Hypothesis on two different functionalities co-existing in frontal lobe of human brains.
Wang, Jue
2013-09-01
Human frontal lobe is a key area from where our cognition, memory and emotion display or function. In medical case study, there are patients with social dysfunctions, lack of passion or emotion as result of their frontal lobe damage caused by pathological changes, traumatic damage, and brain tumor remove operations. The syndrome of frontal lobe damage remains at large unanswered medically. From early stage of pregnancy, there exists lobe layers, nerve combine, and neurons synaptic, indicating a completion of growth of functionality inside frontal lobe. However, this completion of growth does not match the growth of human intelligence. Human infants only start and complete their cognition and memory functionality one full year after their birth which is marked by huge amount of neurons synaptic inside their frontal lobe, which is not part of a continual growth of originally developed functions. By reasoning on pathological changes of frontal lobe, a hypothesis was established that two individually functional mechanisms co-existed inside one frontal lobe. This neuron system is particularly for human beings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Foster, Paul S; Drago, Valeria; Ferguson, Brad J; Harrison, Patti Kelly; Harrison, David W
2015-12-01
The most frequently used measures of executive functioning are either sensitive to left frontal lobe functioning or bilateral frontal functioning. Relatively little is known about right frontal lobe contributions to executive functioning given the paucity of measures sensitive to right frontal functioning. The present investigation reports the development and initial validation of a new measure designed to be sensitive to right frontal lobe functioning, the Figure Trail Making Test (FTMT). The FTMT, the classic Trial Making Test, and the Ruff Figural Fluency Test (RFFT) were administered to 42 right-handed men. The results indicated a significant relationship between the FTMT and both the TMT and the RFFT. Performance on the FTMT was also related to high beta EEG over the right frontal lobe. Thus, the FTMT appears to be an equivalent measure of executive functioning that may be sensitive to right frontal lobe functioning. Applications for use in frontotemporal dementia, Alzheimer's disease, and other patient populations are discussed.
Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.
Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H
2013-03-01
Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Relation between fluid intelligence and frontal lobe functioning in older adults.
Isingrini, M; Vazou, F
1997-01-01
This study reports the relations among normal aging, intelligence, and frontal lobe functioning. Intelligence tasks and frontal lobe functioning tasks were administered to 107 adults from two age groups (25 to 46 years and 70 to 99 years). Intelligence measures were assessed with two crystallized tests (WAIS Vocabulary and Information subtests), one fluid intelligence test (Cattell's Matrices), and one mixed, crystallized and fluid test (WAIS Similarities subtest). Frontal functioning was assessed using the Wisconsin Card Sorting Test (WCST) and two tests of verbal fluency. Significant age differences in favor of the young were found on the two intelligence tests with a fluid component and on all measures of frontal lobe functioning. Correlational analyses examining the relationship of intelligence measures to frontal variables indicated that these last measures were significantly correlated with only fluid intelligence tests in the elderly group. The implications for the relations among aging, fluid intelligence, and frontal lobe functioning are discussed.
Relation between Fluid Intelligence and Frontal Lobe Functioning in Older Adults.
ERIC Educational Resources Information Center
Isingrini, Michel; Vazou, Florence
1997-01-01
Examines relationships among normal aging, intelligence, and frontal lobe functioning. Results, based on intelligence tasks and frontal lobe functioning tasks administered to 107 adults from two age groups, indicate significant age differences in favor of the young on the intelligence tests, with a fluid component on measures of frontal lobe…
Frontal lobe alterations in schizophrenia: a review.
Mubarik, Ateeq; Tohid, Hassaan
2016-01-01
To highlight the changes in the frontal lobe of the human brain in people with schizophrenia. This was a qualitative review of the literature. Many schizophrenic patients exhibit functional, structural, and metabolic abnormalities in the frontal lobe. Some patients have few or no alterations, while some have more functional and structural changes than others. Magnetic resonance imaging (MRI) shows structural and functional changes in volume, gray matter, white matter, and functional activity in the frontal lobe, but the mechanisms underlying these changes are not yet fully understood. When schizophrenia is studied as an essential topic in the field of neuropsychiatry, neuroscientists find that the frontal lobe is the most commonly involved area of the human brain. A clear picture of how this lobe is affected in schizophrenia is still lacking. We therefore recommend that further research be conducted to improve understanding of the pathophysiology of this psychiatric dilemma.
Thalamocortical Connections and Executive Function in Pediatric Temporal and Frontal Lobe Epilepsy.
Law, N; Smith, M L; Widjaja, E
2018-06-07
Largely accepted in the literature is the role the interconnections between the thalamus and cortex play in generalized epilepsy. However, thalamocortical involvement is less understood in focal epilepsy in terms of the effect of seizures on thalamocortical circuitry in the developing brain and subsequent cognitive outcome. We investigated thalamocortical pathway microstructure in pediatric frontal lobe epilepsy and temporal lobe epilepsy and examined the associations between pathway microstructure and measures of executive function. We examined thalamocortical connections in 24 children with frontal lobe epilepsy, 17 patients with temporal lobe epilepsy, and 25 healthy children using DTI. We investigated several executive function measures in patients and controls, which were distilled into latent executive function components to compare among groups, and the associations between measures of thalamocortical microstructure and executive function. We found no differences in thalamocortical pathway microstructure between the groups, but aspects of executive function (mental flexibility/inhibition/shifting) were impaired in the frontal lobe epilepsy group compared with controls. In patients with frontal lobe epilepsy, younger age at seizure onset and a greater number of antiepileptic drugs were associated with DTI indices indicative of damaged/less developed thalamocortical pathways. In patients with temporal lobe epilepsy, poorer performance on all measures of executive function was associated with DTI indices reflective of damaged/less developed pathways. Our results give insight into vulnerable neural networks in pediatric focal epilepsy and suggest thalamocortical pathway damage as a potential mechanism of executive function impairment in temporal lobe epilepsy but not frontal lobe epilepsy. Identifying structure-function relations can help inform how we measure functional and cognitive/behavioral outcomes in these populations. © 2018 by American Journal of Neuroradiology.
Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior
Rosi, Susanna
2016-01-01
Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior. PMID:26964036
Levetiracetam efficacy on frontal lobe dysfunctions and anger rumination in patients with epilepsy.
Gul, Amara; Mehreen, Saima
2018-06-12
This study compared the frontal lobe functioning and anger rumination between patients with epilepsy and healthy individuals. The second objective was to examine the efficacy of levetiracetam therapy on frontal lobe dysfunctions and anger rumination in patients with epilepsy. Participants (50 patients with epilepsy and 50 healthy individuals) completed the Frontal Assessment Battery (FAB) and Anger Rumination Scale (ARS). The patients had two testing sessions: pre- and post-levetiracetam therapies. The results showed that patients with epilepsy had frontal lobe dysfunctions in contrast with healthy individuals. Patients with epilepsy had higher anger rumination than healthy individuals. Compared with baseline performance, frontal lobe dysfunctions and anger rumination were significantly reduced after three months of levetiracetam therapy in patients with epilepsy. It is concluded that levetiracetam therapy may be beneficial in improving frontal lobe functioning and anger rumination thought pattern in patients with epilepsy. However, further studies are required to confirm this evidence. Copyright © 2018 Elsevier Inc. All rights reserved.
Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C
2015-08-19
The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.
Frontal lobe function in elderly patients with Alzheimer's disease and caregiver burden.
Hashimoto, Akiko; Matsuoka, Kiwamu; Yasuno, Fumihiko; Takahashi, Masato; Iida, Junzo; Jikumaru, Kiyoko; Kishimoto, Toshifumi
2017-07-01
Understanding of the relationship between caregiver burden and the degree of behavioural deficits in patients with Alzheimer's disease (AD) is relatively limited. Therefore, it is worthwhile to examine the correlations between the various relevant factors to improve the efficacy of care for patients with AD. The aim of this study was to investigate the specific contributions of frontal lobe dysfunction in AD patients to caregiver burden, while controlling for other predictor variables. Participants included 30 pairs of caregivers and patients with AD. The Zarit Burden Interview and Frontal Assessment Battery were used to measure the caregiver burden and patients' frontal lobe function, respectively. To investigate the effects of frontal lobe dysfunction on caregiver burden, hierarchical regression equations with steps incorporating additional predictor variables were fitted. We also performed a correlation analysis between the individual subdomains of the Zarit Burden Interview and the predictor variables. Our study suggests that the degree of frontal lobe dysfunction in AD patients predicts their caregiver burden, when other factors of daily functional limitations and neuropsychiatric symptoms are controlled. Daily functional limitations and neuropsychiatric symptoms affected caregivers' psychosocial burden, whereas frontal lobe dysfunction affected caregivers' burden due to the increase in the dependency of the patients. Our findings indicate that to ameliorate the disabilities of patients and reduce caregiver burden, there is a need for interventions that focus on psychosocial burdens, as shown in previous studies, as well as on excessive dependency due to frontal lobe dysfunction. © 2017 Japanese Psychogeriatric Society.
Interpreting ambiguous advertisements: the effect of frontal lobe damage.
Pearce, S; McDonald, S; Coltheart, M
1998-11-01
Despite intact primary language processes patients with frontal lobe deficits often have impaired communication skills including impaired capacity to understand conversational inference. This study examined the ability of three patients with demonstrated frontal lobe pathology to interpret lexically ambiguous advertisements. When compared to a nonbrain-damaged control group it was found that the frontal lobe patients were poorer at comprehending the abstract or inferred meanings inherent in the advertisements. The pattern of performance across the patients did, nevertheless, differ despite a similar end result. These findings are discussed in relation to theories concerning the contribution of the frontal lobes to language function.
Falquez, Rosalux; Dinu-Biringer, Ramona; Stopsack, Malte; Arens, Elisabeth A; Wick, Wolfgang; Barnow, Sven
2015-01-01
Previous investigations have demonstrated the relationship between inhibitory deficits and maladaptive emotion regulation. Although several neuropsychological studies show that frontal lobe damage can lead to extreme inhibition impairments, there have been no investigations regarding the influence of frontal lobe damage and related inhibition impairments on the use of maladaptive strategies. The goal of the current study was to examine the impact of executive functions impairments due to frontal lobe damage on cognitive emotion regulation. Fifteen patients with frontal lobe damage were compared to twenty-two healthy controls on their reported use of maladaptive strategies. The effect of behavioral inhibition deficits among the frontal lobe damage group was examined. Patients reflected a heightened use of maladaptive strategies compared to healthy controls, significantly mediated by Go/NoGo task errors, which are an indicator for response inhibition deficits. Results suggest that a heightened use of maladaptive strategies by patients relies to a strong extent on their impaired impulse control, highlighting the complex interplay between executive functions and emotional regulation.
Wei, QianQian; Chen, XuePing; Zheng, ZhenZhen; Huang, Rui; Guo, XiaoYan; Cao, Bei; Zhao, Bi; Shang, Hui-Fang
2014-12-01
Despite growing interest, the frequency and characteristics of frontal lobe functional and behavioral deficits in Chinese people with amyotrophic lateral sclerosis (ALS), as well as their impact on the survival of ALS patients, remain unknown. The Chinese version of the frontal assessment battery (FAB) and frontal behavioral inventory (FBI) were used to evaluate 126 sporadic ALS patients and 50 healthy controls. The prevalence of frontal lobe dysfunction was 32.5%. The most notable impairment domain of the FAB was lexical fluency (30.7%). The binary logistic regression model revealed that an onset age older than 45 years (OR 5.976, P = 0.002) and a lower educational level (OR 0.858, P = 0.002) were potential determinants of an abnormal FAB. Based on the FBI score, 46.0% of patients showed varied degrees of frontal behavioral changes. The most common impaired neurobehavioral domains were irritability (25.4%), logopenia (20.6%) and apathy (19.0%). The binary logistic regression model revealed that the ALS Functional Rating Scale-Revised scale score (OR 0.127, P = 0.001) was a potential determinant of an abnormal FBI. Frontal functional impairment and the severity of frontal behavioral changes were not associated with the survival status or the progression of ALS by the cox proportional hazard model and multivariate regression analyses, respectively. Frontal lobe dysfunction and frontal behavioral changes are common in Chinese ALS patients. Frontal lobe dysfunction may be related to the onset age and educational level. The severity of frontal behavioral changes may be associated with the ALSFRS-R. However, the frontal functional impairment and the frontal behavioral changes do not worsen the progression or survival of ALS.
The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.
Fang, Shengyu; Wang, Yinyan; Jiang, Tao
2016-07-01
Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
Frontal lobe function in temporal lobe epilepsy
Stretton, J.; Thompson, P.J.
2012-01-01
Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further. PMID:22100147
Frontal lobe dementia and motor neuron disease.
Neary, D; Snowden, J S; Mann, D M; Northen, B; Goulding, P J; Macdermott, N
1990-01-01
Four patients are described, in whom a profound and rapidly progressive dementia occurred in association with clinical features of motor neuron disease. The pattern of dementia indicated impaired frontal lobe function, confirmed by reduced tracer uptake in the frontal lobes on single photon emission computed tomography (SPECT). Pathological examination of the brains of two patients revealed frontal-lobe atrophy, with mild gliosis and spongiform change. The spinal cord changes were consistent with motor neuron disease. The clinical picture and pathological findings resembled those of dementia of frontal-lobe type and were distinct from those of Alzheimer's disease. The findings have implications for the understanding of the spectrum of non-Alzheimer forms of primary degenerative dementia. Images PMID:2303828
Automated MRI parcellation of the frontal lobe
Ranta, Marin E.; Chen, Min; Crocetti, Deana; Prince, Jerry L.; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E.; Mostofsky, Stewart H.
2014-01-01
Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. (2009) in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. PMID:23897577
Hagiwara, Koichi; Jung, Julien; Bouet, Romain; Abdallah, Chifaou; Guénot, Marc; Garcia-Larrea, Luis; Mauguière, François; Rheims, Sylvain; Isnard, Jean
2017-05-01
For a decade it has been known that the insular lobe epilepsy can mimic frontal lobe epilepsy. We aimed to clarify the pattern of functional coupling occurring during the frontal presentation. We analyzed five insular lobe epilepsy patients. Frontal semiology was predominant for three of them, whereas insular semiology was predominant for the two others. We applied the non-linear regression analysis to stereoelectroencephalography-recorded seizures. A directed functional coupling index was calculated during clonic discharge periods that were accompanied either with frontal or insular semiology. We found significant functional coupling between the insula and mesial frontal/cingulate regions, with the former being a leader region for seizures propagation. Extra-insular regions showed significantly less or even no coupling with the mesial hemispheric regions. The three patients with frontal semiology showed strong couplings with the mesial frontal as well as cingulate regions, including the medial orbitofrontal cortex, pre-SMA/SMA, and the anterior to posterior cingulate. The two patients with the insular semiology only showed couplings between the insula and cingulate regions. The frontal semiology was expressed by strong functional couplings between the insula and mesial frontal regions. The insular origin of seizure should be considered in cryptogenic mesial frontal epilepsies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Guo, Xiaoyan; Song, Wei; Chen, Ke; Chen, Xueping; Zheng, Zhenzhen; Cao, Bei; Huang, Rui; Zhao, Bi; Wu, Ying; Shang, Hui-Fang
2015-01-01
Cognitive impairment may negatively impact the health-related quality of life (HRQoL) in patients with Parkinson's disease (PD). However, information on the effects of frontal lobe function and behavior changes on the HRQoL of the Chinese PD population is limited. Studies on the associations among frontal lobe function, behavioral changes and the HRQoL may help optimize the treatment and improve the HRQoL of PD patients. A total of 309 PD patients were evaluated using the Frontal Assessment Battery, the Frontal Behavioral Inventory (FBI) and the PD Questionnaire 39-item version (PDQ-39). Patients with worse frontal lobe function were older (p < 0.001), had longer disease durations (p = 0.002), higher Unified Parkinson's Disease Rating Scale part III (UPDRS-III) scores (p < 0.001) and higher Hoehn and Yahr (H-Y) stages (p = 0.001), and exhibited significantly higher PDQ-39 summary index (SI; p = 0.001) compared with those who had better frontal lobe function. In addition, the disease duration (p = 0.008), UPDRS-III scores (p < 0.001), H-Y stage (p < 0.001), PDQ-39 SI and scores for each domain of the PDQ-39 (p < 0.001) were higher as the severity of frontal behavioral changes increased. The total FBI score (p < 0.001) was positively correlated with the PDQ-39 SI. Frontal behavioral changes were closely associated with poor HRQoL in Chinese PD patients. © 2015 S. Karger AG, Basel.
Monkey to human comparative anatomy of the frontal lobe association tracts.
Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Valabregue, Romain; Catani, Marco
2012-01-01
The greater expansion of the frontal lobes along the phylogeny scale has been interpreted as the signature of evolutionary changes underlying higher cognitive abilities in humans functions in humans. However, it is unknown how an increase in number of gyri, sulci and cortical areas in the frontal lobe have coincided with a parallel increase in connectivity. Here, using advanced tractography based on spherical deconvolution, we produced an atlas of human frontal association connections that we compared with axonal tracing studies of the monkey brain. We report several similarities between human and monkey in the cingulum, uncinate, superior longitudinal fasciculus, frontal aslant tract and orbito-polar tract. These similarities suggest to preserved functions across anthropoids. In addition, we found major differences in the arcuate fasciculus and the inferior fronto-occipital fasciculus. These differences indicate possible evolutionary changes in the connectional anatomy of the frontal lobes underlying unique human abilities. Copyright © 2011 Elsevier Srl. All rights reserved.
Insight in psychotic disorder: relation with psychopathology and frontal lobe function.
Kumar, Atmesh; Sharma, Pranjal; Das, Shyamanta; Nath, Kamal; Talukdar, Uddip; Bhagabati, Dipesh
2014-01-01
Through conceptualising poor insight in psychotic disorders as a form of anosognosia, frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. The objective of this study was to compare the relation of insight in patients with psychotic illness to that of psychopathology and frontal lobe function. Forty patients with psychotic disorder were selected from those attending the Department of Psychiatry in a tertiary care teaching hospital. The evaluation of insight was carried out using the Schedule for Assessment of Insight (SAI), that of frontal lobe function by the Frontal Assessment Battery (FAB) and psychopathology by the Brief Psychiatric Rating Scale (BPRS). The correlation coefficients were determined. A negative correlation between SAI and BPRS scores means that the BPRS score is opposite to SAI scores. When the SAI total score was compared with the FAB total score, the correlation coefficient demonstrated a positive correlation. Better insight predicted lesser psychopathology and also that poor insight would exist with greater psychopathology. Better insight predicted a higher functional status of frontal lobes and prefrontal cortex in particular. Insight deficits in schizophrenia and other psychotic illnesses are multidimensional. Integration of different aetiological factors like biological, psychopathological, environmental ones and others are necessary for a better understanding of insight in psychosis. Copyright © 2013 S. Karger AG, Basel.
Human Frontal Lobes and AI Planning Systems
NASA Technical Reports Server (NTRS)
Levinson, Richard; Lum, Henry Jr. (Technical Monitor)
1994-01-01
Human frontal lobes are essential for maintaining a self-regulating balance between predictive and reactive behavior. This paper describes a system that integrates prediction and reaction based on neuropsychological theories of frontal lobe function. In addition to enhancing our understanding of deliberate action in humans' the model is being used to develop and evaluate the same properties in machines. First, the paper presents some background neuropsychology in order to set a general context. The role of frontal lobes is then presented by summarizing three theories which formed the basis for this work. The components of an artificial frontal lobe are then discussed from both neuropsychological and AI perspectives. The paper concludes by discussing issues and methods for evaluating systems that integrate planning and reaction.
Automated MRI parcellation of the frontal lobe.
Ranta, Marin E; Chen, Min; Crocetti, Deana; Prince, Jerry L; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E; Mostofsky, Stewart H
2014-05-01
Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here, we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. [2009]: Psychiatry Res 172:147-154 in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field, and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex [OFC] and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. Copyright © 2013 Wiley Periodicals, Inc.
Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L
2013-12-01
Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal-visual networks in patients relative to control subjects. We found abnormal functional connectivity within and across resting-state networks in children with frontal lobe epilepsy. Impairment in functional connectivity was associated with impaired neuropsychological function.
Yeh, Zai-Ting; Tsai, Ming-Cheng; Tsai, Ming-Dar; Lo, Chiao-Yu; Wang, Kaw-Chen
2017-01-01
"Theory of mind" (ToM) refers to the ability to predict others' thoughts, intentions, beliefs, and feelings. Evidence from neuropsychology and functional imaging indicates that ToM is a domain-specific or modular architecture; however, research in development psychology has suggested that ToM is the full development of the executive functions in individuals. Therefore, the relationship between ToM and the executive functions needs to be clarified. Since the frontal lobe plays a critical role in the abilities of ToM and the executive functions, patients with frontal lobe damage were recruited for the present study. Assessments of ToM and the executive functions were performed on 23 patients with frontal lobe damage and 20 healthy controls. When controlling for the executive functions, significant differences between the patient and normal groups were found in the affective component of ToM, but not in the cognitive component. The present study suggests that in various social situations, executing ToM abilities requires logical reasoning processes provided by the executive functions. However, the reasoning processes of affective ToM are independent of executive functions.
Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio
2012-01-01
Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.
Kanemura, Hideaki; Aihara, Masao; Nakazawa, Shinpei
2002-09-01
To evaluate the effects of malnutrition in early life on the growth of the frontal and prefrontal lobes, we quantitatively measured the volumes of the frontal and prefrontal lobes by three dimensional (3-D) MRI in three children (1 year 2 months to 2 years 5 months) with malnutrition. The 3-D MRI data were acquired by the fast spoiled gradient recalled (SPGR) sequence using a 1.5T MR imager. The frontal and prefrontal lobe volumes were measured by the volume measurement function of the Workstation. The data obtained were compared with those of 16 normal subjects (13 children aged 5 months to 14 years, and 3 adults aged 27 to 39 years). The volumes of the frontal and prefrontal lobes in the subjects were smaller compared with age matched controls. The results suggest that malnutrition in early life affects the growth of the frontal and prefrontal lobes.
Brown, Steffen A.; Hall, Rebecca; Hund, Lauren; Gutierrez, Hilda L.; Hurley, Timothy; Holbrook, Bradley D.; Bakhireva, Ludmila N.
2017-01-01
Objective While prenatal 3D ultrasonography results in improved diagnostic accuracy, no data are available on biometric assessment of the fetal frontal lobe. This study was designed to assess feasibility of a standardized approach to biometric measurement of the fetal frontal lobe and to construct frontal lobe growth trajectories throughout gestation. Study Design A sonographic 3D volume set was obtained and measured in 101 patients between 16.1 and 33.7 gestational weeks. Measurements were obtained by two independent raters. To model the relationship between gestational age and each frontal lobe measurement, flexible linear regression models were fit using penalized regression splines. Results The sample contained an ethnically diverse population (7.9% Native Americans, 45.5% Hispanic/Latina). There was high inter-rater reliability (correlation coefficients: 0.95, 1.0, and 0.87 for frontal lobe length, width, and height; p-values < 0.001). Graphs of the growth trajectories and corresponding percentiles were estimated as a function of gestational age. The estimated rates of frontal lobe growth were 0.096 cm/week, 0.247 cm/week, and 0.111 cm/week for length, width, and height. Conclusion To our knowledge, this is the first study to examine fetal frontal lobe growth trajectories through 3D prenatal ultrasound examination. Such normative data will allow for future prenatal evaluation of a particular disease state by 3D ultrasound imaging. PMID:29075046
Brown, Steffen A; Hall, Rebecca; Hund, Lauren; Gutierrez, Hilda L; Hurley, Timothy; Holbrook, Bradley D; Bakhireva, Ludmila N
2017-01-01
While prenatal 3D ultrasonography results in improved diagnostic accuracy, no data are available on biometric assessment of the fetal frontal lobe. This study was designed to assess feasibility of a standardized approach to biometric measurement of the fetal frontal lobe and to construct frontal lobe growth trajectories throughout gestation. A sonographic 3D volume set was obtained and measured in 101 patients between 16.1 and 33.7 gestational weeks. Measurements were obtained by two independent raters. To model the relationship between gestational age and each frontal lobe measurement, flexible linear regression models were fit using penalized regression splines. The sample contained an ethnically diverse population (7.9% Native Americans, 45.5% Hispanic/Latina). There was high inter-rater reliability (correlation coefficients: 0.95, 1.0, and 0.87 for frontal lobe length, width, and height; p-values < 0.001). Graphs of the growth trajectories and corresponding percentiles were estimated as a function of gestational age. The estimated rates of frontal lobe growth were 0.096 cm/week, 0.247 cm/week, and 0.111 cm/week for length, width, and height. To our knowledge, this is the first study to examine fetal frontal lobe growth trajectories through 3D prenatal ultrasound examination. Such normative data will allow for future prenatal evaluation of a particular disease state by 3D ultrasound imaging.
Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control
ERIC Educational Resources Information Center
Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia
2017-01-01
Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present…
[Normal aging of frontal lobe functions].
Calso, Cristina; Besnard, Jérémy; Allain, Philippe
2016-03-01
Normal aging in individuals is often associated with morphological, metabolic and cognitive changes, which particularly concern the cerebral frontal regions. Starting from the "frontal lobe hypothesis of cognitive aging" (West, 1996), the present review is based on the neuroanatomical model developed by Stuss (2008), introducing four categories of frontal lobe functions: executive control, behavioural and emotional self-regulation and decision-making, energization and meta-cognitive functions. The selected studies only address the changes of one at least of these functions. The results suggest a deterioration of several cognitive frontal abilities in normal aging: flexibility, inhibition, planning, verbal fluency, implicit decision-making, second-order and affective theory of mind. Normal aging seems also to be characterised by a general reduction in processing speed observed during neuropsychological assessment (Salthouse, 1996). Nevertheless many cognitive functions remain preserved such as automatic or non-conscious inhibition, specific capacities of flexibility and first-order theory of mind. Therefore normal aging doesn't seem to be associated with a global cognitive decline but rather with a selective change in some frontal systems, conclusion which should be taken into account for designing caring programs in normal aging.
Fernandes, Myra A; Davidson, Patrick S R; Glisky, Elizabeth L; Moscovitch, Morris
2004-07-01
On the basis of their scores on composite measures of frontal and temporal lobe function, derived from neuropsychological testing, seniors were divided preexperimentally into 4 groups. Participants studied a list of unrelated words under full attention and recalled them while concurrently performing an animacy decision task to words, an odd-digit identification task to numbers, or no distracting task. Large interference effects on memory were produced by the animacy but not by the odd-digit distracting task, and this pattern was not influenced by level of frontal or temporal lobe function. Results show associative retrieval is largely disrupted by competition for common representations, and it is not affected by a reduction in general processing resources, attentional capacity, or competition for memory structures in the temporal lobe.
Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang
2013-01-01
A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for cognitive disorder in depressed patients. PMID:25206466
Genetics Home Reference: autosomal dominant nocturnal frontal lobe epilepsy
... brain are involved in many critical functions, including reasoning, planning, judgment, and problem-solving. It is unclear ... E, Montagna P. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain. ...
Roh, Hyun Woong; Hong, Chang Hyung; Lee, SooJin; Lee, Yunhwan; Lee, Kang Soo; Chang, Ki Jung; Oh, Byoung Hoon; Choi, Seong Hye; Kim, Seong Yoon; Back, Joung Hwan; Chung, Young Ki; Lim, Ki Young; Noh, Jai Sung; Son, Sang Joon
2015-11-01
To determine the association between frontal lobe function and risk of hip fracture in patients with Alzheimer disease (AD).Retrospective cohort study using multicenter hospital-based dementia registry and national health insurance claim data was done. Participants who had available data of neuropsychological test, national health insurance claim, and other covariates were included. A total of 1660 patients with AD were included based on Stroop Test results. A total of 1563 patients with AD were included based on the Controlled Oral Word Association Test (COWAT) results. Hip fracture was measured by validated identification criteria using national health insurance claim data. Frontal lobe function was measured by Stroop Test and COWAT at baseline.After adjusting for potential covariates, including cognitive function in other domains (language, verbal and nonverbal memory, and attention), the Cox proportional hazard regression analysis revealed that risk of a hip fracture was decreased with a hazard ratio (HR) of 0.98 per one point of increase in the Stroop Test (adjusted HR = 0.98, 95% confidence interval [CI]: 0.97-1.00) and 0.93 per one point increase in COWAT (adjusted HR = 0.93, 95% CI: 0.88-0.99).The risk of hip fracture in AD patients was associated with baseline frontal lobe function. The result of this research presents evidence of association between frontal lobe function and risk of hip fracture in patients with AD.
Frontal Lobe Function and Risk of Hip Fracture in Patient With Alzheimer Disease
Roh, Hyun Woong; Hong, Chang Hyung; Lee, SooJin; Lee, Yunhwan; Lee, Kang Soo; Chang, Ki Jung; Oh, Byoung Hoon; Choi, Seong Hye; Kim, Seong Yoon; Back, Joung Hwan; Chung, Young Ki; Lim, Ki Young; Noh, Jai Sung; Son, Sang Joon
2015-01-01
Abstract To determine the association between frontal lobe function and risk of hip fracture in patients with Alzheimer disease (AD). Retrospective cohort study using multicenter hospital-based dementia registry and national health insurance claim data was done. Participants who had available data of neuropsychological test, national health insurance claim, and other covariates were included. A total of 1660 patients with AD were included based on Stroop Test results. A total of 1563 patients with AD were included based on the Controlled Oral Word Association Test (COWAT) results. Hip fracture was measured by validated identification criteria using national health insurance claim data. Frontal lobe function was measured by Stroop Test and COWAT at baseline. After adjusting for potential covariates, including cognitive function in other domains (language, verbal and nonverbal memory, and attention), the Cox proportional hazard regression analysis revealed that risk of a hip fracture was decreased with a hazard ratio (HR) of 0.98 per one point of increase in the Stroop Test (adjusted HR = 0.98, 95% confidence interval [CI]: 0.97–1.00) and 0.93 per one point increase in COWAT (adjusted HR = 0.93, 95% CI: 0.88–0.99). The risk of hip fracture in AD patients was associated with baseline frontal lobe function. The result of this research presents evidence of association between frontal lobe function and risk of hip fracture in patients with AD. PMID:26559259
Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao
2016-01-01
The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity to elucidate more anatomical details of the IFOF. And we provides a new framework for subdividing the IFOF for better understanding its functional role in the human brain. PMID:27721745
Frontal Lobe Involvement in a Task of Time-Based Prospective Memory
ERIC Educational Resources Information Center
McFarland, Craig P.; Glisky, Elizabeth L.
2009-01-01
Time-based prospective memory (PM) has been found to be negatively affected by aging, possibly as a result of declining frontal lobe (FL) function. Despite a clear retrospective component to PM tasks, the medial temporal lobes (MTL) are thought to play only a secondary role in successful task completion. The present study investigated the role of…
Sugimoto, Taiki; Yoshida, Masaki; Ono, Rei; Murata, Shunsuke; Saji, Naoki; Niida, Shumpei; Toba, Kenji; Sakurai, Takashi
2017-01-01
Urinary incontinence (UI) is frequently observed in patients with Alzheimer's disease (AD). Although previous works highlight the association between frontal lobe-related function and UI, causal relationship is unclear. To clarify the longitudinal association between frontal lobe function and the incidence of UI at 1 year in patients with AD. The subjects were 215 continent AD patients who attended the Memory Clinic of the National Center for Geriatrics and Gerontology of Japan during the period from March 2011 to December 2014. The absence or presence of UI was operationally assigned by the dementia behavior disturbance scale subscale, which was completed by the patients' caregivers. Frontal lobe function was assessed using the Frontal Assessment Battery (FAB). Other confounding factors including demographic data, cognitive status, vitality, mood, physical performance, and use of medication (cholinesterase inhibitors, calcium channel blockers [CCBs], diuretics, alpha blockers and anticholinergic drugs) were assessed. During 1-year follow up (mean: 377.4±83.7 days), the incidence of UI was 12.1% (n = 26). Patients with UI had significantly lower FAB performance at baseline (no UI versus UI = 9.3±2.8 versus 7.8±2.7). In multivariate analysis, stepwise logistic regression analysis demonstrated that FAB (odds ratio [OR] = 0.79, 95% confidence interval [CI] = 0.66-0.94) and the use of CCB (OR = 2.72, 95% CI = 1.09-6.77) were significantly associated with UI at 1 year. The results of study indicate that frontal lobe dysfunction is predictor for UI in patients with AD.
ERIC Educational Resources Information Center
Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa
2006-01-01
Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…
Alcázar-Córcoles, M A; Verdejo-García, A; Bouso-Saiz, J C
The relationship between frontal lobe damage and criminality is especially complex. The neural substrates of psychopathic behavior seem to involve structural and functional abnormalities in the frontal lobes and the limbic system. AIM. To analyze the repercussions that brain structural and functional abnormalities in psychopathic individuals may have for forensic neuropsychology. Consistent evidence indicate that response inhibition problems in psychopathic subjects are linked to structural or functional damage in the frontal cortex. Furthermore, the prefrontal cortex, along with the amygdala and the hippocampus forms the limbic system, which is an important neural substrate of emotion processing; therefore the psychopath's capacity of affective processing could also be impaired. The theoretical frameworks of the somatic marker and mirror neuron hypotheses, along with the empirical study of executive functions may contribute to explain the inability of the psychopathic subjects to feel empathy, which is one of the main inhibitors of violence and antisocial behavior. The relationship between frontal lobe dysfunction and antisocial behavior arises an important legal issue. In order to consider some type of minor liability in the case of psychopaths it is suggested to gather further research data about the relationship between frontal lobe dysfunction and the ability to inhibit antisocial behavior by making an adequate use of empathy and emotional ties.
Dulay, Mario F; Busch, Robyn M; Chapin, Jessica S; Jehi, Lara; Najm, Imad
2013-06-01
Executive dysfunction occurs in a variety of patients who have sustained damage to the frontal lobes. In individuals with frontal lobe epilepsy (FLE) or after unilateral frontal lobe resection (FLR), a unique neuropsychological profile linking executive functions (EF) with the frontal lobe has been elusive, with conflicting findings in the literature. Some studies show greater risk of executive impairment with left-sided FLE or FLR, while others report greater risk for right-sided patients. Some studies report no relationship between FLE and EF impairment, while others show EF impairment regardless of side of seizure foci or surgery. In patients with temporal lobe epilepsy, executive dysfunction is associated with depressed mood possibly reflecting disruption of cortical-limbic pathways and/or frontal-striatal circuitry. Although not previously examined, depression level may affect executive functioning in those with FLE or FLR. We hypothesized that FLE patients with poor mood state would show greater executive dysfunction than FLE patients without poor mood state. The relationship among EF, side of surgery and depressed mood before and 8 months after unilateral FLR was evaluated in 64 patients using validated measures of EF and mood state (Beck Depression Inventory-II). Results indicated that individuals with depressed mood before surgery had greater difficulty on a task of mental flexibility compared to patients without preoperative depressed mood. Further, individuals with depressed mood before surgery had significant increases in perseverative responding and completed fewer categories on a card-sorting task after surgery compared to patients without preoperative depressed mood. Regression analyses showed that among side of surgery, seizure freedom status after surgery and depression status, only pre-surgical depression status explained a significant amount of variance in executive functioning performance after surgery. Results suggest that clinically elevated depressive symptoms before surgery are a risk factor for moderate declines in EF after surgery. Results may be attributable to reduced cognitive reserve in patients with depressive symptoms, or may reflect a common cause attributable to damage to unilateral dorsal and ventral lateral frontal lobe. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neuromagnetic Vistas into Typical and Atypical Development of Frontal Lobe Functions
Taylor, Margot J.; Doesburg, Sam M.; Pang, Elizabeth W.
2014-01-01
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms. PMID:24994980
A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe
Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja
2016-01-01
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338
The frontal lobe and aggression
Séguin, Jean R.
2014-01-01
Frontal lesions often lead to psychosocial problems. It is not surprising that frontal lobe dysfunctions have been proposed to underlie antisocial behaviour in individuals without apparent lesions. However, physical aggression and violence have never been systematically related to acquired lesions. Whereas, traditional neuropsychological testing identifies problems in cognitive and emotional information processing, recent brain-imaging studies have revealed both the frontal structural and functional underpinnings of antisocial behaviour. Careful characterization of antisocial behaviour subtypes seems to indicate that cognitive-neuropsychological function is systematically poor in physical aggression and hyperactivity. Recent refinements point to biological and genetic moderators of that association. PMID:24976846
Gjini, Klevest; Qazi, Aisha; Greenwald, Mark K.; Sandhu, Ravinder; Gooding, Diane C.; Boutros, Nash N.
2013-01-01
Background and Objectives Despite evidence that frontal lobe functioning is impaired in cocaine-dependent individuals, relationships between behavioral measures of frontal dysfunction and electrophysiological measures of inhibition in cocaine use have not been explored. Methods Using the Frontal System Behavior Scale (FrSBe), frontal dysfunction was assessed in a group of abstinent cocaine-dependent subjects (N=49) and healthy controls (N=32). Using transcranial magnetic stimulation (TMS) and evoked potential (EP)-based electrophysiological measures of inhibition, we assessed associations between these measures and FrSBe estimates of frontal dysfunction. Results Patients had significantly higher FrSBe scores for executive dysfunction, disinhibition and apathy than controls. Lower TMS-based resting motor thresholds (i.e., hyperexcitability) were significantly associated with higher Executive Dysfunction scores in the patients. Conclusions and Scientific Significance Relationships between FrSBe scores and TMS-based measures highlight neurophysiological aberrations underlying frontal lobe dysfunction in cocaine abusers. TMS and EP measures may be useful probes of the intermediary steps between frontal lobe dysfunction and addictive behavior. PMID:24724884
Onset of psychosis at age 81? With regard to frontal lobe syndromes
Pedro, Patrícia; Telles-Correia, Diogo; Godinho, Iolanda; Chagas, Carlos
2015-01-01
When the frontal lobe of the brain is affected important behavioral changes may occur mainly at the level of executive functioning, i.e., planning, decision-making, judgment and self-perception. However, the behavioral changes may be of different nature with marked indifference and apathy. We report a clinical case of an 81-year-old patient with sudden onset of behavioral changes that were initially interpreted as an acute confusional episode of infectious etiology, but actually they were due to an ischemic lesion in the frontal lobe. PMID:26398362
Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl
2013-11-16
The Frontal Assessment Battery (FAB) is a brief battery of six neuropsychological tasks designed to assess frontal lobe function at bedside [Neurology 55:1621-1626, 2000]. The six FAB tasks explore cognitive and behavioral domains that are thought to be under the control of the frontal lobes, most notably conceptualization and abstract reasoning, lexical verbal fluency and mental flexibility, motor programming and executive control of action, self-regulation and resistance to interference, inhibitory control, and environmental autonomy. We examined the sensitivity of performance on the FAB to frontal lobe damage in right-hemisphere-damaged first-ever stroke patients based on voxel-based lesion-behavior mapping. Voxel-based lesion-behavior mapping of FAB performance revealed that the integrity of the right anterior insula (BA13) is crucial for the FAB global composite score, for the FAB conceptualization score, as well as for the FAB inhibitory control score. Furthermore, the FAB conceptualization and mental flexibility scores were sensitive to damage of the right middle frontal gyrus (MFG; BA9). Finally, the FAB inhibitory control score was sensitive to damage of the right inferior frontal gyrus (IFG; BA44/45). These findings indicate that several FAB scores (including composite and item scores) provide valid measures of right hemispheric lateral frontal lobe dysfunction, specifically of focal lesions near the anterior insula, in the MFG and in the IFG.
Performance on the Frontal Assessment Battery is sensitive to frontal lobe damage in stroke patients
2013-01-01
Background The Frontal Assessment Battery (FAB) is a brief battery of six neuropsychological tasks designed to assess frontal lobe function at bedside [Neurology 55:1621-1626, 2000]. The six FAB tasks explore cognitive and behavioral domains that are thought to be under the control of the frontal lobes, most notably conceptualization and abstract reasoning, lexical verbal fluency and mental flexibility, motor programming and executive control of action, self-regulation and resistance to interference, inhibitory control, and environmental autonomy. Methods We examined the sensitivity of performance on the FAB to frontal lobe damage in right-hemisphere-damaged first-ever stroke patients based on voxel-based lesion-behavior mapping. Results Voxel-based lesion-behavior mapping of FAB performance revealed that the integrity of the right anterior insula (BA13) is crucial for the FAB global composite score, for the FAB conceptualization score, as well as for the FAB inhibitory control score. Furthermore, the FAB conceptualization and mental flexibility scores were sensitive to damage of the right middle frontal gyrus (MFG; BA9). Finally, the FAB inhibitory control score was sensitive to damage of the right inferior frontal gyrus (IFG; BA44/45). Conclusions These findings indicate that several FAB scores (including composite and item scores) provide valid measures of right hemispheric lateral frontal lobe dysfunction, specifically of focal lesions near the anterior insula, in the MFG and in the IFG. PMID:24237624
Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception
Steele, Sarah C.; Peng, Ke; Boas, David A.; Becerra, Lino; Borsook, David
2016-01-01
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting. PMID:27806119
Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception.
Aasted, Christopher M; Yücel, Meryem A; Steele, Sarah C; Peng, Ke; Boas, David A; Becerra, Lino; Borsook, David
2016-01-01
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.
Frontal lobe dysfunction in long-term cannabis users.
Lundqvist, T; Jönsson, S; Warkentin, S
2001-01-01
This study examined the neurophysiological effects of cannabis. Cerebral blood flow (CBF) was measured in 12 long-term cannabis users shortly after cessation of cannabis use (mean 1.6 days). The findings showed significantly lower mean hemispheric blood flow values and significantly lower frontal values in the cannabis subjects compared to normal controls. The results suggest that the functional level of the frontal lobes is affected by long-term cannabis use.
Prospective memory and frontal lobe function.
Neulinger, Kerryn; Oram, Joanne; Tinson, Helen; O'Gorman, John; Shum, David H K
2016-01-01
The study sought to examine the role of frontal lobe functioning in focal prospective memory (PM) performance and its relation to PM deficit in older adults. PM and working memory (WM) differences were studied in younger aged (n = 21), older aged (n = 20), and frontal injury (n = 14) groups. An event-based focal PM task was employed and three measures of WM were administered. The younger aged group differed from the other two groups in showing significantly higher scores on PM and on one of the WM measures, but there were no differences at a statistically significant level between the older aged group and the frontal injury groups on any of the memory measures. There were, however, some differences in correlations with a WM measure between groups. It is concluded that there are similarities and differences in the deficits in PM between older adults and patients with frontal lobe injury on focal as well as nonfocal PM tasks.
Counterfactual cognitive deficit in persons with Parkinson's disease
McNamara, P; Durso, R; Brown, A; Lynch, A
2003-01-01
Background: Counterfactuals are mental representations of alternatives to past events. Recent research has shown them to be important for other cognitive processes, such as planning, causal reasoning, problem solving, and decision making—all processes independently linked to the frontal lobes. Objective: To test the hypothesis that counterfactual thinking is impaired in some patients with Parkinson's disease and is linked to frontal dysfunction in these patients. Methods. Measures of counterfactual processing and frontal lobe functioning were administered to 24 persons with Parkinson's disease and 15 age matched healthy controls. Results. Patients with Parkinson's disease spontaneously generated significantly fewer counterfactuals than controls despite showing no differences from controls on a semantic fluency test; they also performed at chance levels on a counterfactual inference test, while age matched controls performed above chance levels on this test. Performance on both the counterfactual generation and inference tests correlated significantly with performance on two tests traditionally linked to frontal lobe functioning (Stroop colour–word interference and Tower of London planning tasks) and one test of pragmatic social communication skills. Conclusions: Counterfactual thinking is impaired in Parkinson's disease. This impairment may be related to frontal lobe dysfunction. PMID:12876235
Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control
Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia
2017-01-01
Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional Near-Infrared Spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n=13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n=14) showed greater right prefrontal activation than bilinguals. The present findings suggest early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development. PMID:26743118
Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity
NASA Astrophysics Data System (ADS)
Huang, Yufeng; Zhou, Yifeng
2017-06-01
Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.
Walters, Robert P; Harrison, Patti Kelly; Campbell, Ransom W; Harrison, David W
2016-12-01
Hostile men have reliably displayed an exaggerated sympathetic stress response across multiple experimental settings, with cardiovascular reactivity for blood pressure and heart rate concurrent with lateralized right frontal lobe stress (Trajanoski et al., in Diabetes Care 19(12):1412-1415, 1996; see Heilman et al., in J Neurol Neurosurg Psychiatry 38(1):69-72, 1975). The current experiment examined frontal lobe regulatory control of glucose in high and low hostile men with concurrent left frontal lobe (Control Oral Word Association Test [verbal]) or right frontal lobe (Ruff Figural Fluency Test [nonverbal]) stress. A significant interaction was found for Group × Condition, F (1,22) = 4.16, p ≤ .05 with glucose levels (mg/dl) of high hostile men significantly elevated as a function of the right frontal stressor (M = 101.37, SD = 13.75) when compared to the verbal stressor (M = 95.79, SD = 11.20). Glucose levels in the low hostile group remained stable for both types of stress. High hostile men made significantly more errors on the right frontal but not the left frontal stressor (M = 17.18, SD = 19.88) when compared to the low hostile men (M = 5.81, SD = 4.33). These findings support our existing frontal capacity model of hostility (Iribarren et al., in J Am Med Assoc 17(19):2546-2551, 2000; McCrimmon et al., in Physiol Behav 67(1):35-39, 1999; Brunner et al., in Diabetes Care 21(4):585-590, 1998), extending the role of the right frontal lobe to regulatory control over glucose mobilization.
Charting the Maturation of the Frontal Lobe: An Electrophysiological Strategy
ERIC Educational Resources Information Center
Segalowitz, S. J.; Davies, Patricia L.
2004-01-01
Tracking the functional development of specific regions of the prefrontal cortex in children using event-related potentials (ERPs) is challenging for both technical and conceptual reasons. In this paper we outline our strategy for studying frontal lobe development and present preliminary results from children aged 7-17 years and young adults using…
Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian
2018-01-01
Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004
Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl
2014-01-01
One of Luria's favorite neuropsychological tasks for challenging frontal lobe functions was Link's cube test (LCT). The LCT is a cube construction task in which the subject must assemble 27 small cubes into one large cube in such a manner that only the painted surfaces of the small cubes are visible. We computed two new LCT composite scores, the constructive plan composite score, reflecting the capability to envisage a cubical-shaped volume, and the behavioral (dis-) organization composite score, reflecting the goal-directedness of cube construction. Voxel-based lesion-behavior mapping (VLBM) was used to test the relationship between performance on the LCT and brain injury in a sample of stroke patients with right hemisphere damage (N = 32), concentrated in the frontal lobe. We observed a relationship between the measure of behavioral (dis-) organization on the LCT and right frontal lesions. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether this observation is specific for right frontal lesions. PMID:24596552
Dementia of frontal lobe type.
Neary, D; Snowden, J S; Northen, B; Goulding, P
1988-01-01
A significant proportion of patients with presenile dementia due to primary cerebral atrophy do not have Alzheimer's disease. One form of non-Alzheimer dementia may be designated as dementia of frontal lobe type (DFT), on the basis of a characteristic neuropsychological picture suggestive of frontal lobe disorder, confirmed by findings on single photon emission tomography. The case histories of seven patients exemplify the disorder: a presentation of social misconduct and personality change, unconcern and disinhibition, in the presence of physical well-being and few neurological signs. Assessment revealed economic and concrete speech with verbal stereotypes, variable memory impairment, and marked abnormalities on tasks sensitive to frontal lobe function. Visuo-spatial disorder was invariably absent. Comparisons of DFT and Alzheimer patients revealed qualitative differences in clinical presentation, neurological signs, profile of psychological disability, electroencephalography, single photon emission tomography and demography. DFT, which may represent forms of Pick's disease, may be more common than is often recognised. PMID:3258902
The effect of lifelong bilingualism on regional grey and white matter volume.
Olsen, Rosanna K; Pangelinan, Melissa M; Bogulski, Cari; Chakravarty, M Mallar; Luk, Gigi; Grady, Cheryl L; Bialystok, Ellen
2015-07-01
Lifelong bilingualism is associated with the delayed diagnosis of dementia, suggesting bilingual experience is relevant to brain health in aging. While the effects of bilingualism on cognitive functions across the lifespan are well documented, less is known about the neural substrates underlying differential behaviour. It is clear that bilingualism affects brain regions that mediate language abilities and that these regions are at least partially overlapping with those that exhibit age-related decline. Moreover, the behavioural advantages observed in bilingualism are generally found in executive function performance, suggesting that the frontal lobes may also be sensitive to bilingualism, which exhibit volume reductions with age. The current study investigated structural differences in the brain of lifelong bilingual older adults (n=14, mean age=70.4) compared with older monolinguals (n=14, mean age=70.6). We employed two analytic approaches: 1) we examined global differences in grey and white matter volumes; and, 2) we examined local differences in volume and cortical thickness of specific regions of interest previously implicated in bilingual/monolingual comparisons (temporal pole) or in aging (entorhinal cortex and hippocampus). We expected bilinguals would exhibit greater volume of the frontal lobe and temporal lobe (grey and white matter), given the importance of these regions in executive and language functions, respectively. We further hypothesized that regions in the medial temporal lobe, which demonstrate early changes in aging and exhibit neural pathology in dementia, would be more preserved in the bilingual group. As predicted, bilinguals exhibit greater frontal lobe white matter compared with monolinguals. Moreover, increasing age was related to decreasing temporal pole cortical thickness in the monolingual group, but no such relationship was observed for bilinguals. Finally, Stroop task performance was positively correlated with frontal lobe white matter, emphasizing the importance of preserved white matter in maintaining executive function in aging. These results underscore previous findings implicating an association between bilingualism and preserved frontal and temporal lobe function in aging. This article is part of a Special Issue entitled SI: Memory Å. Copyright © 2015 Elsevier B.V. All rights reserved.
Murrey, G J; Hale, F M; Williams, J D
2005-08-10
To determine if the Mayo-Portland Adaptability Inventory (MPAI) demonstrates clinical utility in differentiating between persons with severe TBI and frontal lobe damage/anosognosia and persons with mild TBI and no frontal lobe damage. Forty-three persons with TBI and documented frontal lobe damage (mean age = 34; mean time since injury = 5.2 years) and 69 persons with mild TBI and no frontal lobe damage (mean age = 34.3; mean time since injury = 4.8 4.8 years). MPAI. Total inventory and select sub-category difference scores were significantly greater in the frontal lobe group than in the non-frontal lobe group. However, as expected, there was no significant difference between the two groups on the mobility sub-category difference scores. The MPAI appears to be potentially clinically useful in assessing for frontal lobe damage and associated anosognosia in patients with TBI.
Impaired social cognition in patients with interictal epileptiform discharges in the frontal lobe.
Hu, Ying; Jiang, Yubao; Hu, Panpan; Ma, Huijuan; Wang, Kai
2016-04-01
Patients with epilepsy frequently experience cognitive impairments, including impairments in social cognition. However, there is a lack of direct examinations of the affective and cognitive aspects of social cognition in such patients. The neural correlates remain to be identified. The present study was designed to examine the degree of impairments in different aspects of social cognition including empathy, emotion recognition, and Theory of Mind (ToM) in patients with epilepsy. In addition, we further explored factors related to the impairments, highlighting the specific importance of the frontal region. After 24-hour EEG monitoring, 53 patients with epilepsy were administered a neuropsychological battery of tests for basic intelligence assessment and then were tested with the Interpersonal Reactive Index, the "Yoni" task, the Emotion Recognition Test, the Reading the Mind in the Eyes test, and other neuropsychological tests. The clinical variables potentially affecting the ability to accomplish these tests were taken into account. We divided the patients into those having frontal lobe interictal epileptiform discharges (group with frontal IEDs) and those with seizures originating outside the frontal or temporal lobes (group with extrafrontal IEDs). Sixty healthy individuals served as controls. The group with frontal IEDs achieved the most severe deficits in emotion recognition, ToM, and cognitive empathy, while affective empathy was intact. Moreover, the performance scores of empathy in the group with frontal IEDs were selectively correlated with their executive function scores, which are believed to be associated with orbitofrontal functioning. In contrast, patients with epilepsies not originating from the frontal or temporal lobes may also be at risk of impairments in social cognition, albeit to a lesser extent. The preliminary findings suggest that patients with epilepsy, especially those having frontal lobe interictal epileptiform discharges, have associated general social cognition deficits. At the clinical level, these results are in line with previous findings regarding social cognition and the importance of the prefrontal area in the integration of cognition and affect. At the theoretical level, our findings also provide evidence for the functional independence of cognitive from affective aspects of empathy. Copyright © 2016 Elsevier Inc. All rights reserved.
Is there a creative functional paradoxical facilitation in juvenile myoclonic epilepsy?
