Sample records for frp adhesive lap

  1. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  2. Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60.

    PubMed

    Burkholder, Kristin M; Bhunia, Arun K

    2010-12-01

    Listeria monocytogenes interaction with the intestinal epithelium is a key step in the infection process. We demonstrated that Listeria adhesion protein (LAP) promotes adhesion to intestinal epithelial cells and facilitates extraintestinal dissemination in vivo. The LAP receptor is a stress response protein, Hsp60, but the precise role for the LAP-Hsp60 interaction during Listeria infection is unknown. Here we investigated the influence of physiological stressors and Listeria infection on host Hsp60 expression and LAP-mediated bacterial adhesion, invasion, and transepithelial translocation in an enterocyte-like Caco-2 cell model. Stressors such as heat (41°C), tumor necrosis factor alpha (TNF-α) (100 U), and L. monocytogenes infection (10(4) to 10(6) CFU/ml) significantly (P < 0.05) increased plasma membrane and intracellular Hsp60 levels in Caco-2 cells and consequently enhanced LAP-mediated L. monocytogenes adhesion but not invasion of Caco-2 cells. In transepithelial translocation experiments, the wild type (WT) exhibited 2.7-fold more translocation through Caco-2 monolayers than a lap mutant, suggesting that LAP is involved in transepithelial translocation, potentially via a paracellular route. Short hairpin RNA (shRNA) suppression of Hsp60 in Caco-2 cells reduced WT adhesion and translocation 4.5- and 3-fold, respectively, while adhesion remained unchanged for the lap mutant. Conversely, overexpression of Hsp60 in Caco-2 cells enhanced WT adhesion and transepithelial translocation, but not those of the lap mutant. Furthermore, initial infection with a low dosage (10(6) CFU/ml) of L. monocytogenes increased plasma membrane and intracellular expression of Hsp60 significantly, which rendered Caco-2 cells more susceptible to subsequent LAP-mediated adhesion and translocation. These data provide insight into the role of LAP as a virulence factor during intestinal epithelial infection and pose new questions regarding the dynamics between the host stress response

  3. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP

  4. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  5. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  6. Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters

    DTIC Science & Technology

    2012-03-01

    versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach

  7. The engineering of construction specifications for externally bonded FRP composites

    NASA Astrophysics Data System (ADS)

    Yang, Xinbao

    This dissertation, consisting of six technical papers, presents the results of research on the theme of developing engineering and the construction specifications for externally bonded FRP composites. For particular, the work focuses on three critical aspects of the performance of FRP systems: fiber misalignment, corner radius, and lap splice length. Based on both experimental and theoretical investigations, the main contribution of this work is the development of recommendations on fiber misalignment limit, minimum corner radius, lap splice length to be used as guidance in the construction practice of FRP strengthening of concrete structures. The first three papers focus on the strength and stiffness degradation of CFRP laminates from fiber misalignment. It was concluded that misalignment affects strength more than stiffness. In practice, when all fibers in a laminate can be regarded as through fibers, it is recommended to use a reduction factor for strength and no reduction factor for stiffness to account for fiber misalignment. Findings from concrete beams strengthened with misaligned CFRP laminates verified these recommendations. The fourth and fifth papers investigate the effect of corner radius on the mechanical properties of CFRP laminates wrapped around a rectangular cross section. A unique reusable test device was fabricated to determine fiber stress and radial stress of CFRP laminates with different corner radii. Comparison performed with finite element analyses shows that the test method and the reusable device were viable and the stress concentration needs to be considered in FRP laminate wrapped corners. A minimum of 1.0 in. corner radius was recommended for practice. The sixth paper summarizes the research on the lap splice length of FRP laminates under static and repeated loads. Although a lap splice length of 1.5 in. is sufficient for CFRP laminates to develop the ultimate static tensile strength, a minimum of 4.0 in. is recommended in order to

  8. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  9. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  10. Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental and Workflow Protocols

    DTIC Science & Technology

    2016-06-01

    unlimited. v List of Tables Table 1 Single-lap-joint experimental parameters ..............................................7 Table 2 Survey ...Joints: Experimental and Workflow Protocols by Robert E Jensen, Daniel C DeSchepper, and David P Flanagan Approved for...TR-7696 ● JUNE 2016 US Army Research Laboratory Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental

  11. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  12. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  13. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  14. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  15. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lapmore » shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.« less

  16. Modeling delamination of FRP laminates under low velocity impact

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  17. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  18. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    DTIC Science & Technology

    2016-04-01

    Gerard Chaney, and Charles Pergantis Weapons and Materials Research Directorate, ARL Coatings, Corrosion, and Engineered Polymers Branch (CCEPB...SUBJECT TERMS single lap joint, adhesive, sample preparation, testing, database, metadata, material pedigree, ISO 16. SECURITY CLASSIFICATION OF: 17...temperature/water immersion conditioning test for lap-joint test specimens using the test tubes and convection oven method

  19. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  20. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies

    PubMed Central

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. IMPORTANCE Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene

  1. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies.

    PubMed

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W; Huang, Hongsheng; Pagotto, Franco; Lin, Min

    2016-11-15

    Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene coding for Listeria

  2. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  3. Smart FBG-based FRP anchor

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping

    2006-03-01

    FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.

  4. A Review on Strengthening Steel Beams Using FRP under Fatigue

    PubMed Central

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  5. A review on strengthening steel beams using FRP under fatigue.

    PubMed

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  6. Durability of Structural Adhesively Bonded System.

    DTIC Science & Technology

    1981-06-01

    Composites , Finite Element Method. II DURABILITY OF STRUCTURAL ADHESIVELY BONDED SYSTEMS TABLE OF CONTENTS 1. Introduction...That investigation was mainly devoted to the temperature effects in time on the mechanical behavior of fiber-reinforced plastic (FRP) composites and...ervironmental-loading history on the mechanical performance of similar FRP composites (which may serve as adherends in structural bcnded systems). That

  7. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  8. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  9. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  10. Effect of the tapered end of a FRP plate on the interfacial stresses in a strengthened beam used in civil engineering applications

    NASA Astrophysics Data System (ADS)

    Mahi, B. E.; Benrahou, K. H.; Belakhdar, Kh.; Tounsi, A.; Bedia, E. A. Adda

    2014-09-01

    The interfacial stresses of a beam strengthened with a FRP plate, which is widely employed in the civil engineering for rehabilitation and retrofitting of conventional structures, is investigated. An important feature of the reinforced beam is significant stress concentrations in the adhesive at the ends of the FRP plate. To reduce these interfacial stresses, a FRP plate with a tapered end is often used. The finite-difference method is utilized in this work to predict the distribution of interfacial stresses in beams strengthened with a FRP plate having a tapered end. Numerical results from the analysis are presented to demonstrate the advantages of using tapers in the design of strengthened beams.

  11. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  12. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  13. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  14. Support and Development of Workflow Protocols for High Throughput Single-Lap-Joint Testing-Experimental

    DTIC Science & Technology

    2013-04-01

    preparation, and presence of an overflow fillet for a high strength epoxy and ductile methacylate adhesive. A unique feature of this study was the...of expanding adhesive joint test configurations as part of the GEMS program. 15. SUBJECT TERMS single lap joint, adhesion, aluminum, epoxy ... epoxy and ductile methacylate adhesive. A unique feature of this study was the use of untrained GEMS (Gains in the Education of Mathematics and Sci

  15. FRP : Strengthened RC Structures

    NASA Astrophysics Data System (ADS)

    Teng, J. G.; Chen, J. F.; Smith, S. T.; Lam, L.

    2002-01-01

    The strengthening of reinforced concrete (RC) structures using advanced fibre-reinforced polymer (FRP) composites, and in particular the behaviour of FRP-strengthened RC structures is a topic which has become very popular in recent years. This popularity has arisen due to the need to maintain and upgrade essential infrastructure in all parts of the world, combined with the well-known advantages of FRP composites, such as good corrosion resistance and ease for site handling due to their light weight. The continuous reduction in the material cost of FRP composites has also contributed to their popularity. While a great amount of research now exists in the published literature on this topic, it is scattered in various journals and conference proceedings. This book therefore provides the first ever comprehensive, state-of-the-art summary of the existing research on FRP strengthening of RC structures, with the emphasis being on structural behaviour and strength models. The main topics covered include: Bond behaviour Flexural and shear strengthening of beams Column strengthening Flexural strengthening of slabs. For each area, the methods of strengthening are discussed, followed by a description of behaviour and failure modes and then the presentation of rational design recommendations, for direct use in practical design of FRP strengthening measures. Researchers, practicing engineers, code writers and postgraduate students in structural engineering and construction materials, as well as consulting firms, government departments, professional bodies, contracting firms and FRP material suppliers will find this an invaluable resource.

  16. [A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].

    PubMed

    Kimura, H; Teraoka, F

    1990-05-01

    Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.

  17. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  18. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  19. Review on failure prediction techniques of composite single lap joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less

  20. Abernathy's Lap

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lap in this instance is not a midriff but a tool for presision.polishing and grinding. During the Saturn V moonbooster program, Marshall Space Flight Center found a need for a better lap. The need arose from the exquisitely precise tolerances required for parts of the launch vehicle's guidance,and control system. So William J. Abernathy, a former Marshall employee, built a better lap; he invented a method for charging aluminum lap plates with diamond powder, then hard-anodizing them. The resulting lap produces a high polish on materials ranging from the softest aluminum to the hardest ceramics. It operates faster, wears longer and requires less reworking. Abernathy got NASA's permission to obtain a personal patent and he formed the one-man Abernathy Laps Co. in Huntsville, which produces a variety of laps. One of Abernathy's customers is Bell Aerospace Textron, Buffalo, which uses the laps to finish polish delicate instrument parts produced for NASA's Viking and other space programs. Says a Bell official: "Time needed (with the Abernathy lap) is a fraction of that required by conventional methods. The result is extremely accurate flatness and surface finish." Abernathy is providing laps for other manufacturing applications and for preparation of metallurgical specimens. The business is small but steady, and Abernathy plans expansion into other markets.

  1. The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends

    NASA Astrophysics Data System (ADS)

    Reza, Arash; Shishesaz, Mohammad

    2017-09-01

    The aim of this research is to study the effect of a break in the laminated composite adherends on stress distribution in the adhesively single-lap joint with viscoelastic adhesive and matrix. The proposed model involves two adherends with E-glass fibers and poly-methyl-methacrylate matrix that have been adhered to each other by phenolic-epoxy resin. The equilibrium equations that are based on shear-lag theory have been derived in the Laplace domain, and the governing differential equations of the model have been derived analytically in the Laplace domain. A numerical inverse Laplace transform, which is called Gaver-Stehfest method, has been used to extract desired results in the time domain. The results obtained at the initial time completely matched with the results of elastic solution. Also, a comparison between results obtained from the analytical and finite element models show a relatively good match. The results show that viscoelastic behavior decreases the peak of stress near the break. Finally, the effect of size and location of the break, as well as volume fraction of fibers, on the stress distribution in the adhesive layer is fully investigated.

  2. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Abd El Baky, Hussien

    --slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical

  3. Analytical and experimental study of the vibration of bonded beams with a lap joint

    NASA Technical Reports Server (NTRS)

    Rao, M. D.; Crocker, M. J.

    1990-01-01

    A theoretical model to study the flexural vibration of a bonded lap joint system is described in this paper. First, equations of motion at the joint region are derived using a differential element approach. The transverse displacements of the upper and lower beam are considered to be different. The adhesive is assumed to be linearly viscoelastic and the widely used Kelvin-Voight model is used to represent the viscoelastic behavior of the adhesive. The shear force at the interface between the adhesive and the beam is obtained from the simple bending motion equations of the two beams. The resulting equations of motion are combined with the equations of transverse vibration of the beams in the unjointed regions. These are later solved as a boundary value problem to obtain the eigenvalues and eigenvectors of the system. The model can be used to predict the natural frequencies, modal damping ratios, and mode shapes of the system for free vibration. Good agreement between numerical and experimental results was obtained for a system of graphite epoxy beams lap-jointed by an epoxy adhesive.

  4. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  5. Study on effects of different patterns and cracking for wastes FRP (used banner) wrapping on compressive strength of confined concrete

    NASA Astrophysics Data System (ADS)

    Syazani Leman, Alif; Shahidan, Shahiron; Azmi, M. A. M.; Syamir Senin, Mohamad; Ali, N.; Abdullah, S. R.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Nazri, Fadzli Mohamed

    2017-11-01

    Previous researches have shown that FRP are being introduce into wide variety of civil engineering applications. Fibre Reinforce Concrete (FRP) are also used as repairing method in concrete structures. FRP such as S-glass, AR-glass, E-glass, C-glass, and Aramid Fibre are the common material used in industry. The FRP strips provide the necessary longitudinal and hoop reinforcement. However, there are lots waste materials that can be form as fibre and used in repairing. Banner is a type of waste material fibre that can be used in repairing. In this study, banner will be used as the replacement of the common FRP. The confined concrete (cylinder) of 300mm height and 150mm diameter were cast with M35 grade concrete and tested until it is crack. Next banner are used as the wrapping along the cracking of the concrete with three different pattern that are full wrapping, two band wrapping and cross wrapping using epoxy. Epoxy is a common name for a type of strong adhesive used for sticking things together and covering surface. The objective of this study is to determine the maximum strength and the effect of different patterns wrapping of FRP (banner) on the compressive strength of confined concrete. The results are shows that banner are suitable as a replacement of material for FRP.

  6. FRP debonding monitoring using OTDR techniques

    NASA Astrophysics Data System (ADS)

    Hou, Shuang; Cai, C. S. Steve; Ou, Jinping

    2009-07-01

    Debonding failure has been reported as the dominant failure mode for FRP strengthening in flexure. This paper explores a novel debonding monitoring method for FRP strengthened structures by means of OTDR-based fiber optic technology. Interface slip as a key factor in debonding failures will be measured through sensing optic fibers, which is instrumented in the interface between FRP and concrete in the direction perpendicular to the FRP filaments. Slip in the interface will induce power losses in the optic fiber signals at the intersection point of the FRP strip and the sensing optic fiber and the signal change will be detected through OTDR device. The FRP double shear tests and three-point bending tests were conducted to verify the effectiveness of the proposed monitoring method. It is found that the early bebonding can be detected before it causes the interface failure. The sensing optic fiber shows signal changes in the slip value at about 36~156 micrometer which is beyond sensing capacity of the conventional sensors. The tests results show that the proposed method is feasible in slip measurement with high sensitivity, and would be cost effective because of the low price of sensors used, which shows its potential of large-scale applications in civil infrastructures, especially for bridges.

  7. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  8. Even between-lap pacing despite high within-lap variation during mountain biking.

    PubMed

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  9. [Development of visible-light cured FRP denture].

    PubMed

    Yu, P Y

    1990-06-01

    Acrylic denture may be fractured easily because it has a relatively poor resistance to stresses of impact, and the thick acrylic denture base also uncomforted to denture wearers. In this study, for improvement of the mechanical properties, the FRP is applied to the denture base, and try to make a thin denture base. Using the visible light-curing system, the laboratory fabrication time is saved dramatically. To develop the visible light-cured FRP denture base, with various combination of matrix resins and reinforcements, the physical properties of FRP plates were investigated first. From the results of the bending test, hardness test, and manipulation considering, the sateen weave's glasscloth was choose as the reinforcement of the prepreg. The matrix resin of Bis-GMA/UDMA/3G at 48/48/4 wt% was determined. The 3 plies glasscloth included FRP plate is 0.8 mm thickness has the maximum bending strength about 50 kgf/mm2, which is about 5 times larger than that of acrylic resin. Succeeding the study of above, the FRP denture base was fabricated by using the 0.8 mm thickness 3 plies included prepreg. This repreg is manufactured in sheet form beforehand, which is ease to manipulate at laboratory. By using the visible light curing system, it is only taken 10 min. to make a FRP denture base. The following procedures of fabricating a FRP denture is the same as metalplate denture. The visible-light cured FRP denture has some advantages such as accuracy of fit, ease of fabrication and manipulation, and only 0.8 mm thickness but has superior strength.

  10. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  11. Self-sensing concrete-filled FRP tubes using FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Hui

    2007-07-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.

  12. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    NASA Astrophysics Data System (ADS)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  13. Analytical and experimental investigation of fatigue in lap joints

    NASA Astrophysics Data System (ADS)

    Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.

    A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.

  14. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  15. Sequential lineup laps and eyewitness accuracy.

    PubMed

    Steblay, Nancy K; Dietrich, Hannah L; Ryan, Shannon L; Raczynski, Jeanette L; James, Kali A

    2011-08-01

    Police practice of double-blind sequential lineups prompts a question about the efficacy of repeated viewings (laps) of the sequential lineup. Two laboratory experiments confirmed the presence of a sequential lap effect: an increase in witness lineup picks from first to second lap, when the culprit was a stranger. The second lap produced more errors than correct identifications. In Experiment 2, lineup diagnosticity was significantly higher for sequential lineup procedures that employed a single versus double laps. Witnesses who elected to view a second lap made significantly more errors than witnesses who chose to stop after one lap or those who were required to view two laps. Witnesses with prior exposure to the culprit did not exhibit a sequential lap effect.

  16. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  17. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  18. Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

  19. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  20. Evaluation of adhesive materials used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1995-01-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  1. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 1 - mechanical properties of FRP piles.

    DOT National Transportation Integrated Search

    2014-10-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 1, Mechanical Properties of FRP Piles. : Mechanical and geotechnic...

  2. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 3 - FRP composite pile flexural testing.

    DOT National Transportation Integrated Search

    2014-06-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 3, FRP Composite Pile Flexural Testing. : Hollow and concrete filled...

  3. Advanced Fast Curing Adhesives for Adverse Conditions

    DTIC Science & Technology

    2007-07-01

    experimentation. The catalyst is composed of 50% phthalate esters and 50% trivalent organic chromium complexes (15). 2.3 Aluminum Lap Plates...adhesives (2). Tape adhesives never provide weld - strength bonds and often have low tackiness when used underwater. Ultraviolet and visible light curable...diisocyanate and diphenylmethane-4, 4 diisocyanate (MDI) (12). The low viscosity ethyl cyanoacrylate Scotch- Weld CA40 was obtained from 3M of St

  4. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  5. Bonded joint and method. [for reducing peak shear stress in adhesive bonds

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B. (Inventor)

    1974-01-01

    An improved joint is described for reducing the peak shear stress in adhesive bonds when adhesives are used to bond two materials which are in a lapped relationship and which differ in value of modulus of elasticity. An insert placed between the adhesive and one of the two materials acts to cushion the discontinuity of material stiffness thereby reducing the peak shear stress in the adhesive bond.

  6. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    NASA Astrophysics Data System (ADS)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  7. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 6 - FRP composite pile axial compression testing.

    DOT National Transportation Integrated Search

    2015-04-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 6, FRP Composite Pile Axial Compression : Testing. : Hollow and conc...

  8. Dynamic strain distribution of FRP plate under blast loading

    NASA Astrophysics Data System (ADS)

    Saburi, T.; Yoshida, M.; Kubota, S.

    2017-02-01

    The dynamic strain distribution of a fiber re-enforced plastic (FRP) plate under blast loading was investigated using a Digital Image Correlation (DIC) image analysis method. The testing FRP plates were mounted in parallel to each other on a steel frame. 50 g of composition C4 explosive was used as a blast loading source and set in the center of the FRP plates. The dynamic behavior of the FRP plate under blast loading were observed by two high-speed video cameras. The set of two high-speed video image sequences were used to analyze the FRP three-dimensional strain distribution by means of DIC method. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile using a strain gauge and it was shown that the strain profile under the blast loading by DIC method is quantitatively accurate.

  9. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  10. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  11. The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.

  12. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  13. Applications of FRP-OFBG sensors on bridge cables

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping

    2005-05-01

    It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.

  14. Notebook computer use on a desk, lap and lap support: effects on posture, performance and comfort.

    PubMed

    Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T

    2010-01-01

    This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6 degrees and wrist extension 8 degrees . Shoulder flexion and ulnar deviation decreased 13 degrees and 9 degrees , respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4 degrees , neck flexion 2 degrees , and wrist extension 9 degrees. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt. STATEMENT OF RELEVANCE: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries.

  15. Elimination of deck joints using a corrosion resistant FRP approach

    NASA Astrophysics Data System (ADS)

    Aleti, Ashok Reddy

    The research presented herein describes the development of durable link slabs for jointless bridge decks based on using FRP grid for reinforcement. Specifically, the ductility of the FRP material was utilized to accommodate bridge deck deformations imposed by girder deflection, temperature variations, and concrete shrinkage. It would also provide a solution to a number of deterioration problems associated with bridge deck joints. The design concept of the link slabs was then examined to form the basis of design for FRP grid link slabs. Improved design of FRP grid link slab/concrete deck slab interface was confirmed in the numerical analysis. The mechanical properties between the FRP grid and concrete were evaluated. The behavior of the link slab was investigated and confirmed for durability. The results indicated that the technique would allow simultaneous achievement of structural need (lower flexural stiffness of the link slab approaching the behavior of a hinge) and durability need of the link slab. Also, the development length results confirm that the bond between the FRP grid and the concrete was highly improved. The overall investigation supports the contention that durable jointless concrete bridge decks may be designed and constructed with FRP grid link slabs. It is recommended that the link slab technique be used during new construction of the bridge decks and in repair and retrofit of the bridge decks.

  16. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  17. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  18. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  19. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  20. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  1. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

  2. An experimental study on the shear strength of FRP perfobond shear connector

    NASA Astrophysics Data System (ADS)

    Gwon, S. C.; Kim, S. H.; Yoon, S. J.; Choi, C. W.

    2018-06-01

    In this study, push-out tests were conducted to investigate shear behaviour of FRP perfobond shear connector. The parameters influencing shear capacity of FRP perfobond shear connector are concrete dowel effect, shear resistance effect of the laterally reinforced FRP re- bar, and frictional effect between shear connector and concrete. The specimens were designed to consider these parameters. The specimens coated with sand to increase frictional resistance between the FRP re-bar and concrete. Based on the test results and the parameters, new equation was suggested to predict shear strength of FRP perfobond shear connectors. The predicted results and the experimental results were compared to check the feasibility of prediction.

  3. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    PubMed Central

    Barra, Giuseppina; Vertuccio, Luigi; Vietri, Umberto; Naddeo, Carlo; Guadagno, Liberata

    2017-01-01

    The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints. PMID:28946691

  4. Splicing and local reinforcement of concrete filled FRP tubes.

    DOT National Transportation Integrated Search

    2014-01-01

    This report includes fulfillment of Task 1 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 1 investigates and develops a feasible solution for splicing the concrete filled FRP : tubes. This w...

  5. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  6. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  7. Single crystal diamond lapping procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, R.A.

