Science.gov

Sample records for fruit bitter gourd

  1. First report of phytophthora fruit rot on bitter gourd (Mormodica charantia) and sponge gourd (Luffa cylindrica) caused by phytophthora capsici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Luffa sponge (smooth gourd) and bitter gourds (bitter melon) are specialty cucurbit vegetables cultivated in the United States (US) on a small scale for select markets. Luffa gourds are also grown for the sponge obtained from dried fruit for personal hygiene and skin care. These two cucurbits prod...

  2. Bitter Gourd: Botany, Horticulture, Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter gourd fruits are a good source of carbohydrates, proteins, vitamins, and minerals and have the highest nutritive value among cucurbits. Moreover, the crude protein content (11.4-20.9 g.kg-1) of bitter gourd fruits is higher than that of tomato and cucumber. This book chapter focuses on the ...

  3. Effect of drying methods on total antioxidant capacity of bitter gourd (momordica charantia) fruit

    NASA Astrophysics Data System (ADS)

    Tan, Ee Shian; Abdullah, Aminah; Maskat, Mohammad Yusof

    2013-11-01

    The effect of thermal and non-thermal drying methods on hydrophilic and lipophilic antioxidant capacities of bitter gourd fruit was investigated in this study. The bitter gourd fruits were dried by following methods: (i) oven drying 40°C, (ii) oven drying 50°C, (iii) oven drying 60°C, (iv) microwave drying (medium low power), (v) microwave drying (medium power) and (vi) freeze drying. Pure acetone and hexane were used to extract the hydrophilic and lipophilic antioxidant compounds from dried bitter gourd fruits. Freeze dried extracts reported to have highest values in DPPH scavenging activity (hydrophilic and lipophilic fractions), FRAP (lipophilic fraction) and TPC (hydrophilic and lipophilic fraction). Thermal drying slightly increased the values of DPPH scavenging activity, FRAP and TPC assays for hydrophilic extracts. Results concluded bitter gourd fruit is a good source of natural antioxidants and its total antioxidant quality was most preserved by freeze drying. Additionally, the higher value reported in DPPH scavenging activity, FRAP and TPC assays for lipophilic extracts than the hydrophilic extracts suggested that the lipophilic antioxidant compounds of bitter gourd fruit might possess stronger antioxidant power than its counterpart.

  4. Bitter Melon

    MedlinePlus

    African Cucumber, Ampalaya, Balsam Pear, Balsam-Apple, Balsambirne, Balsamo, Bitter Apple, Bitter Cucumber, Bitter Gourd, Bittergurke, Carilla Fruit, Carilla Gourd, Cerasee, Chinli-Chih, Cundeamor, Fructus Mormordicae Grosvenori, Karavella, Kathilla, ...

  5. Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits.

    PubMed

    Singh, Neera; Gupta, Manushma

    2007-12-01

    Acetone extract of whole fruit powder of M. charantia (bitter gourd) in doses 25, 50 and 75 mg/100 g body weight lowered the blood glucose from 13.30 to 50% after 8 to 30 days treatment in alloxan diabetic albino rats, confirming antihyperglycemic effect of this plant in diabetic animals and humans. Histological observations with acetone extract showed different phases of recovery of beta cells of the islets of Langerhans of pancreas, which in the untreated diabetic rats were less in number and showed varied degree of atrophy. The most important finding of the present study was observation of the presence of small scattered islets among the acinar tissue in some experimental animals, which may reflect neoformation of islets from pre-existing islet cells. The liver of alloxan diabetic rats showed hydropic degeneration, fatty change and necrosis at some places but liver of extract treated animals was normal. Glycogen localization in liver of diabetic rats was faint but after 30 days treatment with different doses of extract, normal to heavy glycogen localization was observed. PMID:18254212

  6. Bitter Gourd; A vegetable to Improve Human Health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables play a significant role in human nutrition, especially as vitamin sources (i.e., A, B6, C, E, thiamine, and niacin), minerals, and dietary fiber. These compounds are associated with reduced risk of cancer, cardiovascular disease, and other chronic diseases. Bitter gourd (syn. bitter mel...

  7. AFLP Analysis Provides Strategies for Improvement of Momordica Charantia L. (Bitter Gourd)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoecious bitter gourd (Momordica charantia L. var. minima and maxima Williams & Ng), a cucurbit of major economic importance, is widely cultivated in India, China, Africa, and South America. Although the morphology (i.e., growth habit and fruit shape, size, color and surface texture) of Indian bi...

  8. A comparative analysis of genetic diversity in bitter gourd (Momordica charantia L.) genotypes using RAPD and ISSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter gourd (Momordica charantia L.) or bitter melon is a cucurbit of major economic importance where it is widely cultivated (India, China, Africa, and South America). The morphology (i.e., growth habit, maturity, and fruit shape, size, colour and surface texture) of Indian M. charantia germplasm...

  9. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia.

    PubMed

    Krawinkel, Michael B; Keding, Gudrun B

    2006-07-01

    Bitter gourd (Momordica charantia) is a vegetable with pantropical distribution. It contains substances with antidiabetic properties such as charantin, vicine, and polypeptide-p, as well as other unspecific bioactive components such as antioxidants. Metabolic and hypoglycemic effects of bitter gourd extracts have been demonstrated in cell culture, animal, and human studies. The mechanism of action, whether it is via regulation of insulin release or altered glucose metabolism and its insulin-like effect, is still under debate. Adverse effects are also known. Nevertheless, bitter gourd has the potential to become a component of the diet or a dietary supplement for diabetic and prediabetic patients. Well-designed interdisciplinary research by nutritionists, medical doctors, and agronomists is needed before a dietary recommendation can be given and a product brought to the market. PMID:16910221

  10. Bottle gourd (Lagenaria siceraria) toxicity: a "bitter" diagnostic dilemma.

    PubMed

    Khatib, Khalid Ismail; Borawake, Kapil Sharad

    2014-12-01

    Consumption of a glass of bottle gourd juice is thought to work as a health "tonic" and part of traditional healthy living practices in India. The juice may in certain circumstances turn bitter with increased levels of the cytotoxic compound called Cucurbitacins. If the bitter juice is consumed it causes a toxic reaction in the gut, leading to abdominal discomfort/pain, vomiting, hematemesis, and hypotension which may be rarely fatal, especially in persons with pre-existing illness. In the absence of clear cut history regarding the consumption of the bitter bottle gourd juice and the initiation of symptoms, the differential diagnosis for the above symptoms will include diseases causing gastrointestinal bleed with hypotension and/or shock. We report a case of bitter bottle gourd poisoning presenting with abdominal symptoms, hematemesis and shock and with an initial differential diagnosis of septicemia with septic shock and multi-organ involvement. We conduct a literature review and ponder the various differential diagnoses of this clinical scenario. PMID:25653981

  11. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    PubMed Central

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-01-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ−independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer. PMID:26926586

  12. A triterpenoid from wild bitter gourd inhibits breast cancer cells.

    PubMed

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-01-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer. PMID:26926586

  13. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    NASA Astrophysics Data System (ADS)

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-03-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.

  14. Effect of dietary intake of freeze dried bitter gourd (Momordica charantia) in streptozotocin induced diabetic rats.

    PubMed

    Platel, K; Srinivasan, K

    1995-01-01

    Consumption of bitter gourd (Momordica charantia) by diabetic patients is a common practice in India, with the belief that it has an useful hypoglycemic potential. In the absence of conclusive information on the hypoglycemic influence of continuous intake of bitter gourd, in the present investigation, we have examined the hypoglycemic potency of dietary bitter gourd in experimentally induced diabetic rats. Wistar rats rendered hyperglycemic by streptozotocin (50 mg/kg b.w., i.p.) were maintained on a semi-synthetic diet containing freeze dried bitter gourd powder at 0.5% level for 6 weeks. The excretion of glucose, protein, urea and creatinine was monitored during the experimental period. Plasma glucose, albumin, urea and cholesterol were analysed at the end of the experimental regime. Dietary bitter gourd did not show any beneficial hypoglycemic influence as evidenced by the blood glucose levels as well as the excretion of diabetes related metabolites. PMID:7477242

  15. Preliminary evaluation of resistance to powdery mildew (Podosphaera xanthii) in AVRDC collections of bitter gourd (Momordica charantia L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter gourd (Momordica charantia L.) is an important market vegetable in Asia, where it is also used in folk medicine to manage type 2 diabetes. Powdery mildew caused by Podosphaera xanthii is a serious fungal disease of bitter gourd and yield losses of up to 50% have been reported. After observi...

  16. Determination of metrafenone in bitter gourd and soil by GC with ECD.

    PubMed

    Wang, Siwei; Liu, Yanping; Sun, Haibin

    2016-04-01

    A method for determination of metrafenone residues in bitter gourd and soil was developed. All samples were extracted with ethyl acetate, purified with the glass column of florisil and NH2-SPE column, analyzed by gas chromatography with electronic capture detector (GC-ECD). The results showed that it had good linearity in the range of 0.01-2 mg/L and the correlation coefficient (r) was 0.9999. The average recoveries of metrafenone in bitter gourd and soil were 83.51-91.75% and 84.76-91.72% with the relative standard deviation of 3.48-9.18% and 4.23-7.25%, respectively. The limit of detection was estimated to be 0.005 mg/kg, the minimum concentration of detection in bitter gourd and soil was 1 × 10(-2) mg/kg. PMID:26593479

  17. Genetic Diversity Analysis of Indian Bitter Gourd (Momordica Charantia L.) Allows for the Development of Crop Improvement Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter gourd (Momordica charantia L. var. minima and var. maxima) or bitter melon is one of the most economically important cucurbit species worldwide. Although India is the center of origin of bitter melon, and cultivars and landraces of this species are widely cultivated in Asia, a rigorous asses...

  18. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    PubMed

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. PMID:24262540

  19. Assessment of effects on health due to consumption of bitter bottle gourd (Lagenaria siceraria) juice

    PubMed Central

    Sharma, S.K.; Puri, Rajesh; Jain, Ajay; Sharma, M.P.; Sharma, Anita; Bohra, Shravan; Gupta, Y.K.; Saraya, Anoop; Dwivedi, S.; Gupta, K.C.; Prasad, Mahadeo; Pandey, Janardhan; Dohroo, Netar Prakash; Tandon, Neeraj; Sesikeran, B.; Dorle, A.K.; Tandon, Nikhil; Handa, S.S.; Toteja, G.S.; Rao, Spriha; Satyanarayana, K.; Katoch, V.M.

