Sample records for front header pressure

  1. 34. (Credit JTL) Front (north side) of three water tube ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. (Credit JTL) Front (north side) of three water tube boilers built by the Heine Safety Boiler Co. of St. Louis, Missouri in 1917; rebuilt in 1938. Front doors opened on center boiler to show water header and inspection plugs for water tubes. Smaller doors beneath open into firebox; boilers presently equipped for gas firing. Operating pressure approx. 150 psi (saturated steam). - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  2. 20. TYPICAL VIEW OF FRONT WINDOWS FROM 4TH TO 9TH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TYPICAL VIEW OF FRONT WINDOWS FROM 4TH TO 9TH FLOOR WITH WHITE GLAZED TERRA COTTA SILL AND HEADERS. MULLIONS ARE ORANGE BROWN BRICKS LIKE THE WALLS. BRICKS ARE IN FLEMISH BOND PATTERN. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  3. Browns Ferry Nuclear Plant Unit 2: Control rod drive scram discharge headers decontamination effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, J.C.

    1983-08-01

    The control rod drive (CRD) scram discharge headers were decontaminated during the Browns Ferry unit 2, cycle 4 refueling outage (August 2-5, 1982). Hydrolasing (high-pressure water blasting) was used as the method of decontamination to remove fixed and loose radioactive contaminants from the headers. It was found that hydrolasing of the west scram discharge headers resulted in approximate maximum and average decontamination factors (DFs) on contact of 13 and 5, respectively. For the east scram discharge headers, hydrolasing resulted in a maximum and average DF on contact of approximately 3. The maximum and average DFs on contact for the individualmore » headers ranged from 1 to 33 and 1 to 10, respectively, while the walkway (head-level) DFs were in the range of 3 to 4. Higher DFs were impeded by inadequate drainage and backwashing of fluid. This led to increased radiation levels in some areas and recontamination of adjacent headers.« less

  4. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  5. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  6. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  7. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  8. Monte Carlo Uncertainty Quantification for an Unattended Enrichment Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kenneth D.; Smith, Leon E.; Wittman, Richard S.

    As a case study for uncertainty analysis, we consider a model flow monitor for measuring enrichment in gas centrifuge enrichment plants (GCEPs) that could provide continuous monitoring of all declared gas flow and provide high-accuracy gas enrichment estimates as a function of time. The monitor system could include NaI(Tl) gamma-ray spectrometers, a pressure signal-sharing device to be installed on an operator\\rq{}s pressure gauge or a dedicated inspector pressure sensor, and temperature sensors attached to the outside of the header pipe, to provide pressure, temperature, and gamma-ray spectra measurements of UFmore » $$_6$$ gas flow through unit header pipes. Our study builds on previous modeling and analysis methods development for enrichment monitor concepts and a software tool that was developed at Oak Ridge National Laboratory to generate and analyze synthetic data.« less

  9. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove them and to optimize the cooling channels. The SB #8 FSP was manufactured and tested in accordance with the pre-qualification program based on the preliminary design, and related R&D activities were implemented to resolve the fabrication issues. This paper provides the current status of the final design and relevant R&D activities of the blanket SB.

  10. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  11. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  12. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  13. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  14. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  15. 1. 119 LOMBARD STREET, SECOND HOUSE TO LEFT (WITH BOARDEDUP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 119 LOMBARD STREET, SECOND HOUSE TO LEFT (WITH BOARDED-UP FIRST AND SECOND FLOOR WINDOWS). NOTE THAT THE FRONT (SOUTH) HAS BELT COURSES, GLAZED HEADERS, PLASTER COVE CORNICE, DOOR STOOP, ETC. ALSO NOTE THE TWIN HOUSE (117 LOMBARD STREET, HABS No. PA-1353) AT RIGHT, WITH IDENTICAL FEATURES. BOTH HOUSES WERE BUILT AT THE SAME TIME. - Joseph Wharton House, 119 Lombard Street, Philadelphia, Philadelphia County, PA

  16. 49 CFR 192.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...

  17. 49 CFR 192.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...

  18. 49 CFR 192.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...

  19. 49 CFR 192.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...

  20. 49 CFR 192.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... header or manifold. SMYS means specified minimum yield strength is: (1) For steel pipe manufactured in... the waters from the mean high water mark of the coast of the Gulf of Mexico and its inlets open to the... water. High-pressure distribution system means a distribution system in which the gas pressure in the...

  1. Shape optimized headers and methods of manufacture thereof

    DOEpatents

    Perrin, Ian James

    2013-11-05

    Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.

  2. 49 CFR 192.155 - Welded branch connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not reduced, taking into account the stresses in the remaining pipe wall due to the opening in the pipe or header, the shear stresses produced by the pressure acting on the area of the branch opening...

  3. 49 CFR 192.155 - Welded branch connections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not reduced, taking into account the stresses in the remaining pipe wall due to the opening in the pipe or header, the shear stresses produced by the pressure acting on the area of the branch opening...

  4. 49 CFR 192.155 - Welded branch connections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not reduced, taking into account the stresses in the remaining pipe wall due to the opening in the pipe or header, the shear stresses produced by the pressure acting on the area of the branch opening...

  5. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure of 10 percent of the relief valve setting is insufficient to move the gases through any but an...) Vents and headers shall be so installed as to prevent excessive stresses on safety relief valve...

  6. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure of 10 percent of the relief valve setting is insufficient to move the gases through any but an...) Vents and headers shall be so installed as to prevent excessive stresses on safety relief valve...

  7. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressure of 10 percent of the relief valve setting is insufficient to move the gases through any but an...) Vents and headers shall be so installed as to prevent excessive stresses on safety relief valve...

  8. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure of 10 percent of the relief valve setting is insufficient to move the gases through any but an...) Vents and headers shall be so installed as to prevent excessive stresses on safety relief valve...

  9. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure of 10 percent of the relief valve setting is insufficient to move the gases through any but an...) Vents and headers shall be so installed as to prevent excessive stresses on safety relief valve...

  10. 49 CFR 192.155 - Welded branch connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... not reduced, taking into account the stresses in the remaining pipe wall due to the opening in the pipe or header, the shear stresses produced by the pressure acting on the area of the branch opening...

  11. Study of the Cooldown and Warmup for the Eight Sectors of the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Liu, L.; Riddone, G.; Tavian, L.

    2004-06-01

    The LHC cryogenic system is based on a five-point feed scheme with eight refrigerators serving the eight sectors of the LHC machine. The paper presents the simplified flow scheme of the eight sectors and the mathematical methods including the program flowchart and the boundary conditions to simulate the cooldown and warmup of these sectors. The methods take into account the effect of the pressure drop across the valves as well as the pressure evolution in the different headers of the cryogenic distribution line. The simulated pressure and temperature profiles of headers of the LHC sector during the cooldown and warmup are given and the temperature evolutions of entire processes of cooldown and warmup are presented. As a conclusion, the functions of the input temperature for the normal and fast cooldown and warmup, the cooldown and warmup time of each sector and the distributions of mass flow rates in each sector are summarized. The results indicate that it is possible to cool down any of the LHC sector within 12.7 days in normal operation and 6.8 days in case of fast operation.

  12. Current Document Handling Procedures at Defense Technical Information Center

    DTIC Science & Technology

    1985-11-01

    File so that a microfiche header can be made for the document. Headers are generated on magnetic tape , and a paper copy of each header is printed for...review. If a header contains an error, corrections are made to the initial tape and a printout of the corrected header is reviewed before approval is...made and the header released. The final tape is sent to Micrographics for inclusion in the microfiche copy. The header tape usually reaches

  13. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  14. Performance of LI-1542 reusable surface insulation system in a hypersonic stream

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Bohon, H. L.

    1974-01-01

    The thermal and structural performance of a large panel of LI-1542 reusable surface insulation tiles was determined by a series of cyclic heating tests using radiant lamps and aerothemal tests in the Langley 8-foot high-temperature structures tunnel. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1830 K, Reynolds numbers of 2.0 and 4,900,000 per meter, and dynamic pressures of 29 and 65 kPa. The results suggest that pressure gradients in gaps and flow impingement on the header walls at the end of longitudinal gaps are sources for increased gap heating. Temperatures higher than surface radiation equilibrium temperature were measured deep in gaps and at the header walls. Also, the damage tolerance of the LI-1542 tiles appears to be very high. Tile edge erosion rate was slow; could not be tolerated in a shuttle application. Tiles soaked with water and subjected to rapid depressurization and aerodynamic heating showed no visible evidence of damage.

  15. Photoelastic analysis in respect to failure mechanics problems of power plant articles and units

    NASA Astrophysics Data System (ADS)

    Korikhin, N. V.; Eigenson, S. N.

    2009-02-01

    The results of strength tests of some critical articles and units of power plants, i.e., a reactor vessel, threaded connection of vessel split, pressure header with straight nipple, turbomachine shaft, and T-weld joint of stator and rotor parts, of turbomachines are presented.

  16. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  17. Retrofitting coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, D.G.

    1995-12-01

    This article provides guidelines for maintaining efficiency by determining which coils require replacement and the selection of replacement coils to match the originals in terms of size, performance, materials, and material thickness. Coils in the Rio Hondo College have been in use 24 years. The author recently found an installation where the coils installed 20 years ago look like new, which is the result of a highly effective preventive maintenance program. But these exceptions are countered by some installations lasting considerably less time. Periodic coil inspections are the best way to find leaks and deterioration. Leaking coils have an unhappymore » way of announcing their presence through unwanted water on ceilings, walls, and machine room floors. Minuscule streams of water impinge on nonwater-tight housings or are picked up in the air stream to leak out of the ductwork. Coil return bends and headers seem to have the greater incidence of failure and should be checked first for pinhole or joint leaks. Also, check along the points where the tubes penetrate the tube sheets. The coil headers should be checked as should the tubes along the front and backside of the coil. The more rows the coil has, the more difficult this latter assignment becomes.« less

  18. --No Title--

    Science.gov Websites

    -color:#5e6a71;border-top:3px solid #62d2ff}header .logo{background-position:center center}@media (min -position:center right}}header a.app-name,header a.app-name:hover,header a.app-name:visited{color:#fff

  19. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  20. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  1. Heat pipe radiators for space

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.

  2. Recognition of VLSI Module Isomorphism

    DTIC Science & Technology

    1990-03-01

    forthforth->next; 6.5 else{ prev4=prev4->next; forth=forth->next; if (header-. nenI ->tai==third){ header-.nevrI->tail=prev3; prev3->next=NULL; end...end=TRUE; if (header-. nenI ->head=third){ header-.newn->head=third->next; I if((third!=prev3)&&(finished!=TRUE)){ prev3->next=prev3->next->next; third

  3. Design, Implementation and Evaluation of an Operating System for a Network of Transputers.

    DTIC Science & Technology

    1987-06-01

    WHILE TRUE -- listen to linki SEQ receiving the header BYTE.SLICE.INPUT (linkl,headerl,1,header.size) -- decoding the block size block.sizelLO] z...I’m done BYTE.SLICE.OUTPUT (screen[0] ,header0,3,1) WHILE TRUE -- listen to linki SEQ- rec eiving the header BYTE.SLICE. IPUT (linkl,headerl,1

  4. 78 FR 55251 - Southeast Supply Header, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Supply Header, LLC; Notice of Request Under Blanket Authorization Take notice that on August 23, 2013, Southeast Supply Header, LLC (SESH), P.O. Box 1642, Houston, Texas 77251-1642, filed in Docket No. CP13-537... Southeast Supply Header, LLC et al, 119 FERC ] 61,153 (2007). SESH proposes to offset and replace...

  5. 40 CFR 60.756 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator seeking to comply with § 60.752(b)(2)(ii)(A) for an active gas collection system shall... temperature measurements at each wellhead and: (1) Measure the gauge pressure in the gas collection header on... the landfill gas on a monthly basis as provided in § 60.755(a)(5); and (3) Monitor temperature of the...

  6. 40 CFR 60.756 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owner or operator seeking to comply with § 60.752(b)(2)(ii)(A) for an active gas collection system shall... temperature measurements at each wellhead and: (1) Measure the gauge pressure in the gas collection header on... the landfill gas on a monthly basis as provided in § 60.755(a)(5); and (3) Monitor temperature of the...

  7. Survey of Header Compression Techniques

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2001-01-01

    This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves compression schemes which provide better tolerances in conditions with a high BER.

  8. Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link

    NASA Technical Reports Server (NTRS)

    Nguyen, Sam P.; Pang, Jackson; Clare, Loren P.; Cheng, Michael K.

    2010-01-01

    NASA is moving toward a networkcentric communications architecture and, in particular, is building toward use of Internet Protocol (IP) in space. The use of IP is motivated by its ubiquitous application in many communications networks and in available commercial off-the-shelf (COTS) technology. The Constellation Program intends to fit two or more voice (over IP) channels on both the forward link to, and the return link from, the Orion Crew Exploration Vehicle (CEV) during all mission phases. Efficient bandwidth utilization of the links is key for voice applications. In Voice over IP (VoIP), the IP packets are limited to small sizes to keep voice latency at a minimum. The common voice codec used in VoIP is G.729. This new algorithm produces voice audio at 8 kbps and in packets of 10-milliseconds duration. Constellation has designed the VoIP communications stack to use the combination of IP/UDP/RTP protocols where IP carries a 20-byte header, UDP (User Datagram Protocol) carries an 8-byte header, and RTP (Real Time Transport Protocol) carries a 12-byte header. The protocol headers total 40 bytes and are equal in length to a 40-byte G.729 payload, doubling the VoIP latency. Since much of the IP/UDP/RTP header information does not change from IP packet to IP packet, IP/UDP/RTP header compression can avoid transmission of much redundant data as well as reduce VoIP latency. The benefits of IP header compression are more pronounced at low data rate links such as the forward and return links during CEV launch. IP/UDP/RTP header compression codecs are well supported by many COTS routers. A common interface to the COTS routers is through frame relay. However, enabling IP header compression over frame relay, according to industry standard (Frame Relay IP Header Compression Agreement FRF.20), requires a duplex link and negotiations between the compressor router and the decompressor router. In Constellation, each forward to and return link from the CEV in space is treated independently as a simplex link. Without negotiation, the COTS routers are prevented from entering into the IP header compression mode, and no IP header compression would be performed. An algorithm is proposed to enable IP header compression in COTS routers on a simplex link with no negotiation or with a one-way messaging. In doing so, COTS routers can enter IP header compression mode without the need to handshake through a bidirectional link as required by FRF.20. This technique would spoof the routers locally and thereby allow the routers to enter into IP header compression mode without having the negotiations between routers actually occur. The spoofing function is conducted by a frame relay adapter (also COTS) with the capability to generate control messages according to the FRF.20 descriptions. Therefore, negotiation is actually performed between the FRF.20 adapter and the connecting COTS router locally and never occurs over the space link. Through understanding of the handshaking protocol described by FRF.20, the necessary FRF.20 negotiations messages can be generated to control the connecting router, not only to turn on IP header compression but also to adjust the compression parameters. The FRF.20 negotiation (or control) message is composed in the FRF.20 adapter by interpreting the incoming router request message. Many of the fields are simply transcribed from request to response while the control field indicating response and type are modified.

  9. Improved Air-Treatment Canister

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  10. DDN (Defense Data Network) Protocol Handbook. Volume 2. DARPA Internet Protocols

    DTIC Science & Technology

    1985-12-01

    header padding is used to ensure that the internet header ends on a 32 bit boundary. The padding is zero . 3.2. Discussion The implementation of a... zeros . The first of these would be interpreted as the end-of-options option, and the remainder as internet header padding , Every internet module must...several octets in length. The internet header Padding field is used to ensure that the data begins on 32 bit word boundary. The padding is zero

  11. WPC Medium-Range Forecasts (Days 3-7)

    Science.gov Websites

    Pressures Day 7 [b/w] [full color] *The Northern Hemispheric view is updated once daily at 1900Z. EXTENDED Level Pressures and Fronts CONUS View* Final Day 3 Fronts and Pressures for the CONUS Day 3 [b/w] [full color] Final Day 4 Fronts and Pressures for the CONUS Day 4 [b/w] [full color] Final Day 5 Fronts and

  12. Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)

    DTIC Science & Technology

    2009-11-06

    from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER

  13. Clustering header categories extracted from web tables

    NASA Astrophysics Data System (ADS)

    Nagy, George; Embley, David W.; Krishnamoorthy, Mukkai; Seth, Sharad

    2015-01-01

    Revealing related content among heterogeneous web tables is part of our long term objective of formulating queries over multiple sources of information. Two hundred HTML tables from institutional web sites are segmented and each table cell is classified according to the fundamental indexing property of row and column headers. The categories that correspond to the multi-dimensional data cube view of a table are extracted by factoring the (often multi-row/column) headers. To reveal commonalities between tables from diverse sources, the Jaccard distances between pairs of category headers (and also table titles) are computed. We show how about one third of our heterogeneous collection can be clustered into a dozen groups that exhibit table-title and header similarities that can be exploited for queries.

  14. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.

  15. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  16. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  17. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. An explanation of unstable wetting fronts in soils

    NASA Astrophysics Data System (ADS)

    Steenhuis, Tammo; Parlange, Jean-Yves; Kung, Samuel; Stoof, Cathelijne; Baver, Christine

    2016-04-01

    Despite the findings of Raats on unstable wetting front almost a half a century ago, simulating wetting fronts in soils is still an area of active research. One of the critical questions currently is whether Darcy law is valid at the wetting front. In this talk, we pose that in many cases for dry soils, Darcy's law does not apply because the pressure field across the front is not continuous. Consequently, the wetting front pressure is not dependent on the pressure ahead of the front but is determined by the radius of water meniscuses and the dynamic contact angle of the water. If we further assume since the front is discontinuous, that water flows at one pore at the time, then by using the modified Hoffman relationship - relating the dynamic contact angle to the pore water velocity - we find the elevated pressures at the wetting front typical for unstable flows that are similar to those observed experimentally in small diameter columns. The theory helps also explain the funnel flow phenomena observed in layered soils.

  19. Experiment for transient effects of sudden catastrophic loss of vacuum on a scaled superconducting radio frequency cryomodule

    NASA Astrophysics Data System (ADS)

    Dalesandro, Andrew A.; Theilacker, Jay; Van Sciver, Steven

    2012-06-01

    Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.

  20. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  1. Notes on Operations. The Documentation of Electronic Texts Using Text Encoding Initiative Headers: An Introduction.

    ERIC Educational Resources Information Center

    Giordano, Richard

    1994-01-01

    Describes the Text Encoding Initiative (TEI) project and the TEI header, which documents electronic text in a standard interchange format understandable to both librarian catalogers and nonlibrarian text encoders. The form and function of the TEI header is introduced, and its relationship to the MARC record is explained. (10 references) (KRN)

  2. --No Title--

    Science.gov Websites

    a#show-docs-search{display:inline;padding-left:2%}div.popover span{display:block}div.popover %}p.pub-note span{font-style:italic;padding-bottom:10px}#category-search input[type=submit]{margin-top :100px;margin-left:90px}div#search-header{padding:0 0 20px 0}div#search-header span.header{font-size

  3. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  4. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    ERIC Educational Resources Information Center

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  5. Excalibur Strategic Configured Load (SCL) for the Heavy Expanded Mobility Tactical Truck (HEMTT). Testing IAW TP-94-01, Revision 2, June 2004, Transportability Testing Procedures

    DTIC Science & Technology

    2008-06-01

    2-1 PART 3 - TEST EQUIPMENT 1. Semitrailer, flatbed , breakbulk/container transporter, 34 ton Model #: M872A1 Manufactured by Heller Truck Body... LAMINATING DUNNAGE. ADDITIONALLY, THE NAILING PATTERN FOR AN UP- DA39 PALLET UNITS CENTERED ON TOP OF PRIOR DA39 PALLET UNITS, PER PIECE OF LAMINATED ...ai FT (APPWO HEADER I" X V’ X 7-4- (AS RECID, 1 SHOWYN). LAMINATE EACH HEADER TO PREVIOUS HEADER W/9-10d NAILS. HEADER 2" x 8" x r-" (AS RECID, 3 SHOWN

  6. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  7. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  8. Simple online recognition of optical data strings based on conservative optical logic

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John; Shamir, Joseph; Zavalin, Andrey I.; Silberman, Enrique; Qian, Lei; Vikram, Chandra S.

    2006-06-01

    Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.

  9. Thermal shock testing for assuring reliability of glass-sealed microelectronic packages

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B., III; Lewis, Michael D.

    1991-01-01

    Tests were performed to determine if thermal shocking is destructive to glass-to-metal seal microelectronic packages and if thermal shock step stressing can compare package reliabilities. Thermal shocking was shown to be not destructive to highly reliable glass seals. Pin-pull tests used to compare the interfacial pin glass strengths showed no differences between thermal shocked and not-thermal shocked headers. A 'critical stress resistance temperature' was not exhibited by the 14 pin Dual In-line Package (DIP) headers evaluated. Headers manufactured in cryogenic nitrogen based and exothermically generated atmospheres showed differences in as-received leak rates, residual oxide depths and pin glass interfacial strengths; these were caused by the different manufacturing methods, in particular, by the chemically etched pins used by one manufacturer. Both header types passed thermal shock tests to temperature differentials of 646 C. The sensitivity of helium leak rate measurements was improved up to 70 percent by baking headers for two hours at 200 C after thermal shocking.

  10. Recognition of the optical packet header for two channels utilizing the parallel reservoir computing based on a semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie

    2018-05-01

    In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llopis, C.; Mendizabal, R.; Perez, J.

    An assessment of RELAP5/MOD2 cycle 36.04 against a load rejection from 100% to 50% power in Vandals II NPP (Spain) is presented. The work is inscribed in the framework of the Spanish contribution to ICAP Project. The model used in the simulation consists of a single loop, a steam generator and a steam line up to the steam header all of them enlarged on a scale of 3:1, and full-scaled reactor vessel and pressurizer. The results of the calculations have been in reasonable agreement with plant measurements.

  12. Liquid redistribution behind a drainage front in porous media imaged by neutron radiography

    NASA Astrophysics Data System (ADS)

    Hoogland, Frouke; Lehmann, Peter; Moebius, Franziska; Vontobel, Peter; Or, Dani

    2013-04-01

    Drainage from porous media is a highly dynamic process involving the motion of a displacement front with rapid pore scale interfacial jumps and phase entrapment, but also a more gradual host of liquid redistribution processes in the unsaturated region behind the front. Depending on the velocity of the drainage process, liquid properties and the permeability of the porous medium, redistribution lingers long after the main drainage process is stopped, until gravity and capillary forces regain equilibrium. The rapid and often highly inertial Haines jumps at the drainage front challenge the validity of Buckingham-Darcy law and thus representation of the process based on the foundation of Richards equation. To quantify front displacement and liquid reconfiguration and to test validity of Richards equation with respect to fast drainage dynamics, we carried out drainage experiments by withdrawing water from the bottom of initially saturated sand-filled Hele-Shaw cells at constant water flux (2.6 or 13.1 mm/minute). Water content distribution and evolution of drainage front were measured with neutron radiography at spatial and temporal resolutions of 0.1 mm and 3 seconds, respectively. Water pressure was measured above and below the front using pressure transducers and a tensiometer. After the pump was stopped (at a front depth around 100 mm), capillary pressure values in the unsaturated region (above the front) gradually converged to a new equilibrium. The pressure signal in the saturated region below the front reflected viscous losses during flow that were relaxed when the pump stopped. During pressure relaxation water was redistributed primarily downward in the unsaturated region. Pressure signals and dynamics of water content profiles for fast process (13.6 mm/minute) could not be reproduced with Richards equation based on hydraulic functions determined in preceding laboratory experiments. To explore if the deviations stem from inappropriate hydraulic functions we redefined them based on fitting the slow experiment (2.6 mm/min) and apply the optimized functions for the fast experiment. Finally we will discuss application of alternative formulation based on foam drainage equation to represent liquid redistribution dynamics behind the front.

  13. Multi-protocol header generation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David A.; Ignatowski, Michael; Jayasena, Nuwan

    A communication device includes a data source that generates data for transmission over a bus, and a data encoder that receives and encodes outgoing data. An encoder system receives outgoing data from a data source and stores the outgoing data in a first queue. An encoder encodes outgoing data with a header type that is based upon a header type indication from a controller and stores the encoded data that may be a packet or a data word with at least one layered header in a second queue for transmission. The device is configured to receive at a payload extractor,more » a packet protocol change command from the controller and to remove the encoded data and to re-encode the data to create a re-encoded data packet and placing the re-encoded data packet in the second queue for transmission.« less

  14. Providing integrity, authenticity, and confidentiality for header and pixel data of DICOM images.

    PubMed

    Al-Haj, Ali

    2015-04-01

    Exchange of medical images over public networks is subjected to different types of security threats. This has triggered persisting demands for secured telemedicine implementations that will provide confidentiality, authenticity, and integrity for the transmitted images. The medical image exchange standard (DICOM) offers mechanisms to provide confidentiality for the header data of the image but not for the pixel data. On the other hand, it offers mechanisms to achieve authenticity and integrity for the pixel data but not for the header data. In this paper, we propose a crypto-based algorithm that provides confidentially, authenticity, and integrity for the pixel data, as well as for the header data. This is achieved by applying strong cryptographic primitives utilizing internally generated security data, such as encryption keys, hashing codes, and digital signatures. The security data are generated internally from the header and the pixel data, thus a strong bond is established between the DICOM data and the corresponding security data. The proposed algorithm has been evaluated extensively using DICOM images of different modalities. Simulation experiments show that confidentiality, authenticity, and integrity have been achieved as reflected by the results we obtained for normalized correlation, entropy, PSNR, histogram analysis, and robustness.

  15. Development and Evaluation of a Clinical Note Section Header Terminology

    PubMed Central

    Denny, Joshua C.; Miller, Randolph A.; Johnson, Kevin B.; Spickard, Anderson

    2008-01-01

    Clinical documentation is often expressed in natural language text, yet providers often use common organizations that segment these notes in sections, such as “history of present illness” or “physical examination.” We developed a hierarchical section header terminology, supporting mappings to LOINC and other vocabularies; it contained 1109 concepts and 4332 synonyms. Physicians evaluated it compared to LOINC and the Evaluation and Management billing schema using a randomly selected corpus of history and physical notes. Evaluated documents contained a median of 54 sections and 27 “major sections.” There were 16,196 total sections in the evaluation note corpus. The terminology contained 99.9% of the clinical sections; LOINC matched 77% of section header concepts and 20% of section header strings in those documents. The section terminology may enable better clinical note understanding and interoperability. Future development and integration into natural language processing systems is needed. PMID:18999303

  16. Method and apparatus for eliminating unsuccessful tries in a search tree

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward (Inventor); Madan, Herb S. (Inventor)

    1991-01-01

    A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched.

  17. LAMP Educational Site

    Science.gov Websites

    topHeader GSFC NASA SwRI Denver Museum of Nature and Science sub header Home Science and the ready to go back to the Moon? NASA took the first step in that direction in 2009 with the launch of

  18. Development of the Subaru-Mitaka-Okayama-Kiso Archive System

    NASA Astrophysics Data System (ADS)

    Baba, Hajime; Yasuda, Naoki; Ichikawa, Shin-Ichi; Yagi, Masafumi; Iwamoto, Nobuyuki; Takata, Tadafumi; Horaguchi, Toshihiro; Taga, Masatoshi; Watanabe, Masaru; Ozawa, Tomohiko; Hamabe, Masaru

    We have developed the Subaru-Mitaka-Okayama-Kiso-Archive (SMOKA) public science archive system which provides access to the data of the Subaru Telescope, the 188 cm telescope at Okayama Astrophysical Observatory, and the 105 cm Schmidt telescope at Kiso Observatory/University of Tokyo. SMOKA is the successor of the MOKA3 system. The user can browse the Quick-Look Images, Header Information (HDI) and the ASCII Table Extension (ATE) of each frame from the search result table. A request for data can be submitted in a simple manner. The system is developed with Java Servlet for the back-end, and Java Server Pages (JSP) for content display. The advantage of JSP's is the separation of the front-end presentation from the middle- and back-end tiers which led to an efficient development of the system. The SMOKA homepage is available at SMOKA

  19. Non-parametric adaptative JPEG fragments carving

    NASA Astrophysics Data System (ADS)

    Amrouche, Sabrina Cherifa; Salamani, Dalila

    2018-04-01

    The most challenging JPEG recovery tasks arise when the file header is missing. In this paper we propose to use a two layer machine learning model to restore headerless JPEG images. We first build a classifier able to identify the structural properties of the images/fragments and then use an AutoEncoder (AE) to learn the fragment features for the header prediction. We define a JPEG universal header and the remaining free image parameters (Height, Width) are predicted with a Gradient Boosting Classifier. Our approach resulted in 90% accuracy using the manually defined features and 78% accuracy using the AE features.

  20. Investigation of the Loads on a Conventional Front and Rear Sliding Canopy

    NASA Technical Reports Server (NTRS)

    Dexter, Howard E.; Rickey, Edward A.

    1947-01-01

    As one phase of a comprehensive canopy load investigation, conventional front and rear sliding canopies which are typified by installation on the SB2C-4E airplane, were tested in the Langley full-scale tunnel to determine the pressure distributions and the aerodynamic loads on the canopies. A preliminary analysis of the results of these tests is presented in this report. Plots are presented that show the distribution of pressure at four longitudinal stations through each canopy for a range of conditions selected to determine the effects of varying canopy position, yaw, lift coefficient, and power. The results indicate that the maximum loads, based on the external-internal pressure differential, for the front and rear canopies were obtained with the airplane simulating the high speed flight condition. The highest loading on the front canopy was in the exploding direction for the configuration with the front and rear canopies closed. The highest loads on the rear canopy were in the crushing direction with the front canopy open and the rear canopy closed. For most of the simulated flight conditions, the highest loads on the front canopy, per unit area, were over twice as great as the highest loads on the rear canopy when the comparison was made for the most critical canopy configuration in each case. The external pressure distribution over the front and rear canopies, which were fairly symmetrical to 0 degree angle of yaw, were greatly distorted at other yaw attitudes, particularly for the propeller operating conditions. These distorted pressure distributions resulted in local exploding and crushing loads on both canopies which were often considerably higher than the average canopy loads.

  1. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    NASA Astrophysics Data System (ADS)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  2. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  3. Fallon FORGE Well Lithologies

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  4. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  5. Asynchronous broadcast for ordered delivery between compute nodes in a parallel computing system where packet header space is limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sameer

    Disclosed is a mechanism on receiving processors in a parallel computing system for providing order to data packets received from a broadcast call and to distinguish data packets received at nodes from several incoming asynchronous broadcast messages where header space is limited. In the present invention, processors at lower leafs of a tree do not need to obtain a broadcast message by directly accessing the data in a root processor's buffer. Instead, each subsequent intermediate node's rank id information is squeezed into the software header of packet headers. In turn, the entire broadcast message is not transferred from the rootmore » processor to each processor in a communicator but instead is replicated on several intermediate nodes which then replicated the message to nodes in lower leafs. Hence, the intermediate compute nodes become "virtual root compute nodes" for the purpose of replicating the broadcast message to lower levels of a tree.« less

  6. NIMBUS 7 Earth Radiation Budget (ERB) Matrix User's Guide. Volume 2: Tape Specifications

    NASA Technical Reports Server (NTRS)

    Ray, S. N.; Vasanth, K. L.

    1984-01-01

    The ERB MATRIX tape is generated by an IBM 3081 computer program and is a 9 track, 1600 BPI tape. The gross format of the tape given on Page 1, shows an initial standard header file followed by data files. The standard header file contains two standard header records. A trailing documentation file (TDF) is the last file on the tape. Pages 9 through 17 describe, in detail, the standard header file and the TDF. The data files contain data for 37 different ERB parameters. Each file has data based on either a daily, 6 day cyclic, or monthly time interval. There are three types of physical records in the data files; namely, the world grid physical record, the documentation mercator/polar map projection physical record, and the monthly calibration physical record. The manner in which the data for the 37 ERB parameters are stored in the physical records comprising the data files, is given in the gross format section.

  7. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    PubMed

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  8. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    PubMed Central

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014

  9. Malfunction of subpectorally implanted cardiac resynchronization therapy defibrillators due to weakened header bond.

    PubMed

    Hayat, Sajad A; Kojodjojo, Pipin; Mason, Anthony; Benfield, Ann; Wright, Ian; Whinnett, Zachary; Lim, Phang Boon; Davies, D Wyn; Lefroy, David; Peters, Nicholas S; Kanagaratnam, Prapa

    2013-03-01

    Implantable cardioverter defibrillator (ICD) implantation has increased significantly over the last 10 years. Concerns about the safety and reliability of ICD systems have been raised, with premature lead failure and battery malfunctions accounting for the majority of reported adverse events. We describe the unique mode of presentation, diagnosis, and management of cardiac resynchronization therapy defibrillators (CRT-D) malfunctions that were caused by weakened bonding between the generator and header. Between June 2008 and December 2009, 22 Teligen™ ICDs and 24 Cognis™ CRT-Ds were implanted subpectorally at our institution, until a product advisory was issued. Of 24 Cognis™ CRT-D implants, 3 patients presented with CRT-D malfunctions. All our cases presented with initially intermittent and then persisting increases in shock lead impedance, associated with nonphysiological noise in the shock electrogram channels. These issues were rectified by generator change. Postexplant laboratory analysis confirmed inadequate bonding between device header and titanium casing in all cases, resulting in loosening and rocking of the header followed by fatigue-induced fracture of the shock circuitry. Weakened bonding between the header and generator casing of subpectorally implanted CRT-Ds can result in fractures and malfunction of the HV circuit. Physicians monitoring patients with devices affected by the product advisory should remain vigilant in order to diagnose and manage similar device malfunction expediently. © 2012 Wiley Periodicals, Inc.

  10. The Pressure Available for Ground Cooling in Front of the Cowling of Air-cooled Airplane Engines

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Joyner, Upshur T

    1938-01-01

    A study was made of the factors affecting the pressure available for ground cooling in front of a cowling. Most of the results presented were obtained with a set-up that was about one-third full scale. A number of isolated tests on four full-scale airplanes were made to determine the general applicability of the model results. The full-scale tests indicated that the model results may be applied qualitatively to full-scale design and quantitatively as a first approximation of the front pressure available for ground cooling.

  11. Defense RDT&E Online System (DROLS) Handbook

    DTIC Science & Technology

    1993-07-01

    of the descriptor TROPICAL DISEASES hierarchically will produce the same results as a cumulated search of the following terms: CHOLERA DENGUE ...Header List The Source header List is a two volume listing of all source names arranged in alphabetical order. Each en ~try consists of: Source Name...BB Belgium ................................................................ BE Belize

  12. 40 CFR 205.165 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respect to the parameters listed in § 205.168 of this subpart. (2) Exhaust header pipe means any tube of... be “exhaust header pipes.” (3) Failing exhaust system means that, when installed on any Federally... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.165 Definitions. (a) As used in this...

  13. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  14. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C.

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  15. --No Title--

    Science.gov Websites

    NREL TRANSPORTATION stylesheet*/ .content-list-widget .header-box .title { color: #fff; } .content -list-widget .header-box { background-color: #0079C2; border-bottom: 5px solid #00A4E4 ) ************************************************************/ .greybg { background-color: #E3E6E8; } .hide-bullets { list-style:none; margin-left: -40px; margin-top

  16. Communist China. Section 23. Weather and Climate. Part 3 - North China

    DTIC Science & Technology

    1964-06-01

    Introduction 1 2. Climatic controls 2 a. General circulation and air masses 2 b. Migratory pressure systems and fronts 3 (1) Extratropical ...Sea-level pressure and surface airflow, January (map) 2 Fig. 2 Sea-level pressure and surface airflow, July (mop) 2 Fig. 3 Tracks of extratropical ...become weaker and less frequent as those of the invading monsoon become more prevalent. b. MIGRATORY PRESSURE SYSTEMS AND FRONTS (1) Extratropical

  17. Special report: Occlusive cuff controller

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1975-01-01

    A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.

  18. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2003-03-18

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  19. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  20. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2002-03-05

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  1. SODIUM DEUTERIUM REACTOR

    DOEpatents

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  2. Verification of a three-dimensional resin transfer molding process simulation model

    NASA Technical Reports Server (NTRS)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  3. 47 CFR 11.61 - Tests of EAS procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EAS header codes, Attention Signal, Test Script and EOM code. (i) Tests in odd numbered months shall... substitute for a monthly test, activation must include transmission of the EAS header codes, Attention Signal, emergency message and EOM code and comply with the visual message requirements in § 11.51. To substitute for...

  4. Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks

    NASA Astrophysics Data System (ADS)

    Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji

    High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.

  5. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    USGS Publications Warehouse

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  6. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  7. Chapter 7:I-joists and headers

    Treesearch

    Brian K. Brashaw; Robert J. Ross

    2005-01-01

    Prefabricated wood I-joists and headers are widely used in wood construction throughout the world. They are used in roof and floor systems in both residential and commercial applications. These structural members consist of flanges, which are made from either solid-sawn or laminated veneer lumber, that are adhesively bonded to a web that is made of plywood or oriented...

  8. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  9. Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header Basic Image Search Options dot header Search Tips Enter a keyword term below: Submit Use this search to find ANY words you Irish Lion Cubs Taxonomic (Scientific) Keyword Search: Submit Many of the images in the Galaxy of Images

  10. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  11. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  12. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  13. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  14. --No Title--

    Science.gov Websites

    .showcase,.showcasetransportation{opacity:1}.content-list-widget .header-box .title{color:#fff }.content-list-widget .header-box{background-color:#0079C2;border-bottom:5px solid #00A4E4}ul.fa-blue-arrow a::before{font-family:FontAwesome;content:'\\f138';margin:0 5px 0 -15px;color:#0079C2;text-indent

  15. Different centre of pressure patterns within the golf stroke II: group-based analysis.

    PubMed

    Ball, K A; Best, R J

    2007-05-01

    Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.

  16. Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop

    NASA Astrophysics Data System (ADS)

    Johann, L.; Dinske, C.; Shapiro, S. A.

    2016-11-01

    Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.

  17. Fallon FORGE Well Temp data

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.

  18. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  19. Intra-abdominal pressure during swimming.

    PubMed

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P < 0.05). However, there was no significant difference in stroke length by velocity. Significant within-subject correlations between intra-abdominal pressure and stroke rate or stroke length (P < 0.01) were observed, although there were no significant correlations between intra-abdominal pressure and stroke indices when controlling for swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes

    NASA Astrophysics Data System (ADS)

    Lyall, M. Eric

    Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.

  1. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  2. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  3. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  4. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  5. Writing user selectable data on the extended header of seismic recordings made on the Texas Instruments DFS-V

    USGS Publications Warehouse

    Robinson, W.C.

    1996-01-01

    A circuit has been developed to allow the writing of up to 192 digits of user-selectable data on a portion of tape called extended header, which is always available for use before each DFS-V seismic record is written. Such data could include navigation information, air gun and streamer depth and shot times.

  6. Diffraction of a plane wave by a three-dimensional corner

    NASA Technical Reports Server (NTRS)

    Ting, L.; Kung, F.

    1971-01-01

    By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.

  7. Very high pressure combustion; Reaction propagation rates of nitromethane within a diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.F.; Foltz, M.F.

    1991-11-01

    This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less

  8. Design and Analysis of Boiler Pressure Vessels based on IBR codes

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Kanimozhi, B.

    2017-05-01

    Pressure vessels components are widely used in the thermal and nuclear power plants for generating steam using the philosophy of heat transfer. In Thermal power plant, Coal is burnt inside the boiler furnace for generating the heat. The amount of heat produced through the combustion of pulverized coal is used in changing the phase transfer (i.e. Water into Super-Heated Steam) in the Pressure Parts Component. Pressure vessels are designed as per the Standards and Codes of the country, where the boiler is to be installed. One of the Standards followed in designing Pressure Parts is ASME (American Society of Mechanical Engineers). The mandatory requirements of ASME code must be satisfied by the manufacturer. In our project case, A Shell/pipe which has been manufactured using ASME code has an issue during the drilling of hole. The Actual Size of the drilled holes must be, as per the drawing, but due to error, the size has been differentiate from approved design calculation (i.e. the diameter size has been exceeded). In order to rectify this error, we have included an additional reinforcement pad to the drilled and modified the design of header in accordance with the code requirements.

  9. The lisse effect revisited

    USGS Publications Warehouse

    Weeks, E.P.

    2002-01-01

    The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, ??f, analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than |??f| and that the depth of penetration of the wetting front is no more than several millimeters.

  10. Strong imploding shock - The representative curve

    NASA Astrophysics Data System (ADS)

    Mishkin, E. A.; Alejaldre, C.

    1981-02-01

    The representative curve of the ideal gas behind the front of a spherically or cylindrically asymmetric strong imploding shock is derived. The partial differential equations of mass, momentum and energy conservation are reduced to a set of ordinary differential equations by the method of quasi-separation of variables, following which the reduced pressure and density as functions of the radius with respect to the shock front are explicit functions of coordinates defining the phase plane of the self-similar solution. The curve in phase space representing the state of the imploded gas behind the shock front is shown to pass through the point where the reduced pressure is maximum, which is located somewhat behind the shock front and ahead of the tail of the shock.

  11. Front End Software for Online Database Searching. Part 2: The Marketplace.

    ERIC Educational Resources Information Center

    Levy, Louise R.; Hawkins, Donald T.

    1986-01-01

    This article analyzes the front end software marketplace and discusses some of the complex forces influencing it. Discussion covers intermediary market; end users (library customers, scientific and technical professionals, corporate business specialists, consumers); marketing strategies; a British front end development firm; competitive pressures;…

  12. Prediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments.

    PubMed

    Zhao, Kun; Zhou, Xiao-Dong; Liu, Xue-Qiang; Lu, Lei; Wu, Zhi-Bo; Peng, Fei; Ju, Xiao-Yu; Yang, Li-Zhong

    2016-11-22

    The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially with pressure, and the exponent of pressure further shows an increasing trend with the thickness of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction, which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures. A global non-dimensional equation was proposed to predict the variation tendency of the angle of the pyrolysis front with pressure and was found to fit well with the measured results. In addition, the dependence of average flame height on mass burning rate, sample dimension and pressure was proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11, which is close to the theoretical value.

  13. Autonomous grain combine control system

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  14. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  15. Secure content objects

    DOEpatents

    Evans, William D [Cupertino, CA

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  16. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Peterson, Peter Y.; Williams, George J.; Gilland, James; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front magnetic pole cover thruster configuration with the thruster body electrically tied to cathode, and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68% and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the discharge current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability were mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 1×10-5 Torr-Xe (for thruster flow rates of 20.5 mg/s). Power spectral density analysis of the discharge current waveforms showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant breathing mode frequency. Finally, IVB maps of the TDU-1 thruster indicated that the discharge current became more oscillatory with higher discharge current peak-to-peak and RMS values with increased facility background pressure at lower thruster mass flow rates; thruster operation at higher flow rates resulted in less change to the thruster's IVB characteristics with elevated background pressure.

  17. A Satellite View of a Back-door Cold Front

    NASA Image and Video Library

    2014-05-29

    A "backdoor cold front" is bringing April temperatures to the U.S. northeast and Mid-Atlantic today, May 29. The backdoor cold front brings relief to the Mid-Atlantic after temperatures in Washington, D.C. hit 92F on Tuesday, May 27 and 88F on Wednesday, May 28 at Reagan National Airport, according to the National Weather Service (NWS). NWS forecasters expect the high temperature for May 29 to only reach 60F in the District of Columbia. NOAA's GOES-East satellite captured a view of the clouds associated with the backdoor cold front that stretch from southern Illinois to North Carolina. The National Weather Service forecast expects the backdoor cold front to bring showers to the Midwest, Northeast, and Mid-Atlantic today, May 29. According to the National Oceanic and Atmospheric Administration, a backdoor cold front is a cold front moving south or southwest along the Atlantic seaboard and Great Lakes; these are especially common during the spring months. This visible image was taken by NOAA's GOES-East satellite on May 29 at 12:30 UTC (8:30 a.m. EDT). The image was created at NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In addition to the backdoor cold front clouds, the GOES-East image shows clouds circling around a low pressure area located in eastern Texas. That low pressure area is expected to bring rain from Texas eastward over the southeastern U.S. According to NOAA's National Weather Service, the slow-moving low pressure area in the Deep South "will bring heavy showers and thunderstorms from Louisiana to Alabama through Thursday. This area is already saturated from previous rainfall, so flash flooding will be possible." Image: NASA/NOAA GOES Project Caption: NASA Goddard/Rob Gutro

  18. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  19. System Integration Issues in Digital Photogrammetric Mapping

    DTIC Science & Technology

    1992-01-01

    elevation models, and/or rectified imagery/ orthophotos . Imagery exported from the DSPW can be either in a tiled image format or standard raster format...data. In the near future, correlation using "window shaping" operations along with an iterative orthophoto refinements methodology (Norvelle, 1992) is...components of TIES. The IDS passes tiled image data and ASCII header data to the DSPW. The tiled image file contains only image data. The ASCII header

  20. --No Title--

    Science.gov Websites

    li{list-style:none}ul#sort-by-form li{float:left;list-style:none;margin:0 3px}ul#chart-list li ul.data_set-list-item{display:block;height:88px}ul#chart-list li ul.data_set-list-item li{float:left ;display:block}ul#chart-list li.category-header{display:block}#chart-list{margin-top:10px}.header-text h3{font

  1. The effect of travel speed on thermal response in CO2 laser welding of small electronic components

    NASA Astrophysics Data System (ADS)

    Gianoulakis, S. E.; Burchett, S. N.; Fuerschbach, P. W.; Knorovsky, G. A.

    A comprehensive three-dimensional numerical investigation of the effect of beat source travel speed on temperatures and resulting thermal stresses was performed for CO2-laser welding. The test specimen was a small thermal battery header containing several stress-sensitive glass-to-metal seals surrounding the electrical connections and a temperature sensitive ignitor located under the header near the center. Predictions of the thermal stresses and temperatures in the battery header were made for several travel speeds of the laser. The travel speeds examined ranged from 10mm/sec to 50mm/sec. The results indicate that faster weld speeds result in lower temperatures and stresses for the same size weld. This is because the higher speed welds are more efficient, requiring less energy to produce a given weld. Less energy absorbed by the workpiece results in lower temperatures, which results in lower stresses.

  2. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  3. Dual-circuit embossed-sheet heat-transfer panel

    DOEpatents

    Morgan, G.D.

    1982-08-23

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  4. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  5. AASG Wells Data for the EGS Test Site Planning and Analysis Task

    DOE Data Explorer

    Augustine, Chad

    2013-10-09

    AASG Wells Data for the EGS Test Site Planning and Analysis Task Temperature measurement data obtained from boreholes for the Association of American State Geologists (AASG) geothermal data project. Typically bottomhole temperatures are recorded from log headers, and this information is provided through a borehole temperature observation service for each state. Service includes header records, well logs, temperature measurements, and other information for each borehole. Information presented in Geothermal Prospector was derived from data aggregated from the borehole temperature observations for all states. For each observation, the given well location was recorded and the best available well identified (name), temperature and depth were chosen. The “Well Name Source,” “Temp. Type” and “Depth Type” attributes indicate the field used from the original service. This data was then cleaned and converted to consistent units. The accuracy of the observation’s location, name, temperature or depth was note assessed beyond that originally provided by the service. - AASG bottom hole temperature datasets were downloaded from repository.usgin.org between the dates of May 16th and May 24th, 2013. - Datasets were cleaned to remove “null” and non-real entries, and data converted into consistent units across all datasets - Methodology for selecting ”best” temperature and depth attributes from column headers in AASG BHT Data sets: • Temperature: • CorrectedTemperature – best • MeasuredTemperature – next best • Depth: • DepthOfMeasurement – best • TrueVerticalDepth – next best • DrillerTotalDepth – last option • Well Name/Identifier • APINo – best • WellName – next best • ObservationURI - last option. The column headers are as follows: • gid = internal unique ID • src_state = the state from which the well was downloaded (note: the low temperature wells in Idaho are coded as “ID_LowTemp”, while all other wells are simply the two character state abbreviation) • source_url = the url for the source WFS service or Excel file • temp_c = “best” temperature in Celsius • temp_type = indicates whether temp_c comes from the corrected or measured temperature header column in the source document • depth_m = “best” depth in meters • depth_type = indicates whether depth_m comes from the measured, true vertical, or driller total depth header column in the source document • well_name = “best” well name or ID • name_src = indicates whether well_name came from apino, wellname, or observationuri header column in the source document • lat_wgs84 = latitude in wgs84 • lon_wgs84 = longitude in wgs84 • state = state in which the point is located • county = county in which the point is located

  6. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1 thruster taken at elevated magnetic fields indicated that the discharge current became more oscillatory with increased facility background pressure at lower thruster mass flow rates, where thruster operation at higher flow rates resulted in less change to the thrusters IVB characteristics.

  7. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-03-20

    ISS027-E-006501 (20 March 2011) --- A low pressure system in the eastern North Pacific Ocean is featured in this image photographed by an Expedition 27 crew member in the Cupola of the International Space Station. This vigorous low pressure system has started to occlude?a process associated with separation of warm air from the cyclone?s center at the Earth?s surface. This view shows the arc of strong convection beyond the center of the low pressure, formed as the low occludes when the cold front overtakes the warm front. This occurs around more mature low pressure areas, later in the process of the system?s life-cycle.

  8. Study of Pressure Oscillations in Supersonic Parachute

    NASA Astrophysics Data System (ADS)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  9. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions.

    PubMed

    Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T

    2017-02-15

    In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.

  10. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2017-12-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  11. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2018-07-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  12. The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data

    NASA Technical Reports Server (NTRS)

    Wakimoto, R. M.

    1982-01-01

    This paper presents the time-dependent analysis of the thunderstorm gust front with the use of Project NIMROD data. RHI cross sections of reflectivity and Doppler velocity are constructed to determine the entire vertical structure. The life cycle of the gust front is divided into four stages: (1) the formative stage; (2) the early mature stage; (3) the late mature stage; and (4) the dissipation stage. A new finding is a horizontal roll detected in the reflectivity pattern resulting from airflow that is deflected upward by the ground, while carrying some of the smaller precipitation ahead of the main echo core of the squall line. This feature is called a 'precipitation roll'. As determined from rawinsonde data, the cold air behind the gust front accounts for the observed surface pressure rise. Calculations confirm that the collision of two fluids produce a nonhydrostatic pressure at the leading edge of the outflow. The equation governing the propagation speed of a density current accurately predicts the movement of the gust front.

  13. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Jeffrey D. P.; Abramson, Anne; Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separatesmore » the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.« less

  14. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 832 Price Sales Catalog (Version 003030)

    DTIC Science & Technology

    1992-12-01

    DATA DES . ELEMENT NAME ATlNPUTES Conditional TD401 152 Special Handling Code C ID 2/3 Code specifying special transportation handling instructions. HAN...Executhre Age"t for Eketronic Conmnerce/Electmnlc Dots lnterchange/Protection of Logistica Undaasslfled/Serssltlve Systerr Executive Agent for EC/EDI...PRICEISALES CATALOG ANSI ASC X12 VERSIONIRELEASE 003030DOD_ 7 Communications Transport Protocol ISA /_Interchange Control Header GS/ Functional Group Header

  15. Long-Life Thermal Battery for Sonobuoy

    DTIC Science & Technology

    2000-04-20

    Microtherm insulation. This Phase I project provided a cost-effective prototype development for fully meeting size ’A’ sonobuoy performance objectives. An...Crossection of Thermal Battery inside V/M-Insulated Battery Case having a Spun Inner Wall and the Standard Battery Can ( Microtherm added at header-end...34 thick Microtherm — — / 0.250" extra Fiberfrax Wrap X^ 0.075 " vacuum annulus ,/ Detail of Header-End 0.250’’ Fig.l, Drawing of a Prototype

  16. Use of Precast Concrete Walls for Blast Protection of Steel Stud Construction Preprint

    DTIC Science & Technology

    2007-11-01

    Side Elevation Front Elevation Front Elevation Side Elevation a) Sandwich Wall b) Solid Wall I I---6’-10" " 11.. Exterior Face - Form finish 2------C...damage to the interior drywall was visible. The instnunentation consisted of three external reflected pressure gages at the front face of the test

  17. Multiscale modeling of interfacial flow in particle-solidification front dynamics

    NASA Astrophysics Data System (ADS)

    Garvin, Justin

    2005-11-01

    Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.

  18. Ship Observations and Numerical Simulation of the Marine Atmosphericboundary Layer over the Spring Oceanic Front in the Northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shi, R.; Chen, J.; Guo, X.; Zeng, L.; Li, J.; Xie, Q.; Wang, X.

    2017-12-01

    The response of the marine atmospheric boundary layer (MABL) structure to an oceanic front is analyzed using Global Positioning System (GPS) sounding data obtained during a survey in the northwestern South China Sea (NSCS) over a period of about one week in April 2013. The Weather Research and Forecasting (WRF) model is used to further examine the thermodynamical mechanisms of the MABL's response to the front. The WRF model successfully simulates the change in the MABL structure across the front, which agrees well with the observations. The spatially high-pass-filtered fields of sea surface temperature (SST) and 10-m neutral equivalent wind from the WRF model simulation show a tight, positive coupling between the SST and surface winds near the front. Meanwhile, the SST front works as a damping zone to reduce the enhancement of wind blowing from the warm to the cold side of the front in the lower boundary layer. Analysis of the momentum budget shows that the most active and significant term affecting horizontal momentum over the frontal zone is the adjustment of the pressure gradient. It is found that the front in the NSCS is wide enough for slowly moving air parcels to be affected by the change in underlying SST. The different thermal structure upwind and downwind of the front causes a baroclinic adjustment of the perturbation pressure from the surface to the mid-layer of the MABL, which dominates the change in the wind profile across the front.

  19. The Nature of The Propagation of Sea Breeze Fronts in Central California

    DTIC Science & Technology

    1990-09-01

    propagation vector % ith stations in the southern portion of Monterey Bay shows that the front is curved on the mesoscale. 20 Distribution Availabilit of...solar radiation warms the land more than the adjacent water . The resulting temperature contrast produces a slight variation in pressure. The isobaric...surfaces bend upward over the land, producing an upper-level high. The upper-level air flows seaward increasing the surface pressure over the water . The

  20. Hyperswitch Network For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  1. A 2.2 sq m /24 sq ft/ self-controlled deployable heat pipe radiator - Design and test

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    An all heat pipe, deployable radiator has been developed which can effectively control pumped fluid loop temperatures under varying loads using variable conductance panel heat pipes. The 2.2 sq m (24 sq ft) aluminum panel can be coupled to either a fluid header or a flexible heat pipe header capable of transporting 850 watts in a 90-deg bent configuration. Test results support the feasibility of using this system to passively control Freon-21 loop temperatures.

  2. A Document-Based EHR System That Controls the Disclosure of Clinical Documents Using an Access Control List File Based on the HL7 CDA Header.

    PubMed

    Takeda, Toshihiro; Ueda, Kanayo; Nakagawa, Akito; Manabe, Shirou; Okada, Katsuki; Mihara, Naoki; Matsumura, Yasushi

    2017-01-01

    Electronic health record (EHR) systems are necessary for the sharing of medical information between care delivery organizations (CDOs). We developed a document-based EHR system in which all of the PDF documents that are stored in our electronic medical record system can be disclosed to selected target CDOs. An access control list (ACL) file was designed based on the HL7 CDA header to manage the information that is disclosed.

  3. Degassifying and mixing apparatus for liquids. [potable water for spacecraft

    NASA Technical Reports Server (NTRS)

    Yamauchi, S. T. (Inventor)

    1983-01-01

    An apparatus for degassing a liquid comprises a containment vessel a liquid pump and a header assembly (12) within the containment vessel in a volume above the reservoir of the liquid. The pump draws from this reservoir and outputs to the header assembly, the latter being constructed to return the liquid to the reservoir in the form of a number of stacked, vertically spaced, concentric, conical cascades via orifices. A vacuum source provides a partial vacuum in the containment vessel to enhance the degassing process.

  4. Calculated shock pressures in the aquarium test

    NASA Astrophysics Data System (ADS)

    Johnson, J. N.

    1982-04-01

    A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.

  5. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.

    PubMed

    Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd

    2017-01-01

    Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH 4 to CO 2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH 4 to CO 2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The mechanobiology of articular cartilage development and degeneration.

    PubMed

    Carter, Dennis R; Beaupré, Gary S; Wong, Marcy; Smith, R Lane; Andriacchi, Tom P; Schurman, David J

    2004-10-01

    The development, maintenance, and destruction of cartilage are regulated by mechanical factors throughout life. Mechanical cues in the cartilage fetal endoskeleton influence the expression of genes that guide the processes of growth, vascular invasion, and ossification. Intermittent fluid pressure maintains the cartilage phenotype whereas mild tension (or shear) promotes growth and ossification. The articular cartilage thickness is determined by the position at which the subchondral growth front stabilizes. In mature joints, cartilage is thickest and healthiest where the contact pressure and cartilage fluid pressure are greatest. The depth-dependent histomorphology reflects the local fluid pressure, tensile strain, and fluid exudation. Osteoarthritis represents the final demise and loss of cartilage in the skeletal elements. The initiation and progression of osteoarthritis can follow many pathways and can be promoted by mechanical factors including: (1) reduced loading, which activates the subchondral growth front by reducing fluid pressure; (2) blunt impact, causing microdamage and activation of the subchondral growth front by local shear stress; (3) mechanical abnormalities that increase wear at the articulating surface; and (4) other mechanically related factors. Research should be directed at integrating our mechanical understanding of osteoarthritis pathogenesis and progression within the framework of cellular and molecular events throughout ontogeny.

  7. Thermal Velocities Arising from Injection in 2-Phase and Superheated Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shook, George Michael

    2001-01-01

    Production from and injection into geothermal reservoirs gives rise to temperature fronts that move through the porous medium. As many as two temperature fronts are observed in 1-D simulations. The first front is related to the saturation temperature of the production pressure. Its velocity can be calculated from the amount of excess heat in the reservoir, defined as the amount of energy above the interface temperature, Ti = Tsat(Pwf). The second temperature front velocity is the same as for single phase liquid conditions.

  8. Convective instabilities in traveling fronts of addition polymerization

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.

    1993-01-01

    An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.

  9. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  10. CMOS: Efficient Clustered Data Monitoring in Sensor Networks

    PubMed Central

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique. PMID:24459444

  11. CMOS: efficient clustered data monitoring in sensor networks.

    PubMed

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  12. Pacemaker syndrome with sub-acute left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker: consequence of lead switch at the header.

    PubMed

    Khurwolah, Mohammad Reeaze; Vezi, Brian Zwelethini

    In the daily practice of pacemaker insertion, the occurrence of atrial and ventricular lead switch at the pacemaker box header is a rare and unintentional phenomenon, with less than five cases reported in the literature. The lead switch may have dire consequences, depending on the indication for the pacemaker. One of these consequences is pacemaker syndrome, in which the normal sequence of atrial and ventricular activation is impaired, leading to sub-optimal ventricular filling and cardiac output. It is important for the attending physician to recognise any worsening of symptoms in a patient who has recently had a permanent pacemaker inserted. In the case of a dual-chamber pacemaker, switching of the atrial and ventricular leads at the pacemaker box header should be strongly suspected. We present an unusual case of pacemaker syndrome and right ventricular-only pacinginduced left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker.

  13. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  14. Ampule tests to simulate glass corrosion in ambient temperature lithium batteries. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.C.; Bunker, B.C.; Crafts, C.C.

    1984-06-01

    Glass corrosion in battery headers has been found to limit the shelf life of ambient temperature lithium batteries. Glass corrosion can lead to loss of battery electrolytes or to shorts across the conductive corrosion product. Tests have been conducted which simulate the corrosive environment in a battery by sealing headers attached to lithium metal into Pyrex ampules containing battery electrolyte. Using the ampule test, glass corrosion kinetics have been determined at 70/sup 0/C for the Li/SO/sub 2/, Li/SOCl/sub 2/, and Li/SOCl/sub 2/ + BrCl battery systems. Test results indicate that corrosion of commercial glass compositions is extensive in all electrolytesmore » tested, resulting in predicted battery failures after several months. Sandia's TA-23 glass corrodes at a much slower rate, indicating a projected battery lifetime of over five years in the Li/SO/sub 2/ system. Test results reveal that corrosion kinetics are sensitive to header polarization, stress, and configuration as well as glass composition.« less

  15. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  16. Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.

    2017-12-01

    The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.

  17. Lightweight Seat Lever Operation Characteristics

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar

    1999-01-01

    In 1999, a Shuttle crew member was unable to operate the backrest lever for the lightweight seat in microgravity. It is essential that crew members can adjust this backrest lever, which is titled forward during launch and then moved backward upon reaching orbit. This adjustment is needed to cushion the crew members during an inadvertent crash landing situation. JSCs Anthropometry and Biomechanics Facility (ABF) performed an evaluation of the seat controls and provided recommendations on whether the seat lever positions and operations should be modified. The original Shuttle seats were replaced with new lightweight seats whose controls were moved, with one control at the front and the other at the back. The ABF designed a 12-person experiment to investigate the amount of pull force exerted by suited subjects, when controls were placed in the front and back of the lightweight seat. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results showed that, in general, the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. The pull forces on the front lever diminished about 50% when subjects wore pressurized suits. Based on these results from this study, it was recommended that the levers should not be located in the back position. Further investigation is needed to determine whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.

  18. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  19. How Artificial Should the Treatment of a Plasma's Viscosity Be?

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Velikovich, A. L.; Thornhill, J. W.; Davis, J.

    1999-11-01

    Electron viscosity dominates over ion viscosity and is important in describing the generation of shock fronts in highly ionizable plasmas. The sizes of shock front jumps in electron and ion temperature are determined from the magnitudes of the heat flow vector and pressure tensor, which, in turn, acquire non-negligible nonlinear contributions from the temperature and density gradients when these gradients are large. Thus, a consistent treatment of steep gradient formation in plasmas must come from investigations that include the effects of these nonlinear contributions to heat and momentum transport. Coefficients for each of five nonlinear contributions to the pressure tensor for an (r,z) Z-pinch geometry are presented and discussed in this talk. Hydrodynamic code calculations generally are not designed to provide a testbed for directly evaluating the kinetic energy dissipation that occurs at shock fronts; therefore, the strength of these nonlinear pressure tensor terms will be estimated by post-processing a Z-pinch hydrodynamics calculation and a steady-state planar shock wave calculation.

  20. FEM analysis of escape capsule suffered to gas explosion

    NASA Astrophysics Data System (ADS)

    Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua

    2013-05-01

    Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.

  1. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    PubMed

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  2. CLIPS++: Embedding CLIPS into C++

    NASA Technical Reports Server (NTRS)

    Obermeyer, Lance; Miranker, Daniel P.

    1994-01-01

    This paper describes a set of C++ extensions to the CLIPS language and their embodiment in CLIPS++. These extensions and the implementation approach of CLIPS++ provide a new level of embeddability with C and C++. These extensions are a C++ include statement and a defcontainer construct; (include (c++-header-file.h)) and (defcontainer (c++-type)). The include construct allows C++ functions to be embedded in both the LHS and RHS of CLIPS rules. The header file in an include construct is the same header file the programmer uses for his/her own C++ code, independent of CLIPS. The defcontainer construct allows the inference engine to treat C++ class instances as CLIPS deftemplate facts. Consequently existing C++ class libraries may be transparently imported into CLIPS. These C++ types may use advanced features like inheritance, virtual functions, and templates. The implementation has been tested with several class libraries, including Rogue Wave Software's Tools.h++, GNU's libg++, and USL's C++ Standard Components. The execution speed of CLIPS++ has been determined to be 5 to 700 times the execution speed of CLIPS 6.0 (10 to 20X typical).

  3. Simulation of the Solar Wind Dynamic Pressure Increase in 2014 and Its Effect on Energetic Neutral Atom Fluxes from the Heliosphere

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; McComas, D. J.; Pogorelov, N. V.; Reisenfeld, D. B.; Szalay, J. R.

    2018-06-01

    In late 2014, the solar wind dynamic pressure increased by ∼50% over a relatively short time (∼6 months). In early 2017, the Interstellar Boundary Explorer (IBEX) observed an increase in heliospheric energetic neutral atom (ENA) fluxes from directions near the front of the heliosphere. These enhanced ENA emissions resulted from the increase in SW pressure propagating through the inner heliosheath (IHS), affecting the IHS plasma pressure and emission of ∼keV ENA fluxes. We expand on the analysis by McComas et al. on the effects of this pressure change on ENA fluxes observed at 1 au using a three-dimensional, time-dependent simulation of the heliosphere. The pressure front has likely already crossed the termination shock (TS) in all directions, but ENA fluxes observed at 1 au will change over the coming years, as the TS, heliopause, and IHS plasma pressure continue to change in response to the SW pressure increase. Taken in isolation, the pressure front creates a “ring” of increasing ENA fluxes projected in the sky that expands in angular radius over time, as a function of the distances to the heliosphere boundaries and the ENA propagation speed. By tracking the position of this ring over time in our simulation, we demonstrate a method for estimating the distances to the TS, heliopause, and ENA source region that can be applied to IBEX data. This will require IBEX observations at 4.3 keV up through ∼2020, and longer times at lower ENA energies, in order to observe significant changes from the heliotail.

  4. Maneuvering impact boring head

    DOEpatents

    Zollinger, W. Thor; Reutzel, Edward W.

    1998-01-01

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  5. West Flank Coso, CA FORGE 3D geologic model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  6. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  7. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  8. The effect of ignition location on explosion venting of hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.

    2017-07-01

    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  9. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafti, Matías; Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover; Borkenhagen, Benjamin

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  10. Interaction of lateral baroclinic forcing and turbulence in an estuary

    USGS Publications Warehouse

    Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.

    2003-01-01

    Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.

  11. Directory interchange format manual, version 4.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Directory Interchange Format (DIF) is a data structure used to exchange directory-level information about data sets among information systems. In general the format consists of a number of fields that describe the attributes of a directory entry and text blocks that contain a descriptive summary of and references for the directory entry. All fields and the summary are preceded by labels identifying their contents. All values are ASCII character strings. The structure is intended to be flexible, allowing for future changes in the contents of directory entries. The manual is structured as follows: section 1 is a general description of what constitutes a directory entry; section 2 describes the content of the individual fields within the data structure, together with some examples. Also included in the six appendices is a description of the syntax used within the examples; samples of the directory interchange format applied to different data sets; the allowable discipline keywords; a current list of valid location keywords; a list of allowable parameter keywords; a list of acronyns and a glossary of terms used; and a description of the Standard Formatted Data Unit header, which may be added to the front of a DIF file to identify the file as a registered standard format.

  12. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  13. Sleep patterns and match performance in elite Australian basketball athletes.

    PubMed

    Staunton, Craig; Gordon, Brett; Custovic, Edhem; Stanger, Jonathan; Kingsley, Michael

    2017-08-01

    To assess sleep patterns and associations between sleep and match performance in elite Australian female basketball players. Prospective cohort study. Seventeen elite female basketball players were monitored across two consecutive in-season competitions (30 weeks). Total sleep time and sleep efficiency were determined using triaxial accelerometers for Baseline, Pre-match, Match-day and Post-match timings. Match performance was determined using the basketball efficiency statistic (EFF). The effects of match schedule (Regular versus Double-Header; Home versus Away) and sleep on EFF were assessed. The Double-Header condition changed the pattern of sleep when compared with the Regular condition (F (3,48) =3.763, P=0.017), where total sleep time Post-match was 11% less for Double-Header (mean±SD; 7.2±1.4h) compared with Regular (8.0±1.3h; P=0.007). Total sleep time for Double-Header was greater Pre-match (8.2±1.7h) compared with Baseline (7.1±1.6h; P=0.022) and Match-day (7.3±1.5h; P=0.007). Small correlations existed between sleep metrics at Pre-match and EFF for pooled data (r=-0.39 to -0.22; P≥0.238). Relationships between total sleep time and EFF ranged from moderate negative to large positive correlations for individual players (r=-0.37 to 0.62) and reached significance for one player (r=0.60; P=0.025). Match schedule can affect the sleep patterns of elite female basketball players. A large degree of inter-individual variability existed in the relationship between sleep and match performance; nevertheless, sleep monitoring might assist in the optimisation of performance for some athletes. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Types and analysis of defects in welding junctions of the header to steam generator shells on power-generating units with VVER-1000

    NASA Astrophysics Data System (ADS)

    Ozhigov, L. S.; Voevodin, V. N.; Mitrofanov, A. S.; Vasilenko, R. L.

    2016-10-01

    Investigation objects were metal templates, which were cut during the repair of welding junction no. 111 (header to the steam generator shell) on a power-generating unit with VVER-1000 of the South-Ukraine NPP, and substances of mud depositions collected from walls of this junction. Investigations were carried out using metallography, optical microscopy, and scanning electron microscopy with energy dispersion microanalysis by an MMO-1600-AT metallurgical microscope and a JEOL JSM-7001F scanning electron microscope with the Shottky cathode. As a result of investigations in corrosion pits and mud depositions in the area of welding junction no. 111, iron and copper-enriched particles were revealed. It is shown that, when contacting with the steel header surface, these particles can form microgalvanic cells causing reactions of iron dissolution and the pit corrosion of metal. Nearby corrosion pits in metal are microcracks, which can be effect of the stress state of metal under corrosion pits along with revealed effects of twinning. The hypothesis is expressed that pitting corrosion of metal occurred during the first operation period of the power-generating unit in the ammonia water chemistry conditions (WCC). The formation of corrosion pits and nucleating cracks from them was stopped with the further operation under morpholine WCC. The absence of macrocracks in metal of templates verifies that, during operation, welding junction no. 111 operated under load conditions not exceeding the permissible ones by design requirements. The durability of the welding junction of the header to the steam generator shell significantly depends on the technological schedule of chemical cleaning and steam generator shut-down cooling.

  15. Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1977-01-01

    Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.

  16. Semiempirical models of shear modulus at shock temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Elkin, Vaytcheslav; Mikhaylov, Vadim; Mikhaylova, Tatiana

    2011-06-01

    The work is devoted to a comparison of capabilities the Steinberg-Cochran-Guinan and Burakovsky-Preston models of shear modulus offer for the description of experimental and calculated (ab initio) data at temperatures and pressures representative of solid state behind the shock front. Also, the SCG model is modernized by changing from the (P,V) variables to the (V,T) ones and adding a free parameter. The resulted model is then referred to as the (V,T)-model. The three models are tested for 9 metals (Al, Be, Cu, K, Na, Mg, Mo, W, Ta) with using ab initio and experimental values of shear modulus in a wide range of pressures as well as longitudinal sound velocities behind the shock front.

  17. Contact lines are unstable even under non-splashing droplets

    NASA Astrophysics Data System (ADS)

    Pack, Min; Kaneelil, Paul; Sun, Ying

    2017-11-01

    Drop impact is fundamental to natural and industrial processes such as rain-induced soil erosion and spray coating technologies. In this study, we elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on atomically smooth, viscous silicone oil films of constant thickness with varying droplet velocity, viscosity, surface tension, and ambient pressures. A high-speed total internal reflection microscopy technique accounting for the Fresnel relations at the droplet interface allowed for in-situ measurements of an entrained air rim at the wetting front. The growth of the air rim is a prerequisite to the instability which is formed when the gas pressure balances the capillary pressure near the wetting front. A critical capillary number, which inversely scales as the ambient pressure, is predicted and the result agrees well with the experiments. The wavenumber in the instability is shown to increase with viscosity and velocity but decrease with surface tension of the impacting drop. We thus conclude that the instability mechanism is in qualitative agreement with the Saffman-Taylor instability - where the low viscosity air is displacing the higher viscosity droplet. The low We contact line instabilities observed in this study provide a paradigm shift in the conventional understanding of hydrodynamic instabilities under drop impact which usually require We >>10.

  18. An accurate front capturing scheme for tumor growth models with a free boundary limit

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan

    2018-07-01

    We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.

  19. Maneuvering impact boring head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Reutzel, E.W.

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  20. Maneuvering impact boring head

    DOEpatents

    Zollinger, W.T.; Reutzel, E.W.

    1998-08-18

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  1. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  2. DTS Raw Data Guelph, ON Canada

    DOE Data Explorer

    Thomas Coleman

    2013-07-31

    Unprocessed active distributed temperature sensing (DTS) data from 3 boreholes in the Guelph, ON Canada region. Data from borehole 1 was collected during a fluid injection while data from boreholes 2 and 3 were collected under natural gradient conditions in a lined borehole. The column labels/headers (in the first row) define the time since start of measurement in seconds and the row labels/headers (in the first column) are the object IDs that are defined in the metadata. Each object ID is a sampling location whose exact location is defined in the metadata file. Data in each cell are temperature in Celsius at time and sampling location as defined above.

  3. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  4. Stack configurations for tubular solid oxide fuel cells

    DOEpatents

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  5. Reply to the comments by Roger B. Lazarus

    NASA Astrophysics Data System (ADS)

    Mishkin, Eli A.

    1980-04-01

    It is claimed that because the pressure, density and velocity, behind the shock front, must be well behaved analytical functions the pressure must have an extremum. The claim by Lazarus of circular reasoning is refuted. (AIP)

  6. Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.

    PubMed

    Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y

    2016-11-01

      One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.

  7. Study of steam condensation at sub-atmospheric pressure: setting a basic research using MELCOR code

    NASA Astrophysics Data System (ADS)

    Manfredini, A.; Mazzini, M.

    2017-11-01

    One of the most serious accidents that can occur in the experimental nuclear fusion reactor ITER is the break of one of the headers of the refrigeration system of the first wall of the Tokamak. This results in water-steam mixture discharge in vacuum vessel (VV), with consequent pressurization of this container. To prevent the pressure in the VV exceeds 150 KPa absolute, a system discharges the steam inside a suppression pool, at an absolute pressure of 4.2 kPa. The computer codes used to analyze such incident (eg. RELAP 5 or MELCOR) are not validated experimentally for such conditions. Therefore, we planned a basic research, in order to have experimental data useful to validate the heat transfer correlations used in these codes. After a thorough literature search on this topic, ACTA, in collaboration with the staff of ITER, defined the experimental matrix and performed the design of the experimental apparatus. For the thermal-hydraulic design of the experiments, we executed a series of calculations by MELCOR. This code, however, was used in an unconventional mode, with the development of models suited respectively to low and high steam flow-rate tests. The article concludes with a discussion of the placement of experimental data within the map featuring the phenomenon characteristics, showing the importance of the new knowledge acquired, particularly in the case of chugging.

  8. Effect of Mechanical Heterogeneity on the Crack Driving Force of a Reactor Pressure Vessel Outlet Nozzle DMW Joint

    NASA Astrophysics Data System (ADS)

    Lingyan, Zhao; Yinghao, Cui; He, Xue

    2017-12-01

    The welding mechanical heterogeneity, load complexity, material and geometrical structure makes it very difficult to assess the structural integrity of dissimilar metal weld (DMW) joints. Based on a numerical simulated approach of the continuous change of material mechanical property in the buttering layer, a reactor pressure vessel (RPV) outlet nozzle DMW joint with service loads is studied, effect of mechanical heterogeneity on the stress-strain field and stress triaxiality at the semi-elliptical surface crack front are discussed. The analyses show that once the crack extends into the high hardness zone of Alloy 182 buttering, the strain decreases sharply, the strain gradient increases and the crack propagation slows down. The influence of strength mismatch on the stress triaxiality at the shallow crack front is greater than that at the deep crack front. The interaction between strength mismatch and crack depth directly affects the crack growth direction.

  9. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  10. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  11. 49 CFR 232.409 - Inspection and testing of end-of-train devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...

  12. 49 CFR 232.409 - Inspection and testing of end-of-train devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...

  13. 49 CFR 232.409 - Inspection and testing of end-of-train devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...

  14. 49 CFR 232.409 - Inspection and testing of end-of-train devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...

  15. 49 CFR 232.409 - Inspection and testing of end-of-train devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...

  16. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  17. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  18. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGES

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  19. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

    NASA Astrophysics Data System (ADS)

    Iwaskiw, A. S.; Ott, K. A.; Armiger, R. S.; Wickwire, A. C.; Alphonse, V. D.; Voo, L. M.; Carneal, C. M.; Merkle, A. C.

    2018-01-01

    The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2-6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

  20. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  1. Devices and methods for managing noncondensable gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C.; Wachowiak, Richard M.; Gels, John L.; Diaz-Quiroz, Jesus; Burns, Jr., John C.

    2016-11-15

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  2. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  3. miniSEED: The Backbone Data Format for Seismological Time Series

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Benson, R. B.; Trabant, C. M.

    2017-12-01

    In 1987, the International Federation of Digital Seismograph Networks (FDSN), adopted the Standard for the Exchange of Earthquake Data (SEED) format to be used for data archiving and exchange of seismological time series data. Since that time, the format has evolved to accommodate new capabilities and features. For example, a notable change in 1992 allowed the format, which includes both the comprehensive metadata and the time series samples, to be used in two additional forms: a container for metadata only called "dataless SEED", and 2) a stand-alone structure for time series called "miniSEED". While specifically designed for seismological data and related metadata, this format has proven to be a useful format for a wide variety of geophysical time series data. Many FDSN data centers now store temperature, pressure, infrasound, tilt and other time series measurements in this internationally used format. Since April 2016, members of the FDSN have been in discussions to design a next generation miniSEED format to accommodate current and future needs, to further generalize the format, and to address a number of historical problems or limitations. We believe the correct approach is to simplify the header, allow for arbitrary header additions, expand the current identifiers, and allow for anticipated future identifiers which are currently unknown. We also believe the primary goal of the format is for efficient archiving, selection and exchange of time series data. By focusing on these goals we avoid trying to generalize the format too broadly into specialized areas such as efficient, low-latency delivery, or including unbounded non-time series data. Our presentation will provide an overview of this format and highlight its most valuable characteristics for time series data from any geophysical domain or beyond.

  4. Climatology of winter transition days for the contiguous USA, 1951-2007

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Davis, Robert E.

    2011-01-01

    In middle and high latitudes, climate change could impact the frequency and characteristics of frontal passages. Although transitions between air masses are significant features of the general circulation that influence human activities and other surface processes, they are much more difficult to objectively identify than single variables like temperature or even extreme events like fires, droughts, and floods. The recently developed Spatial Synoptic Classification (SSC) provides a fairly objective means of identifying frontal passages. In this research, we determine the specific meteorological patterns represented by the SSC's Transition category, a "catch-all" group that attempts to identify those days that cannot be characterized as a single, homogeneous air mass type. The result is a detailed transition climatology for the continental USA. We identify four subtypes of the Transition category based on intra-day sea level pressure change and dew point temperature change. Across the contiguous USA, most transition days are identified as cold fronts and warm fronts during the winter season. Among the two less common subtypes, transition days in which the dew point temperature and pressure both rise are more frequently observed across the western states, and days in which both variables fall are more frequently observed in coastal regions. The relative frequencies of wintertime warm and cold fronts have changed over the period 1951-2007. Relative cold front frequency has significantly increased in the Northeast and Midwest regions, and warm front frequencies have declined in the Midwest, Rocky Mountain, and Pacific Northwest regions. The overall shift toward cold fronts and away from warm fronts across the northern USA arises from a combination of an enhanced ridge over western North America and a northward shift of storm tracks throughout the mid-latitudes. These results are consistent with projections of climate change associated with elevated greenhouse gas concentrations.

  5. Macro-mechanical modeling of blast-wave mitigation in foams. Part II: reliability of pressure measurements

    NASA Astrophysics Data System (ADS)

    Britan, A.; Liverts, M.; Shapiro, H.; Ben-Dor, G.

    2013-02-01

    A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range 1.25le {M}_s le 1.7 and foam column heights in the range 100-450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.

  6. Fluid front displacement dynamics affecting pressure fluctuations and phase entrapment in porous media

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-04-01

    Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.

  7. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  8. Study of blade aspect ratio on a compressor front stage

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.

    1980-01-01

    A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.

  9. Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky

    NASA Technical Reports Server (NTRS)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; hide

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  10. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  11. Ion Transport and Acceleration at Dipolarization Fronts: High-Resolution MHD/Test-Particle Simulations

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sorathia, K.; Merkin, V. G.; Sitnov, M. I.; Mitchell, D. G.; Wiltberger, M. J.; Lyon, J.

    2017-12-01

    Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this study we investigate the mechanisms of ion acceleration at dipolarization fronts in a high-resolution global magnetospheric MHD model (LFM). We use large-scale three-dimensional test-particle simulations (CHIMP) to address the following science questions: 1) what are the characteristic scales of dipolarization regions that can stably trap ions? 2) what role does the trapping play in ion transport and acceleration? 3) how does it depend on particle energy and distance from Earth? 4) to what extent ion acceleration is adiabatic? High-resolution LFM was run using idealized solar wind conditions with fixed nominal values of density and velocity and a southward IMF component of -5 nT. To simulate ion interaction with dipolarization fronts, a large ensemble of test particles distributed in energy, pitch-angle, and gyrophase was initialized inside one of the LFM dipolarization channels in the magnetotail. Full Lorentz ion trajectories were then computed over the course of the front inward propagation from the distance of 17 to 6 Earth radii. A large fraction of ions with different initial energies stayed in phase with the front over the entire distance. The effect of magnetic trapping at different energies was elucidated with a correlation of the ion guiding center and the ExB drift velocities. The role of trapping in ion energization was quantified by comparing the partial pressure of ions that exhibit trapping to the pressure of all trapped ions.

  12. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-09-01

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.

  13. Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes

    DTIC Science & Technology

    2012-09-01

    TURBINE VANES DISSERTATION Presented to the Faculty Department of Aeronautical and Astronautical... Engineering and Management iv AFIT/DS/ENY/12-05 Abstract Past efforts to reduce the airfoil count in low pressure turbines have produced high lift...LOSSES OF HIGH LIFT LOW PRESSURE TURBINE VANES 1. Introduction The low pressure turbine (LPT) in modern high bypass ratio aero- engines is

  14. Experimenting With Baroreceptor Reflexes

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.; Goble, Ross L.

    1988-01-01

    Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.

  15. Elements of a next generation time-series ASCII data file format for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Webster, C. J.

    2015-12-01

    Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format should provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format should use an existing time standard. The header should be easily human readable as well as machine parsable. The metadata format should be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format will increase the productivity of software engineers and scientists because fewer translators and checkers would be required. Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format would provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format would use existing time standard. The header would be easily human readable as well as machine parsable. The metadata format would be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format would increase the productivity of software engineers and scientists because fewer translators would be required.

  16. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    NASA Technical Reports Server (NTRS)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. Furthermore, the pull forces on the front lever diminished about 50 % when subjects wore the pressurized suits. Based on these results from this study, it was recommended to NASA that the levers should not be located in the back position. In addition, further investigation is needed on whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.

  17. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  18. Land-use classification map of the greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Driscoll, L.B.

    1975-01-01

    The Greater Denver area, in the Front Range Urban Corridor of Colorado, is an area of rapid population growth and expanding land development. At present no overall land-use policy exists for this area, although man individuals and groups are concerned about environmental, economic, and social stresses caused by population pressures. A well-structured land-use policy for the entire Front Range Urban Corridor, in which compatible land uses are taken into account, could lead to overall improvements in land values. A land classification map is the first step toward implementing such a policy.

  19. Development of public science archive system of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Baba, Hajime; Yasuda, Naoki; Ichikawa, Shin-Ichi; Yagi, Masafumi; Iwamoto, Nobuyuki; Takata, Tadafumi; Horaguchi, Toshihiro; Taga, Masatochi; Watanabe, Masaru; Okumura, Shin-Ichiro; Ozawa, Tomohiko; Yamamoto, Naotaka; Hamabe, Masaru

    2002-09-01

    We have developed a public science archive system, Subaru-Mitaka-Okayama-Kiso Archive system (SMOKA), as a successor of Mitaka-Okayama-Kiso Archive (MOKA) system. SMOKA provides an access to the public data of Subaru Telescope, the 188 cm telescope at Okayama Astrophysical Observatory, and the 105 cm Schmidt telescope at Kiso Observatory of the University of Tokyo. Since 1997, we have tried to compile the dictionary of FITS header keywords. The accomplishment of the dictionary enabled us to construct an unified public archive of the data obtained with various instruments at the telescopes. SMOKA has two kinds of user interfaces; Simple Search and Advanced Search. Novices can search data by simply selecting the name of the target with the Simple Search interface. Experts would prefer to set detailed constraints on the query, using the Advanced Search interface. In order to improve the efficiency of searching, several new features are implemented, such as archive status plots, calibration data search, an annotation system, and an improved Quick Look Image browsing system. We can efficiently develop and operate SMOKA by adopting a three-tier model for the system. Java servlets and Java Server Pages (JSP) are useful to separate the front-end presentation from the middle and back-end tiers.

  20. Unsteady self-sustained detonation in flake aluminum dust/air mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, S.; Huang, J.; Zhang, Y.

    2017-07-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  1. DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval

    2010-08-10

    Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartitionmore » magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.« less

  2. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    NASA Astrophysics Data System (ADS)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  3. A Multistep Algorithm for the Radiation Hydrodynamical Transport of Cosmological Ionization Fronts and Ionized Flows

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Norman, Michael L.

    2006-02-01

    Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.

  4. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  5. MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2009-01-01

    Methods of bulk manufacturing high temperature sensor subassembly packages are disclosed and claimed. Sensors are sandwiched between a top cover and a bottom cover so as to enable the peripheries of the top covers, sensors and bottom covers to be sealed and bound securely together are disclosed and claimed. Sensors are placed on the bottom covers leaving the periphery of the bottom cover exposed. Likewise, top covers are placed on the sensors leaving the periphery of the sensor exposed. Individual sensor sub-assemblies are inserted into final packaging elements which are also disclosed and claimed. Methods of directly attaching wires or pins to contact pads on the sensors are disclosed and claimed. Sensors, such as pressure sensors and accelerometers, and headers made out of silicon carbide and aluminum nitride are disclosed and claimed. Reference cavities are formed in some embodiments disclosed and claimed herein where top covers are not employed.

  6. MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2005-01-01

    Methods of bulk manufacturing high temperature sensor sub-assembly packages are disclosed and claimed. Sensors are sandwiched between a top cover and a bottom cover so as to enable the peripheries of the top covers, sensors and bottom covers to be sealed and bound securely together are disclosed and claimed. Sensors are placed on the bottom covers leaving the periphery of the bottom cover exposed. Likewise, top covers are placed on the sensors leaving the periphery of the sensor exposed. Individual sensor sub- assemblies are inserted into final packaging elements which are also disclosed and claimed. Methods of directly attach- ing wires or pins to contact pads on the sensors are disclosed and claimed. Sensors, such as pressure sensors and accelerometers, and headers made out of silicon carbide and aluminum nitride are disclosed and claimed. Reference cavities are formed in some embodiments disclosed and claimed herein where top covers are not employed.

  7. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  8. The Effect of Turbulence on the Drag of Flat Plates

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Dryden, H L

    1937-01-01

    in determining the effect of turbulence on the forces exerted on bodies in the air stream of a wind tunnel, it is commonly assumed that the indications of the standard Pitot-static tube used to determine the air speed are not dependent on the turbulence. To investigate the truth of this assumption, the drag of a normally exposed flat plate, the difference in pressure between the front and rear of a thin circular disk, the rate of rotation of a vane anemometer, and the pressure developed by a standard Pitot-static tube were measured in an air stream for several conditions of turbulence. The results may be interpreted as indicating that there is no appreciable effect of turbulence on the vane anemometer and the standard pitot-static tube, but that there is small effect on the drag of a flat plate and the pressure difference between front and rear of a disk.

  9. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches very well with the truth dataset. There is a slight underestimate in total numbers in the CNN results but the spatial pattern is a close match. The categorization of front types by CNN is best for cold and occluded and worst for warm. These initial results from our ongoing development highlight the great promise of this technology.

  10. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  11. STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-03-14

    A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less

  12. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.

    PubMed

    Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis

    2013-01-01

    This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.

  13. Simplified modeling of blast waves from metalized heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Zarei, Z.; Frost, D. L.

    2011-09-01

    The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.

  14. Study of the laser-induced decomposition of HNO3/ 2-Nitropropane mixture at static high pressures

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Hébert, Philippe; Doucet, Michel

    2007-06-01

    HNO3 / 2-Nitropropane is a well known energetic material on which Raman spectroscopy measurements at static high pressure in a diamond anvil cell (DAC) have already been conducted at CEA/LE RIPAULT in order to examine the evolution of the mixture as a function of composition and pressure [1]. The purpose of the work presented here was to study the laser-induced decomposition of these energetic materials at static high pressures by measuring the combustion front propagation rate in the DAC. First of all, the feasibility of the experimental device was checked with a well known homogeneous explosive, nitromethane. Our results were consistent with those of Rice and Foltz [2]. Then, we investigated the initiation of NA / 2NP mixture as a function of nitric acid proportion, for a given pressure. We chose the mixture for which both the combustion propagation rate and detonation velocity are maximum and we examined the evolution of the front propagation velocity as a function of pressure and energy deposit. [1] Hebert, P., Regache, I., and Lalanne, P., ``High-Pressure Raman Spectroscopy study of HNO3 / 2-Nitropropane Mixtures. Influence of the Composition.'' Proceedings of the 42nd European High-Pressure Research Group Meeting, Lausanne, Suisse, 2004 [2] Rice, S.F., et al., Combustion and Flame 87 (1991) 109-122.

  15. Aseismic Slip of a Thin Slab Due to a Fluid Source

    NASA Astrophysics Data System (ADS)

    Aubin, P. W.; Viesca, R. C.

    2017-12-01

    We explore the effects of an increase of pore pressure on the frictional interface along the base of a thin slab. The thin slab approximation corresponds to a layer overriding a substrate in which variations along the layer's length occur over distances much greater than the layer thickness. We consider deformation that may be in-plane or anti-plane, but approximately uniform in depth, such that spatial variations of displacement (and hence, slip) occur only along one direction parallel to the interface. Such a thin-sheet model may well represent the deformation of landslides and glacial ice streams, and also serves as a first-pass for fault systems, which, while better represented by elastic half-spaces in frictional contact, nonetheless show qualitatively similar behavior. We consider that the friction coefficient at the layer's interface remains (approximately) constant, and that aseismic slip is initiated by a (line) source of fluid at constant pressure, with one-dimensional diffusion parallel to the interface. As posed, the problem yields a self-similar expansion of slip, whose extent grows proportionally to (α * t)^(1/2) (where α is the hydraulic diffusivity) and can either lag behind or outpace the fluid diffusion front. The problem is controlled by a single parameter, accounting for the friction coefficient and the initial (pre-injection) states of stress and pore pressure. The problem solution consists of the self-similar slip profile and the coefficient of proportionality for the crack-front motion. Within the problem parameter range, two end-member scenarios result: one in which the initial level of shear stress on the interface is close to the value of the pre-injection strength (critically stressed) or another in which fluid pressure is just enough to induce slip (marginally pressurized). For the critically stressed and marginally pressurized cases, the aseismic slip front lies far ahead or far behind, respectively, the fluid diffusion front. We find closed-form solutions for both end-members, and in the former case, via matched asymptotics. These solutions provide a basis to solve the general problem, which we also solve numerically for comparison. The solutions also provide a starting point for examining the progression of slip and locking following the shutoff of the fluid source.

  16. Initial Experience With A Prototype Storage System At The University Of North Carolina

    NASA Astrophysics Data System (ADS)

    Creasy, J. L.; Loendorf, D. D.; Hemminger, B. M.

    1986-06-01

    A prototype archiving system manufactured by the 3M Corporation has been in place at the University of North Carolina for approximately 12 months. The system was installed as a result of a collaboration between 3M and UNC, with 3M seeking testing of their system, and UNC realizing the need for an archiving system as an essential part of their PACS test-bed facilities. System hardware includes appropriate network and disk interface devices as well as media for both short and long term storage of images and their associated information. The system software includes those procedures necessary to communicate with the network interface elements(NIEs) as well as those procedures necessary to interpret the ACR-NEMA header blocks and to store the images. A subset of the total ACR-NEMA header is parsed and stored in a relational database system. The entire header is stored on disk with the completed study. Interactive programs have been developed that allow radiologists to easily retrieve information about the archived images and to send the full images to a viewing console. Initial experience with the system has consisted primarily of hardware and software debugging. Although the system is ACR-NEMA compatable, further objective and subjective assessments of system performance is awaiting the connection of compatable consoles and acquisition devices to the network.

  17. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  18. Transient foam flow in porous media with CAT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a catmore » Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.« less

  19. Relationships between sudden weather changes in summer and mortality in the Czech Republic, 1986-2005

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2010-09-01

    The study examines the relationship between sudden changes in weather conditions in summer, represented by (1) sudden air temperature changes, (2) sudden atmospheric pressure changes, and (3) passages of strong atmospheric fronts; and variations in daily mortality in the population of the Czech Republic. The events are selected from data covering 1986-2005 and compared with the database of daily excess all-cause mortality for the whole population and persons aged 70 years and above. Relative deviations of mortality, i.e., ratios of the excess mortality to the expected number of deaths, were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. We find that the periods around weather changes are associated with pronounced patterns in mortality: a significant increase in mortality is found after large temperature increases and on days of large pressure drops; a decrease in mortality (partly due to a harvesting effect) occurs after large temperature drops, pressure increases, and passages of strong cold fronts. The relationship to variations in excess mortality is better expressed for sudden air temperature/pressure changes than for passages of atmospheric fronts. The mortality effects are usually more pronounced in the age group 70 years and above. The impacts associated with large negative changes of pressure are statistically independent of the effects of temperature; the corresponding dummy variable is found to be a significant predictor in the ARIMA model for relative deviations of mortality. This suggests that sudden weather changes should be tested also in time series models for predicting excess mortality as they may enhance their performance.

  20. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  1. Nitrogen gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, R. C.; Van Sciver, S. W.

    2017-02-01

    We present experimental measurements and analysis of propagation of the nitrogen gas that was vented to a high vacuum tube immersed in liquid helium (LHe). The scenario resembles accidental venting of atmospheric air to a SRF beam-line and was investigated to understand how the in-flowing air would propagate in such geometry. The gas front propagation speed in the tube was measured using pressure probes and thermometers installed at regular intervals over the tube length. The experimental data show the front speed to decrease along the vacuum tube. The empirical and analytical models developed to characterize the front deceleration are summarized.

  2. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    PubMed

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Visualization of JPEG Metadata

    NASA Astrophysics Data System (ADS)

    Malik Mohamad, Kamaruddin; Deris, Mustafa Mat

    There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.

  4. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  5. Clinical performance of different DF-4 implantable cardioverter defibrillator leads.

    PubMed

    Sarrazin, Jean-François; Philippon, François; Sellier, Romain; André, Philippe; O'Hara, Gilles; Molin, Franck; Nault, Isabelle; Blier, Louis; Champagne, Jean

    2018-06-01

    Implantable cardioverter-defibrillator (ICD) DF-4 connectors have been introduced to facilitate defibrillator lead connection and to reduce the size of device header. There are limited data regarding the overall performance of those leads and no comparison between different ICD DF-4 leads. This is a cohort study of consecutive patients implanted with ICD DF-4 lead system at one University Centre between October 2010 and February 2015. A historical control group of patients with ICD DF-1 lead implantation was used for comparison. The following ICD DF-4 leads were evaluated: St. Jude Medical Durata 7122Q (St. Jude Medical, St. Paul, MN, USA), Medtronic Sprint Quattro Secure 6935 M (Medtronic Inc., Minneapolis, MN, USA), Boston Scientific Endotak Reliance 4-Site 0293 (Boston Scientific, Marlborough, MA, USA), and Boston Scientific Reliance 4-Front 0693. This study evaluated the acute and mid-term performances of those leads as well as complications. A total of 812 patients (age 63 ± 12 years, 80% male, left ventricular ejection fraction 31 ± 12%) underwent implantation of an ICD DF-4 lead. Acute and follow-up R-wave sensing and threshold were excellent. Compared to implantation, intrinsic R waves were higher at follow-up for Boston Scientific and Medtronic leads, and pacing lead impedances were lower for all leads at first follow-up (P < 0.001). The number of lead dislodgement or failure was similar between all leads. The estimated lead survival rates at 3 years were 95.6% for Boston Scientific Endotak 4-Site, 97.1% for Boston Scientific 4-Front, 97.7% for Medtronic Sprint Quattro, and 97.5% for St. Jude Durata (P  =  0.553). All ICD DF-4 leads had excellent acute and mid-term electrical performances. Longer follow-up will be necessary to confirm their sustained performance. © 2018 Wiley Periodicals, Inc.

  6. Less waste corn, more land in soybeans, and the switch to genetically modified crops: trends with important implications to wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    An abundance of waste corn, a key food of many wildlife species, has helped make possible the widespread success of wildlife management in the United States over the past half century. We found waste corn post harvest in Nebraska declined by 47% from 1978 to 1998 due primarily to improvements in combine headers resulting in a marked decline in ear loss. The reduction in waste coincided with major declines in fat storage by sandhill cranes and white-fronted geese during spring migration. Sandhill cranes, northern pintails, white-fronted geese, and lesser snow geese avoided soybeans while staging in spring in the Rainwater Basin Area and Central Platte River Valley. These findings and other literature suggest soybeans are a marginal food for wildlife particularly during periods of high energy requirements. Soybean acreage has increased by 600% in the United States since 1950 and now comprises nearly one-quarter of the nation>'s cropland. With over 80% of the soybean crop now in genetically modified varieties and treated with glyphosate, weed seed is becoming scarce in soybean fields leaving limited food for wildlife on 72 million acres of U.S. cropland. We suggest that the combined effect of increasing efficiency of crop harvesting techniques, expansion of soybeans and other crops poorly suited for wildlife nutrient needs, and more efficient weed control through the shift to genetically modified crops may severely limit seed-eating wildlife populations in the future unless ways are found to replace high energy food sources being lost. We encourage more research to gain greater insight into effects of declining food resources on wildlife populations and propose that the conservation title of the 2002 farm bill be used as a mechanism to replace part of the high-energy food being lost due to changes in production agriculture.

  7. FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 STATION INTO THREE VERTICAL MOLDS SUBMERGED IN A WATER-FILLED TANK BELOW THE CASTING FLOOR. THE CASTING CREW'S JOBS DURING THIS PHASE OF THE OPERATION INCLUDE REGULATING THE POURING RATE AND MONITORING THE VALVE RODS THAT CONTROL THE WATER SPRAYS ON THE MOLDS. DIFFERENT ALLOYS REQUIRE SPECIFIC POURING SPEEDS AND WATER PRESSURES. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  8. Possible Mechanisms for Electric-Field-Free Gas Breakdown

    DTIC Science & Technology

    2011-06-01

    pressure is greater than the shock-breakout pressure ( PSB ) at the surface of the metal. The particle size varies from 20 to 200 µm. Based on the...1.5 km/s [10-12]. The shock-breakdown pressure for tin is PSB ≈ 27.5 GPa [12]. The PSB for aluminum is not known, but the theoretical pressure at the...shock front in C-4 is PSW = 36.7 GPa, which is well over the reported PSB value for tin. These experimental results enable us to propose a

  9. Sample EPA Biotech Form

    EPA Pesticide Factsheets

    This sample “EPA Biotech Form” is a header sheet that will accompany all biotechnology submission choices, including MCANs, TERAs, Tier I and Tier II exemption, and biotechnology Test Market Exemption Applications (TMEAs).

  10. Concepts for a Muon Accelerator Front-End

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys; Berg, Scott; Neuffer, David

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less

  11. A series of shocks and edges in Abell 2219

    DOE PAGES

    Canning, R. E. A.; Allen, S. W.; Applegate, D. E.; ...

    2016-09-22

    Here, we present deep, 170 ks, Chandra X-ray observations of Abell 2219 (z = 0.23), one of the hottest and most X-ray luminous clusters known, and which is experiencing a major merger event. We discover a ‘horseshoe’ of high-temperature gas surrounding the ram-pressure-stripped, bright, hot, X-ray cores. We confirm an X-ray shock front located north-west of the X-ray centroid and along the projected merger axis. We also find a second shock front to the south-east of the X-ray centroid making this only the second cluster where both the shock and reverse shock are confirmed with X-ray temperature measurements. We alsomore » present evidence for a possible sloshing cold front in the ‘remnant tail’ of one of the sub-cluster cores. The cold front and north-west shock front geometrically bound the radio halo and appear to be directly influencing the radio properties of the cluster.« less

  12. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: vft@loi.hcei.tsc.ru; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse dischargemore » is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.« less

  13. Effect of laser beam on temperature distribution on artificial cylindrical shaped hard tissue bones

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Qaseer, Mohammad-Khair; Albiss, B. A.; Gezawa, Umar S.

    2018-02-01

    Samples from fresh lamb chest bones were made in cylindrical shapes to study the time variation of temperature T as functions of the cylindrical radius and depth when its front surface exposed to a laser beam of 110Mw power and 642nm wavelength. The laser beam was directed at the center of the front surface of the horizontal cylinder. The measurements were done in vacuum and at atmospheric pressure. Our data reveal the linear variation of T with time, followed by a gradual increase before it reaches a plateau value at higher time. This sort of behavior independent of the radius or the depth where the temperature was measured. Moreover, the maximum variation occurs on the front surface where the laser beam was hitting and diminishes gradually with depth deep inside the cylinder. Data at atmospheric pressure showed less changes in temperature. The temperature distribution in bone due to laser irradiation is very important for a rational use of laser therapy as well as in the surgery to minimizes the thermal tissue damage.

  14. Teleradiology mobile internet system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiko; Kaneko, Masahiro; Moriyama, Noriyuki

    2014-03-01

    We have developed an external storage system by using secret sharing scheme and tokenization for regional medical cooperation, PHR service and information preservation. The use of mobile devices such as smart phones and tablets will be accelerated for a PHR service, and the confidential medical information is exposed to the risk of damage and intercept. We verified the transfer rate of the sending and receiving of data to and from the external storage system that connected it with PACS by the Internet this time. External storage systems are the data centers that exist in Okinawa, in Osaka, in Sapporo and in Tokyo by using secret sharing scheme. PACS continuously transmitted 382 CT images to the external data centers. Total capacity of the CT images is about 200MB. The total time that had been required to transmit was about 250 seconds. Because the preservation method to use secret sharing scheme is applied, security is strong. But, it also takes the information transfer time of this system too much. Therefore, DICOM data is masked to the header information part because it is made to anonymity in our method. The DICOM data made anonymous is preserved in the data base in the hospital. Header information including individual information is divided into two or more tallies by secret sharing scheme, and preserved at two or more external data centers. The token to relate the DICOM data anonymity made to header information preserved outside is strictly preserved in the token server. The capacity of header information that contains patient's individual information is only about 2% of the entire DICOM data. This total time that had been required to transmit was about 5 seconds. Other, common solutions that can protect computer communication networks from attacks are classified as cryptographic techniques or authentication techniques. Individual number IC card is connected with electronic certification authority of web medical image conference system. Individual number IC card is given only to the person to whom the authority to operate web medical image conference system was given.

  15. Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D.

    2003-12-01

    The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.

  16. Use of Thermal Data to Estimate Infiltration in Pagany Wash Associated with the winter of 1997-1998 El Nino Precipitation, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.D. LeCain; N. lu; M. Kurzmack

    Temperature and air-pressure monitoring in a vertical borehole located in Pagany Wash, a normally dry stream-carved channel northeast of Yucca Mountain, Nevada, indicated that the annual temperature wave was measurable to a depth of 11.1 m. Temperature depressions were measured at depths of 3.1, 6.1, 9.2, and 11.1 m below ground surface. The temperature depressions were interpreted to be the result of infiltration associated with the 1997-1998 El Nino precipitation. A pressure differential, of approximately 2 kiloPascals, between stations located 11.1 and 24.5 m below ground surface was interpreted to be the result of compressed air ahead of the wettingmore » front. The pressure differences between stations indicated that the wetting front migrated deeper than 35.2 m and that the Yucca Mountain Tuff retarded the downward movement of the wetting front. An analytical method indicated that the infiltration flux through the Pagany Wash alluvium due to the 1997-1998 El Nino precipitation was approximately 940 mm. A one-dimensional numerical model indicated that the infiltration flux was approximately 1000 mm. Sensitivity analysis indicated that the potential temperature decrease due to conduction was minimal and that cooler surface temperatures could not account for the measured subsurface temperature depressions.« less

  17. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  18. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... time periods expire. (4) Display and logging. A visual message shall be developed from any valid header... input. (8) Decoder Programming. Access to decoder programming shall be protected by a lock or other...

  19. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  20. Analytical study on a two-dimensional plane of the off-design flow properties of tandem-bladed compressor stators

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1973-01-01

    The flow characteristics of several tandem bladed compressor stators were analytically evaluated over a range of inlet incidence angles. The ratios of rear-segment to front-segment chord and camber were varied. Results were also compared to the analytical performance of a reference solid blade section. All tandem blade sections exhibited lower calculated losses than the solid stator. But no one geometric configuration exhibited clearly superior characteristics. The front segment accepts the major effect of overall incidence angle change. Rear- to front-segment camber ratios of 4 and greater appeared to be limited by boundary-layer separation from the pressure surface of the rear segment.

  1. A new approach to flow simulation in highly heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Killough, J.E.

    In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.

  2. An analysis of selected cases of derecho in Poland

    NASA Astrophysics Data System (ADS)

    Celiński-Mysław, Daniel; Matuszko, Dorota

    2014-11-01

    The paper analyses six cases of the derecho phenomena, which occurred in Poland between 2007 and 2012. The input data included reports on dangerous meteorological phenomena, SYNOP and METAR reports, MSL pressure maps, upper air maps at 500 hPa and 850 hPa, radar depictions and satellite images, upper air sounding plots and data from a system locating atmospheric discharges. Derechos are caused directly by the activity of mesoscale convective systems linked up with either, in winter, a cold front of a deep low-pressure system, or, in summer, with an area of wind convergence in a warm sector of a cyclone or with an articulated cold front which, moving within a low-pressure embayment, develops a very active secondary depression. It was found that southern and central Poland were the regions most frequently affected by derechos. Mid-level and high-level jet streams, augmented by high thermodynamic instability of air masses, were found to be conducive to the development of derechos.

  3. Plume dynamics from UV pulsed ablation of Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen; Haugan, Timothy

    2016-12-01

    Pulsed laser ablation of Al and Ti with a < 3.3 J/cm2 KrF laser and Ar background pressure of up to 1 Torr was performed to study the ablated plume. Mass loss experiments revealed the number of ablated atoms per pulse increases by 30% for Ti and 20% for Al as pressure decreases from 1 Torr to vacuum. Optical emission imaging performed using a gated ICCD revealed a strong dependence of shock front parameters, defined by the Sedov-Taylor blast and classical drag models, on background pressure. Spatially resolved optical emission spectroscopy from Al I, Al II, Ti I, and Ti II revealed ion temperatures of 104 K that decreased away from the target surface along the surface normal and neutral temperatures of 103 K independent of target distance. Comparison between kinetic energy in the shock and internal excitation energy reveals that nearly 100% of the energy is partitioned into shock front kinetic energy and 1% into internal excitation.

  4. United States European Command

    Science.gov Websites

    content on the U.S. European Command website may be translated by selecting a different language on the header. Except where otherwise noted, the language translation is performed by Google Translate, a third

  5. Search | Galaxy of Images

    Science.gov Websites

    Books dot header Search Tips Search Keywords in Author Last Name or in the Title of the Books: Enter a books Images FAQ | Privacy | SI Terms of Use | Smithsonian Home DCSIMG

  6. XAFS Data Interchange: A single spectrum XAFS data file format.

    PubMed

    Ravel, B; Newville, M

    We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.

  7. XAFS Data Interchange: A single spectrum XAFS data file format

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Newville, M.

    2016-05-01

    We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.

  8. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Maccabe, Arthur Barney (Inventor); Awrach, James Michael (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  9. Zero-Copy Objects System

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Zero-Copy Objects System software enables application data to be encapsulated in layers of communication protocol without being copied. Indirect referencing enables application source data, either in memory or in a file, to be encapsulated in place within an unlimited number of protocol headers and/or trailers. Zero-copy objects (ZCOs) are abstract data access representations designed to minimize I/O (input/output) in the encapsulation of application source data within one or more layers of communication protocol structure. They are constructed within the heap space of a Simple Data Recorder (SDR) data store to which all participating layers of the stack must have access. Each ZCO contains general information enabling access to the core source data object (an item of application data), together with (a) a linked list of zero or more specific extents that reference portions of this source data object, and (b) linked lists of protocol header and trailer capsules. The concatenation of the headers (in ascending stack sequence), the source data object extents, and the trailers (in descending stack sequence) constitute the transmitted data object constructed from the ZCO. This scheme enables a source data object to be encapsulated in a succession of protocol layers without ever having to be copied from a buffer at one layer of the protocol stack to an encapsulating buffer at a lower layer of the stack. For large source data objects, the savings in copy time and reduction in memory consumption may be considerable.

  10. Cold Fronts in RegCM/HadGEM simulations over South America

    NASA Astrophysics Data System (ADS)

    Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio

    2017-04-01

    Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.

  11. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    PubMed

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  12. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  13. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  14. Shock implosion of a small homogeneous pellet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos

    1985-10-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.

  15. Nonlinear self-sustained structures and fronts in spatially developing wake flows

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Huerre, Patrick

    2001-05-01

    A family of slowly spatially developing wakes with variable pressure gradient is numerically demonstrated to sustain a synchronized finite-amplitude vortex street tuned at a well-defined frequency. This oscillating state is shown to be described by a steep global mode exhibiting a sharp Dee Langer-type front at the streamwise station of marginal absolute instability. The front acts as a wavemaker which sends out nonlinear travelling waves in the downstream direction, the global frequency being imposed by the real absolute frequency prevailing at the front station. The nonlinear travelling waves are determined to be governed by the local nonlinear dispersion relation resulting from a temporal evolution problem on a local wake profile considered as parallel. Although the vortex street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute instability criterion applied to the local linear dispersion relation.

  16. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  17. Verification of a two-dimensional infiltration model for the resin transfer molding process

    NASA Technical Reports Server (NTRS)

    Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.

  18. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague, 1994-2009

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2014-08-01

    Sudden weather changes have long been thought to be associated with negative impacts on human health, but relatively few studies have attempted to quantify these relationships. We use large 6-h changes in atmospheric pressure as a proxy for sudden weather changes and evaluate their association with hospital admissions for cardiovascular diseases (CVD). Winter and summer seasons and positive and negative pressure changes are analysed separately, using data for the city of Prague (population 1.2 million) over a 16-year period (1994-2009). We found that sudden pressure drops in winter are associated with significant rise in hospital admissions. Increased CVD morbidity was observed neither for pressure drops in summer nor pressure increases in any season. Analysis of synoptic weather maps shows that large pressure drops in winter are associated with strong zonal flow and rapidly moving low-pressure systems with centres over northern Europe and atmospheric fronts affecting western and central Europe. Analysis of links between passages of strong atmospheric fronts and hospital admissions, however, shows that the links disappear if weather changes are characterised by frontal passages. Sudden pressure drops in winter are associated also with significant excess CVD mortality. As climate models project strengthening of zonal circulation in winter and increased frequency of windstorms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the twenty-first century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  19. Performance assessment of U.S. residential cooking exhaust hoods.

    PubMed

    Delp, William W; Singer, Brett C

    2012-06-05

    This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from <15% to >98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE--exceeding 80% for oven and front burners--had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s(-1) (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.

  20. Copepod grazing on phytoplankton in the Pacific sector of the Antarctic Polar Front

    NASA Astrophysics Data System (ADS)

    Urban-Rich, Juanita; Dagg, Michael; Peterson, Jay

    Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5-2-times during the course of the study . Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1-7% of the daily chlorophyll standing stock, equivalent to 3-21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front.

  1. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure distributions in the intake duct.

  2. The CF6 engine performance improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1982-01-01

    As part of the NASA-sponsored Engine Component Improvement (ECI) Program, a feasibility analysis of performance improvement and retention concepts for the CF6-6 and CF6-50 engines was conducted and seven concepts were identified for development and ground testing: new fan, new front mount, high pressure turbine aerodynamic performance improvement, high pressure turbine roundness, high pressure turbine active clearance control, low pressure turbine active clearance control, and short core exhaust nozzle. The development work and ground testing are summarized, and the major test results and an enomic analysis for each concept are presented.

  3. Weather and childbirth: a further search for relationships.

    PubMed

    Driscoll, D M

    1995-03-01

    Previous attempts to find relationships between weather and parturition (childbirth) and its onset (the beginning of labor pains) have revealed, firstly, limited but statistically significant relationships between weather conditions much colder than the day before, with high winds and low pressure, and increased onsets; and secondly, increased numbers of childbirths during periods of atmospheric pressure rise (highly statistically significant). To test these findings, this study examined weather data coincident childbirth data from a hospital at Bryan-College Station, Texas (for a period of 30 cool months from 1987 to 1992). Tests for (1) days of cold fronts, (2) a day before and a day after the cold front, (3) days with large temperature increases, and (4) decreases from the day before revealed no relationship with mean daily rate of onset. Cold days with high winds and low pressure had significantly fewer onsets, a result that is the opposite of previous findings. The postulated relationship between periods of pressure rise and increased birth frequency was negative, i.e., significantly fewer births occurred at those times--again, the opposite of the apparent occurrence in an earlier study. The coincidence of diurnal variations in both atmospheric pressure and frequency of childbirths, was shown to account for fairly strong negative associations between the two variables.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  5. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  6. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  7. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  8. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  9. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  10. GaAs High Breakdown Voltage Front and Back Side Processed Schottky Detectors for X-Ray Detection

    DTIC Science & Technology

    2007-11-01

    front and back side processed, unintentionally doped bulk gallium -arsenic (GaAs) Schottky detectors and determined that GaAs detectors with a large...a few materials that fulfill these requirements are gallium -arsenic (GaAs) and cadmium-zinc-tellurium (CdZnTe or CZT). They are viable alternative...Whitehill, C.; Pospíšil, S.; Wilhem, I.; Doležal, Z.; Juergensen, H.; Heuken, M. Development of low-pressure vapour -phase epitaxial GaAs for medical imaging

  11. The perfect ash-storm: large-scale Pyroclastic Density Current experiments reveal highly mobile, self-fluidising and air-cushioned flow transport regime

    NASA Astrophysics Data System (ADS)

    Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.

    2013-12-01

    We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, <60 cm-thick dense and channel-confined underflow, with an overriding dilute and turbulent ash cloud surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle-solids concentrations of 1-5 vol%. The front shows a brief phase of negative pore pressure due to the entrainment and upward elutriation of ambient air inside this front. It is immediately followed by the fine-ash rich and highly impermeable main flow body. Passage of the flow body is accompanied by strongly increasing pore-pressures of 1-3 kPa that almost fully supports the weight of the entire underflow - depicting flow-induced fluidisation of the main flow part. The remainder of the flow body shows further increases in pore-pressure aside with strong reductions in flow mass. This suggests the occurrence of zones of air-cushions forming at the base of the underflow that largely aid its inviscid runout. This sequence is repeated during arrival and passage of up to three more flow pulses. The low-permeability deposits maintain high internal gas pore pressures for several minutes after emplacement, before sudden deaeration, settling and gas loss is caused by fracturing. Flow-induced fluidisation and basal air-cushioning provide key processes behind the enigmatic long runout behaviour of dense PDCs.

  12. All-metal, compact heat exchanger for space cryocoolers

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier; Sixsmith, Herbert

    1990-01-01

    This report describes the development of a high performance, all metal compact heat exchanger. The device is designed for use in a reverse Brayton cryogenic cooler which provides five watts of refrigeration at 70 K. The heat exchanger consists of a stainless steel tube concentrically assembled within a second stainless steel tube. Approximately 300 pairs of slotted copper disks and matching annular slotted copper plates are positioned along the centerline axis of the concentric tubes. Each of the disks and plates has approximately 1200 precise slots machined by means of a special electric discharge process. Positioning of the disk and plate pairs is accomplished by means of dimples in the surface of the tubes. Mechanical and thermal connections between the tubes and plate/disk pairs are made by solder joints. The heat exchanger assembly is 9 cm in diameter by 50 cm in length and has a mass of 10 kg. The predicted thermal effectiveness is greater than 0.985 at design conditions. Pressure loss at design conditions is less than 5 kPa in both fluid passages. Tests were performed on a subassembly of plates integrally soldered to two end headers. The measured thermal effectiveness of the test article exceeded predicted levels. Pressure losses were negligibly higher than predictions.

  13. Face Sheet/Core Disbond Growth in Honeycomb Sandwich Panels Subjected to Ground-Air-Ground Pressurization and In-Plane Loading

    NASA Technical Reports Server (NTRS)

    Chen, Zhi M.; Krueger, Ronald; Rinker, Martin

    2015-01-01

    Typical damage modes in light honeycomb sandwich structures include face sheet/core disbonding and core fracture, both of which can pose a threat to the structural integrity of a component. These damage modes are of particular interest to aviation certification authorities since several in-service occurrences, such as rudder structural failure and other control surface malfunctions, have been attributed to face sheet/core disbonding. Extensive studies have shown that face sheet/core disbonding and core fracture can lead to damage propagation caused by internal pressure changes in the core. The increasing use of composite sandwich construction in aircraft applications makes it vitally important to understand the effect of ground-air-ground (GAG) cycles and conditions such as maneuver and gust loads on face sheet/core disbonding. The objective of the present study was to use a fracture mechanics based approach developed earlier to evaluate the loading at the disbond front caused by ground-air-ground pressurization and in-plane loading. A honeycomb sandwich panel containing a circular disbond at one face sheet/core interface was modeled with three-dimensional (3D) solid finite elements. The disbond was modeled as a discrete discontinuity and the strain energy release rate along the disbond front was computed using the Virtual Crack Closure Technique (VCCT). Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed. The commercial finite element analysis software, Abaqus/Standard, was used for the analyses. The recursive pressure-deformation coupling problem was solved by representing the entrapped air in the honeycomb cells as filled cavities in Abaqus/Standard. The results show that disbond size, face sheet thickness and core thickness are important parameters that determine crack tip loading at the disbond front. Further, the pressure-deformation coupling was found to have an important load decreasing effect [6]. In this paper, a detailed problem description is provided first. Second, the analysis methodology is presented. The fracture mechanics approach used is described and the specifics of the finite element model, including the fluid-filled cavities, are introduced. Third, the initial model verification and validation are discussed. Fourth, the findings from a closely related earlier study [6] are summarized. These findings provided the basis for the current investigation. Fifth, an aircraft ascent scenario from 0 to 12192 m (0 to 40000 ft) is considered and the resulting crack tip loading at the disbond front is determined. In-plane loading to simulate maneuvers and gust conditions are also considered. Sixth, the results are shown for a curved panel, which was used to simulate potential fuselage applications. Finally, a brief summary of observations is presented and recommendations for improvement are provided.

  14. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  15. Semiempirical models for description of shear modulus in wide ranges of temperatures and pressures of shock compression

    NASA Astrophysics Data System (ADS)

    El'Kin, V. M.; Mikhailov, V. N.; Mikhailova, T. Yu.

    2011-12-01

    In this paper, we discuss the potentials of the Steinberg-Cochran-Guinan (SCG) and Burakovsky-Preston (BP) models for the description of the shear-modulus behavior at temperatures and pressures that arise behind the shock-wave front. A modernized variant of the SCG model is suggested, which reduces to the introduction of a free parameter and the representation of the model in the volume-temperature coordinates (( V, T) model). A systematic comparison is performed of all three models of shear modulus with experimental data and data of ab initio calculations for metals such as Al, Be, Cu, K, Na, Mg, Mo, W, and Ta in a wide range of pressures. In addition, for Al, Cu, Mo, W, and Ta there is performed a comparison with the known temperature dependences of the shear modulus and with the results of measurements of the velocities of longitudinal sound behind the shock-wave front. It is shown that in the original form the SCG and BP models give overestimated values of the shear modulus as compared to the data of ab initio calculations and shock-wave experiments. The ( V, T) model, due to the use of a free parameter, makes it possible to optimally describe the totality of experimental and calculated data. The same result is achieved in the case of the BP model after a redefining of its initial parameters. The adequate description of the shear modulus in the range of high intermediate pressures characteristic of the solid-phase states behind the shock-wave front is accompanied in both cases by the violation of the correct asymptotic behavior of the shear modulus at ultrahigh compressions which is originally laid into the SCG and BP models.

  16. Two-stage solar power tower cavity-receiver design and thermal performance analysis

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Wang, Ting; Li, Ruihua; Yang, Yongping

    2017-06-01

    New type of two-stage solar power tower cavity-receiver is designed and a calculating procedure of radiation, convection and flow under the Gaussian heat flux is established so as to determine the piping layout and geometries in the receiver I and II and the heat flux distribution in different positions is obtained. Then the main thermal performance on water/steam temperature, steam quality, wall temperature along the typical tubes and pressure drop are specified according to the heat transfer and flow characteristics of two-phase flow. Meanwhile, a series of systematic design process is promoted and analysis on thermal performance of the two receivers is conducted. Results show that this type of two-stage cavity-receivers can minimize the size and reduce the mean temperature of receiver I while raise the average heat flux, thus increase the thermal efficiency of the two receivers; besides, the multiple serpentine tubes from header can make a more uniform distribution of the outlet parameters, preventing wall overheated.

  17. Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2014-12-01

    The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.

  18. 47 CFR 11.54 - EAS operation during a National Level emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... licensees and DBS providers may choose their two EAS sources, one of which must be a PEP station. (2... header codes for a national emergency. (3) After completing the above transmission procedures, key EAS...

  19. 47 CFR 11.54 - EAS operation during a National Level emergency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensees and DBS providers may choose their two EAS sources, one of which must be a PEP station. (2... header codes for a national emergency. (3) After completing the above transmission procedures, key EAS...

  20. Pressure generation during neural stimulation with infrared radiation

    NASA Astrophysics Data System (ADS)

    Xia, N.; Tan, X.; Xu, Y.; Richter, C.-P.

    2017-02-01

    This study quantifies laser evoked pressure waves in small confined volumes such as a small dish or the cochlea. The pressure was measured with custom fabricated pressure probes in front of the optical fiber. For the pressure measurements during laser stimulation the probes were inserted into scala tympani or vestibuli. At 164 μJ/pulse, the intracochlear pressure was between 96 and 106 dB (re 20 μPa). The pressure was also measured in the ear canal with a sensitive microphone. It was on average 63 dB (re 20 μPa). At radiant energies large enough to evoke an auditory compound action potential, the outer ear canal equivalent pressure was 36-56 dB (re 20 μPa).

  1. Effects of Age on Esophageal Motility: Use of High-resolution Esophageal Impedance Manometry

    PubMed Central

    Shim, Young Kwang; Kim, Nayoung; Park, Yo Han; Lee, Jong-Chan; Sung, Jihee; Choi, Yoon Jin; Yoon, Hyuk; Shin, Cheol Min; Park, Young Soo; Lee, Dong Ho

    2017-01-01

    Background/Aims Disturbances of esophageal motility have been reported to be more frequent the aged population. However, the physiology of disturbances in esophageal motility during aging is unclear. The aim of this study was to evaluate the effects of age on esophageal motility using high-resolution esophageal impedance manometry (HRIM). Methods Esophageal motor function of 268 subjects were measured using HRIM in 3 age groups, < 40 years (Group A, n = 32), 40–65 years (Group B, n = 185), and > 65 years (Group C, n = 62). Lower esophageal sphincter (LES) and upper esophageal sphincter (UES) pressures, integrated relaxation pressure, distal contractile integral, contractile front velocity, distal latency, and pressures and duration of contraction on 4 positions along the esophagus, and complete bolus transit were measured. Results Basal UES pressure was lower in Group C (P < 0.001) but there was no significant difference in the LES pressure among groups. Contractile duration on position 3 (10 cm from proximal LES high pressure zone) was longer in Group C (P = 0.001), and the contractile amplitude on position 4 (5 cm from proximal LES high pressure zone) was lower in Group C (P = 0.005). Distal contractile integral was lower in Group C (P = 0.037). Contractile front velocity (P = 0.015) and the onset velocity (P = 0.040) was lower in Group C. There was no significant difference in impedance values. Conclusions The decrease of UES pressure, distal esophageal motility, and peristaltic velocity might be related with esophageal symptoms in the aged population. PMID:28163259

  2. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.

  3. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1

    NASA Astrophysics Data System (ADS)

    Garofolo, J. S.; Lamel, L. F.; Fisher, W. M.; Fiscus, J. G.; Pallett, D. S.

    1993-02-01

    The Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems. TIMIT contains speech from 630 speakers representing 8 major dialect divisions of American English, each speaking 10 phonetically-rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic, and word transcriptions, as well as speech waveform data for each spoken sentence. The release of TIMIT contains several improvements over the Prototype CD-ROM released in December, 1988: (1) full 630-speaker corpus, (2) checked and corrected transcriptions, (3) word-alignment transcriptions, (4) NIST SPHERE-headered waveform files and header manipulation software, (5) phonemic dictionary, (6) new test and training subsets balanced for dialectal and phonetic coverage, and (7) more extensive documentation.

  4. Regulating Effect of Asymmetrical Impeller on the Flow Distributions of Double-sided Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang

    2017-11-01

    To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.

  5. Techniques and Results for Determining Window Placement and Configuration for the Small Pressurized Rover (SPR)

    NASA Technical Reports Server (NTRS)

    Thompson, Shelby; Litaker, Harry; Howard, Robert

    2009-01-01

    A natural component to driving any type of vehicle, be it Earth-based or space-based, is visibility. In its simplest form visibility is a measure of the distance at which an object can be seen. With the National Aeronautics and Space Administration s (NASA) Space Shuttle and the International Space Station (ISS), there are human factors design guidelines for windows. However, for planetary exploration related vehicles, especially land-based vehicles, relatively little has been written on the importance of windows. The goal of the current study was to devise a proper methodology and to obtain preliminary human-in-the-loop data on window placement and location for the small pressurized rover (SPR). Nine participants evaluated multiple areas along the vehicle s front "nose", while actively maneuvering through several lunar driving simulations. Subjective data was collected on seven different aspects measuring areas of necessity, frequency of views, and placement/configuration of windows using questionnaires and composite drawings. Results indicated a desire for a large horizontal field-of-view window spanning the front of the vehicle for most driving situations with slightly reduced window areas for the lower front, lower corners, and side views.

  6. A semi-implantable multichannel telemetry system for continuous electrical, mechanical and hemodynamical recordings in animal cardiac research.

    PubMed

    Kong, Wei; Huang, Jian; Rollins, Dennis L; Ideker, Raymond E; Smith, William M

    2007-03-01

    We have developed an eight-channel telemetry system for studying experimental models of chronic cardiovascular disease. The system is an extension of a previous device that has been miniaturized, reduced in power consumption and provided with increased functionality. We added sensors for ventricular dimension, and coronary artery blood flow and arterial blood pressure that are suitable for use with the system. The telemetry system consists of a front end, a backpack and a host PC. The front end is a watertight stainless steel case with all sensor electronics sealed inside; it acquires dimension, flow, pressure and five cardiac electrograms from selected locations on the heart. The backpack includes a control unit, Bluetooth radio, and batteries. The control unit digitizes eight channels of data from the front end and forwards them to the host PC via Bluetooth link. The host PC has a receiving Bluetooth radio and Labview programs to store and display data. The whole system was successfully tested on the bench and in an animal model. This telemetry system will greatly enhance the ability to study events leading to spontaneous sudden cardiac arrest.

  7. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  8. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  9. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  10. Sabot assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing frommore » the projectile upon the sabot assembly exiting the gun barrel.« less

  11. Proposed U.S. Geological Survey standard for digital orthophotos

    USGS Publications Warehouse

    Hooper, David; Caruso, Vincent

    1991-01-01

    The U.S. Geological Survey has added the new category of digital orthophotos to the National Digital Cartographic Data Base. This differentially rectified digital image product enables users to take advantage of the properties of current photoimagery as a source of geographic information. The product and accompanying standard were implemented in spring 1991. The digital orthophotos will be quadrangle based and cast on the Universal Transverse Mercator projection and will extend beyond the 3.75-minute or 7.5-minute quadrangle area at least 300 meters to form a rectangle. The overedge may be used for mosaicking with adjacent digital orthophotos. To provide maximum information content and utility to the user, metadata (header) records exist at the beginning of the digital orthophoto file. Header information includes the photographic source type, date, instrumentation used to create the digital orthophoto, and information relating to the DEM that was used in the rectification process. Additional header information is included on transformation constants from the 1927 and 1983 North American Datums to the orthophoto internal file coordinates to enable the user to register overlays on either datum. The quadrangle corners in both datums are also imprinted on the image. Flexibility has been built into the digital orthophoto format for future enhancements, such as the provision to include the corresponding digital elevation model elevations used to rectify the orthophoto. The digital orthophoto conforms to National Map Accuracy Standards and provides valuable mapping data that can be used as a tool for timely revision of standard map products, for land use and land cover studies, and as a digital layer in a geographic information system.

  12. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2013-04-01

    Sudden weather changes have long been supposed to be associated with negative impacts on human health. However, relatively few studies attempted to quantify these relationships. In this study, we use large 6-hour changes of atmospheric sea level pressure as proxy for sudden weather changes, and evaluate their association with hospital admissions for cardiovascular diseases. Winter and summer seasons and positive and negative pressure changes are analyzed separately, using data for the city of Prague (population of 1.2 million) over 16-year period (1994-2009). We find that sudden pressure drops in winter are associated with significant increases in the number of hospital admissions. Increases in morbidity are not observed for pressure drops in summer, nor pressure increases in any season. Analysis of synoptic weather maps shows that the large pressure drops in winter are associated with strong zonal (westerly) flow and rapidly moving low pressure systems with centres over Northern Europe and atmospheric fronts affecting the area of Western and Central Europe. Several of the largest pressure decreases were associated with infamous winter storms (such as Lothar on December 25, 1999 and Kyrill on January 18, 2007). Analysis of links between passages of strong atmospheric fronts and hospital admissions shows that the links are much weaker if weather changes are characterized by frontal passages. Since climate models project strengthening of the zonal circulation in winter and increased frequency of winter storms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the 21st century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  13. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...

  14. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...

  15. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...

  16. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...

  17. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collected—PR. d e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...

  18. Lidar - ND Halo Scanning Doppler, Boardman - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, Laura

    2017-10-23

    The University of Notre Dame (ND) scanning lidar dataset used for the WFIP2 Campaign is provided. The raw dataset contains the radial velocity and backscatter measurements along with the beam location and other lidar parameters in the header.

  19. Trick Simulation Environment 07

    NASA Technical Reports Server (NTRS)

    Lin, Alexander S.; Penn, John M.

    2012-01-01

    The Trick Simulation Environment is a generic simulation toolkit used for constructing and running simulations. This release includes a Monte Carlo analysis simulation framework and a data analysis package. It produces all auto documentation in XML. Also, the software is capable of inserting a malfunction at any point during the simulation. Trick 07 adds variable server output options and error messaging and is capable of using and manipulating wide characters for international support. Wide character strings are available as a fundamental type for variables processed by Trick. A Trick Monte Carlo simulation uses a statistically generated, or predetermined, set of inputs to iteratively drive the simulation. Also, there is a framework in place for optimization and solution finding where developers may iteratively modify the inputs per run based on some analysis of the outputs. The data analysis package is capable of reading data from external simulation packages such as MATLAB and Octave, as well as the common comma-separated values (CSV) format used by Excel, without the use of external converters. The file formats for MATLAB and Octave were obtained from their documentation sets, and Trick maintains generic file readers for each format. XML tags store the fields in the Trick header comments. For header files, XML tags for structures and enumerations, and the members within are stored in the auto documentation. For source code files, XML tags for each function and the calling arguments are stored in the auto documentation. When a simulation is built, a top level XML file, which includes all of the header and source code XML auto documentation files, is created in the simulation directory. Trick 07 provides an XML to TeX converter. The converter reads in header and source code XML documentation files and converts the data to TeX labels and tables suitable for inclusion in TeX documents. A malfunction insertion capability allows users to override the value of any simulation variable, or call a malfunction job, at any time during the simulation. Users may specify conditions, use the return value of a malfunction trigger job, or manually activate a malfunction. The malfunction action may consist of executing a block of input file statements in an action block, setting simulation variable values, call a malfunction job, or turn on/off simulation jobs.

  20. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  1. Analysis of moving surface structures at a laser-induced boiling front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    2014-10-01

    Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.

  2. Detonation suppression in hydrogen-air mixtures using porous coatings on the walls

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2018-05-01

    We considered the problem of detonation suppression and weakening of blast wave effects occurring during the combustion of hydrogen-air mixtures in confined spaces. The gasdynamic processes during combustion of hydrogen, an alternative environmentally friendly fuel, were also considered. Detonation decay and flame propagation in hydrogen-air mixtures were experimentally investigated in rectangular cross-section channels with solid walls and two types of porous coatings: steel wool and polyurethane foam. Shock wave pressure dynamics inside the section with porous coating were studied using pressure sensors; flame front propagation was studied using photodiodes and high-speed camera visualization. For all mixtures, the detonation wave formed before entering the section with porous coating. For both porous materials, the steady detonation wave decoupled in the porous section of the channel into a shock wave and flame front propagating with a velocity around the Chapman-Jouguet acoustic velocity. By the end of the porous section, shock wave pressure reductions of 70 and 85% were achieved for the polyurethane foam and steel wool, respectively. The dependence of the flame velocity on the mixture composition (equivalence ratio) is presented.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapko, M.J.; Weiss, E.S.; Watson, R.W.

    Single-entry gas-explosion characteristics for the Bruceton Experimental Mine (BEM) are compared to those occurring in the larger geometries of the new Lake Lynn Mine (LLM) within the Lake Lynn Laboratory. (All three are Bureau of Mines facilities). Scale factors and boundary conditions for the BEM and the larger entries of the LLM are reviewed in some detail using representative data for pressure, flame, and wind velocity in the two mines. Measured pressure histories for gas explosions at the BEM are compared with data for comparable explosions in the larger cross section of the LLM. The time evolution for flame-front displacmentmore » can be characterized by a general expression that relates gas concentration and length of flammable volume. The course of the explosion development and its destructive power are dependent upon the development of turbulence in the unburned flammable mixture into which the flame propagates. The results of the study indicated that pressure profiles in the larger cross section are maintained to much larger, distances even though the flame front is accelerated less rapidly in a comparable entry length of smaller flammable volume.« less

  4. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  5. Implementation of a Shell Element with Pressure and Void Effects Into DYSMAS

    DTIC Science & Technology

    1999-09-01

    24),rotallC6,6,nlq),shapel(3),x(3,*), 3 shapef(4),derivl(2,4),derivg(3,4),derilg(3,4) ,bmtx(6,24), 4 bmtxt(24,6),estrainC6),estrainpC6), estress (6...strain formulas estress (1) = front*(estrain(l) + pois*estrain(2)) estress (2) = front*(pois*estrain(1) + estrain(2)) estress (3) = ymod * estrain(3) estress ...4) = gmod * estrain(4) estress (5) = sfac * gmod * estrain(5) estress (6) = sfac * gmod * estrain(6) "c Rotate stresses to global coordinates do 908 i

  6. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  7. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  8. Ceramic tile expansion engine housing

    DOEpatents

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  9. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  10. Revisit submergence of ice blocks in front of ice cover—an experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wu, Yi-fan; Sui, Jueyi

    2018-04-01

    The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.

  11. Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments

    NASA Astrophysics Data System (ADS)

    Holt, Christopher Michael Bjustrom

    This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of the released platform was shown to be better than the performance seen in the anchored sensors while both platforms were significantly better than a simply fabricated wrapped wire sensor. The anchored platform was also used to demonstrate a traditional capacitance based fluid dielectric sensor which was found to work similarly to conventional commercial capacitance probes while being significantly smaller in size.

  12. Use of tear ring permits repair of sealed module circuitry

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Improved packaging technique for modular electronic circuitry utilizes a tear ring which may be removed for repair and resealed. The tear ring is put over the container and header to which the electronic circuit assembly has been attached.

  13. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  14. Effect of a gas on the ejection of particles from the free surface of a sample subjected to a shock wave with various intensities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogorodnikov, V. A., E-mail: root@gdd.vniief.ru; Mikhailov, A. L.; Sasik, V. S.

    2016-08-15

    In view of the possible effect of contamination of a plasma by metal particles on the operation of a number of facilities or on the detection of the motion of liners by Doppler methods, a particular attention has been recently focused on the problem of the ejection of particles from the shock-loaded free surface of a sample or on the “dusting” problem. Most information concerns the dusting source associated with the roughness of the surface, manufacturing technology, and the defectiveness and aging of a material. Factors affecting this process such as the profile and amplitude of the pressure on themore » front of the shock wave arriving at the free surface of the sample, the presence of the gas in front of the free surface, and the pressure in this gas are less studied.« less

  15. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less

  16. Robotic Follow-up for Human Exploration

    DTIC Science & Technology

    2010-09-01

    layering, structural anomalies and fracturing . While ground ice at Haughton is generally present as continuous permafrost, the depth to the thaw zone...geologist (M. Helper) and a geophysicist (E. Heggy) planned tra- verses using a HMMWV as a simulated pressur - ized crew rover. Each traverse was...mounted on the front of a simulated pressurized crew rover; right, GPR is manually deployed by suited crew. Table 3. Flight rules for simulated crew mission

  17. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  18. Estimating Vertical Stress on Soil Subjected to Vehicular Loading

    DTIC Science & Technology

    2009-02-01

    specified surface area of the tire . The silt and sand samples were both estimated to be 23.7-in. thick over a base of much harder soil. The pressures...study in which highway tread tires were used as opposed to the all-terrain tread currently on the vehicle. If the pressure pads are functioning...Vertical force versus time (front right CIV tire )....................................................................... 14 Tables Table 1. Testing

  19. Two Low Pressure Areas Fighting to Control the U.S. Mid-Atlantic Weather

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-14 satellite captured a visible image of a low pressure area that will affect the Mid-Atlantic, Ohio Valley and northeast over the next couple of days. The low pressure area, the rounded area of clouds near southern Louisiana, is now moving in a northerly direction from the Gulf coast, and will track northward to the Great Lakes, passing west of the Mid-Atlantic region and bringing clouds and showers. It's associated warm front will also move up the U.S. East coast bringing a surge of warmth before a cold front sweeps in from the west. The clouds draped across the Mid-Atlantic today, Oct. 1, are from an area of low pressure and trailing frontal boundary located over the Atlantic Ocean just off the North Carolina coast and stretching back to the Gulf low. The image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. by the NASA GOES Project. Credit: NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Design of laboratory experiments to study photoionization fronts driven by thermal sources

    DOE PAGES

    Drake, R. P.; Hazak, G.; Keiter, P. A.; ...

    2016-12-20

    This study analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  1. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  2. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  3. Cold Front Cools the Eastern U.S.

    NASA Image and Video Library

    2014-07-16

    Summertime heat and humidity in the U.S. East Coast is on hold for a couple of days thanks to a cold front and that brought clouds, showers, thunderstorms, and some severe weather on July 16 to the coast. The National Oceanic and Atmospheric Administration (NOAA) noted that the dip in the jet stream will create below normal temperatures for most of the Central and Eastern U.S. for the next couple of days. NOAA's GOES-East satellite captured an image of the clouds associated with the cold front on July 16 at 1630 UTC (12:30 p.m. EDT).The clouds follow the front which stretches from the Florida panhandle, across Florida and up the U.S. East Coast into eastern Canada. Along the front lie two areas of low pressure, one over eastern New England, and the other offshore from South Carolina. Both of those low pressure areas are associated with additional cloudiness along the front. GOES satellites are managed by NOAA. The image was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Image Credit: NASA/NOAA GOES Project, Text: Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Measured Plume Dispersion Parameters Over Water. Volume 1.

    DTIC Science & Technology

    1984-09-01

    meteorlogical parameters were continuously monitored at various locations. Tracer gas concentrations were measured by a variety of methods at...addition, this step added a header . to the data set containing a variety of averaged meteorlogical quantities. The basic procedure in this step was

  5. Space Wire Upper Layer Protocols

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parkes, Steve

    2004-01-01

    This viewgraph presentation addresses efforts to provide a streamlined approach for developing SpaceWire Upper layer protocols which allows industry to drive standardized communication solutions for real projects. The presentation proposes a simple packet header that will allow flexibility in implementing a diverse range of protocols.

  6. Physical Roles of Interstellar-origin Pickup Ions at Heliospheric Termination Shock. II. Impact of the Front Nonstationary on the Energy Partition and Particle Velocity Distribution

    NASA Astrophysics Data System (ADS)

    Lembège, Bertrand; Yang, Zhongwei

    2018-06-01

    The impact of the nonstationarity of the heliospheric termination shock in the presence of pickup ions (PUIs) on the energy partition between different plasma components is analyzed self-consistently by using a one-dimensional particle-in-cell simulation code. Solar wind ions (SWIs) and PUIs are introduced as Maxwellian and shell distributions, respectively. For a fixed time, (a) with a percentage of 25% PUIs, a large part of the downstream thermal pressure is carried by reflected PUIs, in agreement with previous hybrid simulations; (b) the total downstream distribution includes three main components: (i) a low-energy component dominated by directly transmitted (DT) SWIs, (ii) a high-energy component dominated by reflected PUIs, and (iii) an intermediate-energy component dominated by reflected SWIs and DT PUIs. Moreover, results show that the front nonstationarity (self-reformation) persists even in presence of 25% PUIs, and has some impacts on both SWIs and PUIs: (a) the rate of reflected ions suffers some time fluctuations for both SWIs and PUIs; (b) the relative percentage of downstream thermal pressure transfered to PUIs and SWIs also suffers some time fluctuations, but depends on the relative distance from the front; (c) the three components within the total downstream heliosheath distribution persist in time, but the contribution of the ion subpopulations to the low- and intermediate-energy components are redistributed by the front nonstationarity. Our results allow clarifying the respective roles of SWIs and PUIs as a viable production source of energetic neutral atoms and are compared with previous results.

  7. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial condensation front exhibited large accelerations, with velocity varying from few tens of m/s up to 479 (±0.5) m/s, at distances of 1.5 (±0.3) cm and in times of 0.1 ms. This process preceded the appearance of the Ar front. Our first results suggest that the evaporation of moisture induced by compression waves associated with the air shock is able to accelerate particles (ca.100s microns in size) efficiently, at short distances. This process could have broader implications in active volcanic areas where shock waves are generated, for the damage that may follow.

  8. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.

    2013-05-01

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.

  9. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory; Quinn, Gregory; Strange, Jeremy

    2012-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.

  10. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  11. SCORE user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.A.

    SABrE is a set of tools to facilitate the development of portable scientific software and to visualize scientific data. As with most constructs, SABRE has a foundation. In this case that foundation is SCORE. SCORE (SABRE CORE) has two main functions. The first and perhaps most important is to smooth over the differences between different C implementations and define the parameters which drive most of the conditional compilations in the rest of SABRE. Secondly, it contains several groups of functionality that are used extensively throughout SABRE. Although C is highly standardized now, that has not always been the case. Roughlymore » speaking C compilers fall into three categories: ANSI standard; derivative of the Portable C Compiler (Kernighan and Ritchie); and the rest. SABRE has been successfully ported to many ANSI and PCC systems. It has never been successfully ported to a system in the last category. The reason is mainly that the ``standard`` C library supplied with such implementations is so far from true ANSI or PCC standard that SABRE would have to include its own version of the standard C library in order to work at all. Even with standardized compilers life is not dead simple. The ANSI standard leaves several crucial points ambiguous as ``implementation defined.`` Under these conditions one can find significant differences in going from one ANSI standard compiler to another. SCORE`s job is to include the requisite standard headers and ensure that certain key standard library functions exist and function correctly (there are bugs in the standard library functions supplied with some compilers) so that, to applications which include the SCORE header(s) and load with SCORE, all C implementations look the same.« less

  12. SCORE user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.A.

    SABrE is a set of tools to facilitate the development of portable scientific software and to visualize scientific data. As with most constructs, SABRE has a foundation. In this case that foundation is SCORE. SCORE (SABRE CORE) has two main functions. The first and perhaps most important is to smooth over the differences between different C implementations and define the parameters which drive most of the conditional compilations in the rest of SABRE. Secondly, it contains several groups of functionality that are used extensively throughout SABRE. Although C is highly standardized now, that has not always been the case. Roughlymore » speaking C compilers fall into three categories: ANSI standard; derivative of the Portable C Compiler (Kernighan and Ritchie); and the rest. SABRE has been successfully ported to many ANSI and PCC systems. It has never been successfully ported to a system in the last category. The reason is mainly that the standard'' C library supplied with such implementations is so far from true ANSI or PCC standard that SABRE would have to include its own version of the standard C library in order to work at all. Even with standardized compilers life is not dead simple. The ANSI standard leaves several crucial points ambiguous as implementation defined.'' Under these conditions one can find significant differences in going from one ANSI standard compiler to another. SCORE's job is to include the requisite standard headers and ensure that certain key standard library functions exist and function correctly (there are bugs in the standard library functions supplied with some compilers) so that, to applications which include the SCORE header(s) and load with SCORE, all C implementations look the same.« less

  13. The effect of heat sinks in GTA microwelding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knorovsky, G.A.; Burchett, S.N.

    1989-01-01

    When miniature devices containing glass-to-metal seals are closure welded it is accepted practice to incorporate thermal heat sinks into the fixturing. This is intended to assure that the heat from gas tungsten arc (GTA) welding will not cause thermal stress-induced cracking of the seals and loss of hermeticity. The design of these heat sinks has never been systematically studied; instead only ''engineering horse sense'' has been applied. This practice has been successful in the past; however, the component being GTA welded have become smaller and more complex (i.e., more pins) and glass cracking problems are being encountered. The technology ofmore » producing glass seal-containing lids (called ''headers'') has benefited from finite element analyses in deciding how to optimally dimension pin-to-glass seal diameter ratios and glass-to-metal thickness ratios in order to minimize thermal stresses locked in during manufacture. It appeared likely that an analysts of the stresses generated by welding would also be beneficial. Recently, computer speed and code capabilities have increased to the point where finite element analysis of a close simulation of real hardware can be made, including the effect of external heat sinks. The work reported here involves an analysis (with some supporting experimental data) of a miniature thermal battery which encountered glass cracking problems. In the course of the analysis various heat sink practices were examined. Among other findings, through-thickness thermal gradients in a header with a heat sink were found to equal in-plane thermal gradients in a header without any heat sinking at the glass seal positions. Also noted were significant variations due to relatively minor changes in the weld preparation geometry. A summary of good practice for heat sinking will be presented. 4 refs., 6 figs., 2 tabs.« less

  14. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  15. Three-dimensional direct numerical simulation study of conditioned moments associated with front propagation in turbulent flows

    NASA Astrophysics Data System (ADS)

    Yu, R.; Lipatnikov, A. N.; Bai, X. S.

    2014-08-01

    In order to gain further insight into (i) the use of conditioned quantities for characterizing turbulence within a premixed flame brush and (ii) the influence of front propagation on turbulent scalar transport, a 3D Direct Numerical Simulation (DNS) study of an infinitely thin front that self-propagates in statistically stationary, homogeneous, isotropic, forced turbulence was performed by numerically integrating Navier-Stokes and level set equations. While this study was motivated by issues relevant to premixed combustion, the density was assumed to be constant in order (i) to avoid the influence of the front on the flow and, therefore, to know the true turbulence characteristics as reference quantities for assessment of conditioned moments and (ii) to separate the influence of front propagation on turbulent transport from the influence of pressure gradient induced by heat release. Numerical simulations were performed for two turbulence Reynolds numbers (50 and 100) and four ratios (1, 2, 5, and 10) of the rms turbulent velocity to the front speed. Obtained results show that, first, the mean front thickness is decreased when a ratio of the rms turbulent velocity to the front speed is decreased. Second, although the gradient diffusion closure yields the right direction of turbulent scalar flux obtained in the DNS, the diffusion coefficient Dt determined using the DNS data depends on the mean progress variable. Moreover, Dt is decreased when the front speed is increased, thus, indicating that the front propagation affects turbulent scalar transport even in a constant-density case. Third, conditioned moments of the velocity field differ from counterpart mean moments, thus, disputing the use of conditioned velocity moments for characterizing turbulence when modeling premixed turbulent combustion. Fourth, computed conditioned enstrophies are close to the mean enstrophy in all studied cases, thus, suggesting the use of conditioned enstrophy for characterizing turbulence within a premixed flame brush.

  16. PESO - The Python Based Control System of the Ondrejov 2m Telescope

    NASA Astrophysics Data System (ADS)

    Skoda, P.; Fuchs, J.; Honsa, J.

    2005-12-01

    Python has been gaining a good reputation and respectability in many areas of software development. We have chosen Python after getting the new CCD detector for the coudé spectrograph of Ondřejov observatory 2m telescope. The VersArray detector from Roper Scientific came only with the closed source library PVCAM of low-level camera control functions for Linux, so we had to write the whole astronomical data acquisition system from scratch and integrate it with the current spectrograph and telescope control systems. The final result of our effort, PESO (Python Exposure System for Ondřejov) is a highly comfortable GUI-based environment allowing the observer to change the spectrograph configuration, choose the detector acquisition mode, select the exposure parameters, and monitor the exposure progress. All of the relevant information from the control computers is written into the FITS headers by the PyFITS module, and the acquired CCD frame is immediately displayed in an SAO DS9 window using XPA calls. The GTK-based front end design was drawn in the Glade visual development tool, giving the shape and position of all widgets in single XML file, which is used in Python by a simple call of the PyGlade module. We describe our experience with the design and implementation of PESO, stressing the easiness of quick changes of the GUI, together with the capability of separate testing of every module using the Python debugger, IPython.

  17. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma

    NASA Astrophysics Data System (ADS)

    Hillier, A.; Takasao, S.; Nakamura, N.

    2016-06-01

    The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.

  18. Submesoscale CO2 variability across an upwelling front off Peru

    NASA Astrophysics Data System (ADS)

    Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten

    2017-12-01

    As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.

  19. Additional testing of the inlets designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Ybarra, A. H.

    1981-01-01

    The wind tunnel testing of a scale model of a tandem fan nacelle designed for a type (subsonic cruise) V/STOL aircraft configuration is discussed. The performance for the isolated front inlet and for the combined front and aft inlets is reported. Model variables include front and aft inlets with aft inlet variations of short and long aft inlet cowls, with a shaft simulator and diffuser vortex generators, cowl lip fillets, and nacelle strakes. Inlet pressure recovery, distortion, and inlet angle-to-attack separation limits were evaluated at tunnel velocity from 0 to 240 knots, angles-of-attack from -10 to +40 degrees and inlet flow rates corresponding to throat Mach number from 0.0 to 0.6. Combined nacelle pitch and yaw runs up to 30 deg. were also made.

  20. Aviation and Airports, Transportation & Public Facilities, State of Alaska

    Science.gov Websites

    State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Aviation and Airports Search DOT&PF State of Stevens Anchorage International Airport Link to List of Alaska Public Airports Ketchikan International

  1. 40 CFR 205.173-2 - Tampering.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... removal or puncturing the muffler, baffles, header pipes, or any other component which conducts exhaust... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.173-2 Tampering. The manufacturer must... exhaust system which causes the motorcycle to exceed the Federal noise standard. Use of the motorcycle...

  2. Interior view, Slave Quarter/Service, second floor, detail view of framing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, Slave Quarter/Service, second floor, detail view of framing to show joists (with ghosts of lathe) and header (trimmer) with keyed through tenon. - Decatur House, National Trust for Historic Preservation, 748 Jackson Place Northwest, Washington, District of Columbia, DC

  3. 14. Interior, boiler house, at elev. 42'8' looking west at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, boiler house, at elev. 42'-8' looking west at distribution headers and coal and oil burners of retired 300 lb. boilers #11, 10, and 9. - Manchester Street Generating Station, Manchester Street Station, 460 Eddy Street, Providence, Providence County, RI

  4. Loop-Extended Symbolic Execution on Binary Programs

    DTIC Science & Technology

    2009-03-02

    1434. Based on its speci- fication [35], one valid message format contains 2 fields: a header byte of value 4, followed by a string giving a database ...potentially become expensive. For instance the polyhedron technique [16] requires costly conversion operations on a multi-dimensional abstract representation

  5. A Ceramic Heat Exchanger for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Robertson Jr., C.; Stacy, L.

    1985-01-01

    Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).

  6. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  7. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  8. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  9. 106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11

    DTIC Science & Technology

    2017-07-01

    11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time

  10. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.

    PubMed

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2015-08-06

    In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node's energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network.

  11. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks

    PubMed Central

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2015-01-01

    In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node’s energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network. PMID:26287189

  12. Internet-based interface for STRMDEPL08

    USGS Publications Warehouse

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  13. Compression technique for large statistical data bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggers, S.J.; Olken, F.; Shoshani, A.

    1981-03-01

    The compression of large statistical databases is explored and are proposed for organizing the compressed data, such that the time required to access the data is logarithmic. The techniques exploit special characteristics of statistical databases, namely, variation in the space required for the natural encoding of integer attributes, a prevalence of a few repeating values or constants, and the clustering of both data of the same length and constants in long, separate series. The techniques are variations of run-length encoding, in which modified run-lengths for the series are extracted from the data stream and stored in a header, which ismore » used to form the base level of a B-tree index into the database. The run-lengths are cumulative, and therefore the access time of the data is logarithmic in the size of the header. The details of the compression scheme and its implementation are discussed, several special cases are presented, and an analysis is given of the relative performance of the various versions.« less

  14. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  15. Validation and calibration of HeadCount, a self-report measure for quantifying heading exposure in soccer players.

    PubMed

    Catenaccio, E; Caccese, J; Wakschlag, N; Fleysher, R; Kim, N; Kim, M; Buckley, T A; Stewart, W F; Lipton, R B; Kaminski, T; Lipton, M L

    2016-01-01

    The long-term effects of repetitive head impacts due to heading are an area of increasing concern, and exposure must be accurately measured; however, the validity of self-report of cumulative soccer heading is not known. In order to validate HeadCount, a 2-week recall questionnaire, the number of player-reported headers was compared to the number of headers observed by trained raters for a men's and a women's collegiate soccer teams during an entire season of competitive play using Spearman's correlations and intraclass correlation coefficients (ICCs), and calibrated using a generalized estimating equation. The average Spearman's rho was 0.85 for men and 0.79 for women. The average ICC was 0.75 in men and 0.38 in women. The calibration analysis demonstrated that men tend to report heading accurately while women tend to overestimate. HeadCount is a valid instrument for tracking heading behaviour, but may have to be calibrated in women.

  16. The PKI collector

    NASA Astrophysics Data System (ADS)

    Rice, M. P.

    1982-07-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  17. The PKI collector

    NASA Technical Reports Server (NTRS)

    Rice, M. P.

    1982-01-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  18. A New Archive of UKIRT Legacy Data at CADC

    NASA Astrophysics Data System (ADS)

    Bell, G. S.; Currie, M. J.; Redman, R. O.; Purves, M.; Jenness, T.

    2014-05-01

    We describe a new archive of legacy data from the United Kingdom Infrared Telescope (UKIRT) at the Canadian Astronomy Data Centre (CADC) containing all available data from the Cassegrain instruments. The desire was to archive the raw data in as close to the original format as possible, so where the data followed our current convention of having a single data file per observation, it was archived without alteration, except for minor fixes to headers of data in FITS format to allow it to pass fitsverify and be accepted by CADC. Some of the older data comprised multiple integrations in separate files per observation, stored in either Starlink NDF or Figaro DST format. These were placed inside HDS container files, and DST files were rearranged into NDF format. The describing the observations is ingested into the CAOM-2 repository via an intermediate MongoDB header database, which will also be used to guide the ORAC-DR pipeline in generating reduced data products.

  19. Hollow Fiber Ground Evaporator Unit Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus

    2010-01-01

    A candidate technology for 1-atmosphere suited heat rejection was developed and tested at NASA Johnson Space Center. The concept is to use a collection of microporous hydrophobic tubes potted between inlet and outlet headers with water as coolant. A pump provides flow between headers through the tubes which are subjected to fan driven cross flow of relatively dry air. The forced ventilation would sweep out the water vapor from the evaporation of the coolant rejecting heat from the coolant stream. The hollow fibers are obtained commercially (X50-215 Celgard) which are arranged in a sheet containing 5 fibers per linear inch. Two engineering development units were produced that vary the fold direction of the fiber sheets relative to the ventilation. These units were tested at inlet water temperatures ranging from 20 deg C to 30 deg C, coolant flow rates ranging from 10 to 90 kg/hr, and at three fan speeds. These results were used to size a system that could reject heat at a rate of 340 W.

  20. Charge coupled devices

    NASA Technical Reports Server (NTRS)

    Walker, J. W.; Hornbeck, L. J.; Stubbs, D. P.

    1977-01-01

    The results are presented of a program to design, fabricate, and test CCD arrays suitable for operation in an electron-bombarded mode. These intensified charge coupled devices have potential application to astronomy as photon-counting arrays. The objectives of this program were to deliver arrays of 250 lines of 400 pixels each and some associated electronics. Some arrays were delivered on tube-compatible headers and some were delivered after incorporation in vacuum tubes. Delivery of these devices required considerable improvements to be made in the processing associated with intensified operation. These improvements resulted in a high yield in the thinning process, reproducible results in the accumulation process, elimination of a dark current source in the accumulation process, solution of a number of header related problems, and the identification of a remaining major source of dark current. Two systematic failure modes were identified and protective measures established. The effects of tube processing on the arrays in the delivered ICCDs were determined and are reported along with the characterization data on the arrays.

  1. XML Translator for Interface Descriptions

    NASA Technical Reports Server (NTRS)

    Boroson, Elizabeth R.

    2009-01-01

    A computer program defines an XML schema for specifying the interface to a generic FPGA from the perspective of software that will interact with the device. This XML interface description is then translated into header files for C, Verilog, and VHDL. User interface definition input is checked via both the provided XML schema and the translator module to ensure consistency and accuracy. Currently, programming used on both sides of an interface is inconsistent. This makes it hard to find and fix errors. By using a common schema, both sides are forced to use the same structure by using the same framework and toolset. This makes for easy identification of problems, which leads to the ability to formulate a solution. The toolset contains constants that allow a programmer to use each register, and to access each field in the register. Once programming is complete, the translator is run as part of the make process, which ensures that whenever an interface is changed, all of the code that uses the header files describing it is recompiled.

  2. Yearly variation of bacterial production in the Arraial do Cabo protection area (Cabo Frio upwelling region): An evidence of anthropogenic pressure

    PubMed Central

    Coelho-Souza, Sérgio A.; Pereira, Gilberto C.; Coutinho, Ricardo; Guimarães, Jean R.D.

    2013-01-01

    Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability. PMID:24688533

  3. Yearly variation of bacterial production in the Arraial do Cabo protection area (Cabo Frio upwelling region): an evidence of anthropogenic pressure.

    PubMed

    Coelho-Souza, Sérgio A; Pereira, Gilberto C; Coutinho, Ricardo; Guimarães, Jean R D

    2013-12-01

    Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability.

  4. Software Reviews.

    ERIC Educational Resources Information Center

    McGrath, Diane, Ed.

    1989-01-01

    Reviewed are two computer software programs for Apple II computers on weather for upper elementary and middle school grades. "Weather" introduces the major factors (temperature, humidity, wind, and air pressure) affecting weather. "How Weather Works" uses simulation and auto-tutorial formats on sun, wind, fronts, clouds, and…

  5. Effect of reflected ions on the formation of the structure of interplanetary quasi-perpendicular shocks for Mach numbers lower than the first critical mach number

    NASA Astrophysics Data System (ADS)

    Eselevich, V. G.; Borodkova, N. L.; Sapunova, O. V.; Zastenker, G. N.; Yermolaev, Yu. I.

    2017-11-01

    Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number M A lower than the first critical Mach number M c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number ( M A ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number ( M A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.

  6. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  7. Weather and childbirth: A further search for relationships

    NASA Astrophysics Data System (ADS)

    Driscoll, Dennis M.

    1995-09-01

    Previous attempts to find relationships between weather and parturition (childbirth) and its onset (the beginning of labor pains) have revealed, firstly, limited but statistically significant relationships between weather conditions much colder than the day before, with high winds and low pressure, and increased onsets; and secondly, increased numbers of childbirths during periods of atmospheric pressure rise (highly statistically significant). To test these findings, this study examined weather data coincident childbirth data from a hospital at Bryan-College Station, Texas (for a period of 30 cool months from 1987 to 1992). Tests for (1) days of cold fronts, (2) a day before and a day after the cold front, (3) days with large temperature increases, and (4) decreases from the day before revealed no relationship with mean daily rate of onset. Cold days with high winds and low pressure had significantly fewer onsets, a result that is the opposite of previous findings. The postulated relationship between periods of pressure rise and increased birth frequency was negative, i.e., significantly fewer births occurred at those times — again, the opposite of the apparent occurrence in an earlier study. The coincidence of diurnal variations in both atmospheric pressure and frequency of childbirths, was shown to account for fairly strong negative associations between the two variables. This same reasoning might explain the positive association found in an earlier study. A comparison has been made between childbirth and onset as the response variable, and the advantage is emphasized of using data from women whose labor is not induced.

  8. Development of a New Rain Erosion Test Method

    NASA Astrophysics Data System (ADS)

    Chung, Dong-Teak; Kang, Hyung; Jin, Doo-Han

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. Various test methods are used to address such a phenomenon. However, most of the methods are expensive and/or require complicated facilities. The simple yet very effective rain erosion test method is developed. It consists of (1) a low pressure air gun, (2) a sabot assembly for launching single rain drop, (3) a stopper, and (4) a specimen holder block. The sabot assembly similar to the hypodermic syringe carries specific amount of water toward the stopper launched by the low pressure air gun. When the impact occurs against the stopper which stops the sabot, the water and the steel plunger (at the back of the sabot) continues pushing the sabot to generate a high pressure in the chamber filled with resilient silicon rubber. The pressurized silicon rubber then is squeezed through the small opening in front of the sabot, thus, accelerates the water droplet to a much higher velocity. The velocity of the droplet is measured by the make-screen method, where there are two aluminum foils with an insulating layer in between. The droplet velocity up to 800 m/s is successfully attained using a low pressure air compressor. The specimen made of a ceramic material is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  9. Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Li, Xiaoduan; Wang, Xiaoyong; Guan, Jing

    2014-05-01

    When a globule with a complete symmetry (such as simple spherical droplets and concentric double emulsions) is transiting in a constriction tube, there is only one pattern of the transition. However, for a multiple-emulsion globule with asymmetric internal structures, there are many possible patterns with different pressure drops Δp due to various initial orientations of the inner droplets. In this paper, a boundary integral method developed recently is employed to investigate numerically the possible oriented transition of a globule with two unequal inner droplets in an axisymmetric microfluidic constriction. The transition is driven by an axisymmetric Poiseuille flow with a fixed volume flow rate, and the rheological behaviors of the globule are observed carefully. When the big inner droplet is initially located in the front of the globule, the maximum pressure drop during the transition is always lower than that when it is initially placed in the rear. Thus, a tropism—whereby a globule more easily gets through the constriction when its bigger inner droplet locates in its front initially—might exist, in which the orientating stimulus is the required pressure drops. The physical explanation of this phenomenon has also been analyzed in this paper.

  10. Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range

    DOE PAGES

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; ...

    2018-03-19

    Absolute Hugoniot measurements for empty plastic foams at ~10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ~400 μm thick and ~500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ~9 Mbar. The motion of the shock and ablation fronts was recorded usingmore » side-on monochromatic x-ray imaging radiography. Here, the steadiness of the observed shock and ablation fronts within ~1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ~9 Mbar and density compression ratio ~5. In the lower pressure range 2–5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.« less

  11. Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Schmitt, A. J.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Cochrane, K. R.

    2018-03-01

    Absolute Hugoniot measurements for empty plastic foams at ˜10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ˜400 μm thick and ˜500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ˜9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ˜1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ˜9 Mbar and density compression ratio ˜5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.

  12. Surface pressure maps from scatterometer data

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Levy, Gad

    1991-01-01

    The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.

  13. Nebraska DHHS: Swimming Pool Program

    Science.gov Websites

    Skip to main content Official Nebraska Government Website NE-DHHS Home Header Behavioral Health Children and Family Services Developmental Disabilities Medicaid and Long Term Care Public Health DHHS Internet Website - Public Health DHHS Internet Website - Public Health : Nebraska DHHS: Swimming Pool

  14. Nebraska DHHS: What is Tuberculosis?

    Science.gov Websites

    Skip to main content Official Nebraska Government Website NE-DHHS Home Header Behavioral Health Children and Family Services Developmental Disabilities Medicaid and Long Term Care Public Health DHHS Internet Website - Public Health DHHS Internet Website - Public Health : Nebraska DHHS: What is

  15. 40 CFR 205.164 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as defined in § 205.151(a)(3). (e) The provisions of the subpart do not apply to exhaust header pipes... EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.164 Applicability. (a) Except as... exhaust system or motorcycle replacement exhaust system component which: (1) Meets the definition of the...

  16. Colorado Water Institute

    Science.gov Websites

    Colorado Water Institute Colorado State University header HomeMission StatementGRAD592NewslettersPublications/ReportsCSU Water ExpertsFunding OpportunitiesScholarshipsSubscribeEmploymentAdvisory BoardStaffContact UsCommentsLinks Water Center Logo Water Resources Archive Office of Engagement Ag Water

  17. 36 CFR 1237.28 - What special concerns apply to digital photographs?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defects, evaluate the accuracy of finding aids, and verify file header information and file name integrity... sampling methods or more comprehensive verification systems (e.g., checksum programs), to evaluate image.... For permanent or unscheduled images descriptive elements must include: (1) An identification number...

  18. 36 CFR § 1237.28 - What special concerns apply to digital photographs?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defects, evaluate the accuracy of finding aids, and verify file header information and file name integrity... sampling methods or more comprehensive verification systems (e.g., checksum programs), to evaluate image.... For permanent or unscheduled images descriptive elements must include: (1) An identification number...

  19. 36 CFR 1237.28 - What special concerns apply to digital photographs?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defects, evaluate the accuracy of finding aids, and verify file header information and file name integrity... sampling methods or more comprehensive verification systems (e.g., checksum programs), to evaluate image.... For permanent or unscheduled images descriptive elements must include: (1) An identification number...

  20. 36 CFR 1237.28 - What special concerns apply to digital photographs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defects, evaluate the accuracy of finding aids, and verify file header information and file name integrity... sampling methods or more comprehensive verification systems (e.g., checksum programs), to evaluate image.... For permanent or unscheduled images descriptive elements must include: (1) An identification number...

  1. 36 CFR 1237.28 - What special concerns apply to digital photographs?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defects, evaluate the accuracy of finding aids, and verify file header information and file name integrity... sampling methods or more comprehensive verification systems (e.g., checksum programs), to evaluate image.... For permanent or unscheduled images descriptive elements must include: (1) An identification number...

  2. --No Title--

    Science.gov Websites

    {background-color:#5e6a71;border-top:3px solid #62d2ff}@media (min-width: 768px){header{border-bottom:9px a.app-name:hover{color:#fff;display:block;font-family:Roboto;font-size:30px;line-height:1.2em;margin:0 0

  3. Scaling of postinjection-induced seismicity: An approach to assess hydraulic fracturing related processes

    NASA Astrophysics Data System (ADS)

    Johann, Lisa; Dinske, Carsten; Shapiro, Serge

    2017-04-01

    Fluid injections into unconventional reservoirs have become a standard for the enhancement of fluid-mobility parameters. Microseismic activity during and after the injection can be frequently directly associated with subsurface fluid injections. Previous studies demonstrate that postinjection-induced seismicity has two important characteristics: On the one hand, the triggering front, which corresponds to early and distant events and envelops farthest induced events. On the other hand, the back front, which describes the lower boundary of the seismic cloud and envelops the aseismic domain evolving around the source after the injection stop. A lot of research has been conducted in recent years to understand seismicity-related processes. For this work, we follow the assumption that the diffusion of pore-fluid pressure is the dominant triggering mechanism. Based on Terzaghi's concept of an effective normal stress, the injection of fluids leads to increasing pressures which in turn reduce the effective normal stress and lead to sliding along pre-existing critically stressed and favourably oriented fractures and cracks. However, in many situations, spatio-temporal signatures of induced events are captured by a rather non-linear process of pore-fluid pressure diffusion, where the hydraulic diffusivity becomes pressure-dependent. This is for example the case during hydraulic fracturing where hydraulic transport properties are significantly enhanced. For a better understanding of processes related to postinjection-induced seismicity, we analytically describe the temporal behaviour of triggering and back fronts. We introduce a scaling law which shows that postinjection-induced events are sensitive to the degree of non-linearity and to the Euclidean dimension of the seismic cloud (see Johann et al., 2016, JGR). To validate the theory, we implement comprehensive modelling of non-linear pore-fluid pressure diffusion in 3D. We solve numerically for the non-linear equation of diffusion with a power-law dependent hydraulic diffusivity on pressure and generate catalogues of synthetic seismicity. We study spatio-temporal features of the seismic clouds and compare the results to theoretical values predicted by the novel scaling law. Subsequently, we apply the scaling relation to real hydraulic fracturing and Enhanced Geothermal System data. Our results show that the derived scaling relations well describe synthetic and real data. Thus, the methodology can be used to obtain hydraulic reservoir properties and can contribute significantly to a general understanding of injection related processes as well as to hazard assessment.

  4. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  5. Long, Strong Eastern U.S. Cold Front Brings Changes

    NASA Image and Video Library

    2013-12-23

    A long, strong, cold front draped over the eastern U.S. is marking a stark change from record-warmth to very cold temperatures. This NOAA GOES-East satellite image from December 23 at 1515 UTC/10:15 a.m. EST shows a powerful cold front covering the U.S. East Coast and stretching into the central and southwestern Gulf of Mexico. According to the National Weather Service, that front is bringing rain and embedded thunderstorms over the Mid-Atlantic and Southeastern U.S. The same system is bringing lingering wintry precipitation to northern New England and upstate New York. Behind the cold front, much colder and dry Canadian air will filter in under high pressure and bring sunshine over the eastern U.S. in time for Christmas. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center, Greenbelt, Md. Rob Gutro NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Seasonal and Interannual Variability of the Brazil - Malvinas Front: an Altimetry Perspective

    NASA Astrophysics Data System (ADS)

    Saraceno, M.; Valla, D.; Pelegrí, J. L.; Piola, A. R.

    2016-02-01

    The Brazil and Malvinas Confluence in the Southwestern Atlantic is one of the most energetic regions of the world ocean. Using recent measurements of sub-surface velocity currents, collected along 2348 nautical miles with a vessel mounted acoustic Doppler profiler onboard R/V BIO Hespérides, we validate geostrophic velocities derived from gridded fields of sea surface height (SSH). A remarkable correspondence between in-situ surface hydrographic data collected from the vessel and satellite sea surface temperature (SST), color and altimetry data allows selecting a specific SSH contour to track the position of the Brazil-Malvinas front. We then use 22 years of SSH data distributed by AVISO to show that the Brazil-Malvinas front shows a NS orientation in winter and a NE-SW orientation in summer, in good agreement with results based on the analysis of SST gradients. Furthermore, a clear southward migration of the front during the 22 year period is observed. The migration is associated with the southward shift of the South Atlantic high-pressure system that is in turn related to large climate changes in the southern portion of the South American continent. The seasonal variability in the orientation of the front is related to the Brazil and Malvinas encountering currents.

  7. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  8. Ground Tests of a Radial Air-Cooled Engine to Correct a Poor Circumferential Pressure-Recovery Distribution

    NASA Technical Reports Server (NTRS)

    Gallagher, James J.

    1948-01-01

    This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.

  9. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    PubMed

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  10. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton

    PubMed Central

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Background Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Methods Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. Results The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = −2.88 to −0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = −3.62 to −0.02%BW; PP, p = 0.048, 95% CI = −37.63 to −0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = −4.39 to −0.38%BW; PP, p = 0.008, 95% CI = −47.76 to −5.91 KPa). Conclusions These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players. PMID:26367741

  11. Development and Realization of a Shock Wave Test on Expert Flap Qualification Model

    NASA Astrophysics Data System (ADS)

    De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.

    2012-07-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.

  12. Rain‐induced subsurface airflow and Lisse effect

    USGS Publications Warehouse

    Guo, Haipeng; Jiao, Jiu J.; Weeks, Edwin P.

    2008-01-01

    Water‐level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water‐level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low‐permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain‐runoff condition combine favorably. A transient, three‐dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two‐fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water‐level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water‐level rise in the well is delayed relative to the air‐pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water‐level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Devesh

    Diffusion bonded heat exchangers are the leading candidates for the sCO 2 Brayton cycles in next generation nuclear power plants. Commercially available diffusion bonded heat exchangers utilize set of continuous semi-circular zigzag micro channels to increase the heat transfer area and enhance heat transfer through increased turbulence production. Such heat exchangers can lead to excessive pressure drop as well as flow maldistribution in the case of poorly designed flow distribution headers. The goal of the current project is to fabricate and test potential discontinuous fin patterns for diffusion bonded heat exchangers; which can achieve desired thermal performance at lower pressuremore » drops. Prototypic discontinuous offset rectangular and Airfoil fin surface geometries were chemically etched on to 316 stainless steel plate and sealed against an un-etched flat pate using O-ring seal emulating diffusion bonded heat exchangers. Thermal-hydraulic performance of these prototypic discontinuous fin geometries was experimentally evaluated and compared to the existing data for the continuous zigzag channels. The data generated from this project will serve as the database for future testing and validation of numerical models.« less

  14. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  15. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  16. Impact of plunging breaking waves on a partially submerged cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C.; Duncan, J. H.

    2013-11-01

    The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.

  17. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  18. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  19. Effects of surface pressure and internal friction on the dynamics of shear-driven supported lipid bilayers.

    PubMed

    Jönsson, Peter; Höök, Fredrik

    2011-02-15

    Supported lipid bilayers (SLBs) are one of the most common model systems for cell membrane studies. We have previously found that when applying a bulk flow of liquid above an SLB the lipid bilayer and its constituents move in the direction of the bulk flow in a rolling type of motion, with the lower monolayer being essentially stationary. In this study, a theoretical platform is developed to model the dynamic behavior of a shear-driven SLB. In most regions of the moving SLB, the dynamics of the lipid bilayer is well explained by a balance between the hydrodynamic shear force arising from the bulk flow above the lipid bilayer and the friction between the upper and lower monolayers of the SLB. These two forces result in a drift velocity profile for the lipids in the upper monolayer of the SLB that is highest at the center of the channel and decreases to almost zero at the corners of the channel. However, near the front of an advancing SLB a very different flow behavior is observed, showing an almost constant drift velocity of the lipids over the entire bilayer front. In this region, the motion of the SLB is significantly influenced by gradients in the surface pressure as well as internal friction due to molecules that have accumulated at the front of the SLB. It is shown that even a modest surface fraction of accumulated molecules (∼1%) can drastically affect the behavior of the SLB near the bilayer front, forcing the advancing lipids in the SLB away from the center of the channel out toward the sides.

  20. Propagation of detonations in hydrazine vapor

    NASA Technical Reports Server (NTRS)

    Heinrich, H. J.

    1985-01-01

    In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.

  1. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  2. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  3. Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond

    NASA Astrophysics Data System (ADS)

    Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.

    A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.

  4. Memory Forensics: Review of Acquisition and Analysis Techniques

    DTIC Science & Technology

    2013-11-01

    Management Overview Processes running on modern multitasking operating systems operate on an abstraction of RAM, called virtual memory [7]. In these systems...information such as user names, email addresses and passwords [7]. Analysts also use tools such as WinHex to identify headers or other suspicious data within

  5. International Metadata Initiatives: Lessons in Bibliographic Control.

    ERIC Educational Resources Information Center

    Caplan, Priscilla

    This paper looks at a subset of metadata schemes, including the Text Encoding Initiative (TEI) header, the Encoded Archival Description (EAD), the Dublin Core Metadata Element Set (DCMES), and the Visual Resources Association (VRA) Core Categories for visual resources. It examines why they developed as they did, major point of difference from…

  6. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  7. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  8. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders... enclosed spaces. (3) Manifold hose connections, including both ends of the supply hose that lead to the... supply header connections. Adapters shall not be used to permit the interchange of hose. Hose connections...

  9. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... does not exceed 12 inches in length and after completion the weld is stress-relieved. Cracks in... the shell of water tube boiler drums, provided there are not more than two cracks in any one row in... Commandant. (g) Cracks that occur in superheater manifolds, water wallheaders, water drums, sectional headers...

  10. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... does not exceed 12 inches in length and after completion the weld is stress-relieved. Cracks in... the shell of water tube boiler drums, provided there are not more than two cracks in any one row in... Commandant. (g) Cracks that occur in superheater manifolds, water wallheaders, water drums, sectional headers...

  11. Attribution of Spear Phishing Attacks: A Literature Survey

    DTIC Science & Technology

    2013-08-01

    header of an email, verbally informed by another person, or easily ascertained via the handwriting of the text. In a few specific cases, this...scene would be scrutinised, based on both the handwriting and the content of the letter, to identify a suspect. The goal of this phase is to establish

  12. 29 CFR 1915.131 - General precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shall be adequately guarded. (g) Headers, manifolds and widely spaced hose connections on compressed air.... Grouped air connections may be marked in one location. (h) Before use, compressed air hose shall be... electric cords for this purpose is prohibited. (b) When air tools of the reciprocating type are not in use...

  13. Freedom Of Information Act

    Science.gov Websites

    Web Site Freedom of Information Act Sign In Freedom of Information Act Header Search this site ... Search Freedom of Information Act Introduction to FOIA Making A Request Points of Contact FOIA Reports Reading Room Frequently Asked Questions FOIA Links Privacy Act Requests Freedom Of Information (FOIA) &

  14. Dismal: A Spreadsheet for Sequential Data Analysis and HCI Experimentation

    DTIC Science & Technology

    2002-01-24

    Hambly, Alder, Wyatt- Millington, Shrayane, Crawshaw , et al., 1996). Table 2 provides some example data. An automatically generated header comes first...Shrayane, N. M., Crawshaw , C. M., & Hockey, G. R. J. (1996). Investigating the human-computer interface using the Datalogger. Behavior Research Methods, Instruments, & Computers, 28(4), 603-606.

  15. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) tape IJ grid pixel extraction processor user's manual

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACREG, extracted all pixels that are contained in a specific IJ grid section. The pixels, along with a header record are stored in a disk file defined by the user. The program will extract up to 99 IJ grid sections.

  16. --No Title--

    Science.gov Websites

    .navbar-nav .open .dropdown-menu { float: none; width: auto; margin-top: 0; background-color: transparent ; border: 0; box-shadow: none; } #topnav .navbar-nav .open .dropdown-menu > li > a, #topnav .navbar -nav .open .dropdown-menu .dropdown-header { padding: 10px 15px 10px 25px; } #topnav .navbar-nav .open

  17. Modifications Caused by Enzyme-retting and Their Effect on Composite Performance

    USDA-ARS?s Scientific Manuscript database

    Bethune seed flax was collected from Canada with seed removed using a stripper header and straw pulled and left in field for several weeks. Unretted straw was decorticated providing a coarse fiber bundle feedstock for enzyme treatments. Enzyme treatments using a bacterial pectinolytic enzyme with ...

  18. Air on the Move.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides (1) background information on global winds, air masses, fronts, and pressure systems; (2) five activities on this topic; and (3) a ready-to-copy coloring page and worksheet. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  19. Nosebleeds

    MedlinePlus

    ... posterior nosebleed? More rarely, a nosebleed can begin high and deep within the nose and flow down the back of the mouth and throat, ... front of nasal cavity) nosebleeds may seem to flow toward the back of the ... older people, persons with high blood pressure, and in cases of injury to ...

  20. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  1. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  2. New symmetric reflector ultrasonic transducers (SRUT).

    PubMed

    Toda, Minoru

    2009-10-01

    This paper proposes a new structure composed of reflector plates mounted in front and in back of the transducer at an angle of 45 degrees, so that acoustic waves from front and back of the transducer are combined to form a single main beam. This principle is applicable to both transmitters and receivers. Because the propagation path lengths of the 2 beams are identical, they constructively add at all frequencies. Theoretical investigations revealed that far field directivity becomes sharper and acoustic pressure output is doubled. Experiments using an air ultrasonic transducer constructed of 50-kHz polyvinylidene fluoride corrugated film has shown doubled acoustic pressure in the far field, and the predicted sharper directivity has been observed. The reflector structure has been also applied to a 2.6-MHz lead zirconate titanate transducer in water with matching layers at both surfaces which has shown almost doubled bandwidth compared with an air backing structure, and doubled output power in continuous drive. Also pulse echo experiments have shown the effectiveness of this scheme.

  3. Imaging of forced-imbibition in carbonate rocks using synchrotron X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Singh, K.; Menke, H. P.; Andrew, M. G.; Lin, Q.; Saif, T.; Al-Khulaifi, Y.; Reynolds, C. A.; Bijeljic, B.; Rau, C.; Blunt, M. J.

    2016-12-01

    We have investigated the pore-scale behavior of brine-oil systems and oil trapping during forced-imbibition in a water-wet carbonate rock in a capillary-dominated flow regime at reservoir pressure conditions. To capture the dynamics of the brine-oil front progression and snap-off process, real-time tomograms with a time resolution of 38 s (24 s for imaging and 14 s for recording the data) and a spatial resolution of 3.28 µm were acquired at Diamond Light Source (UK). The data were first analyzed at global scale (complete imaged rock) for overall front behavior. From the saturation profiles, we obtain the location of the tail of the desaturation front that progresses with a velocity of 13 µm/min. This velocity is smaller than average flow velocity 16.88 µm/min, which explains why it needs slightly more than 1 pore volume of brine injection to reach the residual saturation of oil in a water-wet rock. The data were further analyzed at local scale to investigate the pore-scale mechanisms of oil trapping during brine flooding. We isolated various trapping events which resulted in the creation of discrete oil ganglia occupying one to several pore bodies. We perform pore-scale curvature analysis of brine-oil interfaces to obtain local capillary pressure that will be related to the shape and the size of throats in which ganglia were trapped.

  4. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  5. Increased photoelectron transmission in High-pressure photoelectron spectrometers using "swift acceleration"

    NASA Astrophysics Data System (ADS)

    Edwards, Mårten O. M.; Karlsson, Patrik G.; Eriksson, Susanna K.; Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan; Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J.; Åhlund, John

    2015-06-01

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N2 and H2O), and a front aperture diameter of 0.8 mm. The new design concept is based upon "swiftly" accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6-9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H2O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  6. AIRS Storm Front Approaching California (animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation

    NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models.

    In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images.

    As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  7. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  8. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  9. Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Dustin, M. O. (Inventor)

    1975-01-01

    Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.

  10. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  11. Strong shock implosion, approximate solution

    NASA Astrophysics Data System (ADS)

    Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.

    1983-01-01

    The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.

  12. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  13. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  14. Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft

    DTIC Science & Technology

    2014-12-15

    but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and

  15. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    good distribution of cooling air, as well as minimum drag for the installation. The fact that these tests showed that the front recovery decreased...installations on engine cooling-air distribution indicates that good coin-elation of the cooling results of like engines in different installations...tests indicate that an important consider- ation in the design of cowlings and cowl flaps should be the obtaining of good distribution of cooling air

  16. Effect of Protective Devices on Brain Trauma Mechanics Under Idealized Shock Wave Loading

    DTIC Science & Technology

    2015-03-29

    shots was taken 1.5” from the open end. Although the incident pressure measured for both D1 and D2 are similar, the pressure experienced by the head...of the free field shock wave pushing up and underneath the helmet brim , as indicated in the Figure 12. Figure 11 comparisons of (a) maximum...head form and potential shockwave interactions. Blue square indicates location of sensor 1 with respect to the brim of the helmet. The shock fronts

  17. Understanding Effects of Traumatic Insults on Brain Structure and Function

    DTIC Science & Technology

    2016-08-01

    42 Fig. 33 The supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The...For instance, although the pressure front of a shock wave travels at supersonic speeds (the speed of sound in water is 1,497 m/s), the shock wave... supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The Mach number is 1.49. b) The pressure profile at t

  18. The dynamics of oceanic fronts. Part 1: The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1970-01-01

    The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.

  19. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  20. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  1. 29 CFR 1915.55 - Gas welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... before cylinders are moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used... ends of the supply hose that lead to the manifold, shall be such that the hose cannot be interchanged between fuel gas and oxygen manifolds and supply header connections. Adapters shall not be used to permit...

  2. 29 CFR 1915.55 - Gas welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... before cylinders are moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used... ends of the supply hose that lead to the manifold, shall be such that the hose cannot be interchanged between fuel gas and oxygen manifolds and supply header connections. Adapters shall not be used to permit...

  3. 36 CFR 1238.12 - What documentation is required for microfilmed records?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... microforms capture all information contained on the source documents and that they can be used for the... retrieval and use. Agencies must: (a) Arrange, describe, and index the filmed records to permit retrieval of... titling target or header. For fiche, place the titling information in the first frame if the information...

  4. 36 CFR § 1238.12 - What documentation is required for microfilmed records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... microforms capture all information contained on the source documents and that they can be used for the... retrieval and use. Agencies must: (a) Arrange, describe, and index the filmed records to permit retrieval of... titling target or header. For fiche, place the titling information in the first frame if the information...

  5. 36 CFR 1238.12 - What documentation is required for microfilmed records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... microforms capture all information contained on the source documents and that they can be used for the... retrieval and use. Agencies must: (a) Arrange, describe, and index the filmed records to permit retrieval of... titling target or header. For fiche, place the titling information in the first frame if the information...

  6. 36 CFR 1238.12 - What documentation is required for microfilmed records?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... microforms capture all information contained on the source documents and that they can be used for the... retrieval and use. Agencies must: (a) Arrange, describe, and index the filmed records to permit retrieval of... titling target or header. For fiche, place the titling information in the first frame if the information...

  7. 36 CFR 1238.12 - What documentation is required for microfilmed records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... microforms capture all information contained on the source documents and that they can be used for the... retrieval and use. Agencies must: (a) Arrange, describe, and index the filmed records to permit retrieval of... titling target or header. For fiche, place the titling information in the first frame if the information...

  8. Weather. European Theater Weather Orientation (ETWO)

    DTIC Science & Technology

    1992-11-01

    EGUL RAF Lakenheath KBKF Buckdey CO EGUN RAF Mildenhall KSAW Sawyer MI EDAS Sembach GM KGRF Ft Lewis WA EDAB Bitburg GM KFRI Ft Riley KS EDAT...Stability Idez (2) The following list shows the bulletin headers with stations included on each FJ•UEO EDEX EDIC EDIN EDOP EDID EDOT FUE51 EGUA EGUN

  9. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  10. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  11. 78 FR 15715 - Excelerate Liquefaction Solutions I, LLC; Lavaca Bay Pipeline System, LLC; Notice of Intent To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... natural gas from existing pipeline systems to the LNG terminal facilities. The Project would be... room, warehouse, and shop. Pipeline Header System: A 29-mile-long, 42-inch-diameter natural gas pipeline extending northward from the shoreside facilities to nine natural gas interconnects southwest of...

  12. Epigenomics Reveals a Functional Genome Anatomy and a New Approach to Common Disease

    PubMed Central

    Feinberg, Andrew P.

    2010-01-01

    Standfirst header Epigenomics provides the functional context of genome sequence, analogous to the functional anatomy of the human body provided by Vesalius a half millennium ago. Much of what appear to be inconclusive genetic data for common disease could therefore become meaningful in an epigenomic context. PMID:20944596

  13. --No Title--

    Science.gov Websites

    ;] { float: left; margin-right: 3px; margin-left: 0; } .control-group { margin-bottom: 10px; } legend + .control-group { margin-top: 20px; -webkit-margin-top-collapse: separate; } .form-horizontal .control-group : 1px solid #999; page-break-inside: avoid; } thead { display: table-header-group; } tr, img { page

  14. 29 CFR 1915.55 - Gas welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... before cylinders are moved. (7) A suitable cylinder truck, chain, or other steadying device shall be used... ends of the supply hose that lead to the manifold, shall be such that the hose cannot be interchanged between fuel gas and oxygen manifolds and supply header connections. Adapters shall not be used to permit...

  15. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... piping or manifold that carriers cargo liquid, except vapor lines connected to a common header, and (11... must be removed and cargo transfer piping must be disconnected at the cargo tanks. After the cargo piping is disconnected, both ends of the line must be plugged or fitted with blind flanges. [CGD 80-001...

  16. CALUTRON PLANT ARRANGEMENT

    DOEpatents

    Waite, L.O.

    1959-06-01

    A description is given of an arrangement for calutrons in which the tanks and magnets are placed alternately in a race track'' figure. Pump connections are through the floor to the pumps below where roughing and finishing headers are provided. The arrangement provides more efficient and exonomical operaton, economy of construction, and saving of space. (T.R.H.)

  17. 77 FR 789 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Gas Storage LLC; Notice of Application Take notice that on December 20, 2011, Tres Palacios Gas Storage LLC (Tres Palacios), Two Brush Creek Boulevard, Kansas City, Missouri 64112, filed in the above... on its storage facility header pipeline system by: (i) Constructing a 19.7-mile, 24-inch diameter...

  18. 78 FR 14909 - Amendment of Class B Airspace Description; Houston, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... airport reference for describing the William P. Hobby Airport in the Class B airspace header from... established the William P. Hobby Airport, Airport Radar Service Area (ARSA) next to and under the existing... Intercontinental Airport and William P. Hobby Airport) in the Houston TCA description, and rescinded the William P...

  19. Image Use Fees | Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header Image Use Fees Licensing , research and study purposes only. For current pricing, please download our Image Use Fee Schedule See our Frequently Asked Questions (FAQ) list for additional information. Purchase an image now Contact Information

  20. Contacts | Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header Contact Us About the Image Galaxy For licensing and other usage questions, please contact: Image use and licensing ! Enter a search term and hit the search button to quickly find an image Go The above "Quick Search

Top