    A facility capable of resharpening quality cutting edges on single crystal diamond cutting tools was needed as the demand in precision machining of special optical surfaces became a common occurrence here at Lawrence Livermore National Laboratory. A specially constructed lapping machine using an air bearing spindle was built to achieve the required edge quality. The basic design for this lap was taken out of a technical report by W.L. Duke and R.T. Lovell of Oak Ridge Y-12 Plant Union Carbide Corp. We have also purchased two commercially built lapping machines recommended to us by Mr. Cory A. Knottenbelt, formerly ofmore » R.C.A. Diamond Lapping Facility, in Indianapolis, Indiana, now doing state-of-the-art polishing and relapping at LLNL facilities.« less

  8. A development of visible light cured FRP plate denture.

    PubMed

    Kimura, H; Teraoka, F

    1990-12-01

    A FRP denture base, which was made from visible light curing prepreg, was developed. The visible light cured FRP denture base had advantages with respect to an adequate strength, bonding strength of acrylic base resin, esthetic properties and ease to manipulation. The matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 was determined from the results of the bending test and manipulation processing. The sateen weave's glasscloth was used for the reinforcement of the prepreg. The adaptability of the FRP plate denture was better than that of the resin base denture constructed with microwave heating.

  9. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  10. High temperature adhesives for bonding Kapton

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.

    1978-01-01

    Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.

  11. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  12. NR-150B2 adhesive development

    NASA Technical Reports Server (NTRS)

    Blatz, P. S.

    1978-01-01

    Adhesive based polyimide solutions which are more easily processed than conventional aromatic polyimide systems and show potential for use for extended times at 589K are discussed. The adhesive system is based on a solution containing diglyme as the solvent and 2,2 bis(3',4'-dicarboxyphenyl)hexafluoropropane, paraphenylenediamine, and oxydianiline. The replacement of N-methylpyrrolidone with diglyme as the solvent was found to improve the adhesive strengths of lap shear samples and simplify the processing conditions for bonding both titanium and graphite fiber/polyimide matrix resin composites. Information was obtained on the effects of various environments including high humidity, immersion in jet fuel and methylethylketone on aluminum filled adhesive bonds. The adhesive was also evaluated in wide area bonds and flatwise tensile specimens using titanium honeycomb and composite face sheets. It was indicated that the developed adhesive system has the potential for use in applications requiring long term exposure to at least 589K (600 F).

  13. Nde of Frp Wrapped Columns Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.

    2008-02-01

    This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.

  14. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  15. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets

    NASA Astrophysics Data System (ADS)

    Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E.

    2014-11-01

    The current study has two objectives: to validate the ability of the Atena finite-element software to estimate the deformations of reinforced concrete (RC) elements strengthened with fiber-reinforced polymer (FRP) sheets and to assess the effect of FRP-to-concrete bond strength on the results of numerical simulation. It is shown that the bond strength has to be selected according to the overall stiffness of the composite element. The numerical results found are corroborated experimentally by tensile tests of RC elements strengthened with basalt FRP sheets.

  16. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  17. Elimination of deck joints using a corrosion resistant FRP approach.

    DOT National Transportation Integrated Search

    2009-09-01

    The research presented herein describes the development of durable link slabs for jointless bridge decks based on : using a fiber reinforced polymer (FRP) grid for reinforcement. Specifically the ductility of the FRP material was : utilized to accomm...

  18. Elimination of deck joints using a corrosion resistant FRP approach.

    DOT National Transportation Integrated Search

    2009-09-01

    The research presented herein describes the development of durable link slabs for jointless bridge decks based on using a fiber reinforced polymer (FRP) grid for reinforcement. Specifically the ductility of the FRP material was utilized to accommodat...

  19. Study on RC beams using BOTDA(R)-FRP-OF technique

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Huang, Ying; Ou, Jinping

    2008-03-01

    Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, two RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.

  20. Design and Fabrication of FRP Truck Trailer Side Racks.

    DTIC Science & Technology

    1983-08-01

    0.100 in. All contact surfaces in the mold were sealed with white shellac and finished with five coats of carnauba wax . The completed mold is shown in...Figure 10. 15 II Figure 10. FRP prototype mold. FRP molding procedures were duplicated for each part produced. In general, the waxed mold was coated

  1. Evaluation of adhesive materials used on the Long Duration Exposure Facility. Report, October 1989-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Keough, B.K.; Pippin, H.G.

    1995-03-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIGmore » investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF`s external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.« less

  2. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  3. Study on the quality of FRP fishing vessel based on improved Fishbone Chart

    NASA Astrophysics Data System (ADS)

    Sui, J. H.; Yu, Y. F.; Du, Q. F.; Jiang, D. W.

    2018-01-01

    The construction quality of FRP fishing vessels influences their production, use and industry development. In order to explore the factors that affect the construction quality of FRP fishing vessels, key factors affecting the construction quality of FRP fishing vessels are determined based on the quality problems of FRP fishing vessels constructed. The improved Fishbone Chart is used to analyze the eight factors of “human, machine, material, process, environment, inspection, design and information”. Taking the factors that affect the construction quality of FRP fishing vessels as the central target, the eight influencing factors were condensed into five aspects and a composite Fishbone Chart is drawn. The Fishbone Chart is used as the basic model, the influencing factors are sorted, screened and discriminated, and the system model convenient for construction site management and control is established. Finally, the causes of poor construction of FRP fishing vessels are analyzed and discussed, and relevant suggestions are put forward.

  4. Processing study of a high temperature adhesive

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1984-01-01

    An adhesive-bonding process cycle study was performed for a polyimidesulphone. The high molecular weight, linear aromatic system possesses properties which make it attractive as a processable, low-cost material for elevated temperature applications. The results of a study to better understand the parameters that affect the adhesive properties of the polymer for titanium alloy adherends are presented. These include the tape preparation, the use of a primer and press and simulated autoclave processing conditions. The polymer was characterized using Fourier transform infrared spectroscopy, glass transition temperature determination, flow measurements, and weight loss measurements. The lap shear strength of the adhesive was used to evaluate the effects of the bonding process variations.

  5. Development of a nondestructive evaluation method for FRP bridge decks

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  6. Experimental investigation of RC beams using BOTDA(R)-FRP-OF

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; He, Jianping; Huang, Ying; Ou, Jinping

    2008-04-01

    Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis (Reflectometer) sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, five RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges and Fiber Bragg Grating (FBG) sensors, respectively. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.

  7. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    PubMed

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  8. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    PubMed Central

    Liu, Zhiping; Li, Zongchen

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects. PMID:29053614

  9. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  10. LSA SAF Meteosat FRP products - Part 1: Algorithms, product contents, and analysis

    NASA Astrophysics Data System (ADS)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R.

    2015-11-01

    Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary EO data, often with the aim of supporting biomass burning fuel consumption and trace gas and aerosol emission calculations. Such Fire Radiative Power (FRP) products are generated operationally from Meteosat by the Land Surface Analysis Satellite Applications Facility (LSA SAF) and are available freely every 15 min in both near-real-time and archived form. These products map the location of actively burning fires and characterize their rates of thermal radiative energy release (FRP), which is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the full spatio-temporal resolution FRP data set derivable from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) imager onboard Meteosat at a 3 km spatial sampling distance (decreasing away from the west African sub-satellite point), whilst the FRP-GRID product is an hourly summary at 5° grid resolution that includes simple bias adjustments for meteorological cloud cover and regional underestimation of FRP caused primarily by underdetection of low FRP fires. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) detection algorithm used to deliver these products and detail the methods used to generate the atmospherically corrected FRP and per-pixel uncertainty metrics. Using SEVIRI scene simulations and real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe certain sensor and data pre-processing characteristics that influence SEVIRI's active fire detection and FRP measurement capability, and use these to specify parameters in the FTA algorithm and to make recommendations

  11. Pressure variation of developed lapping tool on surface roughness

    NASA Astrophysics Data System (ADS)

    Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.

    2018-01-01

    Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.

  12. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  13. Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lundgren, Eric

    2006-01-01

    A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.

  14. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  15. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    DOT National Transportation Integrated Search

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  16. Repair and retrofit of concrete bridge girders using hybrid FRP sheets.

    DOT National Transportation Integrated Search

    2012-02-01

    The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen potentially non-ductile flexural : members. Based on tension tests of fiber-reinforced polymer (FRP) rovings and sheets, as well as theoretical : research on hybrid FRP, ...

  17. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos.

    PubMed

    Lin, Chung-Tien; Lin, Yu-Ting; Kuo, Tzong-Fu

    2007-08-01

    The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.

  18. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  19. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  20. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 2 - FRP composite pile driving at the Richmond-Dresden bridge over the Kennebec River.

    DOT National Transportation Integrated Search

    2014-01-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 2, FRP Composite Pile Driving at the : Richmond-Dresden Bridge over ...

  1. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  2. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  3. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  4. Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads

    NASA Astrophysics Data System (ADS)

    Kang, J.; Yi, Z. Z.; Choi, S. G.

    2017-12-01

    This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.

  5. Flexural behaviour of RCC beams with externally bonded FRP

    NASA Astrophysics Data System (ADS)

    Vignesh, S. Arun; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The increasing use of carbon and glass fibre reinforced polymer (FRP) sheets for strengthening existing reinforced concrete beams has generated considerable interest in understanding the behavior of the FRP sheets when subjected to bending. The study on flexure includes various parameters like percentage of increase in strength of the member due to the externally bonded Fiber reinforced polymer, examining the crack patterns, reasons of debonding of the fibre from the structure, scaling, convenience of using the fibres, cost effectiveness etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an EB-FRP concrete beam by studying the various parameters. Deflection control may become as important as flexural strength for the design of FRPreinforced concrete structures. A numerical model is created using FEM software and the results are compared with that of the experiment.

  6. Design and construction guidelines for strengthening bridges using fiber reinforced polymers (FRP).

    DOT National Transportation Integrated Search

    2014-09-01

    This research concerns the development of guidelines : for the design and use of externally-bonded FRP : strengthening systems on bridges in Michigan. Si : x representative international FRP-related guidelines : were analyzed and compared for applica...

  7. Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments.

    PubMed

    Gill, Simrone K; Roohpour, Nima; Topham, Paul D; Tighe, Brian J

    2017-11-01

    Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels. This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment. Copyright © 2017 Acta Materialia

  8. Repair & Strengthening of Distressed/Damaged Ends of Prestressed Beams with FRP Composites

    DOT National Transportation Integrated Search

    2018-02-01

    Over the past few decades, fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient material used for the repair and retrofit of concrete infrastructures. FRP can be applied to concrete as either externally bonded laminat...

  9. Repairing/strengthening of bridges with post-tensioned FRP strands and performance evaluation.

    DOT National Transportation Integrated Search

    2008-06-01

    The proposed project is to take advantage of some new developments in bridge engineering to apply fiber reinforced polymers (FRP) post-tensioning strands on a selected structure. The use of externally post-tensioned FRP strands to repair/strengthen b...

  10. Concrete Open-Wall Systems Wrapped with FRP under Torsional Loads

    PubMed Central

    Mancusi, Geminiano; Feo, Luciano; Berardi, Valentino P.

    2012-01-01

    The static behavior of reinforced concrete (RC) beams plated with layers of fiber-reinforced composite material (FRP) is widely investigated in current literature, which deals with both its numerical modeling as well as experiments. Scientific interest in this topic is explained by the increasing widespread use of composite materials in retrofitting techniques, as well as the consolidation and upgrading of existing reinforced concrete elements to new service conditions. The effectiveness of these techniques is typically influenced by the debonding of the FRP at the interface with concrete, where the transfer of stresses occurs from one element (RC member) to the other (FRP strengthening). In fact, the activation of the well-known premature failure modes can be regarded as a consequence of high peak values of the interfacial interactions. Until now, typical applications of FRP structural plating have included cases of flexural or shear-flexural strengthening. Within this context, the present study aims at extending the investigation to the case of wall-systems with open cross-section under torsional loads. It includes the results of some numerical analyses carried out by means of a finite element approximation.

  11. Laparoscopic Skills Are Improved With LapMentor™ Training

    PubMed Central

    Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.

    2006-01-01

    Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance

  12. Push-out tests and evaluation of FRP perfobond rib shear connectors performance

    NASA Astrophysics Data System (ADS)

    Kolpasky, Ludvik; Ryjacek, Pavel

    2017-09-01

    The behavioural characteristics of FRP (fibre-reinforced polymer) perfobond rib shear connector was examined through push-out tests in order to verify the applicability for pedestrian bridge structure. The aim of this study is to determine interaction between high performance concrete slab and handmade FRP plate which represent web of the composite beam. Combination of these modern materials leads to structural system with both great load bearing capacity and also sufficient flexural stiffness of the composite element. Openings cut into the GFRP plate at a variable spacing allow GFRP reinforcement bars to be inserted to act as shear studs. Hand lay-up process can increase suitable properties of FRP for connection by perfobond rib shear connectors. In this study, three push-out tests on fiber-reinforced polymer were performed to investigate their shear behaviour. The results of the push-out tests on FRP perfobond rib shear connector indicates great promise for application in full scale structures.

  13. A model for predicting the shear bearing capacity of FRP-strengthened beams

    NASA Astrophysics Data System (ADS)

    Sas, G.; Carolin, A.; Täljsten, B.

    2008-05-01

    The shear failure of reinforced concrete beams needs more attention than the bending failure since no or only small warning precedes the failure. For this reason, it is of utmost importance to understand the shear bearing capacity and also to be able to undertake significant rehabilitation work if necessary. In this paper, a design model for the shear strengthening of concrete beams by using fiber-reinforced polymers (FRP) is presented, and the limitations of the truss model analogy are highlighted. The fracture mechanics approach is used in analyzing the bond behavior between the FRP composites and concrete. The fracture energy of concrete and the axial rigidity of the FRP are considered to be the most important parameters. The effective strain in the FRP when the debonding occurs is determined. The limitations of the anchorage length over the cross section are analyzed. A simple iterative design method for the shear debonding is finally proposed.

  14. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  15. Deformation measurement for a rotating deformable lap based on inverse fringe projection

    NASA Astrophysics Data System (ADS)

    Liao, Min; Zhang, Qican

    2015-03-01

    The active deformable lap (also namely stressed lap) is an efficient polishing tool in optical manufacturing. To measure the dynamic deformation caused by outside force on a deformable lap is important and helpful to the opticians to ensure the performance of a deformable lap as expected. In this paper, a manual deformable lap was designed to simulate the dynamic deformation of an active stressed lap, and a measurement system was developed based on inverse projected fringe technique to restore the 3D shape. A redesigned inverse fringe has been projected onto the surface of the measured lap, and the deformations of the tested lap become much obvious and can be easily and quickly evaluated by Fourier fringe analysis. Compared with the conventional projection, this technique is more obvious, and it should be a promising one in the deformation measurement of the active stressed lap in optical manufacturing.

  16. Non-linear heterogeneous FE approach for FRP strengthened masonry arches

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Fedele, Roberto

    2015-12-01

    A fast and reliable non-linear heterogeneous FE approach specifically conceived for the analysis of FRP-reinforced masonry arches is presented. The approach proposed relies into the reduction of mortar joints to interfaces exhibiting a non-linear holonomic behavior, with a discretization of bricks by means of four-noded elastic elements. The FRP reinforcement is modeled by means of truss elements with elastic-brittle behavior, where the peak tensile strength is estimated by means of a consolidated approach provided by the Italian guidelines CNR-DT200 on masonry strengthening with fiber materials, where the delamination of the strip from the support is taken into account. The model is validated against some recent experimental results relying into circular masonry arches reinforced at both the intrados and the extrados. Some sensitivity analyses are conducted varying the peak tensile strength of the trusses representing the FRP reinforcement.

  17. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    DTIC Science & Technology

    2010-07-01

    1 BLAST DESIGN OF REINFORCED CONCRETE AND MASONRY COMPONENTS RETROFITTED WITH FRP Marlon L. Bazan, Ph.D. and Charles J. Oswald, P.E., Ph.D...as an alternative to traditional methods for strengthening and retrofitting concrete and masonry structures to resist blast loads. The development...and experimental validation of a methodology for modeling the response of blast loaded concrete and masonry structural components retrofitted with FRP

  18. A lapping apparatus for hard tissue sections.

    PubMed

    Malcolm, A S

    1975-02-01

    A Lapping Apparatus is described which enables sections both embedded and unembedded to be ground plano parallel within +/- 1 micron. Sections cemented to steel subplates are retained by a magnetic holder which simplifies loading and unloading. Good surface and edge finish can be obtained and only short lapping times are required.

  19. Reliability model for ductile hybrid FRP rebar using randomly dispersed chopped fibers

    NASA Astrophysics Data System (ADS)

    Behnam, Bashar Ramzi

    Fiber reinforced polymer composites or simply FRP composites have become more attractive to civil engineers in the last two decades due to their unique mechanical properties. However, there are many obstacles such as low elasticity modulus, non-ductile behavior, high cost of the fibers, high manufacturing costs, and absence of rigorous characterization of the uncertainties of the mechanical properties that restrict the use of these composites. However, when FRP composites are used to develop reinforcing rebars in concrete structural members to replace the conventional steel, a huge benefit can be achieved since FRP materials don't corrode. Two FRP rebar models are proposed that make use of multiple types of fibers to achieve ductility, and chopped fibers are used to reduce the manufacturing costs. In order to reach the most optimum fractional volume of each type of fiber, to minimize the cost of the proposed rebars, and to achieve a safe design by considering uncertainties in the materials and geometry of sections, appropriate material resistance factors have been developed, and a Reliability Based Design Optimization (RBDO), has been conducted for the proposed schemes.

  20. Lap-Dissolve Slides

    ERIC Educational Resources Information Center

    Fine, Leonard W.; And Others

    1977-01-01

    Discusses the use of lap-dissolve projection to give students pre-laboratory instruction on an upcoming experiment. In this technique, two slide projectors are operated alternately so that one visual image fades away while the next appears on the same screen area. (MLH)

  1. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  2. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a…

  3. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  4. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…

  5. An investigation of adhesive/adherend and fiber/matrix interactions. Part B: SEM/ESCA analysis of fracture surfaces

    NASA Technical Reports Server (NTRS)

    Beck, B.; Widyani, E.; Wightman, J. P.

    1983-01-01

    Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.

  6. Evaluation of high temperature structural adhesives for extended service. [supersonic cruise aircraft research

    NASA Technical Reports Server (NTRS)

    Hill, S. G.

    1981-01-01

    Eight different Ti-6Al-4V surface treatments were investigated for each of 10 candidate resins. Primers (two for each resin) were studied for appropriate cure and thickness and initial evaluation of bond joints began using various combinations of the adhesive resins and surface treatments. Surface failure areas of bonded titanium coupons were analyzed by electron microscopy and surface chemical analysis techniques. Results of surface characterization and failure analysis are described for lap shear bond joints occurring with adhesive systems consisting of: (1) LARC-13 adhesive, Pasa jell surface treatment; (2) LARC-13 adhesive, 10 volt CAA treatment; (3) PPQ adhesive, 10 volt CAA treatment; and (4) PPQ adhesive, 5 volt CAA treatment. The failure analysis concentrated on the 10,000 hr 505K (450 F) exposed specimens which exhibited adhesive failure. Environmental exposure data being generated on the PPQ-10 volt CAA and the LARC-TPI-10 volt CAA adhesive systems is included.

  7. Dextran and gelatin based photocrosslinkable tissue adhesive.

    PubMed

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Failure modes of single and multi-bolted joint in the pultruded fiber reinforced polymer composite members

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.

    2018-06-01

    In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.

  9. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  10. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns.

    DOT National Transportation Integrated Search

    2013-03-01

    In this project, a new type of confining device, a latticework of interlacing fiber reinforced polymer (FRP) ribs that are jacketed by a FRP skin, is proposed, manufactured, tested, and modeled to encase concrete cylinders. This systematic study incl...

  11. Preparation and testing of plant seed meal-based wood adhesives.

    PubMed

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  12. Bridge-in-a-Backpack(TM). Task 7 : investigation of damage and repairs for concrete filled FRP tubular arches.

    DOT National Transportation Integrated Search

    2015-04-01

    This report includes fulfillment of Task 7 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. : Damage due to impact of the FRP shell of the concrete filled FRP tubular arch bridges has been and stil...

  13. Validation of FRP Matting Requirements

    DTIC Science & Technology

    2016-08-01

    airfield pavements using crushed stone. A side-by-side comparison between FRP and folded fiberglass matting (FFM) was performed on simulated small...medium, and large craters in Portland cement concrete and asphalt concrete pavements . The demonstration took place at the Silver Flag Exercise Site...report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY THIS

  14. [Sample German LAPS.

    ERIC Educational Resources Information Center

    Rosenthal, Bianca

    Four learning activity packages (LAPS) for use in secondary school German programs contain instructional materials which enable students to improve their basic linguistic skills. The units include: (1) "Grusse," (2) "Ich Heisse...Namen," (3) "Tune into Your Career: Business Correspondence 'Auf Deutch'," and (4) "Understanding German Culture."…

  15. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    DTIC Science & Technology

    2017-05-01

    1 Fig. 2 Load vs. displacement for RT (no conditioning) samples .................... 6 Fig. 3...Load vs. displacement for RT (hot/wet conditioning) samples ............ 7 Fig. 5 Failure surface for RT (hot/wet conditioning) samples. MSAT ID...20140469, mode of failure = adhesive. ................................................. 8 Fig. 6 Load vs. displacement for ET samples (66 °C postcure

  16. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    DOT National Transportation Integrated Search

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  17. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein*

    PubMed Central

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-01-01

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  18. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials : [summary].

    DOT National Transportation Integrated Search

    2014-03-01

    The Florida Department of Transportation (FDOT) uses fiber-reinforced polymer (FRP) composites to repair bridges and strengthen bridge decks. Proven mechanical characteristics make FRP composites cost-effective in extending the life span of bridges o...

  19. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure.

    PubMed

    Mojdehi, Ahmad R; Holmes, Douglas P; Dillard, David A

    2017-10-25

    A generalized scaling law, based on the classical fracture mechanics approach, is developed to predict the bond strength of adhesive systems. The proposed scaling relationship depends on the rate of change of debond area with compliance, rather than the ratio of area to compliance. This distinction can have a profound impact on the expected bond strength of systems, particularly when the failure mechanism changes or the compliance of the load train increases. Based on the classical fracture mechanics approach for rate-independent materials, the load train compliance should not affect the force capacity of the adhesive system, whereas when the area to compliance ratio is used as the scaling parameter, it directly influences the bond strength, making it necessary to distinguish compliance contributions. To verify the scaling relationship, single lap shear tests were performed for a given pressure sensitive adhesive (PSA) tape specimens with different bond areas, number of backing layers, and load train compliance. The shear lag model was used to derive closed-form relationships for the system compliance and its derivative with respect to the debond area. Digital image correlation (DIC) is implemented to verify the non-uniform shear stress distribution obtained from the shear lag model in a lap shear geometry. The results obtained from this approach could lead to a better understanding of the relationship between bond strength and the geometry and mechanical properties of adhesive systems.

  20. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  1. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  2. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  3. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  4. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.

    PubMed

    Ann, Ki Yong; Cho, Chang-Geun

    2013-09-10

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.

  5. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members

    PubMed Central

    Ann, Ki Yong; Cho, Chang-Geun

    2013-01-01

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312

  6. 76 FR 63316 - Prospective Grant of Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and derivatives thereof and their Use In... belonging to the patent families having HHS Reference Numbers E-160-1997/0,/1,/2 and/3; E-014-2000/0; and E... Related Protein-1 (sFRP-1). sFRP-1, also known as SARP-2 (Secreted Apoptosis Related Protein-2). The IP...

  7. Development of Lateral Prestress in High-Strength Concrete-Filled FRP Tubes

    NASA Astrophysics Data System (ADS)

    Vincent, T.; Ozbakkaloglu, T.