Senf, Philine; Scheuren, Lena; Holtkamp, Martin
2016-09-01
In patients with juvenile myoclonic epilepsy (JME), a specific personality profile suggestive of frontal lobe dysfunctions has been described. From a neurobiological point of view, the frontal lobe seems to be crucial for creative processes, although the exact role remains unclear. The theory of creative paradoxical functional facilitation (PFF) assumes that disinhibited frontal lobe function can enhance creative abilities. The aim of the current study was to explore our hypothesis that JME is associated with higher artistic creativity based on the theory of PFF. We assessed 25 patients with JME aged 18 to 40years in regard to neuropsychological creativity testing. Results were compared with those of 25 age-, sex-, and level of education-matched healthy control subjects (HC) and patients with temporal lobe epilepsy (TLE). Creative abilities were assessed using two validated and standardized tests: 1) nonverbal: the incomplete figure task of Torrance Test of Creative Thinking and 2) verbal: verbal creativity test. Additionally, a basic assessment of fluid intelligence (test for problem solving) and frontal lobe function (trail-making test) was administered to all participants. Verbal creativity was impaired in both groups with epilepsy compared with that in HC (specific score: JME vs. HC, p=0.008; TLE vs. HC, p=0.003). In regard to nonverbal creative abilities, both groups with epilepsy exhibited fair performance. Level of fluid intelligence was even in all groups (p=0.433). Only patients with JME showed deficits in the frontal lobe test of psychomotor speed (time in seconds: 67.7 JME vs. 54.6 TLE vs. 52.8 HC; p=0.045). Overall, our study did not reveal increased creativity in JME. The current findings provide insights into creative abilities in two different epilepsy syndromes. Knowledge on specific neuropsychological strengths or deficits in patients with epilepsy may be useful for treatment or counseling. Copyright © 2016 Elsevier Inc. All rights reserved.
Divergent Task Performance in Older Adults: Declarative Memory or Creative Potential?
ERIC Educational Resources Information Center
Leon, Susan A.; Altmann, Lori J. P.; Abrams, Lise; Gonzalez Rothi, Leslie J.; Heilman, Kenneth M.
2014-01-01
Divergent thinking is a process or method used to generate creative ideas by exploring many possible solutions or responses, and is a critical element of creativity. Lesion and imaging studies have shown that the frontal lobes are important in mediating divergent thinking, and frontal lobe function is highly dependent on white matter connections…
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
Neural Correlates of Subliminal Language Processing.
Axelrod, Vadim; Bar, Moshe; Rees, Geraint; Yovel, Galit
2015-08-01
Language is a high-level cognitive function, so exploring the neural correlates of unconscious language processing is essential for understanding the limits of unconscious processing in general. The results of several functional magnetic resonance imaging studies have suggested that unconscious lexical and semantic processing is confined to the posterior temporal lobe, without involvement of the frontal lobe-the regions that are indispensable for conscious language processing. However, previous studies employed a similarly designed masked priming paradigm with briefly presented single and contextually unrelated words. It is thus possible, that the stimulation level was insufficiently strong to be detected in the high-level frontal regions. Here, in a high-resolution fMRI and multivariate pattern analysis study we explored the neural correlates of subliminal language processing using a novel paradigm, where written meaningful sentences were suppressed from awareness for extended duration using continuous flash suppression. We found that subjectively and objectively invisible meaningful sentences and unpronounceable nonwords could be discriminated not only in the left posterior superior temporal sulcus (STS), but critically, also in the left middle frontal gyrus. We conclude that frontal lobes play a role in unconscious language processing and that activation of the frontal lobes per se might not be sufficient for achieving conscious awareness. © The Author 2014. Published by Oxford University Press.
Carbocyanine dye labeling reveals a new motor nucleus in octopus brain.
Robertson, J D; Schwartz, O M; Lee, P
1993-02-22
This work aims at a better understanding of the organization of the brain of Octopus vulgaris, emphasizing the touch and visual learning centers. We injected the carbocyanine dye, DiI, into the cerebrobrachial connectives and, separately, into the brachial nerves of living octopuses. In both experiments, retrogradely transported granules of DiI appeared in motor neurons in the superior buccal, posterior buccal and subvertical lobes and in a hitherto unsuspected motor nucleus of several hundred neurons in the posterior dorsal basal and median basal lobes. In addition we labeled afferent fibers by injecting DiI into the caudal (sensory) division of the cerebrobrachial connective on one side; the label spread throughout the superior buccal, posterior buccal and the lateral and median inferior frontal lobes mainly on the injected side. It extended through the cerebral tract into the subvertical lobe, into the superior frontal lobe through the interfrontal tract, through the posterior buccal commissure into the opposite posterior buccal lobe and into the median inferior frontal lobe. The work suggests a new function for the posterior dorsal and median basal lobes, which are shown for the first time to project through the inferior frontal lobe system into the brachial nerves. In addition it represents the first full report of the successful use of the carbocyanine dyes DiI and DiO for labeling nerve tissue in a live invertebrate animal.
Huang, Peiyu; Qiu, Lihua; Shen, Lin; Zhang, Yong; Song, Zhe; Qi, Zhiguo; Gong, Qiyong; Xie, Peng
2013-10-01
As a complex mental process, creativity requires the coordination of multiple brain regions. Previous pathological research on figural creativity has indicated that there is a mechanism by which the left side of the brain inhibits the activities of the right side of the brain during figural creative thinking, but this mechanism has not been directly demonstrated. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate the existence of this inhibitory mechanism in young adults (15 women, 11 men, mean age: 22 years) that were not artists. By making comparisons between brain activity during creative and uncreative tasks, we found increased activity in the left middle and inferior frontal lobe and strong decreases in activity in the right middle frontal lobe and the left inferior parietal lobe. As such, these data suggest that the left frontal lobe may inhibit the right hemisphere during figural creative thinking in normal people. Moreover, removal of this inhibition by practicing artistry or through specific damage to the left frontal lobe may facilitate the emergence of artistic creativity. Copyright © 2012 Wiley Periodicals, Inc.
Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen
2014-01-01
Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.
Advances in understanding ventromedial prefrontal function: the accountant joins the executive.
Fellows, Lesley K
2007-03-27
Studies of the brain basis of decision-making and economic behavior are providing a new perspective on the organization and functions of human prefrontal cortex. This line of inquiry has focused particularly on the ventral and medial portions of prefrontal cortex, arguably the most enigmatic regions of the "enigmatic frontal lobes." This review highlights recent advances in the cognitive neuroscience of decision making and neuroeconomics and discusses how these findings can inform clinical thinking about frontal lobe dysfunction.
Rojkova, K; Volle, E; Urbanski, M; Humbert, F; Dell'Acqua, F; Thiebaut de Schotten, M
2016-04-01
In neuroscience, there is a growing consensus that higher cognitive functions may be supported by distributed networks involving different cerebral regions, rather than by single brain areas. Communication within these networks is mediated by white matter tracts and is particularly prominent in the frontal lobes for the control and integration of information. However, the detailed mapping of frontal connections remains incomplete, albeit crucial to an increased understanding of these cognitive functions. Based on 47 high-resolution diffusion-weighted imaging datasets (age range 22-71 years), we built a statistical normative atlas of the frontal lobe connections in stereotaxic space, using state-of-the-art spherical deconvolution tractography. We dissected 55 tracts including U-shaped fibers. We further characterized these tracts by measuring their correlation with age and education level. We reported age-related differences in the microstructural organization of several, specific frontal fiber tracts, but found no correlation with education level. Future voxel-based analyses, such as voxel-based morphometry or tract-based spatial statistics studies, may benefit from our atlas by identifying the tracts and networks involved in frontal functions. Our atlas will also build the capacity of clinicians to further understand the mechanisms involved in brain recovery and plasticity, as well as assist clinicians in the diagnosis of disconnection or abnormality within specific tracts of individual patients with various brain diseases.
Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou
2014-06-01
This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (p<0.05, AlphaSim corrected). Between-group differences suggest that the group with rTLE had a decreased FC within the right superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (p<0.05, AlphaSim corrected). The regions of increased FC in rTLE were localized within the right superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (p<0.05, AlphaSim corrected). Moreover, patients with rTLE performed worse than controls in the VSWM_Nback test, and there were negative correlations between ACCmeanRT (2-back) and the mean Z-value in the voxels showing decreased or increased FC in rTLE (p<0.05). The results suggest that the alteration of the VSWM-related RSN might underpin the VSWM impairment in patients with rTLE and possibly implies a functional compensation by enlarging the FC within the ipsilateral cerebral network. Copyright © 2014 Elsevier Inc. All rights reserved.
Getting a Grip on Memory: Unilateral Hand Clenching Alters Episodic Recall
2013-04-24
States of America Abstract Unilateral hand clenching increases neuronal activity in the frontal lobe of the contralateral hemisphere. Such hand clenching...Simple clenching of one versus the other hand increases the neuronal activity of the frontal lobe in the opposite (contralateral) hemisphere [1], [2...hemispheres are thought to be differentially involved in many functions, including language , emotion, spatial processing, and local/global informa
Yeung, Michael K; Han, Yvonne M Y; Sze, Sophia L; Chan, Agnes S
2016-03-01
Deficits in cognitive flexibility have been suggested to underlie the repetitive and stereotyped behavior in individuals with autism spectrum disorders (ASD). Because cognitive flexibility is primarily mediated by the frontal lobe, where structural and functional abnormalities have been extensively found in these individuals, it is conceivable that their deficits in cognitive flexibility are related to abnormal activations of the frontal lobe. The present study investigates cognitive flexibility and its underlying neurophysiological activities as indicated by theta oscillations in children with ASD. Twenty-five children with high-functioning ASD and 25 IQ- and age-matched typically developing (TD) children were subjected to neuropsychological assessments on cognitive flexibility and electroencephalography recordings. The children with ASD performed significantly worse than the TD children across the tasks of cognitive flexibility, including the modified Wisconsin Card Sorting Test (WCST). These children also demonstrated a reduced increase of the theta power localized in multiple brain regions, including various sectors of the frontal lobe at the late stage (i.e., 600 ms-900 ms poststimulus interval) but not the early stage (i.e., 250 ms-550 ms poststimulus interval) of the performance of the modified WCST. The suppressed late frontal theta activities were further shown to be significantly correlated with a poorer performance on the cognitive flexibility measures. Our findings suggest that abnormal activations of multiple cortical regions, especially the frontal lobe, form the neural basis of the cognitive flexibility deficits in children with ASD. In addition, we found an EEG marker of cognitive flexibility which could be used to monitor treatment outcomes objectively. (c) 2016 APA, all rights reserved).
Behavioral profiles in frontal lobe epilepsy: Autobiographic memory versus mood impairment.
Rayner, Genevieve; Jackson, Graeme D; Wilson, Sarah J
2015-02-01
Autobiographic memory encompasses the encoding and retrieval of episodes, people, and places encountered in everyday life. It can be impaired in both epilepsy and frontal lobe damage. Here, we performed an initial investigation of how autobiographic memory is impacted by chronic frontal lobe epilepsy (FLE) together with its underlying pathology. We prospectively studied a series of nine consecutive patients with medically refractory FLE, relative to 24 matched healthy controls. Seven of the nine patients had frontal lobe structural abnormalities. Episodic and semantic autobiographic memory functioning was profiled, and factors associated with impaired autobiographic memory were identified among epileptologic, neuroimaging, neuropsychiatric, and cognitive variables including auditory-verbal and visual memory, and the executive function of cognitive control. Results showed that the FLE group experienced significantly higher rates of autobiographic memory and mood disturbance (p < 0.001), with detailed assessment of individual patients revealing two profiles of impairment, primarily characterized by cognitive or mood disturbance. Five of the patients (56%) exhibited significant episodic autobiographic memory deficits, whereas in three of these, knowledge of semantic autobiographic facts was preserved. Four of them also had reduced cognitive control. Mood disorder was largely unrelated to poor autobiographic memory. In contrast, the four cases with preserved autobiographic memory were notable for their past or current depressive symptoms. These findings provide preliminary data that frontal lobe seizure activity with its underlying pathology may selectively disrupt large-scale cognitive or affective networks, giving rise to different neurobehavioral profiles that may be used to inform clinical management. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Noun-Verb Ambiguity in Chronic Undifferentiated Schizophrenia
ERIC Educational Resources Information Center
Goldfarb, Robert; Bekker, Natalie
2009-01-01
This study investigated noun-verb retrieval patterns of 30 adults with chronic undifferentiated schizophrenia and 67 typical adults, to determine if schizophrenia affected nouns (associated with temporal lobe function) differently from verbs (associated with frontal lobe function). Stimuli were homophonic homographic homonyms, balanced according…
Neural Correlates of Subliminal Language Processing
Axelrod, Vadim; Bar, Moshe; Rees, Geraint; Yovel, Galit
2015-01-01
Language is a high-level cognitive function, so exploring the neural correlates of unconscious language processing is essential for understanding the limits of unconscious processing in general. The results of several functional magnetic resonance imaging studies have suggested that unconscious lexical and semantic processing is confined to the posterior temporal lobe, without involvement of the frontal lobe—the regions that are indispensable for conscious language processing. However, previous studies employed a similarly designed masked priming paradigm with briefly presented single and contextually unrelated words. It is thus possible, that the stimulation level was insufficiently strong to be detected in the high-level frontal regions. Here, in a high-resolution fMRI and multivariate pattern analysis study we explored the neural correlates of subliminal language processing using a novel paradigm, where written meaningful sentences were suppressed from awareness for extended duration using continuous flash suppression. We found that subjectively and objectively invisible meaningful sentences and unpronounceable nonwords could be discriminated not only in the left posterior superior temporal sulcus (STS), but critically, also in the left middle frontal gyrus. We conclude that frontal lobes play a role in unconscious language processing and that activation of the frontal lobes per se might not be sufficient for achieving conscious awareness. PMID:24557638
Kehagia, Angie A.; Ye, Rong; Joyce, Dan W.; Doyle, Orla M.; Rowe, James B.; Robbins, Trevor W.
2017-01-01
Cognitive control has traditionally been associated with the prefrontal cortex, based on observations of deficits in patients with frontal lesions. However, evidence from patients with Parkinson’s disease (PD) indicates that subcortical regions also contribute to control under certain conditions. We scanned 17 healthy volunteers while they performed a task switching paradigm that previously dissociated performance deficits arising from frontal lesions in comparison with PD, as a function of the abstraction of the rules that are switched. From a multivoxel pattern analysis by Gaussian Process Classification (GPC), we then estimated the forward (generative) model to infer regional patterns of activity that predict Switch / Repeat behaviour between rule conditions. At 1000 permutations, Switch / Repeat classification accuracy for concrete rules was significant in the basal ganglia, but at chance in the frontal lobe. The inverse pattern was obtained for abstract rules, whereby the conditions were successfully discriminated in the frontal lobe but not in the basal ganglia. This double dissociation highlights the difference between cortical and subcortical contributions to cognitive control and demonstrates the utility of multivariate approaches in investigations of functions that rely on distributed and overlapping neural substrates. PMID:28387585
[Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].
Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming
2010-02-01
Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.
Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong
2016-12-01
The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.
Brain networks governing the golf swing in professional golfers.
Kim, Jin Hyun; Han, Joung Kyue; Kim, Bung-Nyun; Han, Doug Hyun
2015-01-01
Golf, as with most complex motor skills, requires multiple different brain functions, including attention, motor planning, coordination, calculation of timing, and emotional control. In this study we assessed the correlation between swing components and brain connectivity from the cerebellum to the cerebrum. Ten female golf players and 10 age-matched female controls were recruited. In order to determine swing consistency among participants, the standard deviation (SD) of the mean swing speed time and the SD of the mean swing angle were assessed over 30 swings. Functional brain connectivity was assessed by resting state functional MRI. Pro-golfers showed greater positive left cerebellum connectivity to the occipital lobe, temporal lobe, parietal lobe and both frontal lobes compared to controls. The SD of play scores was positively correlated with the SD of the impact angle. Constant swing speed and back swing angle in professional golfers were associated with functional connectivity (FC) between the cerebellum and parietal and frontal lobes. In addition, the constant impact angle in professional golfers was associated with improved golf scores and additional FC of the thalamus.
Unnwongse, Kanjana; Wehner, Tim; Foldvary-Schaefer, Nancy
2012-10-01
Mesial frontal lobe epilepsies can be divided into epilepsies arising from the anterior cingulate gyrus and those of the supplementary sensorimotor area. They provide diagnostic challenges because they often lack lateralizing or localizing features on clinical semiology and interictal and ictal scalp electroencephalographic (EEG) recordings. A number of unique semiologic features have been described over the last decade in patients with mesial frontal lobe epilepsy (FLE). There are few reports of applying advanced neurophysiologic techniques such as electrical source imaging, magnetoencephalography, EEG/functional magnetic resonance imaging, or analysis of high-frequency oscillations in patients with mesial FLE. Despite these diagnostic challenges, it seems that patients with mesial FLE benefit from epilepsy surgery to the same extent or even better than patients with FLE do, as a whole.
Becker, Suzanna; Lim, Jean
2003-08-15
Several decades of research into the function of the frontal lobes in brain-damaged patients, and more recently in intact individuals using function brain imaging, has delineated the complex executive functions of the frontal cortex. And yet, the mechanisms by which the brain achieves these functions remain poorly understood. Here, we present a computational model of the role of the prefrontal cortex (PFC) in controlled memory use that may help to shed light on the mechanisms underlying one aspect of frontal control: the development and deployment of recall strategies. The model accounts for interactions between the PFC and medial temporal lobe in strategic memory use. The PFC self-organizes its own mnemonic codes using internally derived performance measures. These mnemonic codes serve as retrieval cues by biasing retrieval in the medial temporal lobe memory system. We present data from three simulation experiments that demonstrate strategic encoding and retrieval in the free recall of categorized lists of words. Experiment 1 compares the performance of the model with two control networks to evaluate the contribution of various components of the model. Experiment 2 compares the performance of normal and frontally lesioned models to data from several studies using frontally intact and frontally lesioned individuals, as well as normal, healthy individuals under conditions of divided attention. Experiment 3 compares the model's performance on the recall of blocked and unblocked categorized lists of words to data from Stuss et al. (1994) for individuals with control and frontal lobe lesions. Overall, our model captures a number of aspects of human performance on free recall tasks: an increase in total words recalled and in semantic clustering scores across trials, superiority on blocked lists of related items compared to unblocked lists of related items, and similar patterns of performance across trials in the normal and frontally lesioned models, with poorer overall performance of the lesioned models on all measures. The model also has a number of shortcomings, in light of which we suggest extensions to the model that would enable more sophisticated forms of strategic control.
Longaud-Valès, A; Chevignard, M; Dufour, C; Grill, J; Puget, S; Sainte-Rose, C; Valteau-Couanet, D; Dellatolas, G
2016-08-01
There is a lack of studies assessing executive functions (EF) using ecologically valid tests in children with frontal lobe lesions. This study aimed to (1) evaluate EF in children, adolescents and young adults treated for childhood frontal lobe tumours, (2) identify factors influencing performance, such as age at diagnosis or type of treatment, and (3) examine correlations between intellectual ability and classical and ecological tests of EF. Twenty-one patients, aged 8-27 years, treated for a childhood benign or malignant frontal lobe tumour, and 42 healthy controls (matched for gender, age and socio-economic status) were assessed using classical tests of EF, and the BADS-C ecological battery. Patients also underwent assessment of intellectual ability and parent and teacher ratings of the BRIEF questionnaire. IQ scores ranged from 45 to 125 (mean FSIQ = 84) and were lower in case of epilepsy, hydrocephalus and lower parental education. Patients displayed deficits in most, but not all measures of EF. Most classical and ecological measures of EF were strongly correlated to IQ. This study confirms the frequency of EF deficits in this population; it also highlights the utility of ecological measures of EF and some limitations of classical tests of EF in children.
Dinkelacker, Vera; Xin, Xu; Baulac, Michel; Samson, Séverine; Dupont, Sophie
2016-09-01
Temporal lobe epilepsy (TLE) with hippocampal sclerosis has widespread effects on structural and functional connectivity and often entails cognitive dysfunction. EEG is mandatory to disentangle interactions in epileptic and physiological networks which underlie these cognitive comorbidities. Here, we examined how interictal epileptic discharges (IEDs) affect cognitive performance. Thirty-four patients (right TLE=17, left TLE=17) were examined with 24-hour video-EEG and a battery of neuropsychological tests to measure intelligence quotient and separate frontal and temporal lobe functions. Hippocampal segmentation of high-resolution T1-weighted imaging was performed with FreeSurfer. Partial correlations were used to compare the number and distribution of clinical interictal spikes and sharp waves with data from imagery and psychological tests. The number of IEDs was negatively correlated with executive functions, including verbal fluency and intelligence quotient (IQ). Interictal epileptic discharge affected cognitive function in patients with left and right TLE differentially, with verbal fluency strongly related to temporofrontal spiking. In contrast, IEDs had no clear effects on memory functions after corrections with partial correlations for age, age at disease onset, disease duration, and hippocampal volume. In patients with TLE of long duration, IED occurrence was strongly related to cognitive deficits, most pronounced for frontal lobe function. These data suggest that IEDs reflect dysfunctional brain circuitry and may serve as an independent biomarker for cognitive comorbidity. Copyright © 2016. Published by Elsevier Inc.
Complete prefrontal lobe isolation surgery for recurrent epilepsy: A case report
Yin, Shaoya; Jin, Weipeng; Li, Qingyun; Feng, Mei; Feng, Keke; Shao, Hui; Zhang, Xueqing; Wang, Shimin
2016-01-01
Epileptogenic focus resection is less effective for the treatment of frontal lobe epilepsy compared with temporal lobe epilepsy. However, there is currently a lack of effective therapeutic options for patients with frontal lobe epilepsy who are unsuitable for epileptogenic focus resection (such patients with epileptogenic foci in one frontal lobe in which the precise epileptic foci cannot be determined), or who experience recurrent epilepsy following epileptogenic focus resection. The present study reports a patient with frontal lobe epilepsy who underwent successful frontal lobe isolation surgery following a previous unsuccessful epileptogenic focus resection surgery. To ensure complete isolation of the prefrontal lobe, the surgery included division of the anterior commissure and the anterior part of the corpus callosum. The patient was followed-up for 16 months. Although the follow-up electroencephalogram presented a number of sharp waves on the affected side, the patient did not experience any seizures. The results suggest that prefrontal lobe isolation is an effective method of treating frontal lobe epilepsy, as division of the anterior commissure and the anterior part of the corpus callosum ensures disconnection of the prefrontal lobe from other regions of the brain. PMID:27882111
Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.
Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S
2017-01-01
The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.
Obsessions appear after the removal a brain tumor in the right frontal lobe.
Liu, Jie; Zhang, Xinhua; Liu, Jihua
2014-01-01
A series of case reports and neuroimaging research points to the underlying neuropathological substrate for obsessive-compulsive disorder (OCD) and the underlying associations between OCD and areas of the frontal lobe. We report a patient wherein the onset of OCD occurred after resection of meningioma of the right frontal lobe and who was treated successfully with paroxetine hydrochloride. We suggest that the onset of secondary (organic) OCD is associated with the frontal lobe, and we propose that the origin of obsessions is located in the right frontal lobe. Copyright © 2014 Elsevier Inc. All rights reserved.
... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...
Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki
2014-10-01
The rostral pontine reticular formation has a strong inhibitory effect on micturition by facilitating lumbosacral glycinergic neurons. We assessed the influence of the rostral pontine reticular formation on the micturition reflex after noradrenaline injection in the medial frontal lobe. We also examined the relation between the medial frontal lobe and the rostral pontine reticular formation. Continuous cystometry was performed in 28 female rats. After the interval between bladder contractions was shortened by noradrenaline injection in the medial frontal lobe we injected glutamate or flavoxate hydrochloride in the rostral pontine reticular formation or intravenously injected flavoxate or propiverine. The change in bladder activity was examined. Noradrenaline injection in the medial frontal lobe shortened the interval between bladder contractions. In contrast to the bladder contraction interval before and after noradrenaline injection in the medial frontal lobe, the interval was prolonged after noradrenaline injection when glutamate or flavoxate was injected in the rostral pontine reticular formation, or flavoxate was injected intravenously. Noradrenaline injection in the medial frontal lobe plus intravenous propiverine injection also prolonged the interval compared to that after noradrenaline injection alone. However, the interval after noradrenaline injection in the medial frontal lobe plus intravenous injection of propiverine was shorter than that before noradrenaline injection only. Medial frontal lobe neurons excited by noradrenaline may facilitate the micturition reflex via activation of inhibitory interneurons, which inhibit descending rostral pontine reticular formation neurons that innervate the lumbosacral glycinergic inhibitory neurons. Therefore, the mechanism of micturition reflex facilitation by the activation of medial frontal lobe neurons involves the rostral pontine reticular formation. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lyvers, Michael; Jamieson, Reuben; Thorberg, Fred Arne
2013-01-01
Risky or problematic alcohol use by young adults has been found to be associated with factors such as alexithymia, frontal lobe dysfunction, reward sensitivity, and impulsivity. One interpretation is that these factors reflect inherent traits that predispose to risky substance use in general, a notion examined in the present study. Alexithymia, everyday frontal lobe functioning, sensitivity to reward and punishment, and impulsivity were examined in 138 young adult cannabis users who were divided into Low Risk (n = 99) and Risky (n = 39) users according to their Cannabis Use Disorder Identification Test (CUDIT) scores. Risky cannabis use was significantly positively associated with alexithymia, multiple signs of frontal lobe dysfunction in everyday life, and impulsivity. A broader pattern of dysfunction was indicated for risky cannabis use than for risky alcohol use in this sample. Findings are interpreted as likely reflecting not only inherent traits that predispose to risky substance use in general, but also perhaps residual effects of recent heavy cannabis use in the Risky user group. Longitudinal research is needed to disentangle these competing possibilities.
Wilde, Elisabeth A.; Merkley, Tricia L.; Bigler, Erin D.; Max, Jeffrey E.; Schmidt, Adam T.; Ayoub, Kareem W.; McCauley, Stephen R.; Hunter, Jill V.; Hanten, Gerri; Li, Xiaoqi; Chu, Zili D.; Levin, Harvey S.
2012-01-01
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2 to 17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4 to 16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable “sparing” of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months – 3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues. PMID:22266409
Tian, Li-Fang; Zhou, Cheng; Chen, Min; Zou, Ming-Zhu; Yang, Zheng-Han
2009-07-01
Using the functional magnetic resonance imaging (fMRI) to observe the distributed characteristic of excited cerebral cortical areas that induced by acupuncture-stimulating the Zhongzhu (TE 3) of the meridian of Hand-Shaoyang and Yanglingquan (GB 34) of the meridian of Foot-Shaoyang, and investigate the central neural mechanism on the effect of meridians and acupoints. Forty-two right handed healthy volunteers were randomly divided into Zhongzhu (TE 3) group and Yanglingquan (GB 34) group. The functional cortical changes during acupuncture-stimulating the Zhongzhu (TE 3) and Yanglingquan (GB 34) were successively scanned with fMRI, and the effected areas were determined through analysing the obtained data with SPM2 software. The main excited areas were bilateral frontal lobes, temporal lobes, cerebellum and occipital lobes successively in Zhongzhu (TE 3) group, and bilateral occipital lobes, cerebellum, frontal lobes and temporal lobes in Yanglingquan (GB 34) group in contrast. Acupuncture-stimulating both Zhongzhu (TE 3) and Yanglingquan (GB 34) can excite bilateral acoustic, visual and somatomotor cortices, which might be the central neural basis for clinical treatment on related diseases.
Lifespan development of pro- and anti-saccades: multiple regression models for point estimates.
Klein, Christoph; Foerster, Friedrich; Hartnegg, Klaus; Fischer, Burkhart
2005-12-07
The comparative study of anti- and pro-saccade task performance contributes to our functional understanding of the frontal lobes, their alterations in psychiatric or neurological populations, and their changes during the life span. In the present study, we apply regression analysis to model life span developmental effects on various pro- and anti-saccade task parameters, using data of a non-representative sample of 327 participants aged 9 to 88 years. Development up to the age of about 27 years was dominated by curvilinear rather than linear effects of age. Furthermore, the largest developmental differences were found for intra-subject variability measures and the anti-saccade task parameters. Ageing, by contrast, had the shape of a global linear decline of the investigated saccade functions, lacking the differential effects of age observed during development. While these results do support the assumption that frontal lobe functions can be distinguished from other functions by their strong and protracted development, they do not confirm the assumption of disproportionate deterioration of frontal lobe functions with ageing. We finally show that the regression models applied here to quantify life span developmental effects can also be used for individual predictions in applied research contexts or clinical practice.
Assessing cognitive functioning in ALS: A focus on frontal lobe processes.
Gillingham, S M; Yunusova, Y; Ganda, A; Rogaeva, E; Black, S E; Stuss, D T; Zinman, L
2017-05-01
It is generally acknowledged that at least 50% of individuals with amyotrophic lateral sclerosis (ALS) will exhibit cognitive deficits outside of the characteristic motor neuron involvement. However, a specific cognitive profile has been difficult to ascertain due to disease-related testing barriers and limitations in the sensitivity and specificity of available assessment methods. This study assessed the level of functioning of extramotor frontal cognitive processes in ALS, and the amount of change in the functioning in these processes over time as disease progresses. Empirical tests validated for a model of frontal lobe functioning were modified into an assessment battery appropriate for individuals with ALS in a clinical setting (the ALS-CFB, Computerised Frontal Battery). Twenty ALS participants and 36 age- and education-matched neurologically healthy controls were tested, and a sub-sample of each group (11 ALS and 20 controls) re-tested after approximately nine months. Compared to standard neuropsychological screening tests that did not show a difference between ALS participants and healthy controls, the ALS-CFB illustrated a profile of extramotor frontal dysfunction involving energisation (preparing the neural system to respond) and executive functions, a profile that may be indicative of the nature of neurodegeneration in ALS.
The gyri of the octopus vertical lobe have distinct neurochemical identities.
Shigeno, Shuichi; Ragsdale, Clifton W
2015-06-15
The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry. © 2015 Wiley Periodicals, Inc.
Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan
Dong, Jianxin; Jing, Bin; Ma, Xiangyu; Liu, Han; Mo, Xiao; Li, Haiyun
2018-01-01
Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI) signal in the human brain across the adult lifespan using Hurst exponent (HE). We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females) from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected). However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected). Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process. PMID:29456489
Disruption of reciprocal coordination by a medial frontal stroke sparing the corpus callosum.
Kluger, Benzi M; Heilman, Kenneth M
2007-12-01
Aleksandr Luria described several tests of higher motor function, including the "reciprocal coordination" test of bimanual coordination. Although these tests are commonly used to assess frontal lobe function, their specific neuroanatomic underpinnings are not completely understood. We describe a man with a medial frontal stroke sparing the corpus callosum with a defect in Luria's reciprocal coordination test but otherwise intact motor abilities, including other tests of higher motor function.
Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D
2013-01-01
Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. © 2013 S. Karger AG, Basel.
Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D
2014-01-01
Traumatic brain injury in children commonly involves the frontal lobes, and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p) 21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 and 7 d later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to Bregma. While cell death and accumulated beta-amyloid precursor protein were characteristic features of the peri-contusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory, likely reflect several variables including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. PMID:24247103
Auditory connections and functions of prefrontal cortex
Plakke, Bethany; Romanski, Lizabeth M.
2014-01-01
The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931
Levine, Brian; Schweizer, Tom A; O'Connor, Charlene; Turner, Gary; Gillingham, Susan; Stuss, Donald T; Manly, Tom; Robertson, Ian H
2011-01-01
Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke) affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task as well as the Tower Test, a visuospatial problem-solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits.
Zago, Laure; Petit, Laurent; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie
2016-12-01
Cerebral lateralization for language production and spatial attention and their relationships with manual preference strength (MPS) were assessed in a sample of 293 healthy volunteers, including 151 left-handers, using fMRI during covert sentence production (PROD) and line bisection judgment (LBJ) tasks, as compared to high- and low-level reference tasks. At the group level, we found the expected complementary hemispheric specialization (HS) with leftward asymmetries for PROD within frontal and temporal regions and rightward asymmetries for LBJ within frontal and posterior occipito-parieto-temporal regions. Individual hemispheric (HLI) and regional (frontal and occipital) lateralization indices (LI) were then calculated on the activation maps for PROD and LBJ. We found a correlation between the degree of rightward cerebral asymmetry and the leftward behavioral attentional bias recorded during LBJ task. This correlation was found when LBJ-LI was computed over the hemispheres, in the frontal lobes, but not in the occipital lobes. We then investigated whether language production and spatial attention cerebral lateralization relate to each other, and whether manual preference was a variable that impacted the complementary HS of these functions. No correlation was found between spatial and language LIs in the majority of our sample of participants, including right-handers with a strong right-hand preference (sRH, n=97) and mixed-handers (MH, n=97), indicating that these functions lateralized independently. By contrast, in the group of left-handers with a strong left-hand preference (sLH, n= 99), a negative correlation was found between language and spatial lateralization. This negative correlation was found when LBJ-LI and PROD-LI were computed over the hemispheres, in the frontal lobes and between the occipital lobes for LBJ and the frontal lobes for PROD. These findings underline the importance to include sLH in the study sample to reveal the underlying mechanisms of complementary HS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frontal lobe function in chess players.
Nejati, Majid; Nejati, Vahid
2012-01-01
Chess is considered as a cognitive game because of severe engagement of the mental resources during playing. The purpose of this study is evaluation of frontal lobe function of chess players with matched non-players. Wisconsin Card Sorting Test (WCST) data showed no difference between the player and non-player groups in preservation error and completed categories but surprisingly showed significantly lower grade of the player group in correct response. Our data reveal that chess players don't have any preference in any stage of Stroop test. Chess players don't have any preference in selective attention, inhibition and executive cognitive function. Chess players' have lower shifting abilities than non-players.
Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu
2017-10-01
Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Buklina, S B; Batalov, A I; Smirnov, A S; Poddubskaya, A A; Pitskhelauri, D I; Kobyakov, G L; Zhukov, V Yu; Goryaynov, S A; Kulikov, A S; Ogurtsova, A A; Golanov, A V; Varyukhina, M D; Pronin, I N
There are no studies on application of functional MRI (fMRI) for long-term monitoring of the condition of patients after resection of frontal and temporal lobe tumors. The study purpose was to correlate, using fMRI, reorganization of the speech system and dynamics of speech disorders in patients with left hemisphere gliomas before surgery and in the early and late postoperative periods. A total of 20 patients with left hemisphere gliomas were dynamically monitored using fMRI and comprehensive neuropsychological testing. The tumor was located in the frontal lobe in 12 patients and in the temporal lobe in 8 patients. Fifteen patients underwent primary surgery; 5 patients had repeated surgery. Sixteen patients had WHO Grade II and Grade III gliomas; the others had WHO Grade IV gliomas. Nineteen patients were examined preoperatively; 20 patients were examined at different times after surgery. Speech functions were assessed by a Luria's test; the dominant hand was determined using the Annette questionnaire; a family history of left-handedness was investigated. Functional MRI was performed on an HDtx 3.0 T scanner using BrainWavePA 2.0, Z software for fMRI data processing program for all calculations >7, p<0.001. In patients with extensive tumors and recurrent tumors, activation of right-sided homologues of the speech areas cold be detected even before surgery; but in most patients, the activation was detected 3 months or more after surgery. Therefore, reorganization of the speech system took time. Activation of right-sided homologues of the speech areas remained in all patients for up to a year. Simultaneous activation of right-sided homologues of both speech areas, the Broca's and Wernicke's areas, was detected more often in patients with frontal lobe tumors than in those with temporal lobe tumors. No additional activation foci in the left hemisphere were found at the thresholds used to process fMRI data. Recovery of the speech function, to a certain degree, occurred in all patients, but no clear correlation with fMRI data was found. Complex fMRI and neuropsychological studies in 20 patients after resection of frontal and temporal lobe tumors revealed individual features of speech system reorganization within one year follow-up. Probably, activation of right-sided homologues of the speech areas in the presence of left hemisphere tumors depends not only on the severity of speech disorder but also reflects individual involvement of the right hemisphere in enabling speech function. This is confirmed by right-sided activation, according to the fMRI data, in right-sided patients without aphasia and, conversely, the lack of activation of right-sided homologues of the speech areas in several patients with severe postoperative speech disorders during the entire follow-up period.
Frontal and temporal lobe involvement on verbal fluency measures in amyotrophic lateral sclerosis.
Lepow, Lauren; Van Sweringen, James; Strutt, Adriana M; Jawaid, Ali; MacAdam, Claire; Harati, Yadollah; Schulz, Paul E; York, Michele K
2010-11-01
Amyotrophic lateral sclerosis (ALS) has been associated with changes in frontal and temporal lobe-mediated cognitive and behavioral functions. Verbal fluency, a sensitive measure to these changes, was utilized to investigate phonemic and semantic abilities in 49 ALS patients and 25 healthy controls (HCs). A subset of the ALS patients was classified as ALS-intact, ALS with mild cognitive impairments (ALS-mild), and ALS with fronto-temporal dementia (ALS-FTD) based on a comprehensive neuropsychological evaluation. Clustering and switching, the underlying component processes of verbal fluency, were analyzed using Troyer's (Troyer, Moscovitch, & Winocur, 1997) and Abwender's (Abwender, Swan, Bowerman, & Connolly, 2001) scoring systems. ALS patients exhibited decreased fluency versus HCs. For phonemic fluency, the intact ALS sample generated fewer clusters and more switches than the ALS-mild and ALS-FTD patients using both scoring systems. This suggests temporal involvement in ALS patients, with increasing frontal lobe involvement in patients with greater cognitive dysfunction. For semantic fluency, similar results were obtained with a greater emphasis on declines in clustering or increased temporal lobe dysfunction. These results suggest that verbal fluency measures identify frontal and temporal lobe involvement in the cognitive decline associated with ALS, particularly when the component processes are evaluated. The clinical utility of these scoring systems with ALS patients is also discussed.
Vaidya, Avinash R; Fellows, Lesley K
2016-09-21
Real-world decisions are typically made between options that vary along multiple dimensions, requiring prioritization of the important dimensions to support optimal choice. Learning in this setting depends on attributing decision outcomes to the dimensions with predictive relevance rather than to dimensions that are irrelevant and nonpredictive. This attribution problem is computationally challenging, and likely requires an interplay between selective attention and reward learning. Both these processes have been separately linked to the prefrontal cortex, but little is known about how they combine to support learning the reward value of multidimensional stimuli. Here, we examined the necessary contributions of frontal lobe subregions in attributing feedback to relevant and irrelevant dimensions on a trial-by-trial basis in humans. Patients with focal frontal lobe damage completed a demanding reward learning task where options varied on three dimensions, only one of which predicted reward. Participants with left lateral frontal lobe damage attributed rewards to irrelevant dimensions, rather than the relevant dimension. Damage to the ventromedial frontal lobe also impaired learning about the relevant dimension, but did not increase reward attribution to irrelevant dimensions. The results argue for distinct roles for these two regions in learning the value of multidimensional decision options under dynamic conditions, with the lateral frontal lobe required for selecting the relevant dimension to associate with reward, and the ventromedial frontal lobe required to learn the reward association itself. The real world is complex and multidimensional; how do we attribute rewards to predictive features when surrounded by competing cues? Here, we tested the critical involvement of human frontal lobe subregions in a probabilistic, multidimensional learning environment, asking whether focal lesions affected trial-by-trial attribution of feedback to relevant and irrelevant dimensions. The left lateral frontal lobe was required for filtering option dimensions to allow appropriate feedback attribution, while the ventromedial frontal lobe was necessary for learning the value of features in the relevant dimension. These findings argue that selective attention and associative learning processes mediated by anatomically distinct frontal lobe subregions are both critical for adaptive choice in more complex, ecologically valid settings. Copyright © 2016 the authors 0270-6474/16/369843-16$15.00/0.
Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J
2011-06-01
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
Kingyon, J; Behroozmand, R; Kelley, R; Oya, H; Kawasaki, H; Narayanan, N S; Greenlee, J D W
2015-10-01
The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70-150Hz) are observed in the frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between the frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4-8Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Distinct frontal lobe morphology in girls and boys with ADHD.
Dirlikov, Benjamin; Shiels Rosch, Keri; Crocetti, Deana; Denckla, Martha B; Mahone, E Mark; Mostofsky, Stewart H
2015-01-01
This study investigated whether frontal lobe cortical morphology differs for boys and girls with ADHD (ages 8-12 years) in comparison to typically developing (TD) peers. Participants included 226 children between the ages of 8-12 including 93 children with ADHD (29 girls) and 133 TD children (42 girls) for which 3T MPRAGE MRI scans were obtained. A fully automated frontal lobe atlas was used to generate functionally distinct frontal subdivisions, with surface area (SA) and cortical thickness (CT) assessed in each region. Analyses focused on overall diagnostic differences as well as examinations of the effect of diagnosis within boys and girls. Girls, but not boys, with ADHD showed overall reductions in total prefrontal cortex (PFC) SA. Localization revealed that girls showed widely distributed reductions in the bilateral dorsolateral PFC, left inferior lateral PFC, right medial PFC, right orbitofrontal cortex, and left anterior cingulate; and boys showed reduced SA only in the right anterior cingulate and left medial PFC. In contrast, boys, but not girls, with ADHD showed overall reductions in total premotor cortex (PMC) SA. Further localization revealed that in boys, premotor reductions were observed in bilateral lateral PMC regions; and in girls reductions were observed in bilateral supplementary motor complex. In line with diagnostic group differences, PMC and PFC SAs were inversely correlated with symptom severity in both girls and boys with ADHD. These results elucidate sex-based differences in cortical morphology of functional subdivisions of the frontal lobe and provide additional evidence of associations among SA and symptom severity in children with ADHD.
Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A
2009-11-01
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo
2012-06-01
To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value <0.001, and cluster volume ≥ 270 mm(3) was used to determine statistical significance. Compared with the MC, the MSD showed significantly higher ReHo in the right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the treatment of brain-related diseases (e.g., depression). Copyright © 2012 Elsevier B.V. All rights reserved.
Qian, Andan; Wang, Xin; Liu, Huiru; Tao, Jiejie; Zhou, Jiejie; Ye, Qiong; Li, Jiance; Yang, Chuang; Cheng, Jingliang; Zhao, Ke; Wang, Meihao
2018-06-01
Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.
[Local brain activity in different motor subtypes of Parkinson's disease with fMRI].
Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao
2015-02-17
To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was negatively correlated with PIGD scores. The levodopa dose was positively correlated with frontal lobes and temporal lobe in TD and cerebellums and inferior parietal lobule in PIGD. A specific pattern of intrinsic activity in TD and PIGD may provide insights into neurophysiological mechanisms of PD motor subtypes. The changes of brain activity in TD are caused by the interaction between cerebello-thalamo-cortical circuit and basal ganglia loop while the changes in PIGD result largely from damaged basal ganglia loop.
Zhang, Dong-Qing; Li, Fu-Hai; Zhu, Xiao-Bo; Sun, Ruo-Peng
2014-01-01
The objective was to investigate the prevalence of attention-deficit hyperactivity disorder (ADHD) in children with frontal lobe epilepsy and related factors. The medical records of 190 children diagnosed with frontal lobe epilepsy at Qilu Hospital of Shandong University between 2006 and 2011 were retrospectively collected, and a follow-up analysis of the prevalence of ADHD in these children was conducted. Of the 161 children with an effective follow-up, 59.0% (95/161) with frontal lobe epilepsy suffered from ADHD as well. Analysis of epilepsy and ADHD-related factors indicated that the incidence of ADHD was 89.4% (76/85) in children with abnormal electroencephalogram (EEG) discharges on the most recent EEG, which was significantly higher than the ADHD incidence of 25% (19/76) in children with normal readings on the most recent EEG (P < .01). Children with frontal lobe epilepsy have a high incidence of ADHD. Sustained abnormal discharge on the electroencephalogram is associated with increased comorbidity of ADHD with frontal lobe epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Deqiang; Kwong, Dora; Chan, Godfrey
Purpose: To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. Methods and Materials: Twenty-two medulloblastoma survivors (15 male, mean [{+-} SD] age = 12.1 {+-} 4.6 years) and the same number of control subjects (15 male, aged 12.0 {+-} 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the samemore » radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA{sub f/p}, respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA{sub f/p} between medulloblastoma survivors and control subjects. Results: Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA{sub f/p} of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). Conclusion: Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.« less
Dysexecutive performance of healthy oldest old subjects on the Frontal Assessment Battery.
Iavarone, Alessandro; Lorè, Elisa; De Falco, Caterina; Milan, Graziella; Mosca, Raffaela; Pappatà, Sabina; Galeone, Filomena; Sorrentino, Paolo; Scognamiglio, Mario; Postiglione, Alfredo
2011-01-01
Frontal lobes and executive functions appear to be more vulnerable to normal aging than other cerebral regions and domains. The aim of the study was to evaluate executive functions by the Frontal Assessment Battery (FAB) in healthy oldest old subjects free of dementia. Thirty-two healthy oldest old subjects (age range 85-97 yrs) and 32 young old subjects (aged 61-74 yrs) were studied. All subjects were living with their families or alone and were considered normal, since they were fully independent in their activities of daily living and without signs or symptoms characteristic of any type of dementia. Mental status was assessed by the Mini- Mental State Examination (MMSE) and executive functions by the FAB. Mean MMSE scores were 23.12 ± 4.68 in oldest old and 26.78 ± 2.60 in young old subjects (p<0.005). Delayed recall was the most impaired domain, followed by executive (Serial 7). Mean FAB scores were 9.37 ± 4.14 in the oldest old and 13.53 ± 2.12 in the young old (p<0.0001). Among the FAB subtests, conceptualization was the most impaired in both groups, with sensitivity to interference and inhibitory control exhibiting higher discrimination between the oldest old and young old. Education influenced performance on MMSE and FAB in both groups. On the FAB test, healthy oldest old subjects showed executive impairment with respect to the young olds, due to the involvement of functions depending on activities of different regions of the frontal lobes. FAB results were consistent with the hypothesis that frontal lobes have a high vulnerability to normal aging. Short composite batteries like the FAB are suitable for rapid and reliable description of patterns of executive functioning in the oldest old.
[Planning disorders in men with schizophrenia and in men with localized frontal lobe lesions].
Okruszek, Łukasz; Rutkowska, Aleksandra
2013-01-01
Planning disorders have been observed in people with frontal lobe lesions for many decades. There's also growing body of evidence of frontal dysfunction in people with schizophrenia. The aim of this study is to compare the planning abilities in men with schizophrenia, men with localized frontal lobe lesions and healthy men. A sample of 90 men participated in the study. They were divided into three groups: men with schizophrenia (n = 30), men with localized frontal lobe lesions (n = 30) and healthy men (n = 30) as a control group. Planning abilities were assessed with a clinical trial based on Tower of London task. Significant differences in ToL measures were found between controls and men with schizophrenia (Trials solved: p < 0.01; Trials solved perfectly: p < 0.05; Execution time: p < 0.001) and between controls and men with frontal lobe lesions (Trials solved: p < 0.001; Thinking time: p < 0.05; Execution time: p < 0.001). No significant differences were found between schizophrenia and frontal lobe lesion groups. Similar deficits in planning and solving problems, which require planning, may be observed in men with schizophrenia and men with frontal lobe lesions. In both groups time spent on thinking is less effective than in healthy men. Not only quantitative, but also qualitative assessment should be carried when examining patients' performance on Tower of London task.
Levine, Brian; Schweizer, Tom A.; O'Connor, Charlene; Turner, Gary; Gillingham, Susan; Stuss, Donald T.; Manly, Tom; Robertson, Ian H.
2011-01-01
Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke) affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task as well as the Tower Test, a visuospatial problem-solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits. PMID:21369362
Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions.
Kopelman, M D; Stanhope, N; Kingsley, D
1999-07-01
Patients with focal diencephalic, temporal lobe, or frontal lobe lesions were examined on various measures of remote memory. Korsakoff patients showed a severe impairment with a characteristic 'temporal gradient', whereas two patients with focal diencephalic damage (and anterograde amnesia) were virtually unimpaired on remote memory measures. Patients with frontal lobe pathology were severely impaired in the recall of autobiographical incidents and famous news events. Patients with temporal lobe pathology showed severe impairment but a relatively 'flat' temporal gradient, largely attributable to herpes encephalitis patients. From recognition and cued recall tasks, it is argued that there is an important retrieval component to the remote memory deficit across all the lesion groups. In general, the pattern of performance by the frontal lobe and temporal lobe groups was closely similar, and there was no evidence of any major access/storage difference between them. However, laterality comparisons across these groups indicated that the right temporal and frontal lobe regions may make a greater contribution to the retrieval of past episodic (incident and event) memories, whereas the left temporal region is more closely involved in the lexical-semantic labelling of remote memories.
Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk
2016-08-01
People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD.
Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess
2015-01-01
Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a number of occipital lobe gyri even after accounting for these cofactors, but was again found to be more highly correlated with the frontal cortex than with the occipital cortex. These results indicate that eye volume explains only a small amount of variation in orbital and visual cortical volume, and that the eye and orbit are generally more structurally associated with the frontal lobes than they are functionally associated with the visual cortex of the occipital lobes. Results also demonstrate that these components of the visual system are highly complex and influenced by a multitude of factors in humans. PMID:26250048
Kumagai, Ryo; Kitazawa, Maiko; Ishibiki, Yoshiro; Narumi, Kenji; Ichimiya, Yosuke
2017-05-01
A 79-year-old Japanese woman with schizophrenia was hospitalized because of idiopathic duodenal stenosis. Three days after discontinuing ingestion, including the administration of psychotropic drugs, the patient demonstrated incoherent behaviour and strong general muscle tension, and was unable to engage in conversation. Computed tomography indicated bilateral regions of low density in the frontal lobes, subsequent to which she was diagnosed with post-lobotomy catatonia. Administration of olanzapine (10 mg/day) improved the patient's condition within a short period. Previous studies have demonstrated an association between the dysfunction of frontal circuits and catatonia; therefore, the observed catatonic episode might relate to the disconnection of nerve fibres in the prefrontal lobes induced by her lobotomy. Olanzapine was likely effective in treating catatonia because of its reported efficacy in improving frontal lobe function. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.
Older people experiencing homelessness show marked impairment on tests of frontal lobe function.
Rogoz, Astrid; Burke, David
2016-03-01
Reported rates of mild and moderate cognitive impairment in older people experiencing homelessness range from 5-80%. The objective of this study was to determine the prevalence and characteristics of cognitive impairment in older people experiencing homelessness in the inner city of Sydney, Australia. Men and women experiencing homelessness aged 45 years and over in the inner city were screened for cognitive impairment. Participants who scored 26 or below on the mini-mental state examination and/or were impaired on any one of the clock-drawing test, the verbal fluency test and the trail-making test, part B were then assessed with a semi-structured interview, including the 21-item Depression Anxiety Stress Scale and the 12-item General Health Questionnaire. Screening of 144 men and 27 women aged between 45 years and 93 years identified cognitive impairment in 78%. Subsequently, high rates of mental and physical illness were identified, and 75% of subjects who were cognitively impaired performed poorly on frontal lobe tests. The trail-making test, part B was the most sensitive measure of frontal function. This study demonstrated that a large majority of older people experiencing homelessness, in the inner city of a high-income country, showed impairment on tests of frontal lobe function, a finding that could have significant implications for any medical or psychosocial intervention. Copyright © 2015 John Wiley & Sons, Ltd.
Frontal lobe morphometry with MRI in a normal age group of 6-17 year-olds.
Ilkay Koşar, M; Otağ, Ilhan; Sabancıoğulları, Vedat; Atalar, Mehmet; Tetiker, Hasan; Otağ, Aynur; Cimen, Mehmet
2012-12-01
Morphometric data of the frontal lobe are important for surgical planning of lesions in the frontal lobe and its surroundings. Magnetic resonance imaging (MRI) techniques provide suitable data for this purpose. In our study, the morphometric data of mid-sagittal MRI of the frontal lobe in certain age and gender groups of children have been presented. In a normal age group of 6-17-year-old participants, the length of the line passing through predetermined different points, including the frontal pole (FP), commissura anterior (AC), commissura posterior (PC), the outermost point of corpus callosum genu (AGCC), the innermost point of corpus callosum genu (IGCC), tuberculum sella (TS), AGCC and IGCC points parallel to AC-PC line and the point such line crosses at the frontal lobe surface (FCS) were measured in three age groups (6-9, 10-13 and 14-17 years) for each gender. The frontal lobe morphometric data were higher in males than females. Frontal lobe measurements peak at the age group of 10-13 in the male and at the age group of 6-13 in the female. In boys, the length of FP-AC increases 4.1% in the 10-13 age group compared with the 6-9-year-old group, while this increase is 2.3% in girls. Differences in age and gender groups were determined. While the length of AGCC-IGCC increases 10.4% in adults, in children aged 6-17, the length of AC-PC is 11.5% greater than adults. These data will contribute to the preliminary assessment for developing a surgical plan in fine interventions in the frontal lobe and its surroundings in children.