    2012-01-01

    Background & objectives: The bottle gourd (Lagenaria siceraria) is popularly known as lauki, ghia or dudhi in India. Its consumption is advocated by traditional healers for controlling diabetes mellitus, hypertension, liver diseases, weight loss and other associated benefits. However, in last few years there have been reports of suspected toxicity due to consumption of its juice. This led to the constitution of an Expert Committee by Department of Health Research at Indian Council of Medical Research (ICMR), Ministry of Health & Family Welfare, Government of India in October 2010. The committee looked into the issues related to safety of consumption of bottle gourd juice, and this paper presents the findings. Methods: Information on cases of suspected toxicity due to consumption of bottle gourd juice was collected by internet search, advertising on website of ICMR and by writing to State and district health authorities as well as to medical colleges, hospitals and private nursing homes across the country. Results: Three deaths were reported, one from Delhi and two from Uttar Pradesh after consumption of extremely bitter bottle gourd juice. Three persons who died after consumption of freshly prepared bottle gourd juice or juice mixed with bitter gourd (karela) juice were over 59 years of age and had diabetes since last 20 years. This juice was reported to be extremely bitter by all three. Twenty six persons were admitted to various hospitals of the country on complaint of abdominal pain and vomiting following consumption of freshly prepared bottle gourd juice. Diarrhoea and vomiting of blood (haematemesis) was reported in 18 (69.2%) and 19 (73.1%) patients, respectively. Biochemical investigations revealed elevated levels of liver enzymes. More than 50 per cent patients had hypotension. Endoscopic findings showed profusely bleeding stomach with excessive ulceration seen in distal oesophagus, stomach and duodenum in most of the cases. All these patients recovered

  20. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd. PMID:24897796

  1. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice.

    PubMed

    Klomann, Sandra D; Mueller, Andreas S; Pallauf, Josef; Krawinkel, Michael B

    2010-12-01

    Bitter gourd (BG, Momordica charantia) exerts proven blood glucose- and body weight-lowering effects. To develop an effective and safe application, it is necessary to identify the bioactive compounds and biochemical mechanisms responsible for these effects in type 2 diabetes. A total of forty-five 4-week-old male db/db mice were assigned to five groups of nine each. The mice were given sterile tap water as a control, a whole fruit powder, the lipid fraction, the saponin fraction or the hydrophilic residue of BG at a daily oral dosage of 150 mg/kg body weight for 5 weeks, respectively. Weight gain was significantly decreased in all the BG-treated groups (P ≤ 0.05). Glycated Hb levels were the highest in the control mice compared with all the four BG-treated mice (P = 0.02). The lipid fraction had the strongest effect, and it tended (P = 0.075) to reduce glycated Hb levels from 9.3 % (control mice) to 8.0 % (lipid fraction-treated mice). The lipid and saponin fractions reduced lipid peroxidation of adipose tissue significantly (P ≤ 0.01). Additionally, the saponin fraction and the lipid fraction reduced protein tyrosine phosphatase 1B (PTP 1B) activity in skeletal muscle cytosol by 25 % (P = 0.05) and 23 % (P = 0.07), respectively. PTP 1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B increases insulin sensitivity. This is the first study to demonstrate that BG is involved in PTP 1B regulation, and thus explains one possible biochemical mechanism underlying the antidiabetic effects of BG in insulin resistance and type 2 diabetes. PMID:20615270

  2. De Novo Assembly of Bitter Gourd Transcriptomes: Gene Expression and Sequence Variations in Gynoecious and Monoecious Lines.

    PubMed

    Shukla, Anjali; Singh, V K; Bharadwaj, D R; Kumar, Rajesh; Rai, Ashutosh; Rai, A K; Mugasimangalam, Raja; Parameswaran, Sriram; Singh, Major; Naik, P S

    2015-01-01

    Bitter gourd (Momordica charantia L.) is a nutritious vegetable crop of Asian origin, used as a medicinal herb in Indian and Chinese traditional medicine. Molecular breeding in bitter gourd is in its infancy, due to limited molecular resources, particularly on functional markers for traits such as gynoecy. We performed de novo transcriptome sequencing of bitter gourd using Illumina next-generation sequencer, from root, flower buds, stem and leaf samples of gynoecious line (Gy323) and a monoecious line (DRAR1). A total of 65,540 transcripts for Gy323 and 61,490 for DRAR1 were obtained. Comparisons revealed SNP and SSR variations between these lines and, identification of gene classes. Based on available transcripts we identified 80 WRKY transcription factors, several reported in responses to biotic and abiotic stresses; 56 ARF genes which play a pivotal role in auxin-regulated gene expression and development. The data presented will be useful in both functions studies and breeding programs in bitter gourd. PMID:26047102

  3. De Novo Assembly of Bitter Gourd Transcriptomes: Gene Expression and Sequence Variations in Gynoecious and Monoecious Lines

    PubMed Central

    Shukla, Anjali; Singh, V. K.; Bharadwaj, D. R.; Kumar, Rajesh; Rai, Ashutosh; Rai, A. K.; Mugasimangalam, Raja; Parameswaran, Sriram; Singh, Major; Naik, P. S.

    2015-01-01

    Bitter gourd (Momordica charantia L.) is a nutritious vegetable crop of Asian origin, used as a medicinal herb in Indian and Chinese traditional medicine. Molecular breeding in bitter gourd is in its infancy, due to limited molecular resources, particularly on functional markers for traits such as gynoecy. We performed de novo transcriptome sequencing of bitter gourd using Illumina next-generation sequencer, from root, flower buds, stem and leaf samples of gynoecious line (Gy323) and a monoecious line (DRAR1). A total of 65,540 transcripts for Gy323 and 61,490 for DRAR1 were obtained. Comparisons revealed SNP and SSR variations between these lines and, identification of gene classes. Based on available transcripts we identified 80 WRKY transcription factors, several reported in responses to biotic and abiotic stresses; 56 ARF genes which play a pivotal role in auxin-regulated gene expression and development. The data presented will be useful in both functions studies and breeding programs in bitter gourd. PMID:26047102

  4. Effect of the moisture content on the physical properties of bitter gourd seed

    NASA Astrophysics Data System (ADS)

    Ünal, H.; Alpsoy, H. C.; Ayhan, A.

    2013-12-01

    Some physical and germination properties of bitter gourd seed were determined in a moisture content range of 9.3-32.1% d.b. For this moisture, the average length, width, and thickness of seed increased by 3.68, 4.07, and 4.56%, respectively. The geometric properties increased with increasing moisture content. The bulk density and rupture force decreased while thousand seed mass, true density, porosity, terminal velocity and static coefficient of friction increased with increasing moisture content. At all moisture contents, the maximum friction was offered by rubber, followed by plywood, aluminum, and galvanized iron surface. The seed germination duration, seedling emergence percentage, and germination index values gave the best results at the 19.9% moisture content, whereas fresh seedling mass was not affected by different moisture contents.

  5. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd

    PubMed Central

    Lu, Kan-Ni; Pai, Yi-Ping; Chin Hsu

    2013-01-01

    This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3 kD and WES, <3 kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase Cβ2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLCβ2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3β-ol, and 5β,19-epoxycucurbita-6,24-diene-3β,23ξ-diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect. PMID:23589719

  6. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd.

    PubMed

    Huang, Ting-Ni; Lu, Kan-Ni; Pai, Yi-Ping; Chin Hsu; Huang, Ching-Jang

    2013-01-01

    This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3 kD and WES, <3 kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase C β 2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLC β 2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3 β -ol, and 5 β ,19-epoxycucurbita-6,24-diene-3 β ,23 ξ -diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect. PMID:23589719

  7. Changes in the radical-scavenging activity of bitter gourd (Momordica charantia L.) during freezing and frozen storage with or without blanching.

    PubMed

    Myojin, C; Enami, N; Nagata, A; Yamaguchi, T; Takamura, H; Matoba, T

    2008-09-01

    The effects of blanching, freezing, and frozen storage on the retention of radical-scavenging activity (RSA), total phenolics, and ascorbic acid in bitter gourd were investigated. Blanching of sliced bitter gourd resulted in considerable losses of RSA and total phenolics, and most extensively, of ascorbic acid. In the subsequent frozen storage at -18 degrees C, RSA and total phenolic content of unblanched and blanched bitter gourd underwent little change for 90 d then gradually declined, but at -40 degrees C, they practically remained unchanged throughout the entire storage period. On the contrary, ascorbic acid content of both unblanched and blanched bitter gourd decreased abruptly at the early stage in frozen storage. The results show that blanching of bitter gourd improves the retention of RSA and total phenolics during subsequent frozen storage but markedly aggravated loss of ascorbic acid. Finally, it is to be noted that RSA, total phenolics, and ascorbic acid originally contained in the raw bitter gourd were overall best retained by quick freezing followed by frozen storage at -40 degrees C without preceding blanching. PMID:18803700

  8. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  9. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd.

    PubMed

    Kobori, Masuko; Ohnishi-Kameyama, Mayumi; Akimoto, Yukari; Yukizaki, Chizuko; Yoshida, Mitsuru

    2008-11-26

    Bitter gourd ( Momordica charantia L.) pericarp, placenta, and seed extracts were previously shown to induce apoptosis in HL60 human leukemia cells. To determine the active component that induces apoptosis in cancer cells, bitter gourd ethanol extract was fractionated by liquid-liquid partition and silica gel column chromatography. Several fractions obtained by silica gel column chromatography inhibited growth and induced apoptosis in HL60 cells. Among them, fraction 7 had the strongest activity in inhibiting growth and inducing apoptosis in HL60 cells. A component that induced apoptosis in HL60 cells was then isolated from fraction 7 by another silica gel column chromatography and high-performance liquid chromatography (HPLC) using a C18 column and was identified as (9Z,11E,13E)-15,16-dihydroxy-9,11,13-octadecatrienoic acid (15,16-dihydroxy alpha-eleostearic acid). 15,16-Dihydroxy alpha-eleostearic acid induced apoptosis in HL60 cells within 5 h at a concentration of 160 microM (50 microg/mL). (9Z,11E,13E)-9,11,13-Octadecatrienoic acid (alpha-eleostearic acid) is known to be the major conjugated linolenic acid in bitter gourd seeds. Therefore, the effect of alpha-eleostearic acid on the growth of some cancer and normal cell lines was examined. alpha-Eleostearic acid strongly inhibited the growth of some cancer and fibroblast cell lines, including those of HL60 leukemia and HT29 colon carcinoma. alpha-Eleostearic acid induced apoptosis in HL60 cells after a 24 h incubation at a concentration of 5 microM. Thus, alpha-eleostearic acid and the dihydroxy derivative from bitter gourd were suggested to be the major inducers of apoptosis in HL60 cells. PMID:18959405

  10. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats.

    PubMed

    Sridhar, M G; Vinayagamoorthi, R; Arul Suyambunathan, V; Bobby, Z; Selvaraj, N

    2008-04-01

    The aim of this present study was to investigate the effect of bitter gourd extract on insulin sensitivity and proximal insulin signalling pathways in high-fat-fed rats. High-fat feeding of male Wistar rats for 10 weeks decreased the glucose tolerance and insulin sensitivity compared to chow-fed control rats. Bitter gourd extract supplementation for 2 weeks (9th and 10th) of high-fat feeding improved the glucose tolerance and insulin sensitivity. In addition bitter gourd extract reduced the fasting insulin (43 (se 4.4) v. 23 (se 5.2) microU/ml, P < 0.05), TAG (134 (se 12) v. 96 (se 5.5) mg/dl, P < 0.05), cholesterol (97 (se 6.3) v. 72 (se 5.2) mg/dl, P < 0.05) and epidydimal fat (4.8 (se 0.29) v. 3.6 (se 0.24) g, P < 0.05), which were increased by high-fat diet (HFD). High-fat feeding and bitter gourd supplementation did not have any effect on skeletal muscle insulin receptor, insulin receptor subtrate-1 (IRS-1) and insulin- stimulated insulin receptor tyrosine phosphorylation compared to chow-fed control rats. However high-fat feeding for 10 weeks reduced the insulin-stimulated IRS-1 tyrosine phosphorylation compared to control rats. Bitter gourd supplementation together with HFD for 2 weeks improved the insulin-stimulated IRS-1 tyrosine phosphorylation compared to rats fed with HFD alone. Our results show that bitter gourd extract improves insulin sensitivity, glucose tolerance and insulin signalling in HFD-induced insulin resistance. Identification of potential mechanism(s) by which bitter gourd improves insulin sensitivity and insulin signalling in high-fat-fed rats may open new therapeutic targets for the treatment of obesity/dyslipidemia-induced insulin resistance. PMID:17942003

  11. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial

    PubMed Central

    2012-01-01

    Background Bitter gourd (Momordica charantia L.) is a common tropical vegetable that has been used in traditional or folk medicine to treat diabetes. Wild bitter gourd (WBG) ameliorated metabolic syndrome (MetS) in animal models. We aimed to preliminarily evaluate the effect of WBG supplementation on MetS in Taiwanese adults. Methods A preliminary open-label uncontrolled supplementation trial was conducted in eligible fulfilled the diagnosis of MetS from May 2008 to April 2009. A total of 42 eligible (21 men and 21 women) with a mean age of 45.7 ± 11.4 years (23 to 63 years) were supplemented with 4.8 gram lyophilized WBG powder in capsules daily for three months and were checked for MetS at enrollment and follow-up monthly. After supplementation was ceased, the participants were continually checked for MetS monthly over an additional three-month period. MetS incidence rate were analyzed using repeated-measures generalized linear mixed models according to the intention-to-treat principle. Results After adjusting for sex and age, the MetS incidence rate (standard error, p value) decreased by 7.1% (3.7%, 0.920), 9.5% (4.3%, 0.451), 19.0% (5.7%, 0.021), 16.7% (5.4%, 0.047), 11.9% (4.7%, 0.229) and 11.9% (4.7%, 0.229) at visit 2, 3, 4, 5, 6, and 7 compared to that at baseline (visit 1), respectively. The decrease in incidence rate was highest at the end of the three-month supplementation period and it was significantly different from that at baseline (p = 0.021). The difference remained significant at end of the 4th month (one month after the cessation of supplementation) (p = 0.047) but the effect diminished at the 5th and 6th months after baseline. The waist circumference also significantly decreased after the supplementation (p < 0.05). The WBG supplementation was generally well-tolerated. Conclusion This is the first report to show that WBG improved MetS in human which provides a firm base for further randomized controlled trials to evaluate the efficacy of WBG

  12. Histological changes in the kidneys of experimental diabetic rats fed with Momordica charantia (bitter gourd) extract.

    PubMed

    Teoh, S L; Abd Latiff, Azian; Das, S

    2010-01-01

    Momordica charantia (MC) or bitter gourd is widely known for its antidiabetic properties. The aim of the present study was to observe the protective effect of MC extract on the kidneys of streptozotocin-induced diabetic rats. Eighteen male Sprague-Dawley rats (n=18) weighing 200+/-50 g were taken for the study. The study comprised of three groups i.e. a non-diabetic, diabetic untreated and diabetic treated with MC extract, with each group comprising of six (n=6) rats. Diabetes was induced in the overnight fasted rats by intramuscular injection of streptozotocin (50 mg/kg body weight). The MC extract (50 mg/kg body weight) was administered via oral gavage. Both the kidneys were collected on the tenth day following treatment. Histological study using Verhoeff's van Gieson (VvG) and Periodic Acid-Schiff (PAS) stains were performed. The kidneys of the diabetic rats showed thickening of the basement membrane of the Bowman's capsule, edema and hypercellurarity of the proximal tubules, necrosis and hyaline deposits. These features were found to be reversed when the MC extract was administered to the experimental animals. The MC extract acted as an antioxidant thereby preventing the oxidative damage involved in the diabetic kidney. The administration of MC extract prevents oxidative damage in diabetic nephropathy. PMID:20191126

  13. First report of fruit rot of ridge gourd (Luffa acutangula) caused by Sclerotium rolfsii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ridge gourd is a specialty cucurbit vegetable cultivated in the United States on a small scale for select markets. Ridge gourds are generally grown on a trellis which prevents the fruit from curving and lets it grow straight for the market. However some growers cultivate these on raised beds to low...

  14. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses.

    PubMed

    Lu, Kuan-Hung; Tseng, Hui-Chun; Liu, Chun-Ting; Huang, Ching-Jang; Chyuan, Jong-Ho; Sheen, Lee-Yan

    2014-05-01

    Bitter gourd (Momordica charantia L.) is a common vegetable grown widely in Asia that is used as a traditional medicine. The objective of this study was to investigate whether wild bitter gourd possessed protective effects against chronic alcohol-induced liver injury in mice. C57BL/6 mice were fed an alcohol-containing liquid diet for 4 weeks to induce alcoholic fatty liver. Meanwhile, mice were treated with ethanol extracts from four different wild bitter gourd cultivars: Hualien No. 1', Hualien No. 2', Hualien No. 3' and Hualien No. 4'. The results indicated that the daily administration of 500 mg kg body weight(-1) of a Hualien No. 3' extract (H3E) or a Hualien No. 4' extract (H4E) markedly reduced the steatotic alternation of liver histopathology. In addition, the activation of serum aminotransferases (AST and ALT) and the accumulation of hepatic TG content caused by alcohol were ameliorated. The hepatoprotective effects of H3E and H4E involved the enhancement of the antioxidant defence system (GSH, GPx, GRd, CAT and SOD), inhibition of lipid peroxidation (MDA) and reduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in the liver. Moreover, H3E and H4E supplementation suppressed the alcohol-induced elevation of CYP2E1, SREBP-1, FAS and ACC protein expression. These results demonstrated that ethanol extracts of Hualien No. 3' and Hualien No. 4' have beneficial effects against alcoholic fatty liver, in which they attenuate oxidative stress and inflammatory responses. PMID:24664243

  15. Luffa aegyptiaca (Gourd) Fruit Juice as a Source of Peroxidase

    PubMed Central

    Yadav, R. S. S.; Yadav, K. S.; Yadav, H. S.

    2011-01-01

    Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd) fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide were 2.0 and 0.2 mM, respectively. The pH and temperature optima were 6.5 and 60°C, respectively. Like other peroxidases, it followed double displacement type mechanism. Sodium azide inhibited the enzyme competitively with Ki value of 3.35 mM. PMID:21804936

  16. The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin.

    PubMed

    Pişkin, Ahmet; Altunkaynak, Berrin Zuhal; Tümentemur, Gamze; Kaplan, Süleyman; Yazıcı, Ozgür Bülent; Hökelek, Murat

    2014-08-01

    Momordica charantia (MC; bitter gourd) is a traditional herbal commonly used for its antidiabetic, antioxidant, contraceptive and antibacterial properties. In the current study, the authors aim to observe the topical effect of MC cream on the wound-healing process in rabbits. Moreover, they compare the healing potential with conventional creams used therapeutically. Towards this aim, 28 New Zealand rabbits were divided into four groups and excision wounds (7 cm²) were made on their backs. Open wound dressing was carried out daily for 28 days among the experimental groups with the application of dekspanthenol (Bepanthen®; BP group, n = 7), nitrofurazon (Furacin®; FR group, n = 7) and olive oil extract of MC (MC group, n = 7). No application was made to the control group. At the end of day 28, areas of the skin with initial wound area were en bloc dissected and prepared for histopathological and stereological analysis. Inflammatory cells were abundant in the control group and cream application led to a decrease in the number of these cells, especially in the MC group. The highest number of fibroblasts was detected in the MC group. Furthermore, the MC group displayed the highest fractions of epidermis to papillary dermis, fibroblasts to reticular dermis and collagen fibres to reticular dermis. The MC group also presented a high density of blood vessels, moderate density of collagen fibres and mature fibroblasts. The BP group showed better epithelialisation compared with the FR group, but the latter provided more effective reorganisation of the dermis. Different cream supplements caused healthy and fast wound healing according to untreated controls and the results show that administration of the MC extract improves and accelerates the process of wound healing in rabbits in comparison with the BP and FR extracts. PMID:22812507

  17. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.

    PubMed

    Zhang, Beibei; Xie, Chengjian; Wei, Yunming; Li, Jing; Yang, Xingyong

    2015-03-01

    An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel filtration on Bio-Gel P-6, ion exchange chromatography on CM-Sephadex, an additional gel filtration on HiLoad 16/60 Superdex 30, and finally, HPLC on a SOURCE 5RPC column. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that the protein had a molecular mass of 25733.46Da. Automated Edman degradation was used to determine the N-terminal sequence of MCha-Pr, and the amino acid sequence was identified as V-E-Y-T-I-T-G-N-A-G-N-T-P-G-G. The MCha-Pr protein has some similarity to the pathogenesis-related proteins from Atropa belladonna (deadly nightshade), Solanum tuberosum (potato), Ricinus communis (castor bean), and Nicotiana tabacum (tobacco). Analysis of the circular dichroism spectra indicated that MCha-Pr predominantly contains α-helix and β-sheet structures. MCha-Pr had inhibitory effects towards a variety of fungal species and the 50% inhibition of fungal growth (IC50) for Alternaria brassicae, Cercospora personata, Fusarium oxysporum, Mucor sp., and Rhizoctonia solani are 33 μM, 42 μM, 37 μM, 40 μM, and 48 μM, respectively. In addition, this antifungal protein can inhibit the germination of A. brassicae spores at 12.5 μM. These results suggest that MCha-Pr in bitter gourd leaves plays a protective role against phytopathogens and has a wide antimicrobial spectrum. PMID:25245535

  18. Prunasin hydrolases during fruit development in sweet and bitter almonds.

    PubMed

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-04-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  19. Genetic analysis of fruit shape traits at different maturation stages in sponge gourd*

    PubMed Central

    Zhang, Sheng; Hu, Jin; Zhang, Cai-fang; Guan, Ya-jing; Zhang, Ying

    2007-01-01

    The fruit shape is important quantitative trait closely related to the fruit quality. However, the genetic model of fruit shapes has not been proposed. Therefore, in the present study, analysis of genetic effects for fruit shape traits (fruit length and fruit perimeter) in sponge gourd was conducted by employing a developmental genetic model including fruit direct effects and maternal effects. Analysis approaches of unconditional and conditional variances were applied to evaluate the genetic behavior of fruit shape traits at economical and physiological maturation times. The results of variance analysis indicated that fruit length and fruit perimeter were simultaneously affected by fruit direct genetic effects and maternal effects. Fruit direct genetic effects were relatively more important for fruit shape traits at whole developmental period. The gene expression was most active at the economical maturation stage (1~12 d after flowering) for two shape traits, and the activation of gene was mostly due to direct dominance effects at physiological maturation stage (13~60 d after flowering). The coefficients due to different genetic effects, as well as the phenotypic correlation coefficients, varied significantly between fruit shape traits themselves at various maturation stages. The results showed that it was relatively easy to improve fruit shape traits for industrial purpose by carefully selecting the parents at economical maturation stage instead of that at physiological maturation stage. PMID:17542062

  20. Reduction of virgin olive oil bitterness by fruit cold storage.

    PubMed

    Yousfi, Khaled; Cayuela, José A; García, José M

    2008-11-12

    Green mature olives (Olea europaea L. cv. 'Manzanilla', 'Picual', and 'Verdial') were stored at 5 degrees C, and the oil extracted from them showed a middle intensity level of sensory-evaluated bitterness. The storage times necessary for this reduction were different for the three varieties tested, requiring 4, 6, and 8 weeks, respectively, for 'Manzanilla', 'Picual', and 'Verdial' olives. The level of commercial quality of the extracted oil did not deteriorate as a consequence of previous fruit storage. Olives matured during refrigeration at 5 degrees C, as the increase of maturation index and the decrease of color index and fruit firmness indicated. Similarly, as the fruit storage period progressed, the total phenolic compound content of the extracted oils decreased. Although the use of green mature olives may require a more prolonged storage time, it allows for a better postharvest handling of the fruits, which are more resistant to physical damage or fungal infections than the riper ones. PMID:18937491

  1. Teratogenic effect of the water extract of bitter gourd (Momordica charantia) on the Sprague Dawley rats.

    PubMed

    Uche-Nwachi, Edward O; McEwen, Carol

    2010-01-01

    It has been reported that the water extract of the whole unripe fruit of Momordica charantia can significantly reduce blood glucose levels. However the safety of its use during pregnancy has not been fully investigated. The aim of this investigation is to determine the safety of this extract during pregnancy. The water extract of the unripe fruit was given to pregnant Sprague Dawley rats on days 7, 8, 9, 10, 11, 12, 13 and 14 of gestation. The litter size was determined for each group and the litters were examined for gross malformations. The gross and histological examinations of various organs of the litters were also carried out. Results show that 8.65% of the litters from experimental animals were malformed as against 1.62% of control. It also showed that 31.2% of all the malformed litters had multiple congenital malformations. It also showed that the experimental rats had nine resorption sites while control had none. This demonstrates that the water extract of Momordica charantia is teratogenic in Sprague Dawley rats and should be used with caution in man. PMID:21304609

  2. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet.

    PubMed

    Xu, Jie; Cao, Ke; Li, Yuan; Zou, Xuan; Chen, Cong; Szeto, Ignatius Man-Yau; Dong, Zhizhong; Zhao, Youyou; Shi, Yujie; Wang, Junkuan; Liu, Jiankang; Feng, Zhihui

    2014-04-01

    Bitter gourd (BG) is a popular fruit in Asia with numerous well-known medicinal uses, including as an antidiabetic. In the current study, we aimed to explore the effects of BG on mitochondrial function during the development of obesity-associated fatty liver. C57BL/6 mice were divided into 4 experimental groups: mice fed a normal diet (control; included for reference only), mice fed a high-fat diet (HFD), and mice fed an HFD supplemented with freeze-dried BG powder through daily gavage at doses of 0.5 (HFD+0.5BG) and 5 (HFD+5BG) g/kg, respectively. After 16 wk, mice in the HFD+5BG group showed less body and tissue weight gain and less hyperglycemia and hyperlipidemia compared with those in the HFD group (P < 0.05). In both HFD+0.5BG and HFD+5BG groups, serum interleukin-6 concentration was lower than that in the HFD group (P < 0.02). The serum C-reactive protein concentration was lower in the HFD+5BG group compared with the HFD group (P < 0.04). An analysis of liver tissue revealed lower liver triglyceride and cholesterol concentrations in both HFD+0.5BG and HFD+5BG groups than in the HFD group (P < 0.01). The HFD+5BG group had less activation of the sterol regulatory element binding protein/fatty acid synthase (SREBP-1/FAS) pathway, greater superoxide dismutase activity, and less total protein and mitochondrial protein oxidation than did the HFD group (P < 0.05). Mitochondrial complex I, II, III, and V activity was greater in the HFD+0.5BG group than in the HFD group (P < 0.03). The HFD+5BG group only had greater complex V activity compared with the HFD group (P < 0.05). Mitochondrial dynamics regulators, including dynamin related protein 1 (DRP1) and mitofusin 1 (MFN1), as well as proapoptotic protein expression levels were restored by BG treatment (P < 0.02). Taken together, our results suggest that BG prevents inflammation and oxidative stress, modulates mitochondrial activity, suppresses apoptosis activation, and inhibits lipid accumulation during the

  3. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    PubMed

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance. PMID:25240849

  4. Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure.

    PubMed

    Chandran, Thyageshwar; Sharma, Alok; Vijayan, M

    2015-12-01

    The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPs, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPs of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The N-glycosylation of the lectin involves a plant-specific glycan while that in toxic type II RIPs of known structure involves a glycan which is animal as well as plant specific. PMID:26648038

  5. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Anandan, Sambandam; Murugan, Ramaswamy

    2013-03-01

    Natural dyes extracted from fruits of ivy gourd and flowers of red frangipani were used as sensitizers to fabricate dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Fourier transform Raman (FT-Raman) and liquid chromatography-mass spectrometry (LC-MS) studies indicated the presence of β-carotene in the fruits of ivy gourd and anthocyanins in the flowers of red frangipani. The extract of the flowers of red frangipani exhibits higher photosensitized performance compared to the fruits of ivy gourd and this is due to the better charge transfer between the dyes of flowers of red frangipani and the TiO2 photoanode surface.

  6. Identification and characterization of the phenolic glycosides of Lagenaria siceraria Stand. (bottle gourd) fruit by liquid chromatography-tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2014-02-12

    Bottle gourd, Lagenaria siceraria Stand. (Cucurbitaceae), fruit is used in folk medicines and for culinary purposes in Asia. The phenolics of bottle gourd fruit were investigated qualitatively by LC-MS(n). Twenty-two phenolic glycosides were detected and characterized on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. Twenty of them were extracted for the first time from this source, and twelve of them have not been reported previously in nature. It was also possible to distinguish between the individual classes of isobaric phenolic glycosides by tandem and high-resolution mass spectrometry. In this study we also discuss the mass spectrometric fragmentation mechanism of 6-(hydroxycinnamoyl)glucoses. This is the first report of the full characterization of phenolic glycosides of bottle gourd fruit by LC-MS²⁻⁴. PMID:24447091

  7. Role of limonin and nomilin in bitterness of juice from Huanglongbing affected fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Besides the physical defects due to the destructive Huanglongbing (HLB) citrus greening disease on oranges, the infected fruit and resulting juice have been perceived as being more sour, bitter and off-flavored. In the symptomatic juice, the off-flavor was correlated with lower sugars, and sometimes...

  8. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    PubMed Central

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  9. Population dynamics, distribution, and species diversity of fruit flies on cucurbits in Kashmir Valley, India.

    PubMed

    Ganie, S A; Khan, Z H; Ahangar, R A; Bhat, H A; Hussain, Barkat

    2013-01-01

    Given the economic importance of cucurbits and the losses incurred by fruit fly infestation, the population dynamics of fruit flies in cucurbit crops and the influence of abiotic parameters, such as temperature, relative humidity, rainfall, and total sunshine hours per day on the fruit fly population were studied. The study was carried out at six locations; in district Srinagar the locations were Batmaloo, Shalimar, and Dal, while in district Budgam the locations were Chadoora, Narkara, and Bugam (Jammu and Kashmir, India). Various cucurbit crops, such as cucumber, bottle gourd, ridge gourd and bitter gourd, were selected for the study. With regard to locations, mean fruit fly population was highest (6.09, 4.55, 3.87, and 3.60 flies/trap/week) at Batamaloo and Chadoora (4.73, 3.93, 2.73, and 2.73 flies/trap/week) on cucumber, bottle gourd, ridge gourd, and bitter gourd, respectively. The population of fruit flies was significantly correlated with the minimum and maximum temperature. The maximum species diversity of fruit flies was 0.511, recorded in Chadoora. Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) was the most predominant species in both Srinagar and Budgam, followed by B. dorsalis (Hendel) and B. tau (Walker), while B. scutellaris (Bezzi) was found only in Chadoora. Results of the present investigation may be utilized in developing a sustainable pest management strategy in the agroecological system. PMID:23906383

  10. Reduction of oil bitterness by heating of olive (Olea europaea) fruits.

    PubMed

    García, J M; Yousfi, K; Mateos, R; Olmo, M; Cert, A

    2001-09-01

    Olives (Olea europaea) of the Manzanilla and Verdial varieties, harvested at the green mature stage of ripening, were heated at 30, 40, 45, and 50 degrees C during 24 h and at 40 degrees C during 24, 48, and 72 h, respectively. Just after treatments, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the time and temperature used. Fruit heating at < or =40 degrees C during 24 h did not produce significant changes of acidity, UV absorption, peroxide index, panel test score, or oxidative stability of the obtained oils. Both longer treatments at 40 degrees C and heating at >40 degrees C yielded oils with less oxidative stability. Oils obtained from olives heated at > or =40 degrees C showed higher concentrations of chlorophylls and carotenes. For each olive variety, a good correlation between oil bitterness and content of hydroxytyrosol secoiridoid derivatives was found. PMID:11559116

  11. Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus.

    PubMed

    Frydman, Ahuva; Weisshaus, Oori; Bar-Peled, Maor; Huhman, David V; Sumner, Lloyd W; Marin, Francisco R; Lewinsohn, Efraim; Fluhr, Robert; Gressel, Jonathan; Eyal, Yoram

    2004-10-01

    Species of the genus Citrus accumulate large quantities of flavanones that affect fruit flavor and have been documented to benefit human health. Bitter species, such as grapefruit and pummelo, accumulate bitter flavanone-7-O-neohesperidosides responsible, in part, for their characteristic taste. Non-bitter species, such as mandarin and orange, accumulate only tasteless flavanone-7-O-rutinosides. The key flavor-determining step of citrus flavanone-glycoside biosynthesis is catalyzed by rhamnosyltransferases; 1,2 rhamnosyltransferases (1,2RhaT) catalyze biosynthesis of the bitter neohesperidosides, while 1,6 rhamnosyltransferases (1,6RhaT) catalyze biosynthesis of the tasteless rutinosides. We report on the isolation and functional characterization of the gene Cm1,2RhaT from pummelo which encodes a citrus 1,2RhaT. Functional analysis of Cm1,2RhaT recombinant enzyme was conducted by biotransformation of the substrates using transgenic plant cell culture. Flavanones and flavones, but not flavonols, were biotransformed into 7-O-neohesperidosides by the transgenic BY2 tobacco cells expressing recombinant Cm1,2RhaT. Immunoblot analysis established that 1,2RhaT protein was expressed only in the bitter citrus species and that 1,6RhaT enzyme, whose activity was previously documented in non-bitter species, was not cross-reactive. Expression of Cm1,2RhaT at the RNA level was prominent in young fruit and leaves, but low in the corresponding mature tissue, thus correlating well with the developmental pattern of accumulation of flavanone-neohesperidosides previously established. Phylogenetic analysis of the flavonoid glycosyltransferase gene family places Cm1,2RhaT on a separate gene cluster together with the only other functionally characterized flavonoid-glucoside rhamnosyltransferase gene, suggesting a common evolutionary origin for rhamnosyltransferases specializing in glycosylation of the sugar moieties of flavonoid glucosides. PMID:15361143

  12. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants. PMID:25203006

  13. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia)

    PubMed Central

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C.; Ullah, Abul H. J.

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and Pi. PAPs are typically categorized into two subfamilies: Mg2+-dependent soluble PAP and Mg2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53–60°C and unaffected by up to 0.3 mM MgCl2. The Km and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na3VO4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg2+-independent enzyme in plants. PMID:25203006

  14. Juice blends--a way of utilization of under-utilized fruits, vegetables, and spices: a review.

    PubMed

    Bhardwaj, Raju Lal; Pandey, Shruti

    2011-07-01

    The post-harvest shelf life of maximum of fruits and vegetables is very limited due to their perishable nature. In India more then 20-25 percent of fruits and vegetables are spoiled before utilization. Despite being the world's second largest producer of fruits and vegetables, in India only 1.5 percent of the total fruits and vegetables produced are processed. Maximum amounts of fruit and vegetable juices turn bitter after extraction due to conversion of chemical compounds. In spite of being under utilized, the utilization of highly nutritive fruits and vegetables is very limited due to high acidity, astringency, bitterness, and some other factors. While improving flavor, palatability, and nutritive and medicinal value of various fruit juices such as aonla, mango, papaya, pineapple, citrus, ber, pear, apple, watermelon, and vegetables including bottle gourd, carrot, beet root, bitter gourd, medicinal plants like aloe vera and spices can also be used for juice blending. All these natural products are valued very highly for their refreshing juice, nutritional value, pleasant flavor, and medicinal properties. Fruits and vegetables are also a rich source of sugars, vitamins, and minerals. However, some fruits and vegetables have an off flavor and bitterness although they are an excellent source of vitamins, enzymes, and minerals. Therefore, blending of two or more fruit and vegetable juices with spices extract for the preparation of nutritive ready-to-serve (RTS), beverages is thought to be a convenient and economic alternative for utilization of these fruits and vegetables. Moreover, one could think of a new product development through blending in the form of a natural health drink, which may also serve as an appetizer. The present review focuses on the blending of fruits, under-utilized fruits, vegetables, medicinal plants, and spices in appropriate proportions for the preparation of natural fruit and vegetable based nutritive beverages. PMID:21929332

  15. Bottle gourd (Lagenaria siceraria) juice poisoning

    PubMed Central

    Verma, Ankur; Jaiswal, Sanjay

    2015-01-01

    BACKGROUND: Bottle gourd (Lagenaria siceraria) is popularly known as lauki, ghia or dudhi in India. Its consumption is advocated by traditional medicine healers for controlling diabetes mellitus, hypertension, liver diseases, weight loss and other diseases. However, in last few years there have been reports of suspected toxicity due to consumption of its juice leading to severe vomiting and upper gastrointestinal bleeding. As emergency physicians we need to be aware of this very rare poisoning specially in India. METHODS: We present a case of a 52-year-old woman who presented with multiple episodes of hematemesis and shock to the emergency department (ED) after consuming bottle gourd juice. The patient was resuscitated and stabilized with fluids, proton pump inhibitors and antiemetics and shifted to the intensive care unit (ICU) under the care of a gastroenterology team for urgent endoscopy and further management. RESULTS: The patient received intravenous fluids, antibiotics, antiemetics, and antacids and underwent upper gastroenterologic endoscopy during the hospitalization. She was discharged in a stable condition 4 days later. CONCLUSIONS: As a member of the Cucurbitaceae family, bottle gourd contains toxic tetracyclic triterpenoid compounds called cucurbitacins which are responsible for the bitter taste and toxicity. There is no known antidote for this toxicity, and clinicians treat such patients symptomatically only. It is important to educate the public about the harmful effects of this potentially life-threatening toxicity. PMID:26693268

  16. Bitter Orange

    MedlinePlus

    ... 10):1359–1361. Bitter orange. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on May 5, 2009. Bitter orange ( Citrus aurantium ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on May ...

  17. Etopic expression of "Arabidopsis" H(+)-pyrophosphatase AVP1 enhances drought resistance in bottle gourd

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the "Arabidopsis AVP1" gene that encodes a vacuolar H(+)-pyro...

  18. Bitter melon: a panacea for inflammation and cancer.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Padhye, Subhash B; Anant, Shrikant

    2016-02-01

    Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents. PMID:26968675

  19. Bottle Gourd (Lagenaria Siceraria) Toxicity: A “Bitter” Diagnostic Dilemma

    PubMed Central

    Borawake, Kapil Sharad

    2014-01-01

    Consumption of a glass of bottle gourd juice is thought to work as a health “tonic” and part of traditional healthy living practices in India. The juice may in certain circumstances turn bitter with increased levels of the cytotoxic compound called Cucurbitacins. If the bitter juice is consumed it causes a toxic reaction in the gut, leading to abdominal discomfort/pain, vomiting, hematemesis, and hypotension which may be rarely fatal, especially in persons with pre-existing illness. In the absence of clear cut history regarding the consumption of the bitter bottle gourd juice and the initiation of symptoms, the differential diagnosis for the above symptoms will include diseases causing gastrointestinal bleed with hypotension and/or shock. We report a case of bitter bottle gourd poisoning presenting with abdominal symptoms, hematemesis and shock and with an initial differential diagnosis of septicemia with septic shock and multi-organ involvement. We conduct a literature review and ponder the various differential diagnoses of this clinical scenario. PMID:25653981

  20. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication

    PubMed Central

    Kistler, Logan; Newsom, Lee A.; Ryan, Timothy M.; Smith, Bruce D.; Perry, George H.

    2015-01-01

    The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops’ progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval. PMID:26630007

  1. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication.

    PubMed

    Kistler, Logan; Newsom, Lee A; Ryan, Timothy M; Clarke, Andrew C; Smith, Bruce D; Perry, George H

    2015-12-01

    The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops' progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval. PMID:26630007

  2. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency

    PubMed Central

    Joseph, Baby; Jini, D

    2013-01-01

    Diabetes mellitus is among the most common disorder in developed and developing countries, and the disease is increasing rapidly in most parts of the world. It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. One plant that has received the most attention for its anti-diabetic properties is bitter melon, Momordica charantia (M. charantia), commonly referred to as bitter gourd, karela and balsam pear. Its fruit is also used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. Abundant pre-clinical studies have documented in the anti-diabetic and hypoglycaemic effects of M. charantia through various postulated mechanisms. However, clinical trial data with human subjects are limited and flawed by poor study design and low statistical power. The present review is an attempt to highlight the antidiabetic activity as well as phytochemical and pharmacological reports on M. charantia and calls for better-designed clinical trials to further elucidate its possible therapeutic effects on diabetes.

  3. Analgesic and antipyretic activities of Momordica charantia Linn. fruits

    PubMed Central

    Patel, Roshan; Mahobia, Naveen; Upwar, Nitin; Waseem, Naheed; Talaviya, Hetal; Patel, Zalak

    2010-01-01

    Plant Momordica charantia Linn. belongs to family Cucurbitaceae. It is known as bitter gourd in English and karela in Hindi. Earlier claims show that the plant is used in stomachic ailments as a carminative tonic; as an antipyretic and antidiabetic agent; and in rheumatoid arthritis and gout. The fruit has been claimed to contain charantin, steroidal saponin, momordium, carbohydrates, mineral matters, ascorbic acid, alkaloids, glucosides, etc. The ethanolic extract of the fruit showed the presence of alkaloids, tannins, glycosides, steroids, proteins, and carbohydrates. The present study was carried out using acetic acid-induced writhing and tail-immersion tests in mice, while yeast-induced pyrexia in rats. The ethanolic extracts (250 and 500 mg/kg, po.) showed an analgesic and antipyretic effect, which was significantly higher than that in the control rats. The observed pharmacological activities provide the scientific basis to support traditional claims as well as explore some new and promising leads. PMID:22247882

  4. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding

    PubMed Central

    2011-01-01

    Background Bottle gourd [Lagenaria siceraria (Mol.) Standl.] is an important cucurbit crop worldwide. Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation almost nothing has been known about the genome of this species thus far. Results We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522 singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle gourd and the model cucurbit cucumber (Cucumis sativus) revealed a 90% sequence similarity on average. Using the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal coordinates (PCo) analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the same or close origin did tend to cluster. Conclusions This work provides an initial basis for genome characterization, gene isolation and comparative genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes for efficient introduction of desired

  5. Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber.

    PubMed

    Shang, Yi; Ma, Yongshuo; Zhou, Yuan; Zhang, Huimin; Duan, Lixin; Chen, Huiming; Zeng, Jianguo; Zhou, Qian; Wang, Shenhao; Gu, Wenjia; Liu, Min; Ren, Jinwei; Gu, Xingfang; Zhang, Shengping; Wang, Ye; Yasukawa, Ken; Bouwmeester, Harro J; Qi, Xiaoquan; Zhang, Zhonghua; Lucas, William J; Huang, Sanwen

    2014-11-28

    Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits, respectively. Traces in genomic signatures indicated that selection imposed on Bt during domestication led to derivation of nonbitter cucurbits from their bitter ancestors. PMID:25430763

  6. Response of U.S. bottle gourd (Lagenaria siceraria) Plant Introductions to Phytophthora capsici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici causes severe damage to cucurbit crops grown in open fields in southeast U.S. Most cucurbit species are susceptible to damping-off, root and crown rot, and/or fruit rot caused by P. capsici. Bottle gourd plants (Lagenaria siceraria), which are resistant to Fusarium wilt, are b...

  7. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management

    PubMed Central

    Dhillon, M.K.; Singh, Ram; Naresh, J.S.; Sharma, H.C.

    2005-01-01

    The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is distributed widely in temperate, tropical, and sub-tropical regions of the world. It has been reported to damage 81 host plants and is a major pest of cucurbitaceous vegetables, particularly the bitter gourd (Momordica charantia), muskmelon (Cucumis melo), snap melon (C. melo var. momordica), and snake gourd (Trichosanthes anguina). The extent of losses vary between 30 to 100%, depending on the cucurbit species and the season. Its abundance increases when the temperatures fall below 32° C, and the relative humidity ranges between 60 to 70%. It prefers to infest young, green, soft-skinned fruits. It inserts the eggs 2 to 4 mm deep in the fruit tissues, and the maggots feed inside the fruit. Pupation occurs in the soil at 0.5 to 15 cm below the soil surface. Keeping in view the importance of the pest and crop, melon fruit fly management could be done using local area management and wide area management. The melon fruit fly can successfully be managed over a local area by bagging fruits, field sanitation, protein baits, cue-lure traps, growing fruit fly-resistant genotypes, augmentation of biocontrol agents, and soft insecticides. The wide area management program involves the coordination of different characteristics of an insect eradication program (including local area options) over an entire area within a defensible perimeter, and subsequently protected against reinvasion by quarantine controls. Although, the sterile insect technique has been successfully used in wide area approaches, this approach needs to use more sophisticated and powerful technologies in eradication programs such as insect transgenesis and geographical information systems, which could be deployed over a wide area. Various other options for the management of fruit fly are also discussed in relation to their bio-efficacy and economics for effective management of this pest. PMID:17119622

  8. Correlation and path coefficient analysis of quantitative characters in spine gourd (Momordica dioica Roxb.).

    PubMed

    Aliya, F; Begum, H; Reddy, M T; Sivaraj, N; Pandravada, S R; Narshimulu, G

    2014-05-01

    Fifty genotypes of spine gourd (Momordica dioica Roxb.) were evaluated in a randomized block design with two replications at the Vegetable Research Station, Rajendranagar, Hyderabad, Andhra Pradesh, India during kharif, 2012. Correlation and path coefficient analysis were carried out to study the character association and contribution, respectively for twelve quantitative characters namely vine length (m), number of stems per plant, days to first female flower appearance, first female flowering node, days to first fruit harvest, days to last fruit harvest, fruiting period (days), fruit length (cm), fruit width (cm), fruit weight (g), number of fruits per plant and fruit yield per plant (kg) for identification of the potential selection indices. Correlation and path coefficient analyses revealed that fruiting period and number of fruits per plant not only had positively significant correlation with fruit yield but also had positively high direct effect on it and are regarded as the main determinants of fruit yield. Days to first fruit harvest had positively moderate direct effect on fruit yield and its association was negatively significant, days to last fruit harvest had negatively high direct effect on fruit yield and its association was significant positively, hence restricted simultaneous selection can be made for days to first fruit harvest and days to last fruit harvest. The improvement in fruit yield can be effective if selection is based on days to first fruit harvest, days to last fruit harvest, fruiting period and number of fruits per plant. PMID:26030998

  9. Comparative Studies on the Fungi and Bio-Chemical Characteristics of Snake Gourd (Trichosanthes curcumerina Linn) and Tomato (Lycopersicon esculentus Mill) in Rivers State, Nigeria

    NASA Astrophysics Data System (ADS)

    Chuku, E. C.; Ogbonna, D. N.; Onuegbu, B. A.; Adeleke, M. T. V.

    Comparative studies on the fungi and biochemical characteristics of Tomatoes (Lycopersicon esculentus Mill) and the Snake gourd (Trichosanthes curcumerina Linn) products were investigated in Rivers State using various analytical procedures. Results of the proximate analysis of fresh snake gourd and tomatoes show that the essential minerals such as protein, ash, fibre, lipid, phosphorus and niacin contents were higher in snake gourd but low in carbohydrate, calcium, iron, vitamins A and C when compared to the mineral fractions of tomatoes which has high values of calcium, iron, vitamins A and C. The mycoflora predominantly associated with the fruit rot of tomato were Fusarium oxysporium, Fusarium moniliforme, Rhizopus stolonifer and Aspergillus niger, while other fungi isolates from Snake gourd include Rhizopus stolonifer, Aspergillus niger, Aspergillus tamari, Penicillium ita/icum and Neurospora crassa. Rhizopus stolonifer and Aspergillus niger were common spoilage fungi to both the Tomato and Snake gourd. All the fungal isolates were found to be pathogenic. The duration for storage of the fruits at room temperature (28±1°C) showed that Tomato could store for 5 days while Snake gourd stored for as much as 7 days. Sensory evaluation shows that Snake gourd is preferred to Tomatoes because of its culinary and medicinal importance.

  10. Localization of a new gene for bitterness in cucumber.

    PubMed

    Zhang, Shengping; Miao, Han; Sun, Rifei; Wang, Xiaowu; Huang, Sanwen; Wehner, Todd C; Gu, Xingfang

    2013-01-01

    Bitterness in cucumber fruit and foliage is due to the presence of cucurbitacins. Several genes have been described that control the trait, with bi (bi-1) making fruit and foliage bitter free and Bt (Bt-1) making the fruit highly bitter. Previous studies have reported the inheritance and molecular markers linked to bi-1 or Bt-1, but we were interested in studying the inheritance of fruit bitterness in the progeny of 2 nonbitter fruit inbred lines. The objective was to determine the inheritance of cucumber fruit and foliage bitterness and to locate them on a current linkage map using a recombinant inbred lines (RILs) population derived by crossing 9110Gt and 9930. It was concluded from the inheritance analysis that there were 2 loci controlling fruit bitterness in the population. One locus was in the same position as the location previously identified for bi-1, and another locus was for bi-3. Using a simple sequence repeat (SSR) linkage map, 2 loci for fruit bitterness in this RILs population were mapped. The locus of bi-1 was located at the region between SSR0004 and SSR02309 within the genetic distance of 5.2 cM on chromosome 6. The locus of bi-3 was placed in the region of SSR00116-SSR05321 within the genetic distance of 6.3 cM on chromosome 5. The physical distances for the regions of bi-1 and bi-3 were 11,430.94 Kb with 160 predicted genes and 1528.23 Kb with 198 predicted genes, respectively. Among 160 predicted genes for bi-1, there is a terpene synthase gene named Csa008595, which was speculated as the candidate gene of bi-1. PMID:23091223

  11. CONTROL OF BITTER ROT & BLUE MOLD OF APPLES BY INTEGRATING HEAT AND ANTAGONIST TREATMENTS ON 1-MCP TREATED FRUIT STORED UNDER CONTROLLED ATMOSPHERE CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to maximize control of fruit decay by alternatives to synthetic fungicides after harvest, various control strategies can be integrated. Treatment of fruit with antagonists is one of the most promising alternatives. This treatment, however, has little or no eradicative activity, which limi...

  12. BitterDB: a database of bitter compounds

    PubMed Central

    Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.

    2012-01-01

    Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398

  13. Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia.

    PubMed

    Ganguly, C; De, S; Das, S

    2000-08-01

    The anticarcinogenic effect of aqueous extract of fruit of Momordica charantia (bitter gourd), which is widely used as a vegetable in India, was studied in a two-step skin carcinogenesis model in mice. The possible mode of action was also investigated. Oral administration of the fruit extract was found to have an adverse effect on the general health and lifespan of the animals when used at a high concentration. But when this dose was reduced by half, the test extract afforded protection from the development of skin tumour and increased life expectancy. Carcinogen-induced lipid peroxidation in liver and DNA damage in lymphocytes were found to be reduced following treatment with Momordica. The fruit extract was found to significantly activate the liver enzymes glutathione-S-transferase, glutathione peroxidase and catalase (P < 0.001), which showed a depression following exposure to the carcinogen. The results suggest a preventive role of water-soluble constituents of M. charantia fruit during carcinogenesis, which is mediated possibly by their modulatory effect on enzymes of the biotransformation and detoxification system of the host. PMID:10958332

  14. Interactions and thresholds of limonin and nomilin in bitterness perception in orange juice and other matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limonin and nomilin are two bitter compounds present in citrus and are thought to cause the bitter off-flavor of Huanglongbing-infected fruit/juice. This study determined the thresholds of limonin, nomilin, and their combination in a simple matrix (sucrose and citric acid), a complex matrix (sucrose...

  15. Resistance and tolerance to herbivory changes with inbreeding and ontogeny in a wild gourd (Cucurbitaceae).

    PubMed

    Du, Daolin; Winsor, James A; Smith, Matthew; Denicco, Andrew; Stephenson, Andrew G

    2008-01-01

    Herbivory is a ubiquitous component of terrestrial communities that reduces plant growth and reproduction. Consequently, a goal of evolutionary ecology is to identify the causes and consequences of variation in herbivory within plant populations. This three-year study examined the effects of inbreeding on the resistance of wild gourd plants (Cucurbita pepo subsp. texana) to herbivory by cucumber beetles and the impact of the timing of herbivory on reproduction. We grew families of inbred and outbred gourds and recorded beetle damage at three developmental stages, incidence of beetle-vectored wilt disease, survival, and reproduction. While total beetle damage significantly depressed flower and fruit production, damage until mid-July did not depress any measure of reproduction, indicating that these gourds are tolerant of moderate levels of herbivory for most of the growing season. However, beetle damage accumulating after mid-July significantly depressed reproduction, indicating that plants have reduced tolerance during peak reproduction. Early damage, however, did increase the probability of contracting a deadly wilt disease that is vectored by the beetles, suggesting that tolerance and resistance are not alternative defense strategies. Inbreeding significantly reduced resistance to herbivory and, independently of beetle damage, reproductive output. Finally, we found additive genetic variation for both resistance and tolerance that varies with ontogeny. PMID:21632318

  16. Transferability of cucumber microsatellite markers used for phylogenetic analysis and population structure study in bottle gourd (Lagenaria siceraria (Mol.) Standl.).

    PubMed

    Bhawna; Abdin, M Z; Arya, L; Verma, M

    2015-02-01

    Improved breeding for developing fruit quality in bottle gourd (Lagenaria siceraria (Mol.) Standl.) necessitates knowledge regarding its genetic diversity. To achieve this, a set of 108 locus-specific SSR markers has been developed in bottle gourd by cross-species transferability from 995 mapped Cucumis sativus SSR markers. During screening, 280 primer pairs amplified in the bottle gourd germplasm, which were further evaluated in a diverse set of 42 lines, resulting in 19 polymorphic, 89 monomorphic, 15 with multiple bands, and the rest 157 showed no or very non-specific amplification. The 19 polymorphic primer pairs produced a total of 54 alleles. Gene diversity, Shannon's information index, and Nei's coefficient of differentiation were calculated suggesting a moderate genetic variation at the species level. A model-based population structure analysis divided these germplasm into two subpopulations. This marker set will be applicable for evaluating the genetic structure for association mapping, DNA fingerprinting, and mounting linkage maps and will be a practical tool set for further genetics. This study provides one of the first quantitative views of population genetic variation in bottle gourd. PMID:25471016

  17. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus

  18. In vitro antidiabetic effects of selected fruits and vegetables against glycosidase and aldose reductase.

    PubMed

    Wu, Tong; Luo, Jiaqiang; Xu, Baojun

    2015-11-01

    In vitro antidiabetic effect of fruits and vegetables with reports as folk remedies were investigated. The antidiabetic effects were evaluated by comparing the inhibitory properties of α-glycosidase, aldose reductase, and antioxidant activity. The results indicated that lychee extract exhibited the best dose-dependent inhibitory activity against α-glycosidase with IC 50 of 10.4 mg/mL, and lemon peel extract exhibited aldose reductase inhibitory potential with IC 50 value at 3.63 mg/mL. Besides, the result also showed that the inhibitory effects of blueberry and plum against α-glycosidase were strong among the fruits samples. Bitter gourd and eggplant demonstrated significant inhibitory potential against aldose reductase, with IC 50 values at 8.55 mg/mL and 8.06 mg/mL, respectively. The result from correlation analysis part showed that the antioxidant activities of selected fruits and vegetables were found related to their health beneficial effects, as there was positive correlations between total flavonoids content (TFC) and aldose reductase inhibitory activity (r (2) = 0.556). PMID:26788291

  19. Anti-ulcer effect in rats of bitter cardamon constituents.

    PubMed

    Yamahara, J; Li, Y H; Tamai, Y

    1990-11-01

    The effects of bitter cardamon (the fruit of Alpinia oxphylla), used as a medicine and a condiment, on HCl/ethanol-induced gastric lesions in rats were examined. The acetone extract at 50 mg/kg, p.o. significantly inhibited gastric lesions by 57.0%. An analysis of the active constituents in the acetone extract was performed using column chromatography. Nootkatone at 20 mg/kg, p.o. significantly inhibited gastric lesion. These results suggest that nootkatone, the sesquiterpenoid is an important constituent in stomach medications containing bitter cardamon. PMID:2085887

  20. Antioxidant properties of Momordica Charantia (bitter gourd) seeds on Streptozotocin induced diabetic rats.

    PubMed

    Sathishsekar, Dhanasekar; Subramanian, Sorimuthu

    2005-01-01

    The aim of the present study is to investigate the antioxidant activities of the aqueous extract of seeds of two varieties, namely a country and hybrid variety of Momordica charantia (MCSEt1 and MCSEt2) respectively in streptozotocin induced diabetic rats. Oral administration of both the seed extracts at a concentration of 150 mg/kg b.w for 30 days showed a significant decrease in fasting blood glucose, hepatic and renal thiobarbituric acid reactive substances and hydroperoxides. The treatment also resulted in a significant increase in reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and glutathione-s-transferase in the liver and kidney of diabetic rats. The results clearly suggest that seeds of Momordica charantia treated group may effectively normalize the impaired antioxidant status in streptozotocin induced-diabetes than the glibenclamide treated groups. The extract exerted rapid protective effects against lipid peroxidation by scavenging of free radicals there by reducing the risk of diabetic complications. The effect was more pronounced in MCSEt1 compared to MCSEt2. PMID:15927932

  1. Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis

    PubMed Central

    Matsumura, Hideo; Miyagi, Norimichi; Taniai, Naoki; Fukushima, Mai; Tarora, Kazuhiko; Shudo, Ayano; Urasaki, Naoya

    2014-01-01

    Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding. PMID:24498029

  2. Comparison of phenolic composition of healthy apple tissues and tissues affected by bitter pit.

    PubMed

    Zupan, Anka; Mikulic-Petkovsek, Maja; Cunja, Vlasta; Stampar, Franci; Veberic, Robert

    2013-12-11

    Bitter pit is an important Ca(2+) deficiency disorder of apple fruit (Malus domestica Borkh.), with symptoms, necrotic spots, developing during storage. The objective of this study was to determine phenolic compounds and their contents in bitter pit in comparison to healthy skin and pulp using HPLC-MS(2). The experiment was carried out on three cultivars 'Jonagored', 'Golden Delicious' and 'Pinova'. All 15 determined phenolic compounds in pulp tissues specifically affected by bitter pit were higher than those in healthy pulp. Chlorogenic acid and catechin were to 5 times higher in those affected pulp tissues. Higher content was also determined for hydroxycinnamic acids and flavanols in the peel above the bitter pit; in contrast, flavonols and anthocyanins were higher in healthy peel. Anthocyanins in healthy peel of cultivar 'Jonagored' were 10 times higher from the content in peel above the bitter pit. PMID:24256610

  3. A revision of the "African Non-Spiny" Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae).

    PubMed

    Knapp, Sandra; Vorontsova, Maria S

    2016-01-01

    The African Non-Spiny (ANS) clade contains 14 species of mostly large canopy lianas or scandent shrubs confined to Madagascar (10) and continental Africa (4, with with one species reaching the southern Arabian peninsula). Members of the clade were previously classified in sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Macronesiotes Bitter and Quadrangulare Bitter, and were throught to be related to a variety of New World groups. The group is an early-branching lineage of non-spiny solanums and characters shared with other vining New World solanums are homoplastic. The 14 species of the group occupy a wide range of habitats, from wet forests in western Africa to savanna and dry forests of southern Madagascar and dune habitats in South Africa. Many members of the group are highly variable morphologically, and habit can vary between shrub and canopy vine in a single locality. We here review the taxonomic history, morphology, potential relationships and ecology of these species; we provide keys for their identification, descriptions, full synonymy (including designations of lectotypes and neotypes) and nomenclatural notes. Illustrations, distribution maps and preliminary conservation assessments are provided for all species. PMID:27489494

  4. BitterX: a tool for understanding bitter taste in humans

    PubMed Central

    Huang, Wenkang; Shen, Qiancheng; Su, Xubo; Ji, Mingfei; Liu, Xinyi; Chen, Yingyi; Lu, Shaoyong; Zhuang, Hanyi; Zhang, Jian

    2016-01-01

    BitterX is an open-access tool aimed at providing a platform for identifying human bitter taste receptors, TAS2Rs, for small molecules. It predicts TAS2Rs from the molecular structures of arbitrary chemicals by integrating two individual functionalities: bitterant verification and TAS2R recognition. Using BitterX, several novel bitterants and their receptors were predicted and experimentally validated in the study. Therefore, BitterX may be an effective method for deciphering bitter taste coding and could be a useful tool for both basic bitter research in academia and new bitterant discoveries in the industry. PMID:27040075

  5. Bilateral thalamic necrosis following ingestion of ridge gourd infested with coelomycete fungi (Diplodia).

    PubMed

    de Souza, Aaron; Narvencar, Kedareshwar P S; Fernandes, Yasmin; Arun, G

    2010-08-15

    Bilateral thalamic lesions detected on magnetic resonance imaging have a wide differential diagnosis. This report describes a previously healthy young man who developed bilateral thalamic necrosis with seizures, vomiting, hepatitis, neutrophilic leukocytosis and metabolic acidosis following consumption of raw dried fruits of the ridge gourd plant (Luffa acutangula) prescribed by a traditional medicine practitioner. These fruits were subsequently shown to be infested with spores and conidiomata of Diplodia, a coelomycete fungus known to cause neurotoxicity in farm animals. The patient made a partial recovery with supportive care, and has persistent deficits consistent with bilateral medial thalamic damage. This is the first report of neurological toxicity attributable to Diplodia in humans, and this entity should be considered in the differential diagnosis of bilateral thalamic lesions in the appropriate clinical setting. PMID:20561634

  6. Healthy virgin olive oil: a matter of bitterness.

    PubMed

    Vitaglione, Paola; Savarese, Maria; Paduano, Antonello; Scalfi, Luca; Fogliano, Vincenzo; Sacchi, Raffaele

    2015-01-01

    Virgin olive oil (VOO) is the pillar fat of Mediterranean diet. It is made from olive fruits and obtained by squeezing olives without any solvent extraction. Respect to the seed oils, an unique polar polyphenol-rich fraction gives VOO a bitter and pungent taste. The recent substantiation by European Food Safety Authority (EFSA) of a health claim for VOO polyphenols may represent an efficient stimulus to get the maximum health benefit from one of the most valuable traditional product of Mediterranean countries educating consumers to the relationship between the VOO bitterness and its health effect. Agronomical practices and new processing technology to avoid phenolic oxidation and hydrolysis and to enhance the aromatic components of the VOO have been developed and they can be used to modulate taste and flavor to diversify the products on the market. VOOs having high concentration of phenol compounds are bitter and pungent therefore many people do not consume them, thus loosing the health benefits related to their intake. In this paper, the chemist's and nutritionist's point of view has been considered to address possible strategies to overcome the existing gap between the quality perceived by consumer and that established by expert tasters. Educational campaigns emphasizing the bitter-health link for olive oils should be developed. PMID:24915318

  7. Transoceanic drift and the domestication of African bottle gourds in the Americas.

    PubMed

    Kistler, Logan; Montenegro, Alvaro; Smith, Bruce D; Gifford, John A; Green, Richard E; Newsom, Lee A; Shapiro, Beth

    2014-02-25

    Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315-18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication. PMID:24516122

  8. Transoceanic drift and the domestication of African bottle gourds in the Americas

    PubMed Central

    Kistler, Logan; Montenegro, Álvaro; Smith, Bruce D.; Gifford, John A.; Green, Richard E.; Newsom, Lee A.; Shapiro, Beth

    2014-01-01

    Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315–18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication. PMID:24516122

  9. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities.

    PubMed

    Yibchok-anun, Sirintorn; Adisakwattana, Sirichai; Yao, Cheng Yu; Sangvanich, Polkit; Roengsumran, Sophon; Hsu, Walter Haw

    2006-06-01

    The protein from Thai bitter gourd (Momordica charantia) fruit pulp was extracted and studied for its hypoglycemic effect. Subcutaneous administration of the protein extract (5, 10 mg/kg) significantly and markedly decreased plasma glucose concentrations in both normal and streptozotocin-induced diabetic rats in a dose-dependent manner. The onset of the protein extract-induced antihyperglycemia/hypoglycemia was observed at 4 and 6 h in diabetic and normal rats, respectively. This protein extract also raised plasma insulin concentrations by 2 fold 4 h following subcutaneous administration. In perfused rat pancreas, the protein extract (10 microg/ml) increased insulin secretion, but not glucagon secretion. The increase in insulin secretion was apparent within 5 min of administration and was persistent during 30 min of administration. Furthermore, the protein extract enhanced glucose uptake into C2C12 myocytes and 3T3-L1 adipocytes. Time course experiments performed in rat adipocytes revealed that M. charantia protein extract significantly increased glucose uptake after 4 and 6 h of incubation. Thus, the M. charantia protein extract, a slow acting chemical, exerted both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. PMID:16755004

  10. Pharmacogenetics of taste: turning bitter pills sweet?

    PubMed

    Nagtegaal, Mariëlle J; Swen, Jesse J; Hanff, Lidwien M; Schimmel, Kirsten Jm; Guchelaar, Henk-Jan

    2014-01-01

    Poor palatability of oral drug formulations used for young children negatively influences medication intake, resulting in suboptimal treatment. Some children are more sensitive to bitter tastes than others. Bitter tasting status is currently assessed by phenotyping with 6-n-propylthiouracil (PROP) as a bitter probe. Recent studies showed that interindividual differences in PROP sensitivity can be largely explained by three SNPs in TAS2R38, encoding a bitter taste receptor. Gustin, involved in the development of taste buds, and the sweet receptor genotype potentially explain remaining parts of PROP sensitivity variability. Other TAS2 receptor bitter receptor genes may also play a role in bitter aversions. Dependent on their genotype, children may have different medication formulation preferences. Taste genetics could improve drug acceptance by enabling better-informed choices on adapting oral formulations to children's taste preferences. This paper presents an overview of recent findings concerning bitter taste genetics and discusses these in the context of pediatric drug formulation. PMID:24329195

  11. Interactions between limonin and nomilin, two bitter compounds of orange juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a preliminary step to understand and characterize which metabolites are responsible for the bitter off-favor of Huanglongbing infected fruit, the thresholds of limonin, nomilin, and their combination in a sugar and acid matrix, as well as in healthy ‘Valencia’ orange juice were determined by tast...

  12. Technical and economical feasibility of buffalo gourd as a novel energy crop: Final report

    SciTech Connect

    Goldstein, B.

    1988-02-01

    The New Mexico Solar Energy Institute at NMSU has conducted a two-year investigation into the technical and economic feasibility of using the buffalo gourd plant as an energy feedstock in eastern New Mexico. The New Mexico buffalo gourd project conducted field planting trials to determine optimum planting density, fertilizer levels, and irrigation regime. Starchy roots produced by the field plantings were evaluated as an ethanol feedstock at both laboratory and pilot scale. These studies indicate that buffalo gourd is well suited for root production in eastern New Mexico. Current cultivars of buffalo gourd can be most efficiently produced under dry land farming conditions with little, if any, supplemental fertilizer. Traditional plant breeding techniques can be profitably employed on the buffalo gourd to breed a size and shape of root more easily harvested by existing farm machinery. Because of its sensitivity to root rot, buffalo gourd must be grown in well drained soils. Finally, buffalo gourd has been shown to be an excellent feedstock for ethanol production provided necessary pre-fermentation processing (chopping of roots) is performed correctly. A model was created to determine the economic feasibility of growing buffalo gourd in eastern New Mexico. It was determined that the net return to a farmer in eastern New Mexico can be higher planting buffalo gourd than many traditionally grown crops because of buffalo gourd's low water and fertilizer requirements. The model further indicates that net return is heavily influenced by root yield. Continued research is needed to optimize buffalo gourd root yield, as well as root size and shape, disease resistance, etc. A clearly defined R and D agenda and commercialization strategy is presented and discussed. Buffalo gourd has been demonstrated to have high potential as an alternative feedstock for ethanol production in eastern New Mexico. 128 refs., 9 figs., 28 tabs.

  13. Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis.

    PubMed

    Jadhav, Manjusha R; Oulkar, Dasharath P; Shabeer T P, Ahammed; Banerjee, Kaushik

    2015-05-13

    A buffered ethyl acetate extraction method is proposed for the simultaneous analysis of 296 agrochemicals in a wide range of fruit and vegetable matrices by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized quantity of acetate buffer (1% acetic acid + 0.5 g of sodium acetate per 10 g of sample) adjusted the pH of each test matrix to 5-6, which in turn significantly improved recoveries of acidic and basic compounds. The role of diethylene glycol (used in the evaporation step) on signal suppression of certain compounds was evaluated, and its quantity was optimized to minimize such an effect. The method was validated in grape, mango, drumstick, bitter gourd, capsicum, curry leaf, and okra as per the DG-SANCO/12571/2013 guidelines. Recoveries in the fortification range of 1-40 μg/kg were within 70-120% with associated relative standard deviations below 20% for most of the compounds. The method has potential for regulatory and commercial applications with a generic approach. PMID:25639652

  14. Mass spectrometric determination of the predominant adrenergic protoalkaloids in bitter orange (Citrus aurantium).

    PubMed

    Nelson, Bryant C; Putzbach, Karsten; Sharpless, Katherine E; Sander, Lane C

    2007-11-28

    The predominant adrenergic protoalkaloid found in the peel and fruit of bitter orange, Citrus aurantium, is synephrine. Synephrine is reputed to have thermogenic properties and is used as a dietary supplement to enhance energy and promote weight loss. However, there exists some concern that the consumption of dietary supplements containing synephrine or similar protoalkaloids may contribute to adverse cardiovascular events. This study developed and validated a positive-ion mode liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the quantitative determination of the major (synephrine) and minor (tyramine, N-methyltyramine, octopamine, and hordenine) adrenergic protoalkaloids in a suite of National Institute of Standards and Technology (NIST) bitter orange Standard Reference Materials (SRMs): SRM 3258 Bitter Orange Fruit, SRM 3259 Bitter Orange Extract, and SRM 3260 Bitter Orange Solid Oral Dosage Form. The limit of quantitation (LOQ) for all protoalkaloids is approximately 1 pg on-column, except for octopamine (20 pg on-column). Additionally, the method has a linear dynamic range of > or =3 orders of magnitude for all of the protoalkaloids. Individual, as well as "total", protoalkaloid levels (milligrams per kilogram) in the NIST SRMs were determined and compared to the levels measured by an independent liquid chromatography/fluorescence detection (LC/FD) method. Satisfactory concordance between the LC/MS/MS and LC/FD protoalkaloid measurements was demonstrated. LC/MS/MS analysis of the protoalkaloids in the SRMs resulted in mean measurement imprecision levels of < or =10% coefficient of variation (% CV). PMID:17966980

  15. The GOURD model of human-computer interaction

    SciTech Connect

    Goldbogen, G.

    1996-12-31

    This paper presents a model, the GOURD model, that can be used to measure the goodness of {open_quotes}interactivity{close_quotes} of an interface design and qualifies how to improve the design. The GOURD model describes what happens to the computer and to the human during a human-computer interaction. Since the interaction is generally repeated, the traversal of the model repeatedly is similar to a loop programming structure. Because the model measures interaction over part or all of the application, it can also be used as a classifier of the part or the whole application. But primarily, the model is used as a design guide and a predictor of effectiveness.

  16. Bitter Root Irrigation district canal, looking east, typical section (canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section (canal full) - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  17. Bitter Root Irrigation district canal, looking east, typical section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section and crossing - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  18. Improved watermelon quality using bottle gourd rootstock expressing a Ca(2+)/H(+) antiporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified "Arabidopsis" Ca(2+)/H(+) exchanger sCAX2B. This t...

  19. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    PubMed

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. PMID:27006233

  20. Cycloheximide: No Ordinary Bitter Stimulus

    PubMed Central

    Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.

    2007-01-01

    Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304

  1. Absence of furanocoumarins in Advantra Z® (Citrus aurantium, bitter orange) extracts.

    PubMed

    Stohs, Sidney J; Miller, Howard; Romano, Felice

    2014-09-01

    Grapefruit (Citrus paradisi) juice is known for its ability to alter drug metabolism through inhibition of the cytochrome P450-3A4 (CYP3A4) system, and result in drug-food interactions that may be life threatening. The primary active ingredients in grapefruit responsible for these effects are the furanocoumarins bergapten, bergamottin, and 6',7'-dihydroxybergamottin (DHB). Bergamottin and DHB appear to be the most important in terms of adverse drug interactions. Furanocoumarins are present in the juices and fruits of other Citrus species including C. aurantium (bitter oranges). Bergapten is the predominant furanocoumarin in bitter orange. Bitter orange extracts are widely used in products associated with weight loss, sports performance, and energy production. Questions have been raised about the potential of bitter orange extracts to cause drug interactions. This study examined the furanocoumarin content of four standardized bitter orange extracts (Advantra Z®) by liquid chromatography-mass spectroscopy. The results indicated that the total furanocoumarin content of each of the four extracts was less than 20 μg/g, amounts insufficient to exert significant effects on the metabolism of susceptible drugs in human subjects at the doses commonly used for these extracts. PMID:25026202

  2. New crops for arid lands. [Jojoba; Buffalo gourd; Bladderpod; Gumweed

    SciTech Connect

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential of arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required.

  3. Characterization and chromosomal organization of Ty1-copia retrotransposons in wax gourd.

    PubMed

    Jiang, Biao; Liu, Wenrui; Peng, Qingwu; He, Xiaoming; Xie, Dasen

    2014-11-01

    Wax gourd (2n=2x=24) is an important vegetable species in Cucurbitaceae. Because it can be stored for a very long period of time, it plays an important role in ensuring the annual supply and regulating off-season supply of the vegetables. However, the availability of genetic information about wax gourd is limited. This study aimed to identify the useful genetic information for wax gourd. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia retrotransposons were isolated from the genome of wax gourd using degenerate oligonucleotide primers. A total of twenty eight RT sequences were obtained, which showed high heterogeneity with the similarity ranging from 47.5% to 94.3%. Sixteen (57.1%) of them were found to be defective, being disrupted by stop codons and/or frameshift mutations. These 28 sequences were divided into five subfamilies. The comparative phylogenetic analysis with other Cucurbitaceae species from GenBank database showed that most retrotransposons derived from the same genus tended to cluster together, although there were a few exceptions. These results indicate that both vertical transmission and horizontal transmission are the sources of Ty1-copia retrotransposons in wax gourd. Fluorescent in situ hybridization (FISH) with Ty1-copia retrotransposon sequences as probes revealed that this kind of retrotransposons had a dispersed genomic organization, physically distributed among all the chromosomes of wax gourd, with clusters in the heterochromatin regions. This is the first report of Ty1-copia retrotransposons in wax gourd, which would be helpful for our understanding about the organization and evolutions of wax gourd genome and also provide valuable information for our utilization of wax gourd retrotransposons. PMID:25108132

  4. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    PubMed

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  5. Development of delayed bitterness and effect of harvest date in stored juice from two complex citrus hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mandarins and mandarin hybrids have excellent flavor and color attributes making them good candidates for consumption as fresh fruit. When processed into juice, however, they are not very palatable as they develop delayed bitterness when stored for a period of time. In this study, kinetics of delaye...

  6. Antioxidant activity of various extracts of selected gourd vegetables.

    PubMed

    Yadav, Baljeet S; Yadav, Roshanlal; Yadav, Ritika B; Garg, Munish

    2016-04-01

    Study was conducted to evaluate the antioxidative activity of methanolic (ME), ethanolic (EE) and butanolic extracts (BE) of selected gourd vegetables. The antioxidant activity was investigated using different assays namely ferric thiocyanate test (FTC), thiobarbituric acid test (TBA), ferric reducing antioxidant power (FRAP) and DPPH free radicals scavenging test. A densitometric HPTLC analysis was performed for the analysis of phenolic acids and flavonoids. Different extracts of the selected gourd vegetables revealed different antioxidant activity. Different extracts of Lagenaria siceraria, Momordica charantia and Luffa cylindrica revealed significantly higher (p < 0.05) concentrations of total phenols, flavonids, tannins and carotenoids content and also the antioxidant activity in comparison to remaining vegetable extracts. Correlation studies indicated that FRAP test best described the antioxidant activity of phenols, flavonoids and carotenoids (r = 0.854, 0.692 and 0.915 respectively). HPTLC profiles revealed the presence of maximum number of phenolic acids and flavonoids in L. siceraria and M. charantia. PMID:27413209

  7. A revision of the “African Non-Spiny” Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae)

    PubMed Central

    Knapp, Sandra; Vorontsova, Maria S.

    2016-01-01

    Abstract The African Non-Spiny (ANS) clade contains 14 species of mostly large canopy lianas or scandent shrubs confined to Madagascar (10) and continental Africa (4, with with one species reaching the southern Arabian peninsula). Members of the clade were previously classified in sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Macronesiotes Bitter and