    2018-02-01

    This paper reports on an experimental investigation into the axial and lateral strain development of fiber reinforced polymer (FRP) confined high-strength concrete (HSC) with prestressed FRP shells. A total of 24 aramid FRP (AFRP)-confined concrete specimens were manufactured as concrete-filled FRP tubes (CFFTs) with instrumentation to measure the strain variations during application of prestress, removal of end constraints and progressive prestress losses. Prestressed CFFT specimens were prepared with three different dose rates of expansive mineral admixture to create a range of lateral prestress applied to AFRP tubes manufactured with sheet thicknesses of 0.2 or 0.3 mm/ply and referred to as lightly- or well-confined, respectively. In addition to these three levels of prestress, non-prestressed companion specimens were manufactured and tested to determine baseline performance. The experimental results from this study indicate that lateral prestressing of CFFTs manufactured with HSC can be achieved by varying the expansive mineral admixture dose rate with a lateral prestress of up to 7.3 MPa recorded in this study. Significant strain variations were measured during removal of the end constraints with up to 700 microstrain recorded in the axial direction. Finally, the measurement of prestress losses for the month following prestress application revealed minimal progressive losses, with only 250 and 100 με recorded for the axial and hoop strains, respectively.

  8. Materials research for High Speed Civil Transport and generic hypersonics: Adhesive durability

    NASA Technical Reports Server (NTRS)

    Allen, Mark R.

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of adhesives for the High Speed Civil Transport (HSCT) program. Candidate HSCT adhesives need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate an understanding of the behavior of candidate HSCT materials when subjected to combined mechanical and thermal loads. Two adhesives (K3A and FM57) and two adherends (IM7/K3B polymeric composite and the titanium alloy Ti-6Al-4V) were used to fabricate thick adherend lap shear specimens. Due to processing problems, only the FM57/titanium bonds could be fabricated successfully. These are currently undergoing thermomechanical fatigue (TMF) testing. There is an acute need for an adhesive to secondarily bond polymeric composite adherends or, alternately, polymeric composites that remain stable at the processing temperatures of today's adhesives.

  9. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  10. Design Optimization of Hybrid FRP/RC Bridge

    NASA Astrophysics Data System (ADS)

    Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon

    2018-04-01

    The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

  11. Elimination of deck joints using a corrosion resistant FRP approach : LTRC technical summary report 443.

    DOT National Transportation Integrated Search

    2009-01-01

    In the literature survey of fiber reinforced polymer (FRP) grid reinforced concrete : structures, a limited number of studies were found on FRP grid stiffened concrete slabs : in bridge deck applications and other non-structural applications in build...

  12. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  13. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  14. Double-Lap Shear Test For Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  15. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  16. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  17. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.

    PubMed

    Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S

    1998-12-01

    The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.

  18. High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.; St.clair, T. L.

    1980-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.

  19. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  20. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 % and 65-77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  1. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  2. Fabrication and experimentation of FRP helical spring

    NASA Astrophysics Data System (ADS)

    Ekanthappa, J.; Shiva Shankar, G. S.; Amith, B. M.; Gagan, M.

    2016-09-01

    In present scenario, the automobile industry sector is showing increased interest in reducing the unsprung weight of the automobile & hence increasing the fuel Efficiency. One of the feasible sub systems of a vehicle where weight reduction may be attempted is vehicle- suspension system. Usage of composite material is a proven way to lower the component weight without any compromise in strength. The composite materials are having high specific strength, more elastic strain energy storage capacity in comparison with those of steel. Therefore, helical coil spring made of steel is replaceable by composite cylindrical helical coil spring. This research aims at preparing a re-usable mandrel (mould) of Mild steel, developing a setup for fabrication, fabrication of FRP helical spring using continuous glass fibers and Epoxy Resin (Polymer). Experimentation has been conducted on fabricated FRP helical spring to determine its strength parameters & for failure analysis. It is found that spring stiffness (K) of Glass/Epoxy helical-spring is greater than steel-coil spring with reduced weight.

  3. Preparation and Testing of Plant Seed Meal-based Wood Adhesives

    PubMed Central

    He, Zhongqi; Chapital, Dorselyn C.

    2015-01-01

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications. PMID:25867092

  4. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure

    PubMed Central

    Wang, Wan-Heng; McNatt, Loretta G.; Pang, Iok-Hou; Millar, J. Cameron; Hellberg, Peggy E.; Hellberg, Mark H.; Steely, H. Thomas; Rubin, Jeffrey S.; Fingert, John H.; Sheffield, Val C.; Stone, Edwin M.; Clark, Abbot F.

    2008-01-01

    Elevated intraocular pressure (IOP) is the principal risk factor for glaucoma and results from excessive impedance of the fluid outflow from the eye. This abnormality likely originates from outflow pathway tissues such as the trabecular meshwork (TM), but the associated molecular etiology is poorly understood. We discovered what we believe to be a novel role for secreted frizzled-related protein-1 (sFRP-1), an antagonist of Wnt signaling, in regulating IOP. sFRP1 was overexpressed in human glaucomatous TM cells. Genes involved in the Wnt signaling pathway were expressed in cultured TM cells and human TM tissues. Addition of recombinant sFRP-1 to ex vivo perfusion-cultured human eyes decreased outflow facility, concomitant with reduced levels of β-catenin, the Wnt signaling mediator, in the TM. Intravitreal injection of an adenoviral vector encoding sFRP1 in mice produced a titer-dependent increase in IOP. Five days after vector injection, IOP increased 2 fold, which was significantly reduced by topical ocular administration of an inhibitor of a downstream suppressor of Wnt signaling. Thus, these data indicate that increased expression of sFRP1 in the TM appears to be responsible for elevated IOP in glaucoma and restoring Wnt signaling in the TM may be a novel disease intervention strategy for treating glaucoma. PMID:18274669

  5. Delamination failure of multilaminated adhesively bonded joints at low temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Chun, Min-Sung; Kim, Myung-Hyun; Lee, Jae-Myung

    2011-08-01

    A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, -110 °C and -163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress-strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.

  6. [Development of denture base resin. 2. Manufacturing of visible-light cured prepreg and physical properties of FRP].

    PubMed

    Kimura, H; Yu, P Y; Teraoka, F; Sugita, M

    1989-09-01

    To develop the visible light-cured FRP denture base, we investigated the physical properties and the warp of FRP plate by using various combinations of matrix resin and reinforcement. From the results of the bending test, hardness test and manipulation processing, the matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 wt% was determined. The sateen weave's glasscloth as the reinforcement of the prepreg was used. The maximum plies included FRP of 0.5 mm, 0.8 and 1.0 mm thickness have the same maximum bending strengths of 45 kgf/mm2, which is about 5 times larger than that of conventional acrylic resin. The warp of these FRP plates were not found.

  7. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  8. Perspectives Of Employment Of Pultruded FRP Structural Elements In Seismic Engineering Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Salvatore; Silvestri, Mirko

    2008-07-08

    Today the employment of FRP material in structural engineering is in common use, with excellent results in term of applications especially as reinforcement of existing structures. This success is related to the very reduced weight of FRP material, to its performance in term of strength and durability and thanks to the easy use in technical application. There is a modern way to use this material disguised as structural pultruded element (with weight equal to 1600-1800 kg/m{sup 3}) in new constructions, local reinforcements and in other seismic applications. Actually the international technical and scientific literature in form of draft, recommendations andmore » researches on this topic is very rich also taking into account Italian contribution. Some interesting applications of all FRP structures in seismic engineering field are showed in this research in real terms and in form of capability.« less

  9. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-09-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  10. An exact stiffness theory for unidirectional xFRP composites

    NASA Astrophysics Data System (ADS)

    Klasztorny, M.; Konderla, P.; Piekarski, R.

    2009-01-01

    UD xFRP composites, i.e., isotropic plastics reinforced with long transversely isotropic fibres packed unidirectionally according to the hexagonal scheme are considered. The constituent materials are geometrically and physically linear. The previous formulations of the exact stiffness theory of such composites are revised, and the theory is developed further based on selected boundary-value problems of elasticity theory. The numerical examples presented are focussed on testing the theory with account of previous variants of this theory and experimental values of the effective elastic constants. The authors have pointed out that the exact stiffness theory of UD xFRP composites, with the modifications proposed in our study, will be useful in the engineering practice and in solving the current problems of the mechanics of composite materials.

  11. Evaluation of high temperature structural adhesives for extended service, phase 5

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Hale, J. N.; Dumars, W. G.

    1987-01-01

    The evaluation of 3 experimental polymers from NASA-Langley and a commercially produced polymer from Mitsui Toatsu Chemicals as high temperature structural adhesives is presented. A polyphenylquinoxaline (PPQ), polyimide (STPI/LaRC-2), and a polyarylene ether (PAE-SO2) were evaluated as metal-to-metal adhesives. Lap shear, crack extension, and climbing drum peel specimens were fabricated from all three polymers and tested after thermal, combined thermal/humidity, and stressed hydraulic fluid (Skydrol) exposure. The fourth polymer, LARC-TPI was evaluated as an adhesive for titanium honeycomb sandwich structure. All three experimental polymers performed well as metal-to-metal adhesives from 219 K (-65 F) to 505 K (450 F), including humidity exposure. Structural adhesive strength was also maintained at 505 K for a minimum of 3000 hours. LaRC-TPI was evaluated as a high temperature (505 K) adhesive for titanium honeycomb sandwich structure. The LaRC-TPI bonding process development concentrated on improving the honeycomb core-to-skin bond. The most promising approach of those evaluated combined a LaRC-TPI polymer solution with a semi-crystalline LaRC-TPI powder for adhesive film fabrication and fillet formation.

  12. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  13. Modified Phenylethynyl Containing Imides for Secondary Bonding: Non-Autoclave, Low Temperature Processable Adhesives

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Technical Monitor); Chang, Alice C.

    1999-01-01

    As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.

  14. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    In recent years, the use of fi ber reinforced polymer (FRP) tube-encased concrete columns for new construction and rebuilding : of engineering structures has increased. The purpose in FRP tube-encased concrete columns is to replace the steel rebar by...

  15. Large scale distribution monitoring of FRP-OF based on BOTDR technique for infrastructures

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; He, Jianping; Yan, Kai; Ou, Jinping

    2007-04-01

    BOTDA(R) sensing technique is considered as one of the most practical solution for large-sized structures as the instrument. However, there is still a big obstacle to apply BOTDA(R) in large-scale area due to the high cost and the reliability problem of sensing head which is associated to the sensor installation and survival. In this paper, we report a novel low-cost and high reliable BOTDA(R) sensing head using FRP(Fiber Reinforced Polymer)-bare optical fiber rebar, named BOTDA(R)-FRP-OF. We investigated the surface bonding and its mechanical strength by SEM and intensity experiments. Considering the strain difference between OF and host matrix which may result in measurement error, the strain transfer from host to OF have been theoretically studied. Furthermore, GFRP-OFs sensing properties of strain and temperature at different gauge length were tested under different spatial and readout resolution using commercial BOTDA. Dual FRP-OFs temperature compensation method has also been proposed and analyzed. And finally, BOTDA(R)-OFs have been applied in Tiyu west road civil structure at Guangzhou and Daqing Highway. This novel FRP-OF rebar shows both high strengthen and good sensing properties, which can be used in long-term SHM for civil infrastructures.

  16. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    DOT National Transportation Integrated Search

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  17. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  18. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    DOT National Transportation Integrated Search

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) sandwich materials for various transportation construction applications, with particular emphasis on highway bridge decks in cold regions, were developed and tested. T...

  19. Screening of high temperature adhesives for large area bonding

    NASA Technical Reports Server (NTRS)

    Stenersen, A. A.; Wykes, D. H.

    1980-01-01

    High temperature-resistant adhesive systems were screened for processability, mechanical and physical properties, operational capability at 589 K (600 F), and the ability to produce large area bonds of high quality in fabricating Space Shuttle components. The adhesives consisted primarily of polyimide systems, including FM34B-18, NR-150B2 (DuPont), PMR-15, LARC-13, LARC-160, Thermid 600, and AI-1130L (AMOCA). The processing studies included preparation of polyimide resins, fabrication of film adhesives, development of lay-up and cure procedures, fabrication of honeycomb sandwich panels, and fabrication of mid-plane bonded panels in joints up to 30.5 cm (12 in.) wide. The screening program included tests for tack and drape properties, reticulation and filleting characteristics, ability to produce void-free or low porosity bonds in mid-plane bonded panels, out-time stability, lap shear strength, climbing drum peel strength, and glass transition temperature (Tg). This paper describes the processing methods developed and the test results.

  20. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    PubMed

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP + CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP + CD4 + T cells and TNM stage ( P < 0.001), distant metastasis ( P < 0.001) and serum level of carcinoembryonic antigen ( P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P < 0.01). LAP + CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  1. Evaluation of high temperature structural adhesives for extended service, phase 4

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Hale, J. N.

    1985-01-01

    The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens.

  2. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1977-01-01

    The ability of SEM/EDAX to determine the physical and chemical composition of very small areas was used to study several diverse types of samples representative of NASA-LaRC technology. More systematic investigation was carried out on differences in the results of grit-blasting Ti 6-4 adherends and the presence of extraneous elements, primarily silicon, in some polymer/HT-S fiber composites. Initial results were obtained from a fractured (ILS) short-beam shear specimen, and from Ti 6-4 alloy, before and after a proprietary Boeing anodizing surface preparation for adhesive bonding. Photomicrographs and EDAX spectra were also obtained from new, fractured lap shear strength specimens that employed PPQ and LARC-13 adhesives.

  3. Development of high temperature service polyimide based adhesives for titanium and composite bonding applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, R.T.; Kohli, D.K.

    CYTEC Engineered Materials Inc. has developed several adhesives based on LaRC{trademark} PETI-5 Polyimide Resin for bonding titanium and composite substrates. These adhesives are intended for long term service at 177{degrees}C (350{degrees}F) and are processed at 350{degrees}C (660{degrees}F) in conventional autoclaves under 50 psi pressure. Titanium lap shears range from 48.3MPa (7000 psi) at room temperature to 31MPa (4500 psi) at 177{degrees}C (350{degrees}F). Excellent metal-to-metal peels and honeycomb bonding properties are reported for these products. In addition to film adhesive, primer and paste products have been described. Pilot line quantities of several hundred square feet of the film adhesive have beenmore » produced and sampled under the CYTEC designation FM{reg_sign} x5.« less

  4. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less

  5. Fiber reinforced polymer (FRP) composite piles used on pier rehabilitation, Little Diamond Island, Casco Bay, Portland, Maine.

    DOT National Transportation Integrated Search

    2012-10-01

    Fiber reinforced polymer (FRP) composite piles were used on a pier rehabilitation project at : Little Diamond Island in Casco Bay near Portland Maine. The project was the replacement : of an aging wooden pier at the ferry berthing terminal. The FRP p...

  6. Determination of apparent coupling factors for adhesive bonded acrylic plates using SEAL approach

    NASA Astrophysics Data System (ADS)

    Pankaj, Achuthan. C.; Shivaprasad, M. V.; Murigendrappa, S. M.

    2018-04-01

    Apparent coupling loss factors (CLF) and velocity responses has been computed for two lap joined adhesive bonded plates using finite element and experimental statistical energy analysis like approach. A finite element model of the plates has been created using ANSYS software. The statistical energy parameters have been computed using the velocity responses obtained from a harmonic forced excitation analysis. Experiments have been carried out for two different cases of adhesive bonded joints and the results have been compared with the apparent coupling factors and velocity responses obtained from finite element analysis. The results obtained from the studies signify the importance of modeling of adhesive bonded joints in computation of the apparent coupling factors and its further use in computation of energies and velocity responses using statistical energy analysis like approach.

  7. The LapSim virtual reality simulator: promising but not yet proven.

    PubMed

    Fairhurst, Katherine; Strickland, Andrew; Maddern, Guy

    2011-02-01

    The acquisition of technical skills using surgical simulators is an area of active research and rapidly evolving technology. The LapSim is a virtual reality simulator that currently allows practice of basic laparoscopic skills and some procedures. To date, no reviews have been published with reference to a single virtual reality simulator. A PubMed search was performed using the keyword "LapSim," with further papers identified from the citations of original search articles. Use of the LapSim to develop surgical skills has yielded overall results, although inconsistencies exist. Data regarding the transferability of learned skills to the operative environment are encouraging as is the validation work, particularly the use of a combination of measured parameters to produce an overall comparative performance score. Although the LapSim currently does not have any proven significant advantages over video trainers in terms of basic skills instruction and although the results of validation studies are variable, the potential for such technology to have a huge impact on surgical training is apparent. Work to determine standardized learning curves and proficiency criteria for different levels of trainees is incomplete. Moreover, defining which performance parameters measured by the LapSim accurately determine laparoscopic skill is complex. Further technological advances will undoubtedly improve the efficacy of the LapSim, and the results of large multicenter trials are anticipated.

  8. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  9. Non-destructive testing techniques based on nonlinear methods for assessment of debonding in single lap joints

    NASA Astrophysics Data System (ADS)

    Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.

    2015-04-01

    Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.

  10. TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction.

    PubMed

    Oida, Takatoku; Weiner, Howard L

    2010-11-24

    It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs. We generated anti-mouse LAP mAbs by immunizing TGF-β(-/-) animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3(+) CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4(+)CD25(-) T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4(+)CD25(-) T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3(+) but also on T cells that remained Foxp3(-) after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells. Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface.

  11. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.

  12. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  13. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  14. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Peters, P. D.; Hendricks, C. L.

    1982-01-01

    The evaluation, selection, and demonstration of structural adhesive systems for supersonic cruise research applications, and establishment of environmental durability of selected systems for up to 20,000 hours is described. Ten candidate adhesives were initially evaluated. During screening and evaluation, these candidates were narrowed to three of the most promising for environmental durability testing. The three adhesives were LARC-13, PPQ, and NR056X. The LARC-13 was eliminated because of a lack of stability at 505 K. The NRO56X was removed from the market. The LARC-TPI was added after preliminary evaluation and an abbreviated screening test. Only PPQ and LARC-TPI remained as the reasonable candidates late into the durability testing. Large area bond panels were fabricated to demonstrate the processibility of the selected systems. Specifications were prepared to assure control over critical material and process parameters. Surface characterization concentrated primarily upon titanium surface treatments of 10 volt chronic acid anodize, 5 volt chromic acid anodize and PASA-JELL. Failure analysis was conducted on lap shear adhesive bond failures which occurred in PPQ and LARC-13 test specimens after 10,000 hours at 505 K.

  15. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  16. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  17. Response of No-Name Creek FRP Bridge to Local Weather

    DOT National Transportation Integrated Search

    2012-09-01

    Since 1996, over 30 Fiber Reinforced Polymer (FRP) composite bridges have been installed in the United States. Bridge : locations are in Kansas, Missouri, New York, Iowa, Colorado, West Virginia, Ohio, California, Idaho, Washington, Pennsylvania, : I...

  18. 15 CFR 285.4 - Establishment of laboratory accreditation programs (LAPs) within NVLAP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... legislative actions or to requests from private sector entities and government agencies. For legislatively mandated LAPs, NVLAP shall establish the LAP. For requests from private sector entities and government...

  19. Styrene vapor control systems in FRP yacht plants.

    PubMed

    Todd, W F

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene.

  20. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1985-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  1. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1986-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  2. Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.

    PubMed

    Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G

    2014-08-18

    Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research notes : non-destructive evaluation of FRP-strengthened reinforced concrete.

    DOT National Transportation Integrated Search

    2005-04-01

    Many reinforced concrete structures across the country are being strengthened with fiber reinforced polymer (FRP) composites to increase the load capacity. In many cases, composites provide the most cost effective strengthening option, and they do no...

  4. Long term monitoring of mechanical properties of FRP repair materials.

    DOT National Transportation Integrated Search

    2013-06-01

    Over the years, Fiber Reinforced Polymer (FRP) composites have gained popularity in transportation infrastructure as a material able to restore and increase the capacity of existing concrete elements. Properties such as a high strength to weight rati...

  5. Development of a fast curing tissue adhesive for meniscus tear repair.

    PubMed

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  6. Finite element modeling of concrete structures strengthened with FRP laminates

    DOT National Transportation Integrated Search

    2001-05-01

    Linear and non-linear method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer (FRP) composites. ANSYS and SAP2000 modeling software were used; however, most of the development effort used...

  7. Long-term monitoring of mechanical properties of FRP repair materials.

    DOT National Transportation Integrated Search

    2013-07-01

    Fiber- reinforced polymer composites (FRP) are an attractive repair option for existing concrete structures. : CDOT has used this material on some projects, in particular the repair of the Castlewood Canyon Bridge in : 2003. Further use of the materi...

  8. An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Pellegrino, C.; Modena, C.

    2008-05-01

    This paper deals with the shear strengthening of Reinforced Concrete (RC) flexural members with externally bonded Fiber-Reinforced Polymers (FRPs). The interaction between an external FRP and an internal transverse steel reinforcement is not considered in actual code recommendations, but it strongly influences the efficiency of the shear strengthening rehabilitation technique and, as a consequence, the computation of interacting contributions to the nominal shear strength of beams. This circumstance is also discussed on the basis of the results of an experimental investigation of rectangular RC beams strengthened in shear with "U-jacketed" carbon FRP sheets. Based on experimental results of the present and other investigations, a new analytical model for describing the shear capacity of RC beams strengthened according to the most common schemes (side-bonded and "U-jacketed"), taking into account the interaction between steel and FRP shear strength contributions, is proposed.

  9. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    NASA Astrophysics Data System (ADS)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  10. In vitro modulation of the interaction between HA95 and LAP2beta by cAMP signaling.

    PubMed

    Martins, Sandra B; Marstad, Anne; Collas, Philippe

    2003-09-09

    The nuclear envelope mediates key functions by interacting with chromatin. We recently reported an interaction between the chromatin- and nuclear matrix-associated protein HA95 and the inner nuclear membrane integral protein LAP2beta, implicated in initiation of DNA replication (Martins et al. (2003) J. Cell Biol. 160, 177-188). Here, we show that in vitro, interaction between HA95 and LAP2beta is modulated by cAMP signaling via PKA. Exposure of an anti-HA95 immune precipitate from interphase HeLa cells to a mitotic extract promotes ATP-dependent release of LAP2beta from the HA95 complex. This coincides with Ser and Thr phosphorylation of HA95 and LAP2beta. Inhibition of PKA with PKI abolishes phosphorylation of HA95 and dissociation of LAP2beta from HA95, although LAPbeta remains phosphorylated. Antagonizing cAMP signaling in mitotic extract also abolishes the release of LAP2beta from HA95; however, disrupting PKA anchoring to A-kinase anchoring proteins has no effect. Inhibition of CDK activity in the extract greatly reduces LAP2beta phosphorylation but does not prevent LAP2beta release from HA95. Inhibition of PKC, MAP kinase, or CaM kinase II does not affect mitotic extract-induced dissociation of LAP2beta from HA95. PKA phosphorylates HA95 but not LAP2beta in vitro and elicits a release of LAP2beta from HA95. CDK1 or PKC phosphorylates LAP2beta within the HA95 complex, but neither kinase induces LAP2beta release. Our results indicate that in vitro, the interaction between HA95 and LAP2beta is influenced by a PKA-mediated phosphorylation of HA95 rather than by CDK1- or PKC-mediated phosphorylation of LAP2beta. This suggests an additional level of regulation of a chromatin-nuclear envelope interaction in dividing cells.