Smith, Mary Lou
2016-11-01
The new approach to classification of the epilepsies emphasizes the role of dysfunction in networks in defining types of epilepsies. This paper reviews the structural and neuropsychological deficits in two types of childhood epilepsy: frontal lobe and temporal lobe epilepsy. The evidence for and against a pattern of specificity of deficits in executive function and memory associated with these two types of epilepsies is presented. The evidence varies with the methodologies used in the studies, but direct comparison of the two types of epilepsies does not suggest a clear-cut mapping of function onto structure. These findings are discussed in light of the concept of network dysfunction. The evidence supports the conceptualization of epilepsy as a network disease. Implications for future work in the neuropsychology of pediatric epilepsy are suggested. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
[Speech and thought disorder in frontal syndrome following subarachnoid hemorrhage].
Magiera, P; Sep-Kowalik, B; Pankiewicz, P; Pankiewicz, K
1994-01-01
Here is described a case of a patient suffering from cerebral hemorrhage resulting in the perforation of the third cerebral ventricle and massive damage of the frontal lobes in consequence of the rupture of an intracranial aneurysm. After neurosurgical operation the patient's general state improved, but in spite of this he displayed symptoms of the frontal syndrome with many symptoms in the area of abstractional thinking and reflectiveness and a significant reduction of higher emotionality. Very interesting in this case is the neurolinguistic symptomatology. The rehabilitation and pharmacotherapy was very successful. This case is very interesting because it contains many of the symptoms called "frontal syndrome". It is also important to show the role of the frontal lobes in the integral process of mental life and in the role of the left hemisphere in the gnostic and coordinative processes of speech and other higher functions of the central nervous system.
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing
2016-03-01
To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.
Paschali, Anna; Messinis, Lambros; Lyros, Epameinondas; Constantoyannis, Costas; Kefalopoulou, Zinovia; Lakiotis, Velissarios; Papathanasopoulos, Panagiotis; Vassilakos, Paulos
2009-11-01
In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale. During all assessments patients were "on" standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings.
Frontal Lobe Cavernous Malformations in Pediatric Patients: Clinical Features and Surgical Outcomes.
Wang, Chengjun; Zhao, Meng; Wang, Jia; Wang, Shuo; Jiang, Zhongli; Zhao, Jizong
2018-01-01
The purpose of this study is to investigate the clinical manifestations, surgical treatment, and neurologic outcomes of frontal lobe cavernous malformations in children. A retrospective analysis of 23 pediatric frontal lobe cavernous malformation patients who underwent surgical treatment in Beijing Tiantan Hospital was performed. The case series included 16 boys and 7 girls. Gross total removal without surgical mortality was achieved in all patients. The mean follow-up period after surgery was 33.1 months. Two patients who left hospital with motor deficits gradually recovered after rehabilitative treatment, and other patients were considered to be in excellent clinical condition. For symptomatic frontal lobe cavernous malformations, neurosurgical management should be the treatment of choice. Conservative treatment may be warranted in asymptomatic frontal lobe cavernous malformations, especially the deep-seated or eloquently located cases.
Reasoning, learning, and creativity: frontal lobe function and human decision-making.
Collins, Anne; Koechlin, Etienne
2012-01-01
The frontal lobes subserve decision-making and executive control--that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior.
Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making
Collins, Anne; Koechlin, Etienne
2012-01-01
The frontal lobes subserve decision-making and executive control—that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior. PMID:22479152
Gul, Amara; Ahmad, Hira
2017-01-01
Rehabilitation focuses brain-behavior relationship which highlights interaction between psychological and neurobiological factors for better patient care. There is a missing link in the literature about socio-cognitive aspects of frontal lobe epilepsy. Our objective was to examine prefrontal cortical functioning (PCF) and empathic abilities in patients with frontal lobe epilepsy (FLE). Further, we analyzed whether any relationship between components of dispositional empathy and PCF exists in patients with FLE. The study was designed in an experimental paradigm. Sixty patients with FLE were recruited from Sheikh Zayed and Jinnah hospital, Pakistan. Sixty healthy individuals in response to an advertisement took part in the study as control subjects. Participants completed interpersonal reactivity index. Following they performed clock drawing test and word-color identification task switching experiment. Patients with FLE demonstrated weaker PCF (i.e., cognitive flexibility and executive function) as compared to healthy control subjects. Patients with FLE scored lesser on cognitive empathy as compared to healthy control subjects. On contrary, there was no significant difference between patient and control group on affective empathy. Cognitive not affective empathy was potential predictor of PCF. Cognitive empathy is a significant marker of prefrontal cortical functioning (PCF) in FLE. Higher cognitive empathy would lead to efficient PCF.
Shi, Yu-Zhi; Xiang, Yu-Tao; Wu, Shuo-Lin; Zhang, Ning; Zhou, Juan; Bai, Ying; Wang, Shuo; Wang, Yi-Long; Zhao, Xing-Quan; Ungvari, Gabor S.; Chiu, Helen F. K.; Wang, Yong-Jun; Wang, Chun-Xue
2014-01-01
Background and Purpose Most studies on post-stroke depression (PSD) have focused on a certain time point after stroke instead of the time course of PSD. The aim of this study was to determine the relationship between frontal lobe lesions, course of PSD over a year following the stroke onset, and the 1-year prognosis in patients with first-ever ischemic stroke. Methods A total of 1067 patients from the prospective cohort study on the incidence and outcome of patients with post stroke depression in China who were diagnosed with first-ever ischemic stroke and attended 4 follow-up visits at 14±2 days, 3 months, 6 months, and 1 year after stroke onset, were enrolled in the study. PSD was diagnosed according to DSM-IV. The course of PSD was divided into the following two categories: persistent/recurrent depression and no/transient depression. Patients with any ischemic lesion responsible for the indexed stroke event located in the frontal lobe were defined as patients with frontal lobe lesions. Modified Rankin Scale (mRS) ≥2 at 1-year was considered to be poor prognosis. Results There were 109 patients with and 958 patients without frontal lobe lesions that formed the frontal lobe (FL) and no-frontal lobe (NFL) groups, respectively. After adjusting for confounding variables, frontal lobe lesion was significantly associated with persistent/recurrent PSD (OR 2.025, 95%CI 1.039–3.949). Overall, 32.7% of patients in the FL group had poor prognosis at 1- year compared with 22.7% in the NFL group (P = 0.021). Compared with no/transient depression, persistent/recurrent depression was found to be an independent predictor of poor prognosis at 1-year both in FL and NFL groups. Conclusions Long-term and periodical screening, evaluation and treatment are needed for PSD after the onset of ischemic stroke, particularly for patients with frontal lobe infarction. PMID:25003990
Shi, Yu-Zhi; Xiang, Yu-Tao; Wu, Shuo-Lin; Zhang, Ning; Zhou, Juan; Bai, Ying; Wang, Shuo; Wang, Yi-Long; Zhao, Xing-Quan; Ungvari, Gabor S; Chiu, Helen F K; Wang, Yong-Jun; Wang, Chun-Xue
2014-01-01
Most studies on post-stroke depression (PSD) have focused on a certain time point after stroke instead of the time course of PSD. The aim of this study was to determine the relationship between frontal lobe lesions, course of PSD over a year following the stroke onset, and the 1-year prognosis in patients with first-ever ischemic stroke. A total of 1067 patients from the prospective cohort study on the incidence and outcome of patients with post stroke depression in China who were diagnosed with first-ever ischemic stroke and attended 4 follow-up visits at 14±2 days, 3 months, 6 months, and 1 year after stroke onset, were enrolled in the study. PSD was diagnosed according to DSM-IV. The course of PSD was divided into the following two categories: persistent/recurrent depression and no/transient depression. Patients with any ischemic lesion responsible for the indexed stroke event located in the frontal lobe were defined as patients with frontal lobe lesions. Modified Rankin Scale (mRS) ≥2 at 1-year was considered to be poor prognosis. There were 109 patients with and 958 patients without frontal lobe lesions that formed the frontal lobe (FL) and no-frontal lobe (NFL) groups, respectively. After adjusting for confounding variables, frontal lobe lesion was significantly associated with persistent/recurrent PSD (OR 2.025, 95%CI 1.039-3.949). Overall, 32.7% of patients in the FL group had poor prognosis at 1- year compared with 22.7% in the NFL group (P = 0.021). Compared with no/transient depression, persistent/recurrent depression was found to be an independent predictor of poor prognosis at 1-year both in FL and NFL groups. Long-term and periodical screening, evaluation and treatment are needed for PSD after the onset of ischemic stroke, particularly for patients with frontal lobe infarction.
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Boettcher, Lillian B; Menacho, Sarah T
2017-09-01
The pathophysiology of mental illness and its relationship to the frontal lobe were subjects of immense interest in the latter half of the 19th century. Numerous studies emerged during this time on cortical localization and frontal lobe theory, drawing upon various ideas from neurology and psychiatry. Reflecting the intense interest in this region of the brain, the 1935 International Neurological Congress in London hosted a special session on the frontal lobe. Among other presentations, Yale physiologists John Fulton and Carlyle Jacobsen presented a study on frontal lobectomy in primates, and neurologist Richard Brickner presented a case of frontal ablation for olfactory meningioma performed by the Johns Hopkins neurosurgeon Walter Dandy. Both occurrences are said to have influenced Portuguese neurologist Egas Moniz (1874-1955) to commence performing leucotomies on patients beginning in late 1935. Here the authors review the relevant events related to frontal lobe theory leading up to the 1935 Neurological Congress as well as the extent of this meeting's role in the genesis of the modern era of psychosurgery.
Frontal mucocele with intracranial extension causing frontal lobe syndrome.
Weidmayer, Sara
2015-06-01
Mucoceles are mucus-containing cysts that form in paranasal sinuses; although mucoceles themselves are benign, this case report highlights the extensive damage they can cause as their expansion may lead to bony erosion and extension of the mucocele into the orbit and cranium; it also presents a rarely reported instance of frontal sinus mucocele leading to frontal lobe syndrome. A thorough discussion and review of mucoceles is included. A 68-year-old white man presented with intermittent diplopia and a pressure sensation in the right eye. He had a history of chronic sinusitis and had had endoscopic sinus surgery 5 years prior. A maxillofacial computed tomography scan revealed a large right frontal sinus mucocele, which had caused erosion along the medial wall of the right orbit and the outer and inner tables of the right frontal sinus. The mucocele had protruded both into the right orbit and intracranially, causing mass effect on the frontal lobe, which led to frontal lobe syndrome. The patient was successfully treated with endoscopic right ethmoidectomy, radial frontal sinusotomy, marsupialization of the mucocele, and transcutaneous irrigation. Paranasal sinus mucoceles may expand and lead to bony erosion and can become very invasive in surrounding structures such as the orbit and cranium. This case not only exhibits a very rare presentation of frontal sinus mucocele with intracranial extension and frontal lobe mass effect causing a frontal lobe syndrome but also demonstrates many of the ocular and visual complications commonly associated with paranasal sinus mucoceles. Early identification and surgical intervention is vital for preventing and reducing morbidity associated with invasive mucoceles, and the patient must be followed regularly to monitor for recurrence.
Li, Pan; Zhou, Yu-Ying; Lu, Da; Wang, Yan; Zhang, Hui-Hong
2016-05-01
Although the neuropathologic changes and diagnostic criteria for the neurodegenerative disorder Alzheimer's disease (AD) are well-established, the clinical symptoms vary largely. Symptomatically, frontal variant of AD (fv-AD) presents very similarly to behavioral variant frontotemporal dementia (bvFTD), which creates major challenges for differential diagnosis. Here, we report two patients who present with progressive cognitive impairment, early and prominent behavioral features, and significant frontotemporal lobe atrophy on magnetic resonance imaging, consistent with an initial diagnosis of probable bvFTD. However, multimodal functional neuroimaging revealed neuropathological data consistent with a diagnosis of probable AD for one patient (pathology distributed in the frontal lobes) and a diagnosis of probable bvFTD for the other patient (hypometabolism in the bilateral frontal lobes). In addition, the fv-AD patient presented with greater executive impairment and milder behavioral symptoms relative to the bvFTD patient. These cases highlight that recognition of these atypical syndromes using detailed neuropsychological tests, biomarkers, and multimodal neuroimaging will lead to greater accuracy in diagnosis and patient management.
Mother and daughter with adolescent-onset severe frontal lobe dysfunction and epilepsy
dos Passos, Giordani Rodrigues; Fernández, Alonso Cuadrado; Vasques, Adriana Machado; Martins, William Alves; Palmini, André
2016-01-01
ABSTRACT Familial cases of early-onset prominent frontal lobe dysfunction associated with epilepsy have not been reported to date. We report a mother and her only daughter with incapacitating behavioral manifestations of frontal lobe dysfunction and epilepsy of variable severity. The possibility of a hitherto undescribed genetic condition is discussed. PMID:29213461
Cardoso, Caroline de Oliveira; Branco, Laura Damiani; Cotrena, Charles; Kristensen, Christian Haag; Schneider Bakos, Daniela Di Giorge; Fonseca, Rochele Paz
2014-01-01
Although the frontal lobes have traditionally been considered the neural substrates of executive functioning (EF), recent studies have suggested that other structures, such as the cerebellum, may be associated with these abilities. The role of the cerebellum has only been sparsely investigated in connection with decision making (DM), an important component of EF, and the few results obtained on this front have been inconclusive. The current study sought to investigate the role of the cerebellum in DM by comparing the performance of patients with cerebellar strokes, frontal-damaged patients, and a healthy control group on the Iowa Gambling Task (IGT). A total of nine cerebellar-damaged adults participated in the study, as well as nine individuals with frontal strokes and 18 control individuals. Patients were administered a version of the IGT adapted to the population of Southern Brazil. There was a marginal difference in mean IGT net scores between the two clinical groups, although both displayed impaired performance as compared to the control group. Overall, the DM ability of patients with cerebellar damage proved to be more preserved than that of individuals with frontal lobe strokes, but less preserved than that of the control group. These data suggested that, while the frontal lobes may be the most important brain structures for DM, the cerebellum might also play an active role in this cognitive function. Future studies assessing participants with lesions in different cerebellar regions and hemispheres will prove invaluable for the understanding of the neural structures involved in DM, and make significant contributions to the globalist-localizationist debate in DM neuroscience. PMID:24782697
Frontal lobe atrophy is associated with small vessel disease in ischemic stroke patients.
Chen, Yangkun; Chen, Xiangyan; Xiao, Weimin; Mok, Vincent C T; Wong, Ka Sing; Tang, Wai Kwong
2009-12-01
The pathogenesis of frontal lobe atrophy (FLA) in stroke patients is unclear. We aimed to ascertain whether subcortical ischemic changes were more associated with FLA than with parietal lobe atrophy (PLA) and temporal lobe atrophy (TLA). Brain magnetic resonance images (MRIs) from 471 Chinese ischemic stroke patients were analyzed. Lobar atrophy was defined by a widely used visual rating scale. All patients were divided into non-severe, mild-moderate, and severe atrophy of the frontal, parietal, and temporal lobe groups. The severity of white matter lesions (WMLs) was rated with the Fazekas' scale. Clinical and radiological features were compared among the groups. Subsequent logistic regressions were performed to determine the risk factors of atrophy and severe atrophy of the frontal, parietal and temporal lobes. The frequency of FLA in our cohort was 36.9% (174/471). Severe FLA occurred in 30 (6.4%) patients. Age, previous stroke, and periventricular hyperintensities (PVH) (odds ratio (OR)=1.640, p=0.039) were independent risk factors of FLA. Age and deep white matter hyperintensities (DWMH) (OR=3.634, p=0.002) were independent risk factors of severe FLA. PVH and DWMH were not independent risk factors of PLA and TLA. Frontal lobe atrophy in ischemic stroke patients may be associated with small vessel disease. The association between WMLs and FLA was predominant over atrophy of the parietal and temporal lobes, which suggests that the frontal lobe may be vulnerable to subcortical ischemic changes.
Preoperative EEG predicts memory and selective cognitive functions after temporal lobe surgery.
Tuunainen, A; Nousiainen, U; Hurskainen, H; Leinonen, E; Pilke, A; Mervaala, E; Vapalahti, M; Partanen, J; Riekkinen, P
1995-01-01
Preoperative and postoperative cognitive and memory functions, psychiatric outcome, and EEGs were evaluated in 32 epileptic patients who underwent temporal lobe surgery. The presence and location of preoperative slow wave focus in routine EEG predicted memory functions of the non-resected side after surgery. Neuropsychological tests of the function of the frontal lobes also showed improvement. Moreover, psychiatric ratings showed that seizure free patients had significantly less affective symptoms postoperatively than those who were still exhibiting seizures. After temporal lobectomies, successful outcome in postoperative memory functions can be achieved in patients with unilateral slow wave activity in preoperative EEGs. This study suggests a new role for routine EEG in preoperative evaluation of patients with temporal lobe epilepsy. PMID:7608663
"No Longer Gage": Frontal Lobe Dysfunction and Emotional Changes.
ERIC Educational Resources Information Center
Stuss, Donald T.; And Others
1992-01-01
Reviews changes in emotional response and personality occurring after damage to frontal systems, proposes operational definitions, and analyzes reports according to these definitions. Summarizes neurological causes of frontal lobe damage and associations of frontal dysfunction with psychiatric disturbances. Proposes that primary change after…
Eloy, Jean Anderson; Shukla, Pratik A; Choudhry, Osamah J; Singh, Rahul; Liu, James K
2012-12-01
The endoscopic endonasal transcribriform approach (EETA) is a viable alternative option for resection of selected anterior skull base (ASB) tumors. However, this technique results in the creation of large cribriform defects. Some have reported the use of a rigid substitute for ASB reconstruction to prevent postoperative frontal lobe sagging. We evaluate the degree of frontal lobe sagging using our triple-layer technique [fascia lata, acellular dermal allograft, and pedicled nasoseptal flap (PNSF)] without the use of rigid structural reconstruction for large cribriform defects. Retrospective analysis. Nine patients underwent an EETA for resection of large ASB tumors from August 2010 to November 2011. The degree of frontal lobe displacement after EETA, defined as the ASB position, was calculated based on the most inferior position of the frontal lobe relative to the nasion-sellar line defined on preoperative and postoperative imaging. A positive value signified upward displacement, and a negative value represented inferior displacement of the frontal lobe. The average cribriform defect size was 9.3 cm(2) (range, 5.0-13.8 cm(2) ). The average distance of postoperative frontal lobe displacement was 0.2 mm (range, -3.9 to 2.9 mm) without any cases of significant brain sagging. The mean follow-up period was 10.1 months (range, 4-19 months). There were no postoperative CSF leaks. Rigid structural repair may not be necessary for ASB defect repair after endoscopic endonasal resection of the cribriform plate. Our technique for multilayer cranial base reconstruction appears to be satisfactory in preventing delayed frontal lobe sagging. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl
2015-01-01
Measures of performance on the Trail Making Test (TMT) are among the most popular neuropsychological assessment techniques. Completion time on TMT-A is considered to provide a measure of processing speed, whereas completion time on TMT-B is considered to constitute a behavioral measure of the ability to shift between cognitive sets (cognitive flexibility), commonly attributed to the frontal lobes. However, empirical evidence linking performance on the TMT-B to localized frontal lesions is mostly lacking. Here, we examined the association of frontal lesions following stroke with TMT-B performance measures (i.e., completion time and completion accuracy measures) using voxel-based lesion-behavior mapping, with a focus on right hemispheric frontal lobe lesions. Our results suggest that the number of errors, but not completion time on the TMT-B, is associated with right hemispheric frontal lesions. This finding contradicts common clinical practice—the use of completion time on the TMT-B to measure cognitive flexibility, and it underscores the need for additional research on the association between cognitive flexibility and the frontal lobes. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether our observation is specific for right frontal lesions. PMID:26074673
Adaptations for Students with ADHD
ERIC Educational Resources Information Center
McGrady, Mart
2005-01-01
ADHD is a neurobiological-based brain disorder, most often hereditary, affecting nearly one in twenty students. The ADHD brain functions differently because the area between the frontal lobe and rear lobe is having short-circuit problems and is not transmitting necessary information. The technical part of the disorder does not engage us as…
Impaired frontal lobe functions in patients with Parkinson's disease and psychosis.
Thota, Naveen; Lenka, Abhishek; George, Lija; Hegde, Shantala; Arumugham, Shyam Sundar; Prasad, Shweta; Stezin, Albert; Kamble, Nitish; Yadav, Ravi; Pal, Pramod Kumar
2017-12-01
Patients with Parkinson's disease (PD) may develop several non-motor symptoms (NMS). Psychosis is one of the debilitating NMS of PD. The neurobiology of psychosis is not fully understood. This study aims to compare the frontal lobe functions of PD patients with and without psychosis using the Frontal Assessment Battery (FAB). This study included 69 patients with PD; 34 with psychosis (PD-P) and 35 without psychosis (PD-NP). Mini Mental Status Examination (MMSE) was used to screen for cognitive impairment. Unified Parkinson's disease Rating scale part-III (UPDRS-III) was used to measure the severity and Hoehn and Yahr score (H&Y) was used to measure the stage of PD. Frontal lobe functions were assessed by FAB. The PD-P and PD-NP groups were comparable for age (58.7±8.4 vs 55.7±8.2, p=0.14), age at onset of symptoms (51.4±8.1 vs 50.0±8.8, p=0.48), gender distribution (men: 88%vs 80%, p=0.51), MMSE (28.2±1.9 vs 28.7±1.2 p=0.12), levodopa equivalent dose/day (736.0±376.3 vs 625.2±332.2, p=0.19), UPDRS-III OFF-score (36.7±8.8 vs 35.4±13.2, p=0.64), UPDRS-III ON-score (13.2±5.4 vs 12.4±6.6, p=0.44) and H&Y stage (2.3±0.3 vs 2.3±0.3, p=0.07). PD-P group had lower total FAB score compared to PD-NP group (13.9±2.2 vs 16.5±1.8, p<0.01). On the FAB, PD-P group had lower scores compared to PD-NP in lexical fluency (FAB-2), programming (FAB-3), sensitivity to interference (FAB-4) and inhibitory control (FAB-5). Patients with PD-P had significant frontal lobe dysfunction compared to PD-NP. FAB may be a simple and useful bedside tool to assess frontal dysfunction in patients with PD in a busy neurological set up. Copyright © 2017 Elsevier B.V. All rights reserved.
Meguro, Kenichi
2017-01-30
We previously reported that the frontal lobe was stimulated by psychosocial intervention for dementia patients, and that the parietal lobe was associated with logical judgment. We hypothesized that the combined therapeutic approach with symptomatic drug treatment can directly stimulate not only attention function but also judgment function indirectly to observing other participants' behaviors. Fifty-two patients with Alzheimer disease underwent the group reminiscence approach with reality orientation, as well as the donepezil treatment. The cerebral blood flow (CBF) was assessed with 99m Tc-ECD SPECT. Two analyses were performed: Analysis 1 was to compare Responders vs. Non-responders as shown by MMSE scores, whereas Analysis 2 was to compare Good vs. Poor reminders of the intervention content. We found that the CBF in the frontal lobe was significantly higher in Responders (vs. Non-responders). The CBF in the parietal lobe, especially the left side, was significantly higher in the Good reminders (vs. Poor reminders). The donepezil stimulated the areas similar to where the psychosocial intervention was previously found to be stimulated directly, thus the drug was thought to be compatible for psychosocial intervention. The parietal lobe was stimulated indirectly, suggesting that the indirect effect of the intervention may be based on logical judgment function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kellinghaus, Christoph; Lüders, Hans O
2004-12-01
Frontal lobe epilepsy accounts for only 10-20% of the patients in surgical series, but the incidence in non-surgical patient cohorts seems to be much higher. The typical clinical presentation of the seizures includes contralateral clonic movements, uni- or bilateral tonic motor activity as well as complex automatism. The yield of surface EEG may be limited due to the difficulty in detection of mesial or basal foci, and the patient may be misdiagnosed as having non-epileptic events. In addition, in patients with mesial frontal foci the epileptiform discharges may be mislateralized ("paradoxical lateralization"). Therefore, epilepsy surgery has been commonly considered as less promising in patients with frontal lobe epilepsy. However, the advent of sophisticated neuroimaging techniques, particularly MRI with epilepsy-specific sequences, has made it possible to delineate the epileptogenic lesion and detect a specific etiology, in an increasing number of patients. Thus, the success rate of epilepsy surgery in frontal lobe epilepsy is currently comparable to temporal lobe epilepsy, if the candidates are carefully selected. Patients with frontal lobe epilepsy who do not respond to anticonvulsive medication, and who are not eligible for epilepsy surgery may benefit from alternative approaches such as electrical brain stimulation.
Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis
2007-01-01
A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385
Shi, Xian-Feng; Kondo, Douglas G; Sung, Young-Hoon; Hellem, Tracy L; Fiedler, Kristen K; Jeong, Eun-Kee; Huber, Rebekah S; Renshaw, Perry F
2015-01-01
Objectives To compare the concentrations of high-energy phosphorus metabolites associated with mitochondrial function in the frontal lobe of depressed adolescents with bipolar disorder (BD) and healthy controls (HC). Methods We used in vivo phosphorus-31 magnetic resonance spectroscopy (31P-MRS) at 3 Tesla to measure phosphocreatine (PCr), beta-nucleoside triphosphate (β-NTP), inorganic phosphate (Pi), and other neurometabolites in the frontal lobe of eight unmedicated and six medicated adolescents with bipolar depression and 24 adolescent HCs. Results Analysis of covariance, including age as a covariate, revealed differences in PCr (p = 0.037), Pi (p = 0.017), and PCr/Pi (p = 0.002) between participant groups. Percentage neurochemical differences were calculated with respect to mean metabolite concentrations in the HC group. Post-hoc Tukey–Kramer analysis showed that unmedicated BD participants had decreased Pi compared with both HC (17%; p = 0.038) and medicated BD (24%; p = 0.022). The unmedicated BD group had increased PCr compared with medicated BD (11%; p = 0.032). The PCr/Pi ratio was increased in unmedicated BD compared with HC (24%; p = 0.013) and with medicated BD (39%; p = 0.002). No differences in β-NTP or pH were observed. Conclusions Our results support the view that frontal lobe mitochondrial function is altered in adolescent BD and may have implications for the use of Pi as a biomarker. These findings join volumetric studies of the amygdala, and proton MRS studies of n-acetyl aspartate in pointing to potential differences in neurobiology between pediatric and adult BD. PMID:22816670
Mataró, Maria; Matarín, Mar; Poca, Maria Antonia; Pueyo, Roser; Sahuquillo, Juan; Barrios, Maite; Junqué, Carme
2007-01-01
Background Normal pressure hydrocephalus (NPH) is associated with corpus callosum abnormalities. Objectives To study the clinical and neuropsychological effect of callosal thinning in 18 patients with idiopathic NPH and to investigate the postsurgical callosal changes in 14 patients. Methods Global corpus callosum size and seven callosal subdivisions were measured. Neuropsychological assessment included an extensive battery assessing memory, psychomotor speed, visuospatial and frontal lobe functioning. Results After surgery, patients showed improvements in memory, visuospatial and frontal lobe functions, and psychomotor speed. Two frontal corpus callosum areas, the genu and the rostral body, were the regions most related to the clinical and neuropsychological dysfunction. After surgery, total corpus callosum and four of the seven subdivisions presented a significant increase in size, which was related to poorer neuropsychological and clinical outcome. Conclusion The postsurgical corpus callosum increase might be the result of decompression, re‐expansion and increase of interstitial fluid, although it may also be caused by differences in shape due to cerebral reorganisation. PMID:17056634
Mapping brain development during childhood, adolescence and young adulthood
NASA Astrophysics Data System (ADS)
Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao
2009-02-01
Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.
Farina, Benedetto; Della Marca, Giacomo; Maestoso, Giulia; Amoroso, Noemi; Valenti, Enrico Maria; Carbone, Giuseppe Alessio; Massullo, Chiara; Contardi, Anna; Imperatori, Claudio
2018-01-01
We investigated default mode network (DMN) electroencephalography (EEG) functional connectivity differences between individuals with self-reported high mentalization capability and low psychopathological symptoms, versus participants with mentalization impairments and high psychopathological symptoms. Forty-nine students (35 women) with a mean age of 22.92 ± 2.53 years were administered the Mentalization Questionnaire (MZQ) and the Symptom Checklist-90-Revised. Five minutes of EEG during resting state were also recorded for each participant. DMN functional connectivity analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to the individuals with high mentalization capability and lower self-reported psychopathological symptoms, participants with mentalization impairments and high psychopathological symptoms showed a decrease of EEG beta connectivity between: (i) the right and left medial frontal lobe, and (ii) the left medial frontal lobe and the right anterior cingulate cortex. Furthermore, while MZQ total score was positively associated with DMN network connections (i.e., right and left medial frontal lobes), several psychopathological symptoms (i.e., interpersonal sensitivity, depression, and psychoticism) were negatively associated with DMN connectivity. Our results may reflect a top-down emotion regulation deficit which is associated with both internalizing and externalizing behavior problems. © 2018 S. Karger AG, Basel.
Identifying the Cognitive Decrements Caused By HIV
1994-06-10
critical analyses 46 pointed to further assessment of frontal lobe structures. Most of the 15 different tests yielded more than on* dependent variable...is also one of the tests included in the Multicenter AIDS Cohort Study longitudinal research on the progression of HIV infection. Left frontal lobe ...structures underlie verbal fluency performance and the particular sensitivity of frontal lobe structures to perturbations with HIV infection would
ERIC Educational Resources Information Center
Ozonoff, Sally; Cook, Ian; Coon, Hilary; Dawson, Geraldine; Joseph, Robert M.; Klin, Ami; McMahon, William M.; Minshew, Nancy; Munson, Jeffrey A.
2004-01-01
Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components…
Guo, Huirong; Ren, Yuming; Zhao, Ning; Wang, Yali; Li, Shuying; Cui, He; Zhang, Sijia; Zhang, Jianhua
2014-07-01
To analyse the synergistic effect of polymorphism of the tandem repeat sequence u-VNTR of 5-hydroxytryptamine 2A (5-HT2A) receptor gene and monoamine oxidase A (MAOA) gene on the negative emotion in frontal lobe of patients with depression through functional magnetic resonance imaging (fMRI) technique. Functional magnetic resonance imaging scanning was performed for 72 patients with depression and 70 gender, age-matched healthy people with physical examination under negative emotion recognition task. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was adopted to analyse genotype. The superior, middle and inferior gyrus of bilateral frontal lobe was regarded as the brain region of interest, and then the difference of activation intensity in frontal lobe subregion between control groups and patient groups with different genotypes, and the interaction between the two kinds of polymorphism were compared. The activation intensity in right frontal middle gyrus of patients with CC genotype increased obviously compared with TT and TC genotype patient groups and TT genotype control group (P<0·01); the activation intensity in right frontal inferior gyrus of patients with CC genotype increased obviously compared with TT and TC genotype patient groups and control groups (P<0·01); the activation intensity in right frontal middle gyrus and left frontal inferior gyrus of patients with MAOA high-activity genotype increased obviously compared with patient and control groups with MAOA low-activity genotype (P<0·01). In sum, there existed synergistic effect of the two genotypes on the activation abnormality of negative emotion recognition in right frontal middle gyrus (F = 6·18, P = 0·029). The negative activation in right frontal middle gyrus of patients with CC+H genotypes increased most obviously (P<0·05). The frontal abnormality of patients with depression had certain 5-HT genetic basis, and 5-HT2A receptor CC allele and MAOA-H genotype had synergistic effect on the activity abnormality when recognizing negative emotion in right frontal middle gyrus of patients with depression. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
The localizing value of ictal EEG in focal epilepsy.
Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H
2001-12-11
To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.
Crowley, Kevin; Pickle, Jody; Dale, Roman; Fattal, Omar
2008-12-01
Bifrontal (BF) electroconvulsive therapy (ECT), although researched less extensively than bitemporal (BT) or right unilateral (RUL) ECT, has been suggested to be comparable to the other 2 electrode placements with respect to clinical efficacy while resulting in less cognitive impairment than BT ECT. Imaging studies have indicated that seizures induced by BF ECT affect the brain differently than BT or RUL ECT, in that BF ECT increases cerebral blood flow in the frontal lobes more intensely than either of the other 2 placements. Therefore, it is possible that the cognitive impairment manifested after a course of BF ECT could also be different than the impairment seen with BT and RUL ECT. Research conducted on cognitive impairment from BF ECT to date has been inadequate due to the use of nonspecific cognitive measures (such as the Mini-Mental Status Examination) or an inordinate focus on memory functioning (which is believed to be mostly subsumed in the temporal lobes). Because BF ECT increases cerebral blood flow in the frontal lobes more intensely than either of the other placements, research must instead focus on investigating the possible effects of BF ECT on executive functioning, which is believed to be subsumed in the frontal lobes. This is especially important because of the established relationship between executive dysfunction and depression and also because of the increasing popularity of BF ECT.
Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Hardan, Antonio Y
2010-12-01
The validity of Asperger disorder as a distinct syndrome from autism is unclear partly because of the paucity of differentiating neurobiological evidence. Frontal lobe cortical folding between these disorders was compared using the gyrification index. Twenty-three boys underwent structural magnetic resonance imaging: 6 with high-functioning autism, 9 with Asperger disorder, and 8 controls. Using the first coronal slice anterior to the corpus callosum, total and outer cortical contours were traced to calculate the gyrification index. This index was also calculated for superior and inferior regions to examine dorsolateral prefrontal and orbitofrontal cortices, respectively. Analysis of variance revealed differences in the left inferior gyrification index, which was higher in the autism group compared with Asperger and control groups. There were no differences in age, intelligence quotient, and brain volume. These preliminary findings suggest that cortical folding may be abnormally high in the frontal lobe in autism but not Asperger disorder, suggesting distinct frontal lobe neuropathology.
Divergent Task Performance in Older Adults: Declarative Memory or Creative Potential?
Leon, Susan A; Altmann, Lori JP; Abrams, Lise; Rothi, Leslie J Gonzalez; Heilman, Kenneth M
2016-01-01
Divergent thinking is the ability to produce a range of responses or solutions and is an element of creative processing. Divergent thinking requires disengagement, the ability to associate between words or ideas, and the production of responses. Lesion and imaging studies have shown frontal-lobe involvement for these activities, and frontal lobe function is highly dependent on white matter pathways. Normal aging often results in deficits in functions controlled by the frontal lobes as well as decrements in white matter connectivity. The objectives of this study were to compare non time-constrained tasks of verbal divergent processing in young adults (YAs) and older adults (OAs) and correlate performance with tasks of working memory, language ability, and disengagement/inhibition. Participants were 30 YAs and 30 OAs. Contrary to the a priori hypothesis, OAs produced significantly more unique responses than YAs, although total fluency was not significantly different. Correlational analyses examining the groups together and separately revealed a number of differences suggesting that the groups were utilizing different underlying cognitive abilities to complete these tasks. The authors propose that the primary factor resulting in higher uniqueness scores for the OAs was a greater wealth of experience as well as longer exposure to language use. PMID:28446859
Magnitude of Cerebral Asymmetry at Rest: Covariation with Baseline Cardiovascular Activity
ERIC Educational Resources Information Center
Foster, Paul S.; Harrison, David W.
2006-01-01
The cerebral regulation of cardiovascular functioning varies along both a lateral and a longitudinal axis. The parasympathetic and sympathetic nervous systems are lateralized to the left and right cerebral hemispheres, respectively. Further, the frontal lobes are known to be inhibitory in nature, whereas the temporal lobes are excitatory. However,…
Counterfactual Thinking Deficit in Huntington's Disease.
Solca, Federica; Poletti, Barbara; Zago, Stefano; Crespi, Chiara; Sassone, Francesca; Lafronza, Annalisa; Maraschi, Anna Maria; Sassone, Jenny; Silani, Vincenzo; Ciammola, Andrea
2015-01-01
Counterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving - all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington's Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment. Tests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects. Our results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test - Part A, Phonemic Verbal Fluency Test and FAB. Spontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients' daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients' ability to analyse current behaviors and future actions.
Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.
Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul
2013-09-01
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.
Neurobiological underpinnings of shame and guilt: a pilot fMRI study
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R.; Reiser, Maximilian
2014-01-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings. PMID:23051901
Neurobiological underpinnings of shame and guilt: a pilot fMRI study.
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R; Reiser, Maximilian; Hennig-Fast, Kristina
2014-02-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.'s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.
Piai, Vitória; Rommers, Joost; Knight, Robert T
2017-09-09
Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Differences in the neural correlates of frontal lobe tests.
Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin
2018-01-01
The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.
Wang, Yi; Yan, Chao; Yin, Da-zhi; Fan, Ming-xia; Cheung, Eric F C; Pantelis, Christos; Chan, Raymond C K
2015-03-01
The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Neuroimaging abnormalities in adults with sickle cell anemia
Insel, Philip; Truran, Diana; Vichinsky, Elliot P.; Neumayr, Lynne D.; Armstrong, F.D.; Gold, Jeffrey I.; Kesler, Karen; Brewer, Joseph; Weiner, Michael W.
2014-01-01
Objective: This study was conducted to determine the relationship of frontal lobe cortical thickness and basal ganglia volumes to measures of cognition in adults with sickle cell anemia (SCA). Methods: Participants included 120 adults with SCA with no history of neurologic dysfunction and 33 healthy controls (HCs). Participants were enrolled at 12 medical center sites, and raters were blinded to diagnostic group. We hypothesized that individuals with SCA would exhibit reductions in frontal lobe cortex thickness and reduced basal ganglia and thalamus volumes compared with HCs and that these structural brain abnormalities would be associated with measures of cognitive functioning (Wechsler Adult Intelligence Scale, 3rd edition). Results: After adjusting for age, sex, education level, and intracranial volume, participants with SCA exhibited thinner frontal lobe cortex (t = −2.99, p = 0.003) and reduced basal ganglia and thalamus volumes compared with HCs (t = −3.95, p < 0.001). Reduced volume of the basal ganglia and thalamus was significantly associated with lower Performance IQ (model estimate = 3.75, p = 0.004) as well as lower Perceptual Organization (model estimate = 1.44, p = 0.007) and Working Memory scores (model estimate = 1.37, p = 0.015). Frontal lobe cortex thickness was not significantly associated with any cognitive measures. Conclusions: Our findings suggest that basal ganglia and thalamus abnormalities may represent a particularly salient contributor to cognitive dysfunction in adults with SCA. PMID:24523480
Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury
ERIC Educational Resources Information Center
Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya
2011-01-01
It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…
Qi, N; Cui, Y; Liu, J C; Yu, M; Teng, G J
2017-10-24
Objective: To investigate the changes of resting brain function with time in patients with type 2 diabetes mellitus (T2DM) by using regional homogeneity (ReHo) with resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Multidimensional cognitive function tests and rs-fMRI scans were performed in 21 T2DM patients and 12 healthy controls in 2012 and 2015 respectively.The differences in clinical variables and the ReHo values before and after were measured by paired sample t test, and the correlation between the change of ReHo value and the change of clinical variables was measured by Pearson correlation analysis based on voxel. Results: The delayed score (14±6) of the T2DM patients in 2015 was significantly lower than that in 2012 (18±6) ( t =-2.88, P =0.009); while the value of ReHo in the bilateral occipital lobe and right middle frontal gyrus was significantly lower than that in 2012 ( P <0.01, Alphasim correction). And the decreased ReHo value in the left occipital lobe was significantly correlated with the change of complex figure test (CFT) delay score and the trail making test-B (TMT-B)( r =0.52, -0.46, both P <0.05). No significant change in cognitive function tests in the healthy control group was found between the two years, ReHo value in right cuneus decreased significantly ( P <0.01, Alphasim correction), but it increased significantly in superior frontal gyrus ( P <0.01, Alphasim correction) in 2015.No significant correlation between the changes of the ReHo values in the right cuneus and right superior frontal gyrus and the changes of cognitive function scores was found in the healthy controls. Conclusions: The visual memory is significantly declined in T2DM patients within 3 years.The reduced neural activity areas in T2DM patients are in the bilateral occipitai lobes and the right middle frontal lobe. Decreased neural activity in the left occipital area is related to visual impairment, information processing speed and attention drops.
Impairments in proverb interpretation following focal frontal lobe lesions☆
Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa
2013-01-01
The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600
Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy.
Peng, Weifeng; Mao, Lingyan; Yin, Dazhi; Sun, Wei; Wang, He; Zhang, Qianqian; Wang, Jing; Chen, Caizhong; Zeng, Mengsu; Ding, Jing; Wang, Xin
2018-06-01
Our study aimed to investigate the functional connectivity (FC) between the hippocampus and other brain regions in epilepsy patients with depressive symptoms. Epilepsy patients with and without depressive symptoms, assessed using the 17-item Hamilton Depression Rating Scale scores, were enrolled. Healthy volunteers were recruited as the control group. Resting state functional magnetic resonance imaging was performed, and the data were processed using Resting-State fMRI (DPARSFA2.0) software. The regional homogeneity (ReHo) values and the FC between the right hippocampus and other brain regions were analysed. The ReHo value of the cerebellum (particularly the left cerebellar hemisphere) was significantly lower in epilepsy patients than in healthy controls, and was lower in epilepsy patients with depressive symptoms (EP + DS group) than in those without depressive symptoms (EP-DS group, p < 0.05). Additionally, the FC between the right hippocampus and the bilateral cerebellum was significantly greater in the EP + DS group than in the EP-DS group (p < 0.05). Moreover, abnormal ReHo values in the bilateral frontal lobes, including the right anterior cingulate cortex, and changes in the FC between the right hippocampus and the bilateral frontal lobes were found in the EP + DS group. Minor changes in the FC between the temporal and parietal lobes were also found in the epilepsy patients. The functional right hippocampus-cerebellum circuit might contribute to the pathogenesis of depressive symptoms in epilepsy, with the exception of brain areas associated with emotion such as the frontal and temporal lobes. Modulating the hippocampus-cerebellum circuit is a potential therapeutic strategy for epilepsy patients with depressive symptoms. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Dorso-Lateral Prefrontal Cortex MRI Measurements and Cognitive Performance in Autism
Griebling, Jessica; Minshew, Nancy J.; Bodner, Kimberly; Libove, Robin; Bansal, Rahul; Konasale, Prasad; Keshavan, Matcheri S.; Hardan, Antonio
2012-01-01
This study examined the relationships between volumetric measurements of frontal lobe structures and performance on executive function tasks in individuals with autism. MRI scans were obtained from 38 individuals with autism and 40 matched controls between the ages of 8 and 45 years. Executive function was assessed using neuropsychological measures including the Wisconsin Card Sorting Test and Tower of Hanoi. Differences in performance on the neuropsychological tests were found between the two groups. However, no differences in dorsolateral prefrontal cortex volumes were observed between groups. No correlations between volumetric measurements and performance on the neuropsychological tests were found. Findings from this study suggest that executive function deficits observed in autism are related to functional but not anatomical abnormalities of the frontal lobe. The absence of correlations suggests that executive dysfunction is not the result of focal brain alterations but, rather, is the result of a distributed neural network dysfunction. PMID:20097663
Changes in gait while backward counting in demented older adults with frontal lobe dysfunction.
Allali, Gilles; Kressig, Reto W; Assal, Frédéric; Herrmann, François R; Dubost, Véronique; Beauchet, Olivier
2007-10-01
Gait disorders caused by dementia have been associated with frontal lobe dysfunction. Dual-tasking is used to explore the involvement of cortical level in gait control. It has been shown that dual-task induced gait changes that could be related to (1) the efficiency of executive function, (2) the level of difficulty involved in the walking-associated task, or (3) the articulo-motor components comprised in the walking-associated task. A better understanding of dual-task related changes in demented subjects with frontal lobe dysfunction could help us to clarify the role of the frontal lobe in motor gait control. To assess and compare the effects of two mental arithmetic tasks involving similar articulo-motor components but different level of difficulty on the mean values and coefficient of variation (CV) of stride time among demented older adults with impaired executive function. The mean values and coefficients of variation of stride time were measured using a GAITRite-System among 16 demented older adults with impaired executive function while walking with and without forward counting (FC) and backward counting (BC). The mean values and CV of stride time were significantly higher under both dual-task conditions than during a simple walking task (p<0.05). The change in CV of stride time during BC was significantly higher when compared with the change during FC (p=0.015), whereas the change in mean value was not significant (p=0.056). There was no difference between the dual-task and single task condition as far the number of enumerated figures were concerned (p=0.678 for FC and p=0.069 for BC), but significantly fewer figures were enumerated while BC compared with FC (p<0.001). BC provoked more changes in gait parameters than FC with major modification in gait variability related to an inappropriate focusing of attention. These findings suggest that the CV may be a suitable criterion for the assessment of gait control.
The Cerebral Cost of Breathing: An fMRI Case-Study in Congenital Central Hypoventilation Syndrome
Sharman, Mike; Gallea, Cécile; Lehongre, Katia; Galanaud, Damien; Nicolas, Nathalie; Similowski, Thomas; Cohen, Laurent; Straus, Christian; Naccache, Lionel
2014-01-01
Certain motor activities - like walking or breathing - present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks - including various frontal lobe areas - subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the “resting state” pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS), a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB), mechanical ventilation (MV) restored the default mode network (DMN) associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the active maintenance of cortical control over a continuous motor activity impacts on brain functioning and cognition. PMID:25268234
De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues
2012-12-01
Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.
Wang, Lijuan; Liu, Zhifen; Cao, Xiaohua; Li, Jianying; Zhang, Aixia; Sun, Ning; Yang, Chunxia; Zhang, Kerang
2017-09-01
The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). However, the mechanism underlying the effects of how the SLC6A15 gene affects functional brain activity of patients with MDD remains unknown. In the present study, we investigated the effect of the SLC6A15 gene polymorphism, rs1545843, on resting-state brain function in MDD with the imaging genomic technology and the regional homogeneity (ReHo) method. Sixty-seven MDD patients and 44 healthy controls underwent functional magnetic resonance imaging scans and genotyping. The differences in ReHo between genotypes were initially tested using the student's t test. We then performed a 2 × 2 (genotypes × disease status) analysis of variance to identify the main effects of genotypes, disease status, and their interactions in MDD. MDD patients with A+ genotypes showed decreased ReHo in the medial cingulum compared with MDD patients with the GG genotype. This was in contrast to normal controls with A+ genotypes who showed increased ReHo in the posterior cingulum and the frontal, temporal, and parietal lobes and decreased ReHo in the left corpus callosum, compared with controls with the GG genotypes. The main effect of disease was found in the frontal, parietal, and temporal lobes. The main effect of genotypes was found in the left corpus callosum and the frontal lobe. There was no interaction between rs1545843 genotypes and disease status. We found that the left corpus callosum ReHo was positively correlated with total scores of the Hamilton Depression Scale (HAMD) (p = 0.021), so as was the left inferior parietal gyrus ReHo with cognitive disorder (p = 0.02). In addition, the right middle temporal gyrus had a negative correlation with retardation (p = 0.049). We observed an association between the SLC6A15 rs1545843 and resting-state brain function of the corpus callosum, cingulum and the frontal, parietal, and temporal lobes in MDD patients, which may be involved in the pathogenesis of MDD.
Functional neuroimaging and presenting psychiatric features in frontotemporal dementia
Mendez, M F; McMurtray, A; Chen, A K; Shapira, J S; Mishkin, F; Miller, B L
2006-01-01
Background Frontotemporal dementia (FTD) is a behavioural syndrome caused by degeneration of the frontal and anterior temporal lobes. Behavioural disturbances include psychiatric features. Whether patients with FTD present with psychiatric features varies with the initial neuroanatomical variability of FTD. Objective To identify presenting psychiatric changes not part of diagnostic criteria of FTD and contrast them with the degree of hemispheric asymmetry and frontal and temporal hypoperfusion on single photon emission computed tomography (SPECT) imaging. Methods 74 patients who met consensus criteria for FTD were evaluated at a two year follow up. All had brain SPECT on initial presentation. Results of an FTD psychiatric checklist were contrasted with ratings of regional hypoperfusion. Results The regions of predominant hypoperfusion did not correlate with differences on FTD demographic variables but were associated with presenting psychiatric features. Dysthymia and anxiety were associated with right temporal hypoperfusion. “Moria” or frivolous behaviour also occurred with temporal lobe changes, especially on the right. The only significant frontal lobe feature was the presence of a peculiar physical bearing in association with right frontal hypoperfusion. Conclusions Patients with FTD may present with psychiatric changes distinct from the behavioural diagnostic criteria for this disorder. Early temporal involvement is associated with frivolous behaviour and right temporal involvement is associated with emotional disturbances. In contrast, those with right frontal disease may present with alterations in non‐verbal behaviour. PMID:16043457
Wang, Yao; Yin, Yan; Sun, Ya-wen; Zhou, Yan; Chen, Xue; Ding, Wei-na; Wang, Wei; Li, Wei; Xu, Jian-rong; Du, Ya-song
2015-01-01
Recent neuroimaging studies have shown that people with Internet gaming disorder (IGD) have structural and functional abnormalities in specific brain areas and connections. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (rsFC) in participants with IGD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric rsFC of the whole brain in participants with IGD. We compared interhemispheric rsFC between 17 participants with IGD and 24 healthy controls, group-matched on age, gender, and education status. All participants were provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired for all participants. The rsFC between bilateral homotopic voxels was calculated. Regions showing abnormal VMHC in IGD participants were adopted as regions of interest for correlation analyses. Compared to healthy controls, IGD participants showed decreased VMHC between the left and right superior frontal gyrus (orbital part), inferior frontal gyrus (orbital part), middle frontal gyrus and superior frontal gyrus. Further analyses showed Chen Internet Addiction Scale (CIAS)-related VMHC in superior frontal gyrus (orbital part) and CIAS (r = -0.55, p = 0.02, uncorrected). Our findings implicate the important role of altered interhemispheric rsFC in the bilateral prefrontal lobe in the neuropathological mechanism of IGD, and provide further supportive evidence for the reclassification of IGD as a behavioral addiction.
Sun, Ya-wen; Chen, Xue; Ding, Wei-na; Wang, Wei; Li, Wei; Du, Ya-song
2015-01-01
Purposes Recent neuroimaging studies have shown that people with Internet gaming disorder (IGD) have structural and functional abnormalities in specific brain areas and connections. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (rsFC) in participants with IGD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric rsFC of the whole brain in participants with IGD. Methods We compared interhemispheric rsFC between 17 participants with IGD and 24 healthy controls, group-matched on age, gender, and education status. All participants were provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired for all participants. The rsFC between bilateral homotopic voxels was calculated. Regions showing abnormal VMHC in IGD participants were adopted as regions of interest for correlation analyses. Results Compared to healthy controls, IGD participants showed decreased VMHC between the left and right superior frontal gyrus (orbital part), inferior frontal gyrus (orbital part), middle frontal gyrus and superior frontal gyrus. Further analyses showed Chen Internet Addiction Scale (CIAS)-related VMHC in superior frontal gyrus (orbital part) and CIAS (r = −0.55, p = 0.02, uncorrected). Conclusions Our findings implicate the important role of altered interhemispheric rsFC in the bilateral prefrontal lobe in the neuropathological mechanism of IGD, and provide further supportive evidence for the reclassification of IGD as a behavioral addiction. PMID:25738502
Impairments in proverb interpretation following focal frontal lobe lesions.
Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa
2013-09-01
The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Executive function impairment in early-treated PKU subjects with normal mental development.
Leuzzi, V; Pansini, M; Sechi, E; Chiarotti, F; Carducci, Cl; Levi, G; Antonozzi, I
2004-01-01
Executive functions were studied in 14 early and continuously treated PKU subjects (age 10.8 years, range 8-13) in comparison with controls matched for IQ, sex, age and socioeconomic status. Brain MRI examination was normal in all PKU patients. Neuropsychological evaluation included Wisconsin Card Sorting Test, Rey-Osterreith Complex Figure Test, Elithorn's Perceptual Maze Test, Weigl's Sorting Test, Tower of London, Visual Search and Motor Motor Learning Test. Whatever the IQ, PKU subjects performed worse than controls in tests exploring executive functions. Subgrouping the PKU subjects according to the quality of dietary control for the entire follow-up period (using 400 micromol/L as cut-off value for blood phenylalanine (Phe) concentration) showed that patients with worse dietary control performed more poorly than both the PKU group with the best dietary control and the control group. However, a mild impairment of executive functions was still found in PKU patients with a good dietary control (Phe <400 micromol/L) compared to controls. Concerning the PKU group as a whole, no linear correlation was found between neuropsychological performance and historical and concurrent biochemical parameters. We conclude that (a) PKU patients, even when treated early, rigorously and continuously, show an impairment of frontal lobe functions; (b) a protracted exposure to moderately high levels of Phe can affect frontal lobe functions independently of the possible effect of the same exposure on IQ; (c) in order to reduce the risk of frontal lobe dysfunction, the target of dietary therapy should be to maintain blood Phe concentration below 400 micromol/L.
