Sample records for front-end electronics based

  1. Front-end electronics development for TPC detector in the MPD/NICA project

    NASA Astrophysics Data System (ADS)

    Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.

    2017-06-01

    The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.

  2. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.

    2017-12-01

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  3. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    DOE PAGES

    Arteche, F.; Rivetta, C.; Iglesias, M.; ...

    2017-12-05

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  4. Noise propagation effects in power supply distribution systems for high-energy physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arteche, F.; Rivetta, C.; Iglesias, M.

    High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  5. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  6. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Bauer, K.; Borga, A.

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  7. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE PAGES

    Anderson, J.; Bauer, K.; Borga, A.; ...

    2016-12-13

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  8. Web-based DAQ systems: connecting the user and electronics front-ends

    NASA Astrophysics Data System (ADS)

    Lenzi, Thomas

    2016-12-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  9. Passive front-ends for wideband millimeter wave electronic warfare

    NASA Astrophysics Data System (ADS)

    Jastram, Nathan Joseph

    This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with integrated beamformer fabricated using the stacking of PCB boards is shown, and measured results compare favorably with the micromachined front ends. A 3D printed small aperture horn is compared with a conventionally machined horn, and measured results show similar performance with a ten-fold reduction in cost and weight.

  10. Low power analog front-end electronics in deep submicrometer CMOS technology based on gain enhancement techniques

    NASA Astrophysics Data System (ADS)

    Gómez-Galán, J. A.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Martel, I.; López-Martín, A.; Carvajal, R. G.; Ramírez-Angulo, J.

    2014-06-01

    This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption.

  11. Integrated front-end electronics in a detector compatible process: source-follower and charge-sensitive preamplifier configurations

    NASA Astrophysics Data System (ADS)

    Ratti, Lodovico; Manghisoni, Massimo; Re, Valerio; Speziali, Valeria

    2001-12-01

    This study is concerned with the simulation and design of low-noise front-end electronics monolithically integrated on the same high-resistivity substrate as multielectrode silicon detectors, in a process made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST) of Trento, Italy. The integrated front-end solutions described in this paper use N-channel JFETs as basic elements. The first one is based upon an all-NJFET charge preamplifier designed to match detector capacitances of a few picofarads and available in both a resistive and a non resistive feedback configuration. In the second solution, a single NJFET in the source-follower configuration is connected to the detector, while its source is wired to an external readout channel through an integrated capacitor.

  12. Architecture of PAU survey camera readout electronics

    NASA Astrophysics Data System (ADS)

    Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo

    2012-07-01

    PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.

  13. Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  14. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y.; Westferro, F.; Lee, S. H.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  15. Front-end electronics of the Belle II drift chamber

    NASA Astrophysics Data System (ADS)

    Shimazaki, Shoichi; Taniguchi, Takashi; Uchida, Tomohisa; Ikeno, Masahiro; Taniguchi, Nanae; Tanaka, Manobu M.

    2014-01-01

    This paper describes the performance of the Belle II central drift chamber (CDC) front-end electronics. The front-end electronics consists of a current sensitive preamplifier, a 1/t cancellation circuit, baseline restorers, a comparator for timing measurement and an analog buffer for the dE/dx measurement on a CDC readout card. The CDC readout card is located on the endplate of the CDC. Mass production will be completed after the performance of the chip is verified. The electrical performance and results of a neutron/gamma-ray irradiation test are reported here.

  16. Front-end electronics and DAQ for the EURITRACK tagged neutron inspection system

    NASA Astrophysics Data System (ADS)

    Lunardon, M.; Bottosso, C.; Fabris, D.; Moretto, S.; Nebbia, G.; Pesente, S.; Viesti, G.; Bigongiari, A.; Colonna, A.; Tintori, C.; Valkovic, V.; Sudac, D.; Peerani, P.; Sequeira, V.; Salvato, M.

    2007-08-01

    The EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) Front-End and Data Acquisition System is a compact set of VME boards interfaced with a standard PC. The system is part of a cargo container inspection portal based on the tagged neutrons technique. The front-end processes all detector signals and checks coincidences between any of the 64 pixels of the alpha particle detector and any gamma-ray signals in 22 NaI(Tl) scintillators. The system is capable of handling the data flow at neutron flux up to the portal limiting value of 108 neutrons/second. Some typical applications are presented.

  17. Radiation testing campaign results for understanding the suitability of FPGAs in detector electronics

    DOE PAGES

    Citterio, M.; Camplani, A.; Cannon, M.; ...

    2015-11-19

    SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less

  18. Gravitational Reference Sensor Front-End Electronics Simulator for LISA

    NASA Astrophysics Data System (ADS)

    Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration, Front-end electronics for the LZ experiment

    NASA Astrophysics Data System (ADS)

    Morad, James; LZ Collaboration

    2016-03-01

    LZ is a second generation direct dark matter detection experiment with 5.6 tonnes of liquid xenon active target, which will be instrumented as a two-phase time projection chamber (TPC). The peripheral xenon outside the active TPC (``skin'') will also be instrumented. In addition, there will be a liquid scintillator based outer veto surrounding the main cryostat. All of these systems will be read out using photomultiplier tubes. I will present the designs for front-end electronics for all these systems, which have been optimized for shaping times, gains, and low noise. Preliminary results from prototype boards will also be presented.

  19. Development of a front end controller/heap manager for PHENIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, M.N.; Allen, M.D.; Musrock, M.S.

    1996-12-31

    A controller/heap manager has been designed for applicability to all detector subsystem types of PHENIX. the heap manager performs all functions associated with front end electronics control including ADC and analog memory control, data collection, command interpretation and execution, and data packet forming and communication. Interfaces to the unit consist of a timing and control bus, a serial bus, a parallel data bus, and a trigger interface. The topology developed is modular so that many functional blocks are identical for a number of subsystem types. Programmability is maximized through the use of flexible modular functions and implementation using field programmablemore » gate arrays (FPGAs). Details of unit design and functionality will be discussed with particular detail given to subsystems having analog memory-based front end electronics. In addition, mode control, serial functions, and FPGA implementation details will be presented.« less

  1. The Majorana Low-noise Low-background Front-end Electronics

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low- background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.

  2. The Majorana low-noise low-background front-end electronics

    DOE PAGES

    Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; ...

    2015-03-24

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolutionmore » performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.« less

  3. Low-noise front-end electronics for detection of intermediate-frequency weak light signals

    NASA Astrophysics Data System (ADS)

    Lin, Cunbao; Yan, Shuhua; Du, Zhiguang; Wei, Chunhua; Wang, Guochao

    2015-02-01

    A novel low-noise front-end electronics was proposed for detection of light signals with intensity about 10 μW and frequency above 2.7 MHz. The direct current (DC) power supply, pre-amplifier and main-amplifier were first designed, simulated and then realized. Small-size components were used to make the power supply small, and the pre-amplifier and main-amplifier were the least capacitors to avoid the phase shift of the signals. The performance of the developed front-end electronics was verified in cross-grating diffraction experiments. The results indicated that the output peak-topeak noise of the +/-5 V DC power supply was about 2 mV, and the total output current was 1.25 A. The signal-to-noise ratio (SNR) of the output signal of the pre-amplifier was about 50 dB, and it increased to nearly 60 dB after the mainamplifier, which means this front-end electronics was especially suitable for using in the phase-sensitive and integrated precision measurement systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citterio, M.; Camplani, A.; Cannon, M.

    SRAM based Field Programmable Gate Arrays (FPGAs) have been rarely used in High Energy Physics (HEP) due to their sensitivity to radiation. The last generation of commercial FPGAs based on 28 nm feature size and on Silicon On Insulator (SOI) technologies are more tolerant to radiation to the level that their use in front-end electronics is now feasible. FPGAs provide re-programmability, high-speed computation and fast data transmission through the embedded serial transceivers. They could replace custom application specific integrated circuits in front end electronics in locations with moderate radiation field. Finally, the use of a FPGA in HEP experiments ismore » only limited by our ability to mitigate single event effects induced by the high energy hadrons present in the radiation field.« less

  5. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    NASA Astrophysics Data System (ADS)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  6. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  7. A custom readout electronics for the BESIII CGEM detector

    NASA Astrophysics Data System (ADS)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout, and reviewing the first silicon results of the chip prototype.

  8. Algorithm for fast event parameters estimation on GEM acquired data

    NASA Astrophysics Data System (ADS)

    Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz

    2016-09-01

    We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.

  9. A Front-End electronics board for single photo-electron timing and charge from MaPMT

    NASA Astrophysics Data System (ADS)

    Giordano, F.; Breton, D.; Beigbeder, C.; De Robertis, G.; Fusco, P.; Gargano, F.; Liuzzi, R.; Loparco, F.; Mazziotta, M. N.; Rizzi, V.; Tocut, V.

    2013-08-01

    A Front-End (FE) design based on commercial operational amplifiers has been developed to read-out signals from a Multianode PhotoMultiplier Tube (MaPMT). The overall design has been optimised for single photo-electron signal from the Hamamatsu H8500. The signal is collected by a current sensitive preamplifier and then it is fed into both a ECL fast discriminator and a shaper for analog output readout in differential mode. The analog signal and the digital gates are then registered on VME ADC and TDC modules respectively. Performances in terms of linearity, gain and timing resolution will be discussed, presenting results obtained on a test bench with differentiated step voltage inputs and also with a prototype electronic board plugged into the H8500 PMT illuminated by a picosecond laser.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore themore » architecture of larger systems such as those currently in use at LHC experiments.« less

  11. Design and characterization of the PREC (Prototype Readout Electronics for Counting particles)

    NASA Astrophysics Data System (ADS)

    Assis, P.; Brogueira, P.; Ferreira, M.; Luz, R.; Mendes, L.

    2016-08-01

    The design, tests and performance of a novel, low noise, acquisition system—the PREC (Prototype Readout Electronics for Counting particles) is presented in this article. PREC is a system developed using discrete electronics for particle counting applications using RPCs (Resistive Plate Chamber) detectors. PREC can, however, be used with other kind of detectors that present fast pulses, e.g. Silicon Photomultipliers. The PREC system consists in several Front-End boards that transmit data to a purely digital Motherboard. The amplification and discrimination of the signal is performed in the Front-End boards, making them the critical component of the system. In this paper, the Front-End was tested extensively by measuring the gain, noise level, crosstalk, trigger efficiency, propagation time and power consumption. The gain shows a decrease with the working temperature and an increase with the power supply voltage. The Front-End board shows a low noise level (<= 1.6 mV at 3σ level) and no crosstalk is detected above this level. The s-curve of the trigger efficiency is characterized by a 3 mV gap from the region where most of the signals are triggered to almost no signal is triggered. The signal transit time between the Front-End input and the digital Motherboard is estimated to be 5.82 ns. The maximum power consumption is 3.372 W for the Motherboard and 3.576 W and 1.443 W for each Front-End analogue circuitry and digital part, respectively.

  12. Test of ATLAS RPCs Front-End electronics

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.

    2003-08-01

    The Front-End Electronics performing the ATLAS RPCs readout is a full custom 8 channels GaAs circuit, which integrates in a single die both the analog and digital signal processing. The die is bonded on the Front-End board which is completely closed inside the detector Faraday cage. About 50 000 FE boards are foreseen for the experiment. The complete functionality of the FE boards will be certificated before the detector assembly. We describe here the systematic test devoted to check the dynamic functionality of each single channel and the selection criteria applied. It measures and registers all relevant electronics parameters to build up a complete database for the experiment. The statistical results from more than 1100 channels are presented.

  13. Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array

    NASA Astrophysics Data System (ADS)

    Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; González, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C. A.; Valiente-Dobón, J. J.

    2015-12-01

    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.530/00 at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Chen, H.; Wu, W.

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  15. Optimization on fixed low latency implementation of the GBT core in FPGA

    DOE PAGES

    Chen, K.; Chen, H.; Wu, W.; ...

    2017-07-11

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  16. Optimization on fixed low latency implementation of the GBT core in FPGA

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.

    2017-07-01

    In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

  17. Electro-optical detector for use in a wide mass range mass spectrometer

    NASA Technical Reports Server (NTRS)

    Giffin, Charles E. (Inventor)

    1976-01-01

    An electro-optical detector is disclosed for use in a wide mass range mass spectrometer (MS), in the latter the focal plane is at or very near the exit end of the magnetic analyzer, so that a strong magnetic field of the order of 1000G or more is present at the focal plane location. The novel detector includes a microchannel electron multiplier array (MCA) which is positioned at the focal plane to convert ion beams which are focused by the MS at the focal plane into corresponding electron beams which are then accelerated to form visual images on a conductive phosphored surface. These visual images are then converted into images on the target of a vidicon camera or the like for electronic processing. Due to the strong magnetic field at the focal plane, in one embodiment of the invention, the MCA with front and back parallel ends is placed so that its front end forms an angle of not less than several degrees, preferably on the order of 10.degree.-20.degree., with respect to the focal plane, with the center line of the front end preferably located in the focal plane. In another embodiment the MCA is wedge-shaped, with its back end at an angle of about 10.degree.-20.degree. with respect to the front end. In this embodiment the MCA is placed so that its front end is located at the focal plane.

  18. Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    NASA Astrophysics Data System (ADS)

    Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.

    The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.

  19. NECTAR: New electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.

  20. Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2017-01-01

    The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.

  1. Noise propagation issues in Belle II pixel detector power cable

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  2. REACH: a high-performance wireless base station front end

    NASA Astrophysics Data System (ADS)

    Nettleton, Ray W.

    1996-01-01

    The link budget determines the relationships between range, capacity and transmitted power for any wireless technology. In every case it is a key determinant of the system's performance from both an engineering and an economic point of view. Unfortunately, the new 1.9 GHz PCS systems will begin life with an inherent 7 dB disadvantage over the 800 MHz cellular due to propagation differences. Additionally, system wiring and electronics often degrade performance by a further 5 to 10 dB due to long coaxial runs and noisy front end amplification, both of which are harder issues to deal with at 1.9 GHz than at 800 MHz. SCT's REACHTM products address these shortcomings by packaging critical components--front end amplification, filtering, etc.--in a compact cryoelectronic package intended for mounting near the antennas of the base station. In a recent trial with Qualcomm in San Diego, this package improved the CDMA uplink budget by 6 dB--enough to halve the number of base stations that are needed in most areas. This paper examines the technical and economic ramifications of the REACHTM product.

  3. The new front-end electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    NASA Astrophysics Data System (ADS)

    Gomes, A.

    2016-02-01

    We present the plans, design, and performance results to date for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increased luminosity at the HL-LHC around 2025, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector. The new on-detector electronics contains five main parts: the front-end boards that connect directly to the photomultiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low voltage power supply. There are different options for implementing these subcomponents, which will be described. The new system contains new features that in the current version include power system redundancy, data collection redundancy, data transmission redundancy with 2 QSFP optical transceivers and Kintex-7 FPGAs with firmware enhanced scheme for single event upset mitigation. To date, we have built a Demonstrator—a fully functional prototype of the new system. Performance results and plans are presented.

  4. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  5. A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques.

    PubMed

    Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz

    2013-10-01

    This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.

  6. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.

    2000-12-01

    Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

  7. All-Dielectric Photonic-Assisted Radio Front-End Technology

    NASA Astrophysics Data System (ADS)

    Ayazi, Hossein Ali

    The threats to civil society posed by high-power electromagnetic weapons are viewed as a grim but real possibility in the world after 11 September 2001. These weapons produce a power surge capable of destroying or damaging sensitive circuitry in electronic systems. Unfortunately, the trend towards circuits with smaller sizes and voltages renders modern electronics highly susceptible to such damage. Radiofrequency communication systems are particularly vulnerable, because the antenna provides a direct port of entry for electromagnetic radiation. In this work, we present a novel type of radiofrequency receiver front end featuring a complete absence of electronic circuitry and metal interconnects, the traditional 'soft spots' of a conventional radiofrequency receiver. The device exploits a dielectric resonator antenna to capture and deliver the radiofrequency signal onto a whispering-gallery mode electro-optic field sensor. The dielectric approach has an added benefit in that it reduces the physical size of the front end, an important benefit in mobile applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombigit, L., E-mail: lojius@nm.gov.my; Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  9. Digital front end electronics design for the EUSO photon detector

    NASA Astrophysics Data System (ADS)

    Musico, P.; Pallavicini, M.; Petrolini, A.; Pratolongo, F.

    2003-09-01

    In this paper we will present the design status of the Digital Front End Electronic system (DFEE), that will be used for the EUSO photon detector. The DFEE is able to count the single photoelectrons coming form the detector for a given time period, store the numbers in a memory buffer and read them out after a trigger, using a serial communication line. Because of space, mass and power consumption constraints, the system will be implemented in an ASIC using a deep submicron technology. The actual design follows the original ideas of the system, though adding several new functionalities. A fully functional prototype chip has been submitted for fabrication in fall 2002. Extensive tests will be performed on it both with bench instrumentations and with the real sensor (the multi anode photomultiplier Hamamatsu R7600-M64), expecting significant results by early Summer 2003. Future work is needed to convert the design into a more robust RAD-hard technology, suitable for space applications and to include in the final die an additional circuit used to optimize the performances at high photons rates: the Analog Front End Electronics (AFEE). Moreover the base board used to house the multi anode photomultipliers is presented: it is the back-bone of the microcell and will be the basic block used to build up the EUSO focal surface.

  10. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  11. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  12. A configurable electronics system for the ESS-Bilbao beam position monitors

    NASA Astrophysics Data System (ADS)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  13. Noise propagation issues in Belle II pixel detector power cable

    DOE PAGES

    Iglesias, M.; Arteche, F.; Echeverria, I.; ...

    2018-04-26

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  14. Noise propagation issues in Belle II pixel detector power cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, M.; Arteche, F.; Echeverria, I.

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  15. Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.

    2014-01-01

    The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.

  16. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    PubMed

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  17. The New APD Based Readout for the Crystal Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Urban, M.; Honisch, Ch; Steinacher, M.; CBELSA/TAPS Collaboration

    2015-02-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds.

  18. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  19. A front-end electronic system for large arrays of bolometers

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.

    2018-02-01

    CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.

  20. The OPERA muon spectrometer tracking electronics

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.

    2004-11-01

    The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.

  1. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  2. Flexible implementation of front-end bioelectric signal amplifier using FPAA for telemedicine system.

    PubMed

    Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un

    2007-01-01

    Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.

  3. Development of a 3D CZT detector prototype for Laue Lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea

    2010-07-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.

  4. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  5. The front-end electronics of the LSPE-SWIPE experiment

    NASA Astrophysics Data System (ADS)

    Fontanelli, F.; Biasotti, M.; Bevilacqua, A.; Siccardi, F.

    2016-07-01

    The SWIPE detector of the Ballon Borne Mission LSPE (see e.g. the contribution of P. de Bernardis et al. in this conference) intends to measure the primordial 'B-mode' polarization of the Cosmic Microwave Background (CMB). For this scope microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. The detector is a spiderweb bolometer based on transition edge sensor and followed by a SQUID to perform the signal readout. This contribution will concentrate on the design, description and first tests on the front-end electronics which processes the squid output (and controls it). The squid output is first amplified by a very low noise preamplifier based on a discrete JFET input differential architecture followed by a low noise CMOS operational amplifier. Equivalent input noise density is 0.6 nV/Hz and bandwidth extends up to at least 2 MHz. Both devices (JFET and CMOS amplifier) have been tested at liquid nitrogen. The second part of the contribution will discuss design and results of the control electronics, both the flux locked loop for the squid and the slow control chain to monitor and set up the system will be reviewed.

  6. FPGA-Based Front-End Electronics for Positron Emission Tomography

    PubMed Central

    Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott

    2010-01-01

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085

  7. Electronic hardware design of electrical capacitance tomography systems.

    PubMed

    Saied, I; Meribout, M

    2016-06-28

    Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  8. Development of FEB Test Platform for ATLAS New Small Wheel Upgrade

    NASA Astrophysics Data System (ADS)

    Lu, Houbing; Hu, Kun; Wang, Xu; Li, Feng; Han, Liang; Jin, Ge

    2016-10-01

    This concept of test platform is based on the test requirements of the front-end board (FEB) which is developed for the phase I upgrade of the small Thin Gap Chamber(sTGC) detector on New Small Wheel(NSW) of ATLAS. The front-end electronics system of sTGC consists of 1,536 FEBs with about 322,000 readout of strips, wires and pads in total. A test platform for FEB with up to 256 channels has been designed to keep the testing efficiency at a controllable level. We present the circuit model architecture of the platform, and its functions and implementation as well. The firmware based on Field Programmable Gate Array (FPGA) and the software based on PC have been developed, and basic test methods have been established. FEB readout measurements have been performed in analog injection from the test platform, which will provide a fast and efficient test method for the production of FEB.

  9. Development and evaluation of a comprehensive clinical decision support taxonomy: comparison of front-end tools in commercial and internally developed electronic health record systems

    PubMed Central

    Sittig, Dean F; Ash, Joan S; Feblowitz, Joshua; Meltzer, Seth; McMullen, Carmit; Guappone, Ken; Carpenter, Jim; Richardson, Joshua; Simonaitis, Linas; Evans, R Scott; Nichol, W Paul; Middleton, Blackford

    2011-01-01

    Background Clinical decision support (CDS) is a valuable tool for improving healthcare quality and lowering costs. However, there is no comprehensive taxonomy of types of CDS and there has been limited research on the availability of various CDS tools across current electronic health record (EHR) systems. Objective To develop and validate a taxonomy of front-end CDS tools and to assess support for these tools in major commercial and internally developed EHRs. Study design and methods We used a modified Delphi approach with a panel of 11 decision support experts to develop a taxonomy of 53 front-end CDS tools. Based on this taxonomy, a survey on CDS tools was sent to a purposive sample of commercial EHR vendors (n=9) and leading healthcare institutions with internally developed state-of-the-art EHRs (n=4). Results Responses were received from all healthcare institutions and 7 of 9 EHR vendors (response rate: 85%). All 53 types of CDS tools identified in the taxonomy were found in at least one surveyed EHR system, but only 8 functions were present in all EHRs. Medication dosing support and order facilitators were the most commonly available classes of decision support, while expert systems (eg, diagnostic decision support, ventilator management suggestions) were the least common. Conclusion We developed and validated a comprehensive taxonomy of front-end CDS tools. A subsequent survey of commercial EHR vendors and leading healthcare institutions revealed a small core set of common CDS tools, but identified significant variability in the remainder of clinical decision support content. PMID:21415065

  10. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.

  11. Recent advances in the front-end sources of the LMJ fusion laser

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud

    2011-03-01

    LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.

  12. The Argonne CDF Group

    Science.gov Websites

    calorimeter, Shower Max., Preshower, Crack Chambers (1979-present) Run II Upgrade: Front end electronics (QIE , Preshower electronics and DAQ Support for Level-2 electron and photon triggers (RECES and ISO) Deputy Head

  13. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.