  11. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 5 : laminate durability testing : final report.

    DOT National Transportation Integrated Search

    2015-05-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 5, Laminate Durability Testing. : Mechanical properties of the FRP mat...

  12. Design of FRP systems for strengthening concrete girders in shear.

    DOT National Transportation Integrated Search

    2011-06-01

    FRP systems have been used on a project-specific basis for the last two decades. They are now becoming a widely accepted method of : strengthening concrete structures. The acceptance and utilization of these new strengthening techniques depend on the...

  13. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  14. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  15. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    NASA Astrophysics Data System (ADS)

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  16. Statistical Investigation of the Effect of Process Parameters on the Shear Strength of Metal Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda

    2017-06-01

    The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.

  17. Vacuum Surface Flashover Characteristics and Secondary Electron Emission Characteristics of Epoxy Resin and FRP Insulator

    NASA Astrophysics Data System (ADS)

    Yamano, Yasushi; Takahashi, Masahiro; Kobayashi, Shinichi; Hanada, Masaya; Ikeda, Yoshitaka

    Neutral beam injectors (NBI) used for JT-60 are required to generate negative ions of 500 keV energies. To produce such high-energy ions, the electrostatic accelerators consisting of 3-stage of electrodes and three insulator rings are applied. The insulators are made of Fiberglass Reinforced Plastic (FRP) which is composed of epoxy resin and glass fibers. The surface discharges along the insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP and epoxy resin insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for epoxy resin, FRP and Alumina samples under vacuum condition. In addition, the measurements of secondary electron emission (SEE) characteristics are also reported. These are important parameters to analyze surface discharge characteristics of insulators in vacuum.

  18. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  19. Debonding characteristics of adhesively bonded woven Kevlar composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  20. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    NASA Astrophysics Data System (ADS)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  1. FRCM and FRP composites for the repair of damaged PC girders.

    DOT National Transportation Integrated Search

    2015-01-01

    Fabric-reinforced-cementitious-matrix (FRCM) and fiber-reinforced polymer (FRP) composites have : emerged as novel strengthening technologies. FRCM is a composite material consisting of a sequence of : one or more layers of cement-based matrix reinfo...

  2. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  3. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  4. Adhesive evaluation of LARC-TPI and a water-soluble version of LARC-TPI

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1985-01-01

    The results of a study to evaluate two Langley Research Center thermoplastic polimide (TPI) materials, identified as TPI/MTC for the material from Mitsui Toatsu Chemicals Inc. and TPI/H2O for the material from United Technologies Research Center, as high temperature thermoplastic adhesives and primers for bonding titanium (6AL-4V) adherends are discussed. A limited characterization of the materials was performed using a Diffuse Reflectance-Fourier Transform Infrared Spectroscopy (DR-FTIR) technique. Thermomechanical Analysis (TMA) and torsional braid techniques were used to determine glass transition temperature. The adhesive's strength, as determined by simple lap shear tests, as used to evaluate the effects of long term thermal exposure (up to 1000 hrs) at 204 deg C and a 72-hour water-boil.

  5. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  6. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    DOT National Transportation Integrated Search

    2014-05-01

    The objective of the proposed research is to develop, test, and evaluate fiber-reinforced, polyurethane foams to replace the costly : honeycomb construction currently used to manufacture FRP bridge deck panels. The effort will focus on developing an ...

  7. Strength and Performance Enhancement of Bonded Joints by Spatial Tailoring of Adhesive Compliance via 3D Printing.

    PubMed

    Kumar, S; Wardle, Brian L; Arif, Muhamad F

    2017-01-11

    Adhesive bonding continues to emerge as a preferred route for joining materials with broad applications including advanced structures, microelectronics, biomedical systems, and consumer goods. Here, we study the mechanics of deformation and failure of tensile-loaded single-lap joints with a compliance-tailored adhesive. Tailoring of the adhesive compliance redistributes stresses and strains to reduce both shear and peel concentrations at the ends of the adhesive that determine failure of the joint. Utilizing 3D printing, the modulus of the adhesive is spatially varied along the bondlength. Experimental strength testing, including optical strain mapping, reveals that the strain redistribution results in a greater than 100% increase in strength and toughness concomitant with a 50% increase in strain-to-break while maintaining joint stiffness. The tailoring demonstrated here is immediately realizable in a broad array of 3D printing applications, and the level of performance enhancement suggests that compliance tailoring of the adhesive is a generalizable route for achieving superior performance of joints in other applications, such as advanced structural composites.

  8. Adhesive Properties of Cured Phenylethynyl containing Imides

    NASA Technical Reports Server (NTRS)

    Chang, Alice C.

    1997-01-01

    As part of a program to develop structural adhesives for high performance aerospace applications, several phenylethynyl containing oligomer blends of Larc(TM) MPEI and a reactive plasticizer designated LaRC LV-1 21 were prepared and evaluated. The fully imidized blends exhibited minimum melt viscosity as low as 1000 poise at 371 C. Ti/Ti lap shear specimens fabricated at 316 C under 15 psi gave RT strength of approx. 4300 psi and no change in strength was observed at 177 C. The chemistry and properties of this new MPEI as well as some blends of MPEI with LV-121 are presented and compared to the linear version, LARC(TM)-PETI-5.

  9. Use of a Molecular Decoy to Segregate Transport from Antigenicity in the FrpB Iron Transporter from Neisseria meningitidis

    PubMed Central

    Saleem, Muhammad; Prince, Stephen M.; Rigby, Stephen E. J.; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C. J.; Feavers, Ian M.; Derrick, Jeremy P.

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance. PMID:23457610

  10. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.

    PubMed

    Saleem, Muhammad; Prince, Stephen M; Rigby, Stephen E J; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C J; Feavers, Ian M; Derrick, Jeremy P

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe(3+) with high affinity. EPR spectra of the bound Fe(3+) ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe(3+) binding was reduced or abolished on mutation of the Fe(3+)-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe(3+). The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a 'molecular decoy' to distract immune surveillance.

  11. A phenomenological intra-laminar plasticity model for FRP composite materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yinhua; Hou, Chi; Wang, Wenzhi; Zhao, Meiying; Wan, Xiaopeng

    2015-07-01

    The nonlinearity of fibre-reinforced polymer (FRP) composites have significant effects on the analysis of composite structures. This article proposes a phenomenological intralaminar plasticity model to represent the nonlinearity of FRP composite materials. Based on the model presented by Ladeveze et al., the plastic potential and hardening functions are improved to give a more rational description of phenomenological nonlinearity behavior. A four-parameter hardening model is built to capture important features of the hardening curve and consequently gives the good matching of the experiments. Within the frame of plasticity theory, the detailed constitutive model, the numerical algorithm and the derivation of the tangent stiffness matrix are presented in this study to improve model robustness. This phenomenological model achieved excellent agreement between the experimental and simulation results in element scale respectively for glass fibre-reinforced polymer (GFRP) and carbon fibre-reinforced polymer (CFRP). Moreover, the model is capable of simulating the nonlinear phenomenon of laminates, and good agreement is achieved in nearly all cases.

  12. CT114 Lap Belt Arming Key Mod - User Trial

    DTIC Science & Technology

    2010-05-01

    31 (97%) 30 (94%) 1. Ease of use to perform visual 30 (94%) 2. Ease of use to perform free play (push past) check 31 (97%) ’Note I - If a...positive lock of the lap belt. 10. Perform Free Play (Push Past) Check - Press mating ends of lap belt fittings together to demo ability to push beyond...the following items. I 2 3 4 5 6 7 37. Ease-of·use in performing visual check? 0 0 0 0 0 0 0 38. Ease-of·use in performing free play (push past

  13. In-situ monitoring of curing and ageing effects in FRP plates using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Xian, Guijun; Wang, Chuan; Li, Hui

    2010-04-01

    In recent years, fiber reinforced polymer (FRP) composites have been widely applied in civil engineering for retrofitting or renewal of existing structures. Since FRP composite may degrade when exposed to severe outdoor environments, a serious concern has been raised on its long term durability. In the present study, fiber Bragg grating (FBG) sensors were embedded in glass-, carbon- and basalt-fiber reinforced epoxy based FRP plates with wet lay-up technology, to in-situ monitor the stain changes in FRPs during the curing, and water immersion and freeze-thaw ageing processes. The study demonstrates that the curing of epoxy resin brings in a slight tension strain (e.g., 10 ~ 30 μɛ) along the fiber direction and a high contraction (e.g., ~ 1100μɛ) in the direction perpendicular to the fibers, mainly due to the resin shrinkage. The cured FRP strips were then subjected to distilled water immersion at 80oC and freeze-thaw cycles from -30°C to 30°C. Remarkable strain changes of FRPs due to the variation of the temperatures during freeze-thaw cycles indicate the potential property degradation from fatigue. The maximum strain change is dependent on the fiber types and directions to the fiber. Based on the monitored strain values with temperature change and water uptake content, CTE (coefficient of thermal expansion) and CME (coefficient of moisture expansion) are exactly determined for the FRPs.

  14. Application of High-Impact Polystyrene (HIPS) as a Graphene Nanoparticle Reinforced Composite Thermoplastic Adhesive

    NASA Astrophysics Data System (ADS)

    Stitt, Erik

    Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.

  15. Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…

  16. Evaluation of wearing surface materials for FRP bridge decks : final report.

    DOT National Transportation Integrated Search

    2005-07-01

    The wearing surface on many fiber reinforced polymer (FRP) composite bridge decks have cracked or delaminated after only a short time in service. Consequently, a set of tests were conducted on four wearing surface products in order to select the mate...

  17. Comparison of the Effects of Debonds and Voids in Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Rossettos, J. N.; Lin, P.; Nayeb-Hashemi, Hamid

    1997-01-01

    An analytical model is developed to compare the effects of voids an debonds on the interfacial shear stresses between the adherends and the adhesive in simple lap joints. Since the adhesive material above the debond may undergo some extension (either due to applied load or thermal expansion or both), a modified shear lag model, where the adhesive can take an extensional as well as shear deformation, is used in the analysis. The adherends take on only axial loads and act as membranes. Two coupled nondimensional differential equations are derived, and in general, five parameters govern the stress distribution in the overlap region. As expected, the major differences between the debond and the void occur for the stresses near the edge of the defect itself. Whether the defect is a debond or a void, is hardly discernible by the stresses at the overlap region. If the defect occurs precisely at or very close to either end of the overlap, however, differences of the order of 20 percent in the peak stresses can be obtained.

  18. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  19. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    PubMed

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  20. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold

  1. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    NASA Astrophysics Data System (ADS)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  2. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  3. Response of No-Name Creek FRP Bridge to Local Weather : Technical Summary

    DOT National Transportation Integrated Search

    2012-09-01

    Since 1996, over 30 Fiber Reinforced Polymer (FRP) composite bridges have been installed in the United States. Bridge locations are in Kansas, Missouri, New York, Iowa, Colorado, West Virginia, Ohio, California, Idaho, Washington, Pennsylvania, Illin...

  4. Response of No-Name Creek FRP Bridge to Local Weather : Technical Summary

    DOT National Transportation Integrated Search

    2012-09-01

    Since 1996, over 30 Fiber Reinforced Polymer (FRP) composite bridges have been installed : in the United States. Bridge locations are in Kansas, Missouri, New York, Iowa, Colorado, West : Virginia, Ohio, California, Idaho, Washington, Pennsylvania, I...

  5. A state of the art review on reinforced concrete beams with openings retrofitted with FRP

    NASA Astrophysics Data System (ADS)

    Osman, Bashir H.; Wu, Erjun; Ji, Bohai; S Abdelgader, Abdeldime M.

    2016-09-01

    The use of externally bonded fiber reinforced polymer (FRP) sheets, strips or steel plates is a modern and convenient way for strengthening of reinforced concrete (RC) beams. Several researches have been carried out on reinforced concrete beams with web openings that strengthened using fiber reinforced polymer composite. Majority of researches focused on shear strengthening compared with flexural strengthening, while others studied the effect of openings on shear and flexural separately with various loading. This paper investigates the impact of more than sixty articles on opening reinforced concrete beams with and without strengthening by fiber reinforcement polymers FRP. Moreover, important practical issues, which are contributed in shear strengthening of beams with different strengthening techniques, such as steel plate and FRP laminate, and detailed with various design approaches are discussed. Furthermore, a simple technique of applying fiber reinforced polymer contributed with steel plate for strengthening the RC beams with openings under different load application is concluded. Directions for future research based on the existing gaps of the present works are presented.

  6. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) - Part 1: Algorithms, product contents and analysis

    NASA Astrophysics Data System (ADS)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Mullen, R.

    2015-06-01

    Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP) that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point) at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP information

  7. Initial adhesive screening of novel polyamide-imides and their copolymers

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Dezern, James F.

    1988-01-01

    Continued interest by the research community in thermally stable, tough, high temperature adhesives has resulted in the investigation by Langley Research Center of two linear aromatic polyamide-imide (PAI) homopolymers and two linear aromatic PAI copolymers. The homopolymers were made with either 3,3'=DABA or 4,4'-DABA and BTDA. The two polymers were prepared with a monomer ratio of 0.75 DABP:0.25 DABA:1.00 BTDA. These aromatic PAIs possess high thermal stability because of intermolecular hydrogen bonding and chain stiffness. Lap shear strength (LSS) was the main criteria used to evaluate the polymers as adhesives. LSS of bonded Ti-6Al-4V was determined at room temperature (RT), 177, 204 and 232 C. The glass transition temperature and the type of bond failure were also determined. The best LSS values of the four adhesive systems investigated were obtained with the PAI copolymer identified in the report as LARC-TPI (25 percent 3,3'-DABA); however, it did not produce LSSs nearly as high as LARC-TPI. The poor flow properties observed appear to be due to a combination of high molecular weight and the increased interchain electronic interactions associated with the amide group.

  8. Dynamic assessment of reinforced concrete beams repaired with externally bonded FRP sheets

    NASA Astrophysics Data System (ADS)

    Bonfiglioli, B.; Pascale, G.

    2006-01-01

    This research deals with RC beams strengthened with FRP. An experimental research is presented which is aimed at evaluating the capability of an experimental modal analysis to assess the stiffness decrease due to damage, as well as the stiffness recovery due to strengthening. Ten beams were tested. All of them were subjected to loading cycles with increasing load levels in order to induce cracking of different severity in them. The beams were then retrofitted by externally bonded FRP sheets. Three types of composites were used. The number of layers was varied, too. Modal tests were carried out after each loading-unloading cycle. The modal frequencies and damping ratios were determined for the first four vibration modes. The results obtained indicate that an experimental modal analysis can give useful information on the severity of damage and the effectiveness of strengthening.

  9. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  10. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  11. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  12. Role of DDC-4/sFRP-4, a secreted frizzled-related protein, at the onset of apoptosis in mammary involution.

    PubMed

    Lacher, M D; Siegenthaler, A; Jäger, R; Yan, Xi; Hett, S; Xuan, L; Saurer, S; Lareu, R R; Dharmarajan, A M; Friis, R

    2003-05-01

    Using differential display, we isolated DDC-4, a secreted frizzled-related protein (sFRP), which is induced in the physiological apoptosis of hormonally regulated, reproductive tissues such as mammary gland, prostate, corpus luteum and uterus. The role of this gene in apoptosis was studied in animals overexpressing ectopic DDC-4/sFRP-4. Transgenic mice bearing the DDC-4/sFRP-4 cDNA under the control of the MMTV-LTR promoter showed lactational insufficiency and many apoptotic cells in the alveoli between day 19 of pregnancy and day 4 of lactation as demonstrated by TUNEL reaction and the presence of activated caspase-3. We performed a PKB/Akt kinase assay and studied several of its substrates using phosphorylation-specific antibodies to show reduced phosphorylation in PKB/Akt itself, as well as in glycogen synthetase kinase-3beta (GSK-3beta), BAD, and Forkhead. Taken together, our results show a role for DDC-4/sFRP-4 in abrogating an epithelial cell survival pathway at the onset of mammary gland involution.

  13. Transfer of skills on LapSim virtual reality laparoscopic simulator into the operating room in urology.

    PubMed

    Alwaal, Amjad; Al-Qaoud, Talal M; Haddad, Richard L; Alzahrani, Tarek M; Delisle, Josee; Anidjar, Maurice

    2015-01-01

    Assessing the predictive validity of the LapSim simulator within a urology residency program. Twelve urology residents at McGill University were enrolled in the study between June 2008 and December 2011. The residents had weekly training on the LapSim that consisted of 3 tasks (cutting, clip-applying, and lifting and grasping). They underwent monthly assessment of their LapSim performance using total time, tissue damage and path length among other parameters as surrogates for their economy of movement and respect for tissue. The last residents' LapSim performance was compared with their first performance of radical nephrectomy on anesthetized porcine models in their 4(th) year of training. Two independent urologic surgeons rated the resident performance on the porcine models, and kappa test with standardized weight function was used to assess for inter-observer bias. Nonparametric spearman correlation test was used to compare each rater's cumulative score with the cumulative score obtained on the porcine models in order to test the predictive validity of the LapSim simulator. The kappa results demonstrated acceptable agreement between the two observers among all domains of the rating scale of performance except for confidence of movement and efficiency. In addition, poor predictive validity of the LapSim simulator was demonstrated. Predictive validity was not demonstrated for the LapSim simulator in the context of a urology residency training program.

  14. Bridge-in-a-backpack(TM) task 3.3 : investigate soil-structure interaction-modeling and experimental results of concrete filled FRP tube arches.

    DOT National Transportation Integrated Search

    2015-12-01

    This report includes fulfillment of Task 3.3 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 3 is an investigation of soil-structure interaction for the FRP tubes. Task 3.3 is the : modeling ...

  15. Application of lap laser welding technology on stainless steel railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  16. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  17. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  18. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  19. Design for FRP systems for strengthening concrete girders in shear : status letter.

    DOT National Transportation Integrated Search

    2010-09-24

    This is to let you know that we have completed our NCHRP 12-75 project entitled DESIGN OF : FRP SYSTEMS FOR STRENGTHENING CONCRETE GIRDERS IN SHEAR and submitted the final : report on June 7, 2010. The report is undergoing final editorial revis...

  20. ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    The report gives results of an evaluation of several conventional and novel emission control technologies that have been used or could be used to treat styrene emissions from open molding processes in fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building ...

  1. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  2. Plate & tube bridge deck evaluation in the deck test bed of the Troutville, Virginia, weigh station.

    DOT National Transportation Integrated Search

    2004-01-01

    This report addresses the laboratory and field performance of multi-cellular fiber-reinforced polymer (FRP) composite bridge deck systems. We focus specifically on FRP decks produced from adhesively bonded pultrusions where the core of the deck posse...

  3. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    NASA Astrophysics Data System (ADS)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  4. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    DOT National Transportation Integrated Search

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  5. Behavior of Concrete Cylinders Strengthened with a Basalt-FRP and Subjected to Mechanical Loads and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tulendinov, T.; Zesers, A.; Tamužs, V.

    2017-09-01

    Concrete samples were manufactured and strengthened with a basalt FRP (BFRP) using two kinds of winding patterns (spiral and tight). The efficiency of common and temperature-resistant epoxy binders were studied. Some of the samples were encased in an external concrete shell for an additional protection of the FRP reinforcement during heating. Both plain and polypropylene-microfiber-reinforced concretes were used for the external casing. Stress-strain relations of the samples before and after heating were obtained. The effects of high temperatures on the integrity of concrete samples with a BFRP reinforcement was investigated.

  6. The induction of tomato leucine aminopeptidase genes (LapA) after Pseudomonas syringae pv. tomato infection is primarily a wound response triggered by coronatine.

    PubMed

    Pautot, V; Holzer, F M; Chaufaux, J; Walling, L L

    2001-02-01

    Tomato plants constitutively express a neutral leucine aminopeptidase (LAP-N) and an acidic LAP (LAP-A) during floral development and in leaves in response to insect infestation, wounding, and Pseudomonas syringae pv. tomato infection. To assess the physiological roles of LAP-A, a LapA-antisense construct (35S:asLapA1) was introduced into tomato. The 35S:asLapA1 plants had greatly reduced or showed undetectable levels of LAP-A and LAP-N proteins in healthy and wounded leaves and during floral development. Despite the loss of these aminopeptidases, no global changes in protein profiles were noted. The 35S:asLapA1 plants also exhibited no significant alteration in floral development and did not impact the growth and development of Manduca sexta and P. syringae pv. tomato growth rates during compatible or incompatible infections. To investigate the mechanism underlying the strong induction of LapA upon P. syringae pv. tomato infection, LapA expression was monitored after infection with coronatine-producing and -deficient P. syringae pv. tomato strains. LapA RNA and activity were detected only with the coronatine-producing P. syringae pv. tomato strain. Coronatine treatment of excised shoots caused increases in RNAs for jasmonic acid (JA)-regulated wound-response genes (LapA and pin2) but did not influence expression of a JA-regulated pathogenesis-related protein gene (PR-1). These results indicated that coronatine mimicked the wound response but was insufficient to activate JA-regulated PR genes.

  7. Behavior of hollow-core FRP-concrete-steel columns subjected to cyclic axial compression.

    DOT National Transportation Integrated Search

    2014-08-01

    This report presents the results of an experimental study that was conducted to investigate the effects of key parameters on the compressive behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular columns (FSDT). Hybrid FSDT col...

  8. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  9. Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Harries, Kent; Petrou, Michael; Bost, Joel; Quattlebaum, Josh B.

    2003-12-01

    The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in-situ nondestructive evaluation (NDE) for structural health monitoring (SHM) of reinforced concrete (RC) structures strengthened with fiber reinforced polymer (FRP) composite overlays is explored. First, the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer. It was found that the presence of a disbond crack drastically changes the electromechanical (E/M) impedance spectrum measured at the PWAS terminals. The spectral changes depend on the distance between the PWAS and the crack tip. Second, large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer (CFRP) composite overlay. The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles. During these fatigue tests, the CFRP overlay experienced disbonding beginning at about 500,000 cycles. The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection. Good correlation between the PWAS readings and the position and extent of disbond damage was observed. These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.

  10. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap.

    PubMed

    Mortazavi, S A R; Taeb, S; Mortazavi, S M J; Zarei, S; Haghani, M; Habibzadeh, P; Shojaei-Fard, M B

    2016-12-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men's scrotums, the electromagnetic fields generated by laptop's internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours.

  11. The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap

    PubMed Central

    Mortazavi, S.A.R.; Taeb, S.; Mortazavi, S.M.J.; Zarei, S.; Haghani, M.; Habibzadeh, P.; Shojaei-fard, M.B.

    2016-01-01

    As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men’s scrotums, the electromagnetic fields generated by laptop’s internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours. PMID:28144597

  12. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials.

    DOT National Transportation Integrated Search

    2014-03-01

    This report describes a research project to investigate accelerated aging protocols for fiber-reinforced : polymer (FRP) reinforcement of concrete. This research was conducted in three stages. In the first : stage, various spectroscopic techniques we...

  13. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle

    PubMed Central

    Das, Bhaskar; Lawrence, Mark

    2017-01-01

    Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products. PMID:29253892

  14. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  15. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    PubMed Central

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  16. Dynamic expression of the LAP family of genes during early development of Xenopus tropicalis.

    PubMed

    Yang, Qiutan; Lv, Xiaoyan; Kong, Qinghua; Li, Chaocui; Zhou, Qin; Mao, Bingyu

    2011-10-01

    The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.

  17. Fire Radiative Power (FRP)-based Emission Factors of PM2.5, CO and NOX for Remote Sensing of Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Karandana Gamalathge, T. D.; Chen, L. W. A.

    2015-12-01

    Large-scale biomass burning such as forest fires represents an important and yet uncertain source of air pollutants and greenhouse gases on a global scale. Due to the highly accidental nature of forest fires, satellite remote sensing could be a promising method to develop regional and global fire emission inventories on a real-time basis. Reliable fire radiative power (FRP)-based fuel consumption and emission factors are critical in this approach. In an attempt to obtain the information, laboratory combustion experiments were conducted to simultaneously monitor FRP, fuel consumption, and emissions of fine particulate matter (PM2.5), carbon monoxide (CO), and reactive nitrogen oxides (NO and NO2). FRP were quantified using temperature-resolved values from a thermal imager instead of conventionally used average temperature, as the former provides more realistic estimates. For dry Ponderosa pine branches, a common fuel in the Sierra Nevada, a strong correlation (r2 ~ 0.8) between FRP and the mass reduction rate (MRR) was found. This led to a radiative energy yield (REY) of 8.5 ± 1.2 MJ/kg, assuming blackbody radiation and a flame emissivity of 0.5. Mass-based emission factors were determined with the carbon balance approach. Considering the ratio of mass-based emission factors and the REY, FRP-based emission factors: PM2.5: 11 g/MJ, CO: 8.0 g/MJ, NO: 0.33 g/MJ, and NO2: 0.07 g/MJ were quantified. The application of this approach to other fuel types and uncertainties in the measurements will be discussed.

  18. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  19. On the water lapping of felines and the water running of lizards

    PubMed Central

    Aristoff, Jeffrey M; Stocker, Roman; Reis, Pedro M

    2011-01-01

    We consider two biological phenomena taking place at the air-water interface: the water lapping of felines and the water running of lizards. Although seemingly disparate motions, we show that they are intimately linked by their underlying hydrodynamics and belong to a broader class of processes called Froude mechanisms. We describe how both felines and lizards exploit inertia to defeat gravity, and discuss water lapping and water running in the broader context of water exit and water entry, respectively. PMID:21655444

  20. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    DOT National Transportation Integrated Search

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  1. Validation of a novel basic virtual reality simulator, the LAP-X, for training basic laparoscopic skills.

    PubMed

    Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki

    2014-10-01

    Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps < 0.05). This study demonstrated the face, content and construct validity of the Lap-X. The Lap-X holds real potential as a home and hospital training device.

  2. The Growth of Multi-Site Fatigue Damage in Fuselage Lap Joints

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1999-01-01

    Destructive examinations were performed to document the progression of multi-site damage (MSD) in three lap joint panels that were removed from a full scale fuselage test article that was tested to 60,000 full pressurization cycles. Similar fatigue crack growth characteristics were observed for small cracks (50 microns to 10 mm) emanating from counter bore rivets, straight shank rivets, and 100 deg counter sink rivets. Good correlation of the fatigue crack growth data base obtained in this study and FASTRAN Code predictions show that the growth of MSD in the fuselage lap joint structure can be predicted by fracture mechanics based methods.

  3. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    DOT National Transportation Integrated Search

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  4. Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes.

    PubMed

    Hatta, Takeshi; Tsuji, Naotoshi; Miyoshi, Takeharu; Islam, M Khyrul; Alim, M Abdul; Yamaji, Kayoko; Anisuzzaman; Fujisaki, Kozo

    2010-06-01

    Female ixodid ticks are amazing invertebrate animals which efficiently convert a large amount of nutrients derived from their ingested blood meals into eggs. Although oocyte development (vitellogenesis) in ticks is triggered by a blood meal and is assumed to be supported by nutrition derived from ovarian cells connecting oocytes, little is known about the ovarian molecules processing nutrient materials for the vitellogenesis. In this study, we have suggested a putative function of leucine aminopeptidase (HlLAP) in the ovary of parthenogenetic adult ixodid tick Haemaphysalis longicornis regarding a negative output of reproduction following disruption of HlLAP gene by RNA interference. Endogenous HlLAP was shown to be localized in the ovarian cells, including ovarian epithelial and pedicel cells which were assumed to provide nutrients for the developing oocytes. Histological studies demonstrated that a majority of immature oocytes in HlLAP gene knockdown ticks were transformed into abnormal morpho-histological oocytes with vacuolated cytoplasm and/or condensed nucleus. Taken together, a reduction of the numbers of laid eggs in the HlLAP gene knockdown ticks may be due to the degeneration of immature oocytes following deprivation of nutrients such as amino acids supplied not only by midgut HlLAP but also by the ovarian HlLAP. Regulation of the tick molecules involved in nutrient metabolism for the reproduction, including blood digestion and vitellogenesis, would help in controlling the tick population and tick-borne pathogens.

  5. Study on active lap tool influence function in grinding 1.8 m primary mirror.

    PubMed

    Haitao, Liu; Zhige, Zeng; Fan, Wu; Bin, Fan; Yongjian, Wan

    2013-11-01

    We present a theoretical modeling method to predict the ring tool influence function (TIF) based on the computer-controlled active lap process. The gap on the lap-grinding layer is considered, and its influence on the ring TIF is analyzed too. The relationship between the shape of the ring TIF and the lap-workpiece rotation speed ratio is discussed in this paper. The recipe for calculating dwell time for axisymmetric fabrication is discussed. The grinding process of a 1.8 m primary mirror is improved based on these results. The grinding process is accomplished after 30 circles of grinding, and the surface shape error is from PV 82 μm RMS 16.4 μm reduced to PV 13.5 μm RMS 2.5 μm.

  6. An Experimental Study on Shrinkage Strains of Normal-and High-Strength Concrete-Filled Frp Tubes

    NASA Astrophysics Data System (ADS)

    Vincent, Thomas; Ozbakkaloglu, Togay

    2017-09-01

    It is now well established that concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) are an attractive construction technique for new columns, however studies examining concrete shrinkage in CFFTs remain limited. Concrete shrinkage may pose a concern for CFFTs, as in these members the curing of concrete takes place inside the FRP tube. This paper reports the findings from an experimental study on concrete shrinkage strain measurements for CFFTs manufactured with normal- and high-strength concrete (NSC and HSC). A total of 6 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured, with 3 specimens each manufactured using NSC and HSC. The specimens were instrumented with surface and embedded strain gauges to monitor shrinkage development of exposed concrete and concrete sealed inside the CFFTs, respectively. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths were 44.8 or 83.2 MPa. Analysis of the shrinkage measurements from concrete sealed inside the CFFTs revealed that embedment depth and concrete compressive strength only had minor influences on recorded shrinkage strains. However, an analysis of shrinkage measurements from the exposed concrete surface revealed that higher amounts of shrinkage can occur in HSC. Finally, it was observed that shrinkage strains are significantly higher for concrete exposed at the surface compared to concrete sealed inside the CFFTs.

  7. Strengthening of Route 378 bridge over Wynantskill Creek in New York using FRP laminates

    DOT National Transportation Integrated Search

    2001-03-01

    This report describes application of Fiber-Reinforced Polymer (FRP) composite laminates to strengthen an aging reinforced-concrete T-beam bridge in South Troy, Rensselaer County, New York. Leakage at the end joints of this single-span structure led t...

  8. Performance range of SMA actuator wires and SMA-FRP structure in terms of manufacturing, modeling and actuation

    NASA Astrophysics Data System (ADS)

    Hübler, M.; Gurka, M.; Schmeer, S.; Breuer, U. P.

    2013-09-01

    In this contribution we present a comprehensive theoretical and experimental description of an active shape memory alloy (SMA) fiber reinforced composite (FRP) hybrid structure. The major influences on actuation performance arising from variations in the design and manufacturing process are discussed, utilizing a new phenomenological model to describe the actuating SMA material. The different material properties for the activated, respective the unactivated, SMA as well as the influence of different loading conditions or pre-treatment of the material are taken into account in this model. To validate our material model we performed new actuation experiments with an exemplary SMA-FRP structure, which we compared to finite element (FE) simulation results. Our FE-model is based on a material model for the actuating SMA elements derived from experiments and data on the actual microscopic geometry of the hybrid composite. Therefore it is able to predict very precisely the actuation behavior of a typical FRP structure for industrial use cases: a thin walled CFRP sheet with SMA wires attached to the top for performing a bending motion with a maximum deflection of approx. 25% of its length.

  9. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  10. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  11. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  12. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  13. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  14. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  15. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    PubMed

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  16. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    fiber nonwoven. A SPS falls into a short fiber nonwoven and is studied as a non-infused, infused, and infused functionalized interleaf in unidirectional carbon fiber composites for GIC improvement over non-interleaved samples. As with traditional interleaving studies it is possible to decrease delamination fracture toughness as well as increase, and the reasons for either are not always clear. While the SPS interleaves are promising to resist delamination, the scatter of the results make it an unreliable method of improvement. While these studies showed significant variability in effect of the interleaf, given the correct morphology of the SPS and precise measurement during the DCB testing it is possible to improve fracture toughness significantly with all SPS interleaves. A unique fabrication method is used to incorporate the SPS interleaves into lap joint and double strap joint geometries using a prepreg lay-up fabrication similar to forming the DCB specimens. This allowed study of the use of the SPS interleaf as an adhesive layer without the need to develop a SPS adhesive film that would not fail prematurely due to poor adhesion to cured composite panels. Results showed that improvement in GIC is not directly translated into improvement in joint strength. Lap joints showed a higher relationship between GIC than double strap joints likely due to the specimen geometry that results in the adhesive layer of lap joints failing in tension rather than shear.

  17. EEG and ERP profiles in the high alcohol preferring (HAP) and low alcohol preferring (LAP) mice: relationship to ethanol preference.

    PubMed

    Slawecki, Craig J; Grahame, Nicholas J; Roth, Jennifer; Katner, Simon N; Ehlers, C L

    2003-01-31

    Neurophysiological measures, such as decreased P300 amplitude and altered EEG alpha activity, have been associated with increased alcoholism risk. The purpose of the present study was to extend the assessment of the neurophysiological indices associated with alcohol consumption to a recently developed mouse model of high ethanol consumption, the first replicate line of high alcohol preferring (HAP-1) and low alcohol preferring (LAP-1) mice. Male HAP-1, LAP-1, and HS mice from the Institute for Behavioral Genetics at the University of Colorado Health Science Center (i.e., HS/Ibg mice) were implanted with cortical electrodes. EEG activity, and event related potentials (ERPs) were then examined. Following electrophysiological assessment, ethanol preference was assessed to examine the relationship between neurophysiological indices and ethanol consumption. EEG analyses revealed that HAPs and HS/Ibgs had greater peak frequency in the 2-4-Hz band and lower peak frequency in the 6-8- and 1-50-Hz bands of the cortical EEG compared to LAPs. Compared to HAPs, LAPs and HS/Ibgs had decreased peak EEG frequency in the 8-16-Hz band. Decreased parietal cortical power from 8 to 50 Hz was associated with high initial ethanol preference in HAP mice. In regards to ERPs, P1 amplitude was greater in HAPs compared to both LAPs and HS/Ibgs and the P3 latency in LAPs was decreased compared to both HAPs and HS/Ibgs. As expected, HAPs consumed more ethanol and had higher ethanol preference than LAPs and HS/Ibgs. There were no significant differences in ethanol intake or preference between HS/Ibgs and LAPs. These data indicate that selective breeding of the HAP and LAP lines has resulted in the divergence of EEG and ERP phenotypes. The differences observed suggest that increased cortical P1 amplitude and altered cortical EEG activity in the 8-50-Hz frequency range may be neurophysiological 'risk factors' associated with high ethanol consumption in mice. Decreased P3 latency in LAPs compared

  18. Pro-Inflammatory wnt5a and Anti-Inflammatory sFRP5 Are Differentially Regulated by Nutritional Factors in Obese Human Subjects

    PubMed Central

    Schulte, Dominik M.; Müller, Nike; Neumann, Katrin; Oberhäuser, Frank; Faust, Michael; Güdelhöfer, Heike; Brandt, Burkhard; Krone, Wilhelm; Laudes, Matthias

    2012-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1) whether obese human subjects exhibit increased serum concentrations of wnt5a and (2) whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction. Methodology 23 obese human subjects (BMI 44.1±1.1 kg/m2) and 12 age- and sex-matched lean controls (BMI 22.3±0.4 kg/m2) were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d) for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology. Principal Findings Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9±4.0 to 112.3±3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5. Conclusions/Significance Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations of anti-inflammatory sFRP5

  19. Assessment of mechanically fastened fiber reinforced polymer (MF-FRP) strips for extending bridge service life.

    DOT National Transportation Integrated Search

    2015-03-01

    The enhancement of load rating concrete structures by the installation of Fiber reinforced : polymer strips (FRP) is becoming a preferred short-term action. The addition of supplemental : tensile capacity to concrete beams by applying high tensile st...

  20. Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca; Rémy, Samuel; Pappenberger, Florian; Wetterhall, Fredrik

    2018-04-01

    The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass-burning fire emission estimates from the Global Fire Assimilation System (GFAS). The GFAS is a global system and converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence, whereby observed FRP values from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an increase of fire duration, which in turn translates into an increase of emissions estimated from fires compared to what is available from observations. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.

  1. The Staphylococcus aureus leucine aminopeptidase LAP is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine

    PubMed Central

    Carroll, Ronan K.; Veillard, Florian; Gagne, Danielle T.; Lindenmuth, Jarrod M.; Poreba, Marcin; Drag, Marcin; Potempa, Jan; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part, due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase - LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria, however, in systemic and localized infection models the pepZ mutant was significantly attenuated in virulence. Recently, a contradictory report has been published, suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition we conduct a biochemical investigation of purified recombinant LAP identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine and that leucine is not the primary target of LAP. PMID:23241672

  2. Development of Embedded Vascular Networks in FRP for Active/Passive Thermal Management

    DTIC Science & Technology

    2015-04-01

    Passive Thermal Management Katarzyna...To) 30 September 2012 – 31 December 2014 4. TITLE AND SUBTITLE Development of Embedded Vascular Networks in FRP for Active/ Passive Thermal Management   5a...Active/ Passive   Thermal   Management   Reference:       EOARD  grant  (FA8655-­‐12-­‐1-­‐2144)   Investigators:    

  3. Assessment of vitamin D status and serum CrossLaps levels in adults with primary lactose malabsorption.

    PubMed

    Enko, D; Kriegshäuser, G; Stolba, R; Mangge, H; Brandstetter, D; Mayr, N; Forstner, T; Halwachs-Baumann, G

    2016-09-01

    Primary adult-type lactose malabsorption (PALM) is a widespread inherited autosomal recessive condition, which is considered to be associated with osteoporosis. This prospective study aimed at assessing the 25-hydroxy-vitamin D (25(OH)D) status and serum CrossLaps levels in individuals with PALM and normal controls. All participants (n=210) underwent genotyping for the LCT C/T-13910 polymorphism, 25(OH)D and CrossLaps measurements and clinical examinations. In addition, the anthropometric data (that is, height, weight and body mass index) were determined. Fifty-five individuals with PALM (that is, LCT C/C-13910 homozygotes) showed lower 25(OH)D (mean: 24.95±10.04 vs 28.59±9.56 ng/ml, P=0.018) and higher CrossLaps serum levels (mean: 0.46±0.31 vs 0.43±0.49 ng/ml, P=0.251) compared with 155 normal controls (that is, LCT C/T-13910 hetero- or T/T-13910 homozygotes). Anthropometric data were similar between PALM probands and controls. Individuals with PALM were found to have lower 25(OH)D and higher CrossLaps serum levels compared with normal controls. In order to preserve life-long bone health, routine 25(OH)D and CrossLaps serum measurements should be performed in individuals with PALM.

  4. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  5. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  6. FRP MODEL - VERSION 1.0 FOR ESTIMATING STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTICS FABRICATION PROCESSES

    EPA Science Inventory

    This software estimates styrene emissions from the manufacture of fiber-reinforced plastics/composite (FRP/C) products. In using the model, the user first chooses the appropriate process: gel coating, resin sprayup, hand layup, etc. Choosing a process will cause the 'baseline' in...

  7. Learning Activity Package, Algebra 93-94, LAPs 12-22.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…

  8. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  9. Design equations for the assessment and FRP-strengthening of reinforced rectangular concrete columns under combined biaxial bending and axial loads

    NASA Astrophysics Data System (ADS)

    Alessandri, S.; Monti, G.

    2008-05-01

    A simple procedure is proposed for the assessment of reinforced rectangular concrete columns under combined biaxial bending and axial loads and for the design of a correct amount of FRP-strengthening for underdesigned concrete sections. Approximate closed-form equations are developed based on the load contour method originally proposed by Bresler for reinforced concrete sections. The 3D failure surface is approximated along its contours, at a constant axial load, by means of equations given as the sum of the acting/resisting moment ratio in the directions of principal axes of the sections, raised to a power depending on the axial load, the steel reinforcement ratio, and the section shape. The method is extended to FRP-strengthened sections. Moreover, to make it possible to apply the load contour method in a more practical way, simple closed-form equations are developed for rectangular reinforced concrete sections with a two-way steel reinforcement and FRP strengthenings on each side. A comparison between the approach proposed and the fiber method (which is considered exact) shows that the simplified equations correctly represent the section interaction diagram.

  10. Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.

    Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4more » contribute to its exquisite Group III functional agonist potency and selectivity.« less

  11. iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis

    PubMed Central

    2009-01-01

    Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community. PMID:19941647

  12. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    PubMed

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.

    PubMed

    Latour, R A; Black, J

    1992-05-01

    Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.

  14. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    PubMed

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  15. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  16. Early evolution of comet 67P studied with the RPC-LAP onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Miloch, Wojciech; Edberg, Niklas J. T.; Eriksson, Anders I.; Yang, Lei; Paulsson, Joakim J. P.; Wedlund, Cyril Simon; Odelstad, Elias

    2016-07-01

    The Rosetta mission provides the in-situ measurements of a comet that are closest to a comet's aphelion ever made. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of the plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated plasma. In particular we determine the transition for entering the ion dominated region characterised by the 6-hour variations in the local plasma density due to the comet rotation. This transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition.

  17. Chronic Mammalian Toxicological Effects of LAP Wastewater.

    DTIC Science & Technology

    1983-06-01

    humped back, cyanosis, hyperactivity, ataxia, nasal exudate, chromodacryorrhea, and opisthotonos. All rats receiving LAP had red urine approximately 1...treatment, this animal had a humped appearance and was emaciated; a bloody nasal exudate was also noted. Necropsy revealed marked emphysema and moderate...16 17 9 Pigmentation, focal 0 0 1 0 0 2 Fibrosarcoma , metastatic 1 0 0 2 0 0 Neurilemoma 0 1 0 0 2 0 Duodenum Mineralization, focal 0 0 1 0 0 2

  18. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study.

    PubMed

    Zhu, Zheng-Feng; Meng, Kai; Zhong, Yu-Cheng; Qi, Liang; Mao, Xiao-Bo; Yu, Kun-Wu; Zhang, Wei; Zhu, Peng-Fei; Ren, Ze-Peng; Wu, Bang-Wei; Ji, Qin-Wei; Wang, Xiang; Zeng, Qiu-Tang

    2014-01-01

    CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS) has not been explored. We designed to investigate whether circulating frequency and function of CD4(+)LAP(+) Tregs are defective in ACS. One hundred eleven ACS patients (acute myocardial infarction and unstable angina) and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA) and chest pain syndrome (CPS). The frequencies of circulating CD4(+)LAP(+) Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP) on CD4(+) T cells were determined by flow cytometry. The function of CD4(+)LAP(+) Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10) and transforming growth factor-β protein (TGF-β) levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs) was measured by real time-polymerase chain reaction. We found ACS patients had a significantly lower frequency of circulating CD4(+)LAP(+) Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+) T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. A novel regulatory T cell subset, defined as CD4(+)LAP(+) T cells is defective in ACS patients.

  19. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  20. Fabry-Perot sensors for the monitoring of FRP reinforced bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, Brahim; Quirion, Marco; El-Salakawy, Ehab; Debaiky, Ahmed S.; Lackey, Tom

    2004-07-01

    The extensive use of deicing salts in Canada during winter times is identified as the main reason behind the deterioration of highway bridges and parking garages. To fight this infrastructure crisis, Fibre Reinforced Polymers (FRP) has become a very attractive alternative to traditional reinforcing steel due to their non-corrosive nature and light weight. The replacement of steel with Glass FRP bars in bridge deck slabs has been extensively researched in the last few years. This paper presents the first efforts to implement these bars in two highway bridges in Quebec, Canada, and Vermont, USA. These projects are aimed to prove the feasibility of using GFRP bars in bridge construction. GFRP bars were used as reinforcement for parts of the deck slabs in the two bridges while traditional steel was used in the remaining parts. Fibre Optic Sensors (FOS) were used to measure strains in the concrete, reinforcing bars and steel girders. The sensors were surface mounted on the bars or steel girders using standard glue, or embedded in concrete. Static and dynamic testing of the bridges was done using loaded trucks placed for maximum stresses. The design, construction, testing, and results obtained from the bridges are briefly outlined in this paper. The results indicated the accuracy of the sensors and their feasibility for bridge construction and remote monitoring.

  1. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  2. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    NASA Astrophysics Data System (ADS)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  3. Shading aboveground L-joint and lap-joint tests : comparison of white pine and sugar maple test assemblies

    Treesearch

    Carol A. Clausen; Daniel L. Lindner

    2011-01-01

    Five-year performance ratings are presented for two types of untreated, uncoated wood joints (L and lap) in aboveground tests under shaded conditions. The effect of shading on moisture entrapment in pine and maple L and lap joints was evaluated in a moderate decay zone (Madison, Wisconsin). Variations were observed between wood species, visual ratings, joint type,...

  4. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  5. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains.

    PubMed

    Janero, David R; Korde, Anisha; Makriyannis, Alexandros

    2017-01-01

    Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such

  6. Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients.

    PubMed

    Abd Al Samid, May; Chaudhary, Belal; Khaled, Yazan S; Ammori, Basil J; Elkord, Eyad

    2016-03-22

    Regulatory T cells (Tregs) comprise numerous heterogeneous subsets with distinct phenotypic and functional features. Identifying Treg markers is critical to investigate the role and clinical impact of various Treg subsets in pathological settings, and also for developing more effective immunotherapies. We have recently shown that non-activated FoxP3-Helios+ and activated FoxP3+/-Helios+ CD4+ T cells express GARP/LAP immunosuppressive markers in healthy donors. In this study we report similar observations in the peripheral blood of patients with pancreatic cancer (PC) and liver metastases from colorectal cancer (LICRC). Comparing levels of different Treg subpopulations in cancer patients and controls, we report that in PC patients, and unlike LICRC patients, there was no increase in Treg levels as defined by FoxP3 and Helios. However, defining Tregs based on GARP/LAP expression showed that FoxP3-LAP+ Tregs in non-activated and activated settings, and FoxP3+Helios+GARP+LAP+ activated Tregs were significantly increased in both groups of patients, compared with controls. This work implies that a combination of Treg-specific markers could be used to more accurately determine expanded Treg subsets and to understand their contribution in cancer settings. Additionally, GARP-/+LAP+ CD4+ T cells made IL-10, and not IFN-γ, and levels of IL-10-secreting CD4+ T cells were elevated in LICRC patients, especially with higher tumor staging. Taken together, our results indicate that investigations of Treg levels in different cancers should consider diverse Treg-related markers such as GARP, LAP, Helios, and others and not only FoxP3 as a sole Treg-specific marker.

  7. Evaluation of Surlyn 8920 as PHE Visor Material and Evaluations of New Adhesives for Improving Bonding Between Teflon and Stainless Steel at Cryogenic Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1991-01-01

    Two studies are presented, and in the first study, Surlyn 8920 (an ionic and amorphous low density polyethylene made by Dupont) was evaluated as a possible replacement of Plexyglass G as PHE visor material. Four formulations of the polymer were made by adding different amounts of UV stabilizer, energy quencher, and antioxident in a Brabender Plasticorder. The formulated polymers were molded in the form of sheets in a compression molder. Cut samples from the molded sheets were exposed in a weatherometer and tested on Instron Tensile Tester for strength and elongation. Specially molded samples of the formulated polymers were subjected to Charpy Impact Tests. In the second study, preliminary evaluations of adhesives for improvement of bonding between Teflon and stainless steel (SS) were performed. Kapton, a high temperature polyimide made by Dupont, and a rubber based adhesive made by Potter Paint Co., were evaluated against industrial quality epoxy, the current material used to bond Teflon and SS. The degreased surfaces of the SS discs were etched mechanically, with a few of these etched chemically. The surfaces of the SS discs were etched mechanically, with a few of these etched chemically. Bonding strengths were evaluated using lap shear tests on the Instron Tensile Tester for the samples bonded by Kapton and industrial quality epoxy. Bond strengths were also evaluated using a pull test on the Instron for the samples bonded by Potter adhesive (CWL-152) and industrial quality epoxy. Based on limited lap shear data, Kapton gave bond strength favorable compared to that of industrial epoxy. Based on limited pull test data, Kapton bonded and CWL-152 bonded samples showed poor strength compared to epoxy bonded sample.

  8. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4A : design specifications.

    DOT National Transportation Integrated Search

    2015-08-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4A, Design Specifications. : Structural design specifications are base...

  9. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    NASA Astrophysics Data System (ADS)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  10. Endovascular management of lap belt-related abdominal aortic injury in a 9-year-old child.

    PubMed

    Papazoglou, Konstantinos O; Karkos, Christos D; Kalogirou, Thomas E; Giagtzidis, Ioakeim T

    2015-02-01

    Blunt abdominal aortic trauma is a rare occurrence in children with only a few patients having been reported in the literature. Most such cases have been described in the context of lap belt injuries. We report a 9-year-old boy who suffered lap belt trauma to the abdomen during a high-speed road traffic accident resulting to the well-recognized pattern of blunt abdominal injury, that is, the triad of intestinal perforation, fractures of the lumbar spine, and abdominal aortic injury. The latter presented with lower limb ischemia due to dissection of the infrarenal aorta and right common iliac artery. Revascularization was achieved by endovascular means using 2 self-expanding stents in the infrarenal aorta and the right common iliac artery. This case is one of the few reports of lap belt-related acute traumatic abdominal aortic dissection in a young child and highlights the feasibility of endovascular management in the pediatric population. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A laboratory study of multiple site damage in fuselage lap splices

    DOT National Transportation Integrated Search

    1993-12-01

    This report details an experimental study that was conducted to explore the causes of : fuselage lap splice multiple site damage (MSD), which has been observed in several : aging aircraft. MSD was partially responsible for the 1988 Aloha Airlines acc...

  12. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGES

    Squires, Lile; Lim, Yong Chae; Miles, Michael; ...

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  13. Value engineering and cost effectiveness of various fiber reinforced polymer (FRP) repair systems : final report, June 2007.

    DOT National Transportation Integrated Search

    2007-06-01

    This report is an extension to the final report for NCDOT project 2004-15 Value Engineering and Cost-Effectiveness of : Various Fiber Reinforced Polymers (FRP) Repair Systems, submitted in June 2005. In that report, seventeen 30-ft long : prest...

  14. Strengthening of rural bridges using rapid-installation FRP technology : route 63 bridge no. H356, Phelps County.

    DOT National Transportation Integrated Search

    2009-10-01

    This report presents the use of externally bonded fiber reinforced polymers (FRP) laminates for the flexural strengthening of a : concrete bridge. The bridge selected for this project is a two-span simply supported reinforced concrete slab with no tr...

  15. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    PubMed

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  16. Numerical Analysis of a Masonry Panel Reinforced with Pultruded FRP Frames

    NASA Astrophysics Data System (ADS)

    Casalegno, C.; Russo, S.; Sciarretta, F.

    2018-05-01

    The paper presents a numerical study on the retrofit of traditional masonry with pultruded GFRP profile frames adjacent to a wall and connected to it by mechanical fasteners. This kind of retrofit solution, not having been explored yet either in theory or practice, is similar to the common steel frame retrofits, but offers the advantages of lightness and durability of FRP composite materials. The retrofit system proposed, once proven effective and advantageous, would bring a considerable potential innovation into its available options. Three different frame geometries and two cases of masonry thickness were considered to investigate the effectiveness of the retrofit GFRP frame on the inplane static response of the wall to horizontal loads. The global and local (connection) failure behavior of the wall-frame system was investigated using the 3D finite-element method. A general increase in strength after the retrofit, up to about 130%, was found, and a switch from rocking to the diagonal tension failure mode was observed. The strength hierarchy of the retrofitted systems was also analyzed to clarify the effectiveness of the retrofit in imparting a residual strength to masonry. A thinner masonry structure was clearly recognized to have got the greatest benefits, but the retrofit could also significantly improve the inplane shear strength of a thicker wall. A comparison with steel structures of analogous capacity in terms of weight and natural vibration frequencies supported the viability of composite FRP frames for retrofit.

  17. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  18. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  19. Early Evolution of Comet 67P Studied with the RPC-LAP onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Miloch, W. J.; Yang, L.; Paulsson, J. J.; Wedlund, C. S.; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A.

    2016-12-01

    In-situ measurements within the Rosetta mission allow for studies of the cometary environment at different stages of cometary evolution. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current, which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated, high-density plasma region. This high-density region is observed at the northern hemisphere of the comet during early activity. The transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition. We show that the early cometary plasma can be seen as composed of two distinct regions: an outer region characterised by solar wind plasma and small quantities of pickup ions, and an inner region with enhanced plasma densities.

  20. Associação entre lipid accumulation product (LAP) e hirsutismo na síndrome do ovário policístico.

    PubMed

    de Oliveira, Flávia Ribeiro; Rezende, Mariana Bicalho; Faria, Nícolas Figueiredo; Dias, Tomás Ribeiro Gonçalves; de Oliveira, Walter Carlos Santos; Rocha, Ana Luiza Lunardi; Cândido, Ana Lúcia

    2016-02-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women between menarche and menopause. Clinical hyperandrogenism is the most important diagnostic criterion of the syndrome, which manifests as hirsutism in 70% of cases. Hirsute carriers of PCOS have high cardiovascular risk. Lipid accumulation product (LAP) is an index for the evaluation of lipid accumulation in adults and the prediction of cardiovascular risk. The aim of this study was to evaluate the association between LAP and hirsutism in women with PCOS. This was a cross-sectional observational study of a secondary database, which included 263 patients who had visited the Hyperandrogenism Outpatient Clinic from November 2009 to July 2014. The exclusion criteria were patients without Ferriman-Gallwey index (FGI) and/or LAP data. We used the Rotterdam criteria for the diagnosis of PCOS. All patients underwent medical assessment followed by measurement and recording of anthropometric data and the laboratory tests for measurement of the following: thyroid-stimulating hormone, follicle-stimulating hormone, prolactin, total testosterone, sex hormone binding globulin, 17-α-hydroxyprogesterone (follicular phase), glycohemoglobin A1c, and basal insulin. In addition, the subjects underwent lipid profiling and oral glucose tolerance tests. Other laboratory measurements were determined according to clinical criteria. LAP and the homeostatic model assessment index (HOMA-IR) were calculated using the data obtained. We divided patients into two groups: the PCOS group with normal LAP (< 34.5) and the PCOS group with altered LAP (> 34.5) to compare the occurrence of hirsutism. For statistical analysis, we used SPSS Statistics for Windows® and Microsoft Excel programs, with descriptive (frequencies, percentages, means, and standard deviations) and comparative analyses (Student's t-test and Chi-square test). We considered relations significant when the p-value was ≤ 0.05. LAP was high in

  1. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  2. Experimental Research of FRP Composite Tube Confined Steel-reinforced Concrete Stub Columns Under Axial Compression

    NASA Astrophysics Data System (ADS)

    Wang, Ji Zhong; Cheng, Lu; Wang, Xin Pei

    2018-06-01

    A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.

  3. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 7 : final report : thesis.

    DOT National Transportation Integrated Search

    2015-05-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 7, Final Report - Thesis. : This final report covers Tasks 1, 2, 3, 5 ...

  4. The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1980-01-01

    Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)

  5. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  6. Detecting severity of delamination in a lap joint using S-parameters

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Huang, H.

    2018-03-01

    The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.

  7. Construct validity of the LapVR virtual-reality surgical simulator.

    PubMed

    Iwata, Naoki; Fujiwara, Michitaka; Kodera, Yasuhiro; Tanaka, Chie; Ohashi, Norifumi; Nakayama, Goro; Koike, Masahiko; Nakao, Akimasa

    2011-02-01

    Laparoscopic surgery requires fundamental skills peculiar to endoscopic procedures such as eye-hand coordination. Acquisition of such skills prior to performing actual surgery is highly desirable for favorable outcome. Virtual-reality simulators have been developed for both surgical training and assessment of performance. The aim of the current study is to show construct validity of a novel simulator, LapVR (Immersion Medical, San Jose, CA, USA), for Japanese surgeons and surgical residents. Forty-four subjects were divided into the following three groups according to their experience in laparoscopic surgery: 14 residents (RE) with no experience in laparoscopic surgery, 14 junior surgeons (JR) with little experience, and 16 experienced surgeons (EX). All subjects executed "essential task 1" programmed in the LapVR, which consists of six tasks, resulting in automatic measurement of 100 parameters indicating various aspects of laparoscopic skills. Time required for each task tended to be inversely correlated with experience in laparoscopic surgery. For the peg transfer skill, statistically significant differences were observed between EX and RE in three parameters, including total time and average time taken to complete the procedure and path length for the nondominant hand. For the cutting skill, similar differences were observed between EX and RE in total time, number of unsuccessful cutting attempts, and path length for the nondominant hand. According to the programmed comprehensive evaluation, performance in terms of successful completion of the task and actual experience of the participants in laparoscopic surgery correlated significantly for the peg transfer (P=0.007) and cutting skills (P=0.026). The peg transfer and cutting skills could best distinguish between EX and RE. This study is the first to provide evidence that LapVR has construct validity to discriminate between novice and experienced laparoscopic surgeons.

  8. Conventional box model training improves laparoscopic skills during salpingectomy on LapSim: a randomized trial.

    PubMed

    Akdemir, Ali; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgür; Sendağ, Fatih

    2013-01-01

    Box model trainers have been used for many years to facilitate the improvement of laparoscopic skills. However, there are limited data available on box trainers and their impact on skill acquisition, assessed by virtual reality systems. Twenty-two Postgraduate Year 1 gynecology residents with no laparoscopic experience were randomly divided into one group that received structured box model training and a control group. All residents performed a salpingectomy on LapSim before and after the training. Performances before and after the training were assessed using LapSim and were recorded using objective parameters, registered by a computer system (time, damage, and economy of motion scores). There were initially no differences between the two groups. The box trainer group showed significantly greater improvement in time (p=0.01) and economy of motion scores (p=0.001) compared with the control group post-training. The present study confirmed the positive effect of low cost box model training on laparoscopic skill acquisition as assessed using LapSim. Novice surgeons should obtain practice on box trainers and teaching centers should make efforts to establish training laboratories.

  9. "Analysis of Van Allen Probes lapping data using Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)"

    NASA Astrophysics Data System (ADS)

    Gallton, D. A.; Manweiler, J. W.; Gerrard, A. J.; Cravens, T.; Lanzerotti, L. J.; Patterson, J. D.

    2017-12-01

    The increased frequency of the Van Allen Probes (VAP) lapping events provides a unique opportunity to examine the scaling length and structure of the magnetospheric plasma at microscales. Onboard the probes is the RBSPICE instrument, which is an energetic particle detector capable of observing ions (H+, Hen+, On+) from approximately 7 KeV upwards to values of 1 MeV. Here we provide a correlation analysis of the probes during quiet time lapping events which examines the behavior of the particle populations when the probes are within 1,000 km of separation distance, at a distance greater than 15,000 km from Earth, and where the Kp and AE magnetic indices show minimal geomagnetic activity. The correlation values of the energetic particle distributions are examined and the falloff distances associated with the tail end of the plasma distribution are calculated. We provide an overview of the initial analysis results for H during the quiet time lapping events and a discussion of the causal relationship.

  10. Effect of Viscosity on Fuel Leakage Between Lapped Plungers and Sleeves and on the Discharge from a Pump-Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1935-01-01

    Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.

  11. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film.

    PubMed

    Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun

    2015-06-24

    Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.

  12. Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease.

    PubMed

    Brady, Graham F; Kwan, Raymond; Ulintz, Peter J; Nguyen, Phirum; Bassirian, Shirin; Basrur, Venkatesha; Nesvizhskii, Alexey I; Loomba, Rohit; Omary, M Bishr

    2018-05-01

    Nonalcoholic fatty liver disease (NAFLD) is becoming the major chronic liver disease in many countries. Its pathogenesis is multifactorial, but twin and familial studies indicate significant heritability, which is not fully explained by currently known genetic susceptibility loci. Notably, mutations in genes encoding nuclear lamina proteins, including lamins, cause lipodystrophy syndromes that include NAFLD. We hypothesized that variants in lamina-associated proteins predispose to NAFLD and used a candidate gene-sequencing approach to test for variants in 10 nuclear lamina-related genes in a cohort of 37 twin and sibling pairs: 21 individuals with and 53 without NAFLD. Twelve heterozygous sequence variants were identified in four lamina-related genes (ZMPSTE24, TMPO, SREBF1, SREBF2). The majority of NAFLD patients (>90%) had at least one variant compared to <40% of controls (P < 0.0001). When only insertions/deletions and changes in conserved residues were considered, the difference between the groups was similarly striking (>80% versus <25%; P < 0.0001). Presence of a lamina variant segregated with NAFLD independently of the PNPLA3 I148M polymorphism. Several variants were found in TMPO, which encodes the lamina-associated polypeptide-2 (LAP2) that has not been associated with liver disease. One of these, a frameshift insertion that generates truncated LAP2, abrogated lamin-LAP2 binding, caused LAP2 mislocalization, altered endogenous lamin distribution, increased lipid droplet accumulation after oleic acid treatment in transfected cells, and led to cytoplasmic association with the ubiquitin-binding protein p62/SQSTM1. Several variants in nuclear lamina-related genes were identified in a cohort of twins and siblings with NAFLD; one such variant, which results in a truncated LAP2 protein and a dramatic phenotype in cell culture, represents an association of TMPO/LAP2 variants with NAFLD and underscores the potential importance of the nuclear lamina in NAFLD

  13. Impact injury to the pregnant female and fetus in lap belt restraint.

    DOT National Transportation Integrated Search

    1968-12-01

    Although it has been well established that the lap (seat) belt offers considerable protection against injury or death in crash environments, there has long been controversy over the injury potential to the pregnant female. This question is of importa...

  14. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Polydopamine and Polydopamine-Silane Hybrid Surface Treatments in Structural Adhesive Applications.

    PubMed

    Tran, Ngon T; Flanagan, David P; Orlicki, Joshua A; Lenhart, Joseph L; Proctor, Kenneth L; Knorr, Daniel B

    2018-01-30

    Numerous studies have focused on the remarkable adhesive properties of polydopamine, which can bind to substrates with a wide range of surface energies, even under aqueous conditions. This behavior suggests that polydopamine may be an attractive option as a surface treatment in structural bonding applications, where good bond durability is required. Here, we assessed polydopamine as a surface treatment for bonding aluminum plates with an epoxy resin. A model epoxy adhesive consisting of diglycidyl ether of bisphenol A (DGEBA) and Jeffamine D230 polyetheramine was employed, and lap shear measurements (ASTM D1002 10) were made (i) under dry conditions to examine initial bond strength and (ii) after exposure to hot/wet (63 °C in water for 14 days) conditions to assess bond durability. Surprisingly, our results showed that polydopamine alone as a surface treatment provided no benefit beyond that obtained by exposing the substrates to an alkaline solution of tris buffer used for the deposition of polydopamine. This implies that polydopamine has a potential Achilles' heel, namely, the formation of a weak boundary layer that was identified using X-ray photoelectron spectroscopy (XPS) of the fractured surfaces. In fact, for longer deposition times (2.5 and 18 h), the tris buffer-treated surface outperformed the polydopamine surface treatments, suggesting that tris buffer plays a unique role in improving adhesive performance even in the absence of polydopamine. We further showed that the use of polydopamine-3-aminopropyltriethoxysilane (APTES) hybrid surface treatments provided significant improvements in bond durability at extended deposition times relative to both polydopamine and an untreated control.

  16. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  17. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    NASA Astrophysics Data System (ADS)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  18. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  19. Monitoring Poisson's Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors.

    PubMed

    Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S; Turkmen, Halit S; Yildiz, Mehmet

    2016-09-19

    The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson's ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson's ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes.

  20. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    NASA Astrophysics Data System (ADS)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  1. The role of haptic feedback in laparoscopic training using the LapMentor II.

    PubMed

    Salkini, Mohamad W; Doarn, Charles R; Kiehl, Nicholai; Broderick, Timothy J; Donovan, James F; Gaitonde, Krishnanath

    2010-01-01

    Laparoscopic surgery has become the standard of care for many surgical diseases. Haptic (tactile) feedback (HFB) is considered an important component of laparoscopic surgery. Virtual reality simulation (VRS) is an alternative method to teach surgical skills to surgeons in training. Newer VRS trainers such as the Simbionix Lap Mentor II provide significantly improved tactile feedback. However, VRSs are expensive and adding HFB software adds an estimated cost of $30,000 to the commercial price. The HFB provided by the Lap Mentor II has not been validated by an independent party. We used the Simbionix Lap Mentor II in this study to demonstrate the effect of adding an HFB mechanism in the VRS trainer. The study was approved by the University of Cincinnati Institutional Review Board. Twenty laparoscopically novice medical students were enrolled. Each student was asked to perform three different tasks on the Lap Mentor II and repeat each one five times. The chosen tasks demanded significant amount of traction and counter traction. The first task was to pull leaking tubes enough and clip them. The second task was stretching a jelly plate enough to see its attachments to the floor and cut these attachments. In the third task, the trainee had to separate the gallbladder from its bed on the liver. The students were randomized into two groups to perform the tasks with and without HFB. We used accuracy, speed, and economy of movement as scales to compare the performance between the two groups. The participants also completed a simple questionnaire that highlighted age, sex, and experiences in videogame usage. The two groups were comparable in age, sex, and videogame playing. No differences in the accuracy, the economy, and the speed of hand movement were noticed. In fact, adding HFB to the Lap Mentor II simulator did not contribute to any improvement in the performance of the trainees. Interestingly, we found that videogame expert players tend to have faster and more economic

  2. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  3. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  4. Application of Bionic Design to FRP T-Joints

    NASA Astrophysics Data System (ADS)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  5. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP.

    PubMed

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-08-21

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3- T cells expressing Helios (FoxP3-Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/-Helios+). We show that CD4+GARP+/-LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios- Tregs upon TCR stimulation. Unlike FoxP3+Helios- Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios- Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction.

  6. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP

    PubMed Central

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-01-01

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3− T cells expressing Helios (FoxP3−Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/−Helios+). We show that CD4+GARP+/−LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios− Tregs upon TCR stimulation. Unlike FoxP3+Helios− Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios− Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction. PMID:26343373

  7. Reliability of Step-Lap Bonded Joints

    DTIC Science & Technology

    1975-04-01

    1.5. This P e gives a x f’t equal to .25 and a strength of 5400 (lb/in). Thermal stresses av p were not considered. Experience indicates that for both...a (-~p; ACAro 48 - 2095 -5 49 -2057 0’ 50 -2099 +45,’ j~d P~ FIGURE 35. FULL SCALE STEP-LAP SPECIMEN DRAWING 49 TA?)LE I. PLY OhbW6I40WE~Th a I...11. T464-.- S~w lW- iZ44 ILL A 40 C 4 W AP- I. _Asllll-ýL04-c &FC o W. Ox.-F-fwau". %r IpśX~ -Rt 4 r m 1 - 6-an AV ?t= .C3)-.Zfr.UROA M 0:frca 0 AW

  8. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  9. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  10. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  11. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  12. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiyan

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less

  13. Simultaneous life extension and crack monitoring of fatigue-damaged steel members using multifunctional carbon nanotube based composites

    NASA Astrophysics Data System (ADS)

    Ahmed, Shafique; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer

    2017-04-01

    Steel structures including bridges are susceptible to cracking, particularly due to fatigue-sensitive details found in older designs. Therefore, one of the major challenges to keep those steel bridges in service is to rehabilitate existing and potential fatigue damage. There are several conventional approaches to extend the fatigue-life of damaged steel members, e.g., drilling a crack stop-hole to reduce the stress concentration at the crack tip as well as welding and bolting of steel plates or adhesive-bonding of fiber-reinforced polymers (FRP) to reduce the overall stresses. Improvement in material properties of FRP and adhesives make them a viable candidate to apply for extending the fatigue-life of steel members. However, drawbacks include the potential for debonding of the adhesive layer and/or interfaces between adhesive and adherents as well as difficulty in monitoring fatigue crack growth after rehabilitation. In this research, a holistic approach is proposed and evaluated for simultaneous extension of fatigue-life and monitoring by integrating a carbon nanotube (CNT)-based sensing layer with an adhesively-bonded FRP reinforcement. CNT-based sensing layers have a nerve-like electric resistance network, which enables distributed sensing capabilities to monitor stress levels, crack growth, and damage progression. Using laboratory-scale experiments, the simultaneous fatigue-life extension and crack monitoring capability of multifunctional CNT-based composites was evaluated. This paper introduces the fundamental concept of integrated fatigue-rehabilitation and monitoring of steel members, presents a laboratory-scale experiment to demonstrate the feasibility and effectiveness, and discusses challenges for implementation in real structures.

  14. Towards a better understanding of the mechanisms controlling the durability of FRP composites in concrete

    NASA Astrophysics Data System (ADS)

    Kamal, Abu Sayed Md

    Wide adoption by the construction industry of Fibre Reinforced Polymer (FRP) rebars - a relatively recent construction material that offers numerous advantages of corrosion resistance, higher strength, lighter weight, etc. over conventional reinforcing materials for concrete, such as steel - is at least partially impeded due to a lack of an effective long term in-service performance prediction model and relatively high initial costs. A reliable service life prediction model for FRP composites in concrete depends on a clear understanding of the transport mechanisms of potentially harmful chemical species into the FRP composites and their subsequent contribution to any potentially active degradation mechanism(s). To identify which mechanisms control the degradation of Glass Fibre Reinforced Polymers (GFRP) in alkaline environments, GFRP rebars were immersed into simulated concrete pore solutions and subjected to accelerated ageing tests (Phase 1). The conditioned samples were analyzed by various electron microscopy (SEM, EDS) and spectroscopic methods (FTIR). Analyses of these tests revealed that fibre-matrix debonding took place in few samples exposed to 75 °C (the highest temperature considered in this study), and tested after one year, despite the fact that the glass fibres and polymer matrix remained essentially intact and that no penetration of alkalis into the GFRP rebars was observed. Hence, this study shows that the Vinyl Ester (VE) polymer matrix used acts as an effective semi-permeable membrane by allowing the penetration of water while blocking alkali ions. The findings showing that most of the damage seems to be confined to the fibre-matrix interphase (or interface), under the considered test conditions, stimulated an investigation on the effects of sizing on the strength retention and water up-take of GFRP rebars in Phase 2 of the testing program. In order to study the effects of sizing on the properties of GFRP rebars, GFRP custom plane sheets with

  15. Induction of polyploidy by nuclear fusion mechanism upon decreased expression of the nuclear envelope protein LAP2β in the human osteosarcoma cell line U2OS.

    PubMed

    Ben-Shoshan, Shirley Oren; Simon, Amos J; Jacob-Hirsch, Jasmine; Shaklai, Sigal; Paz-Yaacov, Nurit; Amariglio, Ninette; Rechavi, Gideon; Trakhtenbrot, Luba

    2014-01-28

    Polyploidy has been recognized for many years as an important hallmark of cancer cells. Polyploid cells can arise through cell fusion, endoreplication and abortive cell cycle. The inner nuclear membrane protein LAP2β plays key roles in nuclear envelope breakdown and reassembly during mitosis, initiation of replication and transcriptional repression. Here we studied the function of LAP2β in the maintenance of cell ploidy state, a role which has not yet been assigned to this protein. By knocking down the expression of LAP2β, using both viral and non-viral RNAi approaches in osteosarcoma derived U2OS cells, we detected enlarged nuclear size, nearly doubling of DNA content and chromosomal duplications, as analyzed by fluorescent in situ hybridization and spectral karyotyping methodologies. Spectral karyotyping analyses revealed that near-hexaploid karyotypes of LAP2β knocked down cells consisted of not only seven duplicated chromosomal markers, as could be anticipated by genome duplication mechanism, but also of four single chromosomal markers. Furthermore, spectral karyotyping analysis revealed that both of two near-triploid U2OS sub-clones contained the seven markers that were duplicated in LAP2β knocked down cells, whereas the four single chromosomal markers were detected only in one of them. Gene expression profiling of LAP2β knocked down cells revealed that up to a third of the genes exhibiting significant changes in their expression are involved in cancer progression. Our results suggest that nuclear fusion mechanism underlies the polyploidization induction upon LAP2β reduced expression. Our study implies on a novel role of LAP2β in the maintenance of cell ploidy status. LAP2β depleted U2OS cells can serve as a model to investigate polyploidy and aneuploidy formation by nuclear fusion mechanism and its involvement in cancerogenesis.

  16. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    NASA Astrophysics Data System (ADS)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-06-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  17. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  18. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4B : material & construction specifications : final report.

    DOT National Transportation Integrated Search

    2015-07-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...

  19. Monitoring Poisson’s Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors

    PubMed Central

    Akay, Erdem; Yilmaz, Cagatay; Kocaman, Esat S.; Turkmen, Halit S.; Yildiz, Mehmet

    2016-01-01

    The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. PMID:28773901

  20. Feasibility, safety, and preliminary efficacy of Low Amplitude Seizure Therapy (LAP-ST): A proof of concept clinical trial in man.

    PubMed

    Youssef, Nagy A; Sidhom, Emad

    2017-11-01

    Current pulse amplitude used in clinical ECT may be higher than needed. Reducing pulse amplitude may improve focality of the electric field and thus cognitive adverse effects. Here we examine the feasibility, safety, and whether Low Pulse Amplitude Seizure Therapy (LAP-ST, 0.5-0.6A) minimizes cognitive adverse effects while retaining efficacy. Patients with treatment-resistant primary mood (depressive episodes) or psychotic disorders who were clinically indicated to undergo ECT were offered to be enrolled in an open-label study. The study consisted of a full acute course of LAP-ST under standard anesthesia and muscle relaxation. The primary outcome was feasibility of seizure induction. Clinical outcome measures were: time to reorientation (TRO), Mini Mental State Examination, Montgomery Aberg Depression Scale, and Brief Psychiatric Rating Scale, and Clinical Global Impression Scale. Twenty-two patients consented for enrollment in the study. LAP-ST was feasible, and all patients had seizures in the first session. Participants had a quick orientation with median TRO of 4.5min. Treatment was efficacious for both depressive and psychotic symptoms. Relatively small sample size, non-blinded, and no randomization was performed in this initial proof of concept study. This first human preliminary data of a full course of focal LAP-ST demonstrates that seizure induction is feasible. These results, although preliminary, suggest that the LAP-ST compared to the standard ECT techniques may result in less cognitive side effects, but comparable efficacy. Larger studies are needed to replicate these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Anchorage strength models for end-debonding predictions in RC beams strengthened with FRP composites

    NASA Astrophysics Data System (ADS)

    Nardini, V.; Guadagnini, M.; Valluzzi, M. R.

    2008-05-01

    The increase in the flexural capacity of RC beams obtained by externally bonding FRP composites to their tension side is often limited by the premature and brittle debonding of the external reinforcement. An in-depth understanding of this complex failure mechanism, however, has not yet been achieved. With specific regard to end-debonding failure modes, extensive experimental observations reported in the literature highlight the important distinction, often neglected in strength models proposed by researchers, between the peel-off and rip-off end-debonding types of failure. The peel-off failure is generally characterized by a failure plane located within the first few millimetres of the concrete cover, whilst the rip-off failure penetrates deeper into the concrete cover and propagates along the tensile steel reinforcement. A new rip-off strength model is described in this paper. The model proposed is based on the Chen and Teng peel-off model and relies upon additional theoretical considerations. The influence of the amount of the internal tensile steel reinforcement and the effective anchorage length of FRP are considered and discussed. The validity of the new model is analyzed further through comparisons with test results, findings of a numerical investigation, and a parametric study. The new rip-off strength model is assessed against a database comprising results from 62 beams tested by various researchers and is shown to yield less conservative results.

  2. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  3. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  4. In-service moisture content of hardboard lap siding in southern Florida

    Treesearch

    C. Carll; A. Tenwolde; V. Malinauskas; M. Knaebe; P. G. Sotos

    1999-01-01

    To evaluate the effect of backpriming on in-service performance,hardboard lap siding from one manufacturing plant was exposed on two test buildings in southern Florida for 29 months. The two buildings were identical, except that one had 0.3 m (12-inch) roof overhangs without gutters and the other had gutters but no roof overhangs. Siding installation was the same on...

  5. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  6. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  7. Biomechanical and Histologic Evaluation of LifeMesh™: A Novel Self-Fixating Mesh Adhesive.

    PubMed

    Shahan, Charles P; Stoikes, Nathaniel N; Roan, Esra; Tatum, James; Webb, David L; Voeller, Guy R

    2018-04-01

    Mesh fixation with the use of adhesives results in an immediate and total surface area adhesion of the mesh, removing the need for penetrating fixation points. The purpose of this study was to evaluate LifeMesh™, a prototype mesh adhesive technology which coats polypropylene mesh. The strength of the interface between mesh and tissue, inflammatory responses, and histology were measured at varying time points in a swine model, and these results were compared with sutures. Twenty Mongrel swine underwent implantation of LifeMesh™ and one piece of bare polypropylene mesh secured with suture (control). One additional piece of either LifeMesh™ or control was used for histopathologic evaluation. The implants were retrieved at 3, 7, and 14 days. Only 3- and 7-day specimens underwent lap shear testing. On Day 3, LifeMesh™ samples showed considerably less contraction than sutured samples. The interfacial strength of Day 3 LifeMesh™ samples was similar to that of sutured samples. At seven days, LifeMesh™ samples continued to show significantly less contraction than sutured samples. The strength of fixation at seven days was greater in the control samples. The histologic findings were similar in LifeMesh™ and control samples. LifeMesh™ showed significantly less contraction than sutured samples at all measured time points. Although fixation strength was similar at three days, the interfacial strength of LifeMesh™ remained unchanged, whereas sutured controls increased by day 7. With histologic equivalence, considerably less contraction, and similar early fixation strength, LifeMesh™ is a viable mesh fixation technology.

  8. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  9. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  10. [Effect of Biejiajian Pills on Wnt/β-catenin signal pathway and DKK-1 and FrpHe gene expressions in hepatocellular carcinoma cells].

    PubMed

    He, Songqi; Cheng, Yang; Zhu, Yun; Fan, Qin; Sun, Haitao; Jia, Wenyan

    2013-01-01

    To investigate the effect of Biejiajian Pills on Wnt signal pathway and its inhibitory gene (DKK-1 and FrpHe) expressions and explore the mechanism underlying the action of Biejiajian Pills to suppress the invasiveness of hepatocellular carcinoma. Twenty-four Wistar rats were randomized equally into 3 groups for gavage of normal saline and Biejiajian Pills at 20- and 10-fold clinical doses for 3 days. Blood samples were then collected from the rats, and the serum was separated and added in HepG2 cell cultures. After 48 h of culture, the cells were collected to determine the cellular content of β-catenin protein using flow cytometry and detect DKK-1 and FrpHe mRNA expressions using qRT-PCR. HepG2 cells cultured in the presence of sera from rats fed with Biejiajian Pills showed significantly lowered β-catenin protein expression and obvious down-regulation of DKK-1 mRNA expression, and the effect was correlated with the doses of the drug administered. The expression of FrpHe mRNA showed no significant differences between the 3 groups. Biejiajian Pills can effectively inhibit the invasiveness and migration of hepatocellular carcinoma cells, which is closely related to decreased expressions of β-catenin and DKK-1 to cause block of the Wnt/β-catenin signal pathway.

  11. Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao

    2015-02-01

    In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.

  12. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  13. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  14. (40)Ar/(39)Ar Age of Hornblende-Bearing R Chondrite LAP 04840

    NASA Technical Reports Server (NTRS)

    Righter, K.; Cosca, M.

    2015-01-01

    Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (much less than 4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (much less than 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840. This chondrite contains approximately 15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios. To help gain a better understanding of the origin of this unique sample, we have measured the (40)Ar/(39)Ar age (LAP 04840 split 39).

  15. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  16. Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression

    NASA Astrophysics Data System (ADS)

    Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay

    2018-01-01

    This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.

  17. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  18. Positive correlation between motion analysis data on the LapMentor virtual reality laparoscopic surgical simulator and the results from videotape assessment of real laparoscopic surgeries.

    PubMed

    Matsuda, Tadashi; McDougall, Elspeth M; Ono, Yoshinari; Hattori, Ryohei; Baba, Shiro; Iwamura, Masatsugu; Terachi, Toshiro; Naito, Seiji; Clayman, Ralph V

    2012-11-01

    We studied the construct validity of the LapMentor, a virtual reality laparoscopic surgical simulator, and the correlation between the data collected on the LapMentor and the results of video assessment of real laparoscopic surgeries. Ninety-two urologists were tested on basic skill tasks No. 3 (SK3) to No. 8 (SK8) on the LapMentor. They were divided into three groups: Group A (n=25) had no experience with laparoscopic surgeries as a chief surgeon; group B (n=33) had <35 experiences; and group C (n=34) had ≥35 experiences. Group scores on the accuracy, efficacy, and time of the tasks were compared. Forty physicians with ≥20 experiences supplied unedited videotapes showing a laparoscopic nephrectomy or an adrenalectomy in its entirety, and the videos were assessed in a blinded fashion by expert referees. Correlations between the videotape score (VS) and the performances on the LapMentor were analyzed. Group C showed significantly better outcomes than group A in the accuracy (SK5) (P=0.013), efficacy (SK8) (P=0.014), or speed (SKs 3 and 8) (P=0.009 and P=0.002, respectively) of the performances of LapMentor. Group B showed significantly better outcomes than group A in the speed and efficacy of the performances in SK8 (P=0.011 and P=0.029, respectively). Analyses of motion analysis data of LapMentor demonstrated that smooth and ideal movement of instruments is more important than speed of the movement of instruments to achieve accurate performances in each task. Multiple linear regression analysis indicated that the average score of the accuracy in SK4, 5, and 8 had significant positive correlation with VS (P=0.01). This study demonstrated the construct and predictive validity of the LapMentor basic skill tasks, supporting their possible usefulness for the preclinical evaluation of laparoscopic skills.

  19. 46 CFR 160.035-8 - Construction of fibrous glass reinforced plastic (F.R.P.), oar-, hand-, and motor-propelled...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Construction of fibrous glass reinforced plastic (F.R.P... APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-8 Construction of fibrous glass... set forth in this subpart. (2) Fibrous glass reinforced plastic lifeboats may be of the following...

  20. 46 CFR 160.035-8 - Construction of fibrous glass reinforced plastic (F.R.P.), oar-, hand-, and motor-propelled...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Construction of fibrous glass reinforced plastic (F.R.P... APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-8 Construction of fibrous glass... set forth in this subpart. (2) Fibrous glass reinforced plastic lifeboats may be of the following...

  1. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  2. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  3. Lipid Accumulation Product (LAP) and Visceral Adiposity Index (VAI) as Markers of Insulin Resistance and Metabolic Associated Disturbances in Young Argentine Women with Polycystic Ovary Syndrome.

    PubMed

    Abruzzese, Giselle A; Cerrrone, Gloria E; Gamez, Juan M; Graffigna, Mabel N; Belli, Susana; Lioy, Gustavo; Mormandi, Eduardo; Otero, Patricia; Levalle, Oscar A; Motta, Alicia B

    2017-01-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder. PCOS women are at high risk of developing insulin resistance (IR) and cardiovascular disorders since young age. We aimed to study the reliability of lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of metabolic disturbances (MD) associated with IR in young reproductive aged PCOS patients. We also evaluated the association between LAP and VAI and the presence of hyperandrogenism. In a cross-sectional study, 110 PCOS patients and 88 control women (18-35 years old) were recruited. PCOS patients were divided into 2 groups, as hyperandrogenic and non-hyperandrogenic considering the signs of hyperandrogenism (clinical or biochemical). Anthropometric measurements were taken and blood samples collected. Metabolic and anthropometric characteristics and their association with IR and associated MD were evaluated and LAP and VAI were calculated. LAP and VAI were compared with TC/HDL-c and TG/HDL-c to define the best markers of MD in this population. Independently of the phenotype, young PCOS patients showed high IR and dyslipidemia. Both LAP and VAI showed to be more effective markers to assess MD and IR in these young women than TG/HDL-c or TC/HDL-c [cut-off values: LAP: 18.24 (sensitivity: 81.43% specificity: 73.49%), positive predictive value (PPV): 75.0%, negative predictive value (NPV): 77.27%, VAI: 2.19 (sensitivity: 81.16% specificity: 72.15% PPV: 74.65% NPV: 72.22%)]. LAP and VAI are representative markers to assess MD associated with IR in young PCOS patients. All PCOS patients, independently of their androgenic condition, showed high metabolic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  5. Structural Performance of a Hybrid FRP-Aluminum Modular Triangular Truss System Subjected to Various Loading Conditions

    PubMed Central

    Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng

    2014-01-01

    A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254

  6. Effects of FRP application on the seismic response of a masonry church in Emilia-Romagna (Italy)

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Shehu, Rafael; Valente, Marco

    2016-12-01

    The paper presents some preliminary results of advanced Finite Element (FE) analyses on the upgrading of old masonry constructions by means of Fiber Reinforced Polymers (FRPs). The case study is a masonry Romanesque church, located in Ferrara, Emilia Romagna (Italy). The church exhibits widespread damage caused by the recent earthquake sequence occurred in 2012 about 60 km far from Ferrara with two major seismic events of magnitude 5.8 and 5.9. The main damage involved mainly the columns of the central nave and the apse. A partial detachment of the façade was observed too. First, gravity load analyses and non-linear static and dynamic analyses are performed on the church in the unretrofitted configuration. Numerical results put in evidence the insufficient strength of the apse and the columns of the naves, and the detachment of the façade. A strengthening intervention conducted by means of FRP strips is numerically analysed, assuming the behavior of the strips, especially for what concerns delamination, in agreement with Italian Guidelines. Numerical results show a quite reasonable strength improvement of the weak structural elements due to FRP application, with levels of strength higher than the minimum ones required by Italian Code.

  7. Lap time simulation and design optimisation of a brushed DC electric motorcycle for the Isle of Man TT Zero Challenge

    NASA Astrophysics Data System (ADS)

    Dal Bianco, N.; Lot, R.; Matthys, K.

    2018-01-01

    This works regards the design of an electric motorcycle for the annual Isle of Man TT Zero Challenge. Optimal control theory was used to perform lap time simulation and design optimisation. A bespoked model was developed, featuring 3D road topology, vehicle dynamics and electric power train, composed of a lithium battery pack, brushed DC motors and motor controller. The model runs simulations over the entire ? or ? of the Snaefell Mountain Course. The work is validated using experimental data from the BX chassis of the Brunel Racing team, which ran during the 2009 to 2015 TT Zero races. Optimal control is used to improve drive train and power train configurations. Findings demonstrate computational efficiency, good lap time prediction and design optimisation potential, achieving a 2 minutes reduction of the reference lap time through changes in final drive gear ratio, battery pack size and motor configuration.

  8. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    NASA Astrophysics Data System (ADS)

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-01

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated [1]. Finally, effects of retrofitting are evaluated and some suggestions presented.

  9. Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.

    DOT National Transportation Integrated Search

    2012-06-01

    This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...

  10. Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator.

    PubMed

    Larsen, C R; Grantcharov, T; Aggarwal, R; Tully, A; Sørensen, J L; Dalsgaard, T; Ottesen, B

    2006-09-01

    Safe realistic training and unbiased quantitative assessment of technical skills are required for laparoscopy. Virtual reality (VR) simulators may be useful tools for training and assessing basic and advanced surgical skills and procedures. This study aimed to investigate the construct validity of the LapSimGyn VR simulator, and to determine the learning curves of gynecologists with different levels of experience. For this study, 32 gynecologic trainees and consultants (juniors or seniors) were allocated into three groups: novices (0 advanced laparoscopic procedures), intermediate level (>20 and <60 procedures), and experts (>100 procedures). All performed 10 sets of simulations consisting of three basic skill tasks and an ectopic pregnancy program. The simulations were carried out on 3 days within a maximum period of 2 weeks. Assessment of skills was based on time, economy of movement, and error parameters measured by the simulator. The data showed that expert gynecologists performed significantly and consistently better than intermediate and novice gynecologists. The learning curves differed significantly between the groups, showing that experts start at a higher level and more rapidly reach the plateau of their learning curve than do intermediate and novice groups of surgeons. The LapSimGyn VR simulator package demonstrates construct validity on both the basic skills module and the procedural gynecologic module for ectopic pregnancy. Learning curves can be obtained, but to reach the maximum performance for the more complex tasks, 10 repetitions do not seem sufficient at the given task level and settings. LapSimGyn also seems to be flexible and widely accepted by the users.

  11. One hundred cases of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems.

    PubMed

    Erian, John; El-Toukhy, Tarek; Chandakas, Stefanos; Theodoridis, Theo; Hill, Nicholas

    2005-01-01

    To evaluate the safety and short-term outcomes of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems. Prospective observational study (Canadian Task Force classification II-2). Princess Royal University and Chelsfield Park Hospitals, Kent, UK. One hundred women who underwent laparoscopic subtotal hysterectomy for menorrhagia from February 2003 through July 2004. The procedure was performed using the Plasma Kinetic (PK) system to seal the vascular pedicles and the Lap Loop system to separate the uterus at the level of the internal os. The uterus was removed from the abdominal cavity mainly by morcellation or posterior colpotomy. Of 100 patients, 59 were operated on as outpatients. Mean patient age was 44.6 years, median parity was 2, mean body mass index was 26.8, and mean duration of symptoms was 4 years. Clinically, the uterus was enlarged in 70 patients, and preoperative ultrasound scanning suggested the presence of uterine myomas in 42 patients. In addition to hysterectomy, 47 patients had concomitant pelvic surgery. The mean total operating time was 45.5 minutes, and mean estimated blood loss was 114 mL. The overall major complication rate was 2%; two patients required blood transfusion after surgery. There were no bowel or urinary tract injuries, unintended laparotomy, return to operating room, or anesthetic complications. At follow-up, all patients were satisfied with surgery. Laparoscopic subtotal hysterectomy using the PK and Lap Loop systems for treatment of therapy-resistant menorrhagia is safe, can be performed as an outpatient procedure, and is associated with reduced operating time and high patient satisfaction.

  12. Analytical investigation of a three-dimensional FRP-retrofitted reinforced concrete structure's behaviour under earthquake load effect in ANSYS program

    NASA Astrophysics Data System (ADS)

    Altun, F.; Birdal, F.

    2012-12-01

    In this study, a 1:3 scaled, three-storey, FRP (Fiber Reinforced Polymer) retrofitted reinforced concrete model structure whose behaviour and crack development were identified experimentally in the laboratory was investigated analytically. Determination of structural behaviour under earthquake load is only possible in a laboratory environment with a specific scale, as carrying out structural experiments is difficult due to the evaluation of increased parameter numbers and because it requires an expensive laboratory setup. In an analytical study, structure was modelled using ANSYS Finite Element Package Program (2007), and its behaviour and crack development were revealed. When experimental difficulties are taken into consideration, analytical investigation of structure behaviour is more economic and much faster. At the end of the study, experimental results of structural behaviour and crack development were compared with analytical data. It was concluded that in a model structure retrofitted with FRP, the behaviour and cracking model can be determined without testing by determining the reasons for the points where analytical results are not converged with experimental data. Better understanding of structural behaviour is analytically enabled with the study.

  13. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    ERIC Educational Resources Information Center

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  14. The cyclic fatigue behavior of adhesive joints

    NASA Astrophysics Data System (ADS)

    Kinloch, A. J.; Toh, T.

    1995-06-01

    In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.

  15. Wood : adhesives

    Treesearch

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  16. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  17. Positive Correlation Between Motion Analysis Data on the LapMentor Virtual Reality Laparoscopic Surgical Simulator and the Results from Videotape Assessment of Real Laparoscopic Surgeries

    PubMed Central

    McDougall, Elspeth M.; Ono, Yoshinari; Hattori, Ryohei; Baba, Shiro; Iwamura, Masatsugu; Terachi, Toshiro; Naito, Seiji; Clayman, Ralph V.

    2012-01-01

    Abstract Purpose We studied the construct validity of the LapMentor, a virtual reality laparoscopic surgical simulator, and the correlation between the data collected on the LapMentor and the results of video assessment of real laparoscopic surgeries. Materials and Methods Ninety-two urologists were tested on basic skill tasks No. 3 (SK3) to No. 8 (SK8) on the LapMentor. They were divided into three groups: Group A (n=25) had no experience with laparoscopic surgeries as a chief surgeon; group B (n=33) had <35 experiences; and group C (n=34) had ≥35 experiences. Group scores on the accuracy, efficacy, and time of the tasks were compared. Forty physicians with ≥20 experiences supplied unedited videotapes showing a laparoscopic nephrectomy or an adrenalectomy in its entirety, and the videos were assessed in a blinded fashion by expert referees. Correlations between the videotape score (VS) and the performances on the LapMentor were analyzed. Results Group C showed significantly better outcomes than group A in the accuracy (SK5) (P=0.013), efficacy (SK8) (P=0.014), or speed (SKs 3 and 8) (P=0.009 and P=0.002, respectively) of the performances of LapMentor. Group B showed significantly better outcomes than group A in the speed and efficacy of the performances in SK8 (P=0.011 and P=0.029, respectively). Analyses of motion analysis data of LapMentor demonstrated that smooth and ideal movement of instruments is more important than speed of the movement of instruments to achieve accurate performances in each task. Multiple linear regression analysis indicated that the average score of the accuracy in SK4, 5, and 8 had significant positive correlation with VS (P=0.01). Conclusions This study demonstrated the construct and predictive validity of the LapMentor basic skill tasks, supporting their possible usefulness for the preclinical evaluation of laparoscopic skills. PMID:22642549

  18. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  19. Playground slide-related injuries in preschool children: increased risk of lower extremity injuries when riding on laps.

    PubMed

    Jennissen, Charles A; Koos, Maggie; Denning, Gerene

    2018-04-10

    The purpose of this study was to better understand the factors associated with playground slide-related injuries in preschool children and to test the hypothesis that riding on laps increases the likelihood of lower extremity injuries. Playground slide-related injuries (product code 1242) in children ≤5 years of age treated in emergency departments from 2002 to 2015 were identified (N = 12,686) using the U.S. Consumer Product Safety Commission's National Electronic Injury Surveillance System (NEISS). Descriptive and comparative analyses, including chi-square testing and binary logistic regression, were performed. Based on NEISS stratified national sampling estimates, over 350,000 children ≤5 years of age were injured on slides from 2002 to 2015. Overall, 59% of the children were male, and 65% were white. Almost 60% of injuries occurred in parks or other public areas. The most frequent diagnosis was a fracture (36%); lacerations were 19% of the injuries. A higher proportion of musculoskeletal injuries were seen in toddlers < 3 years old as compared to those 3-5 years of age (p < 0.001). Injuries to the lower extremities increased in frequency as age decreased, whereas injuries to the upper extremities and head/neck/face were more common in older preschoolers. Children < 3 years of age were 12 times more likely to be identified from narratives as being on another person's lap at the time of injury. Children identified as being on a lap had an increased odds of injury to the lower extremity than to other body parts (OR 43.0, 95% confidence interval (CI) 32.0-58.0), and of lower leg/ankle fracture than fractures elsewhere (OR 49.5, 95% CI 31.7-77.4). Decreasing age was associated with a higher likelihood of being identified as sliding down on another person's lap and a higher likelihood of lower extremity injuries. Healthcare providers should be mindful of the potential for these slide-related injuries as they can result in a toddler's fracture of

  20. On the development of an intrinsic hybrid composite

    NASA Astrophysics Data System (ADS)

    Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.

    2016-03-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.

  1. Effects of surface preparation on the long-term durability of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Bardis, Jason Dante

    The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.

  2. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  3. Simulation of the FRP Product

    NASA Astrophysics Data System (ADS)

    Paugam, Ronan; Wooster, Martin; Johnston, Joshua; Gastellu-Etchegorry, Jean-Philippe

    2014-05-01

    Among the different alternative of remote sensing technologies for estimating global fire carbon emission, the thermally-based measures of fire radiative power (FRP; and its temporal integration, fire radiative energy or FRE) has the potential to capture the spatial and temporal variability of fire occurrence. It was shown that a strong linear relationship exists between the total amount of thermal radiant energy emitted by a fire over its lifetime (the FRE) and the amount of fuel burned. Since all vegetation is 50(±5)% carbon, it is therefore in theory a potentially simple matter to measure the FRE and estimate the carbon release. In a fire inventory like the Global Fire Assimilation System (GFAS), the total carbon emission is derived from a gridded FRE product forced by the MODIS observation, using Ct = β x FRE x Ef, where β is a conversion factor initially estimated from small scale experiment as β=0.368 and later derived for different bio dome by comparison with the Global Fire Emission Database (GFED). The sensitivities of the above equation to (i) different types of fire activity (ie, flaming, smoldering, torching), (ii) sensor view angles or (iii) soot/smoke absorption have not yet been well studied. The investigation of these types of sensitivity, and of the information content of thermal IR observations of actively burning fires in general, is one of the primary subjects of this study. Our approach is based on a combination of observational work and simulations conducted via the linkage of different fire models and the 3D radiative transfer (RT) model DART operating in the thermal domain. The radiation properties of a fire as seen from above its plume (e.g. space/air borne sensor) depend on the temperature distribution, the gas concentration (mainly CO2, H2O), and the amount, shape, distribution and optical properties of the soot particles in the flame (where they are emitting) and in the cooling plume (where they are mainly absorbing). While gas and

  4. Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum.

    PubMed

    Ayodeji, I D; Schijven, M; Jakimowicz, J; Greve, J W

    2007-09-01

    The goal of our study was to determine expert and referent face validity of the LAP Mentor, the first procedural virtual reality (VR) laparoscopy trainer. In The Netherlands 49 surgeons and surgical trainees were given a hands-on introduction to the Simbionix LAP Mentor training module. Subsequently, a standardized five-point Likert-scale questionnaire was administered. Respondents who had performed over 50 laparoscopic procedures were classified as "experts." The others constituted the "referent" group, representing nonexperts such as surgical trainees. Of the experts, 90.5% (n = 21) judge themselves to be average or above-average laparoscopic surgeons, while 88.5% of referents (n = 28) feel themselves to be less-than-average laparoscopic surgeons (p = 0.000). There is agreement between both groups on all items concerning the simulator's performance and application. Respondents feel strongly about the necessity for training on basic skills before operating on patients and unanimously agree on the importance of procedural training. A large number (87.8%) of respondents expect the LAP Mentor to enhance a trainee's laparoscopic capability, 83.7% expect a shorter laparoscopic learning curve, and 67.3% even predict reduced complication rates in laparoscopic cholecystectomies among novice surgeons. The preferred stage for implementing the VR training module is during the surgeon's residency, and 59.2% of respondents feel the surgical curriculum is incomplete without VR training. Both potential surgical trainees and trainers stress the need for VR training in the surgical curriculum. Both groups believe the LAP Mentor to be a realistic VR module, with a powerful potential for training and monitoring basic laparoscopic skills as well as full laparoscopic procedures. Simulator training is perceived to be both informative and entertaining, and enthusiasm among future trainers and trainees is to be expected. Further validation of the system is required to determine whether

  5. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  6. Effect of realistic vehicle seats, cushion length, and lap belt geometry on child ATD kinematics.

    DOT National Transportation Integrated Search

    2011-12-01

    This series of sled tests examined the effect of using real vehicle seats on child ATD performance. Cushion length was varied from production length of 450 mm to a shorter length of 350 mm. Lap belt geometry was set to rear, mid, and forward anchorag...

  7. Multi-Image or Lap-Dissolve Slide Techniques and Visual Images in the Large Lecture Section.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1984-01-01

    Advantages and disadvantages of using multi-image or lap-dissolve (LD) slide techniques in large lecture sections are discussed. Production, use, and evaluation of LD programs are also discussed. Indicates that these programs are an effective way of improving instruction on visually oriented topics. (JN)

  8. The application of thermodynamic and spectroscopic techniques to adhesion in the polyimide/Ti 6-4 and polyphenylquinoxaline/Ti 6-4 systems

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1984-01-01

    The results of calorimetric measurements of Ti adherend surfaces are presented. The measurements were carried out after several chemical pretreatments and after fracture of several lap shear samples aged at high temperature. The exact composition of the Ti samples was Ti(6 percent Al-4 percent V). The adhesives used were polyimides and polyphenylquinoxalines (PPQ). Each chemical pretreatment was accompanied by a unique spectroscopic feature which was characterized by XPS, SEM, and specular reflectance infrared spectroscopy. The energetics of the interaction between primer solutions and the Ti adherend were evaluated by microcalorimetry. Changes in the structure of the surface oxide layer upon heating of the adherend were deduced from immersion temperatures of the PI and PPQ solutions. The XPS and SEM data are given is a table.

  9. Abdominal Adhesions

    MedlinePlus

    ... Clearinghouse What are abdominal adhesions? Abdominal adhesions are bands of fibrous tissue that can form between abdominal ... Esophagus Stomach Large intestine Adhesion Abdominal adhesions are bands of fibrous tissue that can form between abdominal ...

  10. Poly(imide-siloxane) segmented copolymer structural adhesives prepared by bulk and solution thermal imidization

    NASA Technical Reports Server (NTRS)

    Bott, R. H.; Summers, J. D.; Arnold, C. A.; Blankenship, C. P., Jr.; Taylor, L. T.

    1988-01-01

    The improved properties that have been demonstrated through thermal solution imidization in the case of polyimides and poly(imide-siloxane) segmented copolymers suggests significant potential for application of these new materials. Specifically, the enhancement in solubility, moisture reduction, and processability observed through this solution technique is quite dramatic. Previous work has shown that the presence of low amounts of siloxane does not detract significantly from the lap shear strength of these materials to titanium in the case of bulk thermal imidization synthesis. In addition, the siloxane incorporation results in the added advantage of resistance to hot, wet environments. This added durability is presumably due to the hydrophobic siloxane segments preventing the uptake of water at the critical interphase between the adhesive and the adherend. This paper discusses the extension of this work to the solution imidization synthesis technique recently developed in our laboratory. Results dealing with the absolute bond strengths as well as durability and failure surface analysis will be presented.

  11. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  12. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  13. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  14. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  15. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  16. Experimetal study on the FRP-concrete bond behavior under repeated loadings

    NASA Astrophysics Data System (ADS)

    Lee, J.-Y.; Yi, C.-K.; Cheong, Y.-G.

    2009-11-01

    In this study, the effects of repeated loads on the FRP-concrete bond strength were investigated experimentally by direct pull out tests according to CSA S806-02. A conventional reinforcing steel bar and two types of glass-fiber-reinforced plastic (GFRP) bars were embedded in concrete and tested under four different loading patterns. The bond strength-slip curves of the bars were obtained and analyzed. The results showed that the maximum bond strengths under the repeated loads differed from those obtained under monotonic ones. In addition, noticeable differences in degradation of the bond strength with respect to the magnitude of slip were observed between the different bar types tested. On the basis of an image analysis of failure surfaces, they were attributed to the different bond failure mechanisms associated with the steel and GFRP bars.

  17. Adhesion

    MedlinePlus

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  18. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  19. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  20. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  2. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites.

    PubMed

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2018-03-01

    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe

  3. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  4. Wood adhesion and adhesives

    Treesearch

    Charles R. Frihart

    2005-01-01

    An appreciation of rheology, material science, organic chemistry, polymer science, and mechanics leads to better understanding of the factors controlling the performance of the bonded assemblies. Given the complexity of wood as a substrate, it is hard to understand why some wood adhesives work better than other wood adhesives, especially when under the more severe...

  5. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  6. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete

    PubMed Central

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-01

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948

  7. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    PubMed

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  8. Agreement Between VO2peak Predicted From PACER and One-Mile Run Time-Equated Laps.

    PubMed

    Saint-Maurice, Pedro F; Anderson, Katelin; Bai, Yang; Welk, Gregory J

    2016-12-01

    This study examined the agreement between estimated peak oxygen consumption (VO 2peak ) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12 completed both the PACER and the MR assessments. MR time was converted to PACER laps (PACER-MEQ) using previously developed conversion algorithms. Agreement between PACER and PACER-MEQ VO 2peak was examined using Pearson correlations, mean absolute percent error (MAPE), and equivalence testing procedures. Classification agreement based on health-related standards was examined using sensitivity, specificity, and Kappa statistics. Overall agreement between estimated VO 2peak obtained from the PACER and PACER-MEQ was high in boys, r(324) = .79, R 2  = .63, and moderate in girls, r(356) = .57, R 2  = .33. The MAPE for estimates obtained from PACER-MEQ was 10.3% and estimates were deemed equivalent to the PACER (43.1 ± 6.9 mL/kg/min vs. 44.6 ± 0.3 mL/kg/min). Classification agreement as illustrated by sensitivity and specificity ranged from 20.4% to 90.2% and was higher for classifications in the Healthy Fitness Zone (HFZ). Kappa statistics ranged from .14 to .51 and were also higher for the HFZ. Equated PACER laps can be used to obtain equivalent estimates of PACER VO 2peak in groups of adolescents, but some disparities can be found when students' scores are classified into the Needs Improvement Zone.

  9. Performance of lap splices in large-scale column specimens affected by ASR and/or DEF-extension phase.

    DOT National Transportation Integrated Search

    2015-03-01

    A large experimental program, consisting of the design, construction, curing, exposure, and structural load : testing of 16 large-scale column specimens with a critical lap splice region that were influenced by varying : stages of alkali-silica react...

  10. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  11. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  12. An artifical corrosion protocol for lap-splices in aircraft skin

    NASA Technical Reports Server (NTRS)

    Shaw, Bevil J.

    1994-01-01

    This paper reviews the progress to date to formulate an artificial corrosion protocol for the Tinker AFB C/KC-135 Corrosion Fatigue Round Robin Test Program. The project has provided new test methods to faithfully reproduce the corrosion damage within a lap-splice by accelerated means, the rationale for a new laboratory test environment, and a means for corrosion damage quantification. The approach is pragmatic and the resulting artificial corrosion protocol lays the foundation for future research in the assessment of aerospace alloys. The general means for quantification of corrosion damage has been presented in a form which can be directly applied to structural integrity calculations.

  13. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  14. An Analysis of Interfacial Stresses in Steel Beams Bonded With a Thin Composite Plate Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Benyoucef, S.; Tounsi, A.; Yeghnem, R.; Bachir Bouiadjra, M.; Adda Bedia, E. A.

    2014-01-01

    The strengthening of steel structures in situ with externally bonded fiber-reinforced plastic (FRP) composite sheets is increasingly being used for the repair and rehabilitation of existing structures. The previous researchers have developed several analytical methods to predict the interface performance of bonded repairs. An important feature of a reinforced steel beam is the significant stress concentration in the adhesive at the ends of the FRP plate. In this paper, a closed-form solution for the interfacial shear and normal stresses in simply supported steel beams strengthened with a bonded FRP plate and subjected to thermomechanical loadings is presented. The shear strains of the adherends are included in the present theoretical analysis by assuming a parabolic distribution of shear stress across their thickness. Contrary to some existing studies, the assumption that both adherends have the same curvature is not used in the present study. The results of this numerical study are beneficial for understanding the mechanical behavior of material interfaces and for the design of hybrid FRP-reinforced steel structures.

  15. Lap-Protector and Circular Stapler Are Useful in Cystogastrostomy for Large Pancreatic Pseudocyst with Severe Infection

    PubMed Central

    Kadowaki, Yoshihiko; Kurokawa, Takefumi; Tamura, Ryuji; Okamoto, Takahiro; Ishido, Nobuhiro; Mori, Takashi

    2010-01-01

    Lap-Protector, which is an abdominal wall sealing device, is usually used for wound protection from implantation of malignant cells or pyogenic fluid. A circular stapler is a common easy-to-use device for anastomosis of the digestive tract. We report the case of an infected pancreatic pseudocyst which was treated by surgical procedure using these useful devices. A 69-year-old man was followed up in our hospital after severe acute pancreatitis. He had undergone drainage surgeries twice for intractable pancreatic abscess followed by severe acute pancreatitis. He was admitted to our hospital complaining of loss of appetite, hiccups, and high fever. Computed tomography of the abdomen revealed an infected pancreatic pseudocyst which compressed the gastric wall. Internal drainage into the stomach was performed using Lap-Protector and circular stapler. The patient recovered uneventfully. Recently many endoscopic or laparoscopic procedures in cystogastrostomy are reported; however, a conventional open surgical approach is also important. This easy method may be useful for operative cystogastrostomy. PMID:20805947

  16. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.

    PubMed

    Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie

    2018-06-13

    L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.

  17. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  18. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation.

    PubMed

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens; Zimmer, Jens

    2007-05-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains. Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time.

  19. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    PubMed

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  20. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    PubMed

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  2. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.

  3. A Fundamental Approach to Adhesion: Synthesis, Surface Analysis, Thermodynamics and Mechanics.

    DTIC Science & Technology

    1978-02-01

    Polyphenylquinoxaline LSS - Lap Shear Strength Pasa-Jell - Commercial acid etch (See p. 15 ) Turco - Commercial base etch (See p. 17 ) CTBN - Carboxyl-Terminated...solvent- cast films or powders. SEM/EDAX results were obtained from the fracture surfaces of lap-shear tested specimens. Epoxy and two epoxy/ CTBN bulk...A - - 24 CTBN 1300X8 (Goodrich carboxyl- 5 5 terminated butadiene-acrylonitrile) Piperidine 5 5 5 L9 III. RESULTS AND DISCUSS10N A. Titanium 6-4 (SEM

  4. Creation of an Aeronautical Capstone Design Project Program at Ohio State University

    DTIC Science & Technology

    2014-12-08

    Equation 12 below. As Figure 35 shows, a single adhesively bonded lap joint is considered. The epoxy only sees a load in the axial direction. In...lap joint [1] = = ( ) 12 =stress distribution factor = applied load in the axial direction ...Figure 11. The joints are designed to handle the bending loads of horizontal, vertical and angled deployment and are designed to directly load the carbon

  5. Respectability, morality and disgust in the night‐time economy: exploring reactions to ‘lap dance’ clubs in England and Wales

    PubMed Central

    Hubbard, Phil; Colosi, Rachela

    2015-01-01

    Abstract The night‐time economy is often described as repelling consumers fearful of the ‘undesirable Others’ imagined dominant within such time‐spaces. In this paper we explore this by describing attitudes towards, and reactions to, one particularly contentious site: the ‘lap dance’ club. Often targeted by campaigners in England and Wales as a source of criminality and anti‐sociality, in this paper we shift the focus from fear to disgust, and argue that Sexual Entertainment Venues (SEVs) are opposed on the basis of moral judgments that reflect distinctions of both class and gender. Drawing on documentary analysis, survey results and interview data collected during guided walks, we detail the concerns voiced by those anxious about the presence of lap dance or striptease clubs in their town or city, particularly the notion that they ‘lower the tone’ of particular streets or neighbourhoods. Our conclusion is that the opposition expressed to lap dance clubs is part of an attempt to police the boundaries of respectable masculinities and femininities, marginalizing the producers and consumers of sexual entertainment through ‘speech acts’ which identify such entertainment as unruly, vulgar and uncivilized. These findings are considered in the light of ongoing debates concerning the relations of morality, respectability and disgust. PMID:27708460

  6. The Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics may not correlate with operative performance in a novice cohort

    PubMed Central

    Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.

    2015-01-01

    Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071

  7. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  8. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  10. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  11. [Behaviour of the LAP (leucine-amino-peptidase) in the serum of blood in subjects affected of cirrhosis of the liver in stage ascitical (author's transl)].

    PubMed

    Pace, M; Fernandes, D

    1980-12-01

    The AA. have studied behaviour of the LAP (leucine-amino-peptidase) in the serum of blood in subjects affected of cirrhosis of the liver in stage ascitical, of cause toxic-alcoholic excluding about of the casuistry the cirrhosis of the another cause and the cirrhosis that are compled white an obstruction in and extrahepatic standard biliary cirrhosis 1 degree e 2 degree. After the exposition of the casuistry in the registred normality of the test (seric-LAP) in some cases of hepatic-alcoholic cirrhosis, the AA. concluded considering the LAP an indicator only of the obstruction in and extra-hepatic, consistent with hepatic-organ well operating; do not be a secure test to follow development of a chronic hepatitis of any kind, even if in the hepatic disease is present an infiltration and an overturning of the hepatic-lobule, like it is normally in the hepatic alcoholic diseases.

  12. Agreement between VO[subscript 2peak] Predicted from PACER and One-Mile Run Time-Equated Laps

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Anderson, Katelin; Bai, Yang; Welk, Gregory J.

    2016-01-01

    Purpose: This study examined the agreement between estimated peak oxygen consumption (VO[subscript 2peak]) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). Methods: A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12…

  13. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  14. Protein adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  15. Application of statistical methods to reveal and remove the causes of welding of coil laps upon annealing of cold-rolled steel strips

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Diligenskii, E. V.; Antonov, P. V.; Shalaevskii, D. L.; Dyatlov, I. A.

    2017-09-01

    The factors of the process of production of cold-rolled steel strips that promote and hinder the appearance of a coil lap welding defect upon annealing in bell-type furnaces are analyzed using statistical methods. The works dealing with this problem are analytically reviewed to reveal the problems to be studied and refined. The ranking of the technological factors according to the significance of their influence on the probability of appearance of this defect is determined and supported by industrial data, and a regression equation is derived to calculate this probability. The process of production is improved to minimize the rejection of strips caused by the welding of coil laps.

  16. Effects of different overlap lengths and composite adherend thicknesses on the performance of adhesively-bonded joints under tensile and bending loadings

    NASA Astrophysics Data System (ADS)

    Kadioglu, F.; Avil, E.; Ercan, M. E.; Aydogan, T.

    2018-05-01

    Fiber-reinforced polymer composites are being used in an increasingly wide range of products. They are particularly popular in automotive and aerospace sectors because they offer an attractive combination of stiffness, strength and low mass. Adhesively-bonded joints of such materials are preferred by many designers due to their assembling advantages over other traditional mechanical joining systems, such as bolted and riveted joints. In this study, some experimental works have been carried out on adhesively-bonded adherends manufactured from a woven carbon fiber-reinforced polymer matrix composite (Hexply 8552S/A280-5H, produced by Hexcel), by using a film adhesive (AF163-2K produced by 3 M). The bonded specimens were prepared in the Single Lap Joint (SLJ) configuration, and tested in tensile and also in four-point bending loading. In order to assess the joint performance, three different overlap lengths, 15 mm, 25 mm and 40 mm, and two different thicknesses of the composite adherends, 2 mm and 3 mm, were used. The results shown that the parameters are controlled by the loading modes; while the overlap length increases the joint performance significantly in tensile loading, the opposite was the case for those in bending loading, which was affected mainly by the adherend thicknesses. The results were related to the mechanisms of joint failures; while the joints in the tensile failed in the adhesive layer with some exceptions, those in the bending mainly failed in the plies adjacent to the layer. The current study indicates that one of the important factors affecting the joint strength of the adherends manufactured from the laminated composites is the local failure of the plies. It is thought more focused-studies would be needed to lessen such problems, which would be possible via in-depth numerical analysis.

  17. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  18. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range.

    PubMed

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-16

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm -2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a 'nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  19. Collaboration of polymer composite reinforcement and cement concrete

    NASA Astrophysics Data System (ADS)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  20. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.