Counterfactual Thinking Deficit in Huntington’s Disease
Solca, Federica; Poletti, Barbara; Zago, Stefano; Crespi, Chiara; Sassone, Francesca; Lafronza, Annalisa; Maraschi, Anna Maria; Sassone, Jenny; Silani, Vincenzo; Ciammola, Andrea
2015-01-01
Background and Objective Counterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving – all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington’s Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment. Methods Tests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects. Results Our results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test – Part A, Phonemic Verbal Fluency Test and FAB. Conclusions Spontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients’ daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients’ ability to analyse current behaviors and future actions. PMID:26070155
Matsuoka, Kiwamu; Yasuno, Fumihiko; Hashimoto, Akiko; Miyasaka, Toshiteru; Takahashi, Masato; Kiuchi, Kuniaki; Iida, Junzo; Kichikawa, Kimihiko; Kishimoto, Toshifumi
2018-05-01
Caregivers of patients with dementia experience physical and mental deterioration. We have previously reported a correlation between caregiver burden and the Frontal Assessment Battery (FAB) total scores of patients with Alzheimer's disease (AD), especially regarding the dependency factor from the Zarit Burden Interview. The present study aimed to identify an objective biomarker for predicting caregiver burden. The participants were 26 pairs of caregivers and patients with AD and mild-to-moderate dementia. Correlations between regional gray matter volumes in the patients with AD and the FAB total scores were explored by using whole-brain voxel-based morphometric analysis. Path analysis was used to estimate the relationships between regional gray matter volumes, FAB total scores, and caregiver burden based on the Zarit Burden Interview. The voxel-based morphometric revealed a significant positive correlation between the FAB total scores and the volume of the left dorsolateral prefrontal cortex. This positive correlation persisted after controlling for the effect of general cognitive dysfunction, which was assessed by using the Mini-Mental State Examination. Path analysis revealed that decreases in FAB scores, caused by reduced frontal lobe volumes, negatively affected caregiver burden. The present study revealed that frontal lobe function, based on FAB scores, was affected by the volume of the left dorsolateral prefrontal cortex. Decreased scores were associated with greater caregiver burden, especially for the dependency factor. These findings may facilitate the development of an objective biomarker for predicting caregiver burden. Copyright © 2017 John Wiley & Sons, Ltd.
Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex.
Ferrer, I; Roig, C; Espino, A; Peiro, G; Matias Guiu, X
1991-01-01
Neuropathological findings in a 38 year old patient with dementia of frontal lobe type and motor neuron disease included pyramidal tracts, myelin pallor and neuron loss, gliosis and chromatolysis in the hypoglossal nucleus, together with frontal atrophy, neuron loss, gliosis and spongiosis in the upper cortical layers of the frontal (and temporal) lobes. Most remaining pyramidal and non-pyramidal neurons (multipolar, bitufted and bipolar cells) in the upper layers (layers II and III) of the frontal cortex (area B) had reduced dendritic arbors, proximal dendritic varicosities and amputation of dendrites as revealed in optimally stained rapid Golgi sections. Pyramidal cells in these layers also showed depletion of dendritic spines. Neurons in the inner layers were preserved. Loss of receptive surfaces in neurons of the upper cortical layers in the frontal cortex are indicative of neuronal disconnection, and are "hidden" contributory morphological substrates for the development of dementia. Images PMID:1744652
The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence.
Kim, Young Jae; Cha, Eun Joo; Kim, Sun Mi; Kang, Kyung Doo; Han, Doug Hyun
2015-07-01
Many studies have reported that Taekwondo training could improve body perception, control and brain activity, as assessed with an electroencephalogram. This study aimed to assess body intelligence and brain connectivity in children with Taekwondo training as compared to children without Taekwondo training. Fifteen children with Taekwondo training (TKD) and 13 age- and sex-matched children who had no previous experience of Taekwondo training (controls) were recruited. Body intelligence, clinical characteristics and brain connectivity in all children were assessed with the Body Intelligence Scale (BIS), self-report, and resting state functional magnetic resonance imaging. The mean BIS score in the TKD group was higher than that in the control group. The TKD group showed increased low-frequency fluctuations in the right frontal precentral gyrus and the right parietal precuneus, compared to the control group. The TKD group showed positive cerebellum vermis (lobe VII) seed to the right frontal, left frontal, and left parietal lobe. The control group showed positive cerebellum seed to the left frontal, parietal, and occipital cortex. Relative to the control group, the TKD group showed increased functional connectivity from cerebellum seed to the right inferior frontal gyrus. To the best of our knowledge, this is the first study to assess the effect of Taekwondo training on brain connectivity in children. Taekwondo training improved body intelligence and brain connectivity from the cerebellum to the parietal and frontal cortex.
Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy.
He, Xiaosong; Bassett, Danielle S; Chaitanya, Ganne; Sperling, Michael R; Kozlowski, Lauren; Tracy, Joseph I
2018-05-01
Temporal lobe epilepsy tends to reshape the language system causing maladaptive reorganization that can be characterized by task-based functional MRI, and eventually can contribute to surgical decision making processes. However, the dynamic interacting nature of the brain as a complex system is often neglected, with many studies treating the language system as a static monolithic structure. Here, we demonstrate that as a specialized and integrated system, the language network is inherently dynamic, characterized by rich patterns of regional interactions, whose transient dynamics are disrupted in patients with temporal lobe epilepsy. Specifically, we applied tools from dynamic network neuroscience to functional MRI data collected from 50 temporal lobe epilepsy patients and 30 matched healthy controls during performance of a verbal fluency task, as well as during rest. By assigning 16 language-related regions into four subsystems (i.e. bilateral frontal and temporal), we observed regional specialization in both the probability of transient interactions and the frequency of such changes, in both healthy controls and patients during task performance but not rest. Furthermore, we found that both left and right temporal lobe epilepsy patients displayed reduced interactions within the left frontal 'core' subsystem compared to the healthy controls, while left temporal lobe epilepsy patients were unique in showing enhanced interactions between the left frontal 'core' and the right temporal subsystems. Also, both patient groups displayed reduced flexibility in the transient interactions of the left temporal and right frontal subsystems, which formed the 'periphery' of the language network. Importantly, such group differences were again evident only during task condition. Lastly, through random forest regression, we showed that dynamic reconfiguration of the language system tracks individual differences in verbal fluency with superior prediction accuracy compared to traditional activation-based static measures. Our results suggest dynamic network measures may be an effective biomarker for detecting the language dysfunction associated with neurological diseases such as temporal lobe epilepsy, specifying both the type of neuronal communications that are missing in these patients and those that are potentially added but maladaptive. Further advancements along these lines, transforming how we characterize and map language networks in the brain, have a high probability of altering clinical decision making in neurosurgical centres.10.1093/brain/awy042_video1awy042media15754656112001.
Ribeiro, Luís Gustavo; Busatto, Geraldo
2016-01-01
Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms.
Mapping a lateralization gradient within the ventral stream for auditory speech perception.
Specht, Karsten
2013-01-01
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.
Mapping a lateralization gradient within the ventral stream for auditory speech perception
Specht, Karsten
2013-01-01
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470
Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.
Thaiss, Laila; Petrides, Michael
2008-08-01
Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.
Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong
2016-01-01
The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093
Chirchiglia, Domenico; Della Torre, Attilio; Murrone, Domenico; Chirchiglia, Pasquale; Marotta, Rosa
2017-01-01
Cerebral cavernous angioma or cavernoma is a benign vascular malformation, usually asymptomatic. It is infrequent and often its discovery is incidental, a so-called incidentaloma. However, these lesions can be symptomatic, causing headaches, epilepsy, cerebral hemorrhage and other neurological signs depending on the brain area involved. Frontal localization is responsible for psychiatric disorders, particularly the prefrontal region, leading to prefrontal syndrome, a condition common in all frontal lobe tumors. Psychopathological syndrome can be depression-type, pseudodepression syndrome or maniac-type, pseudomaniac syndrome. Surgical treatment of lesions like this may not always be possible due to their location in eloquent areas. In this study, we describe an unusual association of migraine-like headache, epilepsy and frontal lobe pseudodepression late-onset syndrome in the same patient. We have considered this case interesting mainly for the rarity of both a headache with migraine features and for the late onset of pseudodepression syndrome. Pathophysiology underlying migraine-like headache and that concerning the late-onset pseudodepression frontal lobe syndrome seems to be unclear. This case leads to further hypotheses about the mechanisms responsible for headache syndromes and psychopathological disorders, in the specific case when caused by a cerebral frontal lobe lesion.
Bozza, F; Nisii, A; Parziale, G; Sherkat, S; Del Deo, V; Rizzo, A
2010-03-01
An obstructive condition of paranasal sinus secondary to surgery, trauma, flogosis or neoplasms could become a predisposing state to the occurrence of mucocele. Frontal sinus mucoceles, which can turn into mucopyoceles due to bacterial super-infections, may invade the orbit, erode the skull base and displace respectively the ocular bulb and the frontal lobe. The surgical treatment of this disease ranges from mini-invasive approaches, such as the transnasal endoscopic marsupialization, to a more aggressive surgery such as osteoplasty through coronal flap and frontal sinus exclusion by fat tissue. From 2005 to 2007, we treated with transnasal endoscopic surgery 10 patients, affected by frontal sinus mucopyoceles displacing both the ocular bulb and the frontal lobe. In the present study, we report the clinical and diagnostic features of this series, the treatment modalities and the achieved results and confirm the effectiveness of the mini-invasive transnasal endoscopic technique in the treatment of the frontal sinus mucopyocele.
Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang
2016-01-01
Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael
2013-01-01
The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939
Szabó, C. Ákos; Narayana, Shalini; Franklin, Crystal; Knape, Koyle D.; Davis, M. Duff; Fox, Peter T.; Leland, M. Michelle; Williams, Jeff T.
2011-01-01
Background Photosensitive epileptic (SZ) baboons demonstrate different cerebral blood flow (CBF) activation patterns from asymptomatic controls (CTL) during intermittent light stimulation (ILS). This study compares “resting” CBF between PS and CTL animals, and CBF correlations with ketamine dose and interictal epileptic discharges (IEDs) between PS and CTL animals. Methods Continuous intravenous ketamine was administered to eight PS and eight CTL baboons (matched for gender and weight), and maintained at subanesthetic doses (4.8–14.6 mg/kg/hr). Three resting H215O-PET studies were attempted in each animal (CTI/Siemens HR+ scanner). Images were acquired in 3D mode (63 contiguous slices, 2.4 mm thickness). PET images were co-registered with MRI images (3T Siemens Trio, T1-weighted 3D Turboflash sequence, TE/TR/TI = 3.04/2100/785 msec, flip angle=13 degrees). EEG was used to monitor depth of sedation and for quantification of IED rates. Regional CBF was compared between PS and CTL groups and correlations were analyzed for ketamine dose and IED rates. Results When subsets of animals of either group, receiving similar doses of ketamine were compared, PS animals demonstrated relative CBF increases in the occipital lobes and decreases in the frontal lobes. Correlation analyses with ketamine dose confirmed the frontal and occipital lobe changes in the PS animals. The negative correlations of CBF with ketamine dose and IED rate overlapped frontally. While frontal lobe CBF was also negatively correlated with IED rate, positive correlations were found in the parietal lobe. Conclusions “Resting” CBF differs between PS and CTL baboons. Correlation analyses of CBF and ketamine dose reveal that occipital lobe CBF increases and frontal lobe in PS animals are driven by ketamine. While frontal lobe CBF decreases may be related to ketamine’s propensity to activate IEDs, positive CBF correlations with IED rate suggest involvement of the parietal lobes in their generation. PMID:18801644
Walczak, Adam; Ahlstrom, Jayne; Denslow, Stewart; Horwitz, Amy; Dubno, Judy R.
2008-01-01
Speech recognition can be difficult and effortful for older adults, even for those with normal hearing. Declining frontal lobe cognitive control has been hypothesized to cause age-related speech recognition problems. This study examined age-related changes in frontal lobe function for 15 clinically normal hearing adults (21–75 years) when they performed a word recognition task that was made challenging by decreasing word intelligibility. Although there were no age-related changes in word recognition, there were age-related changes in the degree of activity within left middle frontal gyrus (MFG) and anterior cingulate (ACC) regions during word recognition. Older adults engaged left MFG and ACC regions when words were most intelligible compared to younger adults who engaged these regions when words were least intelligible. Declining gray matter volume within temporal lobe regions responsive to word intelligibility significantly predicted left MFG activity, even after controlling for total gray matter volume, suggesting that declining structural integrity of brain regions responsive to speech leads to the recruitment of frontal regions when words are easily understood. Electronic supplementary material The online version of this article (doi:10.1007/s10162-008-0113-3) contains supplementary material, which is available to authorized users. PMID:18274825
Agah, Elmira; Asgari-Rad, Nasima; Ahmadi, Mona; Tafakhori, Abbas; Aghamollaii, Vajiheh
2017-07-01
Previous studies have demonstrated executive dysfunction in patients with temporal lobe epilepsy (TLE). Frontal assessment battery (FAB) is a short neuropsychological tool that was developed for assessment of frontal lobe function in a clinical setting. The aim of the present study is to evaluate the clinical utility of FAB for detection of executive dysfunction in TLE patients. Forty-eight TLE patients and 48 sex and age-matched healthy controls participated in this study. Compared to healthy participants, the total FAB score was significantly lower among the TLE patients. TLE patients performed significantly worse at the mental flexibility, motor programming, sensitivity to interference and inhibitory control tasks. The duration of time has been passed since the last seizure was the only significant predictor of FAB score and patients who had a seizure less than a week before the evaluation time, had significantly lower FAB scores. The number of antiepileptic drugs (AEDs) did not influence the executive function in this study; however, sodium valproate was found to affect the mental flexibility. In conclusion, impaired executive function is common in TLE patients, and we suggest that FAB is a clinically applicable tool to monitor it. Moreover, we found that the time of the last seizure is a significant predictor of executive functioning and patients' performance may become worse up to seven days after a seizure. We also recommend that clinicians evaluate the cognitive adverse effects of AEDs especially sodium valproate, which was found to affect the mental flexibility in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Torgersen, Johan; Helland, Christian; Flaatten, Hans; Wester, Knut
2010-11-01
The aim of this study was to evaluate and validate the Cambridge Neuropsychological Test Automated Battery (CANTAB) in a Norwegian group of patients undergoing surgery for middle fossa arachnoid cysts (AC). We also wanted to assess health related quality of life (HRQOL) in these patients to see if it could be improved by decompression of the AC. Adult patients (>18 years) with unilateral middle fossa AC and no previous history of neurological disease, head injury, or a psychiatric disorder were eligible for inclusion. We used four tests from CANTAB to assess the level of neuropsychological performance: paired associate learning (PAL) and delayed matching to sample (DMS) assessed temporal lobe functions, while Stockings of Cambridge (SOC) and intra-extra dimensional (IED) shift focused on frontal lobe functions. Patients with postoperative cerebral complications were reported, but excluded from neuropsychological follow-up. In addition to the CANTAB data, pre- and postoperative clinical and radiological data were collected. HRQOL was assessed using Short Form 36 (SF-36) pre- and postoperatively. We found significant improvement in the two temporal tests assessing memory, but no improvement in the two frontal tests assessing executive function. HRQOL was significantly reduced preoperatively in two of eight SF-36 domains and improved significantly in four domains postoperatively. CANTAB facilitates detection of cognitive improvements after decompression of the cyst in patients with AC in the middle fossa. The improvements were detected on the tests sensitive to temporal lobe problems only, not on the tests more sensitive to frontal lobe affection. This establishes construct validity for CANTAB for the first time in this population.
Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I
2015-01-01
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates.
Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.
2015-01-01
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates. PMID:26594628
Intentionality and "free-will" from a neurodevelopmental perspective.
Leisman, Gerry; Machado, Calixto; Melillo, Robert; Mualem, Raed
2012-01-01
The nature of free-will as a subset of intentionality and probabilistic and deterministic function is explored with the indications being that human behavior is highly predictable which in turn, should compromise the notion of free-will. Data supports the notion that age relates to the ability to progressively effectively establish goals performed by fixed action patterns and that these FAPs produce outcomes that in turn modify choices (free-will) for which FAPs need to be employed. Early goals require behaviors that require greater automation in terms of FAPs that lead to goals being achieved or not; if not, then one can change behavior and that in turn is free-will. Goals change with age based on experience which is similar to the way in which movement functions. We hypothesize that human prefrontal cortex development was a natural expansion of the evolutionarily earlier developed areas of the frontal lobe and that goal-directed movements and behavior, including choice and free-will, provided for an expansion of those areas. The same regions of the human central nervous system that were already employed for better control, coordination, and timing of movements, expanded in parallel with the frontal cortex. The initial focus of the frontal lobes was the control of motor activity, but as the movements became more goal-directed, greater cognitive control over movement was necessitated leading to voluntary control of FAPs or free-will. The paper reviews the neurobiology, neurohistology, and electrophysiology of brain connectivities developmentally, along with the development of those brain functions linked to decision-making from a developmental viewpoint. The paper reviews the neurological development of the frontal lobes and inter-regional brain connectivities in the context of optimization of communication systems within the brain and nervous system and its relation to free-will.
Ribeiro, Luís Gustavo; Busatto, Geraldo
2016-01-01
ABSTRACT Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Methods: Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. Results: From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Conclusion: Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms. PMID:29213441
Vogan, Vanessa M; Morgan, Benjamin R; Lee, Wayne; Powell, Tamara L; Smith, Mary Lou; Taylor, Margot J
2014-01-01
Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7-13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Children with ASD showed differences in activation in the frontal and parietal lobes-both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances.
Associations between subjective sleep quality and brain volume in Gulf War veterans.
Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C
2014-03-01
To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P < 0.001) and was higher in veterans with Gulf War Illness, trauma exposure, and those using psychotropic medication (P ≤ 0.03). After adjusting for these comorbid variables, age, intracranial volume, and multiple comparisons, global PSQI was inversely associated with total cortical and frontal gray matter volume (adjusted P ≤ 0.03). Within the frontal lobe, total PSQI was inversely associated with the superior and middle frontal, orbitofrontal, anterior cingulate, and frontal pole volumes (adjusted P ≤ 0.02). Examination of the 3-factor structure of the PSQI revealed that the associations were driven by perceived sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.
Kim, Johanna Inhyang; Kim, Jae-Won; Lee, Jong-Min; Yun, Hyuk Jin; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bongseog; Chae, Jonghee; Roh, Jaewoo; Kim, Bung-Nyun
2018-03-02
The dopamine receptor D2 receptor (DRD2) gene and lead exposure are both thought to contribute to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). ADHD is characterized by delay in brain maturation, most prominent in the prefrontal cortex (PFC). The D2 receptor is also mainly located in the PFC, and animal studies show that lead exposure affects the dopaminergic system of the frontal lobe, indicating an overlap in neural correlates of ADHD, DRD2, and lead exposure. We examined the interaction effects of DRD2 rs1800497 and lead exposure on the cortical thickness of the frontal lobe in patients with ADHD. A 1:1 age- and gender-matched sample of 75 participants with ADHD and 75 healthy participants was included in the analysis. The interaction effects of DRD2 and lead exposure on the cortical thickness of 12 regions of interest in the frontal lobe were examined by multivariable linear regression analyses. When we investigated the DRD2×lead effects in the ADHD and HC groups separately, significant DRD2×lead effects were found in the ADHD group, but not in the healthy control group in multiple ROIs of the frontal lobe. There was a significant negative correlation between the cortical thickness of the right superior frontal gyrus and inattention scores. The present findings demonstrated significant interaction effects of DRD2 and lead exposure on the cortical thickness of the frontal lobe in ADHD. Replication studies with larger sample sizes, using a prospective design, are warranted to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu
2016-01-01
The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.
Tienari, Pentti; Kiviharju, Anna; Valori, Miko; Lindholm, Dan; Laaksovirta, Hannu
2016-01-01
The mechanisms of neurodegenerative diseases have begun to become unraveled, thanks to the progress in stem cell research. The repeat expansion in the C90RF72 gene was identified in 2011 as the most common genetic cause of both ALS and frontal lobe dementia. Only over a couple of years the disease mechanisms of this mutation have been revealed and treatment trials have already been conducted in nerve cell cultures differentiated from patients' stem cells. We discuss the role of the repeat expansion in the C90RF72 gene in the epidemiology of the diseases and the resulting disturbances in nerve cell function.
Li-Fei, Zhu; Hong-Xiong, Liu; Ying, H E
2016-11-01
Our study aimed to investigate the measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease (CHD) at different gestational weeks using three dimensional (3-D) ultrasonography and its clinical value. Then, 238 pregnant women who received obstetric ultrasonography in ultrasound department of Internal Medicine of our hospital were enrolled between March 2013 to April 2014. In this study, 85 fetuses were diagnosed to develop CHD by prenatal fetal echocardiography, and the other 153 fetuses were normal. Frontal lobe volume, thalamic volume and cerebral blood flow was determined by color Doppler ultrasonic diagnostic apparatus (type: GE Voluson E8). The level of MCA-PI and CPR in CHD fetus group performed significantly lower than that in normal fetus group (P<0.05), but the level of UA-PI performed significantly higher than that in normal fetus group (P<0.05). When gestational age <30 weeks, there was no significant difference in thalamic volume and frontal lobe volume between the two groups (P<0.05); when gestational age <30 weeks, the level of CHD fetus group performed significantly lower thalamic volume and frontal lobe volume than that in normal fetus group (P<0.05). When gestational age <30 weeks, there was no significant difference in BPD, HC, and GA between the two groups (P<0.05); when gestational age <30 weeks, the level of BPD, HC and GA in CHD fetus group performed significantly lower than that in normal fetus group (P<0.05). If gestational age <30 weeks, CHD performed a small impact on fetal frontal lobe volume and thalamic volume; if gestational age <30 weeks, the level of frontal lobe volume and thalamic volume in fetuses with CHD performed significantly lower than that in normal fetuses.
Wen, Hung Tzu; Da Róz, Leila Maria; Rhoton, Albert L; Castro, Luiz Henrique Martins; Teixeira, Manoel Jacobsen
2017-02-01
An extensive frontal resection is a frequently performed neurosurgical procedure, especially for treating brain tumor and refractory epilepsy. However, there is a paucity of reports available regarding its surgical anatomy and technique. We sought to present the anatomic landmarks and surgical technique of the frontal lobe decortication (FLD) in epilepsy. The goals were to maximize the gray matter removal, spare primary and supplementary motor areas, and preserve the frontal horn. The anatomic study was based on dissections performed in 15 formalin-fixed adult cadaveric heads. The clinical experience with 15 patients is summarized. FLD consists of 5 steps: 1) coagulation and section of arterial branches of lateral surface; 2) paramedian subpial resection 3 cm ahead of the precentral sulcus to reach the genu of corpus callosum; 3) resection of gray matter of lateral surface, preserving the frontal horn; 4) removal of gray matter of basal surface preserving olfactory tract; 5) removal of gray matter of the medial surface under the rostrum of corpus callosum. The frontal horn was preserved in all 15 patients; 12 patients (80%) had no complications; 2 patients presented temporary hemiparesis; and 1 Rasmussen syndrome patient developed postoperative fever. The best seizure control was in cases with focal magnetic resonance imaging abnormalities limited to the frontal lobe. FLD is an anatomy-based surgical technique for extensive frontal lobe resection. It presents reliable anatomic landmarks, selective gray matter removal, preservation of frontal horn, and low complication rate in our series. It can be an alternative option to the classical frontal lobectomy. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Inn-Chi; Chen, Yung-Jung; Lee, Hong-Shen; Li, Shuan-Yow
2014-12-01
The outcomes of children with cryptogenic seizures most probably arising from the frontal lobe are difficult to predict. We retrospectively collected data on 865 pediatric patients with epilepsy. In 78 patients with cryptogenic frontal lobe epilepsy, the age at first seizure was inversely correlated with the outcome, including the degree of intellectual disability/developmental delay (P = .002) and seizure frequency (P = .02) after adequate treatment. Intellectual disability was more prevalent in children with a first seizure at 0 to 3 years old (P = .002), and seizures were more frequent in those with a first seizure at 0 to 6 years old than at 7 to 16 years old (P = .026). For pediatric cryptogenic frontal lobe epilepsy, the age at first seizure is important and inversely correlated with outcome, including seizure frequency and intellectual disability. © The Author(s) 2013.
Ko, Chih-Hung; Hsieh, Tsyh-Jyi; Wang, Peng-Wei; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yen, Ju-Yu
2015-03-03
The aim of this study was to evaluate the altered brain structure and functional connectivity (FC) among subjects with Internet gaming disorder (IGD). We recruited 30 males with IGD and 30 controls and evaluated their gray matter density (GMD) and FC using resting fMRI. The severities of IGD, gaming urge, and impulsivity were also assessed. The results demonstrated that the subjects with IGD had a higher impulsivity and a greater severity of IGD. The subjects with IGD had a lower GMD over the bilateral amygdala than the controls. Further, the subjects with IGD had lower FC with the left amygdala over the left dorsolateral prefrontal lobe (DLPFC) and with the right amygdala over the left DLPFC and orbital frontal lobe (OFL). They also had higher FC with the bilateral amygdala over the contralateral insula than the controls. The FC between the left amygdala and DLPFC was negatively correlated with impulsivity. The FC of the right amygdala to the left DLPFC and orbital frontal lobe was also negatively correlated with impulsivity. Our results indicated that the altered GMD over the amygdala might represent vulnerability to IGD, such as impulsivity. Further analysis of the amygdala demonstrated impaired FC to the frontal lobe, which represents impulsivity. The results of this study suggested that the amygdala plays a very influential role in the mechanism of IGD. Its detailed role should be further evaluated in future study and should be considered in the treatment of IGD. Copyright © 2014 Elsevier Inc. All rights reserved.
Epileptogenic developmental venous anomaly: insights from simultaneous EEG/fMRI.
Scheidegger, Olivier; Wiest, Roland; Jann, Kay; König, Thomas; Meyer, Klaus; Hauf, Martinus
2013-04-01
Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.
Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T
NASA Astrophysics Data System (ADS)
Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou
2016-03-01
The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.
Echothymia: environmental dependency in the affective domain.
Marin, Robert S; Gorovoy, Ian R
2014-01-01
Echothymia is stimulus-bound affective behavior, an echophenomenon in the domain of affect. Like echolalia and echopraxia, it is a concomitant of the environmental dependency associated with dysfunction of the frontal-striatal systems that mediate so-called frontal lobe functions. The authors introduce the definition and phenomenology of echothymia, overview its differential diagnosis and clinical significance, and suggest ways in which understanding echothymia may contribute to clinical management.
Eggers, R; Haug, H; Fischer, D
1984-01-01
The studies here reported were performed on the prosencephalons of 12 human brains between 37 and 86 years of age having no signs of neuropathological alteration. The evaluation was carried out on serial frontal sections with a mean thickness of 5 mm with stereological point counting procedures for volume and surface area. The results were mainly given in relative values since the range of variation is very high and the sample small. The aging process was evaluated with the aid of a linear regression function. The stereological investigation regarding the absolute values of volume and surface area (border face) of the macroscopical brain parts show a high interindividual variability. However, the relative volume of brain parts shows only small variations. Changes during aging could consequently only be revealed with the help of the relative values. The relative volumes and surface areas of the frontal lobe and the prosencephalic ganglia decrease with aging, while the parieto-occipital lobe and the striate cortex increase. However, if we refer these relative increases to the absolute decrease of brain volume, corresponding changes cannot be found in the parieto-occipital lobe until old age. The shrinkage of the frontal lobe, of the centrum semiovale and of the prosencephalic ganglia exceeds 10%. In the grays it is probably accompanied by a loss of neurons. The relative sizes of the surface area do not change significantly during aging with exception of the frontal cortex. The thickness of the cortex remains probably constant. The size of lateral ventricles increases with aging.
Acute Infantile Encephalopathy Predominantly Affecting The Frontal Lobes (AIEF).
Raha, Sarbani; Udani, Vrajesh
2012-12-01
Acute Infantile Encephalopathy Predominantly Affecting the Frontal Lobes (AIEF) is a relatively recent described entity. This article includes case reports of two patients who had bifrontal involvement during acute febrile encephalopathy. Case 1 describes a 1-y-old boy who presented with hyperpyrexia and dialeptic seizures. Imaging revealed significant bilateral frontal lobe involvement while serology proved presence of Influenza B infection. Over a period of one wk, he recovered with significant cognitive decline and perseveratory behavior. Another 6-y-old boy presented with language and behavioral problems suggestive of frontal dysfunction after recovering from prolonged impairment of consciousness following a convulsive status epilepticus. Bilateral superior frontal lesions with gyral swelling was evident on neuroimaging. These cases are among the very few cases of AIEF described in recent literature and the article also reviews this unique subtype of acute encephalopathy.
Cognitive accuracy and intelligent executive function in the brain and in business.
Bailey, Charles E
2007-11-01
This article reviews research on cognition, language, organizational culture, brain, behavior, and evolution to posit the value of operating with a stable reference point based on cognitive accuracy and a rational bias. Drawing on rational-emotive behavioral science, social neuroscience, and cognitive organizational science on the one hand and a general model of brain and frontal lobe executive function on the other, I suggest implications for organizational success. Cognitive thought processes depend on specific brain structures functioning as effectively as possible under conditions of cognitive accuracy. However, typical cognitive processes in hierarchical business structures promote the adoption and application of subjective organizational beliefs and, thus, cognitive inaccuracies. Applying informed frontal lobe executive functioning to cognition, emotion, and organizational behavior helps minimize the negative effects of indiscriminate application of personal and cultural belief systems to business. Doing so enhances cognitive accuracy and improves communication and cooperation. Organizations operating with cognitive accuracy will tend to respond more nimbly to market pressures and achieve an overall higher level of performance and employee satisfaction.
[Clinical characteristics of epileptic seizures in insular gliomas].
Buklina, S B; Bykanov, A E; Pitskhelauri, D I
To study the characteristics of epileptic seizures in insular gliomas. Forty-five patients with insular gliomas were examined. The spread of a tumor was established by MRI results and intraoperational findings. A tumor within the insular only was found in 9 out of 45 patients (7 left-sided and 2 right-sided). In 36 patients, a tumor slightly spread into temporal lobe pole and medial-basal regions of the frontal lobe (27 left-sided and 18 right-sided). The control group consisted of 50 patients with tumors of temporal and frontal lobes. Paroxysmal symptoms were similar in patients with tumors of the insular and patients with tumors of temporal lobes. Seizures in patients with frontal lobe tumors differed significantly from insular and temporal tumors, with the exception of a tumor localized in the opercula area. The following quantitative differences were identified: different forms of unconsciousness were significantly less frequent in symptomatic epilepsy in patients with insular tumor than in epilepsy caused by temporal lobe tumors (36% of patients vs 84% in temporal tumors (p<0.0001)). In patients with insular tumors, olfactory and taste hallucinations occur more often compared to temporal lobe tumors (51% vs 16% (p<0.003). The frequency of paroxysmal seizures of fear and anxiety in patients with those tumors was similar (20% with insular tumors and 14 with temporal tumors). An autonomic component of episeizures did not differ between tumors of both localizations. Olfactory and taste hallucinations were qualitatively similar in insular and temporal lobe tumors: smell and taste were unpleasant or associated with a danger: smell of burning, gas, something spoiled, sour, tart chemistry, taste of somethong metallic, chemical, sour. No pleasant smell or taste were reported. Epileptic seizures in insular tumors had similarities and certain differences compared with temporal seizures that well reflect function of the insula and its links, in the first turn, with limbic system structures.
Sela, Itamar; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Onaral, Banu
2014-01-01
The dual route model (DRM) of reading suggests two routes of reading development: the phonological and the orthographic routes. It was proposed that although the two routes are active in the process of reading; the first is more involved at the initial stages of reading acquisition, whereas the latter needs more reading training to mature. A number of studies have shown that deficient phonological processing is a core deficit in developmental dyslexia. According to the DRM, when the Lexical Decision Task (LDT) is performed, the orthographic route should also be involved when decoding words, whereas it is clear that when decoding pseudowords the phonological route should be activated. Previous functional near-infrared spectroscopy (fNIR) studies have suggested that the upper left frontal lobe is involved in decision making in the LDT. The current study used fNIR to compare left frontal lobe activity during LDT performance among three reading-level groups: 12-year-old children, young adult dyslexic readers, and young adult typical readers. Compared to typical readers, the children demonstrated lower activity under the word condition only, whereas the dyslexic readers showed lower activity under the pseudoword condition only. The results provide evidence for upper left frontal lobe involvement in LDT and support the DRM and the phonological deficit theory of dyslexia.
Serial diffusion-weighted imaging in subacute sclerosing panencephalitis.
Kanemura, Hideaki; Aihara, Masao
2008-06-01
Subacute sclerosing panencephalitis may be associated with clinical features of frontal lobe dysfunction. We previously reported that frontal lobe volume falls significantly as clinical stage progresses, using three-dimensional magnetic resonance imaging-based brain volumetry. The hypothesis that frontal volume increases correlate with clinical improvement, however, was not tested in our previous study. Therefore, we reevaluated our patient with subacute sclerosing panencephalitis, to determine whether apparent diffusion coefficient maps can characterize the clinical course of subacute sclerosing panencephalitis. We studied an 8-year-old boy with subacute sclerosing panencephalitis, using serial diffusion-weighted imaging magnetic resonance imaging, and measured the regional apparent diffusion coefficient. The regional apparent diffusion coefficient of the frontal lobe decreased significantly with clinical progression, whereas it increased to within normal range during clinical improvements. The apparent diffusion coefficient of the other regions did not change. These results suggest that the clinical signs of patients with subacute sclerosing panencephalitis are attributable to frontal lobe dysfunction, and that apparent diffusion coefficient measurements may be useful in predicting the clinical course of subacute sclerosing panencephalitis.
Consideration of the method of image diagnosis with respect to frontal lobe atrophy
NASA Astrophysics Data System (ADS)
Sato, K.; Sugawara, K.; Narita, Y.; Namura, I.
1996-12-01
Proposes a segmentation method for a quantitative image diagnosis as a means of realizing an objective diagnosis of the frontal lobe atrophy. From the data obtained on the grade of membership, the fractal dimensions of the cerebral tissue [cerebral spinal fluid (CSF), gray matter, and white matter] and the contours are estimated. The mutual relationship between the degree of atrophy and the fractal dimension has been analyzed based on the estimated fractal dimensions. Using a sample of 42 male and female cases, ranging In age from 50's to 70's, it has been concluded that the frontal lobe atrophy can be quantified by regarding it as an expansion of CSF region on the magnetic resonance imaging (MRI) of the brain. Furthermore, when the process of frontal lobe atrophy is separated into early and advanced stages, the volumetric change of CSF and white matter in frontal lobe displays meaningful differences between the two stages, demonstrating that the fractal dimension of CSF rises with the progress of atrophy. Moreover, an interpolation method for three-dimensional (3-D) shape reconstruction of the region of diagnostic interest is proposed and 3-D shape visualization, with respect to the degree and form of atrophy, is performed on the basis of the estimated fractal dimension of the segmented cerebral tissue.
Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F
2014-08-01
We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke
2016-12-01
OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.
Attention dysfunction of postoperative patients with glioma.
Fang, Dazhao; Jiang, Jian; Sun, Xiaoyang; Wang, Weijie; Dong, Nan; Fu, Xianhua; Pang, Cong; Chen, Xingui; Ding, Lianshu
2014-10-15
Attention dysfunction has been observed among many kinds of nervous system diseases, including glioma. This study aimed to investigate the correlation between glioma localization, malignancy, postoperative recovery time and attention deficit. A total of 45 patients with glioma who underwent surgical resection and 18 healthy volunteers were enrolled. The attention network test, digital span test, color trail test II and Stroop test were used to detect the characteristics of attention deficit. Orientation network dysfunction was detected in the parietal lobe tumor group, and execution network deficit was detected in both the frontal and parietal lobe groups, while no significant difference was detected in the temporal lobe group compared to healthy controls. The high-grade glioma group (grade III-IV) exhibited more serious functional impairment than the low-grade group (grade I-II). No significant correlation was observed between postoperative recovery time and attention impairment. High-grade glioma patients suffer more severe attention impairment. In addition, the frontal and parietal lobe glioma patients suffer attention dysfunction in dissimilar manner. These findings will provide important guidance on the care of glioma patients after therapy.
Syntactic structure building in the anterior temporal lobe during natural story listening.
Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J; Pylkkänen, Liina
2012-02-01
The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions. Copyright © 2010 Elsevier Inc. All rights reserved.
Baseline Brain Activity Changes in Patients With Single and Relapsing Optic Neuritis.
Ren, Zhuoqiong; Liu, Yaou; Li, Kuncheng; Duan, Yunyun; Jing, Huang; Liang, Peipeng; Sun, Zheng; Zhang, Xiaojun; Mao, Bei
2018-01-01
Purpose : To investigate spontaneous brain activity amplitude alterations in single and relapsing optic neuritis (sON and rON, respectively) and their relationships with clinical variables. Methods : In total, 42 patients with sON, 35 patients with rON and 50 healthy volunteers were recruited. Resting-state functional Magnetic Resonance Imaging (rs-fMRI) scans were acquired for all participants and compared to investigate the changes in the amplitude of low-frequency fluctuations (ALFFs) among the three groups. The relationships between the ALFFs in regions with significant differences in the groups and clinical variables, including the logarithm of minimal angle of resolution (LogMAR), Expanded Disability Status Scale (EDSS) score and disease duration, were further explored. Results : Compared with healthy volunteers, the sON and rON patients showed significantly decreased ALFFs in several regions of the occipital and temporal lobes (i.e., inferior occipital gyrus and superior temporal gyrus; corrected p < 0.01 using AlphaSim). The sON patients showed significantly increased ALFFs in the left caudate and certain regions in the frontal lobes (i.e., medial frontal gyrus), whereas the rON patients showed increased ALFFs in the bilateral inferior temporal gyrus and left medial frontal gyrus (corrected p < 0.01 using AlphaSim). Significantly decreased ALFFs were observed in the right inferior parietal lobule (IPL), left posterior cingulate and precuneus in the rON patients compared with those in the sON patients (corrected p < 0.01 using AlphaSim). Significant correlations were observed between the disease duration and ALFF in the left middle temporal gyrus, left inferior occipital gyrus, right lingual gyrus and right IPL ( p < 0.05). Conclusion : Functional impairment and adaptation occurred in both the sON and rON patients. Impairment mainly involved the occipital cortex, and functional adaptions predominantly occurred in the frontal lobe. Functional damage was more severe in the rON patients than in the sON patients and correlated with the disease duration.
Ictal visual hallucinations due to frontal lobe epilepsy in a patient with bipolar disorder☆
Manfioli, Valeria; Saladini, Marina; Cagnin, Annachiara
2013-01-01
In ictal psychosis with complex visual hallucinations (VHs), widespread functional changes of cortical networks have been suggested. We describe the clinical and EEG findings of a patient with bipolar disorder who manifested complex VHs associated with intense emotional symptoms caused by frontal epileptic seizures. This description highlights the challenges of diagnosing the epileptic nature of new psychotic phenomena in patients with previous psychiatric disorders and shines light into the role of the frontal cortex in the genesis of complex VHs. PMID:25667849
Dirksen, Courtney L; Howard, Julie A; Cronin-Golomb, Alice; Oscar-Berman, Marlene
2006-01-01
This study compared patterns of frontal-lobe dysfunction in alcoholics with Korsakoff’s syndrome (KS: n = 9), non-Korsakoff alcoholics (AL: n = 28), patients with Parkinson’s disease (PD: n = 18), and patients with rupture and repair of the anterior communicating artery (ACoA: n = 4) relative to healthy non-neurological control (NC) participants (n = 70). The tests administered were sensitive to functions of dorsolateral prefrontal and orbito-frontal subsystems. Measures included perseverative errors on the Wisconsin Card Sorting Test (WCST-pe), errors on object alternation (OA), errors on Trails B, number of words generated on the Controlled Oral Word Association Test (COWAT), and number of categories completed on the WCST (WCST-cc). KS patients were as impaired as AL participants on orbitofrontal measures and, on dorsolateral prefrontal measures, were impaired relative to AL participants, whose performance did not differ from controls. Patients with PD also were impaired on tests of orbitofrontal and dorsolateral prefrontal functioning but to a lesser extent than the KS patients. Moreover, most of the PD deficits were driven by the impaired performance of patients whose initial symptoms were on the right side of the body. The ACoA patients were significantly impaired on tests of orbitofrontal but not dorsolateral prefrontal functioning relative to the control group. Together, the results confirm different patterns of frontal-system impairments in patient groups having compromised frontal lobe functioning consequent to varying etiologies. PMID:19412479
Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man
2016-03-10
Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio
2016-12-01
Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Besnard, Jérémy; Allain, Philippe; Lerma, Vanesa; Aubin, Ghislaine; Chauviré, Valérie; Etcharry-Bouyx, Frédérique; Le Gall, Didier
2016-07-19
The concepts of "frontal" and "dysexecutive" syndromes are still a matter of debate in the literature. These terms are often used interchangeably but can be distinguished when considering specific frontal behavioural deficits which occur during social interaction. Despite being of interest for the clinical assessment and care management of patients with anterior brain damage, few studies have tried to disentangle the specificity of each syndrome. We report the case of eight patients with frontal lobe damage who were assigned to one of two groups based on whether or not they showed a dysexecutive syndrome. The nondysexecutive group differed from the dysexecutive group in showing environmental dependency phenomena, behavioural disorders triggered by social interaction. By adopting an interactionist perspective, this pilot study contributes to defining more precisely the distinction between "frontal" and "dysexecutive" syndromes. The discussion focuses on the potential interest of the interactionist approach in designing appropriate methodologies of assessment and rehabilitation of patients with frontal lobe syndrome.
Executive Functions in Young Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Brady, Danielle I.; Saklofske, Donald H.; Schwean, Vicki L.; Montgomery, Janine M.; Thorne, Keoma J.; McCrimmon, Adam W.
2017-01-01
Researchers have proposed that autism spectrum disorder (ASD) is characterized, at least in part, by executive function (EF) difficulties associated with the integrity of the frontal lobe. Given the paucity of research regarding EFs in young adults with high functioning ASD (HF-ASD), this research involves an examination of various indices of EF…
Ferrer, I; Tuñón, T; Serrano, M T; Casas, R; Alcántara, S; Zújar, M J; Rivera, R M
1993-01-01
The morphology and distribution of local-circuit neurons (interneurons) were examined, by calbindin D-28k and parvalbumin immunocytochemistry, in the frontal cortex (area 8) in two patients with frontal lobe dementia of non-Alzheimer type associated with classical amyotrophic lateral sclerosis (ALS), and in seven normal cases. The density of calbindin D-28k immunoreactive cells was dramatically reduced in ALS patients, but the density of parvalbumin-immunoreactive neurons was preserved. Decreased density of calbindin D-28k-immunoreactive neurons, which are mainly located in the upper cortical layers, may interfere with the normal processing of cortico-cortical connections, whereas integrity of parvalbumin-immunoreactive cells may be associated with the preservation of the major inhibitory intracortical circuits in patients with frontal lobe dementia. Images PMID:8459241
Xie, Hongwu; Xu, Fangming; Chen, Rixin; Luo, Tianyou; Chen, Mingren; Fang, Weidong; Lü, Fajin; Wu, Fei; Song, Yune; Xiong, Jun
2013-04-01
Functional magnetic resonance imaging (fMRI) technology was used to study changes to the resting state blood flow in the brains of patients with knee osteoarthritis (KOA) before and after treatment with moxibustion at the acupoint of the left Dubi (ST 35) and to probe the cerebral mechanism underlying the effect of moxibustion. The resting state brain function of 30 patients with left KOA was scanned with fMRI before and after treatment with moxibustion. The analytic methods of fractional amplitude of low frequency fluctuation (fALFF) and regional homogeneity (ReHo) were used to observe changes in resting state brain function. The fALFF values of the right cerebrum, extra-nucleus, left cerebellum, left cerebrum and white matter of patients after moxibustion treatment were higher than before treatment, and the fALFF values of the precentral gyrus, frontal lobe and occipital lobe were lower than before treatment (P < 0.05, K > or = 85). The ReHo values of the thalamus, extra-nucleus and parietal lobe of patients were much higher than those before moxibustion treatment, and the ReHo values of the right cerebrum, left cerebrum and frontal lobe were lower than before treatment (P < 0.05, K > or = 85). The influence of moxibustion on obvious changes in brain regions basically conforms to the way that pain and warmth is transmitted in the body, and the activation of sensitive systems in the body may be objective evidence of channel transmission. The regulation of brain function by moxibustion is not in a single brain region but rather in a network of many brain regions.
Lin, Angela H.; Patel, Saumil S.; Sereno, Anne B.
2013-01-01
Does frequent head-to-ball contact cause cognitive dysfunctions and brain injury to soccer players? An iPad-based experiment was designed to examine the impact of ball-heading among high school female soccer players. We examined both direct, stimulus-driven, or reflexive point responses (Pro-Point) as well as indirect, goal-driven, or voluntary point responses (Anti-Point), thought to require cognitive functions in the frontal lobe. The results show that soccer players were significantly slower than controls in the Anti-Point task but displayed no difference in Pro-Point latencies, indicating a disruption specific to voluntary responses. These findings suggest that even subconcussive blows in soccer can result in cognitive function changes that are consistent with mild traumatic brain injury of the frontal lobes. There is great clinical and practical potential of a tablet-based application for quick detection and monitoring of cognitive dysfunction. PMID:23460843
Bilingual Language Switching and the Frontal Lobes: Modulatory Control in Language Selection.
ERIC Educational Resources Information Center
Meuter, Renata; Humphreys, Glyn; Rumiati, Raffaella
2002-01-01
Discusses the brain mechanisms mediating the switching of languages in bilingual subjects. To ascertain the brain mechanisms mediating the control of language switching, switching was examined in a bilingual patient with frontal lobe damage and impaired control processes. (Author/VWL)
Sundram, Frederick; Deeley, Quinton; Sarkar, Sagari; Daly, Eileen; Latham, Richard; Craig, Michael; Raczek, Malgorzata; Fahy, Tom; Picchioni, Marco; Barker, Gareth J; Murphy, Declan G M
2012-02-01
Antisocial personality disorder (ASPD) and psychopathy involve significant interpersonal and behavioural impairments. However, little is known about their underlying neurobiology and in particular, abnormalities in white matter (WM) microstructure. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of adult psychopaths employing tractography revealed abnormalities in the right uncinate fasciculus (UF) (Craig et al., 2009), indicating fronto-limbic disconnectivity. However, it is not clear whether WM abnormalities are restricted to this tract or are or more widespread, including other tracts which are involved in connectivity with the frontal lobe. We performed whole brain voxel-based analyses on WM fractional anisotropy (FA) and mean diffusivity (MD) maps acquired with DT-MRI to compare 15 adults with ASPD and healthy age, handedness and IQ-matched controls. Also, within ASPD subjects we related differences in FA and MD to measures of psychopathy. Significant WM FA reduction and MD increases were found respectively in ASPD subjects relative to controls. FA was bilaterally reduced in the genu of corpus callosum while in the right frontal lobe FA reduction was found in the UF, inferior fronto-occipital fasciculus (IFOF), anterior corona radiata and anterior limb and genu of the internal capsule. These differences negatively correlated with measures of psychopathy. Also in the right frontal lobe, increased MD was found in the IFOF and UF, and the corpus callosum and anterior corona radiata. There was a significant positive correlation between MD and psychopathy scores. The present study confirms a previous report of reduced FA in the UF. Additionally, we report for the first time, FA deficits in tracts involved in interhemispheric as well as frontal lobe connectivity in conjunction with MD increases in the frontal lobe. Hence, we provide evidence of significant WM microstructural abnormalities in frontal brain regions in ASPD and psychopathy. Copyright © 2011 Elsevier Srl. All rights reserved.
[A case of frontal lobe syndrome of post-traumatic origin].
Gadecki, W; Ramsz-Walecka, I; Tomczyszyn, E
1999-01-01
The paper discusses the case of a patient who was subjected to forensic and psychiatric observation and was charged with appropriation of money to the detriment of the company she worked for by District Public Prosecutor's Office. History data indicate that she was employed in the said company over the period of 20 years as an accountant and until the disclosure of the crime she had had the company's full confidence. She enjoyed a fine reputation at the place of her residence as well. Several months before undertaking criminal actions she had sustained a head and chest injure as a result of a car accident. She was not subjected to hospitalisation then. Before she had not been penalized administratively or legally. She had not suffered from head injuries with a loss of consciousness. During forensic and psychiatric observation, psychiatric, psychological, neurological and electroencephalographic examinations were carried out, skull and chest plain films were taken and computerised tomography of head was conducted. Clinically it was diagnosed as a frontal organic brain damage syndrome complicated by depression. Experts' examinations were steered by psychopathological image, especially axial symptoms of defective function of the frontal lobe, i.e. lack of initiative and spontaneity, deficiency of higher emotions, decline of criticism and lowering of psychomotor drive. Although psychological examination showed that intelligence quotient and the results of 'organic tests' were within normal range, qualitative analysis of the structure of mental functions disclosed impairment of abstract thinking, especially using associative processes. Essential data were gathered from computerised tomography of head which demonstrated cortical atrophy of frontal and temporal lobes and pericentral gyri. However, neurological and electroencephalographic examinations and skull plain film did not bring any significant information.
[Processes of logical thought in a case of cerebral vascular lesion].
Blanco Men ndez, R; Aguado Balsas, A M
Reasoning and logical thought processes have traditionally been attributed to frontal lobe function or,on the other hand, have been considered as diffuse functions of the brain. However, there is today evidence enough about the possibility to find dissociations in thought processes, depending on logical structure of the experimental tasks and referring to different areas of the brain, frontal and post rolandic ones. To study possible dissociations between thought structures corresponding to categorical and relational logic, on one hand, and propositional logic on the other hand. The case of a brain injured patient with vascular etiology, localized in left frontal parietal cortex, is presented. A specific battery of reasoning tests has been administered. . A differential performance at some reasoning experimental tasks has been found depending on such logical conceptual structures. The possibility of establishing dissociations among certain logical thought and intelectual functions depending on localization of possible brain lesion (frontal versus temporal) is discussed.
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Identifying bvFTD Within the Wide Spectrum of Late Onset Frontal Lobe Syndrome: A Clinical Approach.
Krudop, Welmoed A; Kerssens, Cora J; Dols, Annemiek; Prins, Niels D; Möller, Christiane; Schouws, Sigfried; van der Flier, Wiesje M; Scheltens, Philip; Sikkes, Sietske; Stek, Max L; Pijnenburg, Yolande A L
2015-10-01
The behavioral variant of frontotemporal dementia (bvFTD) can be difficult to diagnose because of the extensive differential diagnosis, including many other diseases presenting with a frontal lobe syndrome. We aimed to identify the diagnostic spectrum causing a late onset frontal lobe syndrome and examine the quality of commonly used instruments to distinguish between bvFTD and non-bvFTD patients, within this syndrome. A total of 137 patients fulfilling the criteria of late onset frontal lobe syndrome, aged 45 to 75 years, were included in a prospective observational study. Diagnoses were made after clinical and neuropsychological examination, and neuroimaging and cerebral spinal fluid results were taken into account. Baseline characteristics and the scores on the Mini-Mental State Exam (MMSE), frontal assessment battery (FAB), Frontal Behavioral Inventory (FBI), and Stereotypy Rating Inventory (SRI) were compared between the bvFTD and the non-bvFTD group. Fifty-five (40%) of the patients received a bvFTD diagnosis (33% probable and 7% possible bvFTD). Fifty-one patients (37%) had a psychiatric disorder, including 20 with major depressive disorder. Thirty-one patients received an alternative neurological, including neurodegenerative, diagnosis. MMSE and FAB scores were unspecific for a particular diagnosis. A score above 12 on the positive FBI subscale or a score above 5 on the SRI were indicative of a bvFTD diagnosis. A broad spectrum of both neurological and psychiatric disorders underlies late onset frontal lobe syndrome, of which bvFTD was the most prevalent diagnosis in our cohort. The commonly used MMSE and the FAB could not successfully distinguish between bvFTD and non-bvFTD, but this could be achieved with the more specific FBI and SRI. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Learning of serial digits leads to frontal activation in functional MR imaging.
Karakaş, Hakki Muammer; Karakaş, Sirel
2006-03-01
Clinical studies have shown that performance on the serial digit learning test (SDLT) is dependent upon the mesial temporal lobes, which are responsible for learning and its consolidation. However, an effective SDLT performance is also dependent upon sequencing, temporal ordering, and the utilization of mnemonic strategies. All of these processes are among the functions of the frontal lobes; in spite of this, the relationship between SDLT performance and the frontal lobes has not been demonstrated with previously used mapping techniques. The aim of this study was to investigate the areas of the brain that are activated by SDLT performance. Ten healthy, right handed volunteers (mean age, 20.1 years; SD: 3.3) who had 12 years of education were studied with a 1.0 T MR imaging scanner. BOLD (blood oxygen level dependent) contrast and a modified SDLT were used. Activated loci were automatically mapped using a proportional grid. In learning, the most consistent activation was observed in B-a-7 of the right (80%) and the left hemispheres (50%). In recall, the most consistent activation was observed in B-a-7 of the right hemisphere (60%). Activations were observed in 2.5+/-0.97 Talairach volumes in learning, whereas they encompassed 1.7+/-0.95 volumes in recall. The difference between both phases (learning and recall) regarding total activated volume was significant (p < 0.05). The prefrontal activation during SDLT performance was not related to learning or to recall, but to a function that is common to both of these cognitive processes. A candidate for this common factor may be the executive functions, which also include serial position processing and temporal ordering.
Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function.
Conti, Valerio; Aracri, Patrizia; Chiti, Laura; Brusco, Simone; Mari, Francesco; Marini, Carla; Albanese, Maria; Marchi, Angela; Liguori, Claudio; Placidi, Fabio; Romigi, Andrea; Becchetti, Andrea; Guerrini, Renzo
2015-04-14
We assessed the mutation frequency in nicotinic acetylcholine receptor (nAChR) subunits CHRNA4, CHRNB2, and CHRNA2 in a cohort including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and sporadic nocturnal frontal lobe epilepsy (NFLE). Upon finding a novel mutation in CHRNA2 in a large family, we tested in vitro its functional effects. We sequenced all the coding exons and their flanking intronic regions in 150 probands (73 NFLE, 77 ADNFLE), in most of whom diagnosis had been validated by EEG recording of seizures. Upon finding a missense mutation in CHRNA2, we measured whole-cell currents in human embryonic kidney cells in both wild-type and mutant α2β4 and α2β2 nAChR subtypes stimulated with nicotine. We found a c.889A>T (p.Ile297Phe) mutation in the proband (≈0.6% of the whole cohort) of a large ADNFLE family (1.2% of familial cases) and confirmed its segregation in all 6 living affected individuals. Video-EEG studies demonstrated sleep-related paroxysmal epileptic arousals in all mutation carriers. Oxcarbazepine treatment was effective in all. Whole-cell current density was reduced to about 40% in heterozygosity and to 0% in homozygosity, with minor effects on channel permeability and sensitivity to nicotine. ADNFLE had previously been associated with CHRNA2 dysfunction in one family, in which a gain of function mutation was demonstrated. We confirm the causative role of CHRNA2 mutations in ADNFLE and demonstrate that also loss of function of α2 nAChRs may have pathogenic effects. CHRNA2 mutations are a rare cause of ADNFLE but this gene should be included in mutation screening. © 2015 American Academy of Neurology.
Frontal lobe epileptic seizures are accompanied by elevated pitch during verbal communication.
Speck, Iva; Echternach, Matthias; Sammler, Daniela; Schulze-Bonhage, Andreas
2018-03-01
The objective of our study was to assess alterations in speech as a possible localizing sign in frontal lobe epilepsy. Ictal speech was analyzed in 18 patients with frontal lobe epilepsy (FLE) during seizures and in the interictal period. Matched identical words were analyzed regarding alterations in fundamental frequency (ƒo) as an approximation of pitch. In patients with FLE, ƒo of ictal utterances was significantly higher than ƒo in interictal recordings (p = 0.016). Ictal ƒo increases occurred in both FLE of right and left seizure origin. In contrast, a matched temporal lobe epilepsy (TLE) group showed less pronounced increases in ƒo, and only in patients with right-sided seizure foci. This study for the first time shows significant voice alterations in ictal speech in a cohort of patients with FLE. This may contribute to the localization of the epileptic focus. Increases in ƒo were interestingly found in frontal lobe seizures with origin in either hemisphere, suggesting a bilateral involvement to the planning of speech production, in contrast to a more right-sided lateralization of pitch perception in prosodic processing. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Bednarik, Petr; Moheet, Amir A; Grohn, Heidi; Kumar, Anjali F; Eberly, Lynn E; Seaquist, Elizabeth R; Mangia, Silvia
2017-01-01
In this study, we retrospectively analyzed the anatomical MRI data acquired from 52 subjects with type 1 diabetes (26M/26F, 36 ± 11 years old, A1C = 7.2 ± 0.9%) and 50 age, sex and BMI frequency-matched non-diabetic controls (25M/25F, 36 ± 14 years old). The T1D group was further sub-divided based on whether subjects had normal, impaired, or indeterminate awareness of hypoglycemia ( n = 31, 20, and 1, respectively). Our goals were to test whether the gray matter (GM) volumes of selected brain regions were associated with diabetes status as well as with the status of hypoglycemia awareness. T1D subjects were found to have slightly smaller volume of the whole cortex as compared to controls (-2.7%, p = 0.016), with the most affected brain region being the frontal lobe (-3.6%, p = 0.024). Similar differences of even larger magnitude were observed among the T1D subjects based on their hypoglycemia awareness status. Indeed, compared to the patients with normal awareness of hypoglycemia, patients with impaired awareness had smaller volume of the whole cortex (-7.9%, p = 0.0009), and in particular of the frontal lobe (-9.1%, p = 0.006), parietal lobe (-8.0%, p = 0.015) and temporal lobe (-8.2%, p = 0.009). Such differences were very similar to those observed between patients with impaired awareness and controls (-7.6%, p = 0.0002 in whole cortex, -9.1%, p = 0.0003 in frontal lobe, -7.8%, p = 0.002 in parietal lobe, and -6.4%, p = 0.019 in temporal lobe). On the other hand, patients with normal awareness did not present significant volume differences compared to controls. No group-differences were observed in the occipital lobe or in the anterior cingulate, posterior cingulate, hippocampus, and thalamus. We conclude that diabetes status is associated with a small but statistically significant reduction of the whole cortex volume, mainly in the frontal lobe. The most prominent structural effects occurred in patients with impaired awareness of hypoglycemia (IAH) as compared to those with normal awareness, perhaps due to the long-term exposure to recurrent episodes of hypoglycemia. Future studies aimed at quantifying relationships of structural outcomes with functional outcomes, with cognitive performance, as well as with parameters describing glucose variability and severity of hypoglycemia episodes, will be necessary to further understand the impact of T1D on the brain.
ERIC Educational Resources Information Center
Ball, S. L.; Holland, A. J.; Watson, P. C.; Huppert, F. A.
2010-01-01
Background: Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive…
ERIC Educational Resources Information Center
Belmonte, Matthew K.; Carper, Ruth A.
2006-01-01
A pair of monozygotic twins discordant for symptoms of Asperger syndrome was evaluated at the age of 13.45 years using psychometric, morphometric, behavioural, and functional imaging methods. The lower-functioning twin had a smaller brain overall, a smaller right cerebellum, and a disproportionately large left frontal lobe, and manifested almost…
Single photon emission computed tomography in motor neuron disease with dementia.
Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M
1988-01-01
Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.
Intact Discourse Cohesion and Coherence Following Bilateral Ventromedial Prefrontal Cortex
ERIC Educational Resources Information Center
Kurczek, Jake; Duff, Melissa C.
2012-01-01
Discourse cohesion and coherence give communication its continuity providing the grammatical and lexical links that hold an utterance or text together and give it meaning. Researchers often link cohesion and coherence deficits to the frontal lobes by drawing attention to frontal lobe dysfunction in populations where discourse cohesion and…
High density scalp EEG in frontal lobe epilepsy.
Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A
2017-01-01
Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.
Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David H
2012-03-01
Verticalization of the frontal P vector in patients older than 45 years is virtually diagnostic of pulmonary emphysema (sensitivity, 96%; specificity, 87%). We investigated the correlation of P vector and the computed tomographic visual score of emphysema (VSE) in patients with established diagnosis of chronic obstructive pulmonary disease/emphysema. High-resolution computed tomographic scans of 26 patients with emphysema (age, >45 years) were reviewed to assess the type and extent of emphysema using the subjective visual scoring. Electrocardiograms were independently reviewed to determine the frontal P vector. The P vector and VSE were compared for statistical correlation. Both P vector and VSE were also directly compared with the forced expiratory volume at 1 second. The VSE and the orientation of the P vector (ÂP) had an overall significant positive correlation (r = +0.68; P = .0001) in all patients, but the correlation was very strong in patients with predominant lower-lobe emphysema (r = +0.88; P = .0004). Forced expiratory volume at 1 second and ÂP had almost a linear inverse correlation in predominant lower-lobe emphysema (r = -0.92; P < .0001). Orientation of the P vector positively correlates with visually scored emphysema. Both ÂP and VSE are strong reflectors of qualitative lung function in patients with predominant lower-lobe emphysema. A combination of more vertical ÂP and predominant lower-lobe emphysema reflects severe obstructive lung dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.
Impact of Zika Virus on adult human brain structure and functional organization.
Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh
2018-06-01
To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.
Tan, Xiaoping; Guo, Yang; Dun, Saihong; Sun, Hongzan
2018-05-18
Crossed aphasia (CA), usually referred to as an acquired language disturbance, is caused by a lesion in the cerebral hemisphere ipsilateral to the dominant hand, and the exact mechanism is not clear. The development of handedness is influenced by education and training and the impact of habitualization, while language is more susceptible to the impact of speech habits, and it is not absolutely accurate to judge cerebral language dominance by the degree of hand preference. We describe a case of CA after right hemispheric stroke in a right-handed patient with atypical language dominance and attempt to analyze the mechanism of CA based on functional imaging methods, including arterial spin labeling (ASL) and positron emission tomography/magnetic resonance imaging (PET-MRI). Brain MRI at 24 h after admission showed a large cerebral infarction in the right cerebral hemisphere, including the posteroinferior part of Broca's area in the right frontal lobe, the right temporal lobe, and the right occipital lobe. The patient exhibited a non-fluent aphasia on a standard language test (the Aphasia Battery of Chinese [ABC]) performed on the 7th day after onset. Thus, atypical language dominance was suspected. One week after admission, ASL imaging showed high perfusion in the infarct core zone and low perfusion in the left cerebellar hemisphere. Two months later, PET/MRI demonstrated low metabolism in the posterior frontal lobe, temporal lobe, temporal occipital junction area, and the right basal ganglia. The findings suggest that the patient has right-sided cerebral language dominance, or that both hemispheres have linguistic functions. Not all patients show linguistic capabilities on the side opposite hand preference. The language dominance should be predicted by a combination of clinical manifestations and functional imaging techniques.
Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy
2013-01-01
The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.
Miller, Gregory A.; Crocker, Laura D.; Spielberg, Jeffrey M.; Infantolino, Zachary P.; Heller, Wendy
2013-01-01
The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives. PMID:23386814
Consciousness and epilepsy: why are complex-partial seizures complex?
Englot, Dario J.; Blumenfeld, Hal
2010-01-01
Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900
Neuroimaging correlates of parent ratings of working memory in typically developing children
Mahone, E. Mark; Martin, Rebecca; Kates, Wendy R.; Hay, Trisha; Horská, Alena
2009-01-01
The purpose of the present study was to investigate construct validity of parent ratings of working memory in children, using a multi-trait/multi-method design including neuroimaging, rating scales, and performance-based measures. Thirty-five typically developing children completed performance-based tests of working memory and nonexecutive function (EF) skills, received volumetric MRI, and were rated by parents on both EF-specific and broad behavior rating scales. After controlling for total cerebral volume and age, parent ratings of working memory were significantly correlated with frontal gray, but not temporal, parietal, or occipital gray, or any lobar white matter volumes. Performance-based measures of working memory were also moderately correlated with frontal lobe gray matter volume; however, non-EF parent ratings and non-EF performance-based measures were not correlated with frontal lobe volumes. Results provide preliminary support for the convergent and discriminant validity of parent ratings of working memory, and emphasize their utility in exploring brain–behavior relationships in children. Rating scales that directly examine EF skills may potentially have ecological validity, not only for “everyday” function, but also as correlates of brain volume. PMID:19128526
Goedert, Kelly M; Chen, Peii; Foundas, Anne L; Barrett, A M
2018-03-20
Spatial neglect commonly follows right hemisphere stroke. It is defined as impaired contralesional stimulus detection, response, or action, causing functional disability. While prism adaptation treatment is highly promising to promote functional recovery of spatial neglect, not all individuals respond. Consistent with a primary effect of prism adaptation on spatial movements, we previously demonstrated that functional improvement after prism adaptation treatment is linked to frontal lobe lesions. However, that study was a treatment-only study with no randomised control group. The current study randomised individuals with spatial neglect to receive 10 days of prism adaptation treatment or to receive only standard care (control group). Replicating our earlier results, we found that the presence of frontal lesions moderated response to prism adaptation treatment: among prism-treated patients, only those with frontal lesions demonstrated functional improvements in their neglect symptoms. Conversely, among individuals in the standard care control group, the presence of frontal lesions did not modify recovery. These results suggest that further research is needed on how frontal lesions may predict response to prism adaptation treatment. Additionally, the results help elucidate the neural network involved in spatial movement and could be used to aid decisions about treatment.
Hoffmann, Michael
2013-01-01
Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy. PMID:23577266
Carle, Guilhem; Touat, Mehdi; Bruno, Nicolas; Galanaud, Damien; Peretti, Charles-Siegfried; Valero-Cabré, Antoni; Levy, Richard; Azuar, Carole
2017-01-01
The potential of repetitive transcranial magnetic stimulation (rTMS) to treat numerous neurological and psychiatric disorders has been thoroughly studied for the last two decades. Here, we report for the first time, the case of a 65-year-old woman suffering from treatment-resistant depression who developed an acute frontal lobe syndrome following eight sessions of low-frequency rTMS (LF-rTMS) to the right dorsolateral prefrontal cortex while also treated with sertraline and mianserin. The pathophysiological mechanisms underlying such an unexpected acute frontal lobe dysfunction are discussed in relation to the therapeutic use of LF-rTMS in combination with pharmacotherapy in depressed patients. PMID:28611694
Emotional reactions in patients after frontal lobe stroke.
Stojanović, Zlatan; Stojanović, Sanja Vukadinović
2015-09-01
Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD) were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024). A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman's r = -0.297; p = 0.001). Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017). Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001). The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.
Zhang, Haosu; Shi, Yonghong; Yao, Chengjun; Tang, Weijun; Yao, Demin; Zhang, Chenxi; Wang, Manning; Wu, Jinsong; Song, Zhijian
2016-06-01
Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor's hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade.
Dong, Li; Li, Hechun; He, Zhongqiong; Jiang, Sisi; Klugah-Brown, Benjamin; Chen, Lin; Wang, Pu; Tan, Song; Luo, Cheng; Yao, Dezhong
2016-11-01
The purpose of this study was to investigate the local spatiotemporal consistency of spontaneous brain activity in patients with frontal lobe epilepsy (FLE). Eyes closed resting-state functional magnetic resonance imaging (fMRI) data were collected from 19 FLE patients and 19 age- and gender-matched healthy controls. A novel measure, named FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was used to assess the spatiotemporal consistency of local spontaneous activity (emphasizing both local temporal homogeneity and regional stability of brain activity states). Then, two-sample t test was performed to detect the FOCA differences between two groups. Partial correlations between the FOCA values and durations of epilepsy were further analyzed. Compared with controls, FLE patients demonstrated increased FOCA in distant brain regions including the frontal and parietal cortices, as well as the basal ganglia. The decreased FOCA was located in the temporal cortex, posterior default model regions, and cerebellum. In addition, the FOCA measure was linked to the duration of epilepsy in basal ganglia. Our study suggested that alterations of local spontaneous activity in frontoparietal cortex and basal ganglia was associated with the pathophysiology of FLE; and the abnormality in frontal and default model regions might account for the potential cognitive impairment in FLE. We also presumed that the FOCA measure had potential to provide important insights into understanding epilepsy such as FLE.
Time Ordering in Frontal Lobe Patients: A Stochastic Model Approach
ERIC Educational Resources Information Center
Magherini, Anna; Saetti, Maria Cristina; Berta, Emilia; Botti, Claudio; Faglioni, Pietro
2005-01-01
Frontal lobe patients reproduced a sequence of capital letters or abstract shapes. Immediate and delayed reproduction trials allowed the analysis of short- and long-term memory for time order by means of suitable Markov chain stochastic models. Patients were as proficient as healthy subjects on the immediate reproduction trial, thus showing spared…
Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta
2017-05-15
Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. Copyright © 2017 Elsevier Inc. All rights reserved.
Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap
2017-11-01
Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD < ADHD-only < control subjects) were found for mainly frontal regions, and ADHD+ODD was uniquely associated with reductions in several structures (e.g., the precuneus). In general, findings remained significant after accounting for ADHD symptom severity. There were no group differences in cortical thickness. Exploratory voxelwise analyses showed no group differences. ADHD+ODD and ADHD-only were associated with volumetric reductions in brain areas crucial for attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Maria, Licci; Christian, Zweifel; Jürgen, Hench; Raphael, Guzman; Jehuda, Soleman
2018-04-18
Paranasal sinus osteoma is a common, asymptomatic, histologically benign, and slow-growing tumor. However, it can give rise to secondary pathologies such as a mucocele in about 50% of the cases. Rarely, intracranial and orbital extension is present leading to rhinoliquorrhea, pneumocephalus, or neurological and visual impairment, which might be potentially life-threatening. A 49-year old man presented with an acute frontal lobe syndrome and rhinoliquorrhea. Cranial magnetic resonance tomography showed a suspected fronto-ethmoidal osteoma with a mucocele expanding intradurally, into the left frontal lobe. It was accompanied by pneumocephalus and showed communication with the left lateral ventricle. Through a bifrontal craniotomy in toto resection of the fronto-ethmoidal bony tumor and the intradural mucocele was performed, while thereafter the frontal sinus was cranialized using a pedunculated periosteal flap. Postoperative recovery was uneventful with complete resolvement of the tension pneumocephalus and the rhinoliquorrhea, and led to an improvement of the frontal lobe syndrome. We present a rare case of pneumocephalus caused by a fronto-ethmoidal osteoma associated with an intradural mucocele. A review of the literature, focusing on the surgical strategies in such cases, is provided. Copyright © 2018 Elsevier Inc. All rights reserved.
Qu, Haibo; Lu, Su; Zhang, Wenjing; Xiao, Yuan; Ning, Gang; Sun, Huaiqiang
2016-10-01
We applied resting-state functional magnetic resonance imaging(rfMRI)combined with graph theory to analyze 90 regions of the infantile small world neural network of the whole brain.We tried to get the following two points clear:1 whether the parameters of the node property of the infantile small world neural network are correlated with the level of infantile intelligence development;2 whether the parameters of the infantile small world neural network are correlated with the children’s baseline parameters,i.e.,the demographic parameters such as gender,age,parents’ education level,etc.Twelve cases of healthy infants were included in the investigation(9males and 3females with the average age of 33.42±8.42 months.)We then evaluated the level of infantile intelligence of all the cases and graded by Gesell Development Scale Test.We used a Siemens 3.0T Trio imaging system to perform resting-state(rs)EPI scans,and collected the BOLD functional Magnetic Resonance Imaging(fMRI)data.We performed the data processing with Statistical Parametric Mapping 5(SPM5)based on Matlab environment.Furthermore,we got the attributes of the whole brain small world and node attributes of 90 encephalic regions of templates of Anatomatic Automatic Labeling(ALL).At last,we carried out correlation study between the above-mentioned attitudes,intelligence scale parameters and demographic data.The results showed that many node attributes of small world neural network were closely correlated with intelligence scale parameters.Betweeness was mainly centered in thalamus,superior frontal gyrus,and occipital lobe(negative correlation).The r value of superior occipital gyrus associated with the individual and social intelligent scale was-0.729(P=0.007);degree was mainly centered in amygdaloid nucleus,superior frontal gyrus,and inferior parietal gyrus(positive correlation).The r value of inferior parietal gyrus associated with the gross motor intelligent scale was 0.725(P=0.008);efficiency was mainly centered in inferior frontal gyrus,inferior parietal gyrus,and insular lobe(positive correlation).The r value of inferior parietal gyrus associated with the language intelligent scale was 0.738(P=0.006);Anoda cluster coefficient(anodalCp)was centered in frontal lobe,inferior parietal gyrus,and paracentral lobule(positive correlation);Node shortest path length(nlp)was centered in frontal lobe,inferior parietal gyrus,and insular lobe.The distribution of the encephalic regions in the left and right brain was different.However,no statistical significance was found between the correlation of monolithic attributes of small world and intelligence scale.The encephalic regions,in which node attributes of small world were related to other demographic indices,were mainly centered in temporal lobe,cuneus,cingulated gyrus,angular gyrus,and paracentral lobule areas.Most of them belong to the default mode network(DMN).The node attributes of small world neural network are widely related to infantile intelligence level,moreover the distribution is characteristic in different encephalic regions.The distribution of dominant encephalic is in accordance the related functions.The existing correlations reflect the ever changing small world nervous network during infantile development.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Sex differences in frontal lobe connectivity in adults with autism spectrum conditions.
Zeestraten, E A; Gudbrandsen, M C; Daly, E; de Schotten, M T; Catani, M; Dell'Acqua, F; Lai, M-C; Ruigrok, A N V; Lombardo, M V; Chakrabarti, B; Baron-Cohen, S; Ecker, C; Murphy, D G M; Craig, M C
2017-04-11
Autism spectrum conditions (ASC) are more prevalent in males than females. The biological basis of this difference remains unclear. It has been postulated that one of the primary causes of ASC is a partial disconnection of the frontal lobe from higher-order association areas during development (that is, a frontal 'disconnection syndrome'). Therefore, in the current study we investigated whether frontal connectivity differs between males and females with ASC. We recruited 98 adults with a confirmed high-functioning ASC diagnosis (61 males: aged 18-41 years; 37 females: aged 18-37 years) and 115 neurotypical controls (61 males: aged 18-45 years; 54 females: aged 18-52 years). Current ASC symptoms were evaluated using the Autism Diagnostic Observation Schedule (ADOS). Diffusion tensor imaging was performed and fractional anisotropy (FA) maps were created. Mean FA values were determined for five frontal fiber bundles and two non-frontal fiber tracts. Between-group differences in mean tract FA, as well as sex-by-diagnosis interactions were assessed. Additional analyses including ADOS scores informed us on the influence of current ASC symptom severity on frontal connectivity. We found that males with ASC had higher scores of current symptom severity than females, and had significantly lower mean FA values for all but one tract compared to controls. No differences were found between females with or without ASC. Significant sex-by-diagnosis effects were limited to the frontal tracts. Taking current ASC symptom severity scores into account did not alter the findings, although the observed power for these analyses varied. We suggest these findings of frontal connectivity abnormalities in males with ASC, but not in females with ASC, have the potential to inform us on some of the sex differences reported in the behavioral phenotype of ASC.
The Human Ventromedial Frontal Lobe Is Critical for Learning from Negative Feedback
ERIC Educational Resources Information Center
Wheeler, Elizabeth Z.; Fellows, Lesley K.
2008-01-01
Are positive and negative feedback weighed in a common balance in the brain, or do they influence behaviour through distinct neural mechanisms? Recent neuroeconomic studies in both human and non-human primates indicate that the ventromedial frontal lobe carries information about both losses and gains, suggesting that this region may encode value…
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Correlation between white matter damage and gray matter lesions in multiple sclerosis patients.
Han, Xue-Mei; Tian, Hong-Ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-Bing; Bakshi, Rohit; Cao, Xia
2017-05-01
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.
ERIC Educational Resources Information Center
Homer, Bruce D.; Solomon, Todd M.; Moeller, Robert W.; Mascia, Amy; DeRaleau, Lauren; Halkitis, Perry N.
2008-01-01
The highly addictive drug methamphetamine has been associated with impairments in social cognitions as evidenced by changes in users' behaviors. Physiological changes in brain structure and functioning, particularly in the frontal lobe, have also been identified. The authors propose a biopsychosocial approach to understanding the effects of…
Acute marijuana effects on rCBF and cognition: a PET study.
O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D
2000-11-27
The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.
Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders
Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine
2009-01-01
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498
Vitali, Paolo; Nobili, Flavio; Raiteri, Umberto; Canfora, Michela; Rosa, Marco; Calvini, Piero; Girtler, Nicola; Regesta, Giovanni; Rodriguez, Guido
2004-01-15
This article describes the unusual case of a 60-year-old woman suffering from pure progressive aphemia. The fusion of multimodal neuroimaging (MRI, perfusion SPECT) implicated the right frontal lobe, especially the inferior frontal gyrus. This area also showed the greatest functional MRI activation during the performance of a covert phonemic fluency task. Results are discussed in terms of bihemispheric language representation. The fusion of three sets of neuroimages has aided in the interpretation of the patient's cognitive brain dysfunction.
Efimova, Y N; Lichikaki, A V; Lishmanov, B Y
2017-07-01
To study the effect of radiofrequency ablation of renal arteries on regional cerebral blood flow and cognitive function in patients with resistant arterial hypertension (AH). Transcatheter renal denervation (TRD) was performed in 17 patients with resistant AH. Examination before and after TRD included SPECT with mTc-HMPAO, 24-hours blood pressure (BP) monitoring, and comprehensive neuropsychological testing. Fifteen patients without angiographic signs of carotid atherosclerosis, coronary artery disease and AH, neurological and psychiatric disorders were investigated as control group. Compared with control group patients with AH had decreases of regional cerebral blood flow (rCBF) in right (by 13.5%, p=0.00002) and left (by 15.5%, p=0.0006) inferior frontal lobes, in right temporal brain region (by 11.5%, p=0.008); in right and left occipital lobes (by 8.2%, p=0.04). In 6 months after TRD we observed significant improvement of cognitive function, parameters of 24-hour BP monitoring, and rCBF. We also noted definite close interdependence between changes of rCBF, indices of 24-hours BP monitoring, and dynamics of cognitive function. Improvement of long-term verbal memory correlated with increases of rCBF in left superior frontal and right occipital regions while dynamics of mentation and attention correlated positively with augmentation of rCBF in right posterior parietal region. Changes of perfusion in inferior parts of left frontal lobe and in right occipital region correlated with dynamics of index of diurnal diastolic hypertension time (R2=0.64, p=0.001, and R2=0.60, p=0.03, respectively). Our results suggest, that in patients with resistant AH positive effect of TRD on levels of 24-hour mean BP as well as on indices of BP load leads to in augmentation of rCBF and improvement of cognitive function.
NASA Astrophysics Data System (ADS)
Huang, Chun-Jung; Sun, Chia-Wei; Chou, Po-Han; Chuang, Ching-Cheng
2016-03-01
Verbal fluency tests (VFT) are widely used neuropsychological tests of frontal lobe and have been frequently used in various functional brain mapping studies. There are two versions of VFT based on the type of cue: the letter fluency task (LFT) and the category fluency task (CFT). However, the fundamental aspect of the brain connectivity across spatial regions of the fronto-temporal regions during the VFTs has not been elucidated to date. In this study we hypothesized that different cortical functional connectivity over bilateral fronto-temporal regions can be observed by means of multi-channel fNIRS in the LFT and the CFT respectively. Our results from fNIRS (ETG-4000) showed different patterns of brain functional connectivity consistent with these different cognitive requirements. We demonstrate more brain functional connectivity over frontal and temporal regions during LFT than CFT, and this was in line with previous brain activity studies using fNIRS demonstrating increased frontal and temporal region activation during LFT and CFT and more pronounced frontal activation by the LFT.
Behavioral evidence suggestive of frontal lobe pathology in the amnesic H.M.
Winter, William
2018-06-01
From the earliest published reports, Henry Gustav Molaison-who until his death in 2008 was known simply by his initials H.M.-was characterized as having a profound anterograde amnesia subsequent to mid temporal lobe resection, and that this amnestic condition was uncomplicated by other cognitive or behavioral impairments. Post-mortem neuropathological examination has detected-in addition to the expected temporal lobe lesions-previously unreported frontal lobe and white matter pathology, inviting questions concerning the behavioral and cognitive consequences that might result from such lesions. The purpose of this article is to recount published descriptions of a range of anomalous behaviors by H.M. that can not be explained by the memory impairments typically associated with anterograde amnesia, to counter previous claims that these behaviors are attributable to amygdalar damage, and to advance the interpretation that these behaviors are instead consistent with well-documented effects of frontal lobe pathology. Transcripts of interviews with H.M. which feature disjointed, often contradictory, and arguably confabulatory responses are presented in support of this argument. Copyright © 2018 Elsevier Inc. All rights reserved.
Jentsch, J D; Verrico, C D; Le, D; Roth, R H
1998-05-01
Long-term abuse of marijuana by humans can induce profound behavioral deficits characterized by cognitive and memory impairments. In particular, deficits on tasks dependent on frontal lobe function have been reported in cannabis abusers. In the current study, we examined whether long-term exposure to delta9-tetrahydrocannabinol, the active ingredient in marijuana, altered the neurochemistry of the frontal cortex in rats. Two weeks administration of delta9-tetrahydrocannabinol reduced dopamine transmission in the medial prefrontal cortex, while dopamine metabolism in striatal regions was unaffected. These data are consistent with earlier findings of dopaminergic regulation of frontal cortical cognition. Thus, cognitive deficits in heavy abusers of cannabis may be subserved by drug-induced alterations in frontal cortical dopamine transmission.
Barker, F G
1995-04-01
In 1848, Mr. Phineas Gage suffered destruction of his left frontal lobe in a unique fashion: passage of a metal rod through his head after a freak explosion. His change in character after the accident is the index case for personality change due to frontal lobe damage. Yet, from 1848 to 1868, it was widely believed among American physicians that he was mentally intact. The case was used as evidence against phrenology, a crude precursor of modern cerebral localization theories. The two original reports of the case by Drs. John Harlow (Gage's physician) and Henry J. Bigelow show subtle differences in attitude toward Gage's posttraumatic character change. In his 1848 report, Harlow promised a further communication that would address Gage's "mental manifestations." Bigelow's article portrayed Gage as fully recovered. Although delayed by 20 years, Harlow's second report rapidly changed the perception of the case in the medical community, as reflected by contemporary citations. The educational backgrounds of Harlow and Bigelow are examined to explain their differing attitudes toward the case. Harlow's interest in phrenology prepared him to accept the change in character as a significant clue to cerebral function which merited publication. Bigelow had learned that damage to the cerebral hemispheres had no intellectual effect, and he was unwilling to consider Gage's deficit significant. Although Bigelow's paradigm was initially more influential, Harlow's more closely matched emerging theories of cerebral localization. His version of the case was used by David Ferrier as the keystone in the first modern theory of frontal lobe function, and this is how the case is remembered today.
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy
Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean
2014-01-01
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418
Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison; Robinson, Delbert G; Gallego, Juan; Lencz, Todd; DeRosse, Pamela; Kingsley, Peter B; Szeszko, Philip R
2018-05-09
Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.
Brassard, Patrice; Pelletier, Claudine; Martin, Mickaël; Gagné, Nathalie; Poirier, Paul; Ainslie, Philip N; Caouette, Manon; Bussières, Jean S
2014-06-01
Although utilization of vasopressors recently has been associated with reduced cerebral oxygenation, the influence of vasopressors on cerebral oxygenation during cardiopulmonary bypass in patients with diabetes is unknown. The aim of this study was to document the impact of norepinephrine and phenylephrine utilization on cerebral oxygenation in patients with and without diabetes during cardiopulmonary bypass. Prospective, clinical study. Academic medical center. Fourteen patients with diabetes and 17 patients without diabetes undergoing cardiac surgery. During cardiopulmonary bypass, norepinephrine (diabetics n = 6; non-diabetics n = 8) or phenylephrine (diabetics n = 8; non-diabetics n = 9) was administered intravenously to maintain mean arterial pressure above 60 mmHg. Mean arterial pressure, venous temperature, arterial oxygenation, and frontal lobe oxygenation (monitored by near-infrared spectroscopy) were recorded before anesthesia induction (baseline) and continuously during cardiopulmonary bypass. Frontal lobe oxygenation was lowered to a greater extent in diabetics versus non-diabetics with administration of norepinephrine (-14±13 v 3±12%; p<0.05). There was also a trend towards a greater reduction in cerebral oxygenation in diabetics versus non-diabetics with administration of phenylephrine (-12±8 v -6±7%; p = 0.1) during cardiopulmonary bypass. Administration of norepinephrine to restore mean arterial pressure during cardiopulmonary bypass is associated with a reduction in frontal lobe oxygenation in diabetics but not in patients without diabetes. Administration of phenylephrine also were associated with a trend towards a greater reduction in frontal lobe oxygenation in diabetics. The clinical implications of these findings deserve future consideration. © 2013 Elsevier Inc. All rights reserved.
Fellows, Lesley K
2006-04-01
Ventromedial frontal lobe (VMF) damage is associated with impaired decision making. Recent efforts to understand the functions of this brain region have focused on its role in tracking reward, punishment and risk. However, decision making is complex, and frontal lobe damage might be expected to affect it at other levels. This study used process-tracing techniques to explore the effect of VMF damage on multi-attribute decision making under certainty. Thirteen subjects with focal VMF damage were compared with 11 subjects with frontal damage that spared the VMF and 21 demographically matched healthy control subjects. Participants chose rental apartments in a standard information board task drawn from the literature on normal decision making. VMF subjects performed the decision making task in a way that differed markedly from all other groups, favouring an 'alternative-based' information acquisition strategy (i.e. they organized their information search around individual apartments). In contrast, both healthy control subjects and subjects with damage predominantly involving dorsal and/or lateral prefrontal cortex pursued primarily 'attribute-based' search strategies (in which information was acquired about categories such as rent and noise level across several apartments). This difference in the pattern of information acquisition argues for systematic differences in the underlying decision heuristics and strategies employed by subjects with VMF damage, which in turn may affect the quality of their choices. These findings suggest that the processes supported by ventral and medial prefrontal cortex need to be conceptualized more broadly, to account for changes in decision making under conditions of certainty, as well as uncertainty, following damage to these areas.
Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi
2009-01-01
Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.
Semantic memory and frontal executive function during transient global amnesia.
Hodges, J R
1994-05-01
To assess semantic memory and frontal executive function, two patients underwent neuropsychological testing during transient global amnesia (TGA) and after an interval of 6-8 weeks. In spite of a profound deficit in anterograde verbal and non-verbal memory, semantic memory was normal, as judged by category fluency measures, picture naming, and picture-word and picture-picture matching, and reading ability was normal. Similarly, there were no deficits on a number of tests known to be sensitive to frontal executive dysfunction. A hexamethylpropyleneamine-oxime (HMPAO) single photon emission CT (SPECT) scan, obtained on one patient 24 hours post-TGA, showed focal left temporal lobe hypoperfusion which had resolved three months later. The observed dissociation between episodic and semantic memory is discussed in the light of contemporary cognitive theories of memory organisation.
CLINICAL AND IMAGING FEATURES OF OTHELLO'S SYNDROME
Graff-Radford, Jonathan; Whitwell, Jennifer L.; Geda, Yonas E.; Josephs, Keith A.
2011-01-01
Background Our objective was to document the clinical and imaging features of Othello's syndrome (delusional jealousy). Methods The study design was a retrospective case series of 105 patients with Othello's syndrome that were identified by using the Electronic Medical Record system of Mayo Clinic. Results The average age at onset of Othello's syndrome was 68 (25–94) years with 61.9% of patients being male. Othello's syndrome was most commonly associated with a neurological disorder (73/105) compared with psychiatric disorders (32/105). Of the patients with a neurological disorder, 76.7% had a neurodegenerative disorder. Seven of eight patients with a structural lesion associated with Othello's syndrome had right frontal lobe pathology. Voxel-based morphometry showed greater grey matter loss predominantly in the dorsolateral frontal lobes in the neurodegenerative patients with Othello's compared to matched patients with neurodegenerative disorders without Othello's syndrome. Treatment success was notable for patients with dopamine agonist induced Othello's syndrome in which all six patients had improvement in symptoms following decrease in medication. Conclusions This study demonstrates that Othello's syndrome occurs most frequently with neurological disorders. This delusion appears to be associated with dysfunction of the frontal lobes, especially right frontal lobe. PMID:21518145
Network analysis of brain activations in working memory: behavior and age relationships.
Mencl, W E; Pugh, K R; Shaywitz, S E; Shaywitz, B A; Fulbright, R K; Constable, R T; Skudlarski, P; Katz, L; Marchione, K E; Lacadie, C; Gore, J C
2000-10-01
Forty-six middle-aged female subjects were scanned using functional Magnetic Resonance Imaging (fMRI) during performance of three distinct stages of a working memory task-encoding, rehearsal, and recognition-for both printed pseudowords and visual forms. An expanse of areas, involving the inferior frontal, parietal, and extrastriate cortex, was active in response to stimuli during both the encoding and recognition periods. Additional increases during memory recognition were seen in right prefrontal regions, replicating a now-common finding [for reviews, see Fletcher et al. (1997) Trends Neurosci 20:213-218; MacLeod et al. (1998) NeuroImage 7:41-48], and broadly supporting the Hemispheric Encoding/Retrieval Asymmetry hypothesis [Tulving et al. (1994) Proc Natl Acad Sci USA 91:2016-2020]. Notably, this asymmetry was not qualified by the type of material being processed. A few sites demonstrated higher activity levels during the rehearsal period, in the absence of any new stimuli, including the medial extrastriate, precuneus, and the medial temporal lobe. Further analyses examined relationships among subjects' brain activations, age, and behavioral scores on working memory tests, acquired outside the scanner. Correlations between brain scores and behavior scores indicated that activations in a number of areas, mainly frontal, were associated with performance. A multivariate analysis, Partial Least Squares [McIntosh et al. (1996) NeuroImage 3:143-157, (1997) Hum Brain Map 5:323-327], was then used to extract component effects from this large set of univariate correlations. Results indicated that better memory performance outside the scanner was associated with higher activity at specific sites within the frontal and, additionally, the medial temporal lobes. Analysis of age effects revealed that younger subjects tended to activate more than older subjects in areas of extrastriate cortex, medial frontal cortex, and the right medial temporal lobe; older subjects tended to activate more than younger subjects in the insular cortex, right inferior temporal lobe, and right inferior frontal gyrus. These results extend recent reports indicating that these regions are specifically involved in the memory impairments seen with aging. Copyright 2000 Wiley-Liss, Inc.
McCabe, David P.; Roediger, Henry L.; McDaniel, Mark A.; Balota, David A.
2011-01-01
In 1985 Tulving introduced the remember–know procedure, whereby subjects are asked to distinguish between memories that involve retrieval of contextual details (remembering) and memories that do not (knowing). Several studies have been reported showing age-related declines in remember hits, which has typically been interpreted as supporting dual-process theories of cognitive aging that align remembering with a recollection process and knowing with a familiarity process. Less attention has been paid to remember false alarms, or their relation to age. We reviewed the literature examining aging and remember/know judgments and show that age-related increases in remember false alarms, i.e., false remembering, are as reliable as age-related decreases in remember hits, i.e., veridical remembering. Moreover, a meta-analysis showed that the age effect size for remember hits and false alarms are similar, and larger than age effects on know hits and false alarms. We also show that the neuropsychological correlates of remember hits and false alarms differ. Neuropsychological tests of medial-temporal lobe functioning were related to remember hits, but tests of frontal-lobe functioning and age were not. By contrast, age and frontal-lobe functioning predicted unique variance in remember false alarms, but MTL functioning did not. We discuss various explanations for these findings and conclude that any comprehensive explanation of recollective experience will need to account for the processes underlying both remember hits and false alarms. PMID:19100756
Hemispheric Coherence in ASD with and without Comorbid ADHD and Anxiety.
Saunders, A; Kirk, I J; Waldie, K E
2016-01-01
There is a growing body of evidence suggesting that altered brain connectivity may be a defining feature of disorders such as autism spectrum disorder (ASD), anxiety, and ADHD. This study investigated whether resting state functional connectivity, measured by 128-channel EEG oscillation coherence, differs between developmental disorders. Analyses were conducted separately on groups with and without comorbid conditions. Analyses revealed increased coherence across central electrodes over the primary motor cortex and decreased coherence in the frontal lobe networks in those with ASD compared to neurotypical controls. There was increased coherence in occipital lobe networks in the ADHD group compared to other groups. Symptoms of generalised anxiety were positively correlated with both frontal-occipital intrahemispheric (alpha only) coherence and occipital interhemispheric coherence (alpha, approaching theta band). The patterns of coherence in the ASD pure group were different when comorbid conditions were included in the analyses, suggesting that aberrant coherence in the frontal and central areas of the brain is specifically associated with ASD. Our findings support the idea that comorbid conditions are additive, rather than being symptoms of the same disorder.
Hemispheric Coherence in ASD with and without Comorbid ADHD and Anxiety
Saunders, A.; Kirk, I. J.; Waldie, K. E.
2016-01-01
There is a growing body of evidence suggesting that altered brain connectivity may be a defining feature of disorders such as autism spectrum disorder (ASD), anxiety, and ADHD. This study investigated whether resting state functional connectivity, measured by 128-channel EEG oscillation coherence, differs between developmental disorders. Analyses were conducted separately on groups with and without comorbid conditions. Analyses revealed increased coherence across central electrodes over the primary motor cortex and decreased coherence in the frontal lobe networks in those with ASD compared to neurotypical controls. There was increased coherence in occipital lobe networks in the ADHD group compared to other groups. Symptoms of generalised anxiety were positively correlated with both frontal-occipital intrahemispheric (alpha only) coherence and occipital interhemispheric coherence (alpha, approaching theta band). The patterns of coherence in the ASD pure group were different when comorbid conditions were included in the analyses, suggesting that aberrant coherence in the frontal and central areas of the brain is specifically associated with ASD. Our findings support the idea that comorbid conditions are additive, rather than being symptoms of the same disorder. PMID:27127785
Tsermentseli, Stella; Leigh, P Nigel; Goldstein, Laura H
2012-02-01
Cognitive and behavioural impairments accompanying amyotrophic lateral sclerosis (ALS) have been reported since the early 20th century. Typically, these changes can be associated with a dysexecutive syndrome or manifest as a frontotemporal dementia (FTD). Although the nature of specific frontotemporal dysfunction in ALS remains to be refined, as with the clinical presentation, there is likely to be significant heterogeneity. This article will review the current state of knowledge regarding the neuropathological and neuroanatomical basis for cognitive dysfunction in ALS. Neuropathological findings suggest that ALS does not selectively affect the frontotemporal network but rather is part of a broad clinico-pathological spectrum now known as TAR-DNA binding protein (TDP)-43 proteinopathies. Functional neuroimaging has supported neuropsychological findings of frontotemporal dysfunction but has also implied the involvement of somatosensory areas. Structural neuroimaging has not been able to establish a specific hypothesis of extra-motor cortical atrophy beyond the combination of various frontal, temporal and limbic areas. The finding of reduction in the integrity of white matter in the frontal, temporal and parietal lobes including long association fibers suggests that subcortical involvement may underlie both cognitive and functional changes in ALS. Future perspectives for further investigations are highlighted. Copyright © 2011 Elsevier Srl. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Li, R; Xie, Y
Purpose: Respiration control by hypnosis is a method in reducing the detriment to the healthy organs or organizations for patients during radiotherapy, especially for lung and abdomen cancer (Fig.1). It’s hypothesized that there exists alterations neurological brain activity during the hypnosis state of respiratory motion control in comparison with resting state. Methods: Thirteen healthy volunteers were organized to participate in a hypnosis experiment that consisted of two sectional scans of functional magnetic resonance imaging (fMRI), rest state condition (RSC) scanning and hypnosis state condition (HSC) scanning. In addition, the coronal section of the lung was scanned during both conditions. Duringmore » the hypnosis scan, the volunteers were under the hypnotists’ guidance to keep peace and stable respiration. To evaluate the altered physiological performance of hypnosis in the respiratory control, three conventional indicators ALFF/fALFF (0.01–0.08Hz) and ReHo, were applied to identify the difference. Results: Compared with RSC, HSC showed significant (p<0.05) higher ReHo in superior temporal gyrus, middle temporal gyrus, frontal lobe, middle occipital gyrus, parietal lobe, cerebellum anterior Lobe and lingual gyrus, and left brainstem (Fig.2). While significant lower ReHo in middle frontal gyrus, superior frontal gyrus, inferior semi-lunar lobule, sub-lobar and limbic lobe (Fig.2). As for the ALFF results, significant higher value of HSC was observed in superior temporal gyrus, middle temporal gyrus, middle occipital gyrus, middle occipital gyrus, cerebellum anterior lobe, lingual gyrus, sub-lobar, limbic lobe, and lower in cerebellum posterior lobe, inferior semi-lunar lobule, inferior parietal lobule right middle frontal gyrus, cerebellar tonsil (Fig.3). The results of fALFF were similar to ALFF (Fig.4). The above results demonstrated that most significant regions of brain were uniform between ReHo and ALFF/fALFF. Conclusion: Hypnosis is a new psychological and helpful technology for respiration control. This study provides new insights of neurological brain activity during hypnosis of respiration control. This work is supported by grants from Guangdong Innovative Research Team Program of China (Grant No. 2011S013), National 863 Programs of China (Grant Nos. 2012AA02A604 and 2015AA043203), the National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917)« less
Deen, Ben; Saxe, Rebecca; Bedny, Marina
2015-08-01
In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.
Krueger, Casey E.; Laluz, Victor; Rosen, Howard J.; Neuhaus, John M.; Miller, Bruce L.; Kramer, Joel H.
2010-01-01
Objective To determine if socioemotional disinhibition and executive dysfunction are related to dissociable patterns of brain atrophy in neurodegenerative disease. Previous studies have indicated that behavioral and cognitive dysfunction in neurodegenerative disease are linked to atrophy in different parts of the frontal lobe, but these prior studies did not establish that these relationships were specific, which would best be demonstrated by a double dissociation. Method Subjects included 157 patients with neurodegenerative disease. A semi-automated parcellation program (Freesurfer) was used to generate regional cortical volumes from structural MRI scans. Regions of interest (ROIs) included anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), middle frontal gyrus (MFG) and inferior frontal gyrus (IFG). Socioemotional disinhibition was measured using the Neuropsychiatric Inventory. Principal component analysis including three tasks of executive function (EF; verbal fluency, Stroop Interference, modified Trails) was used to generate a single factor score to represent EF. Results Partial correlations between ROIs, disinhibition, and EF were computed after controlling for total intracranial volume, MMSE, diagnosis, age, and education. Brain regions significantly correlated with disinhibition (ACC, OFC, IFG, and temporal lobes) and EF (MFG) were entered into separate hierarchical regressions to determine which brain regions predicted disinhibition and EF. OFC was the only brain region to significantly predict disinhibition and MFG significantly predicted executive functioning performance. A multivariate general linear model demonstrated a significant interaction between ROIs and cognitive-behavioral functions. Conclusions These results support a specific association between orbitofrontal areas and behavioral management as compared to dorsolateral areas and EF. PMID:21381829
Miao, Q; Zhang, S; Guan, Y H; Ye, H Y; Zhang, Z Y; Zhang, Q Y; Xue, R D; Zeng, M F; Zuo, C T; Li, Y M
2011-01-01
Patients with hyperthyroidism frequently present with regional cerebral metabolic changes, but the consequences of endocrine-induced brain changes after thyroid function normalization are unclear. We hypothesized that the changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroid, and some of these changes can be reversed with antithyroid therapy. Relative regional cerebral glucose metabolism was compared between 10 new-onset untreated patients with hyperthyroidism and 20 healthy control participants by using brain FDG-PET scans. Levels of emotional distress were evaluated by using the SAS and SDS. Patients were treated with methimazole. A follow-up PET scan was performed to assess metabolic changes of the brain when thyroid functions normalized. Compared with controls, patients exhibited lower activity in the limbic system, frontal lobes, and temporal lobes before antithyroid treatment. There were positive correlations between scores of depression and regional metabolism in the cingulate and paracentral lobule. The severity of depression and anxiety covaried negatively with pretreatment activity in the inferior temporal and inferior parietal gyri respectively. Compared with the hyperthyroid status, patients with normalized thyroid functions showed an increased metabolism in the left parahippocampal, fusiform, and right superior frontal gyri. The decrease in both FT3 and FT4 was associated with increased activity in the left parahippocampal and right superior frontal gyri. The changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroidism, and some cerebral hypometabolism can be improved after antithyroid therapy.
Cho, Seung-Yeon; Shin, Ae-Sook; Na, Byung-Jo; Jahng, Geon-Ho; Park, Seong-Uk; Jung, Woo-Sang; Moon, Sang-Kwan; Park, Jung-Mi
2013-06-01
To determine whether jaw-tapping movement, a classically described as an indication of personal well-being and mental health, stimulates the memory and the cognitive regions of the brain and is associated with improved brain performance. Twelve healthy right-handed female subjects completed the study. Each patient performed a jaw-tapping task and an n-back task during functional magnetic resonance imaging (fMRI). The subjects were trained to carry out the jaw-tapping movement at home twice a day for 4 weeks. The fMRI was repeated when they returned. During the first and second jaw-tapping session, both sides of precentral gyrus and the right middle frontal gyrus (BA 6) were activated. And during the second session of the jaw-tapping task, parts of frontal lobe and temporal lobe related to memory function were more activated. In addition, the total percent task accuracy in n-back task significantly increased after 4 weeks of jawtapping movement. After jaw-tapping training for 4 weeks, brain areas related to memory showed significantly increased blood oxygen level dependent signals. Jaw-tapping movement might be a useful exercise for stimulating the memory and cognitive regions of the brain.
[MRI for brain structure and function in patients with first-episode panic disorder].
Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang
2011-12-01
To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.
Assessing frontal behavioral syndromes and cognitive functions in traumatic brain injury.
Lengenfelder, Jeannie; Arjunan, Aparna; Chiaravalloti, Nancy; Smith, Angela; DeLuca, John
2015-01-01
This study examined the relationship between individual and family ratings on a measure of frontal behaviors using the Frontal Systems Behavior Scale (FrSBe). Additionally, this study investigated whether self-reported symptoms of frontal-lobe dysfunction correspond to neuropsychological performance, particularly those tests measuring executive functions. Thirty-three individuals with moderate-to-severe traumatic brain injury (TBI) and 19 healthy individuals completed the FrSBe and neuropsychological measures. Results indicated that the self-ratings of individuals' apathy, disinhibition, and executive dysfunction significantly increased from before to after injury, as did the family members' ratings, with no significant difference between the patients' and family members' reports for any of the three FrSBe subscales. Although individuals with TBI demonstrated impairments in neuropsychological measures, including measures of executive functioning, few significant correlations were found between the patients' FrSBe ratings and measures of cognitive functioning. This suggests that information from the FrSBe may differ from information gathered during a cognitive evaluation and may enhance our understanding of the behavioral sequelae following TBI that may not be captured by neuropsychological assessment alone.
Problems of Psychology of Mentally Retarded Children.
ERIC Educational Resources Information Center
Academy of Pedagogical Sciences of the USSR, Moscow. Inst. of Defectology.
Presented are 18 papers on problems in the psychology of mentally retarded children. Seven of the papers are in English, two in French, and nine in Russian. The English papers are concerned with the following topics: peculiarities of psychic functions in oligophrenic (retarded) children with pronounced underdevelopment of frontal lobes of cerebral…
Improving Lives through Evidence-Based Practice
ERIC Educational Resources Information Center
Young Exceptional Children, 2008
2008-01-01
Tess is a joyful eight-year old girl with epilepsy, frontal lobe dysfunction, and dyspraxia, as well as delays in language, fine motor, and gross motor skills. However, despite her disabilities, Tess happily embraces life. With assistance from a few support professionals, Tess currently functions successfully in a regular education second grade…
Cholinergic Enhancement of Frontal Lobe Activity in Mild Cognitive Impairment
ERIC Educational Resources Information Center
Saykin, Andrew J.; Wishart, Heather A.; Rabin, Laura A.; Flashman, Laura A.; McHugh, Tara L.; Mamourian, Alexander C.; Santulli, Robert B.
2004-01-01
Cholinesterase inhibitors positively affect cognition in Alzheimer's disease (AD) and other conditions, but no controlled functional MRI studies have examined where their effects occur in the brain. We examined the effects of donepezil hydrochloride (Aricept[Registered sign]) on cognition and brain activity in patients with amnestic mild cognitive…
Cho, Yang-Je; Han, Sang-Don; Song, Sook Keun; Lee, Byung In; Heo, Kyoung
2009-06-01
Palilalia is a relatively rare pathologic speech behavior and has been reported in various neurologic and psychiatric disorders. We encountered a case of palilalia, echolalia, and echopraxia-palipraxia as ictal phenomena of left frontal lobe epilepsy. A 55-year-old, right-handed man was admitted because of frequent episodes of rapid reiteration of syllables. Video-electroencephalography monitoring revealed stereotypical episodes of palilalia accompanied by rhythmic head nodding and right-arm posturing with ictal discharges over the left frontocentral area. He also displayed echolalia or echopraxia-palipraxia, partially responding to an examiner's stimulus. Magnetic resonance imaging revealed encephalomalacia on the left superior frontal gyrus and ictal single photon emission computed tomography showed hyperperfusion just above the lesion, corresponding to the left supplementary motor area (SMA), and subcortical nuclei. This result suggests that the neuroanatomic substrate involved in the generation of these behaviors as ictal phenomena might exist in the SMA of the left frontal lobe.