    2015-07-01

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.« less

  14. Gauss-Seidel Iterative Method as a Real-Time Pile-Up Solver of Scintillation Pulses

    NASA Astrophysics Data System (ADS)

    Novak, Roman; Vencelj, Matja¿

    2009-12-01

    The pile-up rejection in nuclear spectroscopy has been confronted recently by several pile-up correction schemes that compensate for distortions of the signal and subsequent energy spectra artifacts as the counting rate increases. We study here a real-time capability of the event-by-event correction method, which at the core translates to solving many sets of linear equations. Tight time limits and constrained front-end electronics resources make well-known direct solvers inappropriate. We propose a novel approach based on the Gauss-Seidel iterative method, which turns out to be a stable and cost-efficient solution to improve spectroscopic resolution in the front-end electronics. We show the method convergence properties for a class of matrices that emerge in calorimetric processing of scintillation detector signals and demonstrate the ability of the method to support the relevant resolutions. The sole iteration-based error component can be brought below the sliding window induced errors in a reasonable number of iteration steps, thus allowing real-time operation. An area-efficient hardware implementation is proposed that fully utilizes the method's inherent parallelism.

  15. A digital front-end and readout microsystem for calorimetry at LHC

    NASA Astrophysics Data System (ADS)

    Alippi, C.; Appelquist, G.; Berglund, S.; Bohm, C.; Breveglieri, L.; Brigati, S.; Carlson, P.; Cattaneo, P.; Dadda, L.; David, J.; Del Buono, L.; Dell'Acqua, A.; Engström, M.; Fumagalli, G.; Gatti, U.; Genat, J. F.; Goggi, G.; Hansen, M.; Hentzell, H.; Höglund, I.; Inkinen, S.; Kerek, A.; Lebbolo, H.; LeDortz, O.; Lofstedt, B.; Maloberti, F.; Nayman, P.; Persson, S.-T.; Piuri, V.; Salice, F.; Sami, M.; Savoy-Navarro, A.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Zitoun, R.

    1994-04-01

    A digital solution to the front-end electronics for calorimetric detectors at future supercolliders is presented. The solution is based on high speed {A}/{D} converters, a fully programmable pipeline/digital filter chain and local intelligence. Questions of error correction, fault-tolerance and system redundancy are also being considered. A system integration of a multichannel device in a multichip, Silicon-on-Silicon Microsystem hybrid, is used. This solution allows a new level of integration of complex analogue and digital functions, with an excellent flexibility in mixing technologies for the different functional blocks. It also allows a high degree of programmability at both the function and the system level, and offers the possibility of customising the microsystem with detector-specific functions.

  16. Efficient storage, computation, and exposure of computer-generated holograms by electron-beam lithography.

    PubMed

    Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C

    1993-05-10

    An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.

  17. System-level considerations for the front-end readout ASIC in the CBM experiment from the power supply perspective

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.

    2017-03-01

    New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.

  18. FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry

    NASA Astrophysics Data System (ADS)

    Alexanian, H.; Appelquist, G.; Bailly, P.; Benetta, R.; Berglund, S.; Bezamat, J.; Blouzon, F.; Bohm, C.; Breveglieri, L.; Brigati, S.; Cattaneo, P. W.; Dadda, L.; David, J.; Engström, M.; Genat, J. F.; Givoletti, M.; Goggi, V. G.; Gong, S.; Grieco, G. M.; Hansen, M.; Hentzell, H.; Holmberg, T.; Höglund, I.; Inkinen, S. J.; Kerek, A.; Landi, C.; Ledortz, O.; Lippi, M.; Lofstedt, B.; Lund-Jensen, B.; Maloberti, F.; Mutz, S.; Nayman, P.; Piuri, V.; Polesello, G.; Sami, M.; Savoy-Navarro, A.; Schwemling, P.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Ödmark, A.; Fermi Collaboration

    1995-02-01

    We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed {A}/{D} converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design.

  19. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  20. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  1. CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements

    NASA Astrophysics Data System (ADS)

    Sordo-Ibáñez, Samuel; Piñero-García, Blanca; Muñoz-Díaz, Manuel; Ragel-Morales, Antonio; Ceballos-Cáceres, Joaquín; Carranza-González, Luis; Espejo-Meana, Servando; Arias-Drake, Alberto; Ramos-Martos, Juan; Mora-Gutiérrez, José Miguel; Lagos-Florido, Miguel Angel

    2016-08-01

    This paper reports a single-chip solution for the implementation of radiation-tolerant CMOS front-end electronics (FEE) for applications requiring the acquisition of base-band sensor signals. The FEE has been designed in a 0.35μm CMOS process, and implements a set of parallel conversion channels with high levels of configurability to adapt the resolution, conversion rate, as well as the dynamic input range for the required application. Each conversion channel has been designed with a fully-differential implementation of a configurable-gain instrumentation amplifier, followed by an also configurable dual-slope ADC (DS ADC) up to 16 bits. The ASIC also incorporates precise thermal monitoring, sensor conditioning and error detection functionalities to ensure proper operation in extreme environments. Experimental results confirm that the proposed topologies, in conjunction with the applied radiation-hardening techniques, are reliable enough to be used without loss in the performance in environments with an extended temperature range (between -25 and 125 °C) and a total dose beyond 300 krad.

  2. A Test Apparatus for the MAJORANA DEMONSTRATOR Front-end Electronics

    NASA Astrophysics Data System (ADS)

    Singh, Harjit; Loach, James; Poon, Alan

    2012-10-01

    One of the most important experimental programs in neutrino physics is the search for neutrinoless double-beta decay. The MAJORANA collaboration is searching for this rare nuclear process in the Ge-76 isotope using HPGe detectors. Each detector is instrumented with high-performance electronics to read out and amplify the signals. The part of the electronics close to the detectors, consisting of a novel front-end circuit, cables and connectors, is made of radio-pure materials and is exceedingly delicate. In this work a dedicated test apparatus was created to benchmark the performance of the electronics before installation in the experiment. The apparatus was designed for cleanroom use, with fixtures to hold the components without contaminating them, and included the electronics necessary for power and readout. In addition to testing, the station will find longer term use in development of future versions of the electronics.

  3. Tests with beam setup of the TileCal phase-II upgrade electronics

    NASA Astrophysics Data System (ADS)

    Reward Hlaluku, Dingane

    2017-09-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.

  4. Development of BPM Electronics at the JLAB FEL

    NASA Astrophysics Data System (ADS)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  5. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, D.; Evtushenko, P.; Jordan, K.

    2006-11-20

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reducedmore » to 1.17 MHz, which corresponds to about 160 {mu}A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 {mu}m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  6. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Sexton; Pavel Evtushenko; Kevin Jordan

    2006-05-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with the micropulse up to 74.85 MHz. For diagnostic reasons and for the machine tune up, the micropulse frequency canmore » be reduced to 1.17 MHz, which corresponds to about 160 ?A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 ?m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  7. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  8. PMF: The front end electronic of the ALFA detector

    NASA Astrophysics Data System (ADS)

    Barrillon, P.; Blin, S.; Cheikali, C.; Cuisy, D.; Gaspard, M.; Fournier, D.; Heller, M.; Iwanski, W.; Lavigne, B.; De la Taille, C.; Puzo, P.; Socha, J.-L.

    2010-11-01

    The front end electronic (PMF) of the future ATLAS luminometer is described here. It is composed of a MAPMT and a compact stack of three PCBs, which deliver high voltage, route and read out of the output signals. The third board contains an FPGA and MAROC, a 64-channel ASIC, which can correct the non-uniformity of the MAPMT channels gain, thanks to a variable gain preamplifier. Its main role is to shape and discriminate the input signals at 1/3 photo-electron and produce 64 trigger outputs. Laboratory tests performed on prototype and pre-series PMFs have showed performances in good agreement with the requirements and have fulfilled the approval criteria for the final production of all elements.

  9. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  10. Development and tests of MCP based timing and multiplicity detector for MIPs

    NASA Astrophysics Data System (ADS)

    Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.

    2017-01-01

    We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.

  11. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    NASA Astrophysics Data System (ADS)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-02-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  12. VIEW OF BASE END STATION BARLOW SHOWING THE SUGGESTED APPEARANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BASE END STATION BARLOW SHOWING THE SUGGESTED APPEARANCE DURING USE (TOP IS NOT EXTANT INDICATING POST-USE DAMAGE), PACING NORTHWEST, VIEW IS OF THE FRONT, WITH THE RIGHT FRONT CORNER EXPOSED - White's Point Reservation, Base End Stations, B"1, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ʋ) of the isotope 76Ge with a mixed array of enriched and natural Germanium detectors. In view of the next generation of tonne-scale germanium-based (ββ(0ʋ)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge (ββ(0ʋ)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolutionmore » performances. We present here the low-noise low background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.« less

  14. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  15. Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall

    NASA Astrophysics Data System (ADS)

    Belver, Daniel; Cabanelas, P.; Castro, E.; Garzon, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.

    2010-10-01

    A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m2, divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade .

  16. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  17. Embedded electronics for a 64-channel wireless brain implant

    NASA Astrophysics Data System (ADS)

    Burgert, Johann D.; Malasek, Jan; Martel, Sylvain M.; Wiseman, Colette; Fofonoff, Timothy; Dyer, Robert; Hunter, Ian W.; Hatsopoulos, Nicholas; Donoghue, John

    2001-10-01

    The Telemetric Electrode Array System (TEAS) is a surgically implantable device for the study of neural activity in the brain. An 8x8 array of electrodes collects intra-cortical neural signals and connects them to an analog front end. The front end amplifies and digitizes these microvolt-level signals with 12 bits of resolution and at 31KHz per channel. Peak detection is used to extract the information carrying features of these signals, which are transmitted over a Bluetooth-based radio link at 725 Kbit/sec. The electrode array is made up of 1mm tall, 60-micron square electrodes spaced 500 microns tip-to-tip. A flex circuit connector provides mechanical isolation between the brain and the electronics, which are mounted to the cranium. Power consumption and management is a critical aspect of the design. The entire system must operate off a surgically implantable battery. With this power source, the system must provide the functionality of a wireless, 64-channel oscilloscope for several hours. The system also provides a low-power sleep mode during which the battery can be inductively charged. Power dissipation and biocompatibility issues also affect the design of the electronics for the probe. The electronics system must fit between the skull and the skin of the test subject. Thus, circuit miniaturization and microassembly techniques are essential to construct the probe's electronics.

  18. Analysis and Quantification of Coupling Mechanisms of External Signal Perturbations on Silicon Detectors for Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.

    2016-05-01

    Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.

  19. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  20. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  1. Solid-State Photomultiplier with Integrated Front End Electronics

    NASA Astrophysics Data System (ADS)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  2. Status of the design of the ITER ECE diagnostic

    DOE PAGES

    Taylor, G.; Austin, M. E.; Beno, J. H.; ...

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less

  3. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  4. The Giga Bit Transceiver based Expandable Front-End (GEFE)—a new radiation tolerant acquisition system for beam instrumentation

    NASA Astrophysics Data System (ADS)

    Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.

    2016-02-01

    The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.

  5. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  6. Performances of the Front-End Electronics for the HADES RPC TOF wall on a 12C beam

    NASA Astrophysics Data System (ADS)

    Belver, D.; Cabanelas, P.; Castro, E.; Díaz, J.; Garzón, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.; Zapata, M.

    2009-05-01

    A Front-End Electronics (FEE) chain for timing accurate measurements has been developed for the RPC wall upgrade of the High-Acceptance DiElectron Spectrometer (HADES). The wall will cover an area of around 8 m with 1122 RPC cells (2244 electronic channels). The FEE chain consists of two boards: a four-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a discriminator. The time and the charge information are encoded in the leading and the trailing edge (by a charge to width method) of an LVDS signal. Each MBO houses up to eight DBOs providing them regulated voltage supply, threshold values via DACs, test signals and collection of their trigger outputs. The MBO delivers LVDS signals to a time-to-digital converter readout board (TRB) based on HPTDC for data acquisition. In this work, we present the performance of the FEE measured using: (a) narrow electronic test pulses and (b) real signals read out in a fully instrumented RPC sextant installed in its final position at the HADES. The detector was exposed to particles coming from reactions of a 12C beam on Be and Nb targets at 2 GeV/A kinetic energy. Results for the whole electronic chain (DBO+MBO+TRB) show a timing jitter of around 40 ps/channel for pulses above 100 fC and 80 ps/channel for beam data taken with the RPC.

  7. The electronics and data acquisition system for the DarkSide-50 veto detectors

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.

  8. Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Shaftan, T.

    To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less

  9. Internal monitoring of GBTx emulator using IPbus for CBM experiment

    NASA Astrophysics Data System (ADS)

    Mandal, Swagata; Zabolotny, Wojciech; Sau, Suman; Chkrabarti, Amlan; Saini, Jogender; Chattopadhyay, Subhasis; Pal, Sushanta Kumar

    2015-09-01

    The Compressed Baryonic Matter (CBM) experiment is a part of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt at GSI. In CBM experiment a precisely time synchronized fault tolerant self-triggered electronics is required for Data Acquisition (DAQ) system in CBM experiments which can support high data rate (up to several TB/s). As a part of the implementation of the DAQ system of Muon Chamber (MUCH) which is one of the important detectors in CBM experiment, a FPGA based Gigabit Transceiver (GBTx) emulator is implemented. Readout chain for MUCH consists of XYTER chips (Front end electronics) which will be directly connected to detector, GBTx emulator, Data Processing Board (DPB) and First level event selector board (FLIB) with backend software interface. GBTx emulator will be connected with the XYTER emulator through LVDS (Low Voltage Differential Signalling) line in the front end and in the back end it is connected with DPB through 4.8 Gbps optical link. IPBus over Ethernet is used for internal monitoring of the registers within the GBTx. In IPbus implementation User Datagram Protocol (UDP) stack is used in transport layer of OSI model so that GBTx can be controlled remotely. A Python script is used at computer side to drive IPbus controller.

  10. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  11. Design of fast signal processing readout front-end electronics implemented in CMOS 40 nm technology

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2016-12-01

    The author presents considerations on the design of fast readout front-end electronics implemented in a CMOS 40 nm technology with an emphasis on the system dead time, noise performance and power dissipation. The designed processing channel consists of a charge sensitive amplifier with different feedback types (Krummenacher, resistive and constant current blocks), a threshold setting block, a discriminator and a counter with logic circuitry. The results of schematic and post-layout simulations with randomly generated input pulses in a time domain according to the Poisson distribution are presented and analyzed. Dead time below 20 ns is possible while keeping noise ENC ≈ 90 e- for a detector capacitance CDET = 160 fF.

  12. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    DOE PAGES

    Strobbe, N.

    2017-01-26

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. Here, this paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated controlmore » electronics and the front-end readout cards.« less

  13. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    NASA Astrophysics Data System (ADS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria; Collazuol, Gianmaria; Ambrosi, Giovanni; Santoni, Cristiano; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2013-08-01

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.

  14. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE PAGES

    Dorrer, C.; Consentino, A.; Cuffney, R.; ...

    2017-10-18

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  15. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Cuffney, R.

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  16. The use of low resistivity substrates for optimal noise reduction, ground referencing, and current conduction in mixed signal ASICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, T.

    1997-12-01

    This paper is distilled from a talk given at the 3rd International Meeting on Front End Electronics in Taos, N.M. on Nov. 7,1997. It is based on experience gained by designing and testing the SVX3 128 channel silicon strip detector readout chip. The SVX3 chip organization is shown in Fig. 1. The Front End section consists of an integrator and analog pipeline designed at Fermilab, and the Back End section is an ADC plus sparsification and readout logic designed at LBL. SVX3 is a deadtimeless readout chip, which means that the front end is acquiring low level analog signals whilemore » the back end is digitizing and reading out digital signals. It is thus a true mixed signal chip, and demands close attention to avoid disastrous coupling from the digital to the analog sections. SVX3 is designed in a bulk CMOS process (i.e., the circuits sit in a silicon substrate). In such a process, the substrate becomes a potential coupling path. This paper discusses the effect of the substrate resistivity on coupling, and also goes into a more general discussion of grounding and referencing in mixed signal designs and how low resistivity substrates can be used to advantage. Finally, an alternative power supply current conduction method for ASICs is presented as an additional advantage which can be obtained with low resistivity substrates. 1 ref., 13 figs., 1 tab.« less

  17. Optimizing read-out of the NECTAr front-end electronics

    NASA Astrophysics Data System (ADS)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-12-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  18. Performance of a resistive plate chamber equipped with a new prototype of amplified front-end electronics in the ALICE detector

    NASA Astrophysics Data System (ADS)

    Marchisone, Massimiliano

    2017-09-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. At forward rapidity a muon spectrometer detects muons from low mass mesons, quarkonia (c\\bar{c} and b\\bar{b} mesons), open heavy-flavor hadrons (D and B mesons) as well as from weak bosons. A muon selection based on transverse momentum is made by a trigger system composed of 72 Resistive Plate Chambers (RPCs). For the LHC Run 1 and the ongoing Run 2 the RPCs have been equipped with a non-amplified Front-End Electronics (FEE) called ADULT. However, in view of an increase in luminosity expected for Run 3 (foreseen to start in 2021) the possibility to use an amplified FEE has been explored in order to improve the counting rate limitation and to prevent the aging of the detector by reducing the charge per hit. A prototype of this new electronics (FEERIC) has been developed and tested first with cosmic rays before equipping one RPC in the ALICE cavern with it. In this proceeding the most important performance indicators (such as efficiency, dark current, dark rate, cluster size, total charge and charge per hit) of the RPC equipped with this new FEE will be reviewed and compared to the others read out with ADULT.

  19. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    PubMed Central

    Rabani, Amir

    2016-01-01

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324

  20. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor.

    PubMed

    Rabani, Amir

    2016-10-12

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  1. 7 CFR 1717.852 - Financing purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the borrower: water and waste disposal systems, solid waste disposal systems, telecommunication and other electronic communications systems, and natural gas distribution systems; (4) Front-end costs, when...

  2. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  3. FELIX: The new detector readout system for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Ryu, Soo; ATLAS TDAQ Collaboration

    2017-10-01

    After the Phase-I upgrades (2019) of the ATLAS experiment, the Front-End Link eXchange (FELIX) system will be the interface between the data acquisition system and the detector front-end and trigger electronics. FELIX will function as a router between custom serial links and a commodity switch network using standard technologies (Ethernet or Infiniband) to communicate with commercial data collecting and processing components. The system architecture of FELIX will be described and the status of the firmware implementation and hardware development currently in progress will be presented.

  4. Non-Electronic Radio Front-End (NERF)

    DTIC Science & Technology

    2007-04-01

    electro - optic field sensor. The absence of metallic interconnects and the charge isolation provided by the optics removes the soft spots in a traditional receiver. In the proof-of concept experiment, detection of C band electromagnetic signals at 7.38 GHz with a sensitivity of 4.3x10 -3 V/m.Hz(exp 1/2) is demonstrated. The dielectric approach has an added benefit: it reduces physical size of the front end an important benefit in mobile applications. DIELECTRIC RESONATOR ANTENNA, PHOTONICALLY ISOLATED ANTENNA RECEIVER, ELECTRO - OPTIC DIELECTRIC ANTENNA,

  5. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    NASA Astrophysics Data System (ADS)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger systemmore » have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector. Abstract (arXiv)« less

  7. MEDUSA-32: A low noise, low power silicon strip detector front-end electronics, for space applications

    NASA Astrophysics Data System (ADS)

    Cicuttin, Andres; Colavita, Alberto; Cerdeira, Alberto; Fratnik, Fabio; Vacchi, Andrea

    1997-02-01

    In this report we describe a mixed analog-digital integrated circuit (IC) designed as the front-end electronics for silicon strip-detectors for space applications. In space power consumption, compactness and robustness become critical constraints for a pre-amplifier design. The IC is a prototype with 32 complete channels, and it is intended for a large area particle tracker of a new generation of gamma ray telescopes. Each channel contains a charge sensitive amplifier, a pulse shaper, a discriminator and two digital buffers. The reference trip point of the discriminator is adjustable. This chip also has a custom PMOSFET transistor per channel, included in order to provide the high dynamic resistance needed to reverse-bias the strip diode. The digital part of the chip is used to store and serially shift out the state of the channels. There is also a storage buffer that allows the disabling of non-functioning channels if it is required by the data acquisition system. An input capacitance of 30 pF introduced at the input of the front-end produces less than 1000 electrons of RMS equivalent noise charge (ENC), for a total power dissipation of only 60 μW per channel. The chip was made using Orbit's 1.2 μm double poly, double metal n-well low noise CMOS process. The dimensions of the IC are 2400 μm × 8840 μm.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.; Yin, J.; Li, C.

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less

  9. Modeling of an 8-12 GHz receiver front-end based on an in-line MEMS frequency discriminator

    NASA Astrophysics Data System (ADS)

    Chu, Chenlei; Liao, Xiaoping

    2018-06-01

    This paper focuses on the modeling of an 8-12 GHz RF (radio frequency) receiver front-end based on an in-line MEMS (microelectromechanical systems) frequency discriminator. Actually, the frequency detection is realized by measuring the output dc thermal voltage generated by the MEMS thermoelectric power sensor. Based on this thermal voltage, it has a great potential to tune the resonant frequency of the VCO (voltage controlled oscillator) in the RF receiver front-end application. The equivalent circuit model of the in-line frequency discriminator is established and the measurement verification is also implemented. Measurement and simulation results show that the output dc thermal voltage has a nearly linear relation with frequency. A new construction of RF receiver front-end is then obtained by connecting the in-line frequency discriminator with the voltage controlling port of VCO. Lastly, a systemic simulation is processed by computer-aided software and the real-time simulation waveform at each key point is observed clearly.

  10. A front-end read out chip for the OPERA scintillator tracker

    NASA Astrophysics Data System (ADS)

    Lucotte, A.; Bondil, S.; Borer, K.; Campagne, J. E.; Cazes, A.; Hess, M.; de La Taille, C.; Martin-Chassard, G.; Raux, L.; Repellin, J. P.

    2004-04-01

    Multi-anode photomultipliers H7546 are used to readout signal from the OPERA Scintillator Tracker (CERN/SPSC 2000-028, SPSC/P318, LNGSP 25/2000; CERN/SPSC 2001-025, SPSC/M668, LNGS-EXP30/2001). A 32-channel front-end Read Out Chip prototype accommodating the H7546 has been designed at LAL. This device features a low-noise, variable gain preamplifier to correct for multi-anode non-uniformity, an auto-trigger capability 100% efficient at a 0.3 photo-electron, and a charge measurement extending over a large dynamic range [0-100] photo-electrons. In this article we describe the ASIC architecture that is being implemented for the Target Tracker in OPERA, with a special emphasis put on the designs and the measured performance.

  11. 2. SHED, SOUTH END OF SHORTER BARRACKS, FRONT AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SHED, SOUTH END OF SHORTER BARRACKS, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base C-84, Paint & Oil Storage Shed, South of Launch Area Entrance Drive, near security fence, Barrington, Cook County, IL

  12. A non-contact capacitance based electrocardiograph and associated heart-rate detection using enhanced Fourier interpolation method.

    PubMed

    Kumar Thakur, Rupak; Anoop, C S

    2015-08-01

    Cardio-vascular health monitoring has gained considerable attention in the recent years. Principle of non-contact capacitive electrocardiograph (ECG) and its applicability as a valuable, low-cost, easy-to-use scheme for cardio-vascular health monitoring has been demonstrated in some recent research papers. In this paper, we develop a complete non-contact ECG system using a suitable front-end electronic circuit and a heart-rate (HR) measurement unit using enhanced Fourier interpolation technique. The front-end electronic circuit is realized using low-cost, readily available components and the proposed HR measurement unit is designed to achieve fairly accurate results. The entire system has been extensively tested to verify its efficacy and test results show that the developed system can estimate HR with an accuracy of ±2 beats. Detailed tests have been conducted to validate the performance of the system for different cloth thicknesses of the subject. Some basic tests which illustrate the application of the proposed system for heart-rate variability estimation has been conducted and results reported. The developed system can be used as a portable, reliable, long-term cardiac health monitoring device and can be extended to human drowsiness detection.

  13. Parameter Extraction Method for the Electrical Model of a Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Licciulli, Francesco; Marzocca, Cristoforo

    2016-10-01

    The availability of an effective electrical model, able to accurately reproduce the signals generated by a Silicon Photo-Multiplier coupled to the front-end electronics, is mandatory when the performance of a detection system based on this kind of detector has to be evaluated by means of reliable simulations. We propose a complete extraction procedure able to provide the whole set of the parameters involved in a well-known model of the detector, which includes the substrate ohmic resistance. The technique allows achieving very good quality of the fit between simulation results provided by the model and experimental data, thanks to accurate discrimination between the quenching and substrate resistances, which results in a realistic set of extracted parameters. The extraction procedure has been applied to a commercial device considering a wide range of different conditions in terms of input resistance of the front-end electronics and interconnection parasitics. In all the considered situations, very good correspondence has been found between simulations and measurements, especially for what concerns the leading edge of the current pulses generated by the detector, which strongly affects the timing performance of the detection system, thus confirming the effectiveness of the model and the associated parameter extraction technique.

  14. 1. GENERAL VIEW SHOWING NORTHEAST END (FRONT) OF TRANSIT SHED, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW SHOWING NORTHEAST END (FRONT) OF TRANSIT SHED, IN CONTEXT WITH LOADING YARD AND DERRICK, LOOKING WEST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ianakiev, Kiril Dimitrov; Iliev, Metodi; Swinhoe, Martyn Thomas

    The KM200 device is a versatile, configurable front-end electronics boards that can be used as a functional replacement for Canberra’s JAB-01 boards based on the Amptek A-111 hybrid chip, which continues to be the preferred choice of electronics for large number of the boards in junction boxes of multiplicity counters that process the signal from an array of 3He detectors. Unlike the A-111 chip’s fixed time constants and sensitivity range, the shaping time and sensitivity of the new KM200 can be optimized for demanding applications such as spent fuel, and thus could improve the safeguards measurements of existing systems wheremore » the A-111 or PDT electronics does not perform well.« less

  16. Electronic drive and acquisition system for mass spectrometry

    NASA Technical Reports Server (NTRS)

    Schaefer, Rembrandt Thomas (Inventor); Chutjian, Ara (Inventor); Tran, Tuan (Inventor); Madzunkov, Stojan M. (Inventor); Thomas, John L. (Inventor); Mojarradi, Mohammad (Inventor); MacAskill, John (Inventor); Blaes, Brent R. (Inventor); Darrach, Murray R. (Inventor); Burke, Gary R. (Inventor)

    2010-01-01

    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.

  17. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Lobanov, A.

    2018-02-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.

  18. Actuation stability test of the LISA pathfinder inertial sensor front-end electronics

    NASA Astrophysics Data System (ADS)

    Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter

    In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.

  19. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  20. A low-power CMOS operational amplifier IC for a heterogeneous paper-based potentiostat

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Land, K.; Joubert, T.-H.

    2016-02-01

    Electrochemical biosensing is used to detect specific analytes in fluids, such as bacterial and chemical contaminants. A common implementation of an electrochemical readout is a potentiostat, which usually includes potentiometric, amperometric, and impedimetric detection. Recently several researchers have developed small, low-cost, single-chip silicon-based potentiostats. With the advances in heterogeneous integration technology, low-power potentiostats can be implemented on paper and similar low cost substrates. This paper deals with the design of a low-power paper-based amperometric front-end for a low-cost and rapid detection environment. In amperometric detection a voltage signal is provided to a sensor system, while a small current value generated by an electrochemical redox reaction in the system is measured. In order to measure low current values, the noise of the circuit must be minimized, which is accomplished with a pre-amplification front-end stage, typically designed around an operational amplifier core. An appropriate circuit design for a low-power and low-cost amperometric front-end is identified, taking the heterogeneous integration of various components into account. The operational amplifier core is on a bare custom CMOS chip, which will be integrated onto the paper substrate alongside commercial off-the-shelf electronic components. A general-purpose low-power two-stage CMOS amplifier circuit is designed and simulated for the ams 350 nm 5 V process. After the layout design and verification, the IC was submitted for a multi-project wafer manufacturing run. The simulated results are a bandwidth of 2.4 MHz, a common-mode rejection ratio of 70.04 dB, and power dissipation of 0.154 mW, which are comparable with the analytical values.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Geronimo, G.; Li, S.; D'Andragora, A.

    We present a front-end application-specific integrated circuit (ASIC) for a wire based time-projection-chamber (TPC) operating in liquid Argon (LAr). The LAr TPC will be used for long baseline neutrino oscillation experiments. The ASIC must provide a low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MSamples/s, compression, buffering and multiplexing. A resolution of better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power and operation in LAr (at 87 K). We include the characterization of a commercial technology for operationmore » in the cryogenic environment and the first experimental results on the analog front end. The results demonstrate that complementary metal-oxide semiconductor transistors have lower noise and much improved dc characteristics at LAr temperature. Finally, we introduce the concept of '1/f equivalent' to model the low-frequency component of the noise spectral density, for use in the input metal-oxide semiconductor field-effect transistor optimization.« less

  2. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.

    2013-02-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  3. Developing Electronic Performance Support Systems for Professionals.

    ERIC Educational Resources Information Center

    Law, Michael P.; And Others

    This paper discusses a variety of development strategies and issues involved in the development of electronic performance support systems (EPSS) for professionals. The topics of front-end analysis, development, and evaluation are explored in the context of a case study involving the development of an EPSS to support teachers in the use of…

  4. AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hengjie; Smith, Terry; Nassiri, Alireza

    To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. Themore » Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.« less

  5. Implementation of artificial intelligence rules in a data base management system

    NASA Technical Reports Server (NTRS)

    Feyock, S.

    1986-01-01

    The intelligent front end prototype was transformed into a RIM-integrated system. A RIM-based expert system was written which demonstrated the developed capability. The use of rules to produce extensibility of the intelligent front end, including the concept of demons and rule manipulation rules were investigated. Innovative approaches such as syntax programming were to be considered.

  6. Onboard calibration circuit for the DAMPE BGO calorimeter front-end electronics

    NASA Astrophysics Data System (ADS)

    Zhang, De-Liang; Feng, Chang-Qing; Zhang, Jun-Bin; Wang, Qi; Ma, Si-Yuan; Shen, Zhong-Tao; Jiang, Di; Gao, Shan-Shan; Zhang, Yun-Long; Guo, Jian-Hua; Liu, Shu-Bin; An, Qi

    2016-05-01

    DAMPE (DArk Matter Particle Explorer) is a scientific satellite which is mainly aimed at indirectly searching for dark matter in space. One critical sub-detector of the DAMPE payload is the BGO (bismuth germanium oxide) calorimeter, which contains 1848 PMT (photomultiplier tube) dynodes and 16 FEE (Front-End Electronics) boards. VA160 and VATA160, two 32-channel low power ASICs (Application Specific Integrated Circuits), are adopted as the key components on the FEEs to perform charge measurement for the PMT signals. In order to monitor the parameter drift which may be caused by temperature variation, aging, or other environmental factors, an onboard calibration circuit is designed for the VA160 and VATA160 ASICs. It is mainly composed of a 12-bit DAC (Digital to Analog Converter), an operational amplifier and an analog switch. Test results showed that a dynamic range of 0-30 pC with a precision of 5 fC (Root Meam Square, RMS) was achieved, which covers the VA160’s input range. It can be used to compensate for the temperature drift and test the trigger function of the FEEs. The calibration circuit has been implemented for the front-end electronics of the BGO Calorimeter and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite was launched at the end of 2015 and the calibration circuit will operate periodically in space. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202-4), and National Basic Research Program (973 Program) of China (2010CB833002) and National Natural Science Foundation of China (11273070)

  7. 49. NORTHEAST FRONT ELEVATION OF BUILDING 365 (ARMAMENT TESTING BUILDING) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. NORTHEAST FRONT ELEVATION OF BUILDING 365 (ARMAMENT TESTING BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  8. 52. NORTHWEST FRONT ELEVATION OF BUILDING 367 (ADMINISTRATION OFFICE BUILDING) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. NORTHWEST FRONT ELEVATION OF BUILDING 367 (ADMINISTRATION OFFICE BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  9. 61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  10. FRED, a Front End for Databases.

    ERIC Educational Resources Information Center

    Crystal, Maurice I.; Jakobson, Gabriel E.

    1982-01-01

    FRED (a Front End for Databases) was conceived to alleviate data access difficulties posed by the heterogeneous nature of online databases. A hardware/software layer interposed between users and databases, it consists of three subsystems: user-interface, database-interface, and knowledge base. Architectural alternatives for this database machine…

  11. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    NASA Astrophysics Data System (ADS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerdá, Joaquín; Sebastiá, Ángel; Benlloch, José M.

    2007-06-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme.

  12. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  13. 4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA

  14. Controlling front-end electronics boards using commercial solutions

    NASA Astrophysics Data System (ADS)

    Beneyton, R.; Gaspar, C.; Jost, B.; Schmeling, S.

    2002-04-01

    LHCb is a dedicated B-physics experiment under construction at CERN's large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown.

  15. 2. DETAIL, CONDUITS ALONG BASE OF NORTH FRONT. Looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL, CONDUITS ALONG BASE OF NORTH FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei

    2015-01-10

    Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulationmore » for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.« less

  17. Front-End Board with Cyclone V as a Test High-Resolution Platform for the Auger_Beyond_2015 Front End Electronics

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew

    2015-06-01

    The surface detector (SD) array of the Pierre Auger Observatory needs an upgrade which allows space for more complex triggers with higher bandwidth and greater dynamic range. To this end this paper presents a front-end board (FEB) with the largest Cyclone V E FPGA 5CEFA9F31I7N. It supports eight channels sampled with max. 250 MSps@14-bit resolution. Considered sampling for the SD is 120 MSps; however, the FEB has been developed with external anti-aliasing filters to retain maximal flexibility. Six channels are targeted at the SD, two are reserved for other experiments like: Auger Engineering Radio Array and additional muon counters. The FEB is an intermediate design plugged into a unified board communicating with a micro-controller at 40 MHz; however, it provides 250 MSPs sampling with an 18-bit dynamic range, is equipped with a virtual NIOS processor and supports 256 MB of SDRAM as well as an implemented spectral trigger based on the discrete cosine transform for detection of very inclined “old” showers. The FEB can also support neural network development for detection of “young” showers, potentially generated by neutrinos. A single FEB was already tested in the Auger surface detector in Malargüe (Argentina) for 120 and 160 MSps. Preliminary tests showed perfect stability of data acquisition for sampling frequency three or four times greater. They allowed optimization of the design before deployment of seven or eight FEBs for several months of continuous tests in the engineering array.

  18. Linking medical records to an expert system

    NASA Technical Reports Server (NTRS)

    Naeymi-Rad, Frank; Trace, David; Desouzaalmeida, Fabio

    1991-01-01

    This presentation will be done using the IMR-Entry (Intelligent Medical Record Entry) system. IMR-Entry is a software program developed as a front-end to our diagnostic consultant software MEDAS (Medical Emergency Decision Assistance System). MEDAS (the Medical Emergency Diagnostic Assistance System) is a diagnostic consultant system using a multimembership Bayesian design for its inference engine and relational database technology for its knowledge base maintenance. Research on MEDAS began at the University of Southern California and the Institute of Critical Care in the mid 1970's with support from NASA and NSF. The MEDAS project moved to Chicago in 1982; its current progress is due to collaboration between Illinois Institute of Technology, The Chicago Medical School, Lake Forest College and NASA at KSC. Since the purpose of an expert system is to derive a hypothesis, its communication vocabulary is limited to features used by its knowledge base. The development of a comprehensive problem based medical record entry system which could handshake with an expert system while creating an electronic medical record at the same time was studied. IMR-E is a computer based patient record that serves as a front end to the expert system MEDAS. IMR-E is a graphically oriented comprehensive medical record. The programs major components are demonstrated.

  19. A UNIX-based real-time data acquisition system for microprobe analysis using an advanced X11 window toolkit

    NASA Astrophysics Data System (ADS)

    Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.

    1993-05-01

    A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.

  20. ICFA Instrumentation Bulletin, Volume 20, Spring 2000 Issue (SLAC-J-ICFA-020)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    2003-10-20

    Recent years have seen much dedicated work on front end electronics for hadron colliders, with a strong emphasis on radiation hardness and low cost. This has been challenging for a number of reasons, some of which are discussed further. The developments also suggest opportunities and constraints for the development of such electronics in the future.

  1. Concepts for a Muon Accelerator Front-End

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys; Berg, Scott; Neuffer, David

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less

  2. 31. SOUTH FRONT ELEVATION OF BUILDING 232 (MINE SHOP) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SOUTH FRONT ELEVATION OF BUILDING 232 (MINE SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  3. 40. NORTHWEST FRONT ELEVATION OF BUILDING 269 (PAINT BUILDING) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. NORTHWEST FRONT ELEVATION OF BUILDING 269 (PAINT BUILDING) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  4. 25. SOUTHEAST FRONT ELEVATION OF BUILDING 227 (FIRE STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SOUTHEAST FRONT ELEVATION OF BUILDING 227 (FIRE STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  5. 14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  6. 11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  7. 1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL

  8. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  9. 29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  10. 35. EAST FRONT ELEVATION OF BUILDING 233 (MISSLE ASSEMBLY SHOP) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT ELEVATION OF BUILDING 233 (MISSLE ASSEMBLY SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. 19. SOUTH FRONT ELEVATION OF BUILDING 216 (AMMUNITION MAINTENANCE SHOP) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SOUTH FRONT ELEVATION OF BUILDING 216 (AMMUNITION MAINTENANCE SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  12. 16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  13. 48. FRONT ENTRY DETAIL ON SOUTHWEST ELEVATION OF BUILDING 361 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. FRONT ENTRY DETAIL ON SOUTHWEST ELEVATION OF BUILDING 361 (MUNITIONS MAINTENANCE SQUADRON ADMINISTRATION BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  14. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  15. A multitasking, multisinked, multiprocessor data acquisition front end

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, R.; Au, R.; Molen, A.V.

    1989-10-01

    The authors have developed a generalized data acquisition front end system which is based on MC68020 processors running a commercial real time kernel (rhoSOS), and implemented primarily in a high level language (C). This system has been attached to the back end on-line computing system at NSCL via our high performance ETHERNET protocol. Data may be simultaneously sent to any number of back end systems. Fixed fraction sampling along links to back end computing is also supported. A nonprocedural program generator simplifies the development of experiment specific code.

  16. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts.

    PubMed

    Nie, Bingbing; Zhou, Qing

    2016-10-02

    Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk. The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity-that is, knee ligament rupture and long bone fracture-was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design. Newer passenger cars exhibited a "flatter" front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk. The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.

  17. Single-Chip CMUT-on-CMOS Front-End System for Real-Time Volumetric IVUS and ICE Imaging

    PubMed Central

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F. Levent

    2014-01-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of CMUT arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-µm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-µm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single-chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex-vivo chicken heart sample. The measured axial and lateral point resolutions are 92 µm and 251 µm, respectively. We successfully acquired volumetric imaging data from the ex-vivo chicken heart with 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce real-time volumetric images with image quality and speed suitable for catheter based clinical applications. PMID:24474131

  18. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    PubMed

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  19. 43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A2) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A-2) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  20. 2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, LOOKING SOUTH. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL

  1. Electronics design of the RPC system for the OPERA muon spectrometer

    NASA Astrophysics Data System (ADS)

    Acquafredda, R.; Ambrosio, M.; Balsamo, E.; Barichello, G.; Bergnoli, A.; Consiglio, L.; Corradi, G.; dal Corso, F.; Felici, G.; Manea, C.; Masone, V.; Parascandolo, P.; Sorrentino, G.

    2004-09-01

    The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes).

  2. Testing of Front End Electronics for 10ps Time of Flight Detectors

    NASA Astrophysics Data System (ADS)

    Kimball, Matthew; EIC PID Consortium Collaboration

    2016-09-01

    To fully achieve the physics goals of the future Electron Ion Collider (EIC), continued development of the detectors involved is needed. One area of research involves improving the timing resolution of Time of Flight (ToF) detectors from 100ps to 10ps. When the timing resolution of these ToF detectors is improved, better particle identification can be achieved. In addition, as ToF detectors are being constructed with ever improving timing resolution, the need to improve the high speed performance of the fast electronics used in their front-end electronics (FEE) increases. A series of careful measurements has been performed to investigate the performance and efficiency of each element in the FEE chain. The focus of these tests lies on the amplitude transmission efficiency of the high speed signals as a function of frequency, also known as the bandwidth. The components tested include balanced to unbalanced (balun) boards, signal pre-amps, and waveform digitizers. These tests were performed on individual components and with all elements connected over a frequency range of 1MHz to 1GHz. The results of these tests will be presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  3. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  4. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  5. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. In this classifier architecture, we combine simple "base" analog classifiers to form a strong one. We also designed the circuits to implement the AdaBoost-based analog classifier.

  6. Design and analysis of the cryoharness for Planck LFI

    NASA Astrophysics Data System (ADS)

    Leutenegger, Paolo H.; Bersanelli, Marco; Ferretti, Roberto; Prina, Mauro

    2003-10-01

    Planck is the third Medium-Sized Mission (M3) of ESA Horizon 2000 Scientific Programme. It is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky, with unprecedented sensitivity and angular resolution. Planck carries two main experiments named HFI (High Frequency Instrument) and LFI (Low Frequency Instrument). The first is based on bolometers, the latter is an array of tuned radio receivers, based on High Electron Mobility Transistors (HEMTs) amplifier technology, and covering the frequency range from 30 to 70 GHz. The Front-End Electronics Modules (FEM"s) are cooled at 20K by a H2 sorption cooler. The high frequency signals (up to 70 GHz) are amplified, phase lagged and transported by means of waveguides to the warm back-end electronics at temperatures of the order of 300K. The 20 K cooling is achieved exploiting a two-stage cooling concept. The satellite is passively cooled to temperatures of the order of 60K using special designed radiators called V-grooves. An H2 sorption cooler constitutes the second active cooling stage, which allows focal plane temperatures of 20K, i.e. compatible with the tight noise requirements of the Low Noise Amplifiers (LNA"s). Each FEM needs 22 bias lines characterised by a high immunity to external noise and disturbances. The power required for each FEM ranges from 16 to 34mW, depending on the radiometer frequency. Due to the limited cooling power of the sorption cooler (about 2W), the heat transport through the harness and therefore the parasitics on the focal plane, shall be minimised. A total of 290 wires have to be routed from the warm electronics (300K) to the cold focal plane (20K), along a path of about 2200mm, transporting currents ranging from a few uA up to 240mA. The present paper analyses the thermal and electrical problems connected with the design of a suitable cryo-harness for the bias of the radiometers cryogenic front-end modules of LFI. Two possible approaches are proposed, and a solution presented.

  7. Development of a data management front-end for use with a LANDSAT-based information system

    NASA Technical Reports Server (NTRS)

    Turner, B. J.

    1982-01-01

    The development and implementation of a data management front-end system for use with a LANDSAT based information system that facilitates the processsing of both LANDSAT and ancillary data was examined. The final tasks, reported on here, involved; (1) the implementation of the VICAR image processing software system at Penn State and the development of a user-friendly front-end for this system; (2) the implementation of JPL-developed software based on VICAR, for mosaicking LANDSAT scenes; (3) the creation and storage of a mosiac of 1981 summer LANDSAT data for the entire state of Pennsylvania; (4) demonstrations of the defoliation assessment procedure for Perry and Centre Counties, and presentation of the results at the 1982 National Gypsy Moth Review Meeting, and (5) the training of Pennsylvania Bureau of Forestry personnel in the use of the defoliation analysis system.

  8. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  9. KM3NeT tower data acquisition and data transport electronics

    NASA Astrophysics Data System (ADS)

    Nicolau, C. A.; Ameli, F.; Biagioni, A.; Capone, A.; Frezza, O.; Lonardo, A.; Masullo, R.; Mollo, C. M.; Orlando, A.; Simeone, F.; Vicini, P.

    2016-04-01

    In the framework of the KM3Net European project, the production stage of a large volume underwater neutrino telescope has started. The forthcoming installation includes 8 towers and 24 strings, that will be installed 100 km off-shore Capo Passero (Italy) at 3500 m depth. The KM3NeT tower, whose layout is strongly based on the NEMO Phase-2 prototype tower deployed in March 2013, has been re-engineered and partially re-designed in order to optimize production costs, power consumption, and usability. This contribution gives a description of the main electronics, including front-end, data transport and clock distribution system, of the KM3NeT tower detection unit.

  10. Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, C. R.; Piot, P.; Carlsten, B. E.

    2013-08-01

    Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (~40MeV), high-charge (nC) electron bunches with low normalized transverse emittances (<5@mm).

  11. Performance optimization of detector electronics for millimeter laser ranging

    NASA Technical Reports Server (NTRS)

    Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo

    1993-01-01

    The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.

  12. Power supply and pulsing strategies for the future linear colliders

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Göttlicher, P.; Weber, M.

    2012-02-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  13. Performance evaluation of the analogue front-end and ADC prototypes for the Gotthard-II development

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2017-12-01

    Gotthard-II is a silicon microstrip detector developed for the European X-ray Free-Electron Laser (XFEL.EU). Its potential scientific applications include X-ray absorption/emission spectroscopy, hard X-ray high resolution single-shot spectrometry (HiREX), energy dispersive experiments at 4.5 MHz frame rate, beam diagnostics, as well as veto signal generation for pixel detectors. Gotthard-II uses a silicon microstrip sensor with a pitch of 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to readout chips (ROCs). In the ROC, an adaptive gain switching pre-amplifier (PRE), a fully differential Correlated-Double-Sampling (CDS) stage, an Analog-to-Digital Converter (ADC) as well as a Static Random-Access Memory (SRAM) capable of storing all the 2700 images in an XFEL.EU bunch train will be implemented. Several prototypes with different designs of the analogue front-end (PRE and CDS) and ADC test structures have been fabricated in UMC-110 nm CMOS technology and their performance has been evaluated. In this paper, the performance of the analogue front-end and ADC will be summarized.

  14. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  15. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.

    PubMed

    Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa

    2005-12-01

    Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.

  16. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  17. Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors

    NASA Astrophysics Data System (ADS)

    de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.

    2008-02-01

    This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.

  18. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on themore » proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.« less

  19. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  20. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  1. Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.

    NASA Astrophysics Data System (ADS)

    Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.

    2017-12-01

    We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.

  2. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE GERONIMO,G.; FRIED, J.; FROST, E.

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detectormore » process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  5. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  6. SOUTH FRONT AND EAST SIDE. January, 1998 Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH FRONT AND EAST SIDE. January, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  7. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  8. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  9. 75 FR 70703 - Humana Insurance Company a Division of Carenetwork, Inc. Front End Operations and Account...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Division of CareNetwork, Inc., Front End Operations and Account Installation-Product Testing Groups, De... a Division of Carenetwork, Inc. Front End Operations and Account Installation-Product Testing Groups..., a Division of CareNetwork, Inc., Front End Operations and Account Installation- Product Testing...

  10. Compositional Verification with Abstraction, Learning, and SAT Solving

    DTIC Science & Technology

    2015-05-01

    arithmetic, and bit-vectors (currently, via bit-blasting). The front-end is based on an existing tool called UFO [8] which converts C programs to the Horn...supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based on the tool UFO [8]. It encodes safety of...tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad

  11. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  12. Readout electronics for LGAD sensors

    NASA Astrophysics Data System (ADS)

    Alonso, O.; Franch, N.; Canals, J.; Palacio, F.; López, M.; Vilà, A.; Diéguez, A.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2017-02-01

    In this paper, an ASIC fabricated in 180 nm CMOS technology from AMS with the very front-end electronics used to readout LGAD sensors is presented as well as its experimental results. The front-end has the typical architecture for Si-strip readout, i.e., preamplification stage with a Charge Sensitive Amplifier (CSA) followed by a CR-RC shaper. Both amplifiers are based on a folded cascode structure with a PMOS input transistor and the shaper only uses passive elements for the feedback stage. The CSA has programmable gain and a configurable input stage in order to adapt to the different input capacitance of the LGAD sensors (pixelated, short and long strips) and to the different input signal (depending on the gain of the LGAD). The fabricated prototype has an area of 0.865 mm × 0.965 mm and includes the biasing circuit for the CSA and the shaper, 4 analog channels (CSA+shaper) and programmable charge injection circuits included for testing purposes. Noise and power analysis performed during simulation fixed the size of the input transistor to W/L = 860 μm/0.2 μm. The shaping time is fixed by design at 1 us and, in this ASIC version, the feedback elements of the shaper are passive, which means that the area of the shaper can be reduced using active elements in future versions. Finally, the different gains of the CSA have been selected to maintain an ENC below 400 electrons for a detector capacitor of 20 pF, with a power consumption of 150 μ W per channel.

  13. The performance of the ZEUS central tracking detector z-by-timing electronics in a transputer based data acquisition system

    NASA Astrophysics Data System (ADS)

    Foster, B.; Heath, G. P.; Llewellyn, T. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P. M.; Khatri, T.; McArthur, I. C.; Morawitz, P.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D. B.; Carter, R. C.; Jeffs, M. D.; Morrissey, M. C.; Quinton, S. P. H.; Lane, J. B.; Postranecky, M.

    1993-05-01

    The Central Tracking Detector of the ZEUS experiment employs a time difference technique to measure the z coordinate of each hit. The method provides fast, three-dimensional space point measurements which are used as input to all levels of the ZEUS trigger. Such a tracking trigger is essential in order to discriminate against events with vertices lying outside the nominal electron-proton interaction region. Since the beam crossing interval of the HERA collider is 96 ns, all data must be pipelined through the front-end readout electronics. Subsequent data aquisition employs a novel technique which utilizes a network of approximately 120 INMOS transputers to process the data in parallel. The z-by-timing method and its data aquisition have been employed successfully in recording and reconstructing tracks from electron-proton interactions in ZEUS.

  14. Integration of the GET electronics for the CHIMERA and FARCOS devices

    NASA Astrophysics Data System (ADS)

    De Filippo, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; De Luca, S.; Favela, F.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Litrico, P.; Maiolino, C.; Maffesanti, S.; Martorana, NS; Pagano, A.; Pagano, EV; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    A new front-end based on digital GET electronics has been adopted for the readout of the CsI(Tl) detectors of the CHIMERA 4π multi-detector and for the new modular Femtoscopy Array for Correlation and Spectroscopy (FARCOS). It is expected that the coupling of CHIMERA with the FARCOS array, featuring high angular and energy resolution, and the adoption of the new digital electronics will be well suited for improving specific future data analysis, with the full shape storage of the signals, in the field of heavy ion reactions with stable and exotic beams around the Fermi energies domain. Integration of the GET electronics with CHIMERA and FARCOS devices and with the local analog data acquisition will be briefly discussed. We present some results from previous experimental tests and from the first in-beam experiment (Hoyle-Gamma) with the coupled GET+CHIMERA data acquisition.

  15. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  16. 1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL

  17. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems

    PubMed Central

    Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314

  18. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.

    PubMed

    Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.

  19. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  20. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  1. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  2. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  3. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    NASA Astrophysics Data System (ADS)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  4. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  5. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  6. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    PubMed

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  7. NECTAr: New electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Vorobiov, S.; Bolmont, J.; Corona, P.; Delagnes, E.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Sanuy, A.; Toussenel, F.; Vincent, P.

    2011-05-01

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  8. 1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  9. Deep Space Network, Cryogenic HEMT LNAs

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier

    2006-01-01

    Exploration of the Solar System with automated spacecraft that are more than ten astronomical units (1 AU = 149,597,870.691 km) from earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operatio nal noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs) which addres s the need to maintain Top as low as technology permits. Historicall y, the extra-ordinarily sensitive receive systems operated by the DSN have required ctyogenically cooled, ruby masers, operating at a physi cal temperature near the boiling point of helium, as the LNA. Althoug h masers continue to be used today, they are hand crafted at JPL and expensive to manufacture and maintain. Recent advances in the developm ent of indium phosphide (InP) based high electron mobility transistor s (HEMTs) combined with cryogenic cooling near the boiling point of h ydrogen have made this alternate technology comparable with and a fraction of the cost of maser technology. InP HEMT LNA modules are demons trating noise temperatures less than ten times the quantum noise limi t (10hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of 3.5 K and 8.5 K at 8.5 K at 32 GHz, respectively. Front-end receiver packages employing these modules have demonstrated operating system noise temperatures of 17 K at 8.4 GHz (on a 70m antenna at zenith) and 39 K at 3 2 GHz (on a 34m antenna at zenith). The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requir es accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to 12 K. The characterizati on and modeling begins with the HEMT chip, proceeds to the multi-stag e HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This presentation will provide a n overview of this development process. Examples will be shown for de vices, LNA modules, front-end receiver packages, antennae employing these packages and the improvements to the down-link capacity.

  10. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing.

    PubMed

    Wang, G; Doyle, E J; Peebles, W A

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  11. Systems Librarian and Automation Review.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1992-01-01

    Discusses software sharing on computer networks and the need for proper bandwidth; and describes the technology behind FidoNet, a computer network made up of electronic bulletin boards. Network features highlighted include front-end mailers, Zone Mail Hour, Nodelist, NetMail, EchoMail, computer conferences, tosser and scanner programs, and host…

  12. End-Users, Front Ends and Librarians.

    ERIC Educational Resources Information Center

    Bourne, Donna E.

    1989-01-01

    The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)

  13. A semi-implantable multichannel telemetry system for continuous electrical, mechanical and hemodynamical recordings in animal cardiac research.

    PubMed

    Kong, Wei; Huang, Jian; Rollins, Dennis L; Ideker, Raymond E; Smith, William M

    2007-03-01

    We have developed an eight-channel telemetry system for studying experimental models of chronic cardiovascular disease. The system is an extension of a previous device that has been miniaturized, reduced in power consumption and provided with increased functionality. We added sensors for ventricular dimension, and coronary artery blood flow and arterial blood pressure that are suitable for use with the system. The telemetry system consists of a front end, a backpack and a host PC. The front end is a watertight stainless steel case with all sensor electronics sealed inside; it acquires dimension, flow, pressure and five cardiac electrograms from selected locations on the heart. The backpack includes a control unit, Bluetooth radio, and batteries. The control unit digitizes eight channels of data from the front end and forwards them to the host PC via Bluetooth link. The host PC has a receiving Bluetooth radio and Labview programs to store and display data. The whole system was successfully tested on the bench and in an animal model. This telemetry system will greatly enhance the ability to study events leading to spontaneous sudden cardiac arrest.

  14. 2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. 6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. 8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. 5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, LOOKING SOUTHEAST. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL

  18. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Chauveau, J.; Del Buono, L.; Genat, J. F.; Lebbolo, H.; Roos, L.; Zhang, B.; Beigbeder, C.; Bernier, R.; Breton, D.; Caceres, T.; Chase, R.; Ducorps, A.; Hrisoho, A.; Imbert, P.; Sen, S.; Tocut, V.; Truong, K.; Wormser, G.; Zomer, F.; Bonneaud, G.; Dohou, F.; Gastaldi, F.; Matricon, P.; Renard, C.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Oxoby, G.; Va'Vra, J.; Warner, D.; Wilson, R. J.

    1999-08-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  19. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  20. 1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA

  1. 2. OBLIQUE VIEW OF WEST FRONT. The frames on an ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW OF WEST FRONT. The frames on an angle originally held mirrors for viewing the tests from inside the building. Vertical frame originally held bullet glass. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  2. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain.

    PubMed

    Kral, L

    2007-05-01

    We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.

  3. A front-end readout mixed chip for high-efficiency small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Ollivier-Henry, N.; Berst, J. D.; Colledani, C.; Hu-Guo, Ch.; Mbow, N. A.; Staub, D.; Guyonnet, J. L.; Hu, Y.

    2007-02-01

    Today, the main challenge of Positron Emission Tomography (PET) systems dedicated to small animal imaging is to obtain high detection efficiency and a highly accurate localization of radioisotopes. If we focus only on the PET characteristics such as the spatial resolution, its accuracy depends on the design of detector and on the electronics readout system as well. In this paper, we present a new design of such readout system with full custom submicrometer CMOS implementation. The front end chip consists of two main blocks from which the energy information and the time stamp with subnanosecond resolution can be obtained. In our A Multi-Modality Imaging System for Small Animal (AMISSA) PET system design, a matrix of LYSO crystals has to be read at each end by a 64 channels multianode photomultiplier tube. A specific readout electronic has been developed at the Hubert Curien Multidisciplinary Institute (IPHC, France). The architecture of this readout for the energy information detection is composed of a low-noise preamplifier, a CR-RC shaper and an analogue memory. In order to obtain the required dynamic range from 15 to 650 photoelectrons with good linearity, a current mode approach has been chosen for the preamplifier. To detect the signal with a temporal resolution of 1 ns, a comparator with a very low threshold (˜0.3 photoelectron) has been implemented. It gives the time reference of arrival signal coming from the detector. In order to obtain the time coincidence with a temporal resolution of 1 ns, a Time-to-Digital Converter (TDC) based on a Delay-Locked-Loop (DLL) has been designed. The chip is fabricated with AMS 0.35 μm process. The ASIC architecture and some simulation results will be presented in the paper.

  4. Advancements in DEPMOSFET device developments for XEUS

    NASA Astrophysics Data System (ADS)

    Treis, J.; Bombelli, L.; Eckart, R.; Fiorini, C.; Fischer, P.; Hälker, O.; Herrmann, S.; Lechner, P.; Lutz, G.; Peric, I.; Porro, M.; Richter, R. H.; Schaller, G.; Schopper, F.; Soltau, H.; Strüder, L.; Wölfel, S.

    2006-06-01

    DEPMOSFET based Active Pixel Sensor (APS) matrices are a new detector concept for X-ray imaging spectroscopy missions. They can cope with the challenging requirements of the XEUS Wide Field Imager and combine excellent energy resolution, high speed readout and low power consumption with the attractive feature of random accessibility of pixels. From the evaluation of first prototypes, new concepts have been developed to overcome the minor drawbacks and problems encountered for the older devices. The new devices will have a pixel size of 75 μm × 75 μm. Besides 64 × 64 pixel arrays, prototypes with a sizes of 256 × 256 pixels and 128 × 512 pixels and an active area of about 3.6 cm2 will be produced, a milestone on the way towards the fully grown XEUS WFI device. The production of these improved devices is currently on the way. At the same time, the development of the next generation of front-end electronics has been started, which will permit to operate the sensor devices with the readout speed required by XEUS. Here, a summary of the DEPFET capabilities, the concept of the sensors of the next generation and the new front-end electronics will be given. Additionally, prospects of new device developments using the DEPFET as a sensitive element are shown, e.g. so-called RNDR-pixels, which feature repetitive non-destructive readout to lower the readout noise below the 1 e - ENC limit.

  5. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  6. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  7. An FPGA-based data acquisition system for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Nicoloff, Catherine; Sanaullah, Ahmed; Sridhar, Arvind; Herbordt, Martin; Battat, James; Battat Lab at Wellesley College Team; CAAD Lab at Boston University Team

    2017-01-01

    Directional dark matter detection is a powerful tool in the search for dark matter. Low-pressure gas TPCs are commonly used for directional detection, and dark-matter-induced recoils are mm long. These tracks can be reconstructed by micropatterned readouts. Because large detector volumes are needed, a cost-effective data acquisition system capable of scaling to large channel counts (105 or 106) is required. The Directional Recoil Identification From Tracks (DRIFT) collaboration has pioneered the use of TPCs for directional detection. We employ a negative ion gas with drift speed comparable to the electron drift speed in liquid argon (LAr). We aim to use electronics developed for million-channel readouts in large LAr neutrino detectors. We have built a prototype Micromegas-based directional detector with 103 channels. A FPGA-based back-end system (BE) receives a 12 Gbps data stream from eight ASIC-based front-end boards (FE), each with 128 detector channels. The BE buffers 3 μs of pretrigger data for all channels in DRAM, and streams triggered data to a host PC. We will describe the system architecture and present preliminary measurements from the DAQ. We acknowledge the support of the Research Corporation for Science Advancement, the NSF and the Massachusetts Space Grant Consortium.

  8. A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James

    With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.

  9. Front End Software for Online Database Searching. Part 2: The Marketplace.

    ERIC Educational Resources Information Center

    Levy, Louise R.; Hawkins, Donald T.

    1986-01-01

    This article analyzes the front end software marketplace and discusses some of the complex forces influencing it. Discussion covers intermediary market; end users (library customers, scientific and technical professionals, corporate business specialists, consumers); marketing strategies; a British front end development firm; competitive pressures;…

  10. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  11. VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR NORTH END, FACING WEST - U.S. Naval Base, Pearl Harbor, Boat Landing S370, Along Essex Street at Southeast shore of Ford Island, Pearl City, Honolulu County, HI

  12. VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR SOUTH END, FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Boat Landing S370, Along Essex Street at Southeast shore of Ford Island, Pearl City, Honolulu County, HI

  13. EARS: Electronic Access to Reference Service.

    PubMed Central

    Weise, F O; Borgendale, M

    1986-01-01

    Electronic Access to Reference Service (EARS) is a front end to the Health Sciences Library's electronic mail system, with links to the online public catalog. EARS, which became operational in September 1984, is accessed by users at remote sites with either a terminal or microcomputer. It is menu-driven, allowing users to request: a computerized literature search, reference information, a photocopy of a journal article, or a book. This paper traces the history of EARS and discusses its use, its impact on library staff and services, and factors that influence the diffusion of new technology. PMID:3779167

  14. EARS: Electronic Access to Reference Service.

    PubMed

    Weise, F O; Borgendale, M

    1986-10-01

    Electronic Access to Reference Service (EARS) is a front end to the Health Sciences Library's electronic mail system, with links to the online public catalog. EARS, which became operational in September 1984, is accessed by users at remote sites with either a terminal or microcomputer. It is menu-driven, allowing users to request: a computerized literature search, reference information, a photocopy of a journal article, or a book. This paper traces the history of EARS and discusses its use, its impact on library staff and services, and factors that influence the diffusion of new technology.

  15. Front-end electronics for PWO-based PHOS calorimeter of ALICE

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Budnikov, Dmitry; Ippolitov, Mikhail; Li, Qingxia; Manko, Vladislav; Pimenta, Rui; Rohrich, Dieter; Sibiryak, Iouri; Skaali, Bernhard; Vinogradov, Alexandre

    2006-11-01

    The electromagnetic Photon Spectrometer (PHOS) of ALICE consists of five modules with 56×64 PWO crystals, operated at -25 °C. Glued to each crystal are APD diodes which amplify a lightyield of 4.4 photoelectrons/MeV, followed by charge-sensitive pre-amplifiers with a charge conversion gain of ca. 1 V/pC. We describe our new 32-channel shaper/digitizer and readout electronics for gain-programmable photodiodes. These Front-End Electronics (FEE) cards are installed below the crystals in an isolated warm volume in geometrical correspondence to 2×16 crystal rows per card. With a total detector capacitance of 100 pF and a noise level of 3 MeV, the FEEs cover a 14 bit dynamic range from 5 MeV to 80 GeV. The low noise level is achieved by operating the APDs and preamplifiers at low temperature and by applying a relatively long shaping time of 1 μs. The offline timing resolution, obtained via a Gamma-2 fit is less than 2 ns. The second-order, dual-gain shapers produce semi-Gaussian output for 10 bit ADCs with embedded multi-event buffers. A Readout Control Unit (RCU) masters data readout with address-mapped access to the event-buffers and controls registers via a custom bus which interconnects up to 14 FEE cards. Programmable bias voltage controllers on the FEE cards allow for very precise gain adjustment of each individual APD. Being co-designed with the TRU trigger cards, each FEE card generates eight fast signal sums (2×2 crystals) as input to the TRU. FPGA-based algorithms generate level-0 and level-1 trigger decisions at 40 MHz and allow PHOS also to operate in self-triggered mode. Inside each PHOS module there are 112 FEE and 8 TRU cards which dissipate ca. 1 kW heat which is extracted via a water cooling system.

  16. Real Time Optimal Control of Supercapacitor Operation for Frequency Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish

    2016-07-01

    Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance tomore » the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.« less

  17. The Mobile Internet -The Next Big Thing. Electrons & Photons: You Need Both! (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-05

    Links Network Centric Warfighting Comms Wired & Wireless Links 20th Century 21th Century The Military Comms Problem Network Centric Operationst t i ti...Small Unit Operations TEL Underwater Vehicles & Towed Arrays RC-135V Rivet Joint Tier II+ UAV Global Hawk E-2C Hawkeye Networked Manned and Unmanned...RF Front-End Solutions ● >20 DARPA/MTO RF Programs across the spectrum - RF & Mixed Signal Electronics - Analog & Digital Photonics Enables Network

  18. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  19. 1. Northeast front and southeast side of original section. Addition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast front and southeast side of original section. Addition to rear view to west. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  20. 4. Northeast front and northwest side of original section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast front and northwest side of original section and addition. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  1. 2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south southwest toward water tank complex. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  2. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.

    PubMed

    Haberman, Marcelo Alejandro; Spinelli, Enrique Mario

    2012-12-01

    Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.

  3. Development and Demonstration of a Magnesium-Intensive Vehicle Front-End Substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen D.; Forsmark, Joy H.; Osborne, Richard

    2016-07-01

    This project is the final phase (designated Phase III) of an extensive, nine-year effort with the objectives of developing a knowledge base and enabling technologies for the design, fabrication and performance evaluation of magnesium-intensive automotive front-end substructures intended to partially or completely replace all-steel comparators, providing a weight savings approaching 50% of the baseline. Benefits of extensive vehicle weight reduction in terms of fuel economy increase, extended vehicle range, vehicle performance and commensurate reductions in greenhouse gas emissions are well known. An exemplary vehicle substructure considered by the project is illustrated in Figure 1, along with the exterior vehicle appearance.more » This unibody front-end “substructure” is one physical objective of the ultimate design and engineering aspects established at the outset of the larger collective effort.« less

  4. The electronic stethoscope.

    PubMed

    Leng, Shuang; Tan, Ru San; Chai, Kevin Tshun Chuan; Wang, Chao; Ghista, Dhanjoo; Zhong, Liang

    2015-07-10

    Most heart diseases are associated with and reflected by the sounds that the heart produces. Heart auscultation, defined as listening to the heart sound, has been a very important method for the early diagnosis of cardiac dysfunction. Traditional auscultation requires substantial clinical experience and good listening skills. The emergence of the electronic stethoscope has paved the way for a new field of computer-aided auscultation. This article provides an in-depth study of (1) the electronic stethoscope technology, and (2) the methodology for diagnosis of cardiac disorders based on computer-aided auscultation. The paper is based on a comprehensive review of (1) literature articles, (2) market (state-of-the-art) products, and (3) smartphone stethoscope apps. It covers in depth every key component of the computer-aided system with electronic stethoscope, from sensor design, front-end circuitry, denoising algorithm, heart sound segmentation, to the final machine learning techniques. Our intent is to provide an informative and illustrative presentation of the electronic stethoscope, which is valuable and beneficial to academics, researchers and engineers in the technical field, as well as to medical professionals to facilitate its use clinically. The paper provides the technological and medical basis for the development and commercialization of a real-time integrated heart sound detection, acquisition and quantification system.

  5. 2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south southwest from Observation Post No. 1 (Building 8767). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  6. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  7. Navigating the Information Ocean: Charting the Course. Abstracts from the Academic Library Association of Ohio Annual Conference (Columbus, Ohio, November 4, 1994).

    ERIC Educational Resources Information Center

    Academic Library Association of Ohio.

    Abstracts of 14 papers presented at the conference are provided here. Titles are: "Electronic Information Terraforming: Designing and Implementing a Front-end System Using World-Wide Web Technology" (Abbie Basile; And Others); "Characteristics of Generation X and Implications for Reference and Instructional Services" (Catherine…

  8. Desktop Application Program to Simulate Cargo-Air-Drop Tests

    NASA Technical Reports Server (NTRS)

    Cuthbert, Peter

    2009-01-01

    The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.

  9. Development of Γ-ray tracking detectors

    DOE PAGES

    Lieder, R. M.; Gast, W.; Jäger, H. M.; ...

    2001-12-01

    The next generation of 4π arrays for high-precision γ-ray spectroscopy AGATA will consist of γ-ray tracking detectors. They represent high-fold segmented Ge detectors and a front-end electronics, based on digital signal processing techniques, which allows to extract energy, timing and spatial information on the interactions of a γ-ray in the Ge detector by pulse shape analysis of its signals. Utilizing the information on the positions of the interaction points and the energies released at each point the tracks of the γ-rays in a Ge shell can be reconstructed in three dimensions on the basis of the Compton-scattering formula.

  10. The TOTEM T1 read out card motherboard

    NASA Astrophysics Data System (ADS)

    Minutoli, S.; Lo Vetere, M.; Robutti, E.

    2010-12-01

    This article describes the Read Out Card (ROC) motherboard, which is the main component of the T1 forward telescope front-end electronic system. The ROC main objectives are to acquire tracking data and trigger information from the detector. It performs data conversion from electrical to optical format and transfers the data streams to the next level of the system and it implements Slow Control modules which are able to receive, decode and distribute the LHC machine low jitter clock and fast command. The ROC also provides a spy mezzanine connection based on programmable FPGA and USB2.0 for laboratory and portable DAQ debugging system.

  11. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  12. 3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, FROM NEAR OBSERVATION POST NO. 3. Looking south southeast from below. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  13. 1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, TEST STAND 1-E, IN LEFT DISTANCE. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  14. 1. Southwest front, dock no. 491. Aircraft tail extends through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Southwest front, dock no. 491. Aircraft tail extends through gasket in center hangar doors. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  15. Visual EKF-SLAM from Heterogeneous Landmarks †

    PubMed Central

    Esparza-Jiménez, Jorge Othón; Devy, Michel; Gordillo, José L.

    2016-01-01

    Many applications require the localization of a moving object, e.g., a robot, using sensory data acquired from embedded devices. Simultaneous localization and mapping from vision performs both the spatial and temporal fusion of these data on a map when a camera moves in an unknown environment. Such a SLAM process executes two interleaved functions: the front-end detects and tracks features from images, while the back-end interprets features as landmark observations and estimates both the landmarks and the robot positions with respect to a selected reference frame. This paper describes a complete visual SLAM solution, combining both point and line landmarks on a single map. The proposed method has an impact on both the back-end and the front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM (the management of a map composed of both point and line landmarks); from this perspective, the comparison between landmark parametrizations and the evaluation of how the heterogeneity improves the accuracy on the camera localization, the development of a front-end active-search process for linear landmarks integrated into SLAM and the experimentation methodology. PMID:27070602

  16. Design and performance of the readout electronics chain of the Delphi Forward Ring Imaging Cherenkov Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, P.; Nielsen, B.S.; Formenti, F.

    1992-10-01

    In this paper the Front End Readout electronics chain of the Forward Ring Imaging CHerenkov (FRICH) Detector used at the Delphi experiment of the Large Electron Positron (LEP) collider is presented. The system incorporates a wide band low noise preamplifier, mounted in the proximity of the MultiWire Proportional Chamber, an Amplifying-Discriminating-Multiple-xing FASTBUS unit for further signal amplification, discrimination and channel reduction and a LEP Time Digitizer FASTBUS unit for time digitization. The paper gives a general view of the detector and its electronics with particular emphasis on the novel characteristics and capabilities of the system.

  17. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  18. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review

    PubMed Central

    Chiu, Shih-Wen; Tang, Kea-Tiong

    2013-01-01

    Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip. PMID:24152879

  19. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...

  20. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...

  1. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents...

  2. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...

  3. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...

  4. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...

  5. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...

  6. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...

  7. The Parkes front-end controller and noise-adding radiometer

    NASA Technical Reports Server (NTRS)

    Brunzie, T. J.

    1990-01-01

    A new front-end controller (FEC) was installed on the 64-m antenna in Parkes, Australia, to support the 1989 Voyager 2 Neptune encounter. The FEC was added to automate operation of the front-end microwave hardware as part of the Deep Space Network's Parkes-Canberra Telemetry Array. Much of the front-end hardware was refurbished and reimplemented from a front-end system installed in 1985 by the European Space Agency for the Uranus encounter; however, the FEC and its associated noise-adding radiometer (NAR) were new Jet Propulsion Laboratory (JPL) designs. Project requirements and other factors led to the development of capabilities not found in standard Deep Space Network (DSN) controllers and radiometers. The Parkes FEC/NAR performed satisfactorily throughout the Neptune encounter and was removed in October 1989.

  8. Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End

    NASA Technical Reports Server (NTRS)

    Prokop, Norman; Krasowski, Michael

    2013-01-01

    This innovation is capable of correlating two analog signals by using an analog-based signal conditioning front end to hard-limit the analog signals through adaptive thresholding into a binary bit stream, then performing the correlation using a Hamming "similarity" calculator function embedded in a one-bit digital correlator (OBDC). By converting the analog signal into a bit stream, the calculation of the correlation function is simplified, and less hardware resources are needed. This binary representation allows the hardware to move from a DSP where instructions are performed serially, into digital logic where calculations can be performed in parallel, greatly speeding up calculations.

  9. A multichannel compact readout system for single photon detection: Design and performances

    NASA Astrophysics Data System (ADS)

    Argentieri, A. G.; Cisbani, E.; Colilli, S.; Cusanno, F.; De Leo, R.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Marra, M.; Musico, Paolo; Santavenere, F.; Torrioli, S.

    2010-05-01

    Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested [1,2]. The system can handle up to 4096 independent channels, covering an area of about 20×20 cm2 with pixel size of 3×3 mm2, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3×3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We presentmore » the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  12. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    NASA Astrophysics Data System (ADS)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  13. Design of a Multi-Channel Front-End Readout ASIC With Low Noise and Large Dynamic Input Range for APD-Based PET Imaging

    NASA Astrophysics Data System (ADS)

    Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.

    2010-06-01

    This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.

  14. Towards Gotthard-II: development of a silicon microstrip detector for the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2018-01-01

    Gotthard-II is a 1-D microstrip detector specifically developed for the European X-ray Free-Electron Laser. It will not only be used in energy dispersive experiments but also as a beam diagnostic tool with additional logic to generate veto signals for the other 2-D detectors. Gotthard-II makes use of a silicon microstrip sensor with a pitch of either 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to adaptive gain switching readout chips. Built-in analog-to-digital converters and digital memories will be implemented in the readout chip for a continuous conversion and storage of frames for all bunches in the bunch train. The performance of analogue front-end prototypes of Gotthard has been investigated in this work. The results in terms of noise, conversion gain, dynamic range, obtained by means of infrared laser and X-rays, will be shown. In particular, the effects of the strip-to-strip coupling are studied in detail and it is found that the reduction of the coupling effects is one of the key factors for the development of the analogue front-end of Gotthard-II.

  15. Verification of the Sentinel-4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less

  17. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.H.; Yang, B.X.; Decker, G.

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulatormore » beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed« less

  18. Progress on the development of the next generation x-ray beam position monitors at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H., E-mail: shlee@aps.anl.gov; Yang, B. X., E-mail: bxyang@aps.anl.gov; Decker, G., E-mail: decker@aps.anl.gov

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generation XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Commissioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separatedmore » by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from the diamond blades placed edge-on to the x-ray beam. A prototype of the Compton scattering XBPM system was installed at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contact resistance of a joint between two solid bodies is also discussed.« less

  19. Tevatron beam position monitor upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbers, Stephen; Banerjee, B.; Barker, B.

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiprotonmore » position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.« less

  20. Front End Software for Online Database Searching Part 1: Definitions, System Features, and Evaluation.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.; Levy, Louise R.

    1985-01-01

    This initial article in series of three discusses barriers inhibiting use of current online retrieval systems by novice users and notes reasons for front end and gateway online retrieval systems. Definitions, front end features, user interface, location (personal computer, host mainframe), evaluation, and strengths and weaknesses are covered. (16…

  1. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    NASA Astrophysics Data System (ADS)

    Gao, Shan-Shan; Jiang, Di; Feng, Chang-Qing; Xi, Kai; Liu, Shu-Bin; An, Qi

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  2. Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill

    NASA Astrophysics Data System (ADS)

    Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero

    2018-05-01

    In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.

  3. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  4. VLBI2010 Receiver Back End Comparison

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2013-01-01

    VLBI2010 requires a receiver back-end to convert analog RF signals from the receiver front end into channelized digital data streams to be recorded or transmitted electronically. The back end functions are typically performed in two steps: conversion of analog RF inputs into IF bands (see Table 2), and conversion of IF bands into channelized digital data streams (see Tables 1a, 1b and 1c). The latter IF systems are now completely digital and generically referred to as digital back ends (DBEs). In Table 2 two RF conversion systems are compared, and in Tables 1a, 1b, and 1c nine DBE systems are compared. Since DBE designs are advancing rapidly, the data in these tables are only guaranteed to be current near the update date of this document.

  5. Qualification and Reliability for MEMS and IC Packages

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2004-01-01

    Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface

  6. An 8.4-GHz dual-maser front-end system for Parkes reimplementation

    NASA Technical Reports Server (NTRS)

    Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.

    1990-01-01

    An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.

  7. The Silicon Tracking System of the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Teklishyn, Maksym

    2018-03-01

    The Silicon Tracking System (STS) is the central detector in the Compressed Baryonic Matter (CBM) experiment at FAIR. Operating in the 1Tm dipole magnetic field, the STS will enable pile-up free detection and momentum measurement of the charged particles originating from beam-target nuclear interactions at rates up to 10 MHz. The STS consists of 8 tracking stations based on double-sided silicon micro-strip sensors equipped with fast, self-triggering read-out electronics. With about two million read-out channels, the STS will deliver a high-rate stream of time-stamped data that is transferred to a computing farm for on-line event determination and analysis. The functional building block is a detector module consisting of a sensor, micro-cables and two front-end electronics boards. In this contribution, the development status of the STS components and the system integration is discussed and an outlook on the detector construction is given.

  8. Modeling scintillator and WLS fiber signals for fast Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Sánchez, F. A.; Medina-Tanco, G.

    2010-08-01

    In this work we present a fast, robust and flexible procedure to simulate electronic signals of scintillator units: plastic scintillator material embedded with a wavelength shifter optical fiber coupled to a photo-multiplier tube which, in turn, is plugged to a front-end electronic board. The simple rationale behind the simulation chain allows to adapt the procedure to a broad range of detectors based on that kind of units. We show that, in order to produce realistic results, the simulation parameters can be properly calibrated against laboratory measurements and used thereafter as input of the simulations. Simulated signals of atmospheric background cosmic ray muons are presented and their main features analyzed and validated using actual measured data. Conversely, for any given practical application, the present simulation scheme can be used to find an adequate combination of photo-multiplier tube and optical fiber at the prototyping stage.

  9. Integrated numerical modeling of a laser gun injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Benson, S.; Bisognano, J.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ``conditioning for final bunching`` is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittancemore » and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source.« less

  10. Implementation of the Timepix ASIC in the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  11. BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.

    PubMed

    Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel

    2015-06-02

    Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.

  12. Novel Micromegas trackers

    NASA Astrophysics Data System (ADS)

    Sabatie, Franck

    2017-09-01

    The latest development in Micromegas trackers includes the Micromegas Vertex Tracker (MVT) soon to be installed in Jefferson Lab Hall B, in the CLAS12 central tracking system. The MVT is composed of 6 cylindrical layers and 6 flat disks of resistive bulk Micromegas detectors. They have been designed to withstand the high particle flux environment and the high magnetic field using a low material budget of less than 0.5% of a radiation length per detector. The MVT is read out using front-end electronics based on the ``Dream'' Asic developed at CEA Saclay/Irfu. The low material budget requirements and very stringent space restrictions of the central tracking system surrounded by a 5T solenoid prevent the use of on-detector frontend electronics. The ability of the Dream chip to work with high-capacitance detectors allows deploying the electronics some 2 m away using flat micro-coaxial cables. After a short introduction to Micromegas detectors and the state-of-the-art achievements in this technology, I will focus on the CLAS12 MVT detector system, from the fabrication techniques to the readout electronics. Possible future developments will briefly be presented as well.

  13. Design of an integrated sensor system for the detection of traces of different molecules in the air

    NASA Astrophysics Data System (ADS)

    Strle, D.; Muševič, I.

    2015-04-01

    This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.

  14. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  15. Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith; hide

    2009-01-01

    A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.

  16. Tele-healthcare for diabetes management: A low cost automatic approach.

    PubMed

    Benaissa, M; Malik, B; Kanakis, A; Wright, N P

    2012-01-01

    In this paper, a telemedicine system for managing diabetic patients with better care is presented. The system is an end to end solution which relies on the integration of front end (patient unit) and backend web server. A key feature of the system developed is the very low cost automated approach. The front-end of the system is capable of reading glucose measurements from any glucose meter and sending them automatically via existing networks to the back-end server. The back-end is designed and developed using n-tier web client architecture based on model-view-controller design pattern using open source technology, a cost effective solution. The back-end helps the health-care provider with data analysis; data visualization and decision support, and allows them to send feedback and therapeutic advice to patients from anywhere using a browser enabled device. This system will be evaluated during the trials which will be conducted in collaboration with a local hospital in phased manner.

  17. New electronics for the Cherenkov Telescope Array (NECTAr)

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main component, the NECTAr ASIC.

  18. 49 CFR Appendix F to Part 238 - Alternative Dynamic Performance Requirements for Front End Structures of Cab Cars and MU Locomotives

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...

  19. 49 CFR Appendix F to Part 238 - Alternative Dynamic Performance Requirements for Front End Structures of Cab Cars and MU Locomotives

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...

  20. 49 CFR Appendix F to Part 238 - Alternative Dynamic Performance Requirements for Front End Structures of Cab Cars and MU Locomotives

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...

  1. 49 CFR Appendix F to Part 238 - Alternative Dynamic Performance Requirements for Front End Structures of Cab Cars and MU Locomotives

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...

  2. 49 CFR Appendix F to Part 238 - Alternative Dynamic Performance Requirements for Front End Structures of Cab Cars and MU Locomotives

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b... and allow for the application of dynamic performance criteria to cab cars and MU locomotives as an...

  3. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Lee, S.; Westferro, F.

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less

  4. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  5. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    NASA Astrophysics Data System (ADS)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron precipitation due to the combination of these two mechanisms coincides spatially with observed auroral brightening during the disturbed event.

  6. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    PubMed

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  7. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  8. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  9. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less

  10. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.

    PubMed

    Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad

    2013-01-01

    The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration.

  11. Modern design of a fast front-end computer

    NASA Astrophysics Data System (ADS)

    Šoštarić, Z.; Anic̈ić, D.; Sekolec, L.; Su, J.

    1994-12-01

    Front-end computers (FEC) at Paul Scherrer Institut provide access to accelerator CAMAC-based sensors and actuators by way of a local area network. In the scope of the new generation FEC project, a front-end is regarded as a collection of services. The functionality of one such service is described in terms of Yourdon's environment, behaviour, processor and task models. The computational model (software representation of the environment) of the service is defined separately, using the information model of the Shlaer-Mellor method, and Sather OO language. In parallel with the analysis and later with the design, a suite of test programmes was developed to evaluate the feasibility of different computing platforms for the project and a set of rapid prototypes was produced to resolve different implementation issues. The past and future aspects of the project and its driving forces are presented. Justification of the choice of methodology, platform and requirement, is given. We conclude with a description of the present state, priorities and limitations of our project.

  12. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    PubMed Central

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728

  13. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less

  14. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  15. Resident Front Office Experience: A Systems-Based Practice Activity

    PubMed Central

    Sutkin, Gary; Aronoff, Christine K.

    2008-01-01

    Purpose: We set out to create and evaluate a systems-based practice experience designed to introduce residents to front office responsibilities and stimulate suggestions for front office improvements. Methods: On two occasions in 2002 and 2006, each resident in the Obstetrics and Gynecology Department was trained by a front office staff member for one day. The residents completed pre- and post-experience surveys, answered open-ended questions about their experience, and volunteered suggestions for improving the front office staff, and were evaluated by their precepting staff member. Results: All but two of 23 particpating residents participated enthusiastically. These residents perceived experiencing the staff as vital to the success of the practice, reported an increased sense of appreciation for the training of staff personnel, and were evaluated favorably. Conclusion: This program gave our residents an appreciation for the training and responsibilities of pivotal office staff and an opportunity to suggest improvements. This program also satisfied ACGME resident education requirements regarding systems-based practice. PMID:20165536

  16. The Zero-Degree Detector System

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Howell, Leonard W.; Kouznetsov, Evgueni

    2006-01-01

    We will report on a detector system used for accelerator measurement of nuclear fragmentation cross sections. This system consists of two detector planes, each carrying a ring of 8 detectors. Each detector has 64 pads. These two detector planes are arranged facing each other so that the matching detector pads on each plane form a two element charged particle telescope. Each of these telescopes is capable of determining the elemental identity of nuclear fragments passing through it. The system is used to measure light fragment production in the presence of heavier fragments. We will present a detailed discussion of the 64-pad detector design, the substrate design. The front-end electronics used to read out the signals is based on a custom VLSI chip developed for the Advanced Thin Ionization Calorimeter experiment which has been flown successfully twice in Antarctica. Each of these chips has 16 channels and each channel consists of a charge-sensitive preamplifier followed by a shaping amplifier and a track-and-hold circuit. The track-and-hold circuits are connected via a multiplexer to an output line driver. This allows the held signals to be presented, one-by-one via a common data line to a analog-to-digital converter. Because the output line driver can be placed in a high input impedance state when not in use, it is possible to daisy-change many chips on the same common data line. The front-end electronics and data readout scheme will be discussed in detail. The Zero Degree Detector has been used in several accelerator experiments conducted at the NASA Space Radiation Laboratory and the Alternating Gradient Synchrotron at Brookhaven National Laboratory as well as at the HIMAC accelerator in Japan. We will show examples of data taken at these accelerator runs to demonstrate how the system works.

  17. The front-end electronics and slow control of large area SiPM for the SST-1M camera developed for the CTA experiment

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E.; Troyano Pujadas, I.; Ziȩtara, K.; Błocki, J.; Bogacz, L.; Bulik, T.; Curyło, M.; Dyrda, M.; Frankowski, A.; Grudniki, Ł.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśsko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Żychowski, P.

    2016-09-01

    The single mirror Small Size Telescope (SST-1M) is one of the proposed designs for the smallest type of telescopes, SSTs that will compose the Cherenkov Telescope Array (CTA). The SST-1M camera will use Silicon PhotoMultipliers (SiPM) which are nowadays commonly used in High Energy Physics experiments and many imaging applications. However the unique pixel shape and size have required a dedicated development by the University of Geneva and Hamamatsu. The resulting sensor has a surface of ∼94 mm2 and a total capacitance of ∼3.4 nF. These unique characteristics, combined with the stringent requirements of the CTA project on timing and charge resolution have led the University of Geneva to develop custom front-end electronics. The preamplifier stage has been tailored in order to optimize the signal shape using measurement campaigns and electronic simulation of the sensor. A dedicated trans-impedance pre-amplifier topology is used resulting in a power consumption of 400 mW per pixel and a pulse width < 30 ns. The measurements that have led to the choice of the different components and the resulting performance are detailed in this paper. The slow control electronics was designed to provide the bias voltage with 6.7 mV precision and to correct for temperature variation with a forward feedback compensation with 0.17 °C resolution. It is fully configurable and can be monitored using CANbus interface. The architecture and the characterization of the various elements are presented.

  18. Potential Application of BIOMASS Technology at National Space Technology Laboratories and Mississippi Army Ammunition Plant.

    DTIC Science & Technology

    1980-02-01

    fuel. Based on the survey data, wood chips in the NSTL area are sold for $13 to $16 per wet ton ($14 to $18 Der l03 kg wet), bark for $6 to $7 per wet...truck 3 Chip vans (initially) 1 Pickup (3/4 ton) 1 Front-end loader (for handling at chip pile) This equipment combination assumes all material ]-inch...ing sites in chip vans , preferably with live-beds to aid in unloading. At the processing site the chips would be stored in large piles. A Front-end

  19. A straw chambers' tracker for the high rate experiment 835 at the Fermilab accumulator

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Dughera, G.; Giraudo, G.; Govi, G.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rumerio, P.; Trapani, P. P.

    1998-02-01

    Two layers of proportional drift tubes (aluminum mylar straws) are staggered in two cylindrical light chambers to measure charged particles' azimuthal angle. To stand the high rates (˜10 kHz/ cm2) and minimize the pile-up of the high luminosity experiment 835 at FNAL, a fast ASIC Amplifier-Shaper-Discriminator (ASD-8B) was chosen. The front-end electronics, designed exclusively with SMD components, was mounted on the downstream end plug of each chamber to avoid oscillations and noise. Design, construction and operational performances of these detectors are presented.

  20. The modification at CSNS ion source

    NASA Astrophysics Data System (ADS)

    Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.

    2017-08-01

    The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.

  1. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.

  2. A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver

    NASA Astrophysics Data System (ADS)

    Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng

    2012-03-01

    A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.

  3. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    NASA Astrophysics Data System (ADS)

    Prele, D.

    2015-08-01

    As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.

  4. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.

    PubMed

    Li, Guibing; Yang, Jikuang; Simms, Ciaran

    2016-07-03

    The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians. The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization. An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered. Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.

  5. Real-time multiplicity counter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Alvarez, Raymond A [Berkeley, CA

    2010-07-13

    A neutron multi-detector array feeds pulses in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel. The word is read at regular intervals, all bits simultaneously, to minimize latency. The electronics then pass the word to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup.

  6. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  7. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    PubMed Central

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals. PMID:22163515

  8. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    PubMed

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  9. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  10. First test results from the Front-End Board with Cyclone V as a test high-resolution platform for the Auger-Beyond-2015 Front End Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    2015-07-01

    The paper presents the first results from the Front- End Board (FEB) with the biggest Cyclone{sup R} V E FPGA 5CEFA9F31I7N, supporting 8 channels sampled up to 250 MSps at 14-bit resolution. Considered sampling for the SD is 120 MSps, however, the FEB has been developed with external anti-aliasing filters to keep a maximal flexibility. Six channels are targeted to the SD, two the rest for other experiments like: Auger Engineering Radio Array and additional muon counters. More channels and higher sampling generate larger size of registered events. We used the standard radio channel for a radio transmission from themore » detectors to the Central Data Acquisition Station (CDAS) to avoid at present a significant modification of a software in both sides: the detector and the CDAS (planned in a future for a final design). Seven FEBs have been deployed in the test detectors on a dedicated Engineering Array in a hexagon. Several variants of the FPGA code were tested for 120, 160, 200 and even 240 MSps DAQ. Tests confirmed a stability and reliability of the FEB design in real pampas conditions with more than 40 deg. C daily temperature variation and a strong sun exposition with a limited power budget only from a single solar panel. (authors)« less

  11. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  12. Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.

    1998-11-01

    Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator-offset compensation, iii) 15-bit pseudo-random counter. The power consumption is 255 (mu) W/channel for a peaking time of 300 ns and an equivalent noise charge of 185 + 97*Cd electrons rms. Simulation and experimental result as well as imaging results will be presented.

  13. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  14. Analysis of fractionation in corn-to-ethanol plants

    NASA Astrophysics Data System (ADS)

    Nelson, Camille

    As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.

  15. Development of a statewide Landsat digital data base for forest insect damage assessment

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Dottavio, C. L.; Nelson, R. F.

    1983-01-01

    A Joint Research Project (JRP) invlving NASA/Goddard Space Flight Center and the Pennsylvania Bureau of Forestry/Division of Forest Pest Management demonstrates the utility of Landsat data for assessing forest insect damage. A major effort within the project has been the creation of map-registered, statewide Landsat digital data base for Pennsylvania. The data base, developed and stored on computers at the Pennsylvania State University Computation Center, contains Landsat imagery, a Landsat-derived forest resource map, and digitized data layers depicting Forest Pest Management District boundaries and county boundaries. A data management front-end system was also developed to provide an interface between the various layers of information within the data base and image analysis software. This front-end system insures than an automated assessment of defoliation damage can be conducted and summarized by geographic area or jurisdiction of interest.

  16. GET: A generic electronics system for TPCs and nuclear physics instrumentation

    NASA Astrophysics Data System (ADS)

    Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.

    2018-04-01

    General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.

  17. Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design

    NASA Astrophysics Data System (ADS)

    Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio

    2015-10-01

    This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.

  18. A computer-based time study system for timber harvesting operations

    Treesearch

    Jingxin Wang; Joe McNeel; John Baumgras

    2003-01-01

    A computer-based time study system was developed for timber harvesting operations. Object-oriented techniques were used to model and design the system. The front-end of the time study system resides on the MS Windows CE and the back-end is supported by MS Access. The system consists of three major components: a handheld system, data transfer interface, and data storage...

  19. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gregory L.; Arnold, Dorian; LeGendre, Matthew

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full featuremore » debugger like TolalView for root cause analysis.« less

  1. Physical Modeling Techniques for Missile and Other Protective Structures

    DTIC Science & Technology

    1983-06-29

    uniaxial load only. In general , axial thrust was applied with an: initial eccentricity of zero on the specimen end. Sixteen different combinations of Pa...conditioning electronics and cabling schemes is included. The techniques described generally represent current approaches at the Civil Engineering Research...at T- zero and stopping when a pulse is generated by the pi-ezoelectric disc on arrival of! the detonation wave front. All elapsed time data is stored

  2. VO-KOREL: A Fourier Disentangling Service of the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Škoda, Petr; Hadrava, Petr; Fuchs, Jan

    2012-04-01

    VO-KOREL is a web service exploiting the technology of the Virtual Observatory for providing astronomers with the intuitive graphical front-end and distributed computing back-end running the most recent version of the Fourier disentangling code KOREL. The system integrates the ideas of the e-shop basket, conserving the privacy of every user by transfer encryption and access authentication, with features of laboratory notebook, allowing the easy housekeeping of both input parameters and final results, as well as it explores a newly emerging technology of cloud computing. While the web-based front-end allows the user to submit data and parameter files, edit parameters, manage a job list, resubmit or cancel running jobs and mainly watching the text and graphical results of a disentangling process, the main part of the back-end is a simple job queue submission system executing in parallel multiple instances of the FORTRAN code KOREL. This may be easily extended for GRID-based deployment on massively parallel computing clusters. The short introduction into underlying technologies is given, briefly mentioning advantages as well as bottlenecks of the design used.

  3. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-10-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  4. Electronic Patient Reported Outcomes in Paediatric Oncology - Applying Mobile and Near Field Communication Technology.

    PubMed

    Duregger, Katharina; Hayn, Dieter; Nitzlnader, Michael; Kropf, Martin; Falgenhauer, Markus; Ladenstein, Ruth; Schreier, Günter

    2016-01-01

    Electronic Patient Reported Outcomes (ePRO) gathered using telemonitoring solutions might be a valuable source of information in rare cancer research. The objective of this paper was to develop a concept and implement a prototype for introducing ePRO into the existing neuroblastoma research network by applying Near Field Communication and mobile technology. For physicians, an application was developed for registering patients within the research network and providing patients with an ID card and a PIN for authentication when transmitting telemonitoring data to the Electronic Data Capture system OpenClinica. For patients, a previously developed telemonitoring system was extended by a Simple Object Access Protocol (SOAP) interface for transmitting nine different health parameters and toxicities. The concept was fully implemented on the front-end side. The developed application for physicians was prototypically implemented and the mobile application of the telemonitoring system was successfully connected to OpenClinica. Future work will focus on the implementation of the back-end features.

  5. Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.

    PubMed

    Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi

    2017-02-01

    Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

  6. Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.

    PubMed

    Minkovich, Kirill; Srinivasa, Narayan; Cruz-Albrecht, Jose M; Cho, Youngkwan; Nogin, Aleksey

    2012-06-01

    Scalability and connectivity are two key challenges in designing neuromorphic hardware that can match biological levels. In this paper, we describe a neuromorphic system architecture design that addresses an approach to meet these challenges using traditional complementary metal-oxide-semiconductor (CMOS) hardware. A key requirement in realizing such neural architectures in hardware is the ability to automatically configure the hardware to emulate any neural architecture or model. The focus for this paper is to describe the details of such a programmable front-end. This programmable front-end is composed of a neuromorphic compiler and a digital memory, and is designed based on the concept of synaptic time-multiplexing (STM). The neuromorphic compiler automatically translates any given neural architecture to hardware switch states and these states are stored in digital memory to enable desired neural architectures. STM enables our proposed architecture to address scalability and connectivity using traditional CMOS hardware. We describe the details of the proposed design and the programmable front-end, and provide examples to illustrate its capabilities. We also provide perspectives for future extensions and potential applications.

  7. Power-Quality Improvement in PFC Bridgeless SEPIC-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2013-06-01

    This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000-3-2.

  8. Multisector scintillation detector with fiber-optic light collection

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  9. Relativistic runaway ionization fronts.

    PubMed

    Luque, A

    2014-01-31

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  10. Foundation: Transforming data bases into knowledge bases

    NASA Technical Reports Server (NTRS)

    Purves, R. B.; Carnes, James R.; Cutts, Dannie E.

    1987-01-01

    One approach to transforming information stored in relational data bases into knowledge based representations and back again is described. This system, called Foundation, allows knowledge bases to take advantage of vast amounts of pre-existing data. A benefit of this approach is inspection, and even population, of data bases through an intelligent knowledge-based front-end.

  11. Front-End Analysis Cornerstone of Logistics

    NASA Technical Reports Server (NTRS)

    Nager, Paul J.

    2000-01-01

    The presentation provides an overview of Front-End Logistics Support Analysis (FELSA), when it should be performed, benefits of performing FELSA and why it should be performed, how it is conducted, and examples.

  12. Designing for scale: optimising the health information system architecture for mobile maternal health messaging in South Africa (MomConnect)

    PubMed Central

    Seebregts, Christopher; Dane, Pierre; Parsons, Annie Neo; Fogwill, Thomas; Rogers, Debbie; Bekker, Marcha; Shaw, Vincent; Barron, Peter

    2018-01-01

    MomConnect is a national initiative coordinated by the South African National Department of Health that sends text-based mobile phone messages free of charge to pregnant women who voluntarily register at any public healthcare facility in South Africa. We describe the system design and architecture of the MomConnect technical platform, planned as a nationally scalable and extensible initiative. It uses a health information exchange that can connect any standards-compliant electronic front-end application to any standards-compliant electronic back-end database. The implementation of the MomConnect technical platform, in turn, is a national reference application for electronic interoperability in line with the South African National Health Normative Standards Framework. The use of open content and messaging standards enables the architecture to include any application adhering to the selected standards. Its national implementation at scale demonstrates both the use of this technology and a key objective of global health information systems, which is to achieve implementation scale. The system’s limited clinical information, initially, allowed the architecture to focus on the base standards and profiles for interoperability in a resource-constrained environment with limited connectivity and infrastructural capacity. Maintenance of the system requires mobilisation of national resources. Future work aims to use the standard interfaces to include data from additional applications as well as to extend and interface the framework with other public health information systems in South Africa. The development of this platform has also shown the benefits of interoperability at both an organisational and technical level in South Africa. PMID:29713506

  13. Designing for scale: optimising the health information system architecture for mobile maternal health messaging in South Africa (MomConnect).

    PubMed

    Seebregts, Christopher; Dane, Pierre; Parsons, Annie Neo; Fogwill, Thomas; Rogers, Debbie; Bekker, Marcha; Shaw, Vincent; Barron, Peter

    2018-01-01

    MomConnect is a national initiative coordinated by the South African National Department of Health that sends text-based mobile phone messages free of charge to pregnant women who voluntarily register at any public healthcare facility in South Africa. We describe the system design and architecture of the MomConnect technical platform, planned as a nationally scalable and extensible initiative. It uses a health information exchange that can connect any standards-compliant electronic front-end application to any standards-compliant electronic back-end database. The implementation of the MomConnect technical platform, in turn, is a national reference application for electronic interoperability in line with the South African National Health Normative Standards Framework. The use of open content and messaging standards enables the architecture to include any application adhering to the selected standards. Its national implementation at scale demonstrates both the use of this technology and a key objective of global health information systems, which is to achieve implementation scale. The system's limited clinical information, initially, allowed the architecture to focus on the base standards and profiles for interoperability in a resource-constrained environment with limited connectivity and infrastructural capacity. Maintenance of the system requires mobilisation of national resources. Future work aims to use the standard interfaces to include data from additional applications as well as to extend and interface the framework with other public health information systems in South Africa. The development of this platform has also shown the benefits of interoperability at both an organisational and technical level in South Africa.

  14. Development of a data management front end for use with a LANDSAT based information system. [assessing gypsy moth defoliation damage in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Turner, B. J. (Principal Investigator)

    1982-01-01

    A user friendly front end was constructed to facilitate access to the LANDSAT mosaic data base supplied by JPL and to process both LANDSAT and ancillary data. Archieval and retrieval techniques were developed to efficiently handle this data base and make it compatible with requirements of the Pennsylvania Bureau of Forestry. Procedures are ready for: (1) forming the forest/nonforest mask in ORSER compressed map format using GSFC-supplied classification procedures; (2) registering data from a new scene (defoliated) to the mask (which may involve mosaicking if the area encompasses two LANDSAT scenes; (3) producing a masked new data set using the MASK program; (4) analyzing this data set to produce a map showing degrees of defoliation, output on the Versatec plotter; and (5) producing color composite maps by a diazo-type process.

  15. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Barty, C J; Betts, S M

    2005-04-21

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less

  16. Data and clock transmission interface for the WCDA in LHAASO

    NASA Astrophysics Data System (ADS)

    Chu, S. P.; Zhao, L.; Jiang, Z. Y.; Ma, C.; Gao, X. S.; Yang, Y. F.; Liu, S. B.; An, Q.

    2016-12-01

    The Water Cherenkov Detector Array (WCDA) is one of the major components of the Large High Altitude Air Shower Observatory (LHAASO). In the WCDA, 3600 Photomultiplier Tubes (PMTs) and the Front End Electronics (FEEs) are scattered over a 90000 m2 area, while high precision time measurements (0.5 ns RMS) are required in the readout electronics. To meet this requirement, the clock has to be distributed to the FEEs with high precision. Due to the ``triggerless'' architecture, high speed data transfer is required based on the TCP/IP protocol. To simplify the readout electronics architecture and be consistent with the whole LHAASO readout electronics, the White Rabbit (WR) switches are used to transfer clock, data, and commands via a single fiber of about 400 meters. In this paper, a prototype of data and clock transmission interface for LHAASO WCDA is developed. The performance tests are conducted and the results indicate that the clock synchronization precision of the data and clock transmission is better than 50 ps. The data transmission throughput can reach 400 Mbps for one FEE board and 180 Mbps for 4 FEE boards sharing one up link port in WR switch, which is better than the requirement of the LHAASO WCDA.

  17. High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration

    ERIC Educational Resources Information Center

    Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.

    2010-01-01

    In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…

  18. Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.

    2011-01-01

    We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.

  19. United States Air Force Summer Faculty Research Program, 1988. Program Technical Report. Volume 4

    DTIC Science & Technology

    1988-12-01

    Professor SDecialty: Gas Phase Ion-Molecule Chem. Dept. of Chemistry Assigned: Air Force Geophysics Lab. Louisiana State University Choppin Hall...For Lucid Dr. Darin DeForest 55 Pre-Sort Processor Phase Distortion Dr. Paul Dingman Evaluation 56 A PROLOG Natural Language Front End Dr. Hugh...analysis in the electron impact mode. The column used was 25m x 0.25am ID bonded phase FSOT capillary column (#952525 Alltech and Associates), coated with

  20. Photodetectors and front-end electronics for the LHCb RICH upgrade

    NASA Astrophysics Data System (ADS)

    Cassina, L.; LHCb RICH

    2017-12-01

    The RICH detectors of the LHCb experiment provide identification of hadrons produced in high energy proton-proton collisions in the LHC at CERN over a wide momentum range (2-100 GeV/c). Cherenkov light is collected on photon detector planes sensitive to single photons. The RICH will be upgraded (in 2019) to read out every bunch crossing, at a rate of 40 MHz. The current hybrid photon detectors (HPD) will be replaced with multi-anode photomultiplier tubes (customisations of the Hamamatsu R11265 and the H12699 MaPMTs). These 8×8 pixel devices meet the experimental requirements thanks to their small pixel size, high gain, negligible dark count rate (∼50 Hz/cm2) and moderate cross-talk. The measured performance of several tubes is reported, together with their long-term stability. A new 8-channel front-end chip, named CLARO, has been designed in 0.35 μm CMOS AMS technology for the MaPMT readout. The CLARO chip operates in binary mode and combines low power consumption (∼1 mW/Ch), wide bandwidth (baseline restored in ⩽ 25 ns) and radiation hardness. A 12-bit digital register permits the optimisation of the dynamic range and the threshold level for each channel and provides tools for the on-site calibration. The design choices and the characterization of the electronics are presented.

  1. View southwest, east front, interior bays, and north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southwest, east front, interior bays, and north end - Abraham Cyrus Farmstead, Equipment Shed, About 320 feet south-southwest of farmhouse at 3271 Cyrus Road (County Road 1/6), Cyrus, Wayne County, WV

  2. 4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF PORCH WITH STRUCTURAL SYSTEM OF WOOD FRAME WITH BRICK NOGGING REVEALED. - Andalusia, The Cottage, State Road vicinity (Bensalem Township), Andalusia, Bucks County, PA

  3. 5. Bombproof barracks, front elevation at southwest end. Doors and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Bomb-proof barracks, front elevation at southwest end. Doors and windows covered with plywood. Railway and car stop in foreground. - Fort Hamilton, Bomb-Proof Barracks, Rose Island, Newport, Newport County, RI

  4. Diagnostic-management system and test pulse acquisition for WEST plasma measurement system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.

    2014-11-01

    This paper describes current status of electronics, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition.

  5. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    PubMed

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  6. An Electronic System for the Contactless Reading of ECG Signals.

    PubMed

    Parente, Francesca Romana; Santonico, Marco; Zompanti, Alessandro; Benassai, Mario; Ferri, Giuseppe; D'Amico, Arnaldo; Pennazza, Giorgio

    2017-10-28

    The aim of this work is the development of a contactless capacitive sensory system for the detection of (Electrocardiographic) ECG-like signals. The acquisition approach is based on a capacitive coupling with the patient body performed by electrodes integrated in a front-end circuit. The proposed system is able to detect changes in the electric charge related to the heart activity. Due to the target signal weakness and to the presence of other undesired signals, suitable amplification stages and analogue filters are required. Simulated results allowed us to evaluate the effectiveness of the approach, whereas experimental measurements, recorded without contact to the skin, have validated the practical effectiveness of the proposed architecture. The system operates with a supply voltage of ±9 V with an overall power consumption of about 10 mW. The analogue output of the electronic interface is connected to an ATmega328 microcontroller implementing the A/D conversion and the data acquisition. The collected data can be displayed on any multimedia support for real-time tracking applications.

  7. Silicon drift detectors with on-chip electronics for x-ray spectroscopy.

    PubMed

    Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L

    1997-01-01

    The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.

  8. MICROROC: MICRO-mesh gaseous structure Read-Out Chip

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.

    2012-01-01

    MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.

  9. Strategies for distant speech recognitionin reverberant environments

    NASA Astrophysics Data System (ADS)

    Delcroix, Marc; Yoshioka, Takuya; Ogawa, Atsunori; Kubo, Yotaro; Fujimoto, Masakiyo; Ito, Nobutaka; Kinoshita, Keisuke; Espi, Miquel; Araki, Shoko; Hori, Takaaki; Nakatani, Tomohiro

    2015-12-01

    Reverberation and noise are known to severely affect the automatic speech recognition (ASR) performance of speech recorded by distant microphones. Therefore, we must deal with reverberation if we are to realize high-performance hands-free speech recognition. In this paper, we review a recognition system that we developed at our laboratory to deal with reverberant speech. The system consists of a speech enhancement (SE) front-end that employs long-term linear prediction-based dereverberation followed by noise reduction. We combine our SE front-end with an ASR back-end that uses neural networks for acoustic and language modeling. The proposed system achieved top scores on the ASR task of the REVERB challenge. This paper describes the different technologies used in our system and presents detailed experimental results that justify our implementation choices and may provide hints for designing distant ASR systems.

  10. The Design and Evaluation of a Front-End User Interface for Energy Researchers.

    ERIC Educational Resources Information Center

    Borgman, Christine L.; And Others

    1989-01-01

    Reports on the Online Access to Knowledge (OAK) Project, which developed software to support end user access to a Department of Energy database based on the skill levels and needs of energy researchers. The discussion covers issues in development, evaluation, and the study of user behavior in designing an interface tailored to a special…

  11. A CMOS Front-End With Integrated Magnetoresistive Sensors for Biomolecular Recognition Detection Applications.

    PubMed

    Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S

    2017-10-01

    The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.

  12. Understanding and addressing racial/ethnic disproportionality in the front end of the child welfare system.

    PubMed

    Osterling, Kathy Lemon; D'Andrade, Amy; Austin, Michael J

    2008-01-01

    Racial/ethnic disproportionality in the child welfare system is a complicated social problem that is receiving increasing amounts of attention from researchers and practitioners. This review of the literature examines disproportionality in the front-end of the child welfare system and interventions that may address it. While none of the interventions had evidence suggesting that they reduced disproportionality in child welfare front-end processes, some of the interventions may improve child welfare case processes related to disproportionality and outcomes for families of color.

  13. Source-Constrained Recall: Front-End and Back-End Control of Retrieval Quality

    ERIC Educational Resources Information Center

    Halamish, Vered; Goldsmith, Morris; Jacoby, Larry L.

    2012-01-01

    Research on the strategic regulation of memory accuracy has focused primarily on monitoring and control processes used to edit out incorrect information after it is retrieved (back-end control). Recent studies, however, suggest that rememberers also enhance accuracy by preventing the retrieval of incorrect information in the first place (front-end…

  14. On-line remote monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria

    2014-12-01

    A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.

  15. Front-end simulation of injector for terawatt accumulator.

    PubMed

    Kropachev, G N; Balabin, A I; Kolomiets, A A; Kulevoy, T V; Pershin, V I; Shumshurov, A V

    2008-02-01

    A terawatt accumulator (TWAC) accelerator/storage ring complex with the laser ion source is in progress at ITEP. The new injector I4 based on the radio frequency quadrupole (RFQ) and interdigital H-mode (IH) linear accelerator is under construction. The front end of the new TWAC injector consists of a laser ion source, an extraction system, and a low energy beam transport (LEBT). The KOBRA3-INP was used for the simulation and optimization of the ion source extraction system. The optimization parameter is the maximum brightness of the beam generated by the laser ion source. Also the KOBRA3-INP code was used for LEBT investigation. The LEBT based on electrostatic grid lenses is chosen for injector I4. The results of the extraction system and LEBT investigations for ion beam matching with RFQ are presented.

  16. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  17. Advanced integrated safeguards using front-end-triggering devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.A.; Whitty, W.J.

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  18. 2. VIEW OF NORTHWEST SIDE SHOWING NORTHEAST (GABLE END) FRONT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF NORTHWEST SIDE SHOWING NORTHEAST (GABLE END) FRONT. (BUILDING 114 IS VISIBLE ON RIGHT.) - Fort McPherson, World War II Station Hospital, G. U. Treatment Unit Dispensary, Thorne Avenue, Atlanta, Fulton County, GA

  19. Digital analyzer for point processes based on first-in-first-out memories

    NASA Astrophysics Data System (ADS)

    Basano, Lorenzo; Ottonello, Pasquale; Schiavi, Enore

    1992-06-01

    We present an entirely new version of a multipurpose instrument designed for the statistical analysis of point processes, especially those characterized by high bunching. A long sequence of pulses can be recorded in the RAM bank of a personal computer via a suitably designed front end which employs a pair of first-in-first-out (FIFO) memories; these allow one to build an analyzer that, besides being simpler from the electronic point of view, is capable of sustaining much higher intensity fluctuations of the point process. The overflow risk of the device is evaluated by treating the FIFO pair as a queueing system. The apparatus was tested using both a deterministic signal and a sequence of photoelectrons obtained from laser light scattered by random surfaces.

  20. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  1. Assessment of a Low-Power 65 nm CMOS Technology for Analog Front-End Design

    NASA Astrophysics Data System (ADS)

    Manghisoni, Massimo; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca

    2014-02-01

    This work is concerned with the study of the analog properties of MOSFET devices belonging to a 65 nm CMOS technology with emphasis on intrinsic voltage gain and noise performance. This node appears to be a robust and promising solution to cope with the unprecedented requirements set by silicon vertex trackers in experiments upgrades and future colliders as well as by imaging detectors at light sources and free electron lasers. In this scaled-down technology, the impact of new dielectric materials and processing techniques on the analog behavior of MOSFETs has to be carefully evaluated. An inversion level design methodology has been adopted to analyze data obtained from device measurements and provide a powerful tool to establish design criteria for detector front-ends in this nanoscale CMOS process. A comparison with data coming from less scaled technologies, such as 90 nm and 130 nm nodes, is also provided and can be used to evaluate the resolution limits achievable for low-noise charge sensitive amplifiers in the 100 nm minimum feature size range.

  2. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  3. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  4. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  5. e-Business Innovation: The Next Decade

    NASA Astrophysics Data System (ADS)

    Marca, David A.

    Innovation is invention or application of technologies or theories that radically alters business and the economy. For many years, innovation and the economy have been locked in 80-year cycles, which might imply that innovation is an economic driver, and vice versa. Based on this, some forecast that innovation and the economy might decrease sharply due to several forces: a) decreasing economic growth, b) increasing demand for custom services, c) more entrepreneurial work environments, and d) urban and environmental degradation. Should such forecasts hold true, business may need to alter its offerings, operations and organization to survive. Such a scenario may also require applied e-Business innovation by combining existing internet, wireless, broadband, and video technologies. One possible result: flexible front offices integrated with efficient back offices. Such an e-Business could comprise: a) a customer-based and transaction-based organization, b) functions for adaptive offerings that anticipate need, c) highly responsive, real-time, operations having no inventory, and d) value-based front-end, and automated back-end, decision making.

  6. Search for New Physics in Top Quark Production and Upgrade of the CMS Hadron Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumiceva, Francisco

    2016-10-07

    Our goal is to measure precisely the properties of the heaviest subatomic particle ever discovered, the top quark. In the proton-proton collisions at the LHC, top quarks are produced copiously. The largest set of top quarks recorded by the CMS detector make it an ideal laboratory to measure properties such as its mass and the rate at which pair of top quarks are produced in association with energetic photons. Quantum electrodynamics, or QED, describes the emission of light by charged particles and is the most precise physics theory ever devised. Typically this means light emitted by electrons, but any chargedmore » particles will do, such as the top quark. Studies of the light-emitting properties of top quarks help us to refine our current theoretical predictions at the finest level, and provide additional tools to study in more detail the recently discovered Higgs boson particle. However, during this process, the studies may reveal interesting features not yet observed. Deviations from the standard predictions would be a strong sign of something entirely new. These new physics theories are motivated to answer the current big mysteries in the universe such as what is the nature of mass or what is dark matter. As the LHC increases the collision energy and its luminosity, the detectors need to be improved to cope with these high-luminosity scenarios. New sensors will be installed in the hadron calorimeter detectors along with new front and end electronics at the end of 2016. We are testing and calibrating the new front-end readout electronics that will allow us to have more options to reduce the noise on these detectors. In order to do this calibration, we have developed a system that can inject electric charge in the full range of the charge integrator chip, the QIE ASICs.« less

  7. Transform-Based Channel-Data Compression to Improve the Performance of a Real-Time GPU-Based Software Beamformer.

    PubMed

    Lok, U-Wai; Li, Pai-Chi

    2016-03-01

    Graphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming of easier programmability and a faster design cycle, since complicated imaging algorithms can be efficiently programmed and modified. However, the need for a high data rate when transferring ultrasound radio-frequency (RF) data from the hardware front end to the software back end limits the real-time performance. Data compression methods can be applied to the hardware front end to mitigate the data transfer issue. Nevertheless, most decompression processes cannot be performed efficiently on a GPU, thus becoming another bottleneck of the real-time imaging. Moreover, lossless (or nearly lossless) compression is desirable to avoid image quality degradation. In a previous study, we proposed a real-time lossless compression-decompression algorithm and demonstrated that it can reduce the overall processing time because the reduction in data transfer time is greater than the computation time required for compression/decompression. This paper analyzes the lossless compression method in order to understand the factors limiting the compression efficiency. Based on the analytical results, a nearly lossless compression is proposed to further enhance the compression efficiency. The proposed method comprises a transformation coding method involving modified lossless compression that aims at suppressing amplitude data. The simulation results indicate that the compression ratio (CR) of the proposed approach can be enhanced from nearly 1.8 to 2.5, thus allowing a higher data acquisition rate at the front end. The spatial and contrast resolutions with and without compression were almost identical, and the process of decompressing the data of a single frame on a GPU took only several milliseconds. Moreover, the proposed method has been implemented in a 64-channel system that we built in-house to demonstrate the feasibility of the proposed algorithm in a real system. It was found that channel data from a 64-channel system can be transferred using the standard USB 3.0 interface in most practical imaging applications.

  8. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  9. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  10. Automatic low-order aberrations compensator for a conduction-cooled end-pumped solid-state zigzag slab laser

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Wang, Shuai; Wang, Xun; Liu, Yong; Tang, Guomao; Xu, Bing

    2017-11-01

    In order to solve the problem of large low-order aberrations with solid-state zigzag slab lasers, an automatic compensator has been developed in this paper. In this compensator, three lenses are mounted on a motorized rail, whose positions can be obtained using ray tracing method based on the beam parameters detected by a wave-front sensor. The initial peak to valley (PV) values of the wave-front range up to several tens of microns. Both simulated and experimental results show that the PV values of the wave-front can be reduced to around 1 . 6 μm with the proposed automatic compensator.

  11. Glaciotectonic origin of the Massachusetts coastal end moraines and a fluctuating late Wisconsinan ice margin.

    USGS Publications Warehouse

    Oldale, R.N.; O'Hara, C. J.

    1984-01-01

    Late Wisconsinan end moraines on Cape Cod and islands south and west of Cape Cod are believed to be glaciotectonic features formed by advancing ice fronts. Evidence for major ice readvances during general recession includes the moraines themselves, till atop stratified drift, and the numerous basal tills that are inferred to exist beneath Cape Cod Bay. The Thompson Glacier end moraine in the Canadian Arctic Archipelago is considered to be a modern example of how late Wisconsinan end moraines on Cape Cod and the islands were formed. It is overriding its outwash plain, displacing outwash deposits forward and upward beyond the ice front. New sheets are added to the base of the moraine as the ice overrides it. Retreat of the ice from Cape Cod and the islands may have been similar to the retreat of the Lake Michigan lobe, deposits of which contain evidence of at least 12 moraine-building episodes caused by readvancing ice.-from Authors

  12. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  13. OPeNDAP Server4: Buidling a High-Performance Server for the DAP by Leveraging Existing Software

    NASA Astrophysics Data System (ADS)

    Potter, N.; West, P.; Gallagher, J.; Garcia, J.; Fox, P.

    2006-12-01

    OPeNDAP has been working in conjunction with NCAR/ESSL/HAO to develop a modular, high performance data server that will be the successor to the current OPeNDAP data server. The new server, called Server4, is really two servers: A 'Back-End' data server which reads information from various types of data sources and packages the results in DAP objects; and A 'Front-End' which receives client DAP request and then decides how use features of the Back-End data server to build the correct responses. This architecture can be configured in several interesting ways: The Front- and Back-End components can be run on either the same or different machines, depending on security and performance needs, new Front-End software can be written to support other network data access protocols and local applications can interact directly with the Back-End data server. This new server's Back-End component will use the server infrastructure developed by HAO for use with the Earth System Grid II project. Extensions needed to use it as part of the new OPeNDAP server were minimal. The HAO server was modified so that it loads 'data handlers' at run-time. Each data handler module only needs to satisfy a simple interface which both enabled the existing data handlers written for the old OPeNDAP server to be directly used and also simplifies writing new handlers from scratch. The Back-End server leverages high- performance features developed for the ESG II project, so applications that can interact with it directly can read large volumes of data efficiently. The Front-End module of Server4 uses the Java Servlet system in place of the Common Gateway Interface (CGI) used in the past. New front-end modules can be written to support different network data access protocols, so that same server will ultimately be able to support more than the DAP/2.0 protocol. As an example, we will discuss a SOAP interface that's currently in development. In addition to support for DAP/2.0 and prototypical support for a SOAP interface, the new server includes support for the THREDDS cataloging protocol. THREDDS is tightly integrated into the Front-End of Server4. The Server4 Front-End can make full use of the advanced THREDDS features such as attribute specification and inheritance, custom catalogs which segue into automatically generated catalogs as well as providing a default behavior which requires almost no catalog configuration.

  14. A Web-Based Information System for Field Data Management

    NASA Astrophysics Data System (ADS)

    Weng, Y. H.; Sun, F. S.

    2014-12-01

    A web-based field data management system has been designed and developed to allow field geologists to store, organize, manage, and share field data online. System requirements were analyzed and clearly defined first regarding what data are to be stored, who the potential users are, and what system functions are needed in order to deliver the right data in the right way to the right user. A 3-tiered architecture was adopted to create this secure, scalable system that consists of a web browser at the front end while a database at the back end and a functional logic server in the middle. Specifically, HTML, CSS, and JavaScript were used to implement the user interface in the front-end tier, the Apache web server runs PHP scripts, and MySQL to server is used for the back-end database. The system accepts various types of field information, including image, audio, video, numeric, and text. It allows users to select data and populate them on either Google Earth or Google Maps for the examination of the spatial relations. It also makes the sharing of field data easy by converting them into XML format that is both human-readable and machine-readable, and thus ready for reuse.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, David Edward

    A description of the development of the mc_runjob software package used to manage large scale computing tasks for the D0 Experiment at Fermilab is presented, along with a review of the Digital Front End Trigger electronics and the software used to control them. A tracking study is performed on detector data to determine that the D0 Experiment can detect charged B mesons, and that these results are in accordance with current results. B mesons are found by searching for the decay channel B ± → J / Ψ K ± .

  16. High Resolution Imager (HRI) for the Roentgen Satellite (ROSAT) definition study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The design of the high resolution imager (HRI) on HEAO 2 was modified for use in the instrument complement of the Roentgen Satellite (ROSAT). Mechanical models of the front end assembly, central electronics assembly, and detector assembly were used to accurately represent the HRI envelope for both fit checks and focal plane configuration studies. The mechanical and electrical interfaces were defined and the requirements for electrical ground support equipment were established. A summary description of the ROSAT telescope and mission is included.

  17. Natural Language Processor as a Universal Front End to Expert Systems.

    DTIC Science & Technology

    1983-12-01

    EGaschnig 19791 4.1.7 ESCA SPECTRA INTERPRETER, ESCA (Electron Spectroscopy for Chemical Analysis) is ~ an expert system which directly processes...then used as input to the ESCA Interpreter program. The 0 program, like that of CRYSALIS, is intended to be used by and expert in the field of chemical ...expect to be there. For example, in the DENDRAL 0 chemical analysis system[Handbook of AI], chemical names such as benzene and methanol, must form part of

  18. 4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION An addendum to Hanson-Cramer House, Sea Street, south end, Rockport, Knox County, Maine - Hanson-Cramer House, End of Sea Street (moved from Pascal's Avenue), Rockport, Knox County, ME

  19. Align the Front End First.

    ERIC Educational Resources Information Center

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  20. Maneuvering impact boring head

    DOEpatents

    Zollinger, W. Thor; Reutzel, Edward W.

    1998-01-01

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  1. Low-Cost Tracking Ground Terminal Designed to Use Cryogenically Cooled Electronics

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Romanofsky, Robert R.; Warner, Joseph D.

    2000-01-01

    A computer-controlled, tracking ground terminal will be assembled at the NASA Glenn Research Center at Lewis Field to receive signals transmitted by the Glenn's Direct Data Distribution (D3) payload planned for a shuttle flight in low Earth orbit. The terminal will enable direct data reception of up to two 622-megabits-per-second (Mbps) beams from the space-based, K-band (19.05-GHz) transmitting array at an end-user bit error rate of up to 10(exp -12). The ground terminal will include a 0.9-m-diameter receive-only Cassegrain reflector antenna with a corrugated feed horn incorporating a dual circularly polarized, K-band feed assembly mounted on a multiaxis, gimbaled tracking pedestal as well as electronics to receive the downlink signals. The tracking system will acquire and automatically track the shuttle through the sky for all elevations greater than 20 above the horizon. The receiving electronics for the ground terminal consist of a six-pole microstrip bandpass filter, a three-stage monolithic microwave integrated circuit (MMIC) amplifier, and a Stirling cycle cryocooler (1 W at 80 K). The Sterling cycle cryocooler cools the front end of the receiver, also known as the low-noise amplifier (LNA), to about 77 K. Cryocooling the LNA significantly increases receiver performance, which is necessary so that it can use the antenna, which has an aperture of only 0.9 m. The following drawing illustrates the cryoterminal.

  2. High Fidelity CFD Analysis and Validation of Rotorcraft Gearbox Aerodynamics Under Operational and Oil-Out Conditions

    NASA Technical Reports Server (NTRS)

    Kunz, Robert F.

    2014-01-01

    This document represents the evolving formal documentation of the NPHASE-PSU computer code. Version 3.15 is being delivered along with the software to NASA in 2013.Significant upgrades to the NPHASE-PSU have been made since the first delivery of draft documentation to DARPA and USNRC in 2006. These include a much lighter, faster and memory efficient face based front end, support for arbitrary polyhedra in front end, flow-solver and back-end, a generalized homogeneous multiphase capability, and several two-fluid modelling and algorithmic elements. Specific capability installed for the NASA Gearbox Windage Aerodynamics NRA are included in this version: Hybrid Immersed Overset Boundary Method (HOIBM) [Noack et. al (2009)] Periodic boundary conditions for multiple frames of reference, Fully generalized immersed boundary method, Fully generalized conjugate heat transfer, Droplet deposition, bouncing, splashing models, and, Film transport and breakup.

  3. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  4. Tuning charge transport in pentacene thin-film transistors using the strain-induced electron-phonon coupling modification

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan

    2015-03-01

    Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.

  5. User Consultation during the Fuzzy Front End: Evaluating Student's Design Outcomes

    ERIC Educational Resources Information Center

    Conradie, Peter; De Marez, Lieven; Saldien, Jelle

    2017-01-01

    In this paper we evaluate the involvement of a partially blind user as lead user in the early stages of a product redesign during an undergraduate product design-engineering course. Throughout the early stages of product design, or fuzzy front end, there is a high level of uncertainty. End users, with their increased contextual knowledge can play…

  6. Design of the front end electronics for the infrared camera of JEM-EUSO, and manufacturing and verification of the prototype model

    NASA Astrophysics Data System (ADS)

    Maroto, Oscar; Diez-Merino, Laura; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven-Alvarez, Enrique; Martín, Yolanda; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.

    2014-07-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 1019 eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μV from 1Hz to 10MHz, temperature control of the microbolometer, from 10°C to 40°C with stability better than 10mK over 4.8hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction. It also shows the modifications implemented in the FEE prototype design to perform a trade-off of different technologies, such as the convenience of using linear or switched regulation for the temperature control, the possibility to check the camera performances when both microbolometer and analog electronics are moved further away from the power and digital electronics, and the addition of switching regulators to demonstrate the design is immune to the electrical noise the switching converters introduce. Finally, the results obtained during the verification phase are presented: FEE limitations, verification results, including FEE noise for each channel and its equivalent NETD and microbolometer temperature stability achieved, technologies trade-off, lessons learnt, and design improvement to implement in future project phases.

  7. FAME, a microprocessor based front-end analysis and modeling environment

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. D.; Kutin, E. B.

    1980-01-01

    Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.

  8. Integrated Arrays on Silicon at Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  9. Front-End/Gateway Software: Availability and Usefulness.

    ERIC Educational Resources Information Center

    Kesselman, Martin

    1985-01-01

    Reviews features of front-end software packages (interface between user and online system)--database selection, search strategy development, saving and downloading, hardware and software requirements, training and documentation, online systems and database accession, and costs--and discusses gateway services (user searches through intermediary…

  10. 1. VIEW OF NORTHEAST FRONT (GABLE END) FROM THORNE AVENUE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF NORTHEAST FRONT (GABLE END) FROM THORNE AVENUE, FACING NORTHWEST. (BUILDINGS 114 AND 118 ARE VISIBLE IN THE BACKGROUND.) - Fort McPherson, World War II Station Hospital, G. U. Treatment Unit Dispensary, Thorne Avenue, Atlanta, Fulton County, GA

  11. 1. 185/189D in center, north end west facades (190D front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 185/189-D in center, north end west facades (190-D front left and west facade; 195-D rear right). Looking south. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  12. A Micromegas-based telescope for muon tomography: The WatTo experiment

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  13. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  14. Development of multi-layer crystal detector and related front end electronics

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.

    2014-05-01

    A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.

  15. NASA Tech Briefs, August 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Program Merges SAR Data on Terrain and Vegetation Heights; Using G(exp 4)FETs as a Data Router for In-Plane Crossing of Signal Paths; Two Algorithms for Processing Electronic Nose Data; Radiation-Tolerant Dual Data Bus; General-Purpose Front End for Real-Time Data Processing; Nanocomposite Photoelectrochemical Cells; Ultracapacitor-Powered Cordless Drill, Cumulative Timers for Microprocessors; Photocatalytic/Magnetic Composite Particles; Separation and Sealing of a Sample Container Using Brazing; Automated Aerial Refueling Hitches a Ride on AFF; Cobra Probes Containing Replaceable Thermocouples; High-Speed Noninvasive Eye-Tracking System; Detergent-Specific Membrane Protein Crystallization Screens; Evaporation-Cooled Protective Suits for Firefighters; Plasmonic Antenna Coupling for QWIPs; Electronic Tongue Containing Redox and Conductivity Sensors; Improved Heat-Stress Algorithm; A Method of Partly Automated Testing of Software; Rover Wheel-Actuated Tool Interface; and Second-Generation Electronic Nose.

  16. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited).

    PubMed

    Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M

    2010-10-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.

  17. Public Understanding of Science through Evaluations

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; Koke, J.

    Evaluation is an integral part of exhibition development. It is usually a 3-phase process: front end, formative and summative. This report will compare science misconception studies of students with a number of front-end museum studies in order to elucidate the similarities and differences between student and general public understanding of science. The Space Science Institute (SSI) has recently conducted a major front-end evaluation of its Alien Earths exhibition. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. The front-end evaluation elicited visitors' beliefs about the origins of life, what life is dominant on Earth, and the role indirect evidence plays in science. The front-end evaluation also examined visitors' understanding of the tools used in origins research from grand telescopes to microscopes, their ability to decipher and interpret images of star forming regions, and their fluency with the specific terminology likely to be used in the Alien Earths scripts. Front-end evaluation worked to support concept design and development by developing the visitors' entrance narrative -- their pre-existing knowledge, commonly held misconceptions, and their attitudes and interests towards the topic. This served to identify potential points of access and barriers to efficient communication.

  18. Wideband monolithically integrated front-end subsystems and components

    NASA Astrophysics Data System (ADS)

    Mruk, Joseph Rene

    This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.

  19. Building Program Verifiers from Compilers and Theorem Provers

    DTIC Science & Technology

    2015-05-14

    Checking with SMT UFO • LLVM-based front-end (partially reused in SeaHorn) • Combines Abstract Interpretation with Interpolation-Based Model Checking • (no...assertions Counter-examples are long Hard to determine (from main) what is relevant Assertion Main 35 Building Verifiers from Comp and SMT Gurfinkel, 2015

  20. SYRMEP front-end and read-out electronics

    NASA Astrophysics Data System (ADS)

    Arfelli, F.; Bonvicini, V.; Bravin, A.; Cantatore, G.; Castelli, E.; Cristaudo, P.; Di Michiel, M.; Longo, R.; Olivo, A.; Pani, S.; Pontoni, D.; Poropat, P.; Prest, M.; Rashevsky, A.; Tomasini, F.; Tromba, G.; Vacchi, A.; Vallazza, E.

    1998-02-01

    The SYRMEP approach to digital mammography implies the use of a monochromatic X-ray beam from a synchrotron source and a slot of superimposed silicon microstrip detectors as a scanning image receptor. The microstrips are read by 32-channel chips mounted on 7-layer hybrid circuits which receive control signals and operating voltages from a MASTER-SLAVE configuration of cards. The MASTER card is driven by the CIRM, a dedicated CAMAC module whose timing function can be easily excluded to obtain data-storage-only units connected to different MASTERs: this second-level modular expansion capability fully achieves the tasks of an electronics system able to follow the SYRMEP detector growth till the final size of seven thousands of channels.

  1. Tracking the NOvA Detectors' Performance

    NASA Astrophysics Data System (ADS)

    Psihas, Fernanda; NOvA Collaboration

    2016-03-01

    The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.

  2. Limitations on energy resolution of segmented silicon detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Chudyba, M.; Fiutowski, T.; Dąbrowski, W.

    2018-04-01

    In the paper experimental study of charge division effects and energy resolution of X-ray silicon pad detectors are presented. The measurements of electrical parameters, capacitances and leakage currents, for six different layouts of pad arrays are reported. The X-ray spectra have been measured using a custom developed dedicated low noise front-end electronics. The spectra measured for six different detector layouts have been analysed in detail with particular emphasis on quantitative evaluation of charge division effects. Main components of the energy resolution due to Fano fluctuations, electronic noise, and charge division, have been estimated for six different sensor layouts. General recommendations regarding optimisation of pad sensor layout for achieving best possible energy resolution have been formulated.

  3. Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Szczygiel, R.; Zabolotny, W.

    2016-11-01

    Each front-end readout ASIC for the High-Energy Physics experiments requires robust and effective hit data streaming and control mechanism. A new STS-XYTER2 full-size prototype chip for the Silicon Tracking System and Muon Chamber detectors in the Compressed Baryonic Matter experiment at Facility for Antiproton and Ion Research (FAIR, Germany) is a 128-channel time and amplitude measuring solution for silicon microstrip and gas detectors. It operates at 250 kHit/s/channel hit rate, each hit producing 27 bits of information (5-bit amplitude, 14-bit timestamp, position and diagnostics data). The chip back-end implements fast front-end channel read-out, timestamp-wise hit sorting, and data streaming via a scalable interface implementing the dedicated protocol (STS-HCTSP) for chip control and hit transfer with data bandwidth from 9.7 MHit/s up to 47 MHit/s. It also includes multiple options for link diagnostics, failure detection, and throttling features. The back-end is designed to operate with the data acquisition architecture based on the CERN GBTx transceivers. This paper presents the details of the back-end and interface design and its implementation in the UMC 180 nm CMOS process.

  4. Development of an electronic emergency department-based geo-information injury surveillance system in Hong Kong.

    PubMed

    Chow, C B; Leung, M; Lai, Adela; Chow, Y H; Chung, Joanne; Tong, K M; Lit, Albert

    2012-06-01

    To describe the experience in the development of an electronic emergency department (ED)-based injury surveillance (IS) system in Hong Kong using data-mining and geo-spatial information technology (IT) for a Safe Community setup. This paper described the phased development of an emergency department-based IS system based on World Health Organization (WHO) injury surveillance Guideline to support safety promotion and injury prevention in a Safe Community in Hong Kong starting 2002. The initial ED data-based only collected data on name, sex, age, address, eight general categories of injury types (traffic, domestic, common assault, indecent assault, batter, industrial, self-harm and sports) and disposal from ED. Phase 1--manual data collection on International Classification of External Causes of Injury pre-event data; Phase 2--manual form was converted to electronic format using web-based data mining technology with built in data quality monitoring mechanism; Phase 3--integration of injury surveillance-data with in-patient hospital information; and Phase 4--geo-spatial information and body mapping were introduced to geo-code exact place of injury in an electronic map and site of injury on body map. It was feasible to develop a geo-spatial IS system at busy ED to collect valuable information for safety promotion and injury prevention at Safe Community setting. The keys for successful development and implementation involves engagement of all stakeholders at design and implementation of the system with injury prevention as ultimate goal, detail workflow planning at front end, support from the management, building on exiting system and appropriate utilisation of modern technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Advanced Wireless Sensor Nodes - MSFC

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  6. IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  7. Development of a dedicated readout ASIC for TPC based X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Deng, Zhi; Li, Hong; Liu, Yinong; Feng, Hua

    2016-07-01

    X-ray polarimetry with time projection chambers was firstly proposed by JK Black in 2007 and has been greatly developed since then. It measured two dimensional photoelectron tracks with one dimensional strip and the other dimension was estimated by the drift time from the signal waveforms. A readout ASIC, APV25, originally developed for CMS silicon trackers was used and has shown some limitations such as waveform sampling depth. A dedicated ASIC was developed for TPC based X-ray polarimeters in this paper. It integrated 32 channel circuits and each channel consisted of an analog front-end and a waveform sampler based on switched capacitor array. The analog front-end has a charge sensitive preamplifier with a gain of 25 mV/fC, a CR-RC shaper with a peaking time of 25 ns, a baseline holder and a discriminator for self-triggering. The SCA has a buffer latency of 3.2 μs with 64 cells operating at 20 MSPS. The ASIC was fabricated in a 0.18 μm CMOS process. The equivalent noise charge (ENC) of the analog front-end was measured to be 274.8 e+34.6 e/pF. The effective resolution of the SCA was 8.8 bits at sampling rate up to 50 MSPS. The total power consumption was 2.8 mW per channel. The ASIC was also tested with real TPC detectors and two dimensional photoelectron tracks have been successfully acquired. More tests and analysis on the sensitivity to the polarimetry are undergoing and will be presented in this paper.

  8. Multi sensor satellite imagers for commercial remote sensing

    NASA Astrophysics Data System (ADS)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  9. Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

    We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less

  10. Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Bowen, J. G.; Fernandez, J. E.; Fujiwara, B.; Loreman, J.; Petty, S.; Prater, J. L.

    2000-01-01

    This paper presents an overview of this development process with emphasis on comparison between modeled and measured, LNA modules, front-end receiver packages employing these modules, and antennae employing these packages.

  11. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  12. Performance evaluation of radiation sensors with internal signal amplification based on the BJT effect

    NASA Astrophysics Data System (ADS)

    Bosisio, Luciano; Batignani, Giovanni; Bettarini, Stefano; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Giacomini, Gabriele; Piemonte, Claudio; Verzellesi, Giovanni; Zorzi, Nicola

    2006-11-01

    Prototypes of ionizing radiation detectors with internal signal amplification based on the bipolar transistor effect have been fabricated at ITC-irst (Trento, Italy). Results from the electrical characterization and preliminary functional tests of the devices have been previously reported. Here, we present a more detailed investigation of the performance of this type of detector, with particular attention to their noise and rate limits. Measurements of the signal waveform and of the gain versus frequency dependence are performed by illuminating the devices with, respectively, pulsed or sinusoidally modulated IR light. Pulse height spectra of X-rays from an Am241 source have been taken with very simple front-end electronics (an LF351 operational amplifier) or by directly reading with an oscilloscope the voltage drop across a load resistor connected to the emitter. An equivalent noise charge (referred to input) of 380 electrons r.m.s. has been obtained with the first setup for a small device, with an active area of 0.5×0.5 mm2 and a depleted thickness of 0.6 mm. The corresponding power dissipation in the BJT was 17 μW. The performance limitations of the devices are discussed.

  13. Maneuvering impact boring head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Reutzel, E.W.

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  14. Maneuvering impact boring head

    DOEpatents

    Zollinger, W.T.; Reutzel, E.W.

    1998-08-18

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  15. Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Swartz, Jerome

    1982-04-01

    Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.

  16. 29. Interior view, south end of the west (front) wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Interior view, south end of the west (front) wall looking at the section between the door and southwestern corner, with scale (note remnants of the post-1915 fire plaster on wall) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA

  17. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  18. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  19. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less

  20. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  1. Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process

    NASA Astrophysics Data System (ADS)

    Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong

    2017-04-01

    In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.

  2. High-gain thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave

    DOEpatents

    Chang, Chao; Tang, Chuanxiang; Wu, Juhao

    2017-05-09

    An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.

  3. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  4. Central Drift Chamber for Belle-II

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.

    2017-06-01

    The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.

  5. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  6. Upgrading the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, Fernando

    2013-11-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD) will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  7. SPD very front end electronics

    NASA Astrophysics Data System (ADS)

    Luengo, S.; Gascón, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasís, X.

    2006-11-01

    The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for signal-tail subtraction. Finally, a LVDS serializer sends the information to the first level trigger system.

  8. Digital correlation detector for low-cost Omega navigation

    NASA Technical Reports Server (NTRS)

    Chamberlin, K. A.

    1976-01-01

    Techniques to lower the cost of using the Omega global navigation network with phase-locked loops (PLL) were developed. The technique that was accepted as being "optimal" is called the memory-aided phase-locked loop (MAPLL) since it allows operation on all eight Omega time slots with one PLL through the implementation of a random access memory. The receiver front-end and the signals that it transmits to the PLL were first described. A brief statistical analysis of these signals was then made to allow a rough comparison between the front-end presented in this work and a commercially available front-end to be made. The hardware and theory of application of the MAPLL were described, ending with an analysis of data taken with the MAPLL. Some conclusions and recommendations were also given.

  9. Integrated seat frame and back support

    DOEpatents

    Martin, Leo

    1999-01-01

    An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.

  10. Motivation and Front-End Analysis.

    ERIC Educational Resources Information Center

    Harless, Joe

    1978-01-01

    Relates Front-End Analysis (FEA) to motivation by categorizing it as either Diagnostic FEA or Planning FEA. The former is used to diagnose existing problems and prescribe motivational programs; the latter assumes that motivational programs must be implemented, along with other programs, to build the optimum environment to support the performance.…

  11. Design for an Adaptive Library Catalog.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; And Others

    1992-01-01

    Describes OASIS, a prototype adaptive online catalog implemented as a front end to the University of California MELVYL catalog. Topics addressed include the concept of adaptive retrieval systems, strategic search commands, feedback, prototyping using a front-end, the problem of excessive retrieval, commands to limit or increase search results, and…

  12. 24 CFR 941.612 - Disbursement of grant funds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... following requirements: (1) Front-end assistance may be used to pay for materials and services related to... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND... Development of Public Housing Units § 941.612 Disbursement of grant funds. (a) Front-end drawdowns. A PHA may...

  13. Ecposure Related Dose Estimating Model

    EPA Science Inventory

    ERDEM is a physiologically based pharmacokinetic (PBPK) modeling system consisting of a general model and an associated front end. An actual model is defined when the user prepares an input command file. Such a command file defines the chemicals, compartments and processes that...

  14. Channel Analysis for a 6.4 Gb s-1 DDR5 Data Buffer Receiver Front-End

    NASA Astrophysics Data System (ADS)

    Lehmann, Stefanie; Gerfers, Friedel

    2017-09-01

    In this contribution, the channel characteristic of the next generation DDR5-SDRAM architecture and possible approaches to overcome channel impairments are analysed. Because modern enterprise server applications and networks demand higher memory bandwidth, throughput and capacity, the DDR5-SDRAM specification is currently under development as a follow-up of DDR4-SDRAM technology. In this specification, the data rate is doubled to DDR5-6400 per IO as compared to the former DDR4-3200 architecture, resulting in a total per DIMM data rate of up to 409.6 Gb s-1. The single-ended multi-point-to-point CPU channel architecture in DDRX technology remains the same for DDR5 systems. At the specified target data rate, insertion loss, reflections, cross-talk as well as power supply noise become more severe and have to be considered. Using the data buffer receiver front-end of a load-reduced memory module, sophisticated equalisation techniques can be applied to ensure target BER at the increased data rate. In this work, the worst case CPU back-plane channel is analysed to derive requirements for receiver-side equalisation from the channel response characteristics. First, channel impairments such as inter-symbol-interference, reflections from the multi-point channel structure, and crosstalk from neighboring lines are analysed in detail. Based on these results, different correction methods for DDR5 data buffer front-ends are discussed. An architecture with 1-tap FFE in combination with a multi-tap DFE is proposed. Simulation of the architecture using a random input data stream is used to reveal the required DFE tap filter depth to effectively eliminate the dominant ISI and reflection based error components.

  15. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  16. TDC-based readout electronics for real-time acquisition of high resolution PET bio-images

    NASA Astrophysics Data System (ADS)

    Marino, N.; Saponara, S.; Ambrosi, G.; Baronti, F.; Bisogni, M. G.; Cerello, P.,; Ciciriello, F.; Corsi, F.; Fanucci, L.; Ionica, M.; Licciulli, F.; Marzocca, C.; Morrocchi, M.; Pennazio, F.; Roncella, R.; Santoni, C.; Wheadon, R.; Del Guerra, A.

    2013-02-01

    Positron emission tomography (PET) is a clinical and research tool for in vivo metabolic imaging. The demand for better image quality entails continuous research to improve PET instrumentation. In clinical applications, PET image quality benefits from the time of flight (TOF) feature. Indeed, by measuring the photons arrival time on the detectors with a resolution less than 100 ps, the annihilation point can be estimated with centimeter resolution. This leads to better noise level, contrast and clarity of detail in the images either using analytical or iterative reconstruction algorithms. This work discusses a silicon photomultiplier (SiPM)-based magnetic-field compatible TOF-PET module with depth of interaction (DOI) correction. The detector features a 3D architecture with two tiles of SiPMs coupled to a single LYSO scintillator on both its faces. The real-time front-end electronics is based on a current-mode ASIC where a low input impedance, fast current buffer allows achieving the required time resolution. A pipelined time to digital converter (TDC) measures and digitizes the arrival time and the energy of the events with a timestamp of 100 ps and 400 ps, respectively. An FPGA clusters the data and evaluates the DOI, with a simulated z resolution of the PET image of 1.4 mm FWHM.

  17. Thermal analysis of the WFI on the ATHENA observatory

    NASA Astrophysics Data System (ADS)

    Fürmetz, Maria; Pietschner, Daniel; Meidinger, Norbert

    2016-07-01

    The WFI (Wide-Field Imager) instrument is one of two instruments of the ATHENA (Advanced Telescope for High- ENergy Astrophysics) mission. ATHENA is the second L-class mission in ESA's Cosmic Vision plan with launch in 2028 and will address the science theme "The Hot and Energetic Universe" by measuring hot gas in clusters and groups of galaxies as well as matter flow in black holes. A moveable mirror assembly focusses the X-ray light to the focal plane of the WFI. The instrument consists of two separate detectors, one with a large DEPFET array of 512x512 pixels and one small and fast detector with 64x64 DEPFET pixels and a readout time of only 80 μs. The mirror system will achieve an angular resolution of 5" HEW. The rather large field of view of 40'x40' in combination with rather high power consumption is challenging not only for the thermal control system. DEPFET sensors as well as front-end electronics and electronics boxes have to be cooled, where a completely passive cooling system with radiators and heat pipes is highly favored. In order to reduce the necessary radiator area, three separate cooling chains with three different temperature levels have been foreseen. So only the DEPFET sensors are cooled down to the lowest temperature of about 190K, while the front-end electronics is supposed to be operated between 250K and 290K. The electronics boxes can be operated at room temperature, nevertheless the excess heat has to be removed. After first estimations of heat loads and radiator areas, a more detailed model of the camera head has been used to identify gradients between the cooling interfaces and the components to be cooled. This information is used within phase A1 of the project to further optimize the design of the instrument, e.g. material selection.

  18. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications.

    PubMed

    El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal

    2015-05-07

    The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).

  19. Observations and Simulations of Electron Dynamics Near an Active Neutral Line

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Hwang, Kyoung-Joo; Ashour-Abdalla, Maha; El-Aloui, Mostafa; Schriver, David; Richard, Robert; Zhou, Meng; Walker, Ray

    2010-01-01

    Recent observations in the Earth's magnetotail have shown rapid increases in the fluxes of energetic electrons with energies up to 100's of keV associated with dipolarization fronts that propagate into the inner magnetosphere. On August 15, 2001 the four Cluster spacecraft located slightly dawnward of midnight (yGSM approx. -5.4RE) at xGSM approx. -18RE observed a series of earthward propagating dipolarization fronts [Hwang et al., 2010]. At least 6 dipolarization fronts were observed in a 20m interval. Unlike previously reported cases the fluxes of electrons up to 95keV decreased during the passage of the first three fronts over the spacecraft. The energetic electron fluxes increased during the passage of the last three fronts. We have performed a global magnetohydrodynamic simulation of this event using solar wind observations from the ACE satellite to drive the simulation. In the simulation a very complex reconnection system in the near-Earth tail at XGSM approx. -20RE launched a series of earthward propagating dipolarization fronts that are similar to those observed on Cluster. The simulation results indicate that the Cluster spacecraft were just earthward of the reconnection site. In this paper we will present a study of the dynamics of electrons associated with these events by using the large-scale kinetic simulation approach in which we launch a large number of electrons into the electric and magnetic fields from this simulation.

  20. LISA phasemeter development

    NASA Astrophysics Data System (ADS)

    Kullmann, Joachim; Bykov, Iouri; Heinzel, Gerhard; Danzmann, Karsten

    The phasemeter is an essentiel component in the measuring chain of the spaceborne gravita-tional wave detector LISA. √ Our goal is to achieve a phasemeter sensitivity of 1 pm/ Hz below 1 Hz with respect to optical signals within a beatnote frequency range of 2 -20 MHz. To get there, several noise sources have to be eliminated. By choosing appropriate filters and adjusting loop gains digital operations of the FPGA-based phase lock loop do not limit the phasemeter sensitivity. One of the main front-end noise sources, the so called ADC time-jitter, is already successfully suppressed by correcting the signal of in-terest by means of a 48 MHz calibration tone. Noise hunting with respect to the analog front-end, currently the most demanding task, is on-going. Recent results will be presented.

  1. Shielding design for the front end of the CERN SPL.

    PubMed

    Magistris, Matteo; Silari, Marco; Vincke, Helmut

    2005-01-01

    CERN is designing a 2.2-GeV Superconducting Proton Linac (SPL) with a beam power of 4 MW, to be used for the production of a neutrino superbeam. The SPL front end will initially accelerate 2 x 10(14) negative hydrogen ions per second up to an energy of 120 MeV. The FLUKA Monte Carlo code was employed for shielding design. The proposed shielding is a combined iron-concrete structure, which also takes into consideration the required RF wave-guide ducts and access labyrinths to the machine. Two beam-loss scenarios were investigated: (1) constant beam loss of 1 Wm(-1) over the whole accelerator length and (2) full beam loss occurring at various locations. A comparison with results based on simplified approaches is also presented.

  2. A Compact Ion and Neutral Mass Spectrometer for Measuring Atmospheric Composition with Preliminary Results from the Dellingr Mission

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.

    2017-12-01

    A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.

  3. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  4. Low-power analog integrated circuits for wireless ECG acquisition systems.

    PubMed

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  5. A CMOS Low-Power Optical Front-End for 5 Gbps Applications

    NASA Astrophysics Data System (ADS)

    Zohoori, Soorena; Dolatshahi, Mehdi

    2018-01-01

    In this paper, a new low-power optical receiver front-end is proposed in 90 nm CMOS technology for 5 Gb/s AApplications. However, to improve the gain-bandwidth trade-off, the proposed Trans-Impedance Amplifier (TIA) uses an active modified inverter-based topology followed by a common-source amplifier, which uses active inductive peaking technique to enhance the frequency bandwidth in an increased gain level for a reasonable power consumption value. The proposed TIA is analyzed and simulated in HSPICE using 90 nm CMOS technology parameters. Simulation results show a 53.5dBΩ trans-impedance gain, 3.5 GHz frequency bandwidth, 16.8pA/√Hz input referred noise, and 1.28 mW of power consumption at 1V supply voltage. The Optical receiver is completed using three stages of differential limiting amplifiers (LAs), which provide 27 dB voltage gain while consume 3.1 mW of power. Finally, the whole optical receiver front-end consumes only 5.6 mW of power at 1 V supply and amplifies the input signal by 80 dB, while providing 3.7 GHz of frequency bandwidth. Finally, the simulation results indicate that the proposed optical receiver is a proper candidate to be used in a low-power 5 Gbps optical communication system.

  6. Radiological implications of top-off operation at national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, P. K.; Casey, W. R.

    2011-08-01

    High current and low emittance have been specified to achieve ultra high brightness in the third generation medium energy Synchrotron Radiation Sources. This leads to the electron beam lifetime limited by Touschek scattering, and after commissioning may settle in at as low as ∼3 h. It may well be less in the early days of operation. At the same time, the intensity stability specified by the user community for the synchrotron beam is 1% or better. Given the anticipated lifetime of the beam, incremental filling called top-off injection at intervals on the order of ∼1 min will be required to maintain this beam stability. It is judged to be impractical to make these incremental fills by closing the beam shutters at each injection. In addition, closing the front end beam shutters during each injection will adversely affect the stability of beamline optics due to thermal cycling. Hence the radiological consequences of injection with front end beam shutters open must be evaluated. This paper summarizes results of radiological analysis carried out for the proposed top-off injection at National Synchrotron Light Source-II (NSLS-II) with beam shutters open.

  7. A potent approach for the development of FPGA based DAQ system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Khan, Shuaib Ahmad; Mitra, Jubin; David, Erno; Kiss, Tivadar; Nayak, Tapan Kumar

    2017-10-01

    With ever increasing particle beam energies and interaction rates in modern High Energy Physics (HEP) experiments in the present and future accelerator facilities, there has always been the demand for robust Data Acquisition (DAQ) schemes which perform in the harsh radiation environment and handle high data volume. The scheme is required to be flexible enough to adapt to the demands of future detector and electronics upgrades, and at the same time keeping the cost factor in mind. To address these challenges, in the present work, we discuss an efficient DAQ scheme for error resilient, high speed data communication on commercially available state-of-the-art FPGA with optical links. The scheme utilises GigaBit Transceiver (GBT) protocol to establish radiation tolerant communication link between on-detector front-end electronics situated in harsh radiation environment to the back-end Data Processing Unit (DPU) placed in a low radiation zone. The acquired data are reconstructed in DPU which reduces the data volume significantly, and then transmitted to the computing farms through high speed optical links using 10 Gigabit Ethernet (10GbE). In this study, we focus on implementation and testing of GBT protocol and 10GbE links on an Intel FPGA. Results of the measurements of resource utilisation, critical path delays, signal integrity, eye diagram and Bit Error Rate (BER) are presented, which are the indicators for efficient system performance.

  8. The software-defined fast post-processing for GEM soft x-ray diagnostics in the Tungsten Environment in Steady-state Tokamak thermal fusion reactor

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rafał Dominik; Czarski, Tomasz; Linczuk, Paweł; Wojeński, Andrzej; Kolasiński, Piotr; GÄ ska, Michał; Chernyshova, Maryna; Mazon, Didier; Jardin, Axel; Malard, Philippe; Poźniak, Krzysztof; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2018-06-01

    This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

  9. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  10. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  11. Studies about the Behavior of the Crash Boxes of a Car Body

    NASA Astrophysics Data System (ADS)

    Constantin, B. A.; Iozsa, D.; Fratila, G.

    2016-11-01

    A continuous evolution of requirements and standards sheds over the development of new vehicles (for example EuroNCAP ratings) in order to create competition between same market models customer related. The low speed impact protection has to be permanently improved as the damage of the front end structure of the vehicle to be reduced to minimal. As a consequence, a lower damage implies less repair costs and therefore a lower insurance category. The front end structure, including the bumper, responds for the absorption of the kinetic energy created during the impact with maximum efficiency in order to avoid the large deformation of structural components. This is only one of the constraints that the front end structure has to cope with, additionally we can mention the dimensioning of the front end of the vehicle which can affect the packaging, which is mainly influenced by the design, styling and the pedestrian requirements intended to be accomplished by the vehicle. The present paper focuses on the low speed urban impact, offering an overview over the actual state, the load configuration, the applicable regulation, the challenging requirements of a modern front structure, which the modern bumper has to comply with and the finite element simulation of this kind of test.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Camarda, G. S.; Cui, Y.

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm{sup 2} and 6 × 6 mm{sup 2} and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  14. Performance of the TGT liquid argon calorimeter and trigger system

    NASA Astrophysics Data System (ADS)

    Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M. Y.; Chekulaev, S. V.; Kiryunin, A. E.; Kurchaninov, L. L.; Levitsky, M. S.; Maksimov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.

    1996-02-01

    A novel concept of a liquid argon calorimeter, the "Thin Gap Turbine" (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a "circular data store" and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given.

  15. Technical instrumentation R&D for ILD SiW ECAL large scale device

    NASA Astrophysics Data System (ADS)

    Balagura, V.

    2018-03-01

    Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.

  16. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  17. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (b)(2): (i) For an incinerator or non-combustion control device, the percent reduction of organic HAP... the process vent stream is introduced with combustion air or is used as a secondary fuel and is not... combustion device to control halogenated batch front-end process vents or halogenated aggregate batch vent...

  18. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. Prohibitin, relocated to the front ends, can control the migration directionality of colorectal cancer cells

    PubMed Central

    Guo, Li-Li; Hu, Chun-Ting; Huang, Ying-Xin; Huang, Guan; Jing, Fang-Yan; Liu, Chao; Li, Zhuo-Yi; Zhou, Na; Yan, Qian-Wen; Lei, Yan; Zhu, Shi-Jie; Cheng, Zhi-Qiang; Cao, Guang-Wen; Deng, Yong-Jian; Ding, Yan-Qing

    2017-01-01

    Directional migration is a cost-effective movement allowing invasion and metastatic spread of cancer cells. Although migration related to cytoskeletal assembly and microenvironmental chemotaxis has been elucidated, little is known about interaction between extracellular and intracellular molecules for controlling the migrational directionality. A polarized expression of prohibitin (PHB) in the front ends of CRC cells favors metastasis and is correlated with poor prognosis for 545 CRC patients. A high level of vascular endothelial growth factor (VEGF) in the interstitial tissue of CRC patients is associated with metastasis. VEGF bound to its receptor, neuropilin-1, can stimulate the activation of cell division cycle 42, which recruits intra-mitochondrial PHB to the front end of a CRC cell. This intracellular relocation of PHB results in the polymerization and reorganization of filament actin extending to the front end of the cell. As a result, the migration directionality of CRC cells is targeted towards VEGF. Together, these findings identify PHB as a key modulator of directional migration of CRC cells and a target for metastasis. PMID:29100316

  20. FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathke, P.M.

    1993-09-01

    The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less

Top