is needed to meet the demands of the swimming coach and athlete. The purpose of this study is to use a multiple inertial measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke Rate and Phases of the Stroke (Entry, Pull, Push, Recovery) in front crawl swimming. Using multiple units on the body, an algorithm was developed to calculate the phases of the stroke based on the relative position of the body roll. Twelve swimmers, equipped with these devices on the body, performed fatiguing trials. The calculated factors were compared to the same data derived to video data showing strong positive results for all factors. Four swimmers required individual adaptation to the stroke phase calculation method. The developed algorithm was developed using a search window relative to the body roll (peak/trough). This customization requirement demonstrates that single based devices will not be able to determine these phases of the stroke with sufficient accuracy. PMID:26007718
NASA Technical Reports Server (NTRS)
Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)
2001-01-01
Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.
Pech-May, Nelson Wilbur; Mendioroz, Arantza; Salazar, Agustín
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
NASA Astrophysics Data System (ADS)
Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.
2015-06-01
Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.
ERIC Educational Resources Information Center
Ngo, Duc Minh
2009-01-01
Current methodologies used for the inference of thin film stresses through curvatures are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. In this dissertation, we extend these methodologies to non-uniform stress and curvature states for the single layer of thin film or…
A three-dimensional validation of crack curvature in muscovite mica
J. C. Hill; J. W. Foulk III; P. A. Klein; E. P. Chen
2001-01-07
Experimental and computational efforts focused on characterizing crack tip curvature in muscovite mica. Wedge-driven cracks were propagated under monochromatic light. Micrographs verified the subtle curvature of the crack front near the free surface. A cohesive approach was employed to model mixed-mode fracture in a three-dimensional framework. Finite element calculations captured the crack curvature observed in experiment.
Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle
Brett Carlsen; Emily Tavrides; Erich Schneider
2010-08-01
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.
Spatial curvature, spacetime curvature, and gravity
NASA Astrophysics Data System (ADS)
Price, Richard H.
2016-08-01
The belief that curved spacetime gravity cannot be simply and correctly presented results in such misleading presentations as elastic two-dimensional sheets deformed as they support heavy objects. This article attempts to show that the conceptual basis of curved spacetime gravity can be simply and correctly presented, and that the spatial curvature of a deformed elastic sheet is very different from the spacetime curvature underlying gravity. This article introduces the idea of a "splittable" spacetime that has spatial curvature, but is missing most of the manifestations of gravity. A section in which no mathematics is used is directed at students who have studied no more than introductory physics. A separate section, for students who have taken only an introductory course in general relativity, gives mathematical arguments centering on splittable spacetimes.
Anisotropic cubic curvature couplings
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2016-09-01
To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are studied using an effective field theory description of spacetime-symmetry breaking. The associated mass-dimension-eight coefficients for Lorentz violation studied do not result in any linearized gravity modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around a flat background. We consider effects on gravitational radiation through the energy loss of a binary system and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on the internal structure of the source and test bodies, thereby breaking the weak equivalence principle for self-gravitating bodies. These coefficients can be measured in Solar-System tests, while binary-pulsar systems and short-range gravity tests are particularly sensitive.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830
Vasquez, Dionicio; Scharcanski, Jacob; Wong, Alexander
2015-01-01
This paper presents a new automatic framework for extracting and characterizing the dynamic shape of the 3D wetting front and its propagation, based in a sequence of tomographic images acquired as water (moisture) infiltrates in unsaturated soils. To the best of the authors' knowledge, the shape of the 3D wetting front and its propagation and progress over time has not been previously produced as a whole by methods in existing literature. The proposed automatic framework is composed two important and integrated modules: i) extraction of the 3D wetting front, and ii) characterization and description of the 3D wetting front to obtain important information about infiltration process. The 3D wetting front surface is segmented from 3D CT imagery provided as input via a 3D stochastic region merging strategy using quadric-regressed bilateral space-scale representations. Based on the 3D segmentation results, the normal directions at local curvature maxima of the wetting front surface are computed for 3D images of soil moisture, and its propagation is analyzed at the local directions in sites of maximal water adsorption, and described using histograms of curvature changes over time in response to sample saturation. These curvature change descriptors provide indirect measurements of moisture infiltration in soils, and soil saturation. Results using a field tomograph equipment specific for soil studies are encouraging, and suggest that the proposed automatic framework can be applied to estimate the infiltration of water in soils in 3D and in time. PMID:25602498
Front lighted optical tooling method and apparatus
Stone, William J.
1985-06-18
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.
Analog front-end measuring biopotential signal with effective offset rejection loop.
Lim, Seunghyun; Kim, Hyunho; Song, Haryong; Cho, Dong-il Dan; Ko, Hyoungho
2015-01-01
This paper presents an analog front-end (AFE) IC design for recording biopotential signals. The AFE employs a capacitively coupled instrumentation amplifier to achieve a low-noise and high-common mode rejection ratio (CMRR) system. A ripple reduction loop is proposed to reduce the ripple generated by the up-modulating chopper. The low frequency noise is attenuated by an input AC coupling capacitor, and is attenuated again by a DC servo loop. The proposed AFE features a differential gain of 71 dB, and a CMRR of 89 dB, at 50 Hz. Furthermore, the proposed AFE can robustly acquire biopotential signals even in the presence of an input offset and ripples. PMID:26406095
Dayton, D; Gonglewski, J; Rogers, S
1997-06-10
Deconvolution from wave-front sensing (DWFS) has been proposed as a method for achieving high-resolution images of astronomical objects from ground-based telescopes. The technique consists of the simultaneous measurement of a short-exposure focal-plane speckled image, as well as the wave front, by use of a Shack-Hartmann sensor placed at the pupil plane. In early studies it was suspected that some problems would occur in poor seeing conditions; however, it was usually assumed that the technique would work well as long as the wave-front sensor subaperture spacing was less than r(0) (L/r(0) < 1). Atmosphere-induced phase errors in the pupil of a telescope imaging system produce both phase errors and magnitude errors in the effective short-exposure optical transfer function (OTF) of the system. Recently it has been shown that the commonly used estimator for this technique produces biased estimates of the magnitude errors. The significance of this bias problem is that one cannot properly estimate or correct for the frame-to-frame fluctuations in the magnitude of the OTF but can do so only for fluctuations in the phase. An auxiliary estimate must also be used to correct for the mean value of the magnitude error. The inability to compensate for the magnitude fluctuations results in a signal-to-noise ratio (SNR) that is less favorable for the technique than was previously thought. In some situations simpler techniques, such as the Knox-Thompson and bispectrum methods, which require only speckle gram data from the focal plane of the imaging system, can produce better results. We present experimental measurements based on observations of bright stars and the Jovian moon Ganymede that confirm previous theoretical predictions. PMID:18253416
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu
2010-03-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.
NASA Astrophysics Data System (ADS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; Halzen, Francis
2016-06-01
We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near t =0 as d σ (s ,t )/d t =d σ (s ,0 )/d t ×exp (B t +C t2+D t3⋯) in an eikonal model for p p and p ¯p scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters B to t =-q2=0 . We find that the curvature effects represented by the parameters C and D , while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.
A new front-end ASIC for GEM detectors with time and charge measurement capabilities
NASA Astrophysics Data System (ADS)
Ciciriello, F.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Marzocca, C.; Matarrese, G.; Ranieri, A.
2016-07-01
A 32 channel CMOS front-end ASIC has been designed to read out the GEM detectors intended to be used for beam monitoring in a new proton-therapy facility currently under construction. In order to improve the spatial resolution by exploiting charge centroid algorithms, the analog channels, based on the classic CSA+shaper architecture, are equipped with a peak detector (PD) which works as an analog memory during the read-out phase. The outputs of the PDs are multiplexed towards an integrated 8-bit subranging ADC. An accurate trigger signal marks the arrival of a valid event and is generated by fast-ORing the outputs of 32 voltage discriminators which compare the shaper outputs with a programmable threshold. The digital part of the ASIC manages the read-out of the channels, the A/D conversion and the configuration of the ASIC. A 100 Mbit/s LVDS serial link is used for data communication. The sensitivity of the analog channel is 15 mV/fC and the dynamic range is 80 fC. The simulated ENC is about 650 e- for a detector capacitance of 10 pF.
A new front-end ASIC for GEM detectors with time and charge measurement capabilities
NASA Astrophysics Data System (ADS)
Ciciriello, F.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Marzocca, C.; Matarrese, G.; Ranieri, A.
2016-07-01
A 32 channel CMOS front-end ASIC has been designed to read out the GEM detectors intended to be used for beam monitoring in a new proton-therapy facility currently under construction. In order to improve the spatial resolution by exploiting charge centroid algorithms, the analog channels, based on the classic CSA+shaper architecture, are equipped with a peak detector (PD) which works as an analog memory during the read-out phase. The outputs of the PDs are multiplexed towards an integrated 8-bit subranging ADC. An accurate trigger signal marks the arrival of a valid event and is generated by fast-ORing the outputs of 32 voltage discriminators which compare the shaper outputs with a programmable threshold. The digital part of the ASIC manages the read-out of the channels, the A/D conversion and the configuration of the ASIC. A 100 Mbit/s LVDS serial link is used for data communication. The sensitivity of the analog channel is 15 mV/fC and the dynamic range is 80 fC. The simulated ENC is about 650 e- for a detector capacitance of 10 pF. © 2001 Elsevier Science. All rights reserved
Distributed curvature and stability of fullerenes.
Fowler, Patrick W; Nikolić, Sonja; De Los Reyes, Rasthy; Myrvold, Wendy
2015-09-21
Energies of non-planar conjugated π systems are typically described qualitatively in terms of the balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also has a purely graph-theoretical description: combinatorial curvature at a vertex of a polyhedral graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, but must eventually die out with increasing vertex count; the largest example constructed so far has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 pentagonal and (n/2 - 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all in the range 20 ≤n≤ 60. In this range, there is only partial correlation between PCC status and stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of pentagon adjacencies and hence is a direct measure of relative stability of the lower (n≤ 60) fullerenes. For n≥ 62, non-PCC fullerenes with a minimum number of pentagon adjacencies minimise mean-square curvature. For n≥ 70, minimum mean-square curvature implies isolation of pentagons, which is the strongest indicator of stability for a bare fullerene. PMID:26283188
Detonation wave velocity and curvature of IRX-4 and PBXN-110
Lemar, E.R.; Forbes, J.W.; Sutherland, G.T.
1996-05-01
Detonation velocities and wave front curvatures were measured for bare cylindrical charges of IRX-4 and PBXN-110 charges. Steady detonation waves propagated in IRX-4 charges with diameters as small as 33 mm. The failure diameter of IRX-4 is between 25 and 33 mm. A fit of detonation velocity data gives 5.83 mm/{mu}s for IRX-4{close_quote}s infinite diameter velocity. Detonation wave curvature experiments have been done on 48 mm diameter cylindrical IRX-4 charges with lengths from 9 to 28 cm. The data have been fitted accurately over the entire charge diameters using the natural logarithm of a Bessel function. {copyright} {ital 1996 American Institute of Physics.}
Analysis of microtubule curvature.
Bicek, Andrew D; Tüzel, Erkan; Kroll, Daniel M; Odde, David J
2007-01-01
The microtubule cytoskeleton in living cells generate and resist mechanical forces to mediate fundamental cell processes, including cell division and migration. Recent advances in digital fluorescence microscopy have enabled the direct observation of bending of individual microtubules in living cells, which has enabled quantitative estimation of the mechanical state of the microtubule array. Although a variety of mechanisms have been proposed, the precise origins of microtubule deformation in living cells remain largely obscure. To investigate these mechanisms and their relative importance in cellular processes, a method is needed to accurately quantify microtubule bending within living cells. Here we describe a method for quantification of bending, using digital fluorescence microscope images to estimate the distribution of curvature in the microtubule. Digital images of individual microtubules can be used to obtain a set of discrete x-y coordinates along the microtubule contour, which is then used to estimate the curvature distribution. Due to system noise and digitization error, the estimate will be inaccurate to some degree. To quantify the inaccuracy, a computational model is used to simulate both the bending of thermally driven microtubules and their observation by digital fluorescence microscopy. This allows for direct comparison between experimental and simulated images, a method which we call model convolution microscopy. We assess the accuracy of various methods and present a suitable method for estimating the curvature distribution for thermally driven semiflexible polymers. Finally, we discuss extensions of the method to quantify microtubule curvature in living cells. PMID:17613311
Diffraction with wavefront curvature
NASA Astrophysics Data System (ADS)
Nugent, K. A.; Peele, A. G.; Quiney, H. M.; Chapman, H. N.
2005-05-01
Modern X-ray optics can produce a focused synchrotron beam with curvature on a scale comparable to that of an isolated biomolecule or to the lattice spacing of a biomolecular crystal. It is demonstrated that diffraction of phase-curved beams from such systems allows unique and robust phase recovery.
Curvature calculations with GEOCALC
Moussiaux, A.; Tombal, P.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.
The formation of mountain range curvature by gravitational spreading
NASA Astrophysics Data System (ADS)
Copley, Alex
2012-10-01
This paper presents a mechanism by which mountain ranges can form curved range-fronts. Gravitational spreading of mountain ranges that have been thrust onto rigid lowlands will result in the formation of curvature, provided that enough gravity-driven flow occurs to dominate the shape of the topography. Whether this mechanism can operate during the lifetime of a given mountain range depends upon the viscosity of the range, the square of the along-strike length of the range, and the cube of the elevation of the range. The curvature of the southern edge of the Tibetan Plateau is consistent with formation by gravitational spreading provided that the viscosity is similar to that previously estimated using other, independent, methods. The low elevation and young age of the Zagros mountains mean that large-scale curvature has not had time to develop. The short along-strike extent and possibly low viscosity of the Sulaiman Ranges in Pakistan may have allowed the ranges to form their distinctive arcuate shape. The formation of range-front curvature plays an important role in controlling the tectonic evolution of the interiors of the ranges, with arc-parallel extension becoming progressively more important as range-front curvature develops.
Fiber Fabry-Perot interferometer for curvature sensing
NASA Astrophysics Data System (ADS)
Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-07-01
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.
Zhang, Yong; Yang, Dehua; Cui, Xiangqun
2004-02-01
We describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.
In-use measurement of the activity, fuel use, and emissions of front-loader refuse trucks
NASA Astrophysics Data System (ADS)
Sandhu, Gurdas S.; Frey, H. Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth
2014-08-01
Field measurements were made for six front-loader refuse trucks for over 560 miles (901 km) and 47 h of operation using a portable emissions measurement system, electronic control unit data logger, and global positioning system receivers. Daily activity, fuel use rates, and emission rates are quantified in terms of operating mode bins defined by the U.S. Environmental Protection Agency for the MOVES emission factor model. On average, 44 (±4) percent of time was spent at idle, 5 (±1) percent braking or decelerating, 11 (±2) percent coasting, 23 (±3) percent cruising or accelerating at low speed (up to 25 mph, 40.2 kmph), 10 (±2) percent cruising or accelerating at moderate speed (25-50 mph, 40.2 to 80.4 kmph), and 7 (±3) percent cruising or accelerating at high speed (50 mph, 80.4 kmph or higher). Fuel use and emission rates varied among operating modes by factors of 6-24. The estimated daily activity cycle average fuel economy ranges from 2.3 to 3.2 mpg (0.98-1.4 kmpl). The PM emission rates for trucks with diesel particulate filters are 98 percent lower compared to those without. Variation in truck weight lead to differences in average fuel use and emission rates of 20 percent or less, except for hydrocarbons. The variation in the empirically-based daily activity cycle average rates were highly correlated with MOVES estimates, except for hydrocarbons. The data collected here are useful for quantifying daily activity specific to front-loaders, and for developing fuel use and emission estimates and models for this type of vehicle.
Shock and Awe: Measuring the Expansion of the Shock Front of Supernova Remnant SN1006
NASA Astrophysics Data System (ADS)
Dills, Sidney; McKinney, L.; Moffett, D. A.; Reynoso, E.
2014-01-01
We have determined the expansion of the supernova remnant (SNR) of SN1006 over a seven-year period, using data collected in 2003 and 2010. The data was calibrated and imaged using Miriad and CASA programming before we stacked the two images to accurately assess the expansion rate. Our data was collected from the Very Large Array (VLA) in New Mexico and Australian Telescope Compact Array (ATCA). The 2003 epoch observations were conducted at the ATCA and the VLA. The 2010 epoch observations were conducted only at the ATCA. We processed the data using the Miriad and CASA software packages, which allowed us to perform calibration and imaging of radio interferometer visibility data. We deconvolved the raw images using CLEAN and MAXEN (maximum entropy deconvolution) to remove spurious side lobes, resulting in epoch images with a synthesized beamwidth of 6.0 arcseconds per beam. We used the 2010 image as a template to align the 2003 image and to match resolution. A difference image formed from the two epoch images reveals an obvious expansion of the SNR. We measured the expansion rate at nine points along the shell of the remnant. We found that the expansion rate varied across the remnant’s shell. The greatest amount of expansion measured was 5.71 arcseconds over seven years, which for a distance of 2.2 kpc, has the remnant moving at 8,500 km/s. The average expansion measured across the shell was 4.25 arcseconds over seven years.
Shearlet-based detection of flame fronts
NASA Astrophysics Data System (ADS)
Reisenhofer, Rafael; Kiefer, Johannes; King, Emily J.
2016-03-01
Identifying and characterizing flame fronts is the most common task in the computer-assisted analysis of data obtained from imaging techniques such as planar laser-induced fluorescence (PLIF), laser Rayleigh scattering (LRS), or particle imaging velocimetry (PIV). We present Complex Shearlet-Based Ridge and Edge Measure (CoShREM), a novel edge and ridge (line) detection algorithm based on complex-valued wavelet-like analyzing functions—so-called complex shearlets—displaying several traits useful for the extraction of flame fronts. In addition to providing a unified approach to the detection of edges and ridges, our method inherently yields estimates of local tangent orientations and local curvatures. To examine the applicability for high-frequency recordings of combustion processes, the algorithm is applied to mock images distorted with varying degrees of noise and real-world PLIF images of both OH and CH radicals. Furthermore, we compare the performance of the newly proposed complex shearlet-based measure to well-established edge and ridge detection techniques such as the Canny edge detector, another shearlet-based edge detector, and the phase congruency measure.
Measuring Sexual Victimization: On What Fronts is the Jury Still Out and Do We Need it to Come In?
Krebs, Christopher
2014-01-30
Rennison and Addington use National Crime Victimization Survey (NCVS) data to document the fact that college women experience violent victimization at a lower rate than women of the same age who do not attend college, which refutes the idea that women in college are at increased risk of being victimized. The measurement of victimization, especially sexual victimization, is, however, a topic that has be the source of much debate. Bureau of Justice Statistics is currently exploring what are the best methods for measuring sexual victimization within the NCVS, and recent methodological research, which is summarized in this article, could inform this process. Although consensus has seemingly been forming around come methods, such as using self-administered survey instruments and behaviorally specific questions when trying to measure sexual victimization, the jury is still out on some other design fronts. What is not clear is whether we need the jury to come in, so to speak. Some methodological variation might be acceptable, especially if the various methods being considered are producing similar results.
Liu, Zhihong; Muldrew, Ken; Wan, Richard G; Elliott, Janet A W
2003-06-01
Variations of the Kelvin equation [W. Thomson, Philos. Mag. 42, 448 (1871)] to describe the freezing point depression of water in capillaries exist in the literature. The differing equations, coupled with the uncertainty in input parameters, lead to various predictions. The difference between the predictions may become substantial when the capillary size decreases much below micron dimensions. An experiment was designed to investigate the predicted values using a customized directional solidification stage. The capillary freezing point depression for glass tubes with radii of 87 microm-3 microm was successfully measured. The image of the ice-water interface at equilibrium was also digitally captured and analyzed to examine the contact angle and the interface shape as well. Both are important for examining the hemispherical interface assumption that was exclusively used in the theoretical derivations. Finally, an equilibrium analysis of the thermodynamic system leads to a theoretical discussion of the problem. The effect of the temperature gradient on the interface shape is addressed, and an engineering criterion for the critical temperature gradient above which the effect must be considered for the interface shape calculation is derived.
Wavefront reconstruction from tangential and sagittal curvature.
Canales, Javier; Barbero, Sergio; Portilla, Javier; López-Alonso, José Manuel
2014-12-10
In a previous contribution [Appl. Opt.51, 8599 (2012)], a coauthor of this work presented a method for reconstructing the wavefront aberration from tangential refractive power data measured using dynamic skiascopy. Here we propose a new regularized least squares method where the wavefront is reconstructed not only using tangential but also sagittal curvature data. We prove that our new method provides improved quality reconstruction for typical and also for highly aberrated wavefronts, under a wide range of experimental error levels. Our method may be applied to any type of wavefront sensor (not only dynamic skiascopy) able to measure either just tangential or tangential plus sagittal curvature data.
NASA Astrophysics Data System (ADS)
Wilbur Pech-May, Nelson; Cifuentes, Ángel; Mendioroz, Arantza; Oleaga, Alberto; Salazar, Agustín
2015-08-01
Both thermal diffusivity and effusivity (or conductivity) are necessary to characterize the thermal transport properties of a material. The flash method is the most recognized procedure to measure the thermal diffusivity of free-standing opaque plates. However, it fails to simultaneously obtain the thermal effusivity (or conductivity). This is due to the difficulty of knowing the total energy absorbed by the sample surface after the light pulse. In this work, we propose using the flash method in the front-face configuration on a two-layer system made of the unknown plate and a fluid of known thermal properties. We demonstrate that the surface temperature is sensitive to the thermal mismatch between the plate and the fluid, which is governed by their thermal effusivity ratio. In order to verify the validity of the method and to establish its application limits we have performed flash measurements, using a pulsed laser and an infrared camera, on a set of calibrated materials (metals, alloys, ceramics and polymers) covering a wide range of thermal transport properties. These results confirm the ability of the flash method to simultaneously retrieve thermal diffusivity and effusivity in a fast manner in samples whose effusivities are lower than three times the effusivity of the liquid used as backing fluid.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1976-01-01
Internal embedment stress measurements were performed, using tiny ferrite core transformers, whose voltage output was calibrated versus pressure by the manufacturer. Comparative internal strain measurements were made by attaching conventional strain gages to the same type of resistors and encapsulating these in various potting compounds. Both types of determinations were carried out while temperature cycling from 77 C to -50 C.
The curvature index and synchronization of dynamical systems
NASA Astrophysics Data System (ADS)
Chen, Yen-Sheng; Chang, Chien-Cheng
2012-06-01
We develop a quantity, named the curvature index, for dynamical systems. This index is defined as the limit of the average curvature of the trajectory during evolution, which measures the bending of the curve on an attractor. The curvature index has the ability to differentiate the topological change of an attractor, as its alterations exhibit the structural changes of a dynamical system. Thus, the curvature index may indicate thresholds of some synchronization regimes. The Rössler system and a time-delay system are simulated to demonstrate the effectiveness of the index, respectively.
Curvature constraints from large scale structure
NASA Astrophysics Data System (ADS)
Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien
2016-06-01
We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-01
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
Curvature-dependent excitation propagation in cultured cardiac tissue
NASA Astrophysics Data System (ADS)
Kadota, S.; Kay, M. W.; Magome, N.; Agladze, K.
2012-02-01
The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.
Suyu, S.H.; Marshall, P.J.; Auger, M.W.; Hilbert, S.; Blandford, R.D.; Koopmans, L.V.E.; Fassnacht, C.D.; Treu, T.; /UC, Santa Barbara
2009-12-11
Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy between {Omega
Cideciyan, Artur V.; Swider, Malgorzata; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.
2015-01-01
Purpose To evaluate the progression of the earliest stage of disease in ABCA4-associated retinal degenerations (RDs). Methods Near-infrared excited reduced-illuminance autofluorescence imaging was acquired across the retina up to 80 degrees eccentricity in 44 patients with two ABCA4 alleles. The eccentricity of the leading disease front (LDF) corresponding to the earliest stage of disease was measured along the four meridians. A mathematical model describing the expansion of the LDF was developed based on 6 years of longitudinal follow-up. Results The extent of LDF along the superior, inferior, and temporal meridians showed a wide spectrum from 3.5 to 70 degrees. In patients with longitudinal data, the average centrifugal expansion rate was 2 degrees per year. The nasal extent of LDF between the fovea and ONH ranged from 4.3 to 16.5 degrees and expanded at 0.35 degrees per year. The extent of LDF beyond ONH ranged from 19 to 75 degrees and expanded on average at 2 degrees per year. A mathematical model fit well to the longitudinal data describing the expansion of the LDF. Conclusions The eccentricity of the LDF in ABCA4-RD shows a continuum from parafovea to far periphery along all four meridians consistent with a wide spectrum of severity observed clinically. The model of progression may provide a quantitative prediction of the LDF expansion based on the age and eccentricity of the LDF at a baseline visit, and thus contribute significantly to the enrollment of candidates appropriate for clinical trials planning specific interventions, efficacy outcomes, and durations. PMID:26377081
Detonation wave curvature of cast Comp B and PBXN-111
NASA Astrophysics Data System (ADS)
Lemar, E. R.; Forbes, J. W.
1994-07-01
Detonation wave profiles for cast Comp B and PBXN-111 have been fitted accurately over the entire wave fronts using a series expansion of the natural logarithm of a Bessel function. The fit equation has been used to obtain the angle of the detonation front as a function of position and the radii of curvature used in Wood-Kirkwood zone length calculations. The results obtained from the fit equation agree with results obtained previously for PBXN-111. Since the fit equation gives a functional form for the detonation wave across the whole charge diameter, it can be used to test the results obtained from detonation theories and code calculations.
Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert
2011-03-31
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
John Paul Wallace, Ganapati Rao Myneni, and Robert Pike
2011-03-01
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Yokoo, Manabu; Kawai, Nobuaki; Hironaka, Yoichiro; Nakamura, Kazutaka G; Kondo, Ken-Ichi
2007-04-01
A diagnostic system has been developed to obtain spatial and temporal profiles of shock front. A two-stage light-gas gun is used to accelerate impactors in velocity range with 4-9 km/s. The system consists of the Faraday-type electromagnetic sensors to measure impactor velocity, optical system with high-speed streak camera to measure shock-wave velocities, and the delay trigger system with self-adjustable pre-event pulse generator. We describe the specifications and performance of this system and data-analysis technique on the tilt and distortion of the shock front. Finally, we obtained the Hugoniot data of copper for system demonstration.
Graph Curvature for Differentiating Cancer Networks
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-01-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480
Curvature sensor based on a Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Monteiro, Catarina; Ferreira, Marta S.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-05-01
A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m-1 for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/°C.
Effects of Iris Surface Curvature on Iris Recognition
Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W; Santos-Villalobos, Hector J
2013-01-01
To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varying degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed
Modeling Normal Shock Velocity Curvature Relation for Heterogeneous Explosives
NASA Astrophysics Data System (ADS)
Yoo, Sunhee; Crochet, Michael; Pemberton, Steve
2015-06-01
The normal shock velocity and curvature, Dn(κ) , relation on a detonation shock surface has been an important functional quantity to measure to understand the shock strength exerted against the material interface between a main explosive charge and the case of an explosive munition. The Dn(κ) relation is considered an intrinsic property of an explosive, and can be experimentally deduced by rate stick tests at various charge diameters. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of the many possibilities, the asymmetric character may be attributed to the heterogeneity of the explosives, a hypothesis which begs two questions: (1) is there any simple hydrodynamic model that can explain such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart studied constitutive models for derivation of the Dn(κ) relation on porous `homogeneous' explosives and carried out simulations in a spherical coordinate frame. In this paper, we extend their model to account for `heterogeneity' and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. (96TW-2015-0004)
Michel, D. T.; Davis, A. K.; Armstrong, W.; Bahr, R.; Epstein, R.; Goncharov, V. N.; Hohenberger, M.; Igumenshchev, I. V.; Jungquist, R.; Meyerhofer, D. D.; et al
2015-07-08
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less
Compound curvature laser window development
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.
NASA Astrophysics Data System (ADS)
Forbes, J. W.; Lemar, E. R.
1998-12-01
Detonation velocities and wave front curvatures are measured on various diameter cylinders of PBXN-111 (RDX/AP/Al/HTPB binder with 20/43/25/12 weight percent). The cylinders are either unconfined or encased in 5-mm-thick brass tubes. In all experiments with brass tubes (diameters from 19 to 100 mm) the detonation velocity of PBXN-111 was affected by the confinement. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the 37.1 mm failure diameter for unconfined PBXN-111. The radii of curvature at the center of the detonation wave fronts ranged from 52 to 480 mm for charge diameters from 25 to 100 mm, respectively. Detonation velocity as a function of radius of curvature at the wave's center is represented by a single curve for both cased and uncased cylindrical charges. The difference in the axial position of the detonation wave at the center of the charge and at the edge of the charge (i.e., lag distance) are between 1.6 and 6.7 mm. The angles between the detonation wave fronts and the brass/charge interfaces are between 73° and 82° while the angles at the cylindrical free surface for the uncased charges are between 61° and 64°. Calculation of this angle for brass encased charges using oblique shock equations and assuming no reaction in the shock front resulted in angles 8° higher than measured except for the 100-mm-diam charge which was in agreement. The calculated angles for the uncased charge are in agreement with the measured values.
Shearlet-based edge detection: flame fronts and tidal flats
NASA Astrophysics Data System (ADS)
King, Emily J.; Reisenhofer, Rafael; Kiefer, Johannes; Lim, Wang-Q.; Li, Zhen; Heygster, Georg
2015-09-01
Shearlets are wavelet-like systems which are better suited for handling geometric features in multi-dimensional data than traditional wavelets. A novel method for edge and line detection which is in the spirit of phase congruency but is based on a complex shearlet transform will be presented. This approach to detection yields an approximate tangent direction of detected discontinuities as a byproduct of the computation, which then yields local curvature estimates. Two applications of the edge detection method will be discussed. First, the tracking and classification of flame fronts is a critical component of research in technical thermodynamics. Quite often, the flame fronts are transient or weak and the images are noisy. The standard methods used in the field for the detection of flame fronts do not handle such data well. Fortunately, using the shearlet-based edge measure yields good results as well as an accurate approximation of local curvature. Furthermore, a modification of the method will yield line detection, which is important for certain imaging modalities. Second, the Wadden tidal flats are a biodiverse region along the North Sea coast. One approach to surveying the delicate region and tracking the topographical changes is to use pre-existing Synthetic Aperture Radar (SAR) images. Unfortunately, SAR data suffers from multiplicative noise as well as sensitivity to environmental factors. The first large-scale mapping project of that type showed good results but only with a tremendous amount of manual interaction because there are many edges in the data which are not boundaries of the tidal flats but are edges of features like fields or islands. Preliminary results will be presented.
Solving higher curvature gravity theories
NASA Astrophysics Data System (ADS)
Chakraborty, Sumanta; SenGupta, Soumitra
2016-10-01
Solving field equations in the context of higher curvature gravity theories is a formidable task. However, in many situations, e.g., in the context of f( R) theories, the higher curvature gravity action can be written as an Einstein-Hilbert action plus a scalar field action. We show that not only the action but the field equations derived from the action are also equivalent, provided the spacetime is regular. We also demonstrate that such an equivalence continues to hold even when the gravitational field equations are projected on a lower-dimensional hypersurface. We have further addressed explicit examples in which the solutions for Einstein-Hilbert and a scalar field system lead to solutions of the equivalent higher curvature theory. The same, but on the lower-dimensional hypersurface, has been illustrated in the reverse order as well. We conclude with a brief discussion on this technique of solving higher curvature field equations.
Kim, Pilnam; Kim, Ho-Young; Kim, Jae Kwan; Reiter, Günter; Suh, Kahp Y
2009-11-21
We examined the formation of a multiply curved meniscus inside rectangular nanochannels, whose width ranges from 50 to 800 nm at a constant height of 200 nm. When the channel width is smaller than approximately 400 nm under partial wetting conditions, a distinct multi-curvature meniscus was observed at the advancing front with an edge disjoined from the wall. In contrast, a typical pre-wetting film was observed at the front regardless of the channel size for complete wetting conditions. Our theoretical analysis demonstrated that the multi-curvature meniscus is generated from the increased contribution of an extra pressure due to intermolecular interactions near the wall. In particular, a plug-like meniscus profile was observed at the advancing liquid front for the 50 nm wide channel owing to an overlap between convex curvatures at the channel walls. Finally, we showed that the filling velocity of liquid can be decreased by decreasing the channel size due to the reduced wettability.
Curvature Interaction in Collective Space
NASA Astrophysics Data System (ADS)
Herrmann, Richard
2012-12-01
For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einstein's curvature scalar. The coupling strength is determined using a fit with the AME2003 ground state masses. An extended finite-range droplet model including curvature is introduced, which generates significant improvements for light nuclei and nuclei in the trans-fermium region.
Curvature capillary migration of microspheres.
Sharifi-Mood, Nima; Liu, Iris B; Stebe, Kathleen J
2015-09-14
We address the question: how does capillarity propel microspheres along curvature gradients? For a particle on a fluid interface, there are two conditions that can apply at the three phase contact line: either the contact line adopts an equilibrium contact angle, or it can be pinned by kinetic trapping, e.g. at chemical heterogeneities, asperities, or other pinning sites on the particle surface. We formulate the curvature capillary energy for both scenarios for particles smaller than the capillary length and far from any pinning boundaries. The scale and range of the distortion made by the particle are set by the particle radius; we use singular perturbation methods to find the distortions and to rigorously evaluate the associated capillary energies. For particles with equilibrium contact angles, contrary to the literature, we find that the capillary energy is negligible, with the first contribution bounded to fourth order in the product of the particle radius and the deviatoric curvature of the host interface. For pinned contact lines, we find curvature capillary energies that are finite, with a functional form investigated previously by us for disks and microcylinders on curved interfaces. In experiments, we show microspheres migrate along deterministic trajectories toward regions of maximum deviatoric curvature with curvature capillary energies ranging from 6 × 10(3)-5 × 10(4)kBT. These data agree with the curvature capillary energy for the case of pinned contact lines. The underlying physics of this migration is a coupling of the interface deviatoric curvature with the quadrupolar mode of nanometric disturbances in the interface owing to the particle's contact line undulations. This work is an example of the major implications of nanometric roughness and contact line pinning for colloidal dynamics.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA02171 Cloud Front
These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.
Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Caumes, Jean Pascal; Videau, Laurent; Rouyer, Claude; Freysz, Eric
2004-04-15
The wave-front distortion of femtosecond laser pulses recorded with a Shack-Hartmann analyzer makes it possible to retrieve the nonlinear index of refraction of different glasses and the nonlinear phase shift induced during second-harmonic generation in beta-barium borate (BBO) crystal versus the phase mismatch. It is shown that the nonlinear phase shift induced in a 2-mm-thick BBO crystal allows compensation for up to a 2pi breakup-integral induced in a 4-cm fused-silica glass. The stability of the compensation is reported to be from 10 to 100 GW cm(-2).
Caumes, Jean Pascal; Videau, Laurent; Rouyer, Claude; Freysz, Eric
2004-04-15
The wave-front distortion of femtosecond laser pulses recorded with a Shack-Hartmann analyzer makes it possible to retrieve the nonlinear index of refraction of different glasses and the nonlinear phase shift induced during second-harmonic generation in beta-barium borate (BBO) crystal versus the phase mismatch. It is shown that the nonlinear phase shift induced in a 2-mm-thick BBO crystal allows compensation for up to a 2pi breakup-integral induced in a 4-cm fused-silica glass. The stability of the compensation is reported to be from 10 to 100 GW cm(-2). PMID:15119415
Magnetophoretic Induction of Root Curvature
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.
1997-01-01
The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.
Ionic liquid tunes microemulsion curvature.
Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng
2009-02-17
Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325
3D curvature of muscle fascicles in triceps surae
Hamarneh, Ghassan; Wakeling, James M.
2014-01-01
Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (−15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus. PMID:25324510
Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.
Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R
2005-02-15
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.
On the Weyl curvature hypothesis
Stoica, Ovidiu Cristinel
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.
Michel, D. T.; Davis, A. K.; Armstrong, W.; Bahr, R.; Epstein, R.; Goncharov, V. N.; Hohenberger, M.; Igumenshchev, I. V.; Jungquist, R.; Meyerhofer, D. D.; Radha, P. B.; Sangster, T. C.; Sorce, C.; Froula, D. H.
2015-07-08
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (
Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens
NASA Technical Reports Server (NTRS)
Alam, J.; Mendelson, A.
1983-01-01
The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.
Intrinsically disordered proteins drive membrane curvature
NASA Astrophysics Data System (ADS)
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-07-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Cosmic strings with curvature corrections
NASA Astrophysics Data System (ADS)
Boisseau, Bruno; Letelier, Patricio S.
1992-08-01
A generic model of string described by a Lagrangian density that depends on the extrinsic curvature of the string worldsheet is studied. Using a system of coordinates adapted to the string world sheet the equation of motion and the energy-momentum tensor are derived for strings evolving in curved spacetime. We find that the curvature corrections may change the relation between the string energy density and the tension. It can also introduce heat propagation along the string. We also find for the Polyakov as well as Nambu strings with a topological term that the open string end points can travel with a speed less than the velocity of light.
Kohmura, Yoshiki; Sawada, Kei; Taguchi, Munetaka; Ishikawa, Tetsuya; Ohigashi, Takuji; Suzuki, Yoshio
2009-03-09
We have devised a method for generating x-ray vortices by using a diffraction pattern from a simple aperture with illumination wave fronts with spherical curvatures. The interferometry visualized the x-ray vortex dipoles by the direct phase measurement. Our interference technique enabled us to sensitively detect and quantitatively measure various phase dislocations on the x-ray wave fronts, providing useful methodologies for beam diagnostics and materials science.
Changes on the corneal thickness and curvature after orthokeratology
NASA Astrophysics Data System (ADS)
Mitsui, Iwane; Yamada, Yoshiya
2004-07-01
To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.
PEAPOD regulates lamina size and curvature in Arabidopsis
White, Derek W. R.
2006-01-01
Although a complex pattern of interspersed cell proliferation and cell differentiation is known to occur during leaf blade development in eudicot plants, the genetic mechanisms coordinating this growth are unclear. In Arabidopsis, deletion of the PEAPOD (PPD) locus increases leaf lamina size and results in dome-shaped rather than flat leaves. Siliques are also altered in shape because of extra lamina growth. The curvature of a Δppd leaf reflects the difference between excess growth of the lamina and a limitation to the extension capacity of its perimeter. Excess lamina growth in Δppd plants is due to a prolonged phase of dispersed meristematic cell (DMC) proliferation (for example, the meristemoid and procambium cells that form stomatal stem cells and vascular cells, respectively) during blade development. The PPD locus is composed of two homologous genes, PPD1 and PPD2, which encode plant-specific putative DNA-binding proteins. Overexpression of PPD reduces lamina size by promoting the early arrest of DMC proliferation during leaf and silique development. Therefore, by regulating the arrest of DMC proliferation, the PPD genes coordinate tissue growth, modulate lamina size, and limit curvature of the leaf blade. I propose a revised model of leaf development with two cell-cycle arrest fronts progressing from the tip to the base: the known primary front, which determines arrest of general cell proliferation, followed by a secondary front that involves PPD and arrests DMC division. PMID:16916932
Design of a curvature sensor using a flexoelectric material
NASA Astrophysics Data System (ADS)
Yan, X.; Huang, W. B.; Kwon, S. R.; Yang, S. R.; Jiang, X. N.; Yuan, F. G.
2013-04-01
A curvature sensor based on flexoelectricity using Ba0.64Sr0.36TiO3 (BST) material is proposed and developed in this paper. The working principle of the sensor is based on the flexoelectricity, exhibiting coupling between mechanical strain gradient and electric polarization. A BST curvature sensor is lab prepared using a conventional solid state processing method. The curvature sensing is demonstrated in four point bending tests of the beam under harmonic loads. BST sensors are attached on both side surfaces of an aluminum beam, located symmetrically with respect to its neutral axis. Analyses have shown that the epoxy bonding layer plays a critical role for curvature transfer. Consequently a shear lag effect is taken into account for extracting actual curvature from the sensor measurement. Experimental results demonstrated good linearity from the charge outputs under the frequencies tests and showed a sensor sensitivity of 30.78pC•m in comparison with 32.48pC•m from theoretical prediction. The BST sensor provides a direct curvature measure instead of using traditional strain gage through interpolation and may offer an optional avenue for on-line and in-situ structural health monitoring.
Thermodynamic Curvature and Black Holes
NASA Astrophysics Data System (ADS)
Ruppeiner, George
In my talk, I will discuss black hole thermodynamics, particularly what happens when you add thermodynamic curvature to the mix. Although black hole thermodynamics is a little off the main theme of this workshop, I hope nevertheless that my message will be of some interest to researchers in supersymmetry and supergravity.
Space Curvature and the "Heavy Banana 'Paradox.'"
ERIC Educational Resources Information Center
Gruber, Ronald P.; And Others
1991-01-01
Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)
Dynamics of curved fronts in systems with power-law memory
NASA Astrophysics Data System (ADS)
Abu Hamed, M.; Nepomnyashchy, A. A.
2016-08-01
The dynamics of a curved front in a plane between two stable phases with equal potentials is modeled via two-dimensional fractional in time partial differential equation. A closed equation governing a slow motion of a small-curvature front is derived and applied for two typical examples of the potential function. Approximate axisymmetric and non-axisymmetric solutions are obtained.
Subaperture method for aspheric surface metrology using curvature data
NASA Astrophysics Data System (ADS)
Lee, SeongWon; Jeon, WooKyung; Park, TaeJin; Kim, ByoungChang; Kim, GeonHee; Hyun, SangWon; Kim, IJong; Kim, Seunghyun; Kim, ChangKyu; Lee, HyungSuk
2016-04-01
We present a profilometry for measuring aspheric surface, which determines the curvature from the sub-aperture topography along two orthogonal directions and then reconstructs the entire surface profile from the measured curvature data. The entire surface was divided into a number of sub-apertures with overlapping zones. Each sub-aperture was measured using white-light scanning interferometry to avoid any optical alignment error along an optical axis. Simulation studies are also presented based on the mathematical model. The proposed mathematical model was also experimentally tested on freeform surfaces using white-light scanning interferometry under deveolpment.
Curvature-induced lipid segregation
NASA Astrophysics Data System (ADS)
Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu
2015-06-01
We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).
Curvature operator for loop quantum gravity
NASA Astrophysics Data System (ADS)
Alesci, E.; Assanioussi, M.; Lewandowski, J.
2014-06-01
We introduce a new operator in loop quantum gravity—the 3D curvature operator—related to the three-dimensional scalar curvature. The construction is based on Regge calculus. We define this operator starting from the classical expression of the Regge curvature, we derive its properties and discuss some explicit checks of the semiclassical limit.
Disformal invariance of curvature perturbation
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; White, Jonathan
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
On the collective curvature radiation
NASA Astrophysics Data System (ADS)
Istomin, Ya. N.; Philippov, A. A.; Beskin, V. S.
2012-05-01
In this paper, we study one possible mechanism of pulsar radio emission (i.e. with the collective curvature radiation of the relativistic particle stream moving along the curved magnetospheric magnetic field lines). We show that an electromagnetic wave that contains one cylindrical harmonic exp {isφ} cannot be radiated by the curvature radiation mechanism, which corresponds to the radiation of a charged particle moving along curved magnetic field lines. The point is that a particle in a vacuum radiates the triplex of harmonics (s, s± 1) in which the polarization of the emitted wave changes from one point to another on a circle of constant radius, while for one s-harmonic the polarization remains constant. So, for the collective curvature radiation, the wave polarization is very important and cannot be fixed a priori. For this reason, the polarization of real unstable waves must be determined directly from the solution of wave equations for the media. Its electromagnetic properties should be described by the dielectric permittivity tensor ?, which contains information on the reaction on all possible types of radiation.
Thermodynamic curvature and ensemble nonequivalence
NASA Astrophysics Data System (ADS)
Bravetti, Alessandro; Nettel, Francisco
2014-08-01
In this work we consider thermodynamic geometries defined as Hessians of different potentials and derive some useful formulas that show their complementary role in the description of thermodynamic systems with 2 degrees of freedom that show ensemble nonequivalence. From the expressions derived for the metrics, we can obtain the curvature scalars in a very simple and compact form. We explain here the reason why each curvature scalar diverges over the line of divergence of one of the specific heats. This application is of special interest in the study of changes of stability in black holes as defined by Davies. From these results we are able to prove on a general footing a conjecture first formulated by Liu, Lü, Luo, and Shao stating that different Hessian metrics can correspond to different behaviors in the various ensembles. We study the case of two thermodynamic dimensions. Moreover, comparing our result with the more standard turning point method developed by Poincaré, we obtain that the divergence of the scalar curvature of the Hessian metric of one potential exactly matches the change of stability in the corresponding ensemble.
NASA Astrophysics Data System (ADS)
Estep, J. D.; Shaw, J.; Edmonds, D. A.
2015-12-01
Quantifying the progradation of the Wax Lake Delta (WLD), a sub-delta of the Mississippi River Delta, can lend valuable insight into coastal land-building patterns. Previous studies of WLD progradation have relied on subaerially-exposed land for indicating delta extent, but an inherent problem with this method lies in the high variability of exposed land due to vegetative, hydrologic, and atmospheric fluctuations. By mapping water surface films observed in remote imagery which form streaklines along flow paths in the delta, we show that the shallow delta front flow patterns are relatively unaffected by short term water level changes and can be used to evaluate WLD progradation over time. Remotely sensed imagery from multiple sources (infrared aerial photography, SPOT, UAVSAR) spanning from 1988 to 2015 was used to map streaklines from which we calculate a flow direction divergence field across the delta. Measuring the translation of this field through time, such as areas containing extreme divergence values along the delta front, quantifies the progradation over the time elapsed. Preliminary measurements of WLD progradation were subdivided into the eastern, southern, and western thirds of the delta. The eastern third prograded at 110 ±20m/yr from 1988 - 1997, 100 ±40m/yr from 1997 - 2002, and then remained relatively constant to 2015. The southern third prograded at 130 ±20m/yr from 1988 - 1997, 200 ±40m/yr from 1997 - 2002, and remained relatively constant to 2015. The western third prograded at 130 ±30m/yr from 1988 - 1997, 220 ±60 m from 1997 - 2002, and then remained relatively constant from 2002 - 2015. Also of note is the retrogradation on the average of 700 ±400m observed from January to August, 1992 which we interpret as being caused by the impact of Hurricane Andrew. The streakline methodology of evaluating WLD progradation could provide new methods for analysis of land change in other deltas around the world.
NASA Technical Reports Server (NTRS)
Ecker, A.; Alexander, J. Iwan D.; Frazier, D. O.
1987-01-01
A holographic technique for the simultaneous measurement of temperature and concentration in solidifying transparent model alloy systems was developed. Its application to the study of the interactions between the temperature, concentration, and fluid flow fields in such systems at 1 g and micro-g conditions is discussed.
NASA Astrophysics Data System (ADS)
Ecker, A.; Alexander, J. Iwan D.; Frazier, D. O.
1987-02-01
A holographic technique for the simultaneous measurement of temperature and concentration in solidifying transparent model alloy systems was developed. Its application to the study of the interactions between the temperature, concentration, and fluid flow fields in such systems at 1 g and micro-g conditions is discussed.
Acoustic cues to vowel-schwa sequences for high front vowels
NASA Astrophysics Data System (ADS)
Slifka, Janet
2005-09-01
In a landmark-based model of lexical access [K. N. Stevens, J. Acoust. Soc. Am. 111, 1872-1891 (2002)], the presence of a vowel is marked by a peak in energy in the first formant region. However, when a vowel is followed by a schwa, the schwa frequently appears as a shoulder on the peak associated with the first vowel [W. Howitt, MIT (2000)] two landmarks are not present. The purpose of this study is to examine duration and F2 movement as possible cues to the presence of a vowel-schwa sequence for [+high, +front] vowels. This subset of vowels presents at least two challenges to the detection of a vowel-schwa sequence: (1) duration is expected to contribute to the difference between /i/ and /I/, and (2) an F2 off-glide toward schwa is expected for /I/ in American English. For 613 tokens from the phonetically labeled TIMIT database, equally distributed between /i squflg/, /i/, and /I/, a measure of F2 curvature is a stronger cue than duration in classifying the tokens. Using F2 curvature, over 93% of the tokens are correctly classified. Using duration, 67% are correctly classified. F2 curvature may reflect a more extreme articulation for the /i/ prior to the schwa. [Work supported by NIH Grant DC02978.
NASA Astrophysics Data System (ADS)
Dühnforth, Miriam; Anderson, Robert S.; Ward, Dylan J.; Blum, Alex
2012-03-01
Dating of gravel-capped strath terraces in basins adjacent to western U.S. Laramide Ranges is one approach to document the history of late Cenozoic fluvial exhumation. We use in situ 10Be measurements to date the broad surfaces adjacent to the eastern edge of the Rocky Mountains in Colorado, and compare these calculated ages with results from meteoric 10Be measurements. We analyze three sites near Boulder, Colorado (Gunbarrel Hill, Table Mountain, and Pioneer) that have been mapped as the oldest terrace surfaces with suggested ages ranging from 640 ka to the Plio-Pleistocene transition. Our in situ 10Be results reveal abandonment ages of 95 ± 129 ka at Table Mountain, 175 ± 27 ka at Pioneer, and ages of 251 ± 10 ka and 307 ± 15 ka at Gunbarrel Hill. All are far younger than previously thought. Inventories of meteoric 10Be support this interpretation, yielding ages that are comparable to Table Mountain and ˜20% lower than Pioneer in situ ages. We argue that lateral beveling by rivers dominated during protracted times of even moderate glacial climate, and that vertical incision rates of several mm/yr likely occurred during times of very low sediment supply during the few interglacials that were characterized by particularly warm climate conditions. In contrast to the traditional age chronology in the area, our ages suggest that the deep exhumation of the western edge the High Plains occurred relatively recently and at an unsteady pace.
Almond, P. M.; Kaplan, D. I.; Langton, C. A.; Stefanko, D. B.; Spencer, W. A.; Hatfield, A.; Arai, Y.
2012-08-23
The objective of this work was to develop and evaluate a series of methods and validate their capability to measure differences in oxidized versus reduced saltstone. Validated methods were then applied to samples cured under field conditions to simulate Performance Assessment (PA) needs for the Saltstone Disposal Facility (SDF). Four analytical approaches were evaluated using laboratory-cured saltstone samples. These methods were X-ray absorption spectroscopy (XAS), diffuse reflectance spectroscopy (DRS), chemical redox indicators, and thin-section leaching methods. XAS and thin-section leaching methods were validated as viable methods for studying oxidation movement in saltstone. Each method used samples that were spiked with chromium (Cr) as a tracer for oxidation of the saltstone. The two methods were subsequently applied to field-cured samples containing chromium to characterize the oxidation state of chromium as a function of distance from the exposed air/cementitious material surface.
Status of the front-end-electronics for the time-of-flight measurements at the MPD experiment
NASA Astrophysics Data System (ADS)
Buryakov, M. G.; Babkin, V. A.; Golovatyuk, V. M.; Volgin, S. V.; Rumyantsev, M. M.
2016-09-01
The preamplifier based on the ASIC NINO for the Time of Flight system (TOF) of MPD/NICA was developed and tested. The signal is read from both sides of the strip of the multi gap Resistive Plate Chamber (MRPC). In total there are around 14000 channels of electronics. To measure time of flight of secondary particles from collision of heavy ions on the collider NICA the Time over Threshold (ToT) method is used. According to the bench tests the preamplifier board showed stable work and good time resolution <10 ps for one channel. It was also tested at the test beam facility of the Nuclotron. The time resolution of the TOF detector which used the described preamplifier was reached ˜42 ps.
NASA Astrophysics Data System (ADS)
Abeleira, A.; Farmer, D.; Fischer, E. V.; Pollack, I. B.; Zaragoza, J.
2015-12-01
Authors: Ilana Pollock1,2, Jake Zaragoza2, Emily V. Fischer2, Delphine K. Farmer11. Department of Chemistry, Colorado State University, Fort Collins, CO 2. Department of Atmospheric Science, Colorado State University, Fort Collins, CO During summer months, the Northern Front Range Metropolitan Area (NFRMA) of Colorado consistently violates the 75 ppbv 8-hour EPA National Ambient Air Quality Standard (NAAQS) for ambient ozone (O3), despite continued reduction in anthropogenic emissions. The region has been deemed an O3 non-attainment zone since 2008. Ground-level O3 is produced from photochemical catalytic cycles involving OH radicals, volatile organic compounds (VOCs), and NOx (NO + NO2). VOC emissions in the NFRMA are dominated by anthropogenic sources and influenced by biogenic and agricultural sources, while NOx emissions are mainly from automobile exhaust. A growing concern in the region is the role of oil and natural gas (ONG) on VOC concentrations and the potential for O3 production. Increases in local VOC emissions will likely cause subsequent increase in local O3 concentrations as PO3 increases in a region that is already affected by high O3episodes. As a part of the SONGNEX 2015 (Shale Oil and Natural Gas Nexus) campaign, we measured a broad suite of speciated VOCs during two 8-week deployments (March-May 2015, July-September 2015) at the Boulder Atmospheric Observatory in Erie, CO. VOC measurements were made with a custom-online multichannel gas chromatography system (50+ compounds hourly), along with measurements of O3, SO2, NOx, NOy, PAN, CO, CO2, and CH4. We use these data to investigate the role of different VOC sources, and ONG in particular, in contributing to VOC reactivity and thus instantaneous O3 production. Preliminary analysis of the Spring VOC data indicates that VOC reactivity is dominated by light alkanes typical of ONG emissions - specifically propane, consistent with previous winter-time studies. We will use the observed temperature
Measuring Intrinsic Curvature of Space with Electromagnetism
ERIC Educational Resources Information Center
Mabin, Mason; Becker, Maria; Batelaan, Herman
2016-01-01
The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface,…
Femoral condyle curvature is correlated with knee walking kinematics in ungulates.
Sylvester, Adam D
2015-12-01
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory.
Femoral condyle curvature is correlated with knee walking kinematics in ungulates.
Sylvester, Adam D
2015-12-01
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. PMID:26414648
Effect of curvature on the backscattering from leaves
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Effect of curvature on the backscattering from a leaf
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
NASA Technical Reports Server (NTRS)
Bagshaw, S. L.; Cleland, R. E.
1990-01-01
Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.
Identification of multiple damage in beams based on robust curvature mode shapes
NASA Astrophysics Data System (ADS)
Cao, Maosen; Radzieński, Maciej; Xu, Wei; Ostachowicz, Wiesław
2014-06-01
Multiple damage identification in beams using curvature mode shape has become a research focus of increasing interest during the last few years. On this topic, most existing studies address the sensitivity of curvature mode shape to multiple damage. A noticeable deficiency of curvature mode shape, however, is its susceptibility to measurement noise, easily impairing its advantage of sensitivity to multiple damage. To overcome this drawback, the synergy between a wavelet transform (WT) and a Teager energy operator (TEO) is explored, with the aim of ameliorating the curvature mode shape. The improved curvature mode shape, termed the TEO-WT curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to multiple damage. The efficacy of the TEO-WT curvature mode shape is analytically verified by identifying multiple cracks in cantilever beams, with particular emphasis on its ability to locate multiple damage in noisy conditions; the applicability of the proposed curvature mode shape is experimentally validated by detecting multiple fairly thin slots in steel beams with mode shapes acquired by a scanning laser vibrometer. The proposed curvature mode shape appears sensitive to multiple damage and robust against noise, and therefore is well suited to identification of multiple damage in beams in noisy environments.
Wave front fragmentation due to ventricular geometry in a model of the rabbit heart
NASA Astrophysics Data System (ADS)
Rogers, Jack M.
2002-09-01
The role of the heart's complex shape in causing the fragmentation of activation wave fronts characteristic of ventricular fibrillation (VF) has not been well studied. We used a finite element model of cardiac propagation capable of simulating functional reentry on curved two-dimensional surfaces to test the hypothesis that uneven surface curvature can cause local propagation block leading to proliferation of reentrant wave fronts. We found that when reentry was induced on a flat sheet, it rotated in a repeatable meander pattern without breaking up. However, when a model of the rabbit ventricles was formed from the same medium, reentrant wave fronts followed complex, nonrepeating trajectories. Local propagation block often occurred when wave fronts propagated across regions where the Gaussian curvature of the surface changed rapidly. This type of block did not occur every time wave fronts crossed such a region; rather, it only occurred when the wave front was very close behind the previous wave in the cycle and was therefore propagating into relatively inexcitable tissue. Close wave front spacing resulted from nonstationary reentrant propagation. Thus, uneven surface curvature and nonstationary reentrant propagation worked in concert to produce wave front fragmentation and complex activation patterns. None of the factors previously thought to be necessary for local propagation block (e.g., heterogeneous refractory period, steep action potential duration restitution) were present. We conclude that the complex geometry of the heart may be an important determinant of VF activation patterns.
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
NASA Astrophysics Data System (ADS)
SPIE, Proceedings of
2012-05-01
This PDF file contains the front matter associated with SPIE Proceedings Volume 8454, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Flame front geometry in premixed turbulent flames
Shepherd, I.G. ); Ashurst, W.T. )
1991-12-01
Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.
Crystalline particle packings on constant mean curvature (Delaunay) surfaces
NASA Astrophysics Data System (ADS)
Bendito, Enrique; Bowick, Mark J.; Medina, Agustin; Yao, Zhenwei
2013-07-01
We investigate the structure of crystalline particle arrays on constant mean curvature (CMC) surfaces of revolution. Such curved crystals have been realized physically by creating charge-stabilized colloidal arrays on liquid capillary bridges. CMC surfaces of revolution, classified by Delaunay in 1841, include the 2-sphere, the cylinder, the vanishing mean curvature catenoid (a minimal surface), and the richer and less investigated unduloid and nodoid. We determine numerically candidate ground-state configurations for 1000 pointlike particles interacting with a pairwise-repulsive 1/r3 potential, with distance r measured in three-dimensional Euclidean space R3. We mimic stretching of capillary bridges by determining the equilibrium configurations of particles arrayed on a sequence of Delaunay surfaces obtained by increasing or decreasing the height at constant volume starting from a given initial surface, either a fat cylinder or a square cylinder. In this case, the stretching process takes one through a complicated sequence of Delaunay surfaces, each with different geometrical parameters, including the aspect ratio, mean curvature, and maximal Gaussian curvature. Unduloids, catenoids, and nodoids all appear in this process. Defect motifs in the ground state evolve from dislocations at the boundary to dislocations in the interior to pleats and scars in the interior and then isolated sevenfold disclinations in the interior as the capillary bridge narrows at the waist (equator) and the maximal (negative) Gaussian curvature grows. We also check theoretical predictions that the isolated disclinations are present in the ground state when the surface contains a geodesic disk with integrated Gaussian curvature exceeding -π/3. Finally, we explore minimal energy configurations on sets of slices of a given Delaunay surface, and we obtain configurations and defect motifs consistent with those seen in stretching.
Curvature of the spectral energy distributions of blazars
Chen, Liang
2014-06-20
In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.
Rapid acceleration of protons upstream of earthward propagating dipolarization fronts
Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV
2013-01-01
[1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430
Front blind spot crashes in Hong Kong.
Cheng, Yuk Ki; Wong, Koon Hung; Tao, Chi Hang; Tam, Cheok Ning; Tam, Yiu Yan; Tsang, Cheuk Nam
2016-09-01
In 2012-2014, our laboratory had investigated a total of 9 suspected front blind spot crashes, in which the medium and heavy goods vehicles pulled away from rest and rolled over the pedestrians, who were crossing immediately in front of the vehicles. The drivers alleged that they did not see any pedestrians through the windscreens or the front blind spot mirrors. Forensic assessment of the goods vehicles revealed the existence of front blind spot zones in 3 out of these 9 accident vehicles, which were attributed to the poor mirror adjustments or even the absence of a front blind spot mirror altogether. In view of this, a small survey was devised involving 20 randomly selected volunteers and their goods vehicles and 5 out of these vehicles had blind spots at the front. Additionally, a short questionnaire was conducted on these 20 professional lorry drivers and it was shown that most of them were not aware of the hazards of blind spots immediately in front of their vehicles, and many did not use the front blind spot mirrors properly. A simple procedure for quick measurements of the coverage of front blind spot mirrors using a coloured plastic mat with dimensional grids was also introduced and described in this paper.
Fiber curvature sensor based on spherical-shape structures and long-period grating
NASA Astrophysics Data System (ADS)
Xiong, Mengling; Gong, Huaping; Wang, Zhiping; Zhao, Chun-Liu; Dong, Xinyong
2016-11-01
A novel curvature sensor based on optical fiber Mach-Zehnder interferometer (MZI) is demonstrated. It consists of two spherical-shape structures and a long-period grating (LPG) in between. The experimental results show that the shift of the dip wavelength is almost linearly proportional to the change of curvature, and the curvature sensitivity are -22.144 nm/m-1 in the measurement range of 5.33-6.93 m-1, -28.225 nm/m-1 in the range of 6.93-8.43 m- and -15.68 nm/m-1 in the range of 8.43-9.43 m-1, respectively. And the maximum curvature error caused by temperature is only -0.003 m-1/°C. The sensor exhibits the advantages of all-fiber structure, high mechanical strength, high curvature sensitivity and large measurement scales.
Geometric optics radome analysis wall incorporating effects of wall curvature
NASA Astrophysics Data System (ADS)
Kozakoff, Dennis J.
1993-07-01
In this research, a principal unmodeled error contributor in radome analysis is identified as the local plane approximation at the ray intercept point. An improved approach to modeling and computing the effects of the radome wall was developed which improves the radome wall transmission wall analysis in three respects: use of surface integration, utilization of a divergence factor (DF) to account for wall curvature, and incorporation of the effects of multiple refraction (MR). Modeling an incident plane wave on an external reference plane as an ensemble of Huygen's sources, geometric optics is used to trace the fields from the reference plane through the radome wall to a receiving monopulse antenna, where the wall transmissions on each ray are collected. The fact that the integration of a bundle of rays through the radome wall, as opposed to a single ray, more densely samples the curvature variation results in a more robust model. A DF derived from Snell's law for spherical shells accounts for the local wall curvature at the ray intercept point. To validate the approach, a microwave measurement setup was assembled around a network analyzer. Swept frequency data were obtained for similar monolithic wall dielectric panels but with different wall curvatures. Comparisons were then with measured data and the predictions of the model herein.
NASA Astrophysics Data System (ADS)
Belkin, Igor M.; Hunt, George L.; Hazen, Elliott L.; Zamon, Jeannette E.; Schick, Robert S.; Prieto, Rui; Brodziak, Jon; Teo, Steven L. H.; Thorne, Lesley; Bailey, Helen; Itoh, Sachihiko; Munk, Peter; Musyl, Michael K.; Willis, Jay K.; Zhang, Wuchang
2014-09-01
Ocean fronts play a key role in marine ecosystems. Fronts shape oceanic landscapes and affect every trophic level across a wide range of spatio-temporal scales, from meters to thousands of kilometers, and from days to millions of years. At some fronts, there is an elevated rate of primary production, whereas at others, plankton is aggregated by advection and by the behavior of organisms moving against gradients in temperature, salinity, light irradiance, hydrostatic pressure and other physico-chemical and biological factors. Lower trophic level organisms - phytoplankton and zooplankton - that are aggregated in sufficient densities, attract organisms from higher trophic levels, from planktivorous schooling fish to squid, large piscivorous fish, seabirds and marine mammals. Many species have critical portions of their life stages or behaviors closely associated with fronts, including spawning, feeding, ontogenetic development, migrations, and other activities cued to frontal dynamics. At different life stages, an individual species or population might be linked to different fronts. The nature and strength of associations between fronts and biota depend on numerous factors such as the physical nature and spatio-temporal scales of the front and the species and their life stages in question. In other words, fronts support many different niches and micro/macro-habitats over a wide range of spatial and temporal scales.
Laser detection of ultrasonic waves with concave portions of the wave fronts.
Korkh, Yulia; Perov, Dmitry; Rinkevich, Anatoly
2012-10-01
Special features of ultrasonic pulse wave field detection with concave regions of the wave fronts are investigated with the use of ultrasonic laser interferometry technique. Experimental proofs of the wave front with concave regions are obtained and it is found that the nonmonotonic wave front profiles are well described by the fourth-order even polynomial. The model proposed is applied to the investigation of the spatiotemporal structure of elastic wave fields on solid surfaces. The results obtained can be used for estimating the local wave front curvature.
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test
NASA Astrophysics Data System (ADS)
Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher
2011-06-01
The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.
Effect of shockwave curvature on run distance observed with a modified wedge test
NASA Astrophysics Data System (ADS)
Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher
2012-03-01
The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.
NASA Astrophysics Data System (ADS)
Šebestíková, L.
2013-09-01
Buoyantly unstable 3D chemical fronts were seen traveling through an iodate-arsenous acid reaction solution. The experiments were performed in channel reactors with rectangular cross sections, where the top of the reaction solution was in contact with air. A concave or convex meniscus was pinned to reactor lateral walls. Influence of the meniscus shape on front development was investigated. For the concave meniscus, an asymptotic shape of fronts holding negative curvature was observed. On the other hand, fronts propagating in the solution with the convex meniscus kept only positive curvature. Those fronts were also a bit faster than fronts propagating in the solution with the concave meniscus. A relation between the meniscus shape, flow distribution, velocity, and shape is discussed.
NASA Technical Reports Server (NTRS)
Morrison, John R.; Sosik, Heidi M.
2003-01-01
Fronts in the coastal ocean describe areas of strong horizontal gradients in both physical and biological properties associated with tidal mixing and freshwater estuarine output (e.g. Simpson, 1981 and O Donnell, 1993). Related gradients in optically important constituents mean that fronts can be observed from space as changes in ocean color as well as sea surface temperature (e.g., Dupouy et al., 1986). This research program is designed to determine which processes and optically important constituents must be considered to explain ocean color variations associated with coastal fronts on the New England continental shelf, in particular the National Ocean Partnership Program (NOPP) Front Resolving Observational Network with Telemetry (FRONT) site. This site is located at the mouth of Long Island sound and was selected after the analysis of 12 years of AVHRR data showed the region to be an area of strong frontal activity (Ullman and Cornillon, 1999). FRONT consists of a network of modem nodes that link bottom mounted Acoustic Doppler Current Profilers (ADCPs) and profiling arrays. At the center of the network is the Autonomous Vertically Profiling Plankton Observatory (AVPPO) (Thwaites et al. 1998). The AVPPO consists of buoyant sampling vehicle and a trawl-resistant bottom-mounted enclosure, which holds a winch, the vehicle (when not sampling), batteries, and controller. Three sampling systems are present on the vehicle, a video plankton recorder, a CTD with accessory sensors, and a suite of bio-optical sensors including Satlantic OCI-200 and OCR-200 spectral radiometers and a WetLabs ac-9 dual path absorption and attenuation meter. At preprogrammed times the vehicle is released, floats to the surface, and is then winched back into the enclosure with power and data connection maintained through the winch cable. Communication to shore is possible through a bottom cable and nearby surface telemetry buoy, equipped with a mobile modem, giving the capability for near
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano
2016-04-01
Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion
Igor Kaganovich
2000-12-18
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.
Ultrasoft Electronics for Hyperelastic Strain, Pressure, and Direct Curvature Sensing
NASA Astrophysics Data System (ADS)
Majidi, Carmel; Kramer, Rebecca; Wood, Robert
2011-03-01
Progress in soft robotics, wearable computing, and programmable matter demands a new class of ultrasoft electronics for tactile control, contact detection, and deformation mapping. This next generation of sensors will remain electrically functional under extreme deformation without influencing the natural mechanics of the host system. Ultrasoft strain and pressure sensing has previously been demonstrated with elastomer sheets (eg. PDMS, silicone rubber) embedded with microchannels of conductive liquid (mercury, eGaIn). Building on these efforts, we introduce a novel method for direct curvature sensing that registers the location and intensity of surface curvature. An elastomer sheet is embedded with micropatterned cavities and microchannels of conductive liquid. Bending the elastomer or placing it on a curved surface leads to a change in channel cross-section and a corresponding change in its electrical resistance. In contrast to conventional methods of curvature sensing, this approach does not depend on semi-rigid components or differential strain measurement. Direct curvature sensing completes the portfolio of sensing elements required to completely map hyperelastic deformation for future soft robotics and computing. NSF MRSEC DMR-0820484.
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Soliton curvatures of surfaces and spaces
Konopelchenko, B.G.
1997-01-01
An intrinsic geometry of surfaces and three-dimensional Riemann spaces is discussed. In the geodesic coordinates the Gauss equation for two-dimensional Riemann spaces (surfaces) is reduced to the one-dimensional Schr{umlt o}dinger equation, where the Gaussian curvature plays a role of potential. The use of this fact provides an infinite set of explicit expressions for curvature and metric of surface. A special case is governed by the KdV equation for the Gaussian curvature. Integrable dynamics of curvature via the KdV equation, higher KdV equations, and 2+1-dimensional integrable equations with breaking solitons is considered. For a special class of three-dimensional Riemann spaces the relation between metric and scalar curvature is given by the two-dimensional stationary Schr{umlt o}dinger or perturbed string equations. This provides us an infinite family of Riemann spaces with explicit scalar curvature and metric. Particular class of spaces and their integrable evolutions are described by the Nizhnik{endash}Veselov{endash}Novikov equation and its higher analogs. Surfaces and three-dimensional Riemann spaces with large curvature and slow dependence on the variable are considered. They are associated with the Burgers and Kadomtsev{endash}Petviashvili equations, respectively. {copyright} {ital 1997 American Institute of Physics.}
The role of the epidermis and cortex in gravitropic curvature of maize roots
NASA Technical Reports Server (NTRS)
Bjorkman, T.; Cleland, R. E.
1988-01-01
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.
Magnetic curvature effects on plasma interchange turbulence
NASA Astrophysics Data System (ADS)
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Front instability in stratified media
NASA Astrophysics Data System (ADS)
Beltrame, Philippe
2013-04-01
Preferential flow in unsaturated soil may due to local heterogeneities like worm burrows but also to front instability leading to unstable finger flow (fingered pattern) in sandy textured soils. This last spontaneous preferential flow cannot be described by the standard Richards equation. Cueto-Felgueroso and Juanes proposed recently a phase field model in order to take into account a macroscopic surface tension effect at the front [1]. Their model simulates successfully the interface instability of an advancing front. We aim at simulating and understanding front instability passing a textural soil discontinuity for which the finger flow is particularly visible. We consider sand layers with different characteristics such as granulometry. Moreover, the wettability is taken into account by adding a hydrophobic term in the free energy of the phase field model. The hydrophobicity part is not only relevant for repellent soil but also to model the ultra-thin films [2]. Therefore, in our framework, this may have an influence at the front because the water saturation is nearly zero. Such a wettability influence on infiltration in porous media has recently been measured in [3]. The governing equation is analogous to the lubrication equation for which we pointed out the specific numerical difficulties [4]. A numerical code to perform time integration and bifurcation analysis was developed in [4] allowing to determine the onset of instability and its resulting dynamics in the parameter space [5]. We compute the parameter range for which the front stops when reaching the layers interface. As in [4], there is two main mechanisms that allow water to cross over the discontinuity. A first mechanism, called «depinning», leads to an intermittent flow and the second one, to a front instability and then to a finger flow. There is a parameter domain where both instabilities are present leading to a complex spatio-temporal dynamics. Finally, it is noteworthy that the wettability
Radius of Curvature of the Cornea--An Experiment for the Life-Science Physics Lab
ERIC Educational Resources Information Center
MacLatchy, C. S.
1978-01-01
Presents a quantitative laboratory experiment in geometrical optics. It involves the student in the measurement of the radius of curvature of the cornea and is based on an old method devised by Kohlrausch in 1839. (Author/GA)
A non-differential elastomer curvature sensor for softer-than-skin electronics
NASA Astrophysics Data System (ADS)
Majidi, C.; Kramer, R.; Wood, R. J.
2011-10-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.
Defect Motifs for Constant Mean Curvature Surfaces
NASA Astrophysics Data System (ADS)
Kusumaatmaja, Halim; Wales, David J.
2013-04-01
The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.
Induced gravity from curvature density preserving diffeomorphisms
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-08-01
We construct not only an induced gravity model with restricted diffeomorphisms, that is, transverse diffeomorphisms that preserve the curvature density, but also with full diffeomorphisms. By solving the equations of motion, it turns out that these models produce Einstein's equations with a certain Newton constant in addition to the constraint for the curvature density. In the limit of the infinite Newton constant, the models give rise to induced gravity. Moreover, we discuss cosmological solutions on the basis of the gravitational models at hand.
Curvature tensors unified field equations on SEXn
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; Lee, Il Young
1988-09-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.
The role of curvature in entanglement
NASA Astrophysics Data System (ADS)
Buck, Gregory
2015-10-01
Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.
Spherical gravitational curvature boundary-value problem
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2016-08-01
Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers
NASA Astrophysics Data System (ADS)
Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.
2016-09-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
What can the observation of nonzero curvature tell us?
NASA Astrophysics Data System (ADS)
Guth, Alan H.; Nomura, Yasunori
2012-07-01
The eternally inflating multiverse provides a consistent framework to understand coincidences and fine-tuning in the Universe. As such, it provides the possibility of finding another coincidence: if the amount of slow-roll inflation in our past was only slightly more than the anthropic threshold, then spatial curvature might be measurable. We study this issue in detail, particularly focusing on the question: “If future observations reveal nonzero curvature, what can we conclude?” We find that whether an observable signal arises or not depends crucially on three issues: the cosmic history just before the observable inflation, the measure adopted to define probabilities in the eternally inflating spacetime, and the sign and strength of the correlation between the tunneling and slow-roll parts of the potential. We find that if future measurements find positive curvature at the level Ωk≲-10-4, then the framework of the eternally inflating multiverse, as currently understood, is excluded with high significance. If the measurements instead reveal negative curvature at the level Ωk≳10-4, then we can conclude that (1) diffusive (new or chaotic type) eternal inflation did not occur in our immediate past; (2) our pocket universe was born by a bubble nucleation; (3) the probability measure does not reward volume increase; and (4) the origin of the observed slow-roll inflation is an accidental feature of the potential, presumably selected by anthropic conditions, and not due to a theoretical mechanism ensuring the flatness of the potential. Discovery of Ωk≳10-4 would also give us nontrivial information about the correlation between the tunneling and slow-roll parts of the potential; for example, a strong correlation favoring large N would be ruled out in certain measures. We also address the question of whether the current constraint on Ωk is consistent with multiverse expectations; we find the answer to be yes, except that current observations, for many choices
A high-sensitive fiber curvature sensor using twin core fiber-based filter
NASA Astrophysics Data System (ADS)
Yin, G. L.; Lou, S. Q.; Lu, W. L.; Wang, X.
2014-04-01
A high-sensitive fiber curvature sensor is proposed and experimentally demonstrated in a large measurement range by using a twin core fiber (TCF)-based filter as sensor head. Applying the coupled-mode theory and equivalent refractive index model, we theoretically anticipate the "blue shift" of the transmission dips of the TCF-based filter when sensor head is bent. Experimentally, we fabricate an 86.9 mm TCF-based filter with a free spectral range of 49 nm and characterize its curvature performance by measuring the wavelength shift. A nonlinear "blue shift" of the wavelength is observed when we increase the curvature. The relationship between wavelength shift and curvature is a second-order polynomial function. In the range from 0 to 9.30 m-1, the maximum sensitivity is up to -14.7 nm/m-1. The measurement range can be further increased by selecting a shorter TCF.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Evans, M. L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Cosmic acceleration from matter-curvature coupling
NASA Astrophysics Data System (ADS)
Zaregonbadi, Raziyeh; Farhoudi, Mehrdad
2016-10-01
We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.
Nonlinear diffusion filtering influenced by mean curvature
NASA Astrophysics Data System (ADS)
Kollár, Michal; Mikula, Karol; Čunderlík, Róbert
2016-04-01
The presentation introduces a new nonlinear diffusion filtering method on closed surfaces such as a sphere, ellipsoid or the Earth's surface. Our new model extends the regularized surface Perona-Malik model by including a local extrema detector based on a mean curvature of processed data. The model is thus represented by a nonlinear diffusion equation which filters noise while preserves main edges, local extrema and details important for a correct interpretation of data. We define a surface finite-volume method to approximate numerically the nonlinear parabolic partial differential equation on a closed surface. The closed surface is approximated by a polyhedral surface created by planar triangles representing subdivision of an initial icosahedron grid and we use a piece-wise linear approximation of a solution in space and the backward Euler time discretization. Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements, namely the GOCE satellite observations. They aim to point out a main advantage of the new nonlinear model which, on the contrary of Perona-Malik model, preserves local extremal values of filtered data.
Laboratory experiments on fronts
NASA Astrophysics Data System (ADS)
Chia, F.; Griffiths, R. W.; Linden, P. F.
We describe a laboratory model of an upwelling front in a two-layer stratification. In the model the interface between the two layers slopes upwards toward a vertical boundary (or coastline) and can intersect the free surface to produce a front. Fluid motion in each layer is density driven and, in the undisturbed state, is in quasi-geostrophic balance. The front is observed to be unstable to (ageostrophic) disturbances with an along-front wavelength proportional to the Rossby radius of deformation. At very large amplitudes these unstable waves form closed circulations. However, in contrast to the behaviour of fronts far from vertical boundaries, where cyclone-anticyclone vortex pairs are formed, the presence of the coastline inhibits formation of anticyclonic eddies in the upper layer and enhances cyclonic rings of upper layer fluid which lie above cyclonic eddies in the lower layer. The cyclones move away from the vertical boundary and (as is also the case when no vertical boundary is present) they appear at the surface as eddies containing lower layer fluid on the seaward side of the mean frontal position.
DSD front models: nonideal explosive detonation in ANFO
Bdzil, J. B.; Aslam, T. D.; Catanach, R. A.; Hill, L. G.; Short, M.
2002-01-01
The DSD method for modeling propagating detonation is based on three elements: (1) a subscale theory of multi-dimensional detonation that treats the detonation as a front whose dynamics depends only on metrics of the front (such as curvature, etc.), (2) high-resolution, direct numerical simulation of detonation using Euler equation models, and (3) physical experiments to characterize multi-dimensional detonation propagation in real explosives and to provide data to calibrate DSD front models. In this paper, we describe our work on elements (1) and (3), develop a DSD calibration for the nonideal explosive ANFO and then demonstrate the utility of the ANFO calibration, with an example 3D detonation propagation calculation.
Experimental reconstruction of the Berry curvature in a Floquet Bloch band
NASA Astrophysics Data System (ADS)
Fläschner, N.; Rem, B. S.; Tarnowski, M.; Vogel, D.; Lühmann, D.-S.; Sengstock, K.; Weitenberg, C.
2016-05-01
Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.
Flame front configuration of turbulent premixed flames
Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke
1998-02-01
The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.
Hydrophobic surfactant proteins strongly induce negative curvature.
Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B
2015-07-01
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706
Strong curvature effects in Neumann wave problems
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-15
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature
Chavarha, Mariya; Loney, Ryan W.; Rananavare, Shankar B.; Hall, Stephen B.
2015-01-01
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706
Turbulent boundary layers with large streamline curvature effects
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1978-01-01
It has been shown that turbulent flows are greatly affected by streamline curvature. In spite of this and the fact that curved shear flows are frequently encountered in engineering applications, the predictions of such flows are relatively less developed than the predictions of two-dimensional plane flows. Recently, various attempts were made by different investigators; however, their methods are only successful when the product of the boundary layer thickness to the local surface curvature is approximately 0.05. The present paper investigates the more general case where this product is in the range from 0.1 to 0.5. Results show that the calculated boundary-layer characteristics for arbitrary free stream conditions are in good agreement with measurements.
Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.
Bradley, Ryan P; Radhakrishnan, Ravi
2016-08-30
We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function. PMID:27531962
A new algorithm for evaluating 3D curvature and curvature gradient for improved fracture detection
NASA Astrophysics Data System (ADS)
Di, Haibin; Gao, Dengliang
2014-09-01
In 3D seismic interpretation, both curvature and curvature gradient are useful seismic attributes for structure characterization and fault detection in the subsurface. However, the existing algorithms are computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study presents new and robust volume-based algorithms that evaluate both curvature and curvature gradient attributes more accurately and effectively. The algorithms first instantaneously fit a local surface to seismic data and then compute attributes using the spatial derivatives of the built surface. Specifically, the curvature algorithm constructs a quadratic surface by using a rectangle 9-node grid cell, whereas the curvature gradient algorithm builds a cubic surface by using a diamond 13-node grid cell. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new curvature and curvature gradient algorithms for characterizing faults and fractures in fractured reservoirs.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement. PMID:27192275
Curvature constraints from the causal entropic principle
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-07-15
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
NASA Astrophysics Data System (ADS)
The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.
Nanoparticle Oscillations and Fronts
Lagzi, Istvan; Kowalczyk, Bartlomiej; Wang, Dawei; Grzybowski, Bartosz A.
2010-09-30
Chemical oscillations can be coupled to the dynamic self-assembly of nanoparticles. Periodic pH changes translate into protonation and deprotonation of the ligands that stabilize the nanoparticles, thus altering repulsive and attractive interparticle forces. In a continuous stirred-tank reactor, rhythmic aggregation and dispersion is observed; in spatially distributed media, propagation of particle aggregation fronts is seen.
Anomalous Coupling Between Topological Defects and Curvature
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo; Turner, Ari M.
2004-11-01
We investigate a counterintuitive geometric interaction between defects and curvature in thin layers of superfluids, superconductors, and liquid crystals deposited on curved surfaces. Each defect feels a geometric potential whose functional form is determined only by the shape of the surface, but whose sign and strength depend on the transformation properties of the order parameter. For superfluids and superconductors, the strength of this interaction is proportional to the square of the charge and causes all defects to be repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals in the one elastic constant approximation, charges between 0 and 4π are attracted by regions of positive curvature while all other charges are repelled.
Total positive curvature of circular DNA.
Bohr, Jakob; Olsen, Kasper W
2013-11-01
The properties of double-stranded DNA and other chiral molecules depend on the local geometry, i.e., on curvature and torsion, yet the paths of closed chain molecules are globally restricted by topology. When both of these characteristics are to be incorporated in the description of circular chain molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature are presented.
Total positive curvature of circular DNA
NASA Astrophysics Data System (ADS)
Bohr, Jakob; Olsen, Kasper W.
2013-11-01
The properties of double-stranded DNA and other chiral molecules depend on the local geometry, i.e., on curvature and torsion, yet the paths of closed chain molecules are globally restricted by topology. When both of these characteristics are to be incorporated in the description of circular chain molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature are presented.
Extrinsic and intrinsic curvatures in thermodynamic geometry
NASA Astrophysics Data System (ADS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-08-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Substrate Curvature Gradient Drives Rapid Droplet Motion
NASA Astrophysics Data System (ADS)
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-01
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
Substrate curvature gradient drives rapid droplet motion.
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-11
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces. PMID:25062213
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Scaling of curvature in subcritical gravitational collapse
NASA Astrophysics Data System (ADS)
Garfinkle, David; Duncan, G. Comer
1998-09-01
We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.
Equal-Curvature X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Zhang, William
2002-01-01
We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.
Severe Penile Curvature following Otis Urethrotomy.
Karaguzel, Ersagun; Gur, Metin; Tok, Dogan S; Kazaz, Ilke O; Eren, Huseyin; Kutlu, Omer; Ozgur, Guner K
2013-01-01
Urethral stricture is a common urological pathology with a high recurrence rate after treatment. Urethral manipulations are among its main causes. In this paper, urethral stricture developed secondary to urethral catheterization and was treated with cold-knife internal urethrotomy and the Otis urethrotomy procedure. During the follow-up period, severe ventral penile curvature preventing sexual intercourse developed due to fibrosis of the corpus spongiosum and tunica albuginea of the penis. This ventral penile curvature was corrected with a separate operation using a tunica vaginalis flap harvested from the left scrotum.
9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY ...
9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY (LEFT) AND BLANK WALL (CENTER) CORRESPONDING TO LOCATION OF INTERIOR VAULTS. VIEW TO SOUTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID
35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...
35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA
4. BARRACKS, WITH PARKING LOT IN FRONT, FRONT AND RIGHT ...
4. BARRACKS, WITH PARKING LOT IN FRONT, FRONT AND RIGHT SIDES, LOOKING SOUTH. - NIKE Missile Base SL-40, Barracks No. 2, North end of base, southeast of Barracks No. 1 & northeast of Mess Hall, Hecker, Monroe County, IL
1. BARRACKS, WITH PARKING LOT IN FRONT, FRONT, LOOKING SOUTHWEST. ...
1. BARRACKS, WITH PARKING LOT IN FRONT, FRONT, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Barracks No. 2, North end of base, southeast of Barracks No. 1 & northeast of Mess Hall, Hecker, Monroe County, IL
3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side ...
3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side elevation. Note gasoline sign post added. Flush store window not altered, 1900 clapboard siding and panelling remaining. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD
Wave-front analysis of personal eye protection.
Eppig, Timo; Zoric, Katja; Speck, Alexis; Zelzer, Benedikt; Götzelmann, Jens; Nagengast, Dieter; Langenbucher, Achim
2012-07-30
Shack-Hartmann wave-front sensing has been successfully applied to many fields of optical testing including the human eye itself. We propose wave-front measurement for testing protective eye wear for production control and investigation of aberrations. Refractive power data is derived from the wave-front data and compared to a subjective measurement technique based on a focimeter. Additional image quality classification was performed with a multivariate model using objective parameters to resample a subjectively determined visual quality. Wave-front measurement advances optical testing of protective eye wear and may be used for objective quality control.
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
Baumgart, Tobias; Capraro, Benjamin R; Zhu, Chen; Das, Sovan L
2011-01-01
Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.
New Model-independent Method to Test the Curvature of the Universe
NASA Astrophysics Data System (ADS)
Yu, H.; Wang, F. Y.
2016-09-01
We propose a new model-independent method to test the cosmic curvature by comparing the proper distance and transverse comoving distance. Using the measurements of the Hubble parameter H(z) and the angular diameter distance d A , the cosmic curvature parameter {{{Ω }}}K is constrained to be ‑0.09 ± 0.19, which is consistent with a flat universe. We also use a Monte Carlo simulation to test the validity and efficiency, and find that our method can give a reliable and efficient constraint on cosmic curvature. Compared with other model-independent methods testing the cosmic curvature, our method can avoid some drawbacks and give a better constraint.
Azhgirey, L.S.; Afanasiev, S.V.; Zhmyrov, V.N.; Zolin, L.S.; Ivanov, V.I.; Isupov, A.Yu.; Ladygin, V.P.; Litvinenko, A.G.; Peresedov, V.F.; Khrenov, A.N.; Yudin, N.P.
2005-12-01
New data on the vector (A{sub y}) and tensor (A{sub yy}) analyzing powers for the reaction {sup 9}Be (d, p)X at a primary deuteron momentum of 5 GeV/c for a proton emission angle of 178 mrad are obtained by using the synchrophasotron of the Joint Institute for Nuclear Research (JINR, Dubna). The experimental data on A{sub yy} are analyzed within the approach based on light-front dynamics, the relativistic wave function obtained by Karmanov and his colleagues being used for the deuteron. It is shown that, in contrast to what one has from calculations with standard nonrelativistic deuteron wave functions, all relevant data can be explained in this approximation without resort to additional degrees of freedom.
NASA Astrophysics Data System (ADS)
Marchetto, M.; Baartman, R. A.; Laxdal, R. E.
2014-01-01
The ARIEL project at TRIUMF will greatly expand the variety and availability of radioactive ion beams (RIBs) (Laxdal, Nucl Inst Methods Phys Res B 204:400-409, 2003). The ARIEL front end connects the two ARIEL target stations to the existing ISAC facility to expand delivery to two and eventually three simultaneous RIB beams with up to two simultaneous accelerated beams (Laxdal et al. 2008). The low-energy beam transport lines and mass separators are designed for maximum flexibility to allow a variety of operational modes in order to optimize the radioactive ion beam delivery. A new accelerator path is conceived for high mass delivery from an EBIS charge state breeder. The front-end design utilizes the experience gained in 15 years of ISAC beam delivery.
Variable-curvature mirrors for the VLTI
NASA Astrophysics Data System (ADS)
Ferrari, Marc; Derie, Frederic
1998-07-01
A variable curvature mirror is a powerful device that can increase the field of view of optical interferometers. Such a mirror has being developed for the coherent combined focus of the European Southern Observatory Very Large Telescope Interferometer. The variable focal length permits positioning of the pupil image of an individual telescope at a precise location after the delay-line. This property is necessary to exactly remap homothetically the output pupil configuration at the image beam combiner. Given the large zoom range that is needed in the delay line, when the mirror is not stressed the optical surface is a plane while it is convex with f/2.5 at maximum stress. The mirror itself is a very small stainless steel meniscus, with a 300 micrometers thickness, because only the high elasticity of such material allows to achieve the full domain of curvature. The thickness distribution of the meniscus is calculated using elasticity theory in the case of a large deformation. The realization of this micro-optic active device requires advanced techniques in optical fabrication and in particular high precision manufacturing with numerical command lathe. This article also presents the testing of this highly variable curvature mirror and the surface quality obtained within the full curvature range.
Photon Drag Effect due to Berry Curvature
NASA Astrophysics Data System (ADS)
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-01
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.
Photon Drag Effect due to Berry Curvature.
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-19
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results. PMID:27588858
Curvature instability in passive diffractive resonators.
Tlidi, M; Vladimirov, A G; Mandel, Paul
2002-12-01
We study the stability of localized structures in a passive optical bistable system. We show that there is a critical value of the input field intensity above which localized structures are unstable with respect to a curvature instability. Beyond this instability boundary, a transition from the localized branch of solutions to stable hexagons is found. PMID:12485009
Strong curvature singularities and causal simplicity
Krolak, A. )
1992-02-01
Techniques of differential topology in Lorentzian manifolds developed by Geroch, Hawking, and Penrose are used to rule out a class of locally naked strong curvature singularities in strongly causal space-times. This result yields some support to the validity of Penrose's strong cosmic censorship hypothesis.
Riemann curvature of a boosted spacetime geometry
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
Constraining inverse curvature gravity with supernovae
Mena, Olga; Santiago, Jose; Weller, Jochen; /University Coll., London /Fermilab
2005-10-01
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.
NASA Astrophysics Data System (ADS)
Weissmann, Haim; Shnerb, Nadav M.; Kessler, David A.
2016-01-01
The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient.
Radiative thermal conduction fronts
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.
1990-01-01
The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.
2010-03-01
CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.
Conversion of radius of curvature to power (and vice versa)
NASA Astrophysics Data System (ADS)
Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.
2015-09-01
Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.
THERMAL FRONTS IN SOLAR FLARES
Karlický, Marian
2015-12-01
We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.
Thermal Fronts in Solar Flares
NASA Astrophysics Data System (ADS)
Karlický, Marian
2015-12-01
We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.
Variable Curvature Mirrors for ELT Laser Guide Star refocusing systems
NASA Astrophysics Data System (ADS)
Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Madec, Fabrice; Le Mignant, David; Cuby, Jean-Gabriel
2011-09-01
The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, LGS defocusing is one of the system issues that can be tackled using active refocusing mirrors such as Variable Curvature Mirrors (VCM). Indeed, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope, and induces a large defocusing at the LGS wave-front sensor focal plane. To compensate for that, we propose an original concept including a VCM specifically designed to keep a focused spot on the wave-front sensor: the mirror is made of a thin meniscus bend using a pressure applied on its back face. Due to the large defocusing, the LGS-VCM must be able to change its shape from F/12.5 to F/5, leading to more than 1 mm sag. The VCM benefits of a specific shape with a variable radial thickness distribution, allowing keeping an optical quality better than λ/5 over this very large range of deformation. The work presented here details the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Two prototypes have been manufactured to compare the real behaviour of the mirror and the simulations data. Results obtained on the prototypes show that the deformation of the VCM is very close to the simulation, and leads to a realistic concept.
How to calculate normal curvatures of sampled geological surfaces
NASA Astrophysics Data System (ADS)
Bergbauer, Stephan; Pollard, David D.
2003-02-01
Curvature has been used both to describe geological surfaces and to predict the distribution of deformation in folded or domed strata. Several methods have been proposed in the geoscience literature to approximate the curvature of surfaces; however we advocate a technique for the exact calculation of normal curvature for single-valued gridded surfaces. This technique, based on the First and Second Fundamental Forms of differential geometry, allows for the analytical calculation of the magnitudes and directions of principal curvatures, as well as Gaussian and mean curvature. This approach is an improvement over previous methods to calculate surface curvatures because it avoids common mathematical approximations, which introduce significant errors when calculated over sloped horizons. Moreover, the technique is easily implemented numerically as it calculates curvatures directly from gridded surface data (e.g. seismic or GPS data) without prior surface triangulation. In geological curvature analyses, problems arise because of the sampled nature of geological horizons, which introduces a dependence of calculated curvatures on the sample grid. This dependence makes curvature analysis without prior data manipulation problematic. To ensure a meaningful curvature analysis, surface data should be filtered to extract only those surface wavelengths that scale with the feature under investigation. A curvature analysis of the top-Pennsylvanian horizon at Goose Egg dome, Wyoming shows that sampled surfaces can be smoothed using a moving average low-pass filter to extract curvature information associated with the true morphology of the structure.
Curvature Elasticities of the Micellar Nematics.
NASA Astrophysics Data System (ADS)
Zhou, E.
This dissertation is concerned with the curvature elastic and viscous properties of two micellar nematic systems. The mixtures of the first system had a nematic phase (N_{rm L}) with a second order transition to a lamellar smectic phase. The second system has three different nematic phases, two uniaxial phases (N_{rm L} and N_{rm C}) and an intermediate biaxial nematic phase (N_ {rm bx}). The experimental procedures used in this research are modifications of the conventional method which is based on magnetic field induced deformations of surface aligned films. Modifications were required for measurements close to the nematic-lamellar smectic transition, where the elastic constants assume very large values, and for the biaxial nematic phase and the adjacent higher temperature uniaxial phase, where the surface by itself does not impose a homogeneous alignment. A theoretical study of limiting cases, of small deformations in general and of small deformations at high magnetic fields, proved useful to select the proper experimental conditions and to evaluate the data. The nematic-lamellar smectic transition was studied on mixtures of decylammoniumchloride (DACl), ammoniumchloride, and water. The bend elastic coefficient and the rotational viscosity were found to vary over more than three orders of magnitude due to an exponential divergence at the transition. We obtained an exponent of 1.07 +/- 0.05 for a weight ratio of DACl/NHL_4Cl = 20, and an exponent of 0.87 +/- 0.02 for a weight ratio of 10, but an unexpected thermal hysteresis interferes with a reliable determination of the critical properties. The three different nematic phases were studied on potassium laurate in mixtures with 1-decanol and D _2O. The elastic constants for bend and splay in the N_{rm L} phase are nearly equal. They are about one order of magnitude smaller than the lowest values measured in the nematic phase of the DACl system. Because of surface alignment problems, only one elastic constant could
The influence of pipe organ reed curvature on tone quality.
Plitnik, George R; Angster, Judit
2012-11-01
Although organ flue pipes have been widely studied, the same claim cannot be made for pipe organ reed stops. Given certain design constraints, such as the type of reed stop being voiced and the desired tone quality, the reed voicer must use consummate skill to curve the reed tongue so as to produce the best and most stable tone as well as to guarantee that each pipe blends with its neighbors. The amount and type of curve given to a reed tongue influences not only the harmonic structure of the steady-state sound but also the attack. There are two fundamentally different types of curvature that can be given to a reed tongue, the trompette (chorus reed) curve (which gives a bright sound) and the smooth-toned curve employed for clarinet pipes. This study investigated the effect of reed curvature on the vibration and tone (as assessed by professionals) on reed tongues of both types. Two F2 (8'F, 87.3 Hz) pipes (a trompette and a clarinet) were constructed and voiced with differently curved tongues to produce a variety of tones. The vibration of the reed tongue was measured under typical conditions by laser vibrometer; the pressure waves in the boot and in the shallot were measured by means of one-quarter inch microphones, and the pipe's sound was recorded at the egress. By performing various measurements simultaneously, phase differences were also determined, the extreme sensitivity of tone to reed curvature was demonstrated, and a recently proposed theory of reed vibration was shown to be more accurate than the standard model. PMID:23145630
Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors
NASA Astrophysics Data System (ADS)
Basavaraju, Roopashree M.; Akondi, Vyas; Weddell, Stephen J.; Budihal, Raghavendra Prasad
2014-02-01
In comparison with a Hartmann Shack wavefront sensor, the curvature wavefront sensor is known for its higher sensitivity and greater dynamic range. The aim of this study is to numerically investigate the merits of using a curvature wavefront sensor, in comparison with a Hartmann Shack (HS) wavefront sensor, to analyze aberrations of the myopic eye. Aberrations were statistically generated using Zernike coefficient data of 41 myopic subjects obtained from the literature. The curvature sensor is relatively simple to implement, and the processing of extra- and intra-focal images was linearly resolved using the Radon transform to provide Zernike modes corresponding to statistically generated aberrations. Simulations of the HS wavefront sensor involve the evaluation of the focal spot pattern from simulated aberrations. Optical wavefronts were reconstructed using the slope geometry of Southwell. Monte Carlo simulation was used to find critical parameters for accurate wavefront sensing and to investigate the performance of HS and curvature sensors. The performance of the HS sensor is highly dependent on the number of subapertures and the curvature sensor is largely dependent on the number of Zernike modes used to represent the aberration and the effective propagation distance. It is shown that in order to achieve high wavefront sensing accuracy while measuring aberrations of the myopic eye, a simpler and cost effective curvature wavefront sensor is a reliable alternative to a high resolution HS wavefront sensor with a large number of subapertures.
Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton
Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia
2016-01-01
Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896
Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex.
Noriega, Arturo; Tocino, Angel; Cervantes, Emilio
2009-03-15
Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.
Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators
NASA Astrophysics Data System (ADS)
Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung; Liu, Kai; You, Zheng; Yao, Jie; Wu, Junqiao
2016-07-01
Due to its thermally driven structural phase transition, vanadium dioxide (VO2) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO2 actuators severely obstructs the actuation performance and application. Here, we introduce a "seesaw" method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO2 actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO2 actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This "seesaw" method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.
A geometric construction of the Riemann scalar curvature in Regge calculus
NASA Astrophysics Data System (ADS)
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel; Pitoňák, Martin
2016-05-01
In this study we assume that a gravitational curvature tensor, i.e. a tensor of third-order directional derivatives of the Earth's gravitational potential, is observable at satellite altitudes. Such a tensor is composed of ten different components, i.e. gravitational curvatures, which may be combined into vertical-vertical-vertical, vertical-vertical-horizontal, vertical-horizontal-horizontal and horizontal-horizontal-horizontal gravitational curvatures. Firstly, we study spectral properties of the gravitational curvatures. Secondly, we derive new quadrature formulas for the spherical harmonic analysis of the four gravitational curvatures and provide their corresponding analytical error models. Thirdly, requirements for an instrument that would eventually observe gravitational curvatures by differential accelerometry are investigated. The results reveal that measuring third-order directional derivatives of the gravitational potential imposes very high requirements on the accuracy of deployed accelerometers which are beyond the limits of currently available sensors. For example, for orbital parameters and performance similar to those of the GOCE mission, observing third-order directional derivatives requires accelerometers with the noise level of {˜}10^{-17} {m} {s}^{-2} Hz^{-1/2}.
A preliminary ultrasound study of velar fronting
NASA Astrophysics Data System (ADS)
Wodzinski, Sylvie M.; Frisch, Stefan A.
2003-10-01
The purpose of this study is to (1) evaluate the effectiveness of ultrasound imaging to measure velar consonant closure location, and (2) conduct a thorough study of velar fronting by measuring several productions of velar stops in the context of every English vowel. Word onset velar stops were measured in both words (CV or CVC) and nonwords (VCV) within a carrier phrase. Other coarticulatory influences were minimized by using words with no coda or labial coda consonants (e.g., ``Say a gap again,'' ``Say /oIkoI/ again''). Measurements were made at the point of maximal closure. Closure location was measured using the radial angle from the center of the ultrasound probe to the center of the velar closure. Pilot data for one subject has been analyzed to date. Closure location appears consistent across all central and back vowels. For front vowels, the degree of fronting of the velar appears to be correlated with the frontness of the vowel. Measures of closure location for diphthongs followed the back vowel pattern in the word targets. For nonwords, the closure location was influenced by the preceding diphthong offset quality and the following diphthong onset quality. Theoretical implications for the phonetics/phonology interface will be discussed.
2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY
Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Spies, M.; Lupien, V.
2009-03-03
In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.
Information content in F (R ) brane models with nonconstant curvature
NASA Astrophysics Data System (ADS)
Correa, R. A. C.; Moraes, P. H. R. S.; Dutra, A. de Souza; da Rocha, Roldão
2015-12-01
In this work we investigate the entropic information measure in the context of braneworlds with nonconstant curvature. The braneworld entropic information is studied for gravity modified by the square of the Ricci scalar, besides the usual Einstein-Hilbert term. We showed that the minimum value of the brane configurational entropy provides a stricter bound on the parameter that is responsible for the F (R ) model differing from the Einstein-Hilbert standard one. Our results are moreover consistent to a negative bulk cosmological constant.
Vectorial detection of sub-microscale capillary curvature by laser beam profile
NASA Astrophysics Data System (ADS)
Verma, Gopal; Singh, Kamal P.
2015-10-01
We demonstrate a simple and non-invasive optical technique to detect direction and magnitude of long-range, sub-microscale capillary curvature of fluid interfaces in various situations. By analyzing magnitude and direction of the distorted spatial profile of the laser beam, following its weak Fresnel's reflection from the air-water interface, ultra-low curvature of 0.1 μm-1 caused by dipped slides, glass tubes, and microscopic twisted silk fibers was measured up to six capillary lengths away from the object. The flexibility of this technique allows us to measure curvature of remotely placed fluid-fluid interfaces and interaction between capillary curves of multiple objects. The high sensitivity of our technique is demonstrated in measuring magnetic susceptibility of water and the full spatial profile of deformation under weak magnetic field. This technique might find applications in precision measurements in optofluidics and interface physics.
Glimm, J.; Grove, J.W.; Li, X.; Zhao, N.
1999-04-01
A new and simplified front tracking algorithm has been developed as an aspect of the extension of this algorithm to three dimensions. Here the authors emphasize two main results: (1) a simplified description of the microtopology of the interface, based on interface crossings with cell block edges, and (2) an improved algorithm for the interaction of a tracked contact discontinuity with an untracked shock wave. For the latter question, they focus on the post interaction jump at the contact, which is a purely 1D issue. Comparisons to other methods, including the level set method, are included.
Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.
2012-01-15
Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.
Streamline curvature in supersonic shear layers
NASA Technical Reports Server (NTRS)
Kibens, V.
1992-01-01
Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.
Cosmological signatures of anisotropic spatial curvature
NASA Astrophysics Data System (ADS)
Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Coarse-grained modeling of DNA curvature
NASA Astrophysics Data System (ADS)
Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.
2014-10-01
The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.
Space-time curvature and cosmology
NASA Astrophysics Data System (ADS)
Nurgaliev, I. S.; Ponomarev, V. N.
1982-10-01
The possibility is considered of obtaining a steady-state cosmological solution in the framework of the Einstein-Cartan theory. It is found that the Einstein-Cartan equations without the cosmological constant admit a solution in the form of the static de Sitter metric for a specific value of the spin-spin gravitational interaction constant, whose introduction is required by gauge theory. It is shown that the steady-state solution might serve as a model for the pre-Friedmann stage of the expansion of the universe, when the spin-curvature interaction was comparable to the interaction between space-time curvature and energy-momentum. A value of about 10 to the -20th is obtained for the spin-spin interaction constant in the case where the de Sitter stage occurs at quantum densities (10 to the 94th g/cu cm).
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
Transformation optics, curvature and beyond (Conference Presentation)
NASA Astrophysics Data System (ADS)
McCall, Martin W.
2016-04-01
Although the transformation algorithm is very well established and implemented, some intriguing questions remain unanswered. 1) In what precise mathematical sense is the transformation optics algorithm `exact'? The invariance of Maxwell's equations is well understood, but in what sense does the same principle not apply to acoustics (say)? 2) Even if the fields are transformed in a way that apparently mimic vacuum perfectly, it is easy to construct very simple examples where the impedance of the transformed medium is no longer isotropic and homogeneous. This would seem to imply a fundamental shortcoming in any claim that electromagnetic cloaking has been reduced to technology. 3) Transformations are known to exist that introduce a discrepancy between the Poynting vector and the wave-vector. Does this distinction carry any physical significance? We have worked extensively on understanding a commonality between transformation theories that operates at the level of rays - being interpreted as geodesics of an appropriate manifold. At this level we now understand that the *key* problem underlying all attempts to unify the transformational approach to disparate areas of physics is how to relate the transformation of the base metric (be it Euclidean for spatial transformation optics, or Minkowskian for spacetime transformation optics) to the medium parameters of a given physical domain (e.g. constitutive parameters for electromagnetism, bulk modulus and mass density for acoustics, diffusion constant and number density for diffusion physics). Another misconception we will seek to address is the notion of the relationship between transformation optics and curvature. Many have indicated that transformation optics evinces similarities with Einstein's curvature of spacetime. Here we will show emphatically that transformation optics cannot induce curvature. Inducing curvature in an electromagnetic medium requires the equivalent of a gravitational source. We will propose a scheme
Curvature continuity in arbitrary bicubic Bezier patches
NASA Technical Reports Server (NTRS)
Roach, Robert L.
1990-01-01
Two methods are outlined for imposing interpatch curvature continuity in existing Bezier bicubic patch surfaces. Each method assumes that coordinates of the corners of the patches can not be altered but the interior Bezier control point can. Each method also preserves outer edge slope and outer corner twist derivatives. Neither method requires intersection or C0 continuity nor slope or C1 continuity at the start. A computer program for each method is given in the appendices.
Pennington, D; Jovanovic, I; Comaskey, B J
2001-02-01
The next generation of Petawatt class lasers will require the development of new laser technology. Optical parametric chirped pulse amplification (OPCPA) holds a potential to increase the peak power level to >10 PW with existing grating technology through ultrashort pulses. Furthermore, by utilizing a new type of front-end system based on optical parametric amplification, pulses can be produced with substantially higher contrast than with Ti:sapphire regenerative amplifier technology. We performed extensive study of OPCPA using a single crystal-based OPA. We developed a replacement for Ti:sapphire regenerative amplifier for high peak power lasers based on OPCPA, with an output of 30 mJ, at 10 Hz repetition rate and 16.5 nm spectral bandwidth. We developed a 3D numerical model for OPCPA and we performed a theoretical study of influences of pump laser beam quality on optical parametric amplification. Our results indicate that OPCPA represents a valid replacement for Ti:sapphire in the front end of high energy short pulse lasers.
Roediger, E.; Kraft, R. P.; Forman, W. R.; Nulsen, P. E. J.
2013-02-10
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities {approx}> 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.
Superintegrable systems on spaces of constant curvature
Gonera, Cezary Kaszubska, Magdalena
2014-07-15
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
Price, Stephen
2009-01-01
The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite
Stable hypersurfaces with zero scalar curvature in Euclidean space
NASA Astrophysics Data System (ADS)
Alencar, Hilário; do Carmo, Manfredo; Neto, Gregório Silva
2016-10-01
In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.
Distributed mean curvature on a discrete manifold for Regge calculus
NASA Astrophysics Data System (ADS)
Conboye, Rory; Miller, Warner A.; Ray, Shannon
2015-09-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.
Determination of biplane geometry and centerline curvature in vascular imaging
NASA Astrophysics Data System (ADS)
Nazareth, Daryl; Hoffmann, Kenneth R.; Walczak, Alan; Dmochowski, Jacek; Guterman, Lee R.; Rudin, Stephen; Bednarek, Daniel R.
2002-05-01
Three-dimensional (3-D) vessel trees can provide useful visual and quantitative information during interventional procedures. To calculate the 3-D vasculature from biplane images, the transformation relating the imaging systems (i.e., the rotation matrix R and the translation vector t) must be determined. We have developed a technique to calculate these parameters, which requires only the identification of approximately corresponding vessel regions in the two images. Initial estimates of R and t are generated based on the gantry angles, and then refined using an optimization technique. The objective function to be minimized is determined as follows. For each endpoint of each vessel in the first image, an epipolar line in the second image is generated. The intersection points between these two epipolar lines and the corresponding vessel centerline in the second image are determined. The vessel arclength between these intersection points is calculated as a fraction of the entire vessel region length in the image. This procedure is repeated for every vessel in each image. The value of the objective function is calculated from the sum of these fractions, and is smallest when the total fractional arclength is greatest. The 3-D vasculature is obtained from the optimal R and t using triangulation, and vessel curvature is then determined. This technique was evaluated using simulated curves and vessel centerlines obtained from clinical images, and provided rotational, magnification and relative curvature errors of 1 degree(s), 1% and 14% respectively. Accurate 3-D and curvature measures may be useful in clinical decision making, such as in assessing vessel tortuousity and access, during interventional procedures.
Jones, L.
1995-01-01
Like the patients, doctors in Sarajevo depend largely on humanitarian aid; everyone in the public sector has worked without pay for almost three years. The hospital is on a front line; yet the psychiatric department continues to function, even conducting large scale studies of psychosocial aspects of war in Bosnia-Hercegovina. The type of inpatient morbidity and treatment patterns have changed. A plethora of psychosocial rehabilitation programmes has emerged, including counselling, drop in centres, and attending to special needs of elderly people, schoolchildren, and women. The most prominent psychological symptoms were exhaustion at the prospect of a third winter of war and bewilderment at the Western stereotype of Bosnians as Muslim fundamentalists. Images p1052-a p1053-a PMID:7728062
Curvature inducing macroion condensation driven shape changes of fluid vesicles.
Sreeja, K K; Ipsen, John H; Sunil Kumar, P B
2015-11-21
We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.
Curvature inducing macroion condensation driven shape changes of fluid vesicles.
Sreeja, K K; Ipsen, John H; Sunil Kumar, P B
2015-11-21
We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations. PMID:26590553
Curvature inducing macroion condensation driven shape changes of fluid vesicles
NASA Astrophysics Data System (ADS)
Sreeja, K. K.; Ipsen, John H.; Sunil Kumar, P. B.
2015-11-01
We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.
Determination of curvature and twist of deformed object by digital holographic interferometry
NASA Astrophysics Data System (ADS)
Quan, C.; Chen, W.; Tay, C. J.
2008-11-01
This paper describes a feasibility study of digital holographic interferometry for the measurement of curvature and twist of a deformed object. Measurement of curvature and twist is an important aspect in experimental mechanics. Numerous methods have been proposed to determine the curvature and twist by using digital shearography. We proposed a novel method to determine curvature and twist based on digital holography (DH) and complex phasor (CP). In the conventional methods, phase difference between the first and second states is obtained directly by digital phase subtraction (DPS) and Fourier transform is then employed to extract phase maps. In this study, CP method is proposed to improve the quality of phase maps corresponding to second-order derivatives. Subsequently, sine/cosine transformation and short time Fourier transform (STFT) are employed to process the wrapped phase maps. An experiment is conducted on a clamped circular plate under a point load at centre. The experimental results show that the proposed method is valid and able to obtain high quality phase maps corresponding to curvature and twist of a deformed object.
NASA Astrophysics Data System (ADS)
Karimi, Davood; Ward, Rabab K.
2016-03-01
Reducing the radiation dose in computed tomography (CT) requires reducing the number or the energy of the photons that pass through the patient's body. An image reconstructed from such noisy or undersampled measurements will contain much noise and artifacts that can significantly reduce the diagnostic value of the image. Effective sinogram denoising or interpolation can reduce these noise and artifacts. In this paper, we present a novel approach to sinogram smoothing and interpolation. The proposed method iteratively estimates the local slope and curvature of the sinogam and forces the sinogram to follow the estimated slope and curvature. This is performed by projection onto the set of constraints that define the slope and the curvature. The constraints on the slope and curvature correspond to very simple convex sets. Projection onto these sets have simple analytical solutions. Moreover, these operations are highly parallelizable because the equations defining the slope and curvature constraints for all the points in a sinogram can be summarized as five convex sets, regardless of the length of the sinogram. We apply the proposed method on simulated and real data and examine its effect on the quality of the reconstructed image. Our results show that the proposed method is highly effective and can lead to a substantial improvement in the quality of the images reconstructed from noisy sinogram measurements. A comparison with the K-SVD denoising algorithm shows that the proposed algorithm achieves better results. We suggest that the proposed method can be a useful tool for low-dose CT.
Experimental study of curvature-driven flute instability in the gas-dynamic trap
Ivanov, A.A.; Anikeev, A.V.; Bagryansky, P.A.; Bocharov, V.N.; Deichuli, P.P.; Karpushov, A.N.; Maximov, V.V.; Pod'minogin, A.A.; Rogozin, A.I.; Salikova, T.V.; Tsidulko, Y.A. )
1994-05-01
A curvature-driven flute instability will be excited in the magnetized plasmas if the magnetic field lines curve toward the entire plasma boundary. Conditions under which it can be effectively stabilized in axisymmetric geometry have been experimentally studied in a gas-dynamic trap (GDT) at Novosibirsk. Flexible design of the experimental device and the availability of neutral beams and ion cyclotron heating enabled the pressure-weighted curvature to be varied over a wide range. The stability limits were thus measured and compared with those predicted by the modified Rosenbluth--Longmire criterion. Characteristics of unstable curvature-driven flute modes were also measured and found to conform to a theory including finite ion Larmor radius (FLR) effects. Stable operation during neutral beam injection was achieved with a cusp end cell, resulting in an increase in [ital T][sub [ital e
The effect of tibial curvature and fibular loading on the tibia index.
Funk, James R; Rudd, Rodney W; Kerrigan, Jason R; Crandall, Jeff R
2004-06-01
The tibia index (TI) is commonly used to predict leg injury based on measurements taken by an anthropomorphic test device (ATD). The TI consists of an interaction formula that combines axial loading and bending plus a supplemental compressive force criterion. Current ATD lower limbs lack geometric biofidelity with regard to tibial curvature and fibular load-sharing. Due to differences in tibial curvature, the midshaft moments induced by axial loading are different in humans and ATDs. Midshaft tibial loading in the human is also reduced by load-sharing through the fibula, which is not replicated in current ATDs. In this study, tibial curvature and fibular load-sharing are quantified through CT imaging and biomechanical testing, and equations are presented to correct ATD measurements to reflect the loading that would be experienced by a human tibia.
FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. ...
FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Junior Officers' Quarters Type, 9-10 Hale Alii Avenue, 1-2 Eighth Street, Pearl City, Honolulu County, HI
Extension of the modal wave-front reconstruction algorithm to non-uniform illumination.
Ma, Xiaoyu; Mu, Jie; Rao, ChangHui; Yang, Jinsheng; Rao, XueJun; Tian, Yu
2014-06-30
Attempts are made to eliminate the effects of non-uniform illumination on the precision of wave-front measurement. To achieve this, the relationship between the wave-front slope at a single sub-aperture and the distributions of the phase and light intensity of the wave-front were first analyzed to obtain the relevant theoretical formulae. Then, based on the principle of modal wave-front reconstruction, the influence of the light intensity distribution on the wave-front slope is introduced into the calculation of the reconstruction matrix. Experiments were conducted to prove that the corrected modal wave-front reconstruction algorithm improved the accuracy of wave-front reconstruction. Moreover, the correction is conducive to high-precision wave-front measurement using a Hartmann wave-front sensor in the presence of non-uniform illumination.
Curvature and shape determination of growing bacteria
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Ranjan; Wingreen, Ned S.
2009-12-01
Bacterial cells come in a variety of shapes, determined by the stress-bearing cell wall. Though many molecular details about the cell wall are known, our understanding of how a particular shape is produced during cell growth is at its infancy. Experiments on curved Escherichia coli grown in microtraps, and on naturally curved Caulobacter crescentus, reveal different modes of growth: one preserving arc length and the other preserving radius of curvature. We present a simple model for curved cell growth that relates these two growth modes to distinct but related growth rules—“hooplike growth” and “self-similar growth”—and discuss the implications for microscopic growth mechanisms.
Negative Gaussian curvature from induced metric changes
NASA Astrophysics Data System (ADS)
Modes, Carl D.; Warner, Mark
2015-07-01
We revisit the light or heat-induced changes in topography of initially flat sheets of a solid that elongate or contract along patterned in-plane director fields. For radial or azimuthal directors, negative Gaussian curvature is generated—so-called "anticones." We show that azimuthal material displacements are required for the distorted state to be stretch free and bend minimizing. The resultant shapes are smooth and asterlike and can become reentrant in the azimuthal coordinate for large deformations. We show that care is needed when considering elastomers rather than glasses, although the former offer huge deformations.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Amplification of curvature perturbations in cyclic cosmology
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-12-15
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe. PMID:26705621
Holographic entropy increases in quadratic curvature gravity
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.
2015-09-01
Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.
Grain boundary curvature and grain growth kinetics with particle pinning
NASA Astrophysics Data System (ADS)
Shahandeh, Sina; Militzer, Matthias
2013-08-01
Second-phase particles are used extensively in design of polycrystalline materials to control the grain size. According to Zener's theory, a distribution of particles creates a pinning pressure on a moving grain boundary. As a result, a limiting grain size is observed, but the effect of pinning on the detail of grain growth kinetics is less known. The influence of the particles on the microstructure occurs in multiple length scales, established by particle radius and the grain size. In this article, we use a meso-scale phase-field model that simulates grain growth in the presence of a uniform pinning pressure. The curvature of the grain boundary network is measured to determine the driving pressure of grain growth in 2D and 3D systems. It was observed that the grain growth continues, even under conditions where the average driving pressure is smaller than the pinning pressure. The limiting grain size is reached when the maximum of driving pressure distribution in the structure is equal to the pinning pressure. This results in a limiting grain size, larger than the one predicted by conventional models, and further analysis shows consistency with experimental observations. A physical model is proposed for the kinetics of grain growth using parameters based on the curvature analysis of the grain boundaries. This model can describe the simulated grain growth kinetics.
Lipid membrane-mediated attraction between curvature inducing objects.
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J
2016-01-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764
Lipid membrane-mediated attraction between curvature inducing objects
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.
2016-01-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
QCD Hamiltonian 'Light-Front Holography'. Light-Front Holography is in fact one of the most remarkable features of the AdS/CFT correspondence. The Hamiltonian equation of motion in the light-front (LF) is frame independent and has a structure similar to eigenmode equations in AdS space. This makes a direct connection of QCD with AdS/CFT methods possible. Remarkably, the AdS equations correspond to the kinetic energy terms of the partons inside a hadron, whereas the interaction terms build confinement and correspond to the truncation of AdS space in an effective dual gravity approximation. One can also study the gauge/gravity duality starting from the bound-state structure of hadrons in QCD quantized in the light-front. The LF Lorentz-invariant Hamiltonian equation for the relativistic bound-state system is P{sub {mu}}P{sup {mu}}|{psi}(P)> = (P{sup +}P{sup -} - P{sub {perpendicular}}{sup 2})|{psi}(P)> = M{sup 2}|{psi}(P)>, P{sup {+-}} = P{sup 0} {+-} P{sup 3}, where the LF time evolution operator P{sup -} is determined canonically from the QCD Lagrangian. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a LF Hamiltonian equation which describes the bound-state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time {tau} = x{sup 0} + x{sup 3}. This allows us to identify the holographic variable z in AdS space with an impact variable {zeta}. The resulting Lorentz-invariant Schroedinger equation for general spin incorporates color confinement and is systematically improvable. Light-front holographic methods were originally introduced by matching the electromagnetic current matrix elements in AdS space with the corresponding expression using LF theory in physical space time. It was also shown that one obtains identical holographic mapping using the matrix elements of the energy-momentum tensor by perturbing
The lemon illusion: seeing curvature where there is none
Strother, Lars; Killebrew, Kyle W.; Caplovitz, Gideon P.
2015-01-01
Curvature is a highly informative visual cue for shape perception and object recognition. We introduce a novel illusion—the Lemon Illusion—in which subtle illusory curvature is perceived along contour regions that are devoid of physical curvature. We offer several perceptual demonstrations and observations that lead us to conclude that the Lemon Illusion is an instance of a more general illusory curvature phenomenon, one in which the presence of contour curvature discontinuities lead to the erroneous extension of perceived curvature. We propose that this erroneous extension of perceived curvature results from the interaction of neural mechanisms that operate on spatially local contour curvature signals with higher-tier mechanisms that serve to establish more global representations of object shape. Our observations suggest that the Lemon Illusion stems from discontinuous curvature transitions between rectilinear and curved contour segments. However, the presence of curvature discontinuities is not sufficient to produce the Lemon Illusion, and the minimal conditions necessary to elicit this subtle and insidious illusion are difficult to pin down. PMID:25755640
Topological implications of negative curvature for biological and social networks
NASA Astrophysics Data System (ADS)
Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim
2014-03-01
Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.
Surface properties of ocean fronts
NASA Technical Reports Server (NTRS)
Wolff, P. M.; Hubert, W. E.
1976-01-01
Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models.
Analysis of dynamic smile and upper lip curvature in young Chinese
Liang, Ling-Zhi; Hu, Wen-Jie; Zhang, Yan-Ling; Chung, Kwok-Hung
2013-01-01
During smile evaluation and anterior esthetic construction, the anatomic and racial variations should be considered in order to achieve better matching results. The aims of this study were to validate an objective method for recording spontaneous smile process and to categorize the smile and upper lip curvature of Chinese Han-nationality youth. One hundred and eighty-eight Chinese Han-nationality youths (88 males and 100 females) ranged from 20 to 35 years of age were selected. Spontaneous smiles were elicited by watching comical movies and the dynamics of the spontaneous smile were captured continuously with a digital video camera. All subjects' smiles were categorized into three types: commissure, cuspid and gummy smile based on video editing software and final images. Subjects' upper lip curvatures were also measured and divided into three groups: upward, straight and downward. Reliability analysis was conducted to obtain intra-rater reliabilities on twice measurements. The Pearson Chi-square test was used to compare differences for each parameters (α=0.05). In smile classification, 60.6% commissure smile, 33.5% cuspid smile and 5.9% gummy smile were obtained. In upper lip measurement, 26.1% upward, 39.9% straight and 34.0% downward upper lip curvature were determined. The commissure smile group showed statistically significant higher percentage of straight (46.5%) and upward (40.4%) in upper lip curvatures (P<0.05), while cuspid smile group (65.1%) and gummy smile group (72.7%) showed statistically significant higher frequency in downward upper lip curvature (P<0.05). It is evident that differences in upper lip curvature and smile classification exist based on race, when comparing Chinese subjects with those of Caucasian descent, and gender. PMID:23558343
Analysis of dynamic smile and upper lip curvature in young Chinese.
Liang, Ling-Zhi; Hu, Wen-Jie; Zhang, Yan-Ling; Chung, Kwok-Hung
2013-03-01
During smile evaluation and anterior esthetic construction, the anatomic and racial variations should be considered in order to achieve better matching results. The aims of this study were to validate an objective method for recording spontaneous smile process and to categorize the smile and upper lip curvature of Chinese Han-nationality youth. One hundred and eighty-eight Chinese Han-nationality youths (88 males and 100 females) ranged from 20 to 35 years of age were selected. Spontaneous smiles were elicited by watching comical movies and the dynamics of the spontaneous smile were captured continuously with a digital video camera. All subjects' smiles were categorized into three types: commissure, cuspid and gummy smile based on video editing software and final images. Subjects' upper lip curvatures were also measured and divided into three groups: upward, straight and downward. Reliability analysis was conducted to obtain intra-rater reliabilities on twice measurements. The Pearson Chi-square test was used to compare differences for each parameters (α=0.05). In smile classification, 60.6% commissure smile, 33.5% cuspid smile and 5.9% gummy smile were obtained. In upper lip measurement, 26.1% upward, 39.9% straight and 34.0% downward upper lip curvature were determined. The commissure smile group showed statistically significant higher percentage of straight (46.5%) and upward (40.4%) in upper lip curvatures (P<0.05), while cuspid smile group (65.1%) and gummy smile group (72.7%) showed statistically significant higher frequency in downward upper lip curvature (P<0.05). It is evident that differences in upper lip curvature and smile classification exist based on race, when comparing Chinese subjects with those of Caucasian descent, and gender.
Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2015-01-01
Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.
The use of modal curvatures for damage localization in beam-type structures
NASA Astrophysics Data System (ADS)
Ciambella, J.; Vestroni, F.
2015-03-01
The localization of stiffness variation in damaged beams through modal curvatures, i.e., second derivative of mode shapes, is studied by exploiting a perturbative solution of the Euler-Bernoulli equation. It is shown that for low order modes the difference between undamaged and damaged modal curvatures has only one distinct peak if the damage is localized in a narrow region. This phenomenon is independent of the presence of experimental noise and of the technique used to reconstruct the curvature mode shapes from the displacement mode shapes. Broader damages cause the modal curvature difference to have several peaks outside the damage region that could result in a false damage localization. The same effect is present at higher modes for both narrow and broad damages. As a result, modal curvatures can be effectively used to localize structural damages only once they have been properly filtered. Here the perturbative solution is used to introduce an effective damage measure able to localize correctly narrow and broad damages and also single and multiple damages cases.
Snowplow Injection Front Effects
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.; Henderson, M. G.; Sitnov, M. I.
2013-01-01
As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 RE geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at approximately 80 km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a "snowplow" effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time.
Active learning of Pareto fronts.
Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto
2014-03-01
This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.
Armbruster, Ute; Labs, Mathias; Pribil, Mathias; Viola, Stefania; Xu, Wenteng; Scharfenberg, Michael; Hertle, Alexander P.; Rojahn, Ulrike; Jensen, Poul Erik; Rappaport, Fabrice; Joliot, Pierre; Dörmann, Peter; Wanner, Gerhard; Leister, Dario
2013-01-01
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins. PMID:23839788
A curvature based approach using long-gage fiber optic sensors
NASA Astrophysics Data System (ADS)
Kliewer, Kaitlyn; Glisic, Branko
2016-04-01
Fiber Bragg grating (FBG) sensors offer a significant advantage for structural health monitoring due to their ability to simultaneously monitor both static and dynamic strain while being durable, lightweight, capable of multiplexing, and immune to electro-magnetic interference. Drawing upon the benefits of FBG sensors, this research explores the use of a series of long-gage fiber optic sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. Typically structural monitoring relies upon detecting structural changes through frequency and acceleration based analysis. However, curvature and strain based analysis may be a more reliable means for structural monitoring as they show more sensitivity to damage compared to modal parameters such as displacement mode shapes and natural frequency. Additionally, long gage FBG strain sensors offer a promising alternative to traditional dynamic measurement methods as the curvature can be computed directly from the FBG strain measurements without the need for numerical differentiation. Small scale experimental testing was performed using an aluminum beam instrumented with a series of FBG optical fiber sensors. Dynamic strain measurements were obtained as the aluminum beam was subjected to various loading and support conditions. From this, a novel normalized parameter based on the curvature from the dynamic strain measurements has been identified as a potential damage sensitive feature. Theoretical predictions and experimental data were compared and conclusions carried out. The results demonstrated the potential of the novel normalized parameter to facilitate dynamic monitoring at both the local and global scale, thus allowing assessment of the structures health.
Particles and curvatures in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.
Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.
Effects of streamline curvature on separation prediction
NASA Astrophysics Data System (ADS)
Arolla, Sunil K.; Durbin, Paul A.
2009-11-01
In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.
ODE/PDE analysis of corneal curvature.
Płociniczak, Lukasz; Griffiths, Graham W; Schiesser, William E
2014-10-01
The starting point for this paper is a nonlinear, two-point boundary value ordinary differential equation (BVODE) that defines corneal curvature according to a static force balance. A numerical solution to the BVODE is computed by first converting the BVODE to a parabolic partial differential equation (PDE) by adding an initial value (t, pseudo-time) derivative to the BVODE. A numerical solution to the PDE is then computed by the method of lines (MOL) with the calculation proceeding to a sufficiently large value of t such that the derivative in t reduces to essentially zero. The PDE solution at this point is also the solution for the BVODE. This procedure is implemented in R (an open source scientific programming system) and the programming is discussed in some detail. A series approximation to the solution is derived from which an estimate for the rate of convergence is obtained. This is compared to a fitted exponential model. Also, two linear approximations are derived, one of which leads to a closed form solution. Both provide solutions very close to that obtained from the full nonlinear model. An estimate for the cornea radius of curvature is also derived. The paper concludes with a discussion of the features of the solution to the ODE/PDE system.
Multidimensional integrable vacuum cosmology with two curvatures
NASA Astrophysics Data System (ADS)
Gavrilov, V. R.; Ivashchuk, V. D.; Melnikov, V. N.
1996-11-01
The vacuum cosmological model on the manifold 0264-9381/13/11/018/img1 describing the evolution of n Einstein spaces of non-zero curvatures is considered. For n = 2 the Einstein equations are reduced to the Abel (ordinary differential) equation and solved, when 0264-9381/13/11/018/img2. The Kasner-like behaviour of the solutions near the singularity 0264-9381/13/11/018/img3 is considered (0264-9381/13/11/018/img4 is synchronous time). The exceptional (`Milne-type') solutions are obtained for arbitrary n. For n = 2 these solutions are attractors for other ones, when 0264-9381/13/11/018/img5. For 0264-9381/13/11/018/img6 and 0264-9381/13/11/018/img7 certain two-parametric families of solutions are obtained from n = 2 ones using the `curvature-splitting' trick. In the case n = 2, 0264-9381/13/11/018/img8 a family of non-singular solutions with the topology 0264-9381/13/11/018/img9 is found.
Vortex motion on surfaces of small curvature
Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.
2013-12-15
We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.
Curvature dependent modulation of fish fin stiffness
NASA Astrophysics Data System (ADS)
Nguyen, Khoi; Yu, Ning; Bandi, Mahesh; Venkadesan, Madhusudhan; Mandre, Shreyas
Propulsion and maneuvering ability of fishes depends on the stiffness of their fins. However, increasing stiffness by simply adding material to thicken the fin would incur a substantial energetic cost associated with flapping the fin. We propose that fishes increase stiffness of the fin not by building thicker fins, but by geometrically coupling out-of-plane bending of the fin's rays with in-plane stretching of a stiff membrane that connects the rays. We present a model of fin elasticity for ray-finned fish, where we decompose the fin into a series of elastic beams (rays) with springy interconnections (membrane). In one limit, where the membranes are infinitely extensible, the fin's stiffness is no more than the sum of the stiffness of individual rays. At the other limit of an inextensible membrane, fin stiffness reaches an asymptotic maximum. The asymptote value increases monotonically with curvature. We propose that musculature at the base of the fin controls fin curvature, and thereby modulates stiffness.
Polarized curvature radiation in pulsar magnetosphere
NASA Astrophysics Data System (ADS)
Wang, P. F.; Wang, C.; Han, J. L.
2014-07-01
The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.
Magneto-reheating constraints from curvature perturbations
Ringeval, Christophe; Suyama, Teruaki; Yokoyama, Jun'ichi E-mail: suyama@resceu.s.u-tokyo.ac.jp
2013-09-01
As additional perturbative degrees of freedom, it is known that magnetic fields of inflationary origin can source curvature perturbations on super-Hubble scales. By requiring the magnetic generated curvature to remain smaller than its inflationary adiabatic counterpart during inflation and reheating, we derive new constraints on the maximal field value today, the reheating energy scale and its equation of state parameter. These bounds end up being stronger by a few order of magnitude than those associated with a possible backreaction of the magnetic field onto the background. Our results are readily applicable to any slow-roll single field inflationary models and any magnetic field having its energy density scaling as a{sup γ} during inflation. As an illustrative example, massive inflation is found to remain compatible with a magnetic field today B{sub 0} = 5 × 10{sup −15} G for some values of γ only if a matter dominated reheating takes place at energies larger than 10{sup 5} GeV. Conversely, assuming γ = −1, massive inflation followed by a matter dominated reheating cannot explain large scale magnetic fields larger than 10{sup −20} G today.
You, Jae Eung; Lee, Hye Young; Kim, Kyoung
2015-06-01
[Purpose] Degree of curvature on the spine is known to affect respiratory function and back muscle activation. We compared pulmonary function and back muscle strength according to the degree of curvature of the spine of healthy adults. [Subjects and Methods] Twenty-three healthy volunteers were enrolled. They were divided into two groups according to the degree of curvature of the spine: the below 2° group, and the above 2° group. The degree of curvature was assessed using the Adams forward bending test and a scoliometer. A pulmonary function test (PFT) was conducted, and back muscle strength was measured. [Results] No significant differences in PFT were found between the below 2° group and the above 2° group, in terms of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC), or peak expiratory flow (PEF). However, back muscle strength in the below 2 group was significantly higher than that of the above 2 group. [Conclusion] Our findings indicate that the degree of curvature of the spine is associated with back muscle strength in subjects who have spinal curvature within the normal range. Therefore, evaluation and treatment of back muscle strength might be helpful for preventing the progress of curvature of the spine in adolescents with potential scoliosis. PMID:26180321
Fronts in Large Marine Ecosystems
NASA Astrophysics Data System (ADS)
Belkin, Igor M.; Cornillon, Peter C.; Sherman, Kenneth
2009-04-01
Oceanic fronts shape marine ecosystems; therefore front mapping and characterization are among the most important aspects of physical oceanography. Here we report on the first global remote sensing survey of fronts in the Large Marine Ecosystems (LME). This survey is based on a unique frontal data archive assembled at the University of Rhode Island. Thermal fronts were automatically derived with the edge detection algorithm of Cayula and Cornillon (1992, 1995, 1996) from 12 years of twice-daily, global, 9-km resolution satellite sea surface temperature (SST) fields to produce synoptic (nearly instantaneous) frontal maps, and to compute the long-term mean frequency of occurrence of SST fronts and their gradients. These synoptic and long-term maps were used to identify major quasi-stationary fronts and to derive provisional frontal distribution maps for all LMEs. Since SST fronts are typically collocated with fronts in other water properties such as salinity, density and chlorophyll, digital frontal paths from SST frontal maps can be used in studies of physical-biological correlations at fronts. Frontal patterns in several exemplary LMEs are described and compared, including those for: the East and West Bering Sea LMEs, Sea of Okhotsk LME, East China Sea LME, Yellow Sea LME, North Sea LME, East and West Greenland Shelf LMEs, Newfoundland-Labrador Shelf LME, Northeast and Southeast US Continental Shelf LMEs, Gulf of Mexico LME, and Patagonian Shelf LME. Seasonal evolution of frontal patterns in major upwelling zones reveals an order-of-magnitude growth of frontal scales from summer to winter. A classification of LMEs with regard to the origin and physics of their respective dominant fronts is presented. The proposed classification lends itself to comparative studies of frontal ecosystems.
Experimental reconstruction of the Berry curvature in a topological Bloch band
NASA Astrophysics Data System (ADS)
Weitenberg, Christof; Flaeschner, Nick; Rem, Benno; Tarnowski, Matthias; Vogel, Dominik; Luehmann, Dirk-Soeren; Sengstock, Klaus
2016-05-01
Topological properties lie at the heart of many fascinating phenomena in solid state systems such as quantum Hall systems or Chern insulators. The topology can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Employing fermionic ultracold atoms in a hexagonal optical lattice, we engineer the Berry curvature of the Bloch bands using resonant driving and measure it with full momentum resolution. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.
Kinetics for Phototropic Curvature by Etiolated Seedlings of Arabidopsis thaliana 1
Orbović, Vladimir; Poff, Kenneth L.
1991-01-01
An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16° about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6° during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics. PMID:11538373
The curvature elastic-energy function of the lipid-water cubic mesophase
NASA Astrophysics Data System (ADS)
Chung, Hesson; Caffrey, Martin
1994-03-01
CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.
Compact surfaces of constant Gaussian curvature in Randers manifolds
NASA Astrophysics Data System (ADS)
Cui, Ningwei
2016-08-01
The flag curvature of a Finsler surface is called the Gaussian curvature in Finsler geometry. In this paper, we characterize the surfaces of constant Gaussian curvature (CGC) in the Randers 3-manifold. Then we give a classification of the orientable closed CGC surfaces in two Randers space forms, which are the non-Euclidean Minkowski-Randers 3-space (K = 0) and the Bao-Shen sphere (K = 1).
Wrinkles and splay conspire to give positive disclinations negative curvature
Matsumoto, Elisabetta A.; Vega, Daniel A.; Pezzutti, Aldo D.; García, Nicolás A.; Chaikin, Paul M.; Register, Richard A.
2015-01-01
Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873
Evolving extrinsic curvature and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Cabral, Luis A.
2016-10-01
The concept of smooth deformation of Riemannian manifolds associated with the extrinsic curvature is explained and applied to the Friedmann-Lemaître-Robertson-Walker cosmology. We show that such deformation can be derived from the Einstein-Hilbert-like dynamical principle may produce an observable effect in the sense of Noether. As a result, we show how the extrinsic curvature compensates both quantitative and qualitative differences between the cosmological constant Λ and the vacuum energy {ρ }{vac} obtaining the observed upper bound for the cosmological constant problem at electroweak scale. The topological characteristics of the extrinsic curvature are discussed showing that the produced extrinsic scalar curvature is an evolving dynamical quantity.
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
Pierscionek, B K; Asejczyk‐Widlicka, M; Schachar, R A
2007-01-01
Aim To measure corneal and scleral radii of curvature in response to intraocular pressure (IOP). Methods Using digital photographic profile images of 16 fresh porcine eyes, the curvatures of the cornea and sclera were determined in response to five consecutive incremental 100 μl saline intravitreal injections. IOP was measured and ocular rigidity calculated. Elastic moduli of the cornea and sclera were estimated. Results Intraocular pressure and the radius of curvature of the sclera increased linearly with increasing volume. There was no statistical change in corneal curvature. The elasticity of the cornea and sclera was constant during the 15–50 mm Hg increase in IOP. The estimated range of the elastic moduli of the cornea and sclera were, respectively 0.07–0.29 MPa and 0.2 MPa to 0.5 MPa. The scleral rigidity ranged from 0.0017 to 0.0022. Conclusions The elastic moduli of the cornea and sclera are independent of IOP. The modulus of elasticity of the sclera is higher than that of the cornea. Elevation of IOP changes the curvature of the sclera but not that of the cornea. Porcine scleral rigidity is similar to human scleral rigidity. Scleral curvature could be a novel method for measuring IOP. PMID:17151057
NASA Astrophysics Data System (ADS)
Casey, D.; Smalyuk, V.; Peterson, L.; Berzak Hopkins, L.; Bunn, T.; Carlson, L.; Haan, S.; Ho, D.; Hoover, D.; Kroll, J.; Landen, O.; Le Pape, S.; MacKinnon, A.; Macphee, A.; Meezan, N.; Milovich, J.; Nikroo, A.; Remington, B.; Robey, H.; Ross, S.
2014-10-01
High-density carbon (HDC) has emerged as a promising ablator for ignition experiments at the National Ignition Facility (NIF) partly because of its efficient coupling of the drive energy to fuel. Experiments during the National Ignition Campaign using a CH plastic ablator have shown that instability growth and the resultant mix of plastic into the hotspot was a significant source of overall the observed performance degradation. Likewise, mix of HDC ablator into the hotspot may also be a concern, as growth rates for HDC are comparable to CH and ablator/dopant is higher Z than CH ablators making the consequences potentially more severe. To help understand this issue, we plan to perform the first instability growth measurements of W-doped HDC implosions with preimposed mode 60 and mode 90 perturbations in convergent geometry using actual ignition targets and drives. These results will be presented and compared to ignition design simulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Toyota, H.; Takiyama, K.; Oda, T.
1998-10-01
Metastable atoms of rare gases affect on the etching processes and the radical formation processes in a reactive plasma because of their high internal energy. Fundamental understanding is required of the creation and annihilation mechanisms of the metastable atoms in the plasma, especially in the boundary region between plasma and substrate. We have measured spatial profile of He metastable (2^1S) atom density in plasma flow from an ECR plasma source by polarized laser-induced fluorescence (LIF) spectroscopy [1]. It has been shown that the metastable atoms near the outlet of the plasma flow are created by collisional-radiative processes. However, the remarkable decrease near the substrate placed in the downstream has not been clearly understood. Observation of the polarized LIF due to forbidden excitation is made with high spatial resolution in the vicinity of the substrate to obtain the detailed density profile. Based on these results, possible annihilation mechanism of the metastable atoms will be briefly discussed. [1] H. Toyota et al.; Jpn. J. Appl. Phys. 36 (1997) 4670.
Thermodynamic curvature for attractive and repulsive intermolecular forces.
May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George
2013-09-01
The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.
Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra
NASA Astrophysics Data System (ADS)
Garanzha, V. A.
2010-01-01
Duality principle for approximation of geometrical objects (also known as Eu-doxus exhaustion method) was extended and perfected by Archimedes in his famous tractate “Measurement of circle”. The main idea of the approximation method by Archimedes is to construct a sequence of pairs of inscribed and circumscribed polygons (polyhedra) which approximate curvilinear convex body. This sequence allows to approximate length of curve, as well as area and volume of the bodies and to obtain error estimates for approximation. In this work it is shown that a sequence of pairs of locally polar polyhedra allows to construct piecewise-affine approximation to spherical Gauss map, to construct convergent point-wise approximations to mean and Gauss curvature, as well as to obtain natural discretizations of bending energies. The Suggested approach can be applied to nonconvex surfaces and in the case of multiple dimensions.
DNA curvature and flexibility in vitro and in vivo
Peters, Justin P.; Maher, L. James
2014-01-01
It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent “softening” of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field. PMID:20478077
Curvature effects in thin magnetic shells.
Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D
2014-06-27
A magnetic energy functional is derived for an arbitrary curved thin shell on the assumption that the magnetostatic effects can be reduced to an effective easy-surface anisotropy; it can be used for solving both static and dynamic problems. General static solutions are obtained in the limit of a strong anisotropy of both signs (easy-surface and easy-normal cases). It is shown that the effect of the curvature can be treated as the appearance of an effective magnetic field, which is aligned along the surface normal for the case of easy-surface anisotropy and is tangential to the surface for the case of easy-normal anisotropy. In general, the existence of such a field excludes the solutions that are strictly tangential or strictly normal to the surface. As an example, we consider static equilibrium solutions for a cone surface magnetization.
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Natural curvature for manifest T-duality
NASA Astrophysics Data System (ADS)
Poláček, Martin; Siegel, Warren
2014-01-01
We reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincaré/Lorentz. This construction initially doubles not only the (spacetime) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced ad hoc to the covariant derivative as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections).
Canards and curvature: nonsmooth approximation by pinching
NASA Astrophysics Data System (ADS)
Desroches, M.; Jeffrey, M. R.
2011-05-01
In multiple time-scale (singularly perturbed) dynamical systems, canards are counterintuitive solutions that evolve along both attracting and repelling invariant manifolds. In two dimensions, canards result in periodic oscillations whose amplitude and period grow in a highly nonlinear way: they are slowly varying with respect to a control parameter, except for an exponentially small range of values where they grow extremely rapidly. This sudden growth, called a canard explosion, has been encountered in many applications ranging from chemistry to neuronal dynamics, aerospace engineering and ecology. Canards were initially studied using nonstandard analysis, and later the same results were proved by standard techniques such as matched asymptotics, invariant manifold theory and parameter blow-up. More recently, canard-like behaviour has been linked to surfaces of discontinuity in piecewise-smooth dynamical systems. This paper provides a new perspective on the canard phenomenon by showing that the nonstandard analysis of canard explosions can be recast into the framework of piecewise-smooth dynamical systems. An exponential coordinate scaling is applied to a singularly perturbed system of ordinary differential equations. The scaling acts as a lens that resolves dynamics across all time-scales. The changes of local curvature that are responsible for canard explosions are then analysed. Regions where different time-scales dominate are separated by hypersurfaces, and these are pinched together to obtain a piecewise-smooth system, in which curvature changes manifest as discontinuity-induced bifurcations. The method is used to classify canards in arbitrary dimensions, and to derive the parameter values over which canards form either small cycles (canards without head) or large cycles (canards with head).
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Pishchalnikov, Yuriy A.; Morozov, Andrey V.
2002-05-01
Normal velocity distribution along a vibrating surface is an important characteristic of any acoustic source. When it is known, the acoustic pressure field can be predicted using Rayleigh integral or similar approach. However, up to now there are no reliable methods of the velocity distribution measurement in liquids or solids. Due to strong acousto-optic interaction in condensed medium, the well-developed laser vibrometers can be employed only when the transducer is contacting vacuum or gas. In this work a novel method is developed and tested for evaluation of the velocity distribution along the vibrating surface of a piezoceramic transducer in liquid. The technique consists of measuring acoustic wave amplitude and phase along a surface surrounding the source, changing the sign of the phase, and theoretically backpropagating it to the source using the Rayleigh integral. The method was studied numerically and tested experimentally. The acoustic field of ultrasound source was registered using a needle hydrophone, which was scanned along a plane surface in front of the transducer. It is shown that the proposed approach enables accurate detection of the normal velocity. The method can be used for a wide variety of acoustically radiating structures. [Work supported by CRDF, NIH-Fogarty, and RFBR.
QCD and Light-Front Holography
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2010-10-27
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.
Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury
King, Jace B.; Lopez-Larson, Melissa P.; Yurgelun-Todd, Deborah A.
2016-01-01
In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI) has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral). Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05). These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05). These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature. PMID:26909332
Front-line ownership: imagine.
Matlow, Anne
2013-01-01
When used in a military context, the term front line refers to the interface between enemies in action on the battlefield. In a non-military context, the front line is the site where the core activity defining a particular industry takes place, and those working there are key to successful operations. In healthcare, the need to improve patient safety has become a global imperative, and an armamentarium of strategies, tools and technological approaches have been adapted or developed for this context. Often neglected, however, have been strategies to engage the healthcare workers, those at the front line, in the cause.In order for healthcare to function error free, we must assume the characteristics of high-reliability organizations. In particular, the ability to bounce back, to be resilient in the face of a catastrophe, is of paramount importance. Those working at the front line may have the answers. We need to create an opportunity for them to be heard.`
Radiative magnetized thermal conduction fronts
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.
1990-01-01
The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.
Restless rays, steady wave fronts.
Godin, Oleg A
2007-12-01
Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations. PMID:18247745
An analytical approach to estimate curvature effect of coseismic deformations
NASA Astrophysics Data System (ADS)
Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang
2016-08-01
We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.
Signatures of the very early Universe: Inflation, spatial curvature, and large scale anomalies
NASA Astrophysics Data System (ADS)
Aslanyan, Grigor; Easther, Richard
2015-06-01
A short inflationary phase may not erase all traces of the primordial Universe. Associated observables include both spatial curvature and "anomalies" in the microwave background or large-scale structure. The present curvature ΩK ,0 reflects the initial curvature, ΩK ,start , and the angular size of anomalies depends on kstart, the comoving horizon size at the onset of inflation. We estimate posteriors for ΩK ,start and kstart using current data and simulations, and show that if either quantity is measured to have a nonzero value, both are likely to be observable. Mappings from ΩK ,start and kstart to present-day observables depend strongly on the primordial equation of state; ΩK ,0 spans 10 orders of magnitude for a given ΩK ,start, while a simple and general relationship connects ΩK ,0 and kstart. We show that current bounds on ΩK ,0 imply that if kstart is measurable, the curvature was already small when inflation began. Finally, since the energy density changes slowly during inflation, primordial gravitational wave constraints require that a short inflationary phase be preceded by a nontrivial preinflationary phase with critical implications for the expected value of ΩK ,start.
Wang, Q.; Li, M.; Lou, Edmond H. M.; Wong, M. S.
2015-01-01
Background Non-ionizing radiation imaging assessment has been advocated for the patients with adolescent idiopathic scoliosis (AIS). As one of the radiation-free methods, ultrasound imaging has gained growing attention in scoliosis assessment over the past decade. The center of laminae (COL) method has been proposed to measure the spinal curvature in the coronal plane of ultrasound image. However, the reliability and validity of this ultrasound method have not been validated in the clinical setting. Objectives To evaluate the reliability and validity of clinical ultrasound imaging on lateral curvature measurements of AIS with their corresponding magnetic resonance imaging (MRI) measurements. Methods Thirty curves (ranged 10.2°–68.2°) from sixteen patients with AIS were eligible for this study. The ultrasound scan was performed using a 3-D ultrasound unit within the same morning of MRI examination. Two researchers were involved in data collection of these two examinations. The COL method was used to measure the coronal curvature in ultrasound image, compared with the Cobb method in MRI. The intra- and inter-rater reliability of the COL method was evaluated by intra-class correlation coefficient (ICC). The validity of this method was analyzed by paired Student’s t-test, Bland–Altman statistics and Pearson correlation coefficient. The level of significance was set as 0.05. Results The COL method showed high intra- and inter-rater reliabilities (both with ICC (2, K) >0.9, p<0.05) to measure the coronal curvature. Compared with Cobb method, COL method showed no significant difference (p<0.05) when measuring coronal curvature. Furthermore, Bland-Altman method demonstrated an agreement between these two methods, and Pearson’s correlation coefficient (r) was high (r>0.9, p<0.05). Conclusion The ultrasound imaging could provide a reliable and valid measurement of spinal curvature in the coronal plane using the COL method. Further research is needed to validate the
Robust pupil center detection using a curvature algorithm
NASA Technical Reports Server (NTRS)
Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)
1999-01-01
Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.
Elliptic inflation: generating the curvature perturbation without slow-roll
NASA Astrophysics Data System (ADS)
Matsuda, Tomohiro
2006-09-01
There are many inflationary models in which the inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component into the theory. To cite a case, curvatons may generate the dominant part of the curvature perturbation after inflation. However, we question whether it is realistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multifield inflation, we encounter the generation of curvature perturbation during inflation without slow-roll. The potential along the equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss KKLT (Kachru Kallosh Linde Trivedi) models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.
Nastic curvatures of wheat coleoptiles that develop in true microgravity
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Chapman, D. K.; Brown, A. H.
1995-01-01
Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
Synaptobrevin Transmembrane Domain Influences Exocytosis by Perturbing Vesicle Membrane Curvature
Chang, Che-Wei; Jackson, Meyer B.
2015-01-01
Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca2+-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein. PMID:26153704
Trace metal fronts in European shelf waters
NASA Astrophysics Data System (ADS)
Kremling, K.
1983-05-01
The Hebrides shelf edge area is characterized by strong horizontal salinity gradients (fronts) which mark the boundary between Scottish coastal and oceanic waters1,2. The results presented here, obtained in summer 1981 on a transect between the open North Atlantic and the German Bight (Fig. 1), confirm that the hydrographical front is accompanied by dramatic increases in inorganic nutrients (phosphate, silicate) and dissolved trace elements such as Cd, Cu, Mn, and 226Ra (Figs 2 and 3). These data (together with measurements from North Sea regions) suggest that the trace metals are mobilized from partly reduced (organic-rich) sediments and vertically mixed into the surface waters3. The regional variations evident from the transect are interpreted as being the result of the hydrography prevailing in waters around the British Isles4.
Laser beacon wave-front sensing without focal anisoplanatism.
Buscher, D F; Love, G D; Myers, R M
2002-02-01
Wave-front sensing from artificial beacons is normally performed by formation of a focused spot in the atmosphere and sensing of the wave-front distortions produced during the beam's return passage. We propose an alternative method that senses the distortions produced during the outgoing path by forming an intensity pattern in the atmosphere that is then viewed from the ground. A key advantage of this method is that a parallel beam is used, and therefore the wave-front measurements will not suffer from the effects of focal anisoplanatism. We also envisage other geometries, all based on the concept of projecting a pupil pattern onto the atmosphere.
Determination of cut front position in laser cutting
NASA Astrophysics Data System (ADS)
Pereira, M.; Thombansen, U.
2016-07-01
Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable.
NASA Astrophysics Data System (ADS)
Keshet, Uri; Naor, Yossi
2016-10-01
Compressible flows around blunt objects have diverse applications, but current analytic treatments are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and supersonic flows measured and simulated for a sphere, including the transonic regime and the bow shock properties. Some astrophysical implications are outlined, in particular for planets in the solar wind and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic layer is a few times larger than in the incompressible limit, with amplification ∼ (1+1.3{M}2.6)/(3δ ).
NASA Astrophysics Data System (ADS)
Cao, Mao-Sen; Xu, Wei; Ren, Wei-Xin; Ostachowicz, Wiesław; Sha, Gang-Gang; Pan, Li-Xia
2016-08-01
Detection of multiple damage using modal curvature in noisy environments has become a research focus of considerable challenge and great significance over the last few years. However, a noticeable deficiency of modal curvature is its susceptibility to noise, which usually results in a noisy modal curvature with obscured damage signature. To address this deficiency, this study formulates a new concept of complex-wavelet modal curvature. Complex-wavelet modal curvature features the ability to reveal and delineate damage under noisy conditions. The effectiveness of the concept is analytically verified using cracked beams with various types of boundary conditions. The applicability is further experimentally validated by an aluminum beam with a single crack and a carbon-fiber-reinforced polymer composite beam with three cracks in the laboratory with mode shapes measured by a scanning laser vibrometer. Both analytical and experimental results have demonstrated that the complex-wavelet modal curvature is capable of revealing slight damage by eliminating noise interference, with no need for prior knowledge of either material properties or boundary conditions of the beam under inspection.
Laser ultrasonic detection of the solidification front during casting
Walter, J.B.; Telschow, K.L.
1995-10-01
A real-time sensor that directly measures properties of the solidification front would be a valuable aid to the metal casting industry. Information needed includes solidification front location, shape, and growth dynamics. The use of contacting probes is often undesirable because it can cause contamination and probe deterioration. Noncontacting laser ultrasonics offers an attractive solution to these problems, particularly if access to the free liquid surface is available. This paper presents results of laser ultrasonic measurements of the solidification front in tin and a tin-lead alloy. The ultrasonic waves were generated and detected at the liquid surface. Tin was selected for its low melting point and the availability of a suitable furnace. Results are presented for reflections from stationary and moving solidification fronts.
Cosmological spatial curvature probed by microwave polarization
Matzner, R.A.; Tolman, B.W.
1982-11-15
If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''
Accelerated Transonic Flow past a curvature discontinuity
NASA Astrophysics Data System (ADS)
de Cointet, Thomas; Ruban, Anatoly
2014-11-01
The aim of this talk is to investigate High Reynolds number Transonic flow past a discontinuity in body curvature. Starting with the inviscid flow outside the boundary layer, our analysis will focus on the flow in a vicinity of the point of discontinuity, where a solution of the Euler equations will be sought in self-similar form. This reduces the Euler equations to an ordinary differential equation. The analysis of this equation shows that the pressure gradient on the airfoil surface develops a strong singularity, which is proportional to (x0 - x) - 1 / 3 as the discontinuity point x0 is approached. We then study the response of the boundary layer to this extremely favourable pressure gradient. We show that the boundary layer splits into two parts, the main body of the boundary layer that becomes inviscid on approach to the singularity, and a thin viscous sublayer situated near the wall. The analysis of the behaviour of the solution in the viscous sublayer shows that Prandtl's hierarchical concept breaks down in a small region surrounding the singular point, where the viscous-inviscid interaction model should be used. In the final part of this talk we present a full formulation of the viscous-inviscid interaction problem and discuss numerical results.
Mean curvature flow of a hyperbolic surface
Ovchinnikov, Yu. N.; Sigal, I. M.
2011-12-15
A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.
Dark energy, matter creation and curvature
NASA Astrophysics Data System (ADS)
Cárdenas, Víctor H.
2012-09-01
The most studied way to explain the current accelerated expansion of the universe is to assume the existence of dark energy; a new component that fills the universe, does not form clumps, currently dominates the evolution, and has a negative pressure. In this work I study an alternative model proposed by Lima et al. (Abramo and Lima in Class. Quantum Gravity 13:2953, 1996; Zimdahl in Phys. Rev. D 53:5483, 1996; Zimdahl and Pavón in Mon. Not. R. Astron. Soc. 266:872, 1994), which does not need an exotic equation of state, but assumes instead the existence of gravitational particle creation. Because this model fits the supernova observations as well as the ΛCDM model, I perform in this work a thorough study of this model, considering an explicit spatial curvature. I found that in this scenario we can alleviate the cosmic coincidence problem, basically showing that these two components, dark matter and dark energy, are of the same nature, but they act at different scales. I also shown the inadequacy of some particle creation models, and I study a previously proposed new model that overcomes these difficulties.
Geodesic Curvature Effects in the WCMs
NASA Astrophysics Data System (ADS)
Zhou, Tianchun
2015-11-01
The favorable features of the steady state I-Regime discovered on Alcator C-Mod recently make this regime a hopeful working regime for future burning plasma experiments. Accompanying the I-regime are the weakly coherent modes (WCMs) with frequency around 200 kHz that propagate poloidally in the electron diamagnetic drift direction in the lab frame. The WCMs were interpreted as certain type of heavy impurity modes in the 3-fluid framework in a 1-D plane magnetic field geometry. Once considering in a simplified toroidal magnetic field geometry, the geodesic curvature will play important roles in that the contribution of the geodesic compression may catch up with or outweighs that of the parallel compression in the plasma edge region where the fluctuations are highly localized. This geodesic coupling to the neighboring bands modifies the marginal stability condition and mode profiles in Refs.. In the same framework, attempts will be made to interpret the concomitant low frequency (~ 20kHz) fluctuations as a type of impurity drift wave-like modes propagating in the ion diamagnetic drift direction. Supported by China National MCFE Research Program under Grant No. 2015GB11000.
BICEP2, the curvature perturbation and supersymmetry
Lyth, David H.
2014-11-01
The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.
Detonative propagation and accelerative expansion of the Crab Nebula shock front.
Gao, Yang; Law, Chung K
2011-10-21
The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected.
A Theoretical Study of Propagation and Extinction of Nonsteady Spherical Flame Fronts
NASA Technical Reports Server (NTRS)
Ronney, P. D.; Sivashinsky, G. I.
1989-01-01
Freely propagating expanding spherical flame fronts are studied analytically using the method of activation energy asymptotics. Effects of Lewis number (Le), curvature, heat loss, and thermal expansion on propagation rates and extinction conditions are examined. The behavior of spherical flame fronts is found to be determined primarily by the values of Le and a heat-loss parameter. Results are compared to recent experimental observations of spherical flame fronts in mixtures near the flammability limits; for Le less than 1, it is found that many of the features of these experimental results are described by the analysis presented here. For Le greater than 1, however, unrealistic dynamic behavior is predicted due to the nature of diffusive-thermal instabilities under these conditions.
Slow axis collimation lens with variable curvature radius for semiconductor laser bars
NASA Astrophysics Data System (ADS)
Xiong, Ling-Ling; Cai, Lei; Zheng, Yan-Fang; Liu, Hui; Zhang, Pu; Nie, Zhi-Qiang; Liu, Xing-Sheng
2016-03-01
Based on Snell's law and the constant phase in the front of optical field, a design method of the slow axis collimation lens with variable curvature radius is proposed for semiconductor laser bars. Variable radius of the collimator is designed by the transmission angle, and it is demonstrated that the collimator has good beam collimation ability by material with low refractive index. Resorting to the design thought of finite element method, the surface of the collimator has been divided, and it is feasible to be fabricated. This method is applied as an example in collimation of a 976 nm semiconductor laser bar. 6 mrad divergence angle of collimated beam at slow axis is realized by the designed collimation lens with refraction index of 1.51.
Probing interaction and spatial curvature in the holographic dark energy model
Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin E-mail: renzhe@mail.ustc.edu.cn E-mail: wangyi@hep.physics.mcgill.ca
2009-12-01
In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ{sub Λ}), matter (ρ{sub m}), and matter plus dark energy (ρ{sub m}+ρ{sub Λ}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.
NASA Astrophysics Data System (ADS)
RóŻycki, Bartosz; Lipowsky, Reinhard
2015-02-01
Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer's stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.
Observation of ionization fronts in low density foam targets
Hoarty, D. |; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved {ital K}-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained. {copyright} {ital 1999 American Institute of Physics.}
Active optics: variable curvature mirrors for ELT laser guide star refocusing systems
NASA Astrophysics Data System (ADS)
Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel
2011-10-01
The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron
2010-08-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.
Influence of Coanda surface curvature on performance of bladeless fan
NASA Astrophysics Data System (ADS)
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Lagrangian fronts in the ocean
NASA Astrophysics Data System (ADS)
Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.
2014-05-01
We introduce the concept of Lagrangian fronts (LFs) in the ocean and describe their importance for analyzing water mixing and transport and the specific features and differences from hydrological fronts. A method of calculating LFs in a given velocity field is proposed. Based on altimeter velocity fields from AVISO data in the northwestern Pacific, we calculate the Lagrangian synoptic maps and identify LFs of different spatial and temporal scales. Using statistical analysis of saury catches in different years according to the Goskomrybolovstvo (State Fisheries Committee of the Russian Federation), we show that LFs can serve as good indicators of places that are favorable for fishing.
Front tracking for gas dynamics
Chern, I.L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S.
1984-05-01
Front tracking is an adaptive computational method in which a lower dimensional moving grid is fitted to and follows the dynamical evolution of distinguished waves in a fluid flow. The method takes advantage of known analytic solutions, derived from the Rankine-Hugoniot relations, for idealized discontinuities. In this paper the method is applied to the Euler equations describing compressible gas dynamics. The main thrust here is validation of the front tracking method: we present results on a series of test problems for which comparison answers can be obtained by independent methods.
Front tracking for gas dynamics
Chern, I.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S.
1986-01-01
Front tracking is an adaptive computational method in which a lower dimensional moving grid is fitted to and follows the dynamical evolution of distinguished waves in a fluid flow. The method takes advantage of known analytic solutions, derived from the Rankine-Hugoniot relations, for idealized discontinuities. In this paper the method is applied to the Euler equations describing compressible gas dynamics. The main thrust here is validation of the front tracking method: we present results on a series of test problems for which comparison answers can be obtained by independent methods.
Curvature and isocurvature perturbations in two-field inflation
NASA Astrophysics Data System (ADS)
Lalak, Z.; Langlois, D.; Pokorski, S.; Turzyński, K.
2007-07-01
We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of 'roulette' inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.
Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis
NASA Astrophysics Data System (ADS)
Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful
2016-02-01
This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.
Complete manifolds with bounded curvature and spectral gaps
NASA Astrophysics Data System (ADS)
Schoen, Richard; Tran, Hung
2016-08-01
We study the spectrum of complete noncompact manifolds with bounded curvature and positive injectivity radius. We give general conditions which imply that their essential spectrum has an arbitrarily large finite number of gaps. In particular, for any noncompact covering of a compact manifold, there is a metric on the base so that the lifted metric has an arbitrarily large finite number of gaps in its essential spectrum. Also, for any complete noncompact manifold with bounded curvature and positive injectivity radius we construct a metric uniformly equivalent to the given one (also of bounded curvature and positive injectivity radius) with an arbitrarily large finite number of gaps in its essential spectrum.
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Curvature perturbation and waterfall dynamics in hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao E-mail: firouz@mail.ipm.ir
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Curvature-driven assembly in soft matter.
Liu, Iris B; Sharifi-Mood, Nima; Stebe, Kathleen J
2016-07-28
Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298434
The Arctic Front in the Fram Strait in autumn 2011
NASA Astrophysics Data System (ADS)
Ullgren, Jenny; Falck, Eva; Beszczynska-Möller, Agnieszka; Sagen, Hanne
2016-04-01
The front between Atlantic water carried northward by the main branch of the West Spitsbergen Current and the cooler, fresher Arctic domain in the central Fram Strait, here called the Arctic Front, is important because of the exchange of heat and salt across it. The marked water mass boundary and the dynamics of the front also profoundly affect the living conditions for marine organisms. A northwest-to-southeast transect across the Arctic Front with concurrent shipboard and glider measurements was done in September 2011. The CTD data, nutrient and pigment samples, and underway ADCP data from the research cruise are complemented by the glider observations of temperature and salinity at higher horizontal resolution. In addition, images from the ship's scientific echo sounder are used to qualitatively describe the water column structure and distribution of marine organisms along the transect. Crossing the front from northwest to southeast, the near-surface (5 m) temperature increased by more than 4°C and salinity increased by 0.98 PSU between stations 19 km apart. The front was thus clearly marked in salinity and temperature in the upper 200 m, but below the surface layer it was largely density compensated. The highest chlorophyll-a concentrations were found in subsurface maxima on the Arctic side of the front. We investigate the hydrographic structure of the front, considering properties relevant to cross-frontal exchange and mixing. We also assess the environmental conditions on each side of the front - for example mixed layer depths, nutrient availability, and bio-optical properties - and their implications for marine life.
NASA Astrophysics Data System (ADS)
Chen, Bin; Kollosche, Matthias; Stewart, Mark; Busfield, James; Carpi, Federico
2016-04-01
Dielectric elastomers are widely investigated for use as actuators, stretch/force sensors and mechanical energy harvesters. As performance of such devices is limited by the elastomer's dielectric strength, it is important to investigate the factors that mostly affect the electrical breakdown of those materials. In this paper, we present a preliminary study on the breakdown strength of a widely used poly-acrylic elastomer film, VHB 4905 by 3M with an equi-biaxial pre-strain of 300%. The breakdown was measured with two metal electrodes, one hemispherical and the other one planar, and was characterized under different conditions to investigate the effects of the hemispherical electrode's curvature, the force applied by the two electrodes and the environmental humidity. With a given radius of curvature, the breakdown field increased by about 50% for a nearly ten-fold increase of the applied mechanical force, while, for a given mechanical force, the field decreased by about 20% for a two-fold increase of the radius of curvature. Furthermore, for a given radius of curvature, an increase of the environmental relative humidity from 0% to 80% caused a reduction of the breakdown field of about 20%. This study shows that the breakdown field of the studied dielectric elastomer is highly dependent on the boundary conditions of the breakdown test, as well as the environmental/storage conditions of the material. Therefore, such conditions must be reported carefully to allow for critical evaluations/comparisons of experimental results. As suggested by our data, variations of the compression, electrode's curvature and environmental humidity are likely to cause a diversity of possible interplaying effects, some of which are preliminary proposed in this paper and are referred to as topics requiring deeper future investigations.
An Anionic Phospholipid Enables the Hydrophobic Surfactant Proteins to Alter Spontaneous Curvature
Chavarha, Mariya; Loney, Ryan W.; Rananavare, Shankar B.; Hall, Stephen B.
2013-01-01
The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure. PMID:23442910
VLTI pupil transfer: variable curvature mirrors: II. Plasticity, hysteresis, and curvature control
NASA Astrophysics Data System (ADS)
Lemaitre, Gerard R.; Ferrari, Marc; Mazzanti, Silvio P.; Lanzoni, Patrick; Joulie, Patrice; Leduc, Denis; Copede, Myriam
2000-07-01
Progress in Active Optics Methods have led to the invention of Variable Curvature Mirrors. VCMs are useful to provide optical path compensations of the imaged field of view. Preliminarily developed for Fourier transform IR spectrometers, they are now used for the coherent beam recombination of the VLT array. With the VLT Interferometer, a highly flexible VCM will be installed at the focal surface of each cat's eye delay lines. The VCM developments led to the design choice of metal substrates in a quenched state which are at least 15 times more flexible--to external loading--than gloss or vitroceram substrates and thus, have provided accurately the large zoom-range from f/(infinity) to f/2.6. Due to the very large zoom range provided by such active mirrors, it has been found necessary to take under consideration the small plastical deformation as well as the small hysterese loop deformation of the metal substrate. With the four VCMs such as now built for the 8 m telescopes, a plastical deformation model and a hysterese loop model have been determined and are presently described. Including these compensations, the VCM optical figures have been improved and the control software now performs a curvature resolution in between 10-3 and 5 10-4.
The structure of mountain fronts
NASA Astrophysics Data System (ADS)
Vann, I. R.; Graham, R. H.; Hayward, A. B.
Commonly the part of a mountain front which is visible at the surface consists of foreland-dipping thrust belt rocks elevated above their regional structural position and overlain more or less conformably by molasse. Several explanations for their geometry are possible. (1) Major detachments exist within or beneath the molasse resulting in transport of the foreland basin. Examples of this geometry come from the Swiss Molasse Plain, the Southern Pyrenees and the Mackenzie Mountains of Canada. (2) Displacement is lost on major backthrusts beneath the frontal monocline. Examples cited here are the Rockies of Alberta, the Sulaiman Ranges of Pakistan, the Mackenzies, and the Andes in Peru. (3) Thrust sheets travelled over an old land surface and syntectonic molasse contemporaneously offlaps the topographic high of the thrust front. This phenomenon occurs along the Alpine thrust front in Haute Provence. (4) The frontal fold represents deformation above a large-scale thrust tip. No unequivocal example of tip line strain at this scale has been recorded although this type of deformation may occur in the Brooks Range of Alaska. In many areas mountain fronts show a combination of these idealized geometries.
Advanced RF Front End Technology
NASA Technical Reports Server (NTRS)
Herman, M. I.; Valas, S.; Katehi, L. P. B.
2001-01-01
The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.
ERIC Educational Resources Information Center
Perry, Jim
1995-01-01
Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)
Antarctic Ice-Shelf Front Dynamics from ICESat
NASA Technical Reports Server (NTRS)
Robbins, John W.; Zwally, H. Jay; Saba, Jack L.; Yi, Donghui
2012-01-01
Time variable elevation profiles from ICESat Laser Altimetry over the period 2003-2009 provide a means to quantitatively detect and track topographic features on polar ice surfaces. The results of this study provide a measure of the horizontal motion of ice-shelf fronts. We examine the time histories of elevation profiles crossing the ice fronts of the Ross, Ronne, Filchner, Riiser-Larson and Fimbul shelves. This provides a basis for estimating dynamics in two dimensions, i.e. in elevation and horizontally in the along-track direction. Ice front velocities, corrected for ground-track intersection angle, range from nearly static to 1.1 km/yr. In many examples, a decrease in elevation up to 1 m/yr near the shelf frontis also detectable. Examples of tabular calving along shelf fronts are seen in some elevation profiles and are confirmed by corresponding MODIS imagery.
Linear response to long wavelength fluctuations using curvature simulations
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias
2016-09-01
We study the local response to long wavelength fluctuations in cosmological N-body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.
Linear response to long wavelength fluctuations using curvature simulations
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias
2016-09-01
We study the local response to long wavelength fluctuations in cosmological N-body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8-20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.
16. Detail of curvature of northern parapet, with 1932 concrete ...
16. Detail of curvature of northern parapet, with 1932 concrete extension of parapet in foreground, facing east. - Dubbs Bridge, Spinnerstown Road (State Route 2031) spanning Hosensack Creek, Dillingerville, Lehigh County, PA
Shape Coherence and Finite-Time Curvature Evolution
NASA Astrophysics Data System (ADS)
Ma, Tian; Bollt, Erik M.
We introduce a definition of finite-time curvature evolution along with our recent study on shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature preserving the shape, large curvature growth points reveal the dramatic change on shape such as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC) evolution field indicate the existence of shape coherent sets, and troughs in the field indicate the most significant shape coherence. Here, we will demonstrate these properties of the FTC, as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios, the FTC indicates entirely different regions.
Curvature and bow of bulk GaN substrates
NASA Astrophysics Data System (ADS)
Foronda, Humberto M.; Romanov, Alexey E.; Young, Erin C.; Roberston, Christian A.; Beltz, Glenn E.; Speck, James S.
2016-07-01
We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.
Curvature-Squared Cosmology In The First-Order Formalism
NASA Technical Reports Server (NTRS)
Shahid-Saless, Bahman
1993-01-01
Paper presents theoretical study of some of general-relativistic ramifications of gravitational-field energy density proportional to R - alpha R(exp 2) (where R is local scalar curvature of space-time and alpha is a constant).
Curvature Control of Silicon Microlens for THz Dielectric Antenna
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran
2012-01-01
We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.
Raft Formation in Lipid Bilayers Coupled to Curvature
Sadeghi, Sina; Müller, Marcus; Vink, Richard L.C.
2014-01-01
We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling. PMID:25296311
Raft formation in lipid bilayers coupled to curvature.
Sadeghi, Sina; Müller, Marcus; Vink, Richard L C
2014-10-01
We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling.
The probability equation for the cosmological comoving curvature perturbation
Riotto, Antonio; Sloth, Martin S. E-mail: sloth@cern.ch
2011-10-01
Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.
Manns, Fabrice; Fernandez, Viviana; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Ho, Arthur; Parel, Jean Marie
2004-01-01
The purpose of this study was to measure the shape of the anterior and posterior surface of human cadaver lenses in situ using a corneal topography system. Measurements were performed on 13 pairs of eyes using the PAR Corneal Topography System (PAR-CTS). The age of the donors ranged from 46 to 93 years, with an average age of 76.4 years. Anterior lens topography was measured after excision of the cornea and iris. Posterior lens topography was measured after sectioning the posterior segment and adherent vitreous. The PAR-CTS files providing raw surface height were exported for analysis. In each surface, 18 meridians separated by 10 degrees were fitted using conic sections to obtain values of the apical radius of curvature (R) and shape factor (p). The average apical radius of curvature and asphericity were R=10.15+/-1.39mm and p=4.27+/-1.39 for the anterior surface and R=-6.25+/-0.79mm and p=-0.64+/-1.85 for the posterior surface. A significant variation of the radius of curvature and shape factor as a function of the meridian angle (lens astigmatism) was found in some lenses. Contrary to previous findings, the anterior lens surface was found to steepen toward the periphery.
Reduction in Young`s modulus of aluminum foams due to cell wall curvature and corrugation
Sanders, W.; Gibson, L.J.
1998-12-31
Measurements of the Young`s modulus and compressive strength of several closed-cell aluminum foams indicate that they are lower than expected from models for foam behavior. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young`s modulus and compressive strength by up to 70%. In this paper the authors report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.
Influence of curvature on the losses of doubly clad fibers.
Marcuse, D
1982-12-01
The loss increase of the HE(11) mode of a doubly clad (depressed-index) fiber due to constant curvature is considered. The calculations presented in this paper are based on a simplified theory. We find that for typical fibers the leakage loss of the HE(11) mode begins to increase significantly when the radius of curvature of the fiber axis reaches the 1-10-cm range.
Layered devices having surface curvature and method of constructing same
Woodbury, Richard C.; Perkins, Raymond T.; Thorne, James M.
1989-01-01
A method of treating a substrate having first and second sides with corresponding oppositely facing first and second surfaces, to produce curvature in the first surface. The method includes the steps of removing material, according to a predetermined pattern, from the second side of the substrate, and applying a stress-producing film of material to at least one surface of the substrate to thereby cause the substrate to bend to produce the desired curvature in the first surface.
Topology of codimension-one foliations of nonnegative curvature
Bolotov, Dmitry V
2013-05-31
We show that a transversely oriented C{sup 2}-foliation of codimension one with nonnegative Ricci curvature on a closed orientable manifold is a foliation with almost no holonomy. This allows us to decompose the manifold into blocks on which this foliation has a simple structure. We also show that a manifold homeomorphic to a 5-dimensional sphere does not admit a codimension-one C{sup 2}-foliation with nonnegative sectional curvature. Bibliography: 29 titles.
Fresnel diffractive imaging: Experimental study of coherence and curvature
NASA Astrophysics Data System (ADS)
Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.; McNulty, I.
2008-03-01
A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.
FAST TRACK COMMUNICATION: Lorentzian manifolds and scalar curvature invariants
NASA Astrophysics Data System (ADS)
Coley, Alan; Hervik, Sigbjørn; Pelavas, Nicos
2010-05-01
We discuss (arbitrary-dimensional) Lorentzian manifolds and the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. Recently, we have shown that in four dimensions a Lorentzian spacetime metric is either \\mathcal {I}-non-degenerate, and hence locally characterized by its scalar polynomial curvature invariants, or is a degenerate Kundt spacetime. We present a number of results that generalize these results to higher dimensions and discuss their consequences and potential physical applications.
Adhesive Nanoparticles as Local Probes of Membrane Curvature.
Agudo-Canalejo, Jaime; Lipowsky, Reinhard
2015-10-14
Biological and biomimetic membranes display complex shapes with nonuniform curvature. Because the interaction of adhesive nanoparticles with such membranes depends on the local membrane curvature, different segments of the same membrane can differ in their engulfment behavior. For a single vesicle in contact with many nanoparticles, we predict ten distinct engulfment patterns as well as morphological transitions between these patterns, which are directly accessible to experiment.
Nanoscale Membrane Curvature detected by Polarized Localization Microscopy
NASA Astrophysics Data System (ADS)
Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin
Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.
Control of microelectromechanical systems membrane curvature by silicon ion implantation
NASA Astrophysics Data System (ADS)
Jin, S.; Mavoori, H.; Kim, J.; Aksyuk, V. A.
2003-09-01
Thin silicon membranes in microelectromechanical systems (MEMS) optical devices such as beam-steering, movable mirrors may exhibit undesirable curvature when their surface is metallized with light-reflecting metals to enhance optical performance. We have applied Si+ ion implantations at dose levels of 0.4-5×1016/cm2 into the gold metallization layer to successfully reduce the mirror curvature as well as the degree of its temperature-dependent changes. The curvature change as well as the temperature dependence is found to be dependent on the implantation dose. The mechanism of the observed curvature flattening effect is attributed mostly to the induced compressive stress in gold metallization caused by the insertion of foreign implanted atoms of silicon. Such a Si implantation approach can be useful as a means for post-fabrication correction of unwanted curvature in MEMS membranes, as well as a technique to intentionally introduce a desired degree of curvature if needed. A convenient blanket implantation process can be utilized with minimal contamination problems as Si is a common element already present in the MEMS.
Monolayer spontaneous curvature of raft-forming membrane lipids
NASA Astrophysics Data System (ADS)
Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael; Pabst, Georg
Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontanous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 are closer to zero. Interestingly, a significant positive J0 value (+0.1 1/nm) was retrieved for DPPC at 25 {\\deg}C. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 \\degC, resulting in a quite narrow distribution of -1 to -3 * 10^-3 1/nm{\\deg}C for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered / liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.
QT/RR curvatures in healthy subjects: sex differences and covariates.
Malik, Marek; Hnatkova, Katerina; Kowalski, Donna; Keirns, James J; van Gelderen, E Marcel
2013-12-01
Data of a large clinical study were used to investigate how much are the QT/RR patterns in healthy subjects curved and whether these curvatures differ between women and men. Daytime drug-free 12-lead Holter recordings were repeated 4 times in each of 176 female healthy subjects and 176 male healthy subjects aged 32.7 ± 9.1 yr. In each of the subjects, up to 1,440 carefully verified QT interval measurements were obtained with QT/RR hysteresis-corrected RR intervals. Individual subject data were used to fit the following regression equation: QT = χ + (δ/γ)(1 - RR(γ)) + ε, where QT and RR are QT and RR measurements (in s), χ is regression intercept, δ is the QT/RR slope, γ is the QT/RR curvature and provides the lowest regression residual, and ε represents normally distributed zero-centered errors. The bootstrap technique showed the intrasubject reproducibility of QT/RR slopes and curvatures. In women and men, QT/RR curvatures were 0.544 ± 0.661 and 0.797 ± 0.706, respectively (P = 0.0006). The corresponding QT/RR slopes were 0.158 ± 0.030 and 0.139 ± 0.023, respectively (P < 0.0001). QT/RR curvatures were related to QT/RR slopes but not to individually corrected mean QTc intervals or individual QT/RR hysteresis profiles. The individual heart rate correction formula derived from the curvilinear regression provided a significantly lower intrasubject variability of QTc interval than individual optimisation of linear or log-linear QT/RR heart rate corrections. The QT/RR curvature can be reliable measured and expressed numerically. The corresponding heart rate correction formula provides more compact data than the previously proposed approaches. There are substantial sex differences in QT/RR patterns. Women have a QT/RR pattern that is not only steeper than men but also more curved. PMID:24163079
Różycki, Bartosz; Lipowsky, Reinhard
2016-08-21
Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1
NASA Astrophysics Data System (ADS)
RóŻycki, Bartosz; Lipowsky, Reinhard
2016-08-01
Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1
Reaction front formation in contaminant plumes
NASA Astrophysics Data System (ADS)
Cribbin, Laura B.; Winstanley, Henry F.; Mitchell, Sarah L.; Fowler, Andrew C.; Sander, Graham C.
2014-12-01
The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.
Karidas, Premananda; Challa, Krishna Reddy; Nath, Utpal
2015-01-01
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs. PMID:25711708
Curvature effect in grazing X-ray reflectometry
NASA Astrophysics Data System (ADS)
Bridou, F.
1994-09-01
Grazing X-ray reflectometry is currently used for the characterization of thin layer stacks. The parameters to be determined are thickness, roughness, and optical index. They can be worked out by fitting the recorded reflectivity curve, with a theoretical one calculated with the appropriate parameters. In such a calculation, the sample is supposed to be flat. It can be shown experimentally that the curvature of the sample modifies the expected reflectivity. An example of a saddle shaped sample, with opposite main curvature in two perpendicular directions shows typical differences on recorded curves for these two perpendicular directions. In order to make a quantitative study of the effect of the sample curvature, five pairs of spherical silica substrates have been made and coated with similar TiN layers. A theoretical study has also been made. It is shown that, for a given set-up, the sample curvature changes the aperture of the reflected beam with respect to that of the incident beam. At grazing incidence, the aperture change is significant in the incidence plane, while it can be neglected in the plane perpendicular to the incidence plane. As a consequence of the aperture change, the recorded intensity can be increased or decreased, depending on the position of the source image with respect to the position and width of the stop aperture in the image space. A calculation has been made, taking into account the geometrical characteristics of the equipment. The results have been compared with the reflectivity curves measured for the TiN layers deposited on the curved silica substrates. It can be seen that the anomalies in the reflectivity curves, induced by the substrate curvature in the plateau region are well accounted for by the model. La réflectométrie en X rasants est utilisée couramment pour la caractérisation d'empilements de couches minces. Les paramètres á déterminer sont : épaisseurs, rugosités et indices. On peut y accéder en ajustant la courbe
Schwarz, Thomas A.; /Michigan U.
2006-01-01
Quarks, along with leptons and force carrying particles, are predicted by the Standard Model to be the fundamental constituents of nature. In distinction from the leptons, the quarks interact strongly through the chromodynamic force and are bound together within the hadrons. The familiar proton and neutron are bound states of the light ''up'' and ''down'' quarks. The most massive quark by far, the ''top'' quark, was discovered by the CDF and D0 experiments in March, 1995. The new quark was observed in p{bar p} collisions at 1.8 TeV at the Fermilab Tevatron. The mass of the top quark was measured to be 176 {+-} 13 GeV/c{sup 2} and the cross section 6.8{sub -2.4}{sup +3.6} pb. It is the Q = 2/3, T{sub 3} = +1/2 member of the third generation weak-isospin doublet along with the bottom quark. The top quark is the final Standard Model quark to be discovered. Along with whatever is responsible for electroweak symmetry breaking, top quark physics is considered one of the least understood sectors of the Standard Model and represents a front line of our understanding of particle physics. Currently, the only direct measurements of top quark properties come from the CDF and D0 experiments observing p{bar p} collisions at the Tevatron. Top quark production at the Tevatron is almost exclusively by quark-antiquark annihilation, q{bar q} {yields} t{bar t} (85%), and gluon fusion, gg {yields} t{bar t} (15%), mediated by the strong force. The theoretical cross-section for this process is {sigma}{sub t{bar t}} = 6.7 {+-} 0.8 pb for m{sub t} = 175 GeV/c{sup 2}. Top quarks can also be produced at the Tevatron via q{bar b}{prime} {yields} tb and qg {yields} q{prime}tb through the weak interaction. The cross section for these processes is lower (3pb) and the signal is much more difficult to isolate as backgrounds are much higher. The top quark is predicted to decay almost exclusively into a W-boson and a bottom quark (t {yields} Wb). The total decay width t {yields} Wb is {Lambda} = 1
The influence of reed curvature on the tone quality of lingual organ pipes
NASA Astrophysics Data System (ADS)
Plitnik, G. R.; Angster, J.
2002-11-01
Given certain design constraints, such as the type of stop being voiced and the desired tone quality, reed voicers must use consummate skill to curve each tongue so as to produce the best and most stable tone, as well as maintaining a consistent tone quality across an entire rank of pipes. The curvature given to a reed tongue influences not only the harmonic structure of the steady-state sound, but also the attack. Two fundamentally different types of curvature are typically employed, the chorus reed (trompette) curve (which yields a bright sound) and the smooth-toned curve employed for solo reeds such as the clarinet. This study investigated the effect of reed curvature on the vibration and tone of reed tongues of both types. Two F2 pipes (a trompette and a clarinet) were constructed and voiced with 6 different tongues each to produce a variety of tones. The reed's vibration was measured under typical conditions by laser vibrometer; the pressure waves in the boot and in the shallot were measured by means of one-eighth inch microphones and the emitted sound was recorded at the egress. By performing various measurements simultaneously, phase differences were also determined.
NASA Technical Reports Server (NTRS)
Allen, R. W.; Mcruer, D. T.
1977-01-01
A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed.
Weather fronts and acute myocardial infarction
NASA Astrophysics Data System (ADS)
Kveton, Vit
1991-03-01
Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.
Overriding plate thickness control on subducting slab curvature
NASA Astrophysics Data System (ADS)
Holt, A.; Buffett, B. A.; Becker, T. W.
2014-12-01
The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is
Waves, instabilities and turbulence properties in Depolarisation Fronts
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Goldman, Martin; Newman, David L.; Olshevskyi, Vyacheslav; Eastwood, Jonathan; Divin, Andrey; Pucci, Francesco
2016-04-01
The new mission MMS is currently focusing on the magnetopause but we need to be ready for the study of the tail. An aspect of great importance there are the Dipolarization fronts (DF), formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy and wave phenomena [1-3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4-5]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability develops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability and the onset of waves and secondary instabilities, transitioning towards a turbulent state. We investigate here especially the wave signatures that are observed in fully 3D simulations, looking for signatures of interchange-type lower hybrid waves [8], of whistler waves [7]. The end result present a vast array of waves and it is best analysed relying on concepts mutated by the turbulence theory. The end result of these waves and particle flows [2,6] are energy exchanges. We evaluate the different terms of the energy exchanges (energy deposition, J.E, and energy fluxes) and evaluate their relative improtance. The results presented are contrasted against existing results [1,9] and will provided useful guidance in analysis of future MMS data. [1] Hamrin, Maria, et al. "The evolution of flux pileup regions in the plasma sheet: Cluster observations." Journal of Geophysical Research: Space Physics 118.10 (2013): 6279-6290. [2] Angelopoulos, V., et al. "Electromagnetic energy conversion at reconnection fronts." Science 341.6153 (2013): 1478-1482. [3] Zhou, Meng, et al. "THEMIS observation of multiple
Damage Detection Using the Frequency-Response Curvature Method
NASA Astrophysics Data System (ADS)
SAMPAIO, R. P. C.; MAIA, N. M. M.; SILVA, J. M. M.
1999-10-01
Structural damage detection has gained increasing attention from the scientific community since unpredicted major hazards, most with human losses, have been reported. Aircraft crashes and the catastrophic bridge failures are some examples. Security and economy aspects are the important motivations for increasing research on structural health monitoring. Since damage alters the dynamic characteristics of a structure, namely its eigenproperties (natural frequencies, modal damping and modes of vibration), several techniques based on experimental modal analysis have been developed in recent years. A method that covers the four steps of the process of damage detection—existence, localization, extent and prediction—has not yet been recognized or reported. The frequency-response-function (FRF) curvature method encompasses the first three referred steps being based on only the measured data without the need for any modal identification. In this paper, the method is described theoretically and compared with two of the most referenced methods on literature. Numerically generated data, from a lumped-mass system, and experimental data, from a real bridge, are used for better illustration.
Dendritic growth tip velocities and radii of curvature in microgravity
Koss, M.B.; LaCombe, J.C.; Tennenhouse, L.A.; Glicksman, M.E.; Winsa, E.A.
1999-12-01
Dendritic growth is the common mode of solidification encountered when metals and alloys freeze under low thermal gradients. The growth of dendrites in pure melts depends on the transport of latent heat from the moving crystal-melt interface and the influence of weaker effects like the interfacial energy. Experimental data for critical tests of dendritic growth theories remained limited because dendritic growth can be complicated by convection. The Isothermal Dendritic Growth Experiment (IDGE) was developed specifically to test dendritic growth theories by performing measurements with succinonitrile (SCN) in microgravity, thus eliminating buoyancy-induced convection. The first flight of the IDGE in 1994 operated for 9 days at a mean quasi-static acceleration of 0.7 x 10{sup {minus}6} g{sub 0}. The velocity and radius data show that at supercoolings above approximately 0.4 K, dendritic growth in SCN under microgravity conditions is diffusion limited. By contrast, under terrestrial conditions, dendritic growth of SCN is dominated y convection for supercoolings below 1.7 K. The theoretical and experimental Peclet numbers exhibit modest disagreement, indicating that transport theories of dendritic solidification require some modification. Finally, the kinetic selection rule for dendritic growth, VR{sup 2} = constant, where V is the velocity of the tip and R is the radius of curvature at the tip, appears to be independent of the gravity environment, with a slight dependence on the supercooling.
Fiber optic techniques for measuring various properties of shock waves
NASA Astrophysics Data System (ADS)
Prinse, Wim C.; van Esveld, Rene; Oostdam, Rene; van Rooijen, Murk; Bouma, Richard
1999-06-01
For the past years we have developed several optical techniques to measure properties of shock waves. The fiber optic probe (FOP) is developed to measure the shock-wave velocity and/or the detonation velocity inside an explosive. The space resolution can be as small as 0.5 mm. Single fibers are used as velocity pins, and as devices to measure the flatness of flyers. Arrays of fibers are used to measure the curvature of a shock or detonation front. Also a Fabry-Perot velocity Interferometer System is constructed to measure the velocity of the flyer of an electric gun and the particle velocity in a shock wave. It is possible to combine these two measurements to determine simultaneously the flyer velocity that induces a shock wave in sample and the particle velocity in a window material at the back in a single streak record.
Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.
1998-01-01
Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse
NASA Astrophysics Data System (ADS)
Botterweck, Goetz
Multi Front-End Engineering (MFE) deals with the design of multiple consistent user interfaces (UI) for one application. One of the main challenges is the conflict between commonality (all front-ends access the same application core) and variability (multiple front-ends on different platforms). This can be overcome by extending techniques from model-driven user interface engineering.We present the MANTRA approach, where the common structure of all interfaces of an application is modelled in an abstract UI model (AUI) annotated with temporal constraints on interaction tasks. Based on these constraints we adapt the AUI, e.g., to tailor presentation units and dialogue structures for a particular platform. We use model transformations to derive concrete, platform-specific UI models (CUI) and implementation code. The presented approach generates working prototypes for three platforms (GUI, web, mobile) integrated with an application core via web service protocols. In addition to static evaluation, such prototypes facilitate early functional evaluations by practical use cases.
Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.
Piacsek, Andrew A
2002-01-01
The propagation and subsequent distortion of sonic booms with rippled wave fronts are investigated theoretically using a nonlinear time-domain finite-difference scheme. This work seeks to validate the rippled wave front approach as a method for explaining the significant effects of turbulence on sonic booms [A. S. Pierce and D. J. Maglieri, J. Acoust. Soc. Am. 51, 702-721 (1971)]. A very simple description of turbulence is employed in which velocity perturbations within a shallow layer of the atmosphere form strings of vortices characterized by their size and speed. Passage of a steady-state plane shock front through such a vortex layer produces a periodically rippled wave front which, for the purposes of the present investigation, serves as the initial condition for a finite-difference propagation scheme. Results show that shock strength and ripple curvature determine whether ensuing propagation leads to wave front folding. High resolution images of the computed full wave field provide insights into the spiked and rounded features seen in sonic booms that have propagated through turbulence. PMID:11837957
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Effect of Tension and Curvature of Skin on Insertion Characteristics of Microneedle Array
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto; Takano, Naoki; Nishiyabu, Kazuaki; Miki, Norihisa; Ami, Yoshimichi
Recent MEMS (micro electro mechanical system) fabrication techniques have made it possible to produce painless microneedles precisely enough to be inserted into epidermis layer penetrating the stratum corneum of human skin. This paper presents a testing procedure to evaluate the insertion characteristics of microneedle array using cultured human skin considering the tension and the curvature. First, the biaxial strain applied to the cultured human skin was measured by optical technique with image processing. It was found that almost constant strain could be successfully given within a certain area and that error factors in the experiment except the thickness variation of the cultured skin were negligible. Next, using a microneedle square array for brain machine interface (BMI) application, the effects of biaxial tension and the curvature on insertion characteristics were discussed. Within the above mentioned area with high strain, the needles were successfully inserted.
Analysis of cornea curvature using radial basis functions - Part II: Fitting to data-set.
Griffiths, G W; Płociniczak, Ł; Schiesser, W E
2016-10-01
In part I we discussed the solution of corneal curvature using a 2D meshless method based on radial basis functions (RBFs). In Part II we use these methods to fit a full nonlinear thin membrane model to a measured data-set in order to generate a topological mathematical description of the cornea. In addition, we show how these results can lead to estimations for corneal radius of curvature and certain physical properties of the cornea; namely, tension and elasticity coefficient. Again all calculations and graphics generation were performed using the R language programming environment. The model describes corneal topology extremely well, and the estimated properties fall well within the expected range of values. The method is straight forward to implement and offers scope for further analysis using more detailed 3D models that include corneal thickness. PMID:27570056
Drilling forces in high-curvature wellbores: A comparison of analytical model results with MWD data
Rocheleau, D.N.; Zhao, M.
1997-07-01
Horizontal drilling is commonly used to reach lateral targets in oil and gas reservoirs. A method is presented which predicts the drilling forces encountered while tripping-in and tripping-out of high-curvature wellbores during horizontal and extended reach drilling. The method is based on modeling the drillstring as a set of continuous beams using Timoshenko beam theory. The paper first describes how the drillstring is modeled; it then develops the analytical equations of the model and outlines a computer implementation of these equations. Lastly, the results predicted by the analytical model are compared with actual field results based on measurement while drilling (MWD) data obtained from high-curvature wellbores in the Gulf of Mexico.
Shape matters: corolla curvature improves nectar discovery in the hawkmoth Manduca sexta
Campos, E. O.; Bradshaw, H. D.; Daniel, T. L.
2014-01-01
Summary 1. We measured the effects of variation in corolla curvature and nectary aperture radius on pollinator foraging ability using the hawkmoth Manduca sexta and 3D-printed artificial flowers whose shapes were mathematically specified. 2. In dimorphic arrays containing trumpet-shaped flowers and flat-disk flowers, hawkmoths were able to empty the nectaries of significantly more trumpet-shaped flowers regardless of nectary aperture size. Interestingly, trumpet-shaped flowers needed to deviate only slightly from the flat-disk morphotype in order to significantly increase hawkmoth foraging ability. 3. Whole-flower three-dimensional shape, particularly corolla curvature, has the potential to act as a mechanical guide for Manduca sexta, further implicating direct flower-proboscis contact as an important contributor to foraging success during flower handling in hawkmoths. PMID:25987763
Non-universality in dynamically triangulated random surfaces with extrinsic curvature
Baillie, C.F.; Williams, R.D. ); Johnston, D.A. . Dept. of Physics)
1990-08-30
Earlier simulations of dynamically triangulated random surfaces with a pure Gaussian (Polyakov) action have suggested that the incorporation of a term which is equivalent to the square of the scalar curvature, R{sup 2}, in the continuum can affect the properties of the surfaces, despite the fact that such a term appears to be irrelevant on dimensional grounds. However, simulations by the current authors and Catterall of dynamically triangulated random surfaces with extrinsic curvature produced essentially identical results despite differing coefficients for the R{sup 2} term. In this paper, the authors show that small (positive or negative) values of this coefficient have little effect but that large values do produce measurable effects. This explains the concordance of our previous results with Catterall's and also provides evidence for nonuniversal behavior in the random surface model.
Lumbar spine disc heights and curvature: upright posture vs. supine compression harness
NASA Technical Reports Server (NTRS)
Lee, Shi-Uk; Hargens, Alan R.; Fredericson, Michael; Lang, Philipp K.
2003-01-01
INTRODUCTION: Spinal lengthening in microgravity is thought to cause back pain in astronauts. A spinal compression harness can compress the spine to eliminate lengthening but the loading condition with harness is different than physiologic conditions. Our purpose was to compare the effect of spine compression with a harness in supine position on disk height and spinal curvature in the lumbar spine to that of upright position as measured using a vertically open magnetic resonance imaging system. METHODS: Fifteen healthy subjects volunteered. On day 1, each subject lay supine for an hour and a baseline scan of the lumbar spine was performed. After applying a load of fifty percent of body weight with the harness for thirty minutes, the lumbar spine was scanned again. On day 2, after a baseline scan, a follow up scan was performed after kneeling for thirty minutes within the gap between two vertically oriented magnetic coils. Anterior and posterior disk heights, posterior disk bulging, and spinal curvature were measured from the baseline and follow up scans. RESULTS: Anterior disk heights increased and posterior disk heights decreased compared with baseline scans both after spinal compression with harness and upright posture. The spinal curvature increased by both loading conditions of the spine. DISCUSSION: The spinal compression with specially designed harness has the same effect as the physiologic loading of the spine in the kneeling upright position. The harness shows some promise as a tool to increase the diagnostic capabilities of a conventional MR system.
Luo, Ming; Pan, Yixiao; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Onal, Cagdas D
2015-10-01
Soft robotic snakes promise significant advantages in achieving traveling curvature waves with a reduced number of active segments as well as allowing for safe and adaptive interaction with the environment and human users. However, current soft robot platforms suffer from a lack of accurate theoretical dynamic models and proprioceptive measurements, which impede advancements toward full autonomy. To address this gap, this paper details our recent results on the design, fabrication, and experimental evaluation of a new-generation pressure-operated soft robotic snake platform we call the WPI SRS, which employs custom magnetic sensors embedded in a flexible backbone to continuously monitor the curvature of each of its four bidirectional bending segments. In addition, we present a complete and accurate dynamic undulatory locomotion model that accounts for the propagation of frictional moments to describe linear and rotational motions of the SRS. Experimental studies indicate that on-board sensory measurements provide accurate real-time curvature feedback, and numerical simulations offer a level of abstraction for lateral undulation under ideal conditions. PMID:26335857