Impulsivity, self-control, and hypnotic suggestibility.
Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H
2013-06-01
Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.
Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.
Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric
2017-08-01
Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently reported in MTLE. Copyright © 2017 Elsevier B.V. All rights reserved.
Tezer, Fadime Irsel; Agan, Kadriye; Borggraefe, Ingo; Noachtar, Soheyl
2013-09-01
This patient report demonstrates the importance of seizure evolution in the localising value of seizure semiology. Spread of epileptic activity from frontal to temporal lobe, as demonstrated by invasive recordings, was reflected by change from hyperkinetic movements to arrest of activity with mild oral and manual automatisms. [Published with video sequences].
Leng, Xi; Fang, Peng; Lin, Huan; An, Jie; Tan, Xin; Zhang, Chi; Wu, Donglin; Shen, Wen; Qiu, Shijun
2017-11-01
The aim of the present study was to investigate the microstructural characteristics of the brain lobes following radiotherapy (RT) for patients with nasopharyngeal carcinoma (NPC) at distinct times. Diffusion tensor imaging (DTI) and 3D-T1-weighted imaging was performed in 70 age- and sex-matched subjects, 24 of whom were pre-treatment patients. The patients were divided into three groups, according to the time following completion of RT. Fractional anisotropy (FA) and gray matter (GM) volume were determined. The DTI data were analyzed using tract-based spatial statistics and the GM volume was analyzed using voxel-based morphometry (VBM). Compared with the pre-RT group, the mean FA values in the left parietal lobe white matter (WM) and right cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05). In addition, the mean FA values in the right parietal lobe WM decreased significantly in the post-RT 6-12 month group (P<0.05), compared with the pre-RT group. The FA level in the right temporal lobe remained significantly decreased, compared with that in the pre-RT group (P<0.05) for 1 year after RT. Furthermore, compared with pre-RT group, the GM volume in the bilateral frontal lobe, right occipital lobe, left parietal lobe, right temporal lobe and left cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05), and in the bilateral temporal lobe, parietal lobe, right frontal lobe and left cerebellum, the GM volume decreased significantly in the post-RT 6-12 month group (P<0.05). The GM volume in the right temporal lobe, bilateral frontal lobe and bilateral cerebellum remained significantly decreased compared with that in the pre-RT group (P<0.05) for 1 year after RT. A combination of DTI and VBM may be used to determine radiation-induced brain injury in patients treated for NPC.
Law, Nicole; Widjaja, Elysa; Smith, Mary Lou
2018-03-01
Previous findings have been mixed in terms of identifying a distinct pattern of neuropsychological deficits in children with frontal lobe epilepsy (FLE) and in those with temporal lobe epilepsy (TLE). The current study investigated the neuropsychological similarities and differences across these two pediatric medically intractable localization-related epilepsies. Thirty-eight children with FLE, 20 children with TLE, and 40 healthy children (HC) participated in this study. A comprehensive battery of standardized tests assessed five neuropsychological domains including intelligence, language, memory, executive function, and motor function. A principal component analysis (PCA) was used to distill our neuropsychological measures into latent components to compare between groups. Principal component analysis extracted 5 latent components: executive function (F1), verbal semantics (F2), motor (F3), nonverbal cognition/impulsivity (F4), and verbal cognition/attention (F5). The group with FLE differed from the HC group on F1, F2, F4, and F5, and had worse performance than the group with TLE on F1; the group with TLE had lower performance relative to the HC group on F2. Our findings suggest that, in comparison with neurotypically developing children, children with medically intractable FLE have more widespread neuropsychological impairments than do children with TLE. The differences between the two patient groups were greatest for the factor score most clearly related to executive function. The results provide mixed support for the concept of specificity in neuropsychological dysfunction among different subtypes of localization-related medically intractable childhood epilepsies. Copyright © 2018 Elsevier Inc. All rights reserved.
Heflin, Lara H.; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L.; Kramer, Joel H.
2011-01-01
Objective The Stroop is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Method Participants were 112 well-characterized patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semi-automated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Disinhibition scale of the Neuropsychiatric Inventory. The sample (n=112) mean age was 65.40 (SD=8.60) years, education was 16.64 (SD=2.54) years, and MMSE was 26.63 (SD=3.32). Hierarchical linear regressions were used for data analysis. Results Controlling for age, MMSE, and Color Naming performance, Stroop performance was not significantly associated with behavioral disinhibition (β=0.01, ΔR2=0.01, p=0.29). Hierarchical regressions controlling for age, MMSE, Color Naming, intracranial volume, and temporal and parietal lobes, examined whether left hemisphere or right hemisphere regions predict Interference speed. Bilaterally, parietal lobes were the brain region in which atrophy best predicted poorer Stroop (left: β=0.0004, ΔR2=0.02, p=0.002; right: β=0.0004, ΔR2=0.02, p=0.002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β=0.001, ΔR2=0.01, p=0.03); left and right anterior cingulate cortex (ACC) atrophy predicted better Stroop (left: β=−0.003, ΔR2=0.01, p=0.02; right: β=−0.004, ΔR2=0.01, p=0.02). Conclusions These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population. PMID:21574716
Heflin, Lara H; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L; Kramer, Joel H
2011-09-01
The Stroop (Stroop, 1935) is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Participants were 112 patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semiautomated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Neuropsychiatric Inventory (Cummings, 1997; Cummings et al., 1994) Disinhibition Scale. The sample (n = 112) mean age was 65.40 (SD = 8.60) years, education was 16.64 (SD = 2.54) years, and Mini-Mental State Examination (MMSE; Folstein et al., 1975) was 26.63 (SD = 3.32). Hierarchical linear regressions were used for data analysis. Controlling for age, MMSE, and color naming, Stroop performance was not significantly associated with disinhibition (β = 0.01, ΔR² = 0.01, p = .29). Hierarchical regressions controlling for age, MMSE, color naming, intracranial volume, and temporal and parietal lobes, examined whether left or right hemisphere regions predict Stroop performance. Bilaterally, parietal lobe atrophy best predicted poorer Stroop (left: β = 0.0004, ΔR² = 0.02, p = .002; right: β = 0.0004, ΔR² = 0.02, p = .002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β = 0.001, ΔR² = 0.01, p = .03); left and right anterior cingulate cortex atrophy predicted better Stroop (left: β = -0.003, ΔR² = 0.01, p = .02; right: β = -0.004, ΔR² = 0.01, p = .02). These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Relationship of Temporal Lobe Volumes to Neuropsychological Test Performance in Healthy Children
Wells, Carolyn T.; Matson, Melissa A.; Kates, Wendy R.; Hay, Trisha; Horska, Alena
2008-01-01
Ecological validity of neuropsychological assessment includes the ability of tests to predict real-world functioning and/or covary with brain structures. Studies have examined the relationship between adaptive skills and test performance, with less focus on the association between regional brain volumes and neurobehavioral function in healthy children. The present study examined the relationship between temporal lobe gray matter volumes and performance on two neuropsychological tests hypothesized to measure temporal lobe functioning (Visual Perception-VP; Peabody Picture Vocabulary Test, Third Edition-PPVT-III) in 48 healthy children ages 5-18 years. After controlling for age and gender, left and right temporal and left occipital volumes were significant predictors of VP. Left and right frontal and temporal volumes were significant predictors of PPVT-III. Temporal volume emerged as the strongest lobar correlate with both tests. These results provide convergent and discriminant validity supporting VP as a measure of the “what” system; but suggest the PPVT-III as a complex measure of receptive vocabulary, potentially involving executive function demands. PMID:18513844
Shimizu, Nobuko; Umemura, Tomohiro; Matsunaga, Masahiro; Hirai, Takayoshi
2017-01-01
Hypofrontality is a state of decreased cerebral blood flow in the prefrontal cortex during executive function performance; it is commonly observed in patients with schizophrenia. Cognitive dysfunction, as well as the psychological symptoms of schizophrenia, influences the ability of patients to reintegrate into society. The current study investigated the effects of an interactive sports video game (IVG; Nintendo Wii™ Sports Resort) on frontal lobe function of patients with schizophrenia. A sample of eight patients (6 male and 2 female; mean age = 46.7 years, standard deviation (SD) = 13.7) engaged in an IVG every week for 3 months in a controlled, single-blind, crossover study. Before and after the intervention we examined frontal lobe blood-flow volume using functional near-infrared spectroscopy (fNIRS), and assessed functional changes using the Frontal Assessment Battery, Health-Related Quality of Life scale, and behaviorally-assessed physical function tests. fNIRS revealed that prefrontal activity during IVG performance significantly increased in the IVG period compared with the control period. Furthermore, significant correlations between cerebral blood flow changes in different channels were observed during IVG performance. In addition, we observed intervention-related improvement in health-related quality of life following IVG. IVG intervention was associated with increased prefrontal cortex activation and improved health-related quality of life performance in patients with schizophrenia. Patients with chronic schizophrenia are characterized by withdrawal and a lack of social responsiveness or interest in others. Interventions using IVG may provide a useful low-cost rehabilitation method for such patients, without the need for specialized equipment.
Storage and executive processes in the frontal lobes.
Smith, E E; Jonides, J
1999-03-12
The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.
Ferri, Lorenzo; Bisulli, Francesca; Nobili, Lino; Tassi, Laura; Licchetta, Laura; Mostacci, Barbara; Stipa, Carlotta; Mainieri, Greta; Bernabè, Giorgia; Provini, Federica; Tinuper, Paolo
2014-11-01
To describe the anatomo-electro-clinical findings of patients with nocturnal hypermotor seizures (NHS) preceded by auditory symptoms, to evaluate the localizing value of auditory aura. Our database of 165 patients with nocturnal frontal lobe epilepsy (NFLE) diagnosis confirmed by videopolysomnography (VPSG) was reviewed, selecting those who reported an auditory aura as the initial ictal symptom in at least two NHS during their lifetime. Eleven patients were selected (seven males, four females). According to the anatomo-electro-clinical data, three groups were identified. Group 1 [defined epileptogenic zone (EZ)]: three subjects were studied with stereo-EEG. The EZ lay in the left superior temporal gyrus in two cases, whereas in the third case seizures arose from a dysplastic lesion located in the left temporal lobe. One of these three patients underwent left Heschl's gyrus resection, and is currently seizure-free. Group 2 (presumed EZ): three cases in which a presumed EZ was identified; in the left temporal lobe in two cases and in the left temporal lobe extending to the insula in one subject. Group 3 (uncertain EZ): five cases had anatomo-electro-clinical correlations discordant. This work suggests that auditory aura may be a helpful anamnestic feature suggesting an extra-frontal seizure origin. This finding could guide secondary investigations to improve diagnostic definition and selection of candidates for surgical treatment. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Variations and asymmetries in regional brain surface in the genus Homo.
Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique
2012-06-01
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar
2017-08-22
The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.
Frontal lobe astrocytoma following radiotherapy for medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, M.S.; Kushner, M.J.; Dell, S.
1981-05-01
A young woman had a frontal lobe astrocytoma 14 years after successful treatment of a posterior fossa medulloblastoma by surgery and whole-neuraxis irradiation. The association of these two tumors is rare, and it is unlikely that the second tumor was the result of metastasis and differentiation of residual or recurrent medulloblastoma. We review the evidence supporting this view and also the likelihood that the astrocytoma was induced by the prior radiation.
Abscesses of the frontal lobe of the brain secondary to covert dental sepsis.
Ingham, H R; Kalbag, R M; Tharagonnet, D; High, A S; Sengupta, R P; Selkon, J B
1978-09-02
The bacterial species found in pus aspirated from brain abscesses in two patients were typical of those found in dental sepsis. Subsequently apical-root abscesses were demonstrated in the upper jaws of both patients. This evidence strongly suggests that these cerebral abscesses were secondary to dental sepsis which could have spread from the teeth to the frontal lobes by several possible antaomical pathways.
Use of Frontal Lobe Hemodynamics as Reinforcement Signals to an Adaptive Controller
DiStasio, Marcello M.; Francis, Joseph T.
2013-01-01
Decision-making ability in the frontal lobe (among other brain structures) relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative) valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS), can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable) stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone. PMID:23894500
Can ACTH therapy improve the long-term outcome of drug-resistant frontal lobe epilepsy?
Gobbi, Giuseppe; Loiacono, Giulia; Boni, Antonella; Marangio, Lucia; Verrotti, Alberto
2014-06-01
Frontal lobe epilepsy is a common focal epilepsy in children and is often difficult to treat. Adrenocorticotropic hormone (ACTH) or steroids have been used for patients with several forms of medically intractable epilepsy. We evaluated the short, medium, and long-term evolution of patients with frontal lobe epilepsy and secondary bilateral synchrony on the EEG, who received ACTH treatment. Patients were recruited for an add-on trial during clinical practice, and data was retrospectively analysed. The study group comprised 6 patients treated with ACTH. The effects of ACTH were assessed in the short term (at the end of a 6-week period of ACTH treatment), medium term (at 6 months after the end of treatment), and long term (at 12 months after the end of treatment). At short-term follow-up, ACTH treatment was effective for all types of seizures in 5 of 6 patients and ineffective in 1 patient. All patients who were seizure-free at the end of ACTH treatment maintained an excellent outcome, remaining seizure-free at the end of follow-up. Our study demonstrates that ACTH may represent an effective treatment for frontal lobe epilepsy with secondary bilateral synchrony. Further double-blind prospective studies are required to confirm our initial findings.
Kawano, Makoto; Kanazawa, Tetsufumi; Kikuyama, Hiroki; Tsutsumi, Atsushi; Kinoshita, Shinya; Kawabata, Yasuo; Yamauchi, Shigeru; Uenishi, Hiroyuki; Kawashige, Seiya; Imazu, Shinichi; Toyoda, Katsutaka; Nishizawa, Yoshitaka; Takahashi, Mayuko; Okayama, Tatsushi; Odo, Wakako; Ide, Kentaro; Maruyama, Soichiro; Tarutani, Seiichiro; Koh, Jun; Yoneda, Hiroshi
2016-11-15
The search for objective biomarkers of psychiatric disorders has a long history. Despite this, no universally accepted instruments or methods to detect biomarkers have been developed. One potential exception is near-infrared spectroscopy, although interpreting the measures of blood flow recorded with this technique remains controversial. In this study, we aimed to investigate the relationship between recorded blood flow and depression severity assessed using the Hamilton depression scale in patients with various psychiatric disorders. Enrolled patients (n=43) had DSM-IV diagnoses of major depressive disorder (n=25), bipolar disorder I (n=5), schizophrenia (n=3), dysthymic disorder (n=3), psychotic disorder (n=3), panic disorder (n=2), and Obsessive Compulsive Disorder (n=2). The verbal fluency task was administered during blood flow recording from the frontal and temporal lobes. We found that severity of depression was negatively correlated with the integral value of blood flow in the frontal lobe, irrespective of psychiatric diagnosis (F=5.94, p=0.02). Our results support blood flow in the frontal lobe as a potential biomarker of depression severity across various psychiatric disorders. Limited sample size, no replication in the second set. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.
2010-01-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280
NASA Astrophysics Data System (ADS)
Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun
2004-04-01
This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.
Nelson, Lindsey; Lapsiwala, Samir; Haughton, Victor M; Noyes, Jane; Sadrzadeh, Amir H; Moritz, Chad H; Meyerand, M Elizabeth; Badie, Behnam
2002-11-01
Injury to the supplementary motor area (SMA) is thought to be responsible for transient motor and speech deficits following resection of tumors involving the medial frontal lobe. Because direct intraoperative localization of SMA is difficult, the authors hypothesized that functional magnetic resonance (fMR) imaging might be useful in predicting the risk of postoperative deficits in patients who undergo resection of tumors in this region. Twelve patients who had undergone fMR imaging mapping while performing speech and motor tasks prior to excision of their tumor, that is, based on anatomical landmarks involving the SMA, were included in this study. The distance between the edge of the tumor and the center of SMA activation was measured and was correlated with the risk of incurring postoperative neurological deficits. In every patient, SMA activation was noted in the superior frontal gyrus on preoperative fMR imaging. Two speech and two motor deficits typical of SMA injury were observed in three of the 12 patients. The two speech deficits occurred in patients with tumors involving the dominant hemisphere, whereas one of the motor deficits occurred in a patient with a tumor in the nondominant hemisphere. The risk of developing a postoperative speech or motor deficit was 100% when the distance between the SMA and the tumor was 5 mm or less. When the distance between SMA activation and the lesion was greater than 5 mm, the risk of developing a motor or a speech deficit was 0% (p = 0.0007). Early data from this study indicated that fMR imaging might be useful in localizing the SMA and in determining the risk of postoperative deficits in patients who undergo resection of tumors located in the medial frontal lobe.
Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.
Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H
1986-02-01
Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).
Jin, Seung-Hyun; Chung, Chun Kee
2015-10-01
Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between connectivity and delayed verbal memory function, hemispheric-specific hippocampal-frontal theta connectivity assessment could be useful as an electrophysiological indicator of delayed verbal memory function in patients with mTLE with HS. Copyright © 2015 Elsevier Inc. All rights reserved.
Sanz de la Torre, J C; Pérez-Ríos, M
1996-06-01
In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.
Family poverty affects the rate of human infant brain growth.
Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D
2013-01-01
Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.
Family Poverty Affects the Rate of Human Infant Brain Growth
Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.
2013-01-01
Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025
Response Inhibition in Adults and Teenagers: Spatiotemporal Differences in the Prefrontal Cortex
ERIC Educational Resources Information Center
Vidal, Julie; Mills, Travis; Pang, Elizabeth W.; Taylor, Margot J.
2012-01-01
Inhibition is a core executive function reliant on the frontal lobes that shows protracted maturation through to adulthood. We investigated the spatiotemporal characteristics of response inhibition during a visual go/no-go task in 14 teenagers and 14 adults using magnetoencephalography (MEG) and a contrast between two no-go experimental conditions…
An unusual case of random fire-setting behavior associated with lacunar stroke.
Bosshart, Herbert; Capek, Sonia
2011-06-15
A case of a 47-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory impairment. Axial T1-weighted magnetic resonance imaging showed a low intensity lacunar lesion in the genu and anterior limb of the left internal capsule. A neuropsychological test battery revealed lower than normal scores for executive functions, attention and memory, consistent with frontal lobe dysfunction. The recent onset of fire-setting behavior and the chronic nature of the lacunar lesion, together with an unremarkable performance on tests measuring executive functions two years prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The present case describes a rare and as yet unreported association between random impulse-driven fire-setting behavior and damage to the left internal capsule and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
2014-01-01
Background Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). Methods We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7–13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Results Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Conclusions Children with ASD showed differences in activation in the frontal and parietal lobes—both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances. PMID:25057329
Jemel, Boutheina; Oades, Robert D; Oknina, Ljubov; Achenbach, Christiane; Röpcke, Bernd
2003-01-01
Frontal and temporal lobe sources for electrical activity associated with auditory controlled attention (negative difference, Nd) were sought for comparison with those reported to arise from the earlier detection of stimulus-change (mismatch negativity, MMN: Jemel et al. 2002). In two sessions a month apart (T1 and T2), 14 subjects were presented with a 3-tone oddball passively, then as a discrimination task. In EEG recordings (32 sites), Nd was calculated by subtraction of the event-related potential elicited by a non-attended stimulus from that after the same frequency-deviant as target Putative generators in the 180-228 ms latency-range were modelled with brain electrical source analysis and mapped to the modified Montreal brain-atlas. Initial T1-analyses located bilateral Nd dipoles in the superior temporal gyrus (BA22) and the dorsolateral prefrontal cortex (BA8). Re-test allowed estimates of the temporal and spatial extension of activity. Peak activity occurred 14 ms later. Step-by-stepanalysis showed that the best spatial fit for the inverse-solutions extended 3-6 mm from the point sources, but for temporal lobe sources this increased 15 mm caudally. The right mid-frontal source (BA10) was rostral and ventral from that in the left superior frontal gyrus (BAB). T1 and T2 dipole strengths were well correlated. Nd measures of controlled attention localised to areas associated with sustained attention, problem-solving and working-memory. Temporal lobe sources were later and more posterior and medial than for automatic change-detection. Frontal Nd sources were more dorsal on the right and more rostral on the left than MMN dipoles reported for the right inferior frontal and left anterior cingulate. The sequence of information processing is reviewed.
Longitudinal progression of frontal and temporal lobe changes in schizophrenia
Cobia, Derin J.; Smith, Matthew J.; Wang, Lei; Csernansky, John G.
2012-01-01
Cortical abnormalities are considered a neurobiological characteristic of schizophrenia. However, the pattern of such deficits as they progress over the illness remains poorly understood. The goal of this project was to assess the progression of cortical thinning in frontal and temporal cortical regions in schizophrenia, and determine whether relationships exist between them and neuropsychological and clinical symptom profiles. As part of a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy participants (n=20) group-matched for age, gender, and recent-alcohol use, were selected. Using MRI, estimates of gray matter thickness were derived from primary anatomical gyri of the frontal and temporal lobes using surface-based algorithms. These values were entered into repeated-measures analysis of variance models to determine group status and time effects. Change values in cortical regions were correlated with changes in neuropsychological functioning and clinical symptomatology. Results revealed exaggerated cortical thinning of the middle frontal, superior temporal, and middle temporal gyri in schizophrenia participants. These thickness changes strongly influenced volumetric reductions, but were not related to shrinking surface area. Neuropsychological and clinical symptom profiles were stable in the schizophrenia participants despite these neuroanatomic changes. Overall it appears ongoing abnormalities in the cerebral cortex continue after initial onset of schizophrenia, particularly the lateral aspects of frontal and temporal regions, and do not relate to neuropsychological or clinical measures over time. Maintenance of neuropsychological performance and clinical stability in the face of changing neuroanatomical structure suggests the involvement of alternative compensatory mechanisms. PMID:22647883
Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2016-01-01
Abstract Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery. PMID:26754787
Ghawami, Heshmatollah; Sadeghi, Sadegh; Raghibi, Mahvash; Rahimi-Movaghar, Vafa
2017-01-01
Executive dysfunctions are among the most prevalent neurobehavioral sequelae of traumatic brain injuries (TBIs). Using culturally validated tests from the Delis-Kaplan Executive Function System (D-KEFS: Trail Making, Verbal Fluency, Design Fluency, Sorting, Twenty Questions, and Tower) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS: Rule Shift Cards, Key Search, and Modified Six Elements), the current study was the first to examine executive functioning in a group of Iranian TBI patients with focal frontal contusions. Compared with a demographically matched normative sample, the frontal contusion patients showed substantial impairments, with very large effect sizes (p ≤ .003, 1.56 < d < 3.12), on all the executive measures. Controlling for respective lower-level/fundamental conditions, the differences on the highest-level executive (cognitive switching) conditions were still significant. The frontal patients also committed more errors. Patients with lateral prefrontal (LPFC) contusions were qualitatively worst. For example, only the LPFC patients committed perseverative repetition errors. Altogether, our results support the notion that the frontal lobes, specifically the lateral prefrontal regions, play a critical role in cognitive executive functioning, over and above the contributions of respective lower-level cognitive abilities. The results provide clinical evidence for validity of the cross-culturally adapted versions of the tests.
Lee, Jae Il; Ko, Jun Kyeung; Cha, Seung Heon; Han, In Ho
2011-12-01
Temple trauma that appears initially localized to the skin might possess intracranial complications. Early diagnosis and management of such complications are important, to avoid neurologic sequelae. Non-penetrating head injuries with intracranial hemorrhage caused by a driven bone fragment are extremely rare. A 53-year-old male was referred to our hospital because of intracerebral hemorrhage. He was a mechanic and one day before admission to a local clinic, tip of metallic rod hit his right temple while cutting the rod. Initial brain computed tomography (CT) and magnetic resonance imaging demonstrated scanty subdural hematoma at right temporal lobe and left falx and intracerebral hematoma at both frontal lobes. Facial CT with 3-D reconstruction images showed a small bony defect at the right sphenoid bone's greater wing and a small bone fragment at the left frontal lobe, crossing the falx. We present the unusual case of a temple trauma patient in whom a sphenoid bone fragment migrated from its origin upward, to the contralateral frontal lobe, producing hematoma along its trajectory.
The role of the hippocampus in flexible cognition and social behavior
Rubin, Rachael D.; Watson, Patrick D.; Duff, Melissa C.; Cohen, Neal J.
2014-01-01
Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world. PMID:25324753
The role of the hippocampus in flexible cognition and social behavior.
Rubin, Rachael D; Watson, Patrick D; Duff, Melissa C; Cohen, Neal J
2014-01-01
Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world.
A neuropsychological assessment of frontal cognitive functions in Prader-Willi syndrome.
Jauregi, J; Arias, C; Vegas, O; Alén, F; Martinez, S; Copet, P; Thuilleaux, D
2007-05-01
Prader-Willi syndrome (PWS) is associated with a characteristic behavioural phenotype whose main features are, alongside compulsive hyperphagia, deficits in social behaviour: social withdrawal, temper tantrums, perseverative speech and behaviour, mental rigidity, stereotyped behaviour, impulsiveness, etc. Similar symptoms may also be found in autistic spectrum disorders and lesional pathologies of the frontal lobe. In both cases, such symptoms have been related to dysfunctions in frontal cognitive processes such as attention, working memory and executive functions. This study uses standardized neuropsychological instruments to analyse the degree to which these processes are affected in PWS. The sample comprised 16 individuals with a genetically confirmed PWS diagnosis. Subjects' IQ (Wechsler Adult Intelligence Scale), academic level, laterality and body mass index (BMI) were calculated. Attention, memory and executive functions were analysed using standard, widely employed neuropsychological tests. We compared the results of the sample group with the general population. Correlation analyses were carried out with IQ, academic level and BMI. In all the neuropsychological measures focusing on attention, executive functions and visuoperceptual organization, the study sample scored significantly lower than the normative reference population. The scores of the tests used for measuring immediate memory were also significantly lower when trials required sequential processing, although not when they required simultaneous processing. In the memorization of a list of words, subjects showed an initial deficit which disappeared with repetition, enabling them to obtain scores similar to the reference population. No significant correlations were found with BMI, and a higher IQ or academic level did not improve scores in the majority of tests. The study shows a deficit in elementary frontal cognitive processes in PWS patients. This deficit may be involved in the social behaviour disorders that characterize such patients, as described in other development or frontal syndrome pathologies. However, we cannot affirm that the deficits found are specific to PWS; they could also occur in other causes of intellectual disability. Although in the study sample IQ did not correlate with frontal deficits, further research is needed to establish whether the neuropsychological alterations described form part of a cognitive phenotype for PWS. We believe that our understanding of the social behaviours typical of PWS may be improved by taking into consideration the cognitive functioning models of the prefrontal lobe, particularly those applied to pervasive developmental disorders.
Lyvers, Michael; Duff, Helen; Basch, Vanessa; Edwards, Mark S
2012-08-01
Two forms of impulsivity, rash impulsiveness and reward sensitivity, have been proposed to reflect aspects of frontal lobe functioning and promote substance use. The present study examined these two forms of impulsivity as well as frontal lobe symptoms in relation to risky drinking by university students. University undergraduates aged 18-26years completed the Alcohol Use Disorders Identification Test (AUDIT), Barratt Impulsiveness Scale (BIS-11), Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), Frontal Systems Behavior Scale (FrSBe), and a demographics questionnaire assessing age, gender, and age of onset of weekly drinking (AOD). AUDIT-defined harmful drinkers reported earlier AOD and scored higher on BIS-11, the Sensitivity to Reward (SR) scale of the SPSRQ, and the Disinhibition and Executive Dysfunction scales of the FrSBe compared to lower risk groups. Differences remained significant after controlling for duration of alcohol exposure. Path analyses indicated that the influence of SR on AUDIT was mediated by FrSBe Disinhibition, whereas the influence of BIS-11 on AUDIT was mediated by both Disinhibition and Executive Dysfunction scales of the FrSBe. Findings tentatively suggest that the influence of rash impulsiveness on drinking may reflect dysfunction in dorsolateral prefrontal and orbitofrontal systems, whereas the influence of reward sensitivity on drinking may primarily reflect orbitofrontal dysfunction. Irrespective of the underlying functional brain systems involved, results appear to be more consistent with a pre-drinking trait interpretation than effects of alcohol exposure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Further characterisation of the functional neuroanatomy associated with prosodic emotion decoding.
Mitchell, Rachel L C
2013-06-01
Current models of prosodic emotion comprehension propose a three stage cognition mediated by temporal lobe auditory regions through to inferior and orbitofrontal regions. Cumulative evidence suggests that its mediation may be more flexible though, with a facility to respond in a graded manner based on the need for executive control. The location of this fine-tuning system is unclear, as is its similarity to the cognitive control system. In the current study, need for executive control was manipulated in a block-design functional MRI study by systematically altering the proportion of incongruent trials across time, i.e., trials for which participants identified prosodic emotions in the face of conflicting lexico-semantic emotion cues. Resultant Blood Oxygenation Level Dependent contrast data were analysed according to standard procedures using Statistical Parametric Mapping v8 (Ashburner et al., 2009). In the parametric analyses, superior (medial) frontal gyrus activity increased linearly with increased need for executive control. In the separate analyses of each level of incongruity, results suggested that the baseline prosodic emotion comprehension system was sufficient to deal with low proportions of incongruent trials, whereas a more widespread frontal lobe network was required for higher proportions. These results suggest an executive control system for prosodic emotion comprehension exists which has the capability to recruit superior (medial) frontal gyrus in a graded manner and other frontal regions once demand exceeds a certain threshold. The need to revise current models of prosodic emotion comprehension and add a fourth processing stage are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
Störmer, Viola S; Green, Jessica J; McDonald, John J
2009-03-01
A lateralized event-related potential (ERP) component elicited by attention-directing cues (ADAN) has been linked to frontal-lobe control but is often absent when spatial attention is deployed in the auditory modality. Here, we tested the hypothesis that ERP activity associated with frontal-lobe control of auditory spatial attention is distributed bilaterally by comparing ERPs elicited by attention-directing cues and neutral cues in a unimodal auditory task. This revealed an initial ERP positivity over the anterior scalp and a later ERP negativity over the parietal scalp. Distributed source analysis indicated that the anterior positivity was generated primarily in bilateral prefrontal cortices, whereas the more posterior negativity was generated in parietal and temporal cortices. The anterior ERP positivity likely reflects frontal-lobe attentional control, whereas the subsequent ERP negativity likely reflects anticipatory biasing of activity in auditory cortex.
Nocturnal frontal lobe epilepsy in mucopolysaccharidosis.
Bonanni, Paolo; Volzone, Anna; Randazzo, Giovanna; Antoniazzi, Lisa; Rampazzo, Angelica; Scarpa, Maurizio; Nobili, Lino
2014-10-01
Nocturnal frontal lobe epilepsy (NFLE) is an epileptic syndrome that is primarily characterized by seizures with motor signs occurring almost exclusively during sleep. We describe 2 children with mucopolysaccharidosis (MPS) who were referred for significant sleep disturbance. Long term video-EEG monitoring (LT-VEEGM) demonstrated sleep-related hypermotor seizures consistent with NFLE. No case of sleep-related hypermotor seizures has ever been reported to date in MPS. However, differential diagnosis with parasomnias has been previously discussed. The high frequency of frontal lobe seizures causes sleep fragmentation, which may result in sleep disturbances observed in at least a small percentage of MPS patients. We suggest monitoring individuals with MPS using periodic LT-VEEGM, particularly when sleep disorder is present. Moreover, our cases confirm that NFLE in lysosomal storage diseases may occur, and this finding extends the etiologic spectrum of NFLE. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Weis, Susanne; Leube, Dirk; Erb, Michael; Heun, Reinhard; Grodd, Wolfgang; Kircher, Tilo
2011-07-01
The aim of our study was to examine brain networks involved with sustaining memory encoding performance in healthy aging and in Alzheimer's disease (AD). Since different brain regions are affected by degradation in these two conditions, it might be conceivable that different compensation mechanisms occur to keep up memory performance in aging and in AD. Using an event-related functional magnetic resonance imaging (FMRI) design and a correlation analysis, 8 patients suffering from AD and 29 elderly control subjects were scanned while they studied a list of words for a subsequent memory test. Individual performance was assessed on the basis of a subsequent recognition test, and brain regions were identified where functional activations during study correlated with memory performance. In both groups, successful memory encoding performance was significantly correlated with the activation of the right frontal cortex. Furthermore, in healthy controls, there was a significant correlation of memory performance and the activation of the left medial and lateral temporal lobe. In contrast, in AD patients, increasing memory performance goes along with increasing activation of the hippocampus and a bilateral brain network including the frontal and temporal cortices. Our data show that in healthy aging and in AD, common and distinct compensatory mechanisms are employed to keep up a certain level of memory performance. Both in healthy aging and in patients with AD, an increased level of monitoring and control processes mediated by the (right) frontal lobe seems to be necessary to maintain a certain level of memory performance. In addition, memory performance in healthy older subjects seems to rely on an increased effort in encoding item-specific semantic and contextual information in lateral areas of the (left) temporal lobe. In AD patients, on the other hand, the maintenance of memory performance is related to an increase of activation of the (left) hippocampus in conjunction with a bilateral network of cortical areas that might be involved with phonological and visual rehearsal of the incoming information.
Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier
2012-07-01
Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (P<0.03); (ii) with a deficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency and the negative results of group studies. Finally, the frontal dysexecutive syndrome cannot be attributed to central executive impairment, although it may contribute to some dysexecutive disorders.
Executive attention and personality variables in patients with frontal lobe damage.
Rodríguez-Bailón, María; Triviño, Mónica; Lupiáñez, Juan
2012-11-01
Executive Control is required to deal with novel situations or when an action plan is needed. This study aimed to highlight the executive attention deficits of patients with frontal lobe damage. To do so, the ANT-I task (Attention Network Test-Interactions) was administered for the first time to a group of 9 patients with frontal damage caused by traumatic brain injury (TBI) and a matched control group. This task made it possible to measure the three attentional networks proposed by Posner and Dehaene (1994) and their interactions. Results on the alerting and orienting networks did not show any significant differences between the groups. However, a significant effect of group on the executive control network was observed. In addition, participants' personality was assessed with a clinical inventory (the Millon Personality Inventory) that showed a significant positive correlation between borderline personality disorder and the conflict index. These results suggest that frontal lobe damage causes an exclusive impairment in the conflict resolution network that is related to personality traits characterized by a lack of behavioral control. More research will be necessary to study this causal relationship.
Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism
NASA Astrophysics Data System (ADS)
Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei
2017-08-01
Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.
Pila-Nemutandani, Refilwe Gloria; Meyer, Anneke
2016-07-01
To compare planning behaviour (frontal lobe functioning) in children with and without symptoms of attention deficit hyperactivity disorder (ADHD). A total of 90 children (45 with symptoms of ADHD and 45 matched controls without ADHD symptoms) of both genders, who were medication naïve, from the Balobedu culture (Limpopo province, South Africa), aged 7-13 years, participated in the study. The performance of the two groups was compared on a test of planning and problem solving, the Tower of London (ToL) task. The results were analysed as a function of gender and ADHD subtype. The Finger Tapping test (testing fine motor skills) was used as a control test to verify that the expected differences were not due to poor motor skills. The children with ADHD symptoms scored significantly lower than the non-ADHD comparison group which indicated deficiency in frontal lobe functioning (p = 0.00). The difference in performance was not due to poor motor control (p = 0.70). Children with ADHD symptoms show deficits in behavioural planning which indicates impairment of functions of the frontal areas supplied by the mesocortical dopamine branch. More so than others, the ADHD Inattentive and Combined subtypes showed poor performance in the Tower of London task, indicating poor organisational and planning skills in these groups. The results also did show that the difference was not due to problems with motor control and that the ToL task is a culture-fair instrument for testing planning behaviour.
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao
2016-05-15
Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Physiogenomic analysis of localized FMRI brain activity in schizophrenia.
Windemuth, Andreas; Calhoun, Vince D; Pearlson, Godfrey D; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto
2008-06-01
The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.
Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji
2012-01-01
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.
Jemel, Boutheina; Achenbach, Christiane; Müller, Bernhard W; Röpcke, Bernd; Oades, Robert D
2002-01-01
The event-related potential (ERP) reflecting auditory change detection (mismatch negativity, MMN) registers automatic selective processing of a deviant sound with respect to a working memory template resulting from a series of standard sounds. Controversy remains whether MMN can be generated in the frontal as well as the temporal cortex. Our aim was to see if frontal as well as temporal lobe dipoles could explain MMN recorded after pitch-deviants (Pd-MMN) and duration deviants (Dd-MMN). EEG recordings were taken from 32 sites in 14 healthy subjects during a passive 3-tone oddball presented during a simple visual discrimination and an active auditory discrimination condition. Both conditions were repeated after one month. The Pd-MMN was larger, peaked earlier and correlated better between sessions than the Dd-MMN. Two dipoles in the auditory cortex and two in the frontal lobe (left cingulate and right inferior frontal cortex) were found to be similarly placed for Pd- and Dd-MMN, and were well replicated on retest. This study confirms interactions between activity generated in the frontal and auditory temporal cortices in automatic attention-like processes that resemble initial brain imaging reports of unconscious visual change detection. The lack of interference between sessions shows that the situation is likely to be sensitive to treatment or illness effects on fronto-temporal interactions involving repeated measures.
Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian
2017-07-01
Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).
Sailor, Janet; Meyerand, M Elizabeth; Moritz, Chad H; Fine, Jason; Nelson, Lindsey; Badie, Behnam; Haughton, Victor M
2003-10-01
Some patients who undergo surgical resection of portions of the supplementary motor area (SMA) have severe postoperative motor and language deficits, whereas others have no deficits. We tested the hypothesis that in some patients with lesions affecting the SMA, the contralateral SMA exhibits some of the activation normally associated with the ipsilateral SMA. Functional MR imaging studies in seven healthy volunteers and 19 patients with frontal lobe tumors or arteriovenous malformations were reviewed retrospectively. The hemisphere in which the SMA activation predominated was tabulated for right and left motor tasks. The relative hemispheric dominance in the SMA for the right and left motor tasks was compared in the healthy and patient groups and with the location of the lesion in the patient group. None of the control subjects performing a right hand motor task activated predominantly the right SMA. Fifty percent of the patients with lesions overlapping the left SMA performing the right motor task activated predominantly the right SMA. Fifty-seven percent of control subjects performing the left hand motor task activated the left SMA predominantly. One hundred percent of patients with lesions overlapping the right frontal SMA performing the left motor task activated the left SMA predominantly. Differences between patients and controls were statistically significant. A lesion that contacts or overlaps the SMA is associated with an increased functional MR imaging response within the contralateral SMA.
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
Sahyoun, Chérif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups’ response times (RT) on a pictorial reasoning task under three conditions: visuospatial, V, semantic, S, and V+S, a hybrid condition allowing language use to facilitate visuospatial transformations. Diffusion-weighted images were collected from HFA and CTRL participants, matched on age and IQ, and significance maps were computed for group differences in fractional anisotropy (FA) and in RT-FA association for each condition. Typically developing children showed increased FA within frontal white matter and the superior longitudinal fasciculus (SLF). HFA showed increased FA within peripheral white matter, including the ventral temporal lobe. Additionally, RT-FA relationships in the semantic condition (S) implicated white matter near the STG and in the SLF within the temporal and frontal lobes to a greater extent in CTRL. Performance in visuospatial reasoning (V, V+S), in comparison, was related to peripheral parietal and superior precentral white matter in HFA, but to the SLF, callosal, and frontal white matter in CTRL. Our results appear to support a preferential use of linguistically-mediated pathways in reasoning by typically-developing children, whereas autistic cognition may rely more on visuospatial processing networks. PMID:20542370
Visuomotor cerebellum in human and nonhuman primates.
Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I
2012-06-01
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Garavan, Hugh; Weierstall, Karen
2012-11-01
This article reviews the neurobiology of cognitive control and reward processes and addresses their role in the treatment of addiction. We propose that the neurobiological mechanisms involved in treatment may differ from those involved in the etiology of addiction and consequently are worthy of increased investigation. We review the literature on reward and control processes and evidence of differences in these systems in drug addicted individuals. We also review the relatively small literature on neurobiological predictors of abstinence. We conclude that prefrontal control systems may be central to a successful recovery from addiction. The frontal lobes have been shown to regulate striatal reward-related processes, to be among the regions that predict treatment outcome, and to show elevated functioning in those who have succeeded in maintaining abstinence. The evidence of the involvement of the frontal lobes in recovery is consistent with the hypothesis that recovery is a distinct process that is more than the undoing of those processes involved in becoming addicted and a return to the pre-addiction state of the individual. The extent to which these frontal systems are engaged by treatment interventions may contribute to their efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.
Anterior EEG asymmetries and opponent process theory.
Kline, John P; Blackhart, Ginette C; Williams, William C
2007-03-01
The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.
Nagothu, Rajani Santhakumari; Reddy, Yogananda Indla; Rajagopalan, Archana; Varma, Ravi
2015-07-01
Chronic hyperglycaemia in type 2 diabetes, effects the central nervous system by altering the concentrations of brain metabolites like N-acetyl aspartate (NAA) and myoinositol (mI), which are indicators of neuronal integrity and glial cell damage respectively. Dorsolateral frontal lobe is associated with aspects of cognition especially right frontal lobe is involved in episodic memory retrieval, ninety percent of the diabetic cases are type 2 in nature globally and yoga is very effective in stabilizing the brain metabolites by bringing the blood glucose levels to near or within the physiological range in type 2 diabetes. The aim of the study was to observe the effects of yogasana and pranayama on glycosilated haemoglobin (HbA1c) levels and right dorsolateral frontal cortical NAA and mI concentration in type 2 diabetic subjects. It's a case control study. Sixty eight type 2 diabetic subjects of both the sex, aged between 35-65 years are included in the study, subjects are divided in to test and control group 34 each. Test group subjects did the yogasana and pranayama for a period of 6 months, 6 days in a week, 45-60 minutes daily under the supervision of a qualified yoga teacher. Control group subjects are not on any specific exercise regimen. Both the group subjects are taking oral hypoglycaemic agents. HbA1c levels are measured using the Bio-Rad D-10™ haemoglobin A1c program and Magnetic Resonance Spectroscopy (MRS) is used in assessing the metabolite concentrations. Analysis of data was done by using unpaired t-test. P-value for HbA1c level is <0.001, which is highly significant statistically. P-value for NAA was < 0.02 and for myoinositol was < 0.01, which are statistically significant. HbA1c levels in control and test group subjects are 7.7 ± 1.84 and 6.02 ± 0.46 respectively. NAA concentrations in the right dorsolateral frontal lobe of control and test group are 1.44 ± 0.15 and 1.54 ± 0.19 respectively. The mI concentrations in the right dorsolateral frontal lobe of control and test group are 0.61 ± 0.22 and 0.47 ± 0.24 respectively. Yogasana and pranayama minimized the neuronal and glial cellular damage in test group, which is evident by minimal changes in right dorsolateral frontal lobe NAA and mI levels in type 2 diabetic subjects.
Jang, Sung Ho; Kwon, Hyeok Gyu
2014-01-24
A few studies have reported on the neural connectivity of the fornix in the human brain, however, little is known about the neural connectivity of the anterior body of the fornix. In this study, we used diffusion tensor imaging in investigation of the neural connectivity of the anterior body of the fornix in normal subjects. Forty healthy subjects were recruited for this study. A seed region of interest was placed on the anterior body of the fornix using the FMRIB Software Library. Connectivity was defined as the incidence of connection between the anterior body of the fornix and any neural structure of the brain at the threshold of 5, 25, and 50 streamlines. In all subjects, the anterior body of the fornix showed 100% connectivity to the anterior commissure and hypothalamus at thresholds of 5, 25, and 50. On the other hand, regarding the thresholds of 5, 25, and 50, the anterior body of the fornix showed connectivity to the septal forebrain region (53.8, 23.8, and 15.0%), frontal lobe via anterior commissure (41.3,12.5, and 10.0%), medial temporal lobe (85.0,66.3, and 62.5%), lateral temporal lobe (75.0, 56.3, and 35.0%), occipital lobe (21.3, 5.0, and 1.3%), frontal lobe via septum pellucidum (28.8, 13.8, and 8.8%), tegmentum of midbrain (7.5, 5.0, and 0%), tectum of midbrain (2.5,0, and 0%), and tegmentum of pons (5.0,0, and 0%). The anterior body of the fornix showed high connectivity with the anterior commissure and hypothalamus, and brain areas relevant to cholinergic nuclei (the septal forebrain region and brainstem) and memory function (the medial temporal lobe). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The extratemporal lobe epilepsies in the epilepsy monitoring unit
Dash, Deepa; Tripathi, Manjari
2014-01-01
Extratemporal lobe epilepsies (ETLE) are characterized by the epileptogenic foci outside the temporal lobe. They have a wide spectrum of semiological presentation depending upon the site of origin. They can arise from frontal, parietal, occipital lobes and from hypothalamic hamartoma. We discuss in this review the semiology of different types of ETLE encountered in the epilepsy monitoring unit. PMID:24791090
Sun, Ze-Lin; Chan, Aden Ka-Yin; Chen, Ling-Chao; Tang, Chao; Zhang, Zhen-Yu; Ding, Xiao-Jie; Wang, Yang; Sun, Chong-Ran; Ng, Ho-Keung; Yao, Yu; Zhou, Liang-Fu
2015-01-01
The promoter region of telomerase reverse transcriptase (TERTp) and isocitrate dehydrogenase (IDH) have been regarded as biomarkers with distinct clinical and phenotypic features. Investigated the possible correlations between tumor location and genetic alterations would enhance our understanding of gliomagenesis and heterogeneity of glioma. We examined mutations of TERTp and IDH by direct sequencing and fluorescence in-situ hybridization in a cohort of 225 grades II and III diffuse gliomas. Correlation analysis between molecular markers and tumor locations was performed by Chi-square tests/Fisher's exact test and multivariate logistic regression analysis. We found gliomas in frontal lobe showed higher frequency of TERTp mutation (P=0.0337) and simultaneously mutations of IDH and TERTp (IDH (mut)-TERTp(mut)) (P=0.0281) than frequency of biomarkers mutation of tumors in no-Frontal lobes, while lower frequency of TERTp mutation (P<0.0001) and simultaneously wild type of IDH and TERTp (IDH (wt)-TERTp(wt)) (P<0.0001) in midline than no-midline lobes. Logistic regression analysis indicated that locations of tumors associated with TERTp mutation (OR=0.540, 95% CI 0.324-0.900, P=0.018) and status of combinations of IDH and TERTp (IDH (mut)-TERTp (mut) vs. IDH (wt)-TERTp (wt) OR=0.162, 95% CI 0.075-0.350, P<0.001). In conclusion, grades II and III gliomas harboring TERTp mutation were located preferentially in the frontal lobe and rarely in midline. Association of IDH-TERTp status and tumor location suggests their potential values in molecular classification of grades II and III gliomas.
Analysis of anatomic variability in children with low mathematical skills
NASA Astrophysics Data System (ADS)
Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.
2008-03-01
Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.
Thalamofrontal neurodevelopment in new-onset pediatric idiopathic generalized epilepsy
Dabbs, K.; Tuchsherer, V.; Sheth, R.D.; Koehn, M.A.; Hermann, B.P.; Seidenberg, M.
2011-01-01
Background: Quantitative MRI techniques have demonstrated thalamocortical abnormalities in idiopathic generalized epilepsy (IGE). However, there are few studies examining IGE early in its course and the neurodevelopmental course of this region is not adequately defined. Objective: We examined the 2-year developmental course of the thalamus and frontal lobes in pediatric new-onset IGE (i.e., within 12 months of diagnosis). Methods: We performed whole-brain MRI in 22 patients with new-onset IGE and 36 age-matched healthy controls. MRI was repeated 24 months after baseline MRI. Quantitative volumetrics were used to examine thalamic and frontal lobe volumes. Results: The IGE group showed significant differences in thalamic volume within 1 year of seizure onset (baseline) and went on to show thalamic volume loss at a significantly faster rate than healthy control children over the 2-year interval. The control group also showed a significantly greater increase in frontal white matter expansion than the IGE group. In contrast, frontal lobe gray matter volume differences were moderate at baseline and persisted over time, indicating similar developmental trajectories with differences early in the disease process that are maintained. Conclusions: Brain tissue abnormalities in thalamic and frontal regions can be identified very early in the course of IGE and an abnormal trajectory of growth continues over a 2-year interval. PMID:21205692
Thalamofrontal neurodevelopment in new-onset pediatric idiopathic generalized epilepsy.
Pulsipher, D T; Dabbs, K; Tuchsherer, V; Sheth, R D; Koehn, M A; Hermann, B P; Seidenberg, M
2011-01-04
Quantitative MRI techniques have demonstrated thalamocortical abnormalities in idiopathic generalized epilepsy (IGE). However, there are few studies examining IGE early in its course and the neurodevelopmental course of this region is not adequately defined. We examined the 2-year developmental course of the thalamus and frontal lobes in pediatric new-onset IGE (i.e., within 12 months of diagnosis). We performed whole-brain MRI in 22 patients with new-onset IGE and 36 age-matched healthy controls. MRI was repeated 24 months after baseline MRI. Quantitative volumetrics were used to examine thalamic and frontal lobe volumes. The IGE group showed significant differences in thalamic volume within 1 year of seizure onset (baseline) and went on to show thalamic volume loss at a significantly faster rate than healthy control children over the 2-year interval. The control group also showed a significantly greater increase in frontal white matter expansion than the IGE group. In contrast, frontal lobe gray matter volume differences were moderate at baseline and persisted over time, indicating similar developmental trajectories with differences early in the disease process that are maintained. Brain tissue abnormalities in thalamic and frontal regions can be identified very early in the course of IGE and an abnormal trajectory of growth continues over a 2-year interval.
Endo, K; Suzuki, K; Yamadori, A; Kumabe, T; Seki, K; Fujii, T
2001-03-01
We report a right-handed woman, who developed a non-fluent aphasia after resection of astrocytoma (grade III) in the right medial frontal lobe. On admission to the rehabilitation department, neurological examination revealed mild left hemiparesis, hyperreflexia on the left side and grasp reflex on the left hand. Neuropsychologically she showed general inattention, non-fluent aphasia, acalculia, constructional disability, and mild buccofacial apraxia. No other apraxia, unilateral spatial neglect or extinction phenomena were observed. An MRI demonstrated resected areas in the right superior frontal gyrus, subcortical region in the right middle frontal gyrus, anterior part of the cingulate gyrus, a part of supplementary motor area. Surrounding area in the right frontal lobe showed diffuse signal change. She demonstrated non-fluent aprosodic speech with word finding difficulty. No phonemic paraphasia, or anarthria was observed. Auditory comprehension was fair with some difficulty in comprehending complex commands. Naming was good, but verbal fluency tests for a category or phonemic cuing was severely impaired. She could repeat words but not sentences. Reading comprehension was disturbed by semantic paralexia and writing words was poor for both Kana (syllabogram) and Kanji(logogram) characters. A significant feature of her speech was mitigated echolalia. In both free conversation and examination setting, she often repeated phrases spoken to her which she used to start her speech. In addition, she repeated words spoken to others which were totally irrelevant to her conversation. She was aware of her echoing, which always embarrassed her. She described her echolalic tendency as a great nuisance. However, once echoing being forbidden, she could not initiate her speech and made incorrect responses after long delay. Thus, her compulsive echolalia helped to start her speech. Only four patients with crossed aphasia demonstrated echolalia in the literature. They showed severe aphasia with markedly decreased speech and severe comprehension deficit. A patient with a similar lesion in the right medial frontal lobe had aspontaneity in general and language function per se could not be examined properly. Echolalia related to the medial frontal lesion in the language dominant hemisphere was described as a compulsive speech response, because some other 'echoing' phenomena or compulsive behavior were also observed in these patients. On the other hand, some patients with a large lesion in the right hemisphere tended to respond to stimuli directed to other patients, so called 'response-to-next-patient-stimulation'. This behavior was explained by disinhibited shift of attention or perseveration of the set. Both compulsive speech responses and 'response-to-next-patient-stimulation' like phenomena may have contributed to the echolalia phenomena of the present case.
Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T
2014-05-01
Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.
ERIC Educational Resources Information Center
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
Bostock, Emmanuelle C S; Kirkby, Kenneth C; Garry, Michael I; Taylor, Bruce V M
2017-01-01
Bipolar disorder (BD) and temporal lobe epilepsy (TLE) overlap in domains including epidemiology, treatment response, shared neurotransmitter involvement and temporal lobe pathology. Comparison of cognitive function in both disorders may indicate temporal lobe mediated processes relevant to BD. This systematic review examines neuropsychological test profiles in euthymic bipolar disorder type I (BD-I) and pre-surgical TLE and compares experimental designs used. A search of PubMed, PsychINFO, and Scopus using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted. Inclusion criteria were comparison group or pre- to post-surgical patients; reported neuropsychological tests; participants aged 18-60 years. Fifty six studies met criteria: 27 BD-I; 29 TLE. Deficits in BD-I compared to healthy controls (HC) were in executive function, attention span and verbal memory. Deficits in TLE compared to HC were in executive function and memory. In the pre- to post-surgical comparisons, verbal memory in left temporal lobe (LTL) and, less consistently, visuospatial memory in right temporal lobe (RTL) epilepsy declined following surgery. BD-I studies used comprehensive test batteries in well-defined euthymic patients compared to matched HC groups. TLE studies used convenience samples pre- to post-surgery, comparing LTL and RTL subgroups, few included comparisons to HC (5 studies). TLE studies typically examined a narrow range of known temporal lobe-mediated neuropsychological functions, particularly verbal and visuospatial memory. Both disorders exhibit deficits in executive function and verbal memory suggestive of both frontal and temporal lobe involvement. However, deficits in TLE are measured pre- to post-surgery and not controlled at baseline pre-surgery. Further research involving a head-to-head comparison of the two disorders on a broad range of neuropsychological tests is needed to clarify the nature and extent of cognitive deficits and potential overlaps.
Zhang, Fawen; Deshpande, Aniruddha; Benson, Chelsea; Smith, Mathew; Eliassen, James; Fu, Qian-Jie
2011-01-01
The N1 peak in the late auditory evoked potential (LAEP) decreases in amplitude following stimulus repetition, displaying an adaptive pattern. The present study explored the functional neural substrates that may underlie the N1 adaptive pattern using standardized Low Resolution Electromagnetic Tomography (sLORETA). Fourteen young normal hearing (NH) listeners participated in the study. Tone bursts (80 dB SPL) were binaurally presented via insert earphones in trains of ten; the inter-stimulus interval was 0.7 s and the inter-train interval was 15 s. Current source density analysis was performed for the N1 evoked by the 1st, 2nd and 10th stimuli (S1, S2 and S10) at three different timeframes that corresponded to the latency ranges of the N1 waveform subcomponents (70–100, 100–130 and 130–160 ms). The data showed that S1 activated broad regions in different cortical lobes and the activation was much smaller for S2 and S10. Response differences in the LAEP waveform and sLORETA were observed between S1 and S2, but not between the S2 and S10. The sLORETA comparison map between S1 and S2 response showed the activation was located in the parietal lobe for the 70–100 ms timeframe, the frontal and limbic lobes for the 100–130 ms timeframe, and the frontal lobe for the 130–160 ms timeframe. These sLORETA comparison results suggest a parieto-frontal network that might help to sensitize the brain to novel stimuli by filtering out repetitive and irrelevant stimuli. This study demonstrates that sLORETA may be useful for identifying generators of scalp-recorded event related potentials and for examining the physiological features of these generators. This technique could be especially useful for cortical source localization in individuals who cannot be examined with functional magnetic resonance imaging or magnetoencephalography (e.g., cochlear implant users). PMID:21658681
Zhang, Fawen; Deshpande, Aniruddha; Benson, Chelsea; Smith, Mathew; Eliassen, James; Fu, Qian-Jie
2011-07-11
The N1 peak in the late auditory evoked potential (LAEP) decreases in amplitude following stimulus repetition, displaying an adaptive pattern. The present study explored the functional neural substrates that may underlie the N1 adaptive pattern using standardized Low Resolution Electromagnetic Tomography (sLORETA). Fourteen young normal hearing (NH) listeners participated in the study. Tone bursts (80 dB SPL) were binaurally presented via insert earphones in trains of 10; the inter-stimulus interval was 0.7s and the inter-train interval was 15s. Current source density analysis was performed for the N1 evoked by the 1st, 2nd and 10th stimuli (S(1), S(2) and S(10)) at 3 different timeframes that corresponded to the latency ranges of the N1 waveform subcomponents (70-100, 100-130 and 130-160 ms). The data showed that S(1) activated broad regions in different cortical lobes and the activation was much smaller for S(2) and S(10). Response differences in the LAEP waveform and sLORETA were observed between S(1) and S(2), but not between the S(2) and S(10). The sLORETA comparison map between S(1) and S(2) responses showed that the activation was located in the parietal lobe for the 70-100 ms timeframe, the frontal and limbic lobes for the 100-130 ms timeframe, and the frontal lobe for the 130-160 ms timeframe. These sLORETA comparison results suggest a parieto-frontal network that might help to sensitize the brain to novel stimuli by filtering out repetitive and irrelevant stimuli. This study demonstrates that sLORETA may be useful for identifying generators of scalp-recorded event related potentials and for examining the physiological features of these generators. This technique could be especially useful for cortical source localization in individuals who cannot be examined with functional magnetic resonance imaging or magnetoencephalography (e.g., cochlear implant users). Copyright © 2011 Elsevier B.V. All rights reserved.
Genetics Home Reference: GRN-related frontotemporal dementia
... temporal lobes . The frontal lobes are involved in reasoning, planning, judgment, and problem-solving, while the temporal ... MND. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008 Mar; ...
Cortical thickness and folding deficits in conduct-disordered adolescents
Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.
2012-01-01
Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639
Three- and four-dimensional mapping of speech and language in patients with epilepsy.
Nakai, Yasuo; Jeong, Jeong-Won; Brown, Erik C; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi
2017-05-01
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Three- and four-dimensional mapping of speech and language in patients with epilepsy
Nakai, Yasuo; Jeong, Jeong-won; Brown, Erik C.; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep
2017-01-01
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70–110 Hz) and beta (15–30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. PMID:28334963
Freedman, Morris; Binns, Malcolm; Gao, Fuqiang; Holmes, Melissa; Roseborough, Austyn; Strother, Stephen; Vallesi, Antonino; Jeffers, Stanley; Alain, Claude; Whitehouse, Peter; Ryan, Jennifer D; Chen, Robert; Cusimano, Michael D; Black, Sandra E
Despite a large literature on psi, which encompasses a range of experiences including putative telepathy (mind-mind connections), clairvoyance (perceiving distant objects or events), precognition (perceiving future events), and mind-matter interactions, there has been insufficient focus on the brain in relation to this controversial phenomenon. In contrast, our research is based on a novel neurobiological model suggesting that frontal brain systems act as a filter to inhibit psi and that the inhibitory mechanisms may relate to self-awareness. To identify frontal brain regions that may inhibit psi. We used mind-matter interactions to study psi in two participants with frontal lobe damage. The experimental task was to influence numerical output of a Random Event Generator translated into movement of an arrow on a computer screen to the right or left. Brain MRI was analyzed to determine frontal volume loss. The primary area of lesion overlap between the participants was in the left medial middle frontal region, an area related to self-awareness, and involved Brodmann areas 9, 10, and 32. Both participants showed a significant effect in moving the arrow to the right, i.e., contralateral to the side of primary lesion overlap. Effect sizes were much larger compared to normal participants. The medial frontal lobes may act as a biological filter to inhibit psi through mechanisms related to self-awareness. Neurobiological studies with a focus on the brain may open new avenues of research on psi and may significantly advance the state of this poorly understood field. Copyright © 2018 Elsevier Inc. All rights reserved.
Limotai, Chusak; McLachlan, Richard S; Hayman-Abello, Susan; Hayman-Abello, Brent; Brown, Suzan; Bihari, Frank; Mirsattari, Seyed M
2018-06-19
This study was aimed to longitudinally assess memory function and whole-brain memory circuit reorganization in patients with temporal lobe epilepsy (TLE) by comparing activation potentials before versus after anterior temporal lobe (ATL) resection. Nineteen patients with medically-intractable TLE (10 left TLE, 9 right TLE) and 15 healthy controls were enrolled. Group analyses were conducted pre- and post-ATL of a novelty complex scene-encoding paradigm comparing areas of blood oxygen-level-dependent (BOLD) signal activations on functional magnetic resonance imaging (fMRI). None of the pre-operative patient characteristics we studied predicted the extent of pre- to post-operative memory loss. On fMRI, extra-temporal activations were detected pre-operatively in both LTLE and RTLE, particularly in the frontal lobe. Greater activations also were noted in the contralateral hippocampus and parahippocampus in both groups. Performing within-subject comparisons, post-op relative to pre-op, pronounced ipsilateral activations were identified in the left parahippocampal gyrus in LTLE, versus the right middle temporal gyrus in RTLE patients. Memory function was impaired pre-operatively but declined after ATL resection in both RTLE and LTLE patients. Post-operative fMRI results indicate possible functional adaptations to ATL loss, primarily occurring within the left parahippocampal gyrus versus right middle temporal gyrus in LTLE versus RTLE patients, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dorsolateral Frontal Lobe Epilepsy
Lee, Ricky W.; Worrell, Greg A.
2012-01-01
Dorsolateral frontal lobe seizures often present as a diagnostic challenge. The diverse semiologies may not produce lateralizing or localizing signs, and can appear bizarre and suggest psychogenic events. Unfortunately, scalp EEG and MRI are often unsatisfactory. It is not uncommon that these traditional diagnostic studies are either unhelpful or even misleading. In some cases SPECT and PET imaging can be an effective tool to identify the origin of seizures. However, these techniques and other emerging techniques all have limitations, and new approaches are needed to improve source localization. PMID:23027094
Frontal lobe activation during object permanence: data from near-infrared spectroscopy.
Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A
2002-08-01
The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.
Longitudinal progression of frontal and temporal lobe changes in schizophrenia.
Cobia, Derin J; Smith, Matthew J; Wang, Lei; Csernansky, John G
2012-08-01
Cortical abnormalities are considered a neurobiological characteristic of schizophrenia. However, the pattern of such deficits as they progress over the illness remains poorly understood. The goal of this project was to assess the progression of cortical thinning in frontal and temporal cortical regions in schizophrenia, and determine whether relationships exist between them and neuropsychological and clinical symptom profiles. As part of a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy participants (n=20) group-matched for age, gender, and recent-alcohol use, were selected. Using MRI, estimates of gray matter thickness were derived from primary anatomical gyri of the frontal and temporal lobes using surface-based algorithms. These values were entered into repeated-measures analysis of variance models to determine group status and time effects. Change values in cortical regions were correlated with changes in neuropsychological functioning and clinical symptomatology. Results revealed exaggerated cortical thinning of the middle frontal, superior temporal, and middle temporal gyri in schizophrenia participants. These thickness changes strongly influenced volumetric reductions, but were not related to shrinking surface area. Neuropsychological and clinical symptom profiles were stable in the schizophrenia participants despite these neuroanatomic changes. Overall it appears that ongoing abnormalities in the cerebral cortex continue after initial onset of schizophrenia, particularly the lateral aspects of frontal and temporal regions, and do not relate to neuropsychological or clinical measures over time. Maintenance of neuropsychological performance and clinical stability in the face of changing neuroanatomical structure suggests the involvement of alternative compensatory mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.
Roberts, R.E.; Anderson, E. J.; Husain, M.
2011-01-01
Although many functional imaging studies have reported frontal activity associated with ‘cognitive control’ tasks, little is understood about factors underlying individual differences in performance. Here we compared the behaviour and brain structure of healthy controls with fighter pilots, an expert group trained to make precision choices at speed in the presence of conflicting cues. Two different behavioural paradigms – Eriksen Flanker and Change of plan tasks – were used to assess the influence of distractors and the ability to update ongoing action plans. Fighter pilots demonstrated superior cognitive control as indexed by accuracy and post-conflict adaptation on the flanker task, but also showed increased sensitivity to irrelevant, distracting choices. By contrast, when pilots were examined on their ability to inhibit a current action plan in favour of an alternative response, their performance was no better than the control group. Diffusion weighted imaging revealed differences in white matter radial diffusivity between pilots and controls not only in the right dorsomedial frontal region but also in the right parietal lobe. Moreover, analysis of individual differences in reaction time costs for conflict trials on the flanker task demonstrated significant correlations with radial diffusivity at these locations, but in different directions. Post-conflict adaptation effects, however, were confined to the dorsomedial frontal locus. The findings demonstrate that in humans expert cognitive control may surprisingly be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the frontal and parietal lobe. PMID:21159976
Decreased frontal white-matter volume in chronic substance abuse.
Schlaepfer, Thomas E; Lancaster, Eric; Heidbreder, Rebecca; Strain, Eric C; Kosel, Markus; Fisch, Hans-Ulrich; Pearlson, Godfrey D
2006-04-01
There is quite a body of work assessing functional brain changes in chronic substance abuse, much less is known about structural brain abnormalities in this patient population. In this study we used magnetic resonance imaging (MRI) to determine if structural brain differences exist in patients abusing illicit drugs compared to healthy controls. Sixteen substance abusers who abused heroin, cocaine and cannabis but not alcohol and 16 age-, sex- and race-matched controls were imaged on a MRI scanner. Contiguous, 5-mm-thick axial slices were acquired with simultaneous T2 and proton density sequences. Volumes were estimated for total grey and white matter, frontal grey and white matter, ventricles, and CSF using two different methods: a conventional segmentation and a stereological method based on the Cavalieri principle. Overall brain volume differences were corrected for by expressing the volumes of interest as a percentage of total brain volume. Volume measures obtained with the two methods were highly correlated (r=0.65, p<0.001). Substance abusers had significantly less frontal white-matter volume percentage than controls. There were no significant differences in any of the other brain volumes measured. This difference in frontal lobe white matter might be explained by a direct neurotoxic effect of drug use on white matter, a pre-existing abnormality in the development of the frontal lobe or a combination of both effects. This last explanation might be compelling based on the fact that newer concepts on shared aspects of some neuropsychiatric disorders focus on the promotion and inhibition of the process of myelination throughout brain development and subsequent degeneration.
Neuropsychological Assessment of Adult Patients with Shunted Hydrocephalus
Bakar, Emel Erdogan
2010-01-01
Objective This study is planned to determine the neurocognitive difficulties of hydrocephalic adults. Methods The research group contained healthy adults (control group, n : 15), and hydrocephalic adults (n : 15). Hydrocephalic group consisted of patients with idiopathic aquaduct stenosis and post-meningitis hydrocephalus. All patients were followed with shunted hydrocephalus and not gone to shunt revision during last two years. They were chosen from either asymptomatic or had only minor symptoms without motor and sensorineural deficit. A neuropsychological test battery (Raven Standart Progressive Matrices, Bender-Gestalt Test, Cancellation Test, Clock Drawing Test, Facial Recognition Test, Line Orientation Test, Serial Digit Learning Test, Stroop Color Word Interference Test-TBAG Form, Verbal Fluency Test, Verbal Fluency Test, Visual-Aural Digit Span Test-B) was applied to all groups. Results Neuropsychological assessment of hydrocephalic patients demonstrated that they had poor performance on visual, semantic and working memory, visuoconstructive and frontal functions, reading, attention, motor coordination and executive function of parietal lobe which related with complex and perseverative behaviour. Eventually, these patients had significant impairment on the neurocognitive functions of their frontal, parietal and temporal lobes. On the other hand, the statistical analyses performed on demographic data showed that the aetiology of the hydrocephalus, age, sex and localization of the shunt (frontal or posterior parietal) did not affect the test results. Conclusion This prospective study showed that adult patients with hydrocephalus have serious neuropsychological problems which might be directly caused by the hydrocephalus; and these problems may cause serious adaptive difficulties in their social, cultural, behavioral and academic life. PMID:20379471
Lin, Jo-Fu Lotus; Imada, Toshiaki; Kuhl, Patricia K; Lin, Fa-Hsuan
2018-03-26
Pitch plays a crucial role in music and speech perception. Pitch perception is characterized by multiple perceptual dimensions, such as pitch height and chroma. Information provided by auditory signals that are related to these perceptual dimensions can be either congruent or incongruent. To create conflicting cues for pitch perception, we modified Shepard tones by varying the pitch height and pitch chroma dimensions in either the same or opposite directions. Our behavioral data showed that most listeners judged pitch changes based on pitch chroma, instead of pitch height, when incongruent information was provided. The reliance on pitch chroma resulted in a stable percept of upward or downward pitch shift, rather than alternating between two different percepts. Across the incongruent and congruent conditions, consistent activation was found in the bilateral superior temporal and inferior frontal areas. In addition, significantly stronger activation was observed in the inferior frontal areas during the incongruent compared to congruent conditions. Enhanced functional connectivity was found between the left temporal and bilateral frontal areas in the incongruent than congruent conditions. Increased intra-hemispheric and inter-hemispheric connectivity was also observed in the frontal areas. Our results suggest the involvement of the frontal lobe in top-down and bottom-up processes to generate a stable percept of pitch change with conflicting perceptual cues.
Watanabe, Masashi; Matsumoto, Yushi; Okamoto, Kensho; Okuda, Bungo; Mizuta, Ikuko; Mizuno, Toshiki
2017-12-27
A 49-year-old man had developed gradually personality change, gait disturbance, and hearing loss for five years. On admission, he presented with frontal release signs, stuttering, vertical gaze palsy, sensorineural deafness, muscle rigidity, ataxia, and sensory disturbance with areflexia in the lower extremities. Brain MRI demonstrated atrophy in the cerebellum and midbrain tegmentum as well as cerebral atrophy, predominantly in the frontal lobe. He was tentatively diagnosed as progressive supranuclear palsy on the basis of clinical features and imagings. On nerve conduction study, no sensory nerve action potentials were elicited in the upper and lower extremities. Details of family history revealed a hereditary sensory neuropathy with autosomal dominant inheritance in his relatives. Because genetic analysis showed a rare missense mutation (c.1483T>C, p.Y495H) in DNA methyltransferase 1 gene, we diagnosed him as having hereditary sensory and autonomic neuropathy type 1E (HSAN1E). In addition, p.M232R mutation in prion protein gene was detected. It should be kept in mind that there are some patients with HSAN1E presenting with frontal lobe dysfunction as an initial symptom and with clinical features mimicking progressive supranuclear palsy.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
Sideman, Noah; Chaitanya, Ganne; He, Xiaosong; Doucet, Gaelle; Kim, Na Young; Sperling, Michael R; Sharan, Ashwini D; Tracy, Joseph I
2018-04-01
In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several different phenotypes, varying according to side of seizure onset and the specific mesial structures involved. There is good correspondence between task LI activation and FC patterns in the setting of LTLE, suggesting that reliable visual episodic memory reorganization may require both a shift in nodal activation and a change in nodal connectivity with mesial temporal structures involved in memory. Copyright © 2018. Published by Elsevier Inc.
Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi
2014-10-01
The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.
Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni
2013-07-01
This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.
Decreased frontal lobe phosphocreatine levels in methamphetamine users
Sung, Young-Hoon; Yurgelun-Todd, Deborah A.; Shi, Xian-Feng; Kondo, Douglas G.; Lundberg, Kelly J.; McGlade, Erin C.; Hellem, Tracy L.; Huber, Rebekah S.; Fiedler, Kristen K.; Harrell, Renee E.; Nickerson, Bethany R.; Kim, Seong-Eun; Jeong, Eun-Kee; Renshaw, Perry F.
2012-01-01
BACKGROUND Mitochondria-related mechanisms have been suggested to mediate methamphetamine (METH) toxicity. However, changes in brain energetics associated with highenergy phosphate metabolism have not been investigated in METH users. Phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) was used to evaluate changes in mitochondrial high energy phosphates, including phosphocreatine (PCr) and β-nucleoside triphosphate (β-NTP, primarily ATP in brain) levels. We hypothesized that METH users would have decreased high-energy PCr levels in the frontal gray matter. METHODS Study participants consisted of 51 METH (age=32.8±6.7) and 23 healthy comparison (age=31.1±7.5) subjects. High-energy phosphate metabolite levels were compared between the groups and potential gender differences were explored. RESULTS METH users had lower ratios of PCr to total pool of exchangeable phosphate (PCr/TPP) in the frontal lobe as compared to the healthy subjects (p=0.001). The lower PCr levels in METH subjects were significantly associated with lifetime amount of METH use (p=0.003). A sub-analysis for gender differences revealed that female METH users, who had lower daily amounts (1.1±1.0 gram) of METH use than males (1.4±1.7 gram), had significantly lower PCr/TPP ratios than male METH users, controlling for the amount of METH use (p=0.02). CONCLUSIONS The present findings suggest that METH compromises frontal lobe high-energy phosphate metabolism in a dose-responsive manner. Our findings also suggest that the abnormality in frontal lobe high-energy phosphate metabolism might be more prominent in female than in male METH users. This is significant as decreased PCr levels have been associated with depressive symptoms, and poor responses to antidepressant treatment have been reported in those with decreased PCr levels. PMID:23084413
Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.
Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K
2016-03-01
Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Hopkins, William D; Li, Xiang; Crow, Tim; Roberts, Neil
2017-01-01
What changes in cortical organisation characterise global and localised variation between humans and chimpanzees remains a topic of considerable interest in evolutionary neuroscience. Here, we examined regional variation in cortical thickness, gyrification and white matter in samples of human and chimpanzee brains. Both species were MRI scanned on the same platform using identical procedures. The images were processed and segmented by FSL and FreeSurfer and the relative changes in cortical thickness, gyrification and white matter across the entire cortex were compared between species. In general, relative to chimpanzees, humans had significantly greater gyrification and significantly thinner cortex, particularly in the frontal lobe. Human brains also had disproportionately higher white matter volumes in the frontal lobe, particularly in prefrontal regions. Collectively, the findings suggest that after the split from the common ancestor, white matter expansion and subsequently increasing gyrification occurred in the frontal lobe possibly due to increased selection for human cognitive and motor specialisations.
ERIC Educational Resources Information Center
January, David; Trueswell, John C.; Thompson-Schill, Sharon L.
2009-01-01
For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition…
ERIC Educational Resources Information Center
Max, Jeffrey E.; Manes, Facundo F.; Robertson, Brigitte A.M.; Mathews, Katherine; Fox, Peter T.; Lancaster, Jack
2005-01-01
Objective: To investigate the association between focal stroke lesions of Posner's executive attention network and a specific region of interest in the frontal lobes (orbital frontal and mesial frontal) and either attention-deficit/hyperactivity disorder (ADHD) or traits of the disorder (ADHD symptomatology). Method: Twenty-nine children with…
Increasing propensity to mind-wander with transcranial direct current stimulation
Axelrod, Vadim; Rees, Geraint; Lavidor, Michal; Bar, Moshe
2015-01-01
Humans mind-wander quite intensely. Mind wandering is markedly different from other cognitive behaviors because it is spontaneous, self-generated, and inwardly directed (inner thoughts). However, can such an internal and intimate mental function also be modulated externally by means of brain stimulation? Addressing this question could also help identify the neural correlates of mind wandering in a causal manner, in contrast to the correlational methods used previously (primarily functional MRI). In our study, participants performed a monotonous task while we periodically sampled their thoughts to assess mind wandering. Concurrently, we applied transcranial direct current stimulation (tDCS). We found that stimulation of the frontal lobes [anode electrode at the left dorsolateral prefrontal cortex (DLPFC), cathode electrode at the right supraorbital area], but not of the occipital cortex or sham stimulation, increased the propensity to mind-wander. These results demonstrate for the first time, to our knowledge, that mind wandering can be enhanced externally using brain stimulation, and that the frontal lobes play a causal role in mind-wandering behavior. These results also suggest that the executive control network associated with the DLPFC might be an integral part of mind-wandering neural machinery. PMID:25691738
Liu, Tao; Li, Jianjun; Huang, Shixiong; Li, Changqinq; Zhao, Zhongyan; Wen, Guoqiang; Chen, Feng
2017-10-13
We used resting-state functional magnetic resonance imaging to investigate the global spontaneous neural activity involved in pathological laughing and crying after stroke. Twelve pathological laughing and crying patients with isolated pontine infarction were included, along with 12 age- and gender-matched acute isolated pontine infarction patients without pathological laughing and crying, and 12 age- and gender-matched healthy controls. We examined both the amplitude of low-frequency fluctuation and the regional homogeneity in order to comprehensively evaluate the intrinsic activity in patients with post-stroke pathological laughing and crying. In the post-stroke pathological laughing and crying group, changes in these measures were observed mainly in components of the default mode network (medial prefrontal cortex/anterior cingulate cortex, middle temporal gyrus, inferior temporal gyrus, superior frontal gyrus, middle frontal gyrus and inferior parietal lobule), sensorimotor network (supplementary motor area, precentral gyrus and paracentral lobule), affective network (medial prefrontal cortex/anterior cingulate cortex, parahippocampal gyrus, middle temporal gyrus and inferior temporal gyrus) and cerebellar lobes (cerebellum posterior lobe). We therefore speculate that when disinhibition of the volitional system is lost, increased activation of the emotional system causes pathological laughing and crying.
Increasing propensity to mind-wander with transcranial direct current stimulation.
Axelrod, Vadim; Rees, Geraint; Lavidor, Michal; Bar, Moshe
2015-03-17
Humans mind-wander quite intensely. Mind wandering is markedly different from other cognitive behaviors because it is spontaneous, self-generated, and inwardly directed (inner thoughts). However, can such an internal and intimate mental function also be modulated externally by means of brain stimulation? Addressing this question could also help identify the neural correlates of mind wandering in a causal manner, in contrast to the correlational methods used previously (primarily functional MRI). In our study, participants performed a monotonous task while we periodically sampled their thoughts to assess mind wandering. Concurrently, we applied transcranial direct current stimulation (tDCS). We found that stimulation of the frontal lobes [anode electrode at the left dorsolateral prefrontal cortex (DLPFC), cathode electrode at the right supraorbital area], but not of the occipital cortex or sham stimulation, increased the propensity to mind-wander. These results demonstrate for the first time, to our knowledge, that mind wandering can be enhanced externally using brain stimulation, and that the frontal lobes play a causal role in mind-wandering behavior. These results also suggest that the executive control network associated with the DLPFC might be an integral part of mind-wandering neural machinery.
Kim, Sungkean; Kim, Ji Sun; Jin, Min Jin; Im, Chang-Hwan; Lee, Seung-Hwan
2018-01-01
Individuals who experience childhood trauma are vulnerable to various psychological and behavioral problems throughout their lifetime. This study aimed to investigate whether individuals with childhood trauma show altered frontal lobe activity during response inhibition tasks. In total, 157 healthy individuals were recruited and instructed to perform a Go/Nogo task during electroencephalography recording. Source activities of N2 and P3 of Nogo event-related potentials (ERP) were analyzed. The Childhood Trauma Questionnaire (CTQ) and Barratt Impulsivity Scale (BIS) were applied. Individuals were divided into three groups based on their total CTQ score: low CTQ, middle CTQ, and high CTQ groups. The high CTQ group exhibited significantly higher BIS scores than the low CTQ group. P3 amplitudes of the differences between Nogo and Go ERP waves exhibited higher mean values in the low CTQ than the high CTQ group, with trending effects. In Nogo-P3, the source activities of the right anterior cingulate cortex, bilateral medial frontal cortex (MFC), bilateral superior frontal gyrus (SFG), and right precentral gyrus were significantly lower in the high CTQ than the low CTQ group. Motor impulsivity showed a significant negative correlation with activities of the bilateral MFC and SFG in Nogo-P3 conditions. Our study revealed that individuals with childhood trauma have inhibitory failure and frontal lobe dysfunction in regions related to Nogo-P3.
Ogama, Noriko; Yoshida, Masaki; Nakai, Toshiharu; Niida, Shumpei; Toba, Kenji; Sakurai, Takashi
2016-02-01
Lower urinary tract symptoms often limit activities of daily life and impair quality of life in the elderly. The purpose of the present study was to determine whether regional white matter hyperintensity (WMH) can predict lower urinary tract symptoms in elderly with amnestic mild cognitive impairment or Alzheimer's disease. The participants were 461 patients aged 65-85 years diagnosed with amnestic mild cognitive impairment or Alzheimer's disease. Patients and their caregivers were asked about symptoms of lower urinary tract symptoms (urinary difficulty, frequency and incontinence). Cognition, behavior and psychological symptoms of dementia and medication were evaluated. WMH and brain atrophy were analyzed using an automatic segmentation program. Regional WMH was evaluated in the frontal, parietal, temporal and occipital lobes. Patients with urinary incontinence showed significantly greater volume of WMH. WMH increased with age, especially in the frontal lobe. WMH in the frontal lobe was closely associated with urinary incontinence after adjustment for brain atrophy and classical confounding factors. Frontal WMH was a predictive factor for urinary incontinence in older adults with amnestic mild cognitive impairment or Alzheimer's disease. Urinary incontinence in demented older adults is not an incidental event, and careful insight into regional WMH on brain magnetic resonance imaging might greatly help in diagnosing individuals with a higher risk of urinary incontinence. © 2015 Japan Geriatrics Society.
Wandschneider, Britta; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Duncan, John S.
2014-01-01
Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18–65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22–54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23–46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy. PMID:25001494
Boeckle, Markus; Liegl, Gregor; Jank, Robert; Pieh, Christoph
2016-06-10
Conversion Disorders (CD) are prevalent functional disorders. Although the pathogenesis is still not completely understood, an interaction of genetic, neurobiological, and psychosocial factors is quite likely. The aim of this study is to provide a systematic overview on imaging studies on CDs and investigate neuronal areas involved in Motor Conversion Disorders (MCD). A systematic literature search was conducted on CD. Subsequently a meta-analysis of functional neuroimaging studies on MCD was implemented using an Activation Likelihood Estimation (ALE). We calculated differences between patients and healthy controls as well as between affected versus unaffected sides in addition to an overall analysis in order to identify neuronal areas related to MCD. Patients with MCD differ from healthy controls in the amygdala, superior temporal lobe, retrosplenial area, primary motor cortex, insula, red nucleus, thalamus, anterior as well as dorsolateral prefrontal and frontal cortex. When comparing affected versus unaffected sides, temporal cortex, dorsal anterior cingulate cortex, supramarginal gyrus, dorsal temporal lobe, anterior insula, primary somatosensory cortex, superior frontal gyrus and anterior prefrontal as well as frontal cortex show significant differences. Neuronal areas seem to be involved in the pathogenesis, maintenance or as a result of MCD. Areas that are important for motor-planning, motor-selection or autonomic response seem to be especially relevant. Our results support the emotional unawareness theory but also underline the need of more support by conduction imaging studies on both CD and MCD.
Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.
Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng
2016-01-01
Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.
Successful decoding of famous faces in the fusiform face area.
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.
Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia
Windemuth, Andreas; Calhoun, Vince D.; Pearlson, Godfrey D.; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto
2009-01-01
The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes. PMID:18330705
Bilateral temporal lobe volume reduction parallels cognitive impairment in progressive aphasia.
Andersen, C; Dahl, C; Almkvist, O; Ostberg, P; Julin, P; Wahlund, L O
1997-10-01
Patients with isolated aphasia in the absence of other cognitive abnormalities have been the focus of several studies during the past decade. It has been called primary progressive aphasia (PPA), and the typical features of this syndrome are marked atrophy of the left temporal lobe according to the radiological examination and a language disorder as the initial symptom. In previous studies of PPA, the selection of the patients was based mainly on linguistic symptoms. Now, when computed tomography or magnetic resonance imaging scans are part of the routine investigation of cognitive impairment and suspected dementia, the patients with lobar atrophy will be found at an earlier stage. In the present study, we used a new approach and defined the study group by selecting patients with obvious left temporal lobe atrophy, assessed by MRI, and we referred to them as patients with temporal lobe atrophy (TLA). To identify the features that distinguish TLA from other primary neurodegenerative disorders. Six patients with TLA were compared with patients with Alzheimer disease (AD), patients with frontal lobe dementia (FLD), and healthy control subjects. The investigations included magnetic resonance imaging volumetry, single photon emission computed tomography, and neuropsychologic and linguistic evaluations. In the TLA group, the mean volume of the left temporal lobe was 35% smaller than the right, while in the AD and FLD groups, the atrophy was symmetrical and bilateral. In the TLA group, the absolute volumes of the temporal lobes were significantly smaller on the left side compared with the AD and FLD groups, whereas there was no difference on the right side. The cerebral blood flow pattern in TLA was asymmetric and differed from that in the other study groups. All patients with TLA had a history of progressive Wernicke-type aphasia, ranging from 2 to 6 years. They showed primary verbal memory impairment but had preserved visuospatial functions. The clinical condition of all patients with TLA deteriorated during the study period; severe aphasia developed, and the patients exhibited signs of frontal lobe dysfunction. Serial volumetric measurements in 4 of 6 patients showed an annual 8% to 9% decrease of both left and right temporal lobes. The initial marked asymmetry in cognitive function found in patients with TLA contrasts with the general decline found in patients with AD. The bilateral degenerative process evident in patients with TLA paralleled the clinical deterioration, indicating TLA to be a non-AD lobar atrophy that develops into generalized cognitive dysfunction and dementia.
Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G M; Murphy, Kieran C
2009-03-03
We investigated structural brain morphology of intellectually disabled children with Williams (WS) syndrome and its relationship to the behavioural phenotype. We compared the neuroanatomy of 15 children (mean age:13+/-2) with WS and 15 age/gender-matched healthy children using a manual region-of-interest analysis to measure bulk (white+grey) tissue volumes and unbiased fully-automated voxel-based morphometry to assess differences in grey/white matter throughout the brain. Ratings of abnormal behaviours were correlated with brain structure. Compared to controls, the brains of children with WS had a decreased volume of the right parieto-occipital regions and basal ganglia. We identified reductions of grey matter of the parieto-occipital regions, left putamen/globus pallidus and thalamus; and in white matter of the basal ganglia and right posterior cingulate gyrus. In contrast, significant increases of grey matter were identified in the frontal lobes, anterior cingulate gyrus, left temporal lobe, and of white matter bilaterally in the anterior cingulate. Inattention in WS was correlated with volumetric differences in the frontal lobes, caudate nucleus and cerebellum, and hyperactivity was related to differences in the left temporal and parietal lobes and cerebellum. Finally, ratings of peer problems were related to differences in the temporal lobes, right basal ganglia and frontal lobe. In one of the first studies of brain structure in intellectually disabled children with WS using voxel-based morphometry, our findings suggest that this group has specific differences in grey/white matter morphology. In addition, it was found that structural differences were correlated to ratings of inattention, hyperactivity and peer problems in children with WS.
Gender differences in brain development in Chinese children and adolescents: a structural MRI study
NASA Astrophysics Data System (ADS)
Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Yao, Li
2008-03-01
Using optimized voxel-based morphometry (VBM), this study systematically investigated gender differences in brain development through magnetic resonance imaging (MRI) data in 158 Chinese normal children and adolescents aged 7.26 to 22.80 years (mean age 15.03+/-4.70 years, 78 boys and 80 girls). Gender groups were matched for measures of age, handedness, education level. The customized brain templates, including T I-weighted image and gray matter (GM)/white matter (WM)/cerebro-spinal fluid (CSF) prior probability maps, were created from all participants. Results showed that the total intracranial volume (TIV), global absolute GM and global WM volume in girls were significantly smaller than those in boys. The hippocampus grew faster in girls than that in boys, but the amygdala grew faster in boys than that in girls. The rate of regional GM decreases with age was steeper in the left superior parietal lobule, bilateral inferior parietal lobule, left precuneus, and bilateral supramarginal gyrus in boys compared to girls, which was possibly related to better spatial processing ability in boys. Regional GM volumes were greater in bilateral superior temporal gyrus, bilateral inferior frontal gyrus and bilateral middle frontal gyrus in girls. Regional WM volumes were greater in the left temporal lobe, right inferior parietal and bilateral middle frontal gyrus in girls. The gender differences in the temporal and frontal lobe maybe be related to better language ability in girls. These findings may aid in understanding the differences in cognitive function between boys and girls.
Correlation of the erectile dysfunction with lesions of cerebrovascular accidents.
Jeon, Sang-Wohn; Yoo, Koo Han; Kim, Tae-Hwan; Kim, Jin Il; Lee, Choong-Hyun
2009-01-01
The recent human and animal studies indicate that the central supraspinal systems controlling penile erection, which are localized predominantly in the parts of the frontal lobe and limbic system, are reported to be involved in erection. The purpose of this study was to elucidate the correlation of the erectile dysfunction (ED) with lesions of cerebrovascular accidents (CVA). Forty-four men were selected among the CVA patients who had visited our hospital between March and July 2006. The audiovisual sexual stimulation (AVSS) test was conducted using Rigiscan device on the patients, whose erectile domain score of the International Index of Erectile Function Questionnaire (IIEF) was less than 22. The criteria for adequate erectile function was the erectile events of > 60% rigidity for > or = 5 minutes. The CVA lesions were classified into frontal lobe, cortex except frontal lobe, basal ganglia, thalamus, and other area. Each CVA lesions of ED group and non-ED group were compared. IIEF, AVSS using Rigiscan. Thirty-eight patients' erectile domain score of IIEF were less than 22, and the AVSS test was conducted on them. Eighteen patients showed no ED, and 20 patients showed ED. The mean age of the ED group was 60.40 +/- 2.2, and the mean age of non-ED group was 55.29 +/- 1.85. There was no statistically significant difference between the mean age of both groups (P = 0.081). As each CVA lesions of both groups were compared, the CVA lesions of the thalamic area in the ED group were significantly more than in the non-ED group (P = 0.010). Patients (47.4%) who were suggestive of ED in the IIEF has no ED in the AVSS test. The patients who had CVA lesions in the thalamic area more commonly showed ED than the patients with CVA lesions of any other areas.
Alnajjar, Fady; Yamashita, Yuichi; Tani, Jun
2013-01-01
Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching, switching, etc., are known to be the outcomes of a unique neural organizations and dynamics between various regions of the frontal lobe. Although some recent anatomical and neuroimaging studies have shed light on the architecture underlying the formation of such mechanisms, the neural dynamics and the pathways in and between the frontal lobe to form and/or to tune the stability level of its working memory remain controversial. A model to clarify this aspect is therefore required. In this study, we propose a simple neurocomputational model that suggests the basic concept of how HOCM, including the cognitive branching and switching in particular, may mechanistically emerge from time-based neural interactions. The proposed model is constructed such that its functional and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only by the force of the layout architecture of the neural connections but also through distinct types of neurons, each with different time properties. To validate the model, cognitive branching and switching tasks were simulated in a physical humanoid robot driven by the model. Results reveal that separation between the lower and the higher-level neurons in such a model is an essential factor to form an appropriate working memory to handle cognitive branching and switching. The analyses of the obtained result also illustrates that the breadth of this separation is important to determine the characteristics of the resulting memory, either static memory or dynamic memory. This work can be considered as a joint research between synthetic and empirical studies, which can open an alternative research area for better understanding of brain mechanisms. PMID:23423881
Alnajjar, Fady; Yamashita, Yuichi; Tani, Jun
2013-01-01
Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching, switching, etc., are known to be the outcomes of a unique neural organizations and dynamics between various regions of the frontal lobe. Although some recent anatomical and neuroimaging studies have shed light on the architecture underlying the formation of such mechanisms, the neural dynamics and the pathways in and between the frontal lobe to form and/or to tune the stability level of its working memory remain controversial. A model to clarify this aspect is therefore required. In this study, we propose a simple neurocomputational model that suggests the basic concept of how HOCM, including the cognitive branching and switching in particular, may mechanistically emerge from time-based neural interactions. The proposed model is constructed such that its functional and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only by the force of the layout architecture of the neural connections but also through distinct types of neurons, each with different time properties. To validate the model, cognitive branching and switching tasks were simulated in a physical humanoid robot driven by the model. Results reveal that separation between the lower and the higher-level neurons in such a model is an essential factor to form an appropriate working memory to handle cognitive branching and switching. The analyses of the obtained result also illustrates that the breadth of this separation is important to determine the characteristics of the resulting memory, either static memory or dynamic memory. This work can be considered as a joint research between synthetic and empirical studies, which can open an alternative research area for better understanding of brain mechanisms.
Kim, Hyun Gi; Shin, Na-Young; Bak, Yunjin; Kim, Kyung Ran; Jung, Young-Chul; Han, Kyunghwa; Lee, Seung-Koo; Lim, Soo Mee
2017-07-01
To characterize the pattern of altered intrinsic brain activity in gastric cancer patients after chemotherapy (CTx). Patients before and after CTx (n = 14) and control subjects (n = 11) underwent resting-state functional MRI (rsfMRI) at baseline and 3 months after CTx. Regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF) were calculated and compared between the groups using the two-sample t test. Correlation analysis was also performed between rsfMRI values (i.e., ReHo, ALFF, and fALFF) and neuropsychological test results. Patients showed poor performance in verbal memory and executive function and decreased rsfMRI values in the frontal areas even before CTx and showed decreased attention/working memory and executive function after CTx compared to the control subjects. In direct comparison of values before and after CTx, there were no significant differences in neuropsychological test scores, but decreased rsfMRI values were observed at the frontal lobes and right cerebellar region. Among rsfMRI values, lower ALFF in the left inferior frontal gyrus was significantly associated with poor performance of the executive function test. We observed decreased attention/working memory and executive function that corresponded to the decline of frontal region activation in gastric cancer patients who underwent CTx. • Intrinsic brain activity of gastric cancer patients after chemotherapy was described. • Brain activity and neuropsychological test results were correlated. • Working memory and executive function decreased after chemotherapy. • Decreased cognitive function corresponded to decreased activation of the frontal region.
Manoochehri, Mana; Mahmoudzadeh, Mahdi; Bourel-Ponchel, Emilie; Wallois, Fabrice
2017-12-01
Interictal epileptic spikes (IES) represent a signature of the transient synchronous and excessive discharge of a large ensemble of cortical heterogeneous neurons. Epilepsy cannot be reduced to a hypersynchronous activation of neurons whose functioning is impaired, resulting on electroencephalogram (EEG) in epileptic seizures or IES. The complex pathophysiological mechanisms require a global approach to the interactions between neural synaptic and nonsynaptic, vascular, and metabolic systems. In the present study, we focused on the interaction between synaptic and nonsynaptic mechanisms through the simultaneous noninvasive multimodal multiscale recording of high-density EEG (HD-EEG; synaptic) and fast optical signal (FOS; nonsynaptic), which evaluate rapid changes in light scattering related to changes in membrane configuration occurring during neuronal activation of IES. To evaluate changes in light scattering occurring around IES, three children with frontal IES were simultaneously recorded with HD-EEG and FOS. To evaluate change in synchronization, time-frequency representation analysis of the HD-EEG was performed simultaneously around the IES. To independently evaluate our multimodal method, a control experiment with somatosensory stimuli was designed and applied to five healthy volunteers. Alternating increase-decrease-increase in optical signals occurred 200 ms before to 180 ms after the IES peak. These changes started before any changes in EEG signal. In addition, time-frequency domain EEG analysis revealed alternating decrease-increase-decrease in the EEG spectral power concomitantly with changes in the optical signal during IES. These results suggest a relationship between (de)synchronization and neuronal volume changes in frontal lobe epilepsy during IES. These changes in the neuronal environment around IES in frontal lobe epilepsy observed in children, as they have been in rats, raise new questions about the synaptic/nonsynaptic mechanisms that propel the neurons to hypersynchronization, as occurs during IES. We further demonstrate that this noninvasive multiscale multimodal approach is suitable for studying the pathophysiology of the IES in patients. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
2016-01-01
Objective: Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. Method: This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Results: Significant verbal and visual recall and recognition impairments were found in the frontal patients. Conclusion: These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. PMID:26752123
MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim
2016-03-01
Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Significant verbal and visual recall and recognition impairments were found in the frontal patients. These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. (c) 2016 APA, all rights reserved).
Emergence of artistic talent in frontotemporal dementia.
Miller, B L; Cummings, J; Mishkin, F; Boone, K; Prince, F; Ponton, M; Cotman, C
1998-10-01
To describe the clinical, neuropsychological, and imaging features of five patients with frontotemporal dementia (FTD) who acquired new artistic skills in the setting of dementia. Creativity in the setting of dementia has recently been reported. We describe five patients who became visual artists in the setting of FTD. Sixty-nine FTD patients were interviewed regarding visual abilities. Five became artists in the early stages of FTD. Their history, artistic process, neuropsychology, and anatomy are described. On SPECT or pathology, four of the five patients had the temporal variant of FTD in which anterior temporal lobes are involved but the dorsolateral frontal cortex is spared. Visual skills were spared but language and social skills were devastated. Loss of function in the anterior temporal lobes may lead to the "facilitation" of artistic skills. Patients with the temporal lobe variant of FTD offer a window into creativity.
Dorsolateral frontal lobe epilepsy.
Lee, Ricky W; Worrell, Greg A
2012-10-01
Dorsolateral frontal lobe seizures often present as a diagnostic challenge. The diverse semiologies may not produce lateralizing or localizing signs and can appear bizarre and suggest psychogenic events. Unfortunately, scalp electroencephalographic (EEG) and magnetic resonance imaging (MRI) are often unsatisfactory. It is not uncommon that these traditional diagnostic studies are either unhelpful or even misleading. In some cases, SPECT and positron emission tomography imaging can be an effective tool to identify the origin of seizures. However, these techniques and other emerging techniques all have limitations, and new approaches are needed to improve source localization.
Almeida, Luis G; Ricardo-Garcell, Josefina; Prado, Hugo; Barajas, Lázaro; Fernández-Bouzas, Antonio; Avila, David; Martínez, Reyna B
2010-12-01
Some longitudinal magnetic resonance imaging (MRI) studies have shown reduced volume or cortical thickness (CT) in the frontal cortices of individuals with attention-deficit/hyperactivity disorder (ADHD). These studies indicated that the aforementioned anatomical abnormalities disappear during adolescence. In contrast, cross-sectional studies on adults with ADHD have shown anatomical abnormalities in the frontal lobe region. It is not known whether the anatomical abnormalities in ADHD are a delay or a deviation in the encephalic maturation. The aim of this study was to compare CT in the frontal lobe of children, adolescents and adults of both genders presenting ADHD with that in corresponding healthy controls and to explore its relationship with the severity of the illness. An MRI scan study was performed on never-medicated ADHD patients. Twenty-one children (6-10 year-olds), twenty adolescents (14-17 year-olds) and twenty adults (25-35 year-olds) were matched with healthy controls according to age and sex. CT measurements were performed using the Freesurfer image analysis suite. The data showed regions in the right superior frontal gyrus where CT was reduced in children, adolescents and adults with ADHD in contrast to their respective healthy controls. The CT of these regions correlated with the severity of the illness. In subjects with ADHD, there is a thinning of the cortical surface in the right frontal lobe, which is present in the children, adolescents and in adults. Copyright © 2010 Elsevier Ltd. All rights reserved.
Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-06-01
Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Welker, Kirk M; De Jesus, Reordan O; Watson, Robert E; Machulda, Mary M; Jack, Clifford R
2012-10-01
To test the hypothesis that leukoaraiosis alters functional activation during a semantic decision language task. With institutional review board approval and written informed consent, 18 right-handed, cognitively healthy elderly participants with an aggregate leukoaraiosis lesion volume of more than 25 cm(3) and 18 age-matched control participants with less than 5 cm(3) of leukoaraiosis underwent functional MR imaging to allow comparison of activation during semantic decisions with that during visual perceptual decisions. Brain statistical maps were derived from the general linear model. Spatially normalized group t maps were created from individual contrast images. A cluster extent threshold of 215 voxels was used to correct for multiple comparisons. Intergroup random effects analysis was performed. Language laterality indexes were calculated for each participant. In control participants, semantic decisions activated the bilateral visual cortex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive language regions, and left basal ganglia. Visual perceptual decisions activated the right parietal and posterior temporal lobes. Participants with leukoaraiosis showed reduced activation in all regions associated with semantic decisions; however, activation associated with visual perceptual decisions increased in extent. Intergroup analysis showed significant activation decreases in the left anterior occipital lobe (P=.016), right posterior temporal lobe (P=.048), and right basal ganglia (P=.009) in particpants with leukoariosis. Individual participant laterality indexes showed a strong trend (P=.059) toward greater left lateralization in the leukoaraiosis group. Moderate leukoaraiosis is associated with atypical functional activation during semantic decision tasks. Consequently, leukoaraiosis is an important confounding variable in functional MR imaging studies of elderly individuals. © RSNA, 2012.
Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.
Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío
2017-07-01
Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.
The Schizophrenic Brain: Rewriting the Chapter.
ERIC Educational Resources Information Center
Greenberg, Joel
1979-01-01
Evidence of last two decades indicates schizophrenic disorders related to imbalance of brain chemicals. Recent discovery made of association between chronic schizophrenia and variety of structural abnormalities. Included are frontal lobe reversal and accipital lobe reversal. Computer tomography scans and data presented. (SA)
Mattiaccio, Leah M; Coman, Ioana L; Thompson, Carlie A; Fremont, Wanda P; Antshel, Kevin M; Kates, Wendy R
2018-01-20
22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental syndrome associated with deficits in cognitive and emotional processing. This syndrome represents one of the highest risk factors for the development of schizophrenia. Previous studies of functional connectivity (FC) in 22q11DS report aberrant connectivity patterns in large-scale networks that are associated with the development of psychotic symptoms. In this study, we performed a functional connectivity analysis using the CONN toolbox to test for differential connectivity patterns between 54 individuals with 22q11DS and 30 healthy controls, between the ages of 17-25 years old. We mapped resting-state fMRI data onto 68 atlas-based regions of interest (ROIs) generated by the Desikan-Killany atlas in FreeSurfer, resulting in 2278 ROI-to-ROI connections for which we determined total linear temporal associations between each. Within the group with 22q11DS only, we further tested the association between prodromal symptoms of psychosis and FC. We observed that relative to controls, individuals with 22q11DS displayed increased FC in lobar networks involving the frontal-frontal, frontal-parietal, and frontal-occipital ROIs. In contrast, FC between ROIs in the parietal-temporal and occipital lobes was reduced in the 22q11DS group relative to healthy controls. Moreover, positive psychotic symptoms were positively associated with increased functional connections between the left precuneus and right superior frontal gyrus, as well as reduced functional connectivity between the bilateral pericalcarine. Positive symptoms were negatively associated with increased functional connectivity between the right pericalcarine and right postcentral gyrus. Our results suggest that functional organization may be altered in 22q11DS, leading to disruption in connectivity between frontal and other lobar substructures, and potentially increasing risk for prodromal psychosis.
Motivational deficits after brain injury: effects of bromocriptine in 11 patients.
Powell, J H; al-Adawi, S; Morgan, J; Greenwood, R J
1996-01-01
OBJECTIVE: To test the hypothesis that treatment with bromocriptine would ameliorate deficits in clinical motivation, responsiveness to reward, and frontal cognitive function after brain injury. METHOD: An open trial in six men and five women who had had either traumatic brain injury or subarachnoid haemorrhage between two months and five years previously. After repeated baseline assessments, bromocriptine was given in gradually increasing doses. Assessments were repeated at increasing doses, during maintenance, and after withdrawal. Novel structured instruments for quantifying motivation were developed; measures of anxiety and depression, and cognitive tests sensitive to motivation or frontal lobe involvement were also given. RESULTS: Bromocriptine treatment was followed by improved scores on all measures other than mood. Improvement was maintained after bromocriptine withdrawal in eight of the patients. CONCLUSION: Poor motivation in patients with brain injury may result from dysfunction in the mesolimbic/mesocortical dopaminergic circuitry, giving rise to associated deficiencies in reward responsiveness and frontal cognitive function. PMID:8774407
ERIC Educational Resources Information Center
Hugdahl, Kenneth; Gundersen, Hilde; Brekke, Cecilie; Thomsen, Tormod; Rimol, Lars Morten; Ersland, Lars; Niemi, Jussi
2004-01-01
The aim of the present study was to investigate differences in brain activation in a family with SLI as compared to intact individuals with normally developed language during processing of language stimuli. Functional magnetic resonance imaging (fMRI) was used to monitor changes in neuronal activation in temporal and frontal lobe areas in 5…
ERIC Educational Resources Information Center
Carvalho Pereira, Andreia; Violante, Inês R.; Mouga, Susana; Oliveira, Guiomar; Castelo-Branco, Miguel
2018-01-01
The nature of neurochemical changes in autism spectrum disorder (ASD) remains controversial. We compared medial prefrontal cortex (mPFC) neurochemistry of twenty high-functioning children and adolescents with ASD without associated comorbidities and fourteen controls. We observed reduced total N-acetylaspartate (tNAA) and total creatine, increased…
Francisco de Castro: Localizationism, intelligence and the frontal lobe
Oliveira, Pedro Sudbrack; Engelhardt, Eliasz; Gomes, Marleide da Mota
2017-01-01
ABSTRACT This article addresses the largely unknown legacy of Francisco de Castro regarding the neurological sciences. His essay "Psychogenic Cortical Centers", written in 1881 for his admission to the Imperial Academy of Medicine in Rio de Janeiro, is a refined appreciation of the theory of localized cortical functions that was in evidence in Europe in the second half of the nineteenth century. PMID:29213528
ERIC Educational Resources Information Center
Steinmetz, Jean-Paul; Brunner, Martin; Loarer, Even; Houssemand, Claude
2010-01-01
The Wisconsin Card Sorting Test (WCST) assesses executive and frontal lobe function and can be administered manually or by computer. Despite the widespread application of the 2 versions, the psychometric equivalence of their scores has rarely been evaluated and only a limited set of criteria has been considered. The present experimental study (N =…
Reduced hippocampal functional connectivity in Alzheimer disease.
Allen, Greg; Barnard, Holly; McColl, Roderick; Hester, Andrea L; Fields, Julie A; Weiner, Myron F; Ringe, Wendy K; Lipton, Anne M; Brooker, Matthew; McDonald, Elizabeth; Rubin, Craig D; Cullum, C Munro
2007-10-01
To determine if functional connectivity of the hippocampus is reduced in patients with Alzheimer disease. Functional connectivity magnetic resonance imaging was used to investigate coherence in the magnetic resonance signal between the hippocampus and all other regions of the brain. Eight patients with probable Alzheimer disease and 8 healthy volunteers. Control subjects showed hippocampal functional connectivity with diffuse cortical, subcortical, and cerebellar sites, while patients demonstrated markedly reduced functional connectivity, including an absence of connectivity with the frontal lobes. These findings suggest a functional disconnection between the hippocampus and other brain regions in patients with Alzheimer disease.
Aerobic Exercise and Attention Deficit Hyperactivity Disorder: Brain Research
Choi, Jae Won; Han, Doug Hyun; Kang, Kyung Doo; Jung, Hye Yeon; Renshaw, Perry F.
2017-01-01
Purpose As adjuvant therapy for enhancing the effects of stimulants and thereby minimizing medication doses, we hypothesized that aerobic exercise might be an effective adjunctive therapy for enhancing the effects of methylphenidate on the clinical symptoms, cognitive function, and brain activity of adolescents with attention deficit hyperactivity disorder (ADHD). Methods Thirty-five adolescents with ADHD were randomly assigned to one of two groups in a 1/1 ratio; methylphenidate treatment + 6-wk exercise (sports-ADHD) or methylphenidate treatment + 6-wk education (edu-ADHD). At baseline and after 6 wk of treatment, symptoms of ADHD, cognitive function, and brain activity were evaluated using the Dupaul attention deficit hyperactivity disorder rating scale–Korean version (K-ARS), the Wisconsin Card Sorting Test, and 3-T functional magnetic resonance imaging, respectively. Results The K-ARS total score and perseverative errors in the sports-ADHD group decreased compared with those in the edu-ADHD group. After the 6-wk treatment period, the mean β value of the right frontal lobe in the sports-ADHD group increased compared with that in the edu-ADHD group. The mean β value of the right temporal lobe in the sports-ADHD group decreased. However, the mean β value of the right temporal lobe in the edu-ADHD group did not change. The change in activity within the right prefrontal cortex in all adolescents with ADHD was negatively correlated with the change in K-ARS scores and perseverative errors. Conclusions The current results indicate that aerobic exercise increased the effectiveness of methylphenidate on clinical symptoms, perseverative errors, and brain activity within the right frontal and temporal cortices in response to the Wisconsin card sorting test stimulation. PMID:24824770
Li, Ke; Huang, Xiaoyan; Han, Yingping; Zhang, Jun; Lai, Yuhan; Yuan, Li; Lu, Jiaojiao; Zeng, Dong
2015-01-01
Hormone therapy (HT) has long been thought beneficial for controlling menopausal symptoms and human cognition. Studies have suggested that HT has a positive association with working memory, but no consistent relationship between HT and neural activity has been shown in any cognitive domain. The purpose of this meta-analysis was to assess the convergence of findings from published randomized control trials studies that examined brain activation changes in postmenopausal women. A systematic search for fMRI studies of neural responses during working memory tasks in postmenopausal women was performed. Studies were excluded if they were not treatment studies and did not contain placebo or blank controls. For the purpose of the meta-analysis, 8 studies were identified, with 103 postmenopausal women taking HT and 109 controls. Compared with controls, postmenopausal women who took HT increased activation in the left frontal lobe, including superior frontal gyrus (BA 8), right middle frontal gyrus (BA 9), anterior lobe, paracentral lobule (BA 7), limbic lobe, and anterior cingulate (BA 32). Additionally, decreased activation is noted in the right limbic lobe, including parahippocampal gyrus (BA 28), left parietal lobe, and superior parietal lobule (BA 7). All regions were significant at p ≤ 0.05 with correction for multiple comparisons. Hormone treatment is associated with BOLD signal activation in key anatomical areas during fMRI working memory tasks in healthy hormone-treated postmenopausal women. A positive correlation between activation and task performance suggests that hormone use may benefit working memory.
Frontal and temporal volumes in Childhood Absence Epilepsy.
Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald
2009-11-01
This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.
Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy.
Hong, Seok-Jun; Bernhardt, Boris C; Schrader, Dewi S; Bernasconi, Neda; Bernasconi, Andrea
2016-02-16
To perform whole-brain morphometry in patients with frontal lobe epilepsy and evaluate the utility of group-level patterns for individualized diagnosis and prognosis. We compared MRI-based cortical thickness and folding complexity between 2 frontal lobe epilepsy cohorts with histologically verified focal cortical dysplasia (FCD) (13 type I; 28 type II) and 41 closely matched controls. Pattern learning algorithms evaluated the utility of group-level findings to predict histologic FCD subtype, the side of the seizure focus, and postsurgical seizure outcome in single individuals. Relative to controls, FCD type I displayed multilobar cortical thinning that was most marked in ipsilateral frontal cortices. Conversely, type II showed thickening in temporal and postcentral cortices. Cortical folding also diverged, with increased complexity in prefrontal cortices in type I and decreases in type II. Group-level findings successfully guided automated FCD subtype classification (type I: 100%; type II: 96%), seizure focus lateralization (type I: 92%; type II: 86%), and outcome prediction (type I: 92%; type II: 82%). FCD subtypes relate to diverse whole-brain structural phenotypes. While cortical thickening in type II may indicate delayed pruning, a thin cortex in type I likely results from combined effects of seizure excitotoxicity and the primary malformation. Group-level patterns have a high translational value in guiding individualized diagnostics. © 2016 American Academy of Neurology.
Neuropsychological profiles and outcomes in children with new onset frontal lobe epilepsy.
Matricardi, Sara; Deleo, Francesco; Ragona, Francesca; Rinaldi, Victoria Elisa; Pelliccia, Sarah; Coppola, Giangennaro; Verrotti, Alberto
2016-02-01
Frontal lobe epilepsy (FLE) is the second most frequent type of localization-related epilepsy, and it may impact neurocognitive functioning with high variability. The prevalence of neurocognitive impairment in affected children remains poorly defined. This report outlines the neuropsychological profiles and outcomes in children with new onset FLE, and the impact of epilepsy-related factors, such as seizure frequency and antiepileptic drug (AED) load, on the neurocognitive development. Twenty-three consecutive children (15 males and 8 females) with newly diagnosed cryptogenic FLE were enrolled; median age at epilepsy onset was 7 years (6-9.6 years). They underwent clinical and laboratory evaluation and neuropsychological assessment before starting AED treatment (time 0) and after one year of treatment (time 1). Twenty age-matched patients affected by idiopathic generalized epilepsy (10 male and 10 females) and eighteen age-matched healthy subjects (9 males and 9 females) were enrolled as controls and underwent the same assessment. All patients with FLE showed a significant difference in almost all assessed cognitive domains compared with controls, mainly in frontal functions and memory. At time 1, patients were divided into two groups according to epilepsy-related factors: group 1 (9 patients) with persisting seizures despite AED polytherapy, and group 2 (14 patients) with good seizure control in monotherapy. A significant difference was highlighted in almost all subtests in group 1 compared with group 2, both at time 0 and at time 1. In children with FLE showing a broad range of neurocognitive impairments, the epilepsy-related factors mostly related to a worse neurocognitive outcome are poor seizure control and the use of AED polytherapy, suggesting that epileptic discharges may have a negative impact on the functioning of the involved cerebral regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanda, Anil; Maiti, Tanmoy K; Bir, Shyamal C; Konar, Subhas K; Guthikonda, Bharat
2016-10-01
Olfactory groove meningiomas often are behaviorally silent. Numerous surgical approaches have been described in the literature for the successful removal of these meningiomas. Lateral (pterional/frontolateral) and anterior (bifrontal/fronto-orbito-basal) approaches with their various modifications remain the 2 major corridors in resecting them. In this study, we discuss our experience in microsurgical treatment of these tumors at our institution and assess the extent of frontal lobe damage after the resection of tumor. We reviewed the medical records of patients who underwent surgical excision of olfactory groove meningiomas from 1990 to 2014. To measure the extent of frontal lobe damage via lateral and anterior approaches, we measured the volume of porencephalic cave in the postoperative magnetic resonance imaging by using Brainlab software. The ratio of volume of porencephalic cave to tumor was measured between 2 sides and 2 approaches. Fifty-seven patients with olfactory groove meningiomas, who underwent 62 microsurgical resection procedures in 1990-2014 were included in the study (74% were more than 5 cm at presentation). Pterional and bifrontal craniotomies were the most commonly used approaches. At follow-up, the volume of porencephalic cave after lateral approach was significantly less in the side contralateral to craniotomy irrespective of tumor size. The difference between ratio of volume of porencephalic cave and initial tumor was significantly less after lateral approaches, when compared to anterior approaches. Lateral approaches (pterional/frontolateral) resulted in less frontal lobe change and better olfactory preservation in comparison to anterior approaches in present series. Published by Elsevier Inc.
Pan, Bing; Liu, Yamei
2015-01-01
Depression is a major mood disorder affecting people worldwide. The posttranscriptional gene regulation mediated by microRNAs (miRNAs) which may have critical roles in the pathogenesis of depression. However, to date, little is known about the effects of the antidepressant drug duloxetine on miRNA expression profile in chronic unpredictable mild stress (CUMS)-induced depression model in mice. Healthy adult male Kunming mice were randomly divided into three groups: control group, model group and duloxetine group. Sucrose preference test and open field test were used to represent the behavioral change. MiRNAs levels in frontal lobe and hippocampus of mice were analyzed using miRNA microarrays assay. We observed that long-term treatment with duloxetine significantly ameliorated the CUMS procedure-induced sucrose preference decreases and mice treated with duloxetine demonstrated a reversal of the number of crossings, and rearings reduced by CUMS. A significant upregulation of miR-132 and miR-18a in hippocampus in the duloxetine treatment group compared with model group, whereas the levels of miR-134 and miR-124a were significantly downregulated. Furthermore, miR-18a showed significant upregulation in frontal lobe in the duloxetine treatment group relative to model group. Our data showed that miRNA expression profile in frontal lobe and hippocampus was affected by duloxetine in mice model of depression. The effect was especially pronounced in the hippocampus, suggesting that hippocampus might be the action site of duloxetine, which presumably worked by regulating the expression of miRNA levels.
McCarley, R W; Wible, C G; Frumin, M; Hirayasu, Y; Levitt, J J; Fischer, I A; Shenton, M E
1999-05-01
Structural magnetic resonance imaging (MRI) data have provided much evidence in support of our current view that schizophrenia is a brain disorder with altered brain structure, and consequently involving more than a simple disturbance in neurotransmission. This review surveys 118 peer-reviewed studies with control group from 1987 to May 1998. Most studies (81%) do not find abnormalities of whole brain/intracranial contents, while lateral ventricle enlargement is reported in 77%, and third ventricle enlargement in 67%. The temporal lobe was the brain parenchymal region with the most consistently documented abnormalities. Volume decreases were found in 62% of 37 studies of whole temporal lobe, and in 81% of 16 studies of the superior temporal gyrus (and in 100% with gray matter separately evaluated). Fully 77% of the 30 studies of the medial temporal lobe reported volume reduction in one or more of its constituent structures (hippocampus, amygdala, parahippocampal gyrus). Despite evidence for frontal lobe functional abnormalities, structural MRI investigations less consistently found abnormalities, with 55% describing volume reduction. It may be that frontal lobe volume changes are small, and near the threshold for MRI detection. The parietal and occipital lobes were much less studied; about half of the studies showed positive findings. Most studies of cortical gray matter (86%) found volume reductions were not diffuse, but more pronounced in certain areas. About two thirds of the studies of subcortical structures of thalamus, corpus callosum and basal ganglia (which tend to increase volume with typical neuroleptics), show positive findings, as do almost all (91%) studies of cavum septi pellucidi (CSP). Most data were consistent with a developmental model, but growing evidence was compatible also with progressive, neurodegenerative features, suggesting a "two-hit" model of schizophrenia, for which a cellular hypothesis is discussed. The relationship of clinical symptoms to MRI findings is reviewed, as is the growing evidence suggesting structural abnormalities differ in affective (bipolar) psychosis and schizophrenia.
Frontotemporal Degeneration in a Child.
Terrill, Tyler; Pascual, Juan M
2017-07-01
There is a predilection for the frontal and temporal lobes in certain cases of dementia in the adult, leading to the syndrome of frontotemporal dementia. However, this syndrome has seemed to elude the developing brain until now. We describe an example of apparently selective neurodegeneration of the frontal and temporal regions during development associated with some of the clinical, magnetic resonance imaging, and fludeoxyglucose positron emission tomography (FDG PET) scan features of canonical frontotemporal dementia in the adult. This patient does not have any of the common frontotemporal dementia-causing mutations or known progressive brain disorders of children. This patient illustrates that symptomatic, selective, and progressive vulnerability of the frontal and temporal lobes is not restricted to adulthood, expanding the phenotype of frontotemporal degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Christensen, Bruce K; Patrick, Regan E; Stuss, Donald T; Gillingham, Susan; Zipursky, Robert B
2013-01-01
Schizophrenia (SCZ)-related verbal memory impairment is hypothesized to be mediated, in part, by frontal lobe (FTL) dysfunction. However, little research has contrasted the performance of SCZ patients with that of patients exhibiting circumscribed frontal lesions. The current study compared verbal episodic memory in patients with SCZ and focal FTL lesions (left frontal, LF; right frontal, RF; and bi-frontal, BF) on a four-trial list learning task consisting of three lists of varying semantic organizational structure. Each dependent variable was examined at two levels: scores collapsed across all four trials and learning scores (i.e., trial 4-trial 1). Performance deficits were observed in each patient group across most dependent measures at both levels. Regarding patient group differences, SCZ patients outperformed LF/BF patients (i.e., either learning scores or scores collapsed across trial) on free recall, primacy, primary memory, secondary memory, and subjective organization, whereas they only outperformed RF patients on the semantically blocked list on recency and primary memory. Collectively, these results indicate that the pattern of memory performance is largely similar between patients with SCZ and those with RF lesions. These data support tentative arguments that verbal episodic memory deficits in SCZ may be mediated by frontal dysfunction in the right hemisphere.
Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Gómez-Beldarrain, María Ángeles; Gómez-Esteban, Juan Carlos; Ibarretxe-Bilbao, Naroa
2015-01-01
Background Parkinson’s disease (PD) patients show theory of mind (ToM) deficit since the early stages of the disease, and this deficit has been associated with working memory, executive functions and quality of life impairment. To date, neuroanatomical correlates of ToM have not been assessed with magnetic resonance imaging in PD. The main objective of this study was to assess cerebral correlates of ToM deficit in PD. The second objective was to explore the relationships between ToM, working memory and executive functions, and to analyse the neural correlates of ToM, controlling for both working memory and executive functions. Methods Thirty-seven PD patients (Hoehn and Yahr median = 2.0) and 15 healthy controls underwent a neuropsychological assessment and magnetic resonance images in a 3T-scanner were acquired. T1-weighted images were analysed with voxel-based morphometry, and white matter integrity and diffusivity measures were obtained from diffusion weighted images and analysed using tract-based spatial statistics. Results PD patients showed impairments in ToM, working memory and executive functions; grey matter loss and white matter reduction compared to healthy controls. Grey matter volume decrease in the precentral and postcentral gyrus, middle and inferior frontal gyrus correlated with ToM deficit in PD. White matter in the superior longitudinal fasciculus (adjacent to the parietal lobe) and white matter adjacent to the frontal lobe correlated with ToM impairment in PD. After controlling for executive functions, the relationship between ToM deficit and white matter remained significant for white matter areas adjacent to the precuneus and the parietal lobe. Conclusions Findings reinforce the existence of ToM impairment from the early Hoehn and Yahr stages in PD, and the findings suggest associations with white matter and grey matter volume decrease. This study contributes to better understand ToM deficit and its neural correlates in PD, which is a basic skill for development of healthy social relationships. PMID:26559669
Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Gómez-Beldarrain, María Ángeles; Gómez-Esteban, Juan Carlos; Ibarretxe-Bilbao, Naroa
2015-01-01
Parkinson's disease (PD) patients show theory of mind (ToM) deficit since the early stages of the disease, and this deficit has been associated with working memory, executive functions and quality of life impairment. To date, neuroanatomical correlates of ToM have not been assessed with magnetic resonance imaging in PD. The main objective of this study was to assess cerebral correlates of ToM deficit in PD. The second objective was to explore the relationships between ToM, working memory and executive functions, and to analyse the neural correlates of ToM, controlling for both working memory and executive functions. Thirty-seven PD patients (Hoehn and Yahr median = 2.0) and 15 healthy controls underwent a neuropsychological assessment and magnetic resonance images in a 3T-scanner were acquired. T1-weighted images were analysed with voxel-based morphometry, and white matter integrity and diffusivity measures were obtained from diffusion weighted images and analysed using tract-based spatial statistics. PD patients showed impairments in ToM, working memory and executive functions; grey matter loss and white matter reduction compared to healthy controls. Grey matter volume decrease in the precentral and postcentral gyrus, middle and inferior frontal gyrus correlated with ToM deficit in PD. White matter in the superior longitudinal fasciculus (adjacent to the parietal lobe) and white matter adjacent to the frontal lobe correlated with ToM impairment in PD. After controlling for executive functions, the relationship between ToM deficit and white matter remained significant for white matter areas adjacent to the precuneus and the parietal lobe. Findings reinforce the existence of ToM impairment from the early Hoehn and Yahr stages in PD, and the findings suggest associations with white matter and grey matter volume decrease. This study contributes to better understand ToM deficit and its neural correlates in PD, which is a basic skill for development of healthy social relationships.
Relation of anosognosia to frontal lobe dysfunction in Alzheimer's disease.
Michon, A; Deweer, B; Pillon, B; Agid, Y; Dubois, B
1994-07-01
A self-rating scale of memory functions was administered to 24 non-depressed patients with probable Alzheimer's disease, divided into two groups according to the overall severity of dementia (mild, mini-mental state (MMS) > 21; moderate, MMS between 10 and 20). These groups did not significantly differ in their self-rating of memory functions. The same questionnaire was submitted to a member of each patient's family, who had to rate the patient's memory. An "anosognosia score" was defined as the difference between patient's and family's ratings. This score was highly variable, and covered, in the two groups, the full range between complete awareness of deficits and total anosognosia. Correlations between the anosognosia score and several neuropsychological data were searched for. No significant correlation was found with either the Wechsler memory scale, the MMS, or linguistic abilities and gestures. In contrast, this score was highly correlated with the "frontal score", defined as the sum of scores on the Wisconsin card sorting test (WCST), verbal fluency, Luria's graphic series, and "frontal behaviours" (prehension, utilisation, imitation behaviours, inertia, indifference). Among these tests of executive functions, the highest correlation with the anosognosia score was obtained on the WCST. This suggests that anosognosia in Alzheimer's disease is not related to the degree of cognitive deterioration but results, at least in part, from frontal dysfunction.
Pontine hyperperfusion in sporadic hyperekplexia
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Nave, Riccardo Della; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-01-01
Objective To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Methods Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H‐MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Results Both patients showed excessively large and non‐habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H‐MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. Conclusions In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals. PMID:17702784
Pontine hyperperfusion in sporadic hyperekplexia.
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Della Nave, Riccardo; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-09-01
To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H-MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Both patients showed excessively large and non-habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H-MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals.
Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.
2016-01-01
How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401
Chemical neuromodulation of frontal-executive functions in humans and other animals.
Robbins, T W
2000-07-01
Neuromodulation of frontal-executive function is reviewed in the context of experiments on rats, monkeys and human subjects. The different functions of the chemically identified systems of the reticular core are analysed from the perspective of their possible different interactions with the prefrontal cortex. The role of dopamine in spatial working memory is reviewed, taking account of its deleterious as well as facilitatory effects. Baseline-dependent effects of dopaminergic manipulation are described in rats on an attentional task, including evidence of enhanced function following infusions of D1 receptor agonists into the prefrontal cortex. The precise nature of the cognitive task under study is shown to be a powerful determinant of the effects of mesofrontal dopamine depletion in monkeys. Parallels are identified in human subjects receiving drugs such as the indirect catecholamine agonists L-dopa, methylphenidate and the dopamine D2 receptor blocker sulpiride. The effects of these drugs on different types of cognitive function sensitive to frontal lobe dysfunction are contrasted with those of a manipulation of 5-HT function, dietary tryptophan depletion. Hypotheses are advanced that accord the ascending systems a greater deal of specificity in modulating prefrontal cortical function than has hitherto been entertained, and clinical and theoretical implications of this hypothesis are discussed.
Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo
2011-06-01
Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.
Ozonoff, Sally; Cook, Ian; Coon, Hilary; Dawson, Geraldine; Joseph, Robert M; Klin, Ami; McMahon, William M; Minshew, Nancy; Munson, Jeffrey A; Pennington, Bruce F; Rogers, Sally J; Spence, M Anne; Tager-Flusberg, Helen; Volkmar, Fred R; Wrathall, Debora
2004-04-01
Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components of cognition. Previous studies document the role of frontal cortex in performance of two CANTAB subtests: the Stockings of Cambridge, a planning task, and the Intradimensional/Extradimensional Shift task, a measure of cognitive set shifting. To examine the integrity of frontal functions, these subtests were administered to 79 participants with autism and 70 typical controls recruited from seven universities who are part of the Collaborative Programs of Excellence in Autism network. The two groups were matched on age, sex, and full-scale IQ. Significant group differences were found in performance on both subtests, with the autism group showing deficits in planning efficiency and extradimensional shifting relative to controls. Deficits were found in both lower- and higher-IQ individuals with autism across the age range of 6 to 47 years. Impairment on the CANTAB executive function subtests did not predict autism severity or specific autism symptoms (as measured by the ADI-R and ADOS), but it was correlated with adaptive behavior. If these CANTAB subtests do indeed measure prefrontal function, as suggested by previous research with animals and lesion patients, this adds to the accumulating evidence of frontal involvement in autism and indicates that this brain region should remain an active area of investigation.
Multiple parietal-frontal pathways mediate grasping in macaque monkeys
Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.
2011-01-01
The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196
Volz, H P; Rzanny, R; Rössger, G; Hübner, G; Kreitschmann-Andermahr, I; Kaiser, W A; Sauer, H
1997-12-30
In the present investigation on 31P-magneto-resonance spectroscopic parameters in the frontal lobe, we found phosphocreatine levels and the ratio phosphocreatine/adenosine triphosphate to be increased (12.62 +/- 1.98% resp. 0.31 +/- 0.06) in 50 neuroleptic-treated schizophrenics, whereas no differences were detected in 10 neuroleptic-free patients (11.66 +/- 2.57% resp. 0.29 +/- 0.08) compared to 36 controls (11.37 +/- 1.45 resp. 0.29 +/- 0.04). This result points to a major role of neuroleptics in the metabolism of high-energy phosphates.
ERIC Educational Resources Information Center
Bowler, Dermot M.; Gaigg, Sebastian B.; Gardiner, John M.
2010-01-01
To test the effects of providing relational cues at encoding and/or retrieval on multi-trial, multi-list free recall in adults with high-functioning autism spectrum disorder (ASD), 16 adults with ASD and 16 matched typical adults learned a first followed by a second categorised list of 24 words. Category labels were provided at encoding,…
Frontal lobe seizures: from clinical semiology to localization.
Bonini, Francesca; McGonigal, Aileen; Trébuchon, Agnès; Gavaret, Martine; Bartolomei, Fabrice; Giusiano, Bernard; Chauvel, Patrick
2014-02-01
Frontal lobe seizures are difficult to characterize according to semiologic and electrical features. We wished to establish whether different semiologic subgroups can be identified and whether these relate to anatomic organization. We assessed all seizures from 54 patients with frontal lobe epilepsy that were explored with stereoelectroencephalography (SEEG) during presurgical evaluation. Semiologic features and concomitant intracerebral EEG changes were documented and quantified. These variables were examined using Principal Component Analysis and Cluster Analysis, and semiologic features correlated with anatomic localization. Four main groups of patients were identified according to semiologic features, and correlated with specific patterns of anatomic seizure localization. Group 1 was characterized clinically by elementary motor signs and involved precentral and premotor regions. Group 2 was characterized by a combination of elementary motor signs and nonintegrated gestural motor behavior, and involved both premotor and prefrontal regions. Group 3 was characterized by integrated gestural motor behavior with distal stereotypies and involved anterior lateral and medial prefrontal regions. Group 4 was characterized by seizures with fearful behavior and involved the paralimbic system (ventromedial prefrontal cortex ± anterior temporal structures). The groups were organized along a rostrocaudal axis, representing bands within a spectrum rather than rigid categories. The more anterior the seizure organization, the more likely was the occurrence of integrated behavior during seizures. Distal stereotypies were associated with the most anterior prefrontal localizations, whereas proximal stereotypies occurred in more posterior prefrontal regions. Meaningful categorization of frontal seizures in terms of semiology is possible and correlates with anatomic organization along a rostrocaudal axis, in keeping with current hypotheses of frontal lobe hierarchical organization. The proposed electroclinical categorization offers pointers as to the likely zone of organization of networks underlying semiologic production, thus aiding presurgical localization. Furthermore, analysis of ictal motor behavior in prefrontal seizures, including stereotypies, leads to deciphering the cortico-subcortical networks that produce such behaviors. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Successful Decoding of Famous Faces in the Fusiform Face Area
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition. PMID:25714434
Determinants of brain metabolism changes in mesial temporal lobe epilepsy.
Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia
2016-06-01
To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of hypometabolism in MTLE. Compensatory mechanisms reflected by a relative hypermetabolism in the nonepileptic temporal lobe and in extratemporal areas seem more efficient in LHS and in female patients, whereas long duration, late onset of epilepsy, and high seizure frequency may reduce these adaptive changes. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Response inhibition in pedophilia: an FMRI pilot study.
Habermeyer, Benedikt; Esposito, Fabrizio; Händel, Nadja; Lemoine, Patrick; Kuhl, Hans Christian; Klarhöfer, Markus; Mager, Ralph; Mokros, Andreas; Dittmann, Volker; Seifritz, Erich; Graf, Marc
2013-01-01
The failure to inhibit pleasurable but inappropriate urges is associated with frontal lobe pathology and has been suggested as a possible cause of pedophilic behavior. However, imaging and neuropsychological findings about frontal pathology in pedophilia are heterogeneous. In our study we therefore address inhibition behaviorally and by means of functional imaging, aiming to assess how inhibition in pedophilia is related to a differential recruitment of frontal brain areas. Eleven pedophilic subjects and 7 nonpedophilic controls underwent fMRI while performing a go/no-go task composed of neutral letters. Pedophilic subjects showed a slower reaction time and less accurate visual target discrimination. fMRI voxel-level ANOVA revealed as a main effect of the go/no-go task an activation of prefrontal and parietal brain regions in the no-go condition, while the left anterior cingulate, precuneus and gyrus angularis became more activated in the go condition. In addition, a group × task interaction was found in the left precuneus and gyrus angularis. This interaction was based on an attenuated deactivation of these brain regions in the pedophilic group during performance of the no-go condition. The positive correlation between blood oxygen level-dependent imaging signal and reaction time in these brain areas indicates that attenuated deactivation is related to the behavioral findings. Slower reaction time and less accurate visual target discrimination in pedophilia was accompanied by attenuated deactivation of brain areas belonging to the default mode network. Our findings thus support the notion that behavioral differences might also derive from self-related processes and not necessarily from frontal lobe pathology. © 2013 S. Karger AG, Basel.
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Nagase, Tomomi; Nouchi, Rui; Fukushima, Ai; Kawashima, Ryuta
2012-02-01
During Stroop tasks, subjects experience cognitive interference when they resolve interferences such as identifying the ink color of a printed word while ignoring the word's identity. Stroop paradigms are commonly used as an index of attention deficits and a tool for investigating the functions of the frontal lobes and other associated structures. Despite these uses and the vast amount of attention given to Stroop paradigms, the regional gray matter volume/regional white matter volume (rGMV/rWMV) correlates of Stroop interference have not yet been identified at the whole brain level in normal adults. We examined this issue using voxel-based morphometry in right-handed healthy young adults. We found significant negative relationships between the Stroop interference rate and rGMV in the anterior cingulate cortex (ACC), right inferior frontal gyrus, and cerebellum. Furthermore, we found relationships between the Stroop interference rate and rWMV in bilateral anatomical clusters that extended around extensive WM regions in the dorsal part of the frontal lobe. These findings are the first to reveal rGMV/rWMV that underlie the performance of the Stroop task, a widely used psychological paradigm at the whole brain level. Of note, our findings support the notion that ACC contributes to Stroop performance and show the involvement of regions that have been implicated in response inhibition and attention. Copyright © 2011 Elsevier Inc. All rights reserved.
Abdelsalam, Salaheldin; Uemura, Hiroyuki; Umezaki, Yujiro; Saifullah, A S M; Shimohigashi, Miki; Tomioka, Kenji
2008-07-01
Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.
Li, Yun; Wang, Shengpei; Pan, Chuxiong; Xue, Fushan; Xian, Junfang; Huang, Yaqi; Wang, Xiaoyi; Li, Tianzuo; He, Huiguang
2018-01-01
The mechanism of general anesthesia (GA) has been explored for hundreds of years, but unclear. Previous studies indicated a possible correlation between NREM sleep and GA. The purpose of this study is to compare them by in vivo human brain function to probe the neuromechanism of consciousness, so as to find out a clue to GA mechanism. 24 healthy participants were equally assigned to sleep or propofol sedation group by sleeping ability. EEG and Ramsay Sedation Scale were applied to determine sleep stage and sedation depth respectively. Resting-state functional magnetic resonance imaging (RS-fMRI) was acquired at each status. Regional homogeneity (ReHo) and seed-based whole brain functional connectivity maps (WB-FC maps) were compared. During sleep, ReHo primarily weakened on frontal lobe (especially preoptic area), but strengthened on brainstem. While during sedation, ReHo changed in various brain areas, including cingulate, precuneus, thalamus and cerebellum. Cingulate, fusiform and insula were concomitance of sleep and sedation. Comparing to sleep, FCs between the cortex and subcortical centers (centralized in cerebellum) were significantly attenuated under sedation. As sedation deepening, cerebellum-based FC maps were diminished, while thalamus- and brainstem-based FC maps were increased. There're huge distinctions in human brain function between sleep and GA. Sleep mainly rely on brainstem and frontal lobe function, while sedation is prone to affect widespread functional network. The most significant differences exist in the precuneus and cingulate, which may play important roles in mechanisms of inducing unconciousness by anesthetics. Institutional Review Board (IRB) ChiCTR-IOC-15007454.
Laporta-Hoyos, Olga; Pannek, Kerstin; Ballester-Plané, Júlia; Reid, Lee B; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Junqué, Carme; Boyd, Roslyn; Pueyo, Roser
2017-01-01
Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Thirty-three participants with dyskinetic CP (mean ± SD age: 24.42 ± 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA compared to controls. Attentional control, goal setting and information processing did not correlate with WM microstructure in the CP group. Cognitive flexibility was associated with FA in regions known to contain connections with the frontal lobe (such as the superior longitudinal fasciculus and cingulum) as well as regions not known to contain tracts directly connected with the frontal lobe (such as the posterior corona radiata, posterior thalamic radiation, retrolenticular part of internal capsule, tapetum, body and splenium of corpus callosum). The widespread loss in the integrity of WM tissue is mainly located in the parietal lobe and related to IQ in dyskinetic CP. Unexpectedly, executive functions are only related with WM microstructure in regions containing fronto-cortical and posterior cortico-subcortical pathways, and not being specifically related to the state of fronto-striatal pathways which might be due to brain reorganization. Further studies of this nature may improve our understanding of the neurobiological bases of cognitive impairments after early brain insult.
Intracranial EEG in predicting surgical outcome in frontal lobe epilepsy.
Holtkamp, Martin; Sharan, Ashwini; Sperling, Michael R
2012-10-01
Surgery in frontal lobe epilepsy (FLE) has a worse prognosis regarding seizure freedom than anterior lobectomy in temporal lobe epilepsy. The current study aimed to assess whether intracranial interictal and ictal EEG findings in addition to clinical and scalp EEG data help to predict outcome in a series of patients who needed invasive recording for FLE surgery. Patients with FLE who had resective surgery after chronic intracranial EEG recording were included. Outcome predictors were compared in patients with seizure freedom (group 1) and those with recurrent seizures (group 2) at 19-24 months after surgery. Twenty-five patients (16 female) were included in this study. Mean age of patients at epilepsy surgery was 32.3 ± 15.6 years (range 12-70); mean duration of epilepsy was 16.9 ± 13.4 years (range 1-48). In each outcome group, magnetic resonance imaging revealed frontal lobe lesions in three patients. Fifteen patients (60%) were seizure-free (Engel class 1), 10 patients (40%) continued to have seizures (two were class II, three were class III, and five were class IV). Lack of seizure freedom was seen more often in patients with epilepsy surgery on the left frontal lobe (group 1, 13%; group 2, 70%; p = 0.009) and on the dominant (27%; 70%; p = 0.049) hemisphere as well as in patients without aura (29%; 80%; p = 0.036), whereas sex, age at surgery, duration of epilepsy, and presence of an MRI lesion in the frontal lobe or extrafrontal structures were not different between groups. Electroencephalographic characteristics associated with lack of seizure freedom included presence of interictal epileptiform discharges in scalp recordings (31%; 90%; p = 0.01). Detailed analysis of intracranial EEG revealed widespread (>2 cm) (13%; 70%; p = 0.01) in contrast to focal seizure onset as well as shorter latency to onset of seizure spread (5.8 ± 6.1 s; 1.5 ± 2.3 s; p = 0.016) and to ictal involvement of brain structures beyond the frontal lobe (23.5 ± 22.4 s; 5.8 ± 5.4 s; p = 0.025) in patients without seizure freedom. The distribution of ictal onset patterns was similar in both groups, and fast rhythmic activity in the beta to gamma range was found in 57% of seizure-free patients compared to 70% of patients with recurrent seizures. Analysis of the temporal relation between first clinical alterations and EEG seizure onset did not reveal significant differences between both groups of patients. In multivariate analysis, resection in the left hemisphere (odds ratio [OR] 12.197 95% confidence interval [95% CI] 1.33-111.832; p = 0.027) and onset of seizure spread (odds ratio [OR] 0.733, 95% CI 0.549-0.978, p = 0.035) were independent predictors of ongoing seizures. Widespread epileptogenicity as indicated by rapid onset of spread of ictal activity likely explains lack of seizure freedom following frontal resective surgery. The negative prognostic effect of surgery on the left hemisphere is less clear. Future study is needed to determine if neuronal network properties in this hemisphere point to intrinsic interhemispheric differences or if neurosurgeons are restrained by proximity to eloquent cortex. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
[Traumatic intracerebral hemorrhage developing in the apparent course].
Fujiwara, S; Nishimura, A; Yanagida, Y; Nakagawa, K; Mizoi, Y; Tatsuno, Y
1991-06-01
The victim, 52 year old man, was thrust down and hit his left occiput against the concrete floor. He was hospitalised and his comatose state continued to the death. On admission, blood pressure was 212/110 mmHg and the computed tomography scan of the head showed only an extensive right subdural hematoma. But the intracerebral hemorrhages in the right frontal, temporal and parietal lobes were recognized 10.5 hours after the trauma. A subdural hematoma was evacuated by operation on the second hospital day. The intracerebellar hemorrhage also appeared 16 hours after the trauma. Blood pressure fluctuated between 160/80 and 200/110 mmHg. The photo of CT scan at 38.5 hours after the trauma showed little subdural hematoma and new intracerebral hemorrhage located in the left temporal lobe. On the third hospital day, he was equipped with a respirator and blood pressure was between 132/84 and 242/100 mmHg. The reaction of the pupils to light disappeared on the 8th hospital day. Blood pressure gradually decreased on the 9th and 10th hospital days and he died on the 11th day. Autopsy revealed a bruise in the left occiput, a linear fracture in the frontal and left parietal bones and a small amount of subdural hematoma on the surface of the right cerebral hemisphere. Cortical contusions were found in the right frontal, the both temporal and the left parietal lobes. Intracerebral hemorrhages were found in the right frontal, the both temporal and the right parietal lobes. Intracerebellar hemorrhage was also found. Cardiac hypertrophy and atherosclerosis of the aorta were recognized. We thought that small hemorrhages which were not clearly detectable by CT scan immediately after injury may have developed into massive intracerebral and intracerebellar hemorrhages due to high blood pressure after a hospitalization.
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.
Distinct frontal regions for processing sentence syntax and story grammar.
Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y
1998-12-01
Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.
Hisada, K; Morioka, T; Nishio, S; Yamamoto, T; Fukui, M
2001-12-01
To evaluate the usefulness and limitations of magneto-encephalography (MEG) for epilepsy surgery, we compared 'interictal' epileptic spike fields on MEG with ictal electrocorticography (ECoG) using invasive chronic subdural electrodes in a patient with intractable medial temporal lobe epilepsy (MTLE) associated with vitamin K deficiency intracerebral hemorrhage. A 19-year-old male with an 8-year history of refractory complex partial seizures, secondarily generalized, and right hemispheric atrophy and porencephaly in the right frontal lobe on MRI, was studied with MEG to define the interictal paroxysmal sources based on the single-dipole model. This was followed by invasive ECoG monitoring to delineate the epileptogenic zone. MEG demonstrated two paroxysmal foci, one each on the right lateral temporal and frontal lobes. Ictal ECoG recordings revealed an ictal onset zone on the right medial temporal lobe, which was different from that defined by MEG. Anterior temporal lobectomy with hippocampectomy was performed and the patient has been seizure free for two years. Our results indicate that interictal MEG does not always define the epileptogenic zone in patients with MTLE.
Henkin, Yael; Kishon-Rabin, Liat; Tatin-Schneider, Simona; Urbach, Doron; Hildesheimer, Minka; Kileny, Paul R
2004-12-01
The current preliminary report describes the utilization of low-resolution electromagnetic tomography (LORETA) in a small group of highly performing children using the Nucleus 22 cochlear implant (CI) and in normal-hearing (NH) adults. LORETA current density estimations were performed on an averaged target P3 component that was elicited by non-speech and speech oddball discrimination tasks. The results indicated that, when stimulated with tones, patients with right implants and NH adults (regardless of stimulated ear) showed enhanced activation in the right temporal lobe, whereas patients with left implants showed enhanced activation in the left temporal lobe. When stimulated with speech, patients with right implants showed bilateral activation of the temporal and frontal lobes, whereas patients with left implants showed only left temporal lobe activation. NH adults (regardless of stimulated ear) showed enhanced bilateral activation of the temporal and parietal lobes. The differences in activation patterns between patients with CI and NH subjects may be attributed to the long-term exposure to degraded input conditions which may have resulted in reorganization in terms of functional specialization. The difference between patients with right versus left implants, however, is intriguing and requires further investigation.
An, Dongmei; Dubeau, François; Gotman, Jean
2015-03-01
To investigate whether specific frontal regions have a tendency to generate widespread bilateral synchronous discharges (WBSDs) and others focal spikes and to determine the regions most involved when WBSDs occur; to assess the relationships between the extent of electroencephalography (EEG) discharges and the extent of metabolic changes measured by EEG/functional magnetic resonance imaging (fMRI). Thirty-seven patients with interictal epileptic discharges (IEDs) with frontocentral predominance underwent EEG/fMRI. Patients were divided into a Focal (20 patients) group with focal frontal spikes and a WBSD group (17 patients). Maps of hemodynamic responses related to IEDs were compared between the two groups. The mean number ± SD of IEDs in the Focal group was 137.5 ± 38.1 and in the WBSD group, 73.5 ± 16.6 (p = 0.07). The volume of hemodynamic responses in the WBSD group was significantly larger than in the Focal group (mean, 243.3 ± 41.1 versus 114.8 ± 27.4 cm(3), p = 0.01). Maximum hemodynamic responses occurred in both groups in the following regions: dorsolateral prefrontal, mesial prefrontal, cingulate, and supplementary motor cortices. Maxima in premotor and motor cortex, frontal operculum, frontopolar, and orbitofrontal regions were found only in the Focal group, and maxima in thalamus and caudate only occurred in the WBSD group. Thalamic responses were significantly more common in the WBSD group (14/17) than in the Focal group (7/20), p = 0.004. Deactivation in the default mode network was significantly more common in the WBSD group (14/17) than in the Focal group (10/20), p = 0.04. The spatial distribution and extent of blood oxygen level-dependent (BOLD) responses correlate well with electrophysiologic changes. Focal frontal spikes and WBSDs are not region specific in the frontal lobe, and the same frontal region can generate focal and generalized discharges. This suggests that widespread discharges reflect widespread epileptogenicity rather than a focal discharge located in a region favorable to spreading. The thalamus plays an important role in bilateral synchronization. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
The functional neuroanatomy of language
NASA Astrophysics Data System (ADS)
Hickok, Gregory
2009-09-01
There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.
Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark
2015-01-01
Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363
Parametric fMRI analysis of visual encoding in the human medial temporal lobe.
Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P
1999-01-01
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.
Alichniewicz, K. K.; Brunner, F.; Klünemann, H. H.; Greenlee, M. W.
2013-01-01
Performance on tasks that require saccadic inhibition declines with age and altered inhibitory functioning has also been reported in patients with Alzheimer's disease. Although mild cognitive impairment (MCI) is assumed to be a high-risk factor for conversion to AD, little is known about changes in saccadic inhibition and its neural correlates in this condition. Our study determined whether the neural activation associated with saccadic inhibition is altered in persons with amnestic mild cognitive impairment (aMCI). Functional magnetic resonance imaging (fMRI) revealed decreased activation in parietal lobe in healthy elderly persons compared to young persons and decreased activation in frontal eye fields in aMCI patients compared to healthy elderly persons during the execution of anti-saccades. These results illustrate that the decline in inhibitory functions is associated with impaired frontal activation in aMCI. This alteration in function might reflect early manifestations of AD and provide new insights in the neural activation changes that occur in pathological ageing. PMID:23898312
The effect of the COMT val(158)met polymorphism on neural correlates of semantic verbal fluency.
Krug, Axel; Markov, Valentin; Sheldrick, Abigail; Krach, Sören; Jansen, Andreas; Zerres, Klaus; Eggermann, Thomas; Stöcker, Tony; Shah, N Jon; Kircher, Tilo
2009-12-01
Variation in the val(158)met polymorphism of the COMT gene has been found to be associated with cognitive performance. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal areas. Given the complex modulation and functional heterogeneity of frontal lobe systems, further specification of COMT gene-related phenotypes differing in prefrontally mediated cognitive performance are of major interest. Eighty healthy individuals (54 men, 26 women; mean age 23.3 years) performed an overt semantic verbal fluency task while brain activation was measured with functional magnetic resonance imaging (fMRI). COMT val(158)met genotype was determined and correlated with brain activation measured with fMRI during the task. Although there were no differences in performance, brain activation in the left inferior frontal gyrus [Brodmann area 10] was positively correlated with the number of val alleles in the COMT gene. COMT val(158)met status modulates brain activation during the language production on a semantic level in an area related to executive functions.
The mirror neuron system is more active during complementary compared with imitative action.
Newman-Norlund, Roger D; van Schie, Hein T; van Zuijlen, Alexander M J; Bekkering, Harold
2007-07-01
We assessed the role of the human mirror neuron system (MNS) in complementary actions using functional magnetic resonance imaging while participants prepared to execute imitative or complementary actions. The BOLD signal in the right inferior frontal gyrus and bilateral inferior parietal lobes was greater during preparation of complementary than during imitative actions, suggesting that the MNS may be essential in dynamically coupling action observation to action execution.
Changes in spontaneous brain activity in early Parkinson's disease.
Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue
2013-08-09
Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cardiopulmonary complications during pediatric seizures: A prelude to understanding SUDEP
Singh, Kanwaljit; Katz, Eliot S.; Zarowski, Marcin; Loddenkemper, Tobias; Llewellyn, Nichelle; Manganaro, Sheryl; Gregas, Matt; Pavlova, Milena; Kothare, Sanjeev V.
2017-01-01
Summary Purpose Sudden unexpected death in epilepsy (SUDEP) is an important, unexplained cause of death in epilepsy. Role of cardiopulmonary abnormalities in the pathophysiology of SUDEP is unclear in the pediatric population. Our objective was to assess cardiopulmonary abnormalities during epileptic seizures in children, with the long-term goal of identifying potential mechanisms of SUDEP. Methods We prospectively recorded cardiopulmonary functions using pulse-oximetry, electrocardiography (ECG), and respiratory inductance plethysmography (RIP). Logistic regression was used to evaluate association of cardiorespiratory findings with seizure characteristics and demographics. Key Findings We recorded 101 seizures in 26 children (average age 3.9 years). RIP provided analyzable data in 78% and pulse-oximetry in 63% seizures. Ictal central apnea was more prevalent in patients with younger age (p = 0.01), temporal lobe (p < 0.001), left-sided (p < 0.01), symptomatic generalized (p = 0.01), longer duration seizures (p < 0.0002), desaturation (p < 0.0001), ictal bradycardia (p < 0.05), and more antiepileptic drugs (AEDs; p < 0.01), and was less prevalent in frontal lobe seizures (p < 0.01). Ictal bradypnea was more prevalent in left-sided (p < 0.05), symptomatic generalized seizures (p < 0.01), and in brain magnetic resonance imaging (MRI) lesions (p < 0.1). Ictal tachypnea was more prevalent in older-age (p = 0.01), female gender (p = 0.05), frontal lobe (p < 0.05), right-sided seizures (p < 0.001), fewer AEDs (p < 0.01), and less prevalent in lesional (p < 0.05) and symptomatic generalized seizures (p < 0.05). Ictal bradycardia was more prevalent in male patients (p < 0.05) longer duration seizures (p < 0.05), desaturation (p = 0.001), and more AEDs (p < 0.05), and was less prevalent in frontal lobe seizures (p = 0.01). Ictal and postictal bradycardia were directly associated (p < 0.05). Desaturation was more prevalent in longer-duration seizures (p < 0.0001), ictal apnea (p < 0.0001), ictal bradycardia (p = 0.001), and more AEDs (p = 0.001). Significance Potentially life-threatening cardiopulmonary abnormalities such as bradycardia, apnea, and hypoxemia in pediatric epileptic seizures are associated with predictable patient and seizure characteristics, including seizure subtype and duration. PMID:23731396
Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging
Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice
2012-01-01
Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800
Episodic memory, semantic memory, and amnesia.
Squire, L R; Zola, S M
1998-01-01
Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.
Kim, Woo Jin; Paik, Nam-Jong
2014-01-01
Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the specific areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemiparesis to define global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the significantly involved anatomical lesions were as follows: frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less significantly involved. This study is the first to demonstrate the heterogeneous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images. PMID:25657725
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Agbahiwe, Harold; Rashid, Arif; Horska, Alena; Mahone, E Mark; Lin, Doris; McNutt, Todd; Cohen, Kenneth; Redmond, Kristin; Wharam, Moody; Terezakis, Stephanie
2017-01-01
Cranial radiation therapy (RT) is an important component in the treatment of pediatric brain tumors. However, it can result in long-term effects on the developing brain. This prospective study assessed the effects of cranial RT on cerebral, frontal lobe, and temporal lobe volumes and their correlation with higher cognitive functioning. Ten pediatric patients with primary brain tumors treated with cranial RT and 14 age- and sex-matched healthy children serving as controls were evaluated. Quantitative magnetic resonance imaging and neuropsychological assessments (language, memory, auditory and visual processing, and vocabulary) were performed at the baseline and 6, 15, and 27 months after RT. The effects of age, the time since RT, and the cerebral RT dose on brain volumes and neuropsychological performance were analyzed with linear mixed effects model analyses. Cerebral volume increased significantly with age in both groups (P = .01); this increase in volume was more pronounced in younger children. Vocabulary performance was found to be significantly associated with a greater cerebral volume (P = .05) and a lower RT dose (P = .003). No relation was observed between the RT dose and the cerebral volume. There was no difference in the corresponding neuropsychological tests between the 2 groups. This prospective study found significant relations among the RT dose, cerebral volumes, and rate of vocabulary development among children receiving RT. The results of this study provide further support for clinical trials aimed at reducing cranial RT doses in the pediatric population. Cancer 2017;161-168. © 2016 American Cancer Society. © 2016 American Cancer Society.
DTI-measured white matter abnormalities in adolescents with Conduct Disorder
Haney-Caron, Emily; Caprihan, Arvind; Stevens, Michael C.
2013-01-01
Emerging research suggests that antisocial behavior in youth is linked to abnormal brain white matter microstructure, but the extent of such anatomical connectivity abnormalities remain largely untested because previous Conduct Disorder (CD) studies typically have selectively focused on specific frontotemporal tracts. This study aimed to replicate and extend previous frontotemporal diffusion tensor imaging (DTI) findings to determine whether noncomorbid CD adolescents have white matter microstructural abnormalities in major white matter tracts across the whole brain. Seventeen CD-diagnosed adolescents recruited from the community were compared to a group of 24 non-CD youth which did not differ in average age (12–18) or gender proportion. Tract-based spatial statistics (TBSS) fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) measurements were compared between groups using FSL nonparametric two-sample t test, clusterwise whole-brain corrected, p<.05. CD FA and AD deficits were widespread, but unrelated to gender, verbal ability, or CD age of onset. CD adolescents had significantly lower FA and AD values in frontal lobe and temporal lobe regions, including frontal lobe anterior/superior corona radiata, and inferior longitudinal and fronto-occpital fasciculi passing through the temporal lobe. The magnitude of several CD FA deficits was associated with number of CD symptoms. Because AD, but not RD, differed between study groups, abnormalities of axonal microstructure in CD rather than myelination are suggested. This study provides evidence that adolescent antisocial disorder is linked to abnormal white matter microstructure in more than just the uncinate fasciulcus as identified in previous DTI studies, or frontotemporal brain structures as suggested by functional neuroimaging studies. Instead, neurobiological risk specific to antisociality in adolescence is linked to microstructural abnormality in numerous long-range white matter connections among many diverse different brain regions. PMID:24139595
Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia.
Li, Tao; Wang, Qiang; Zhang, Jie; Rolls, Edmund T; Yang, Wei; Palaniyappan, Lena; Zhang, Lu; Cheng, Wei; Yao, Ye; Liu, Zhaowen; Gong, Xiaohong; Luo, Qiang; Tang, Yanqing; Crow, Timothy J; Broome, Matthew R; Xu, Ke; Li, Chunbo; Wang, Jijun; Liu, Zhening; Lu, Guangming; Wang, Fei; Feng, Jianfeng
2017-03-01
Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sign language processing and the mirror neuron system.
Corina, David P; Knapp, Heather
2006-05-01
In this paper we review evidence for frontal and parietal lobe involvement in sign language comprehension and production, and evaluate the extent to which these data can be interpreted within the context of a mirror neuron system for human action observation and execution. We present data from three literatures--aphasia, cortical stimulation, and functional neuroimaging. Generally, we find support for the idea that sign language comprehension and production can be viewed in the context of a broadly-construed frontal-parietal human action observation/execution system. However, sign language data cannot be fully accounted for under a strict interpretation of the mirror neuron system. Additionally, we raise a number of issues concerning the lack of specificity in current accounts of the human action observation/execution system.
An uncommon case of random fire-setting behavior associated with Todd paralysis: a case report.
Kanehisa, Masayuki; Morinaga, Katsuhiko; Kohno, Hisae; Maruyama, Yoshihiro; Ninomiya, Taiga; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Yoshikawa, Tomoya; Akiyoshi, Jotaro
2012-08-31
The association between fire-setting behavior and psychiatric or medical disorders remains poorly understood. Although a link between fire-setting behavior and various organic brain disorders has been established, associations between fire setting and focal brain lesions have not yet been reported. Here, we describe the case of a 24-year-old first time arsonist who suffered Todd's paralysis prior to the onset of a bizarre and random fire-setting behavior. A case of a 24-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory disturbances with leg weakness. A video-EEG recording demonstrated a close relationship between the focal motor impairment and a clear-cut epileptic ictal discharge involving the bilateral motor cortical areas. The SPECT result was statistically analyzed by comparing with standard SPECT images obtained from our institute (easy Z-score imaging system; eZIS). eZIS revealed hypoperfusion in cingulate cortex, basal ganglia and hyperperfusion in frontal cortex,. A neuropsychological test battery revealed lower than normal scores for executive function, attention, and memory, consistent with frontal lobe dysfunction. The fire-setting behavior and Todd's paralysis, together with an unremarkable performance on tests measuring executive function fifteen months prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The case describes a rare and as yet unreported association between random, impulse-driven fire-setting behavior and damage to the brain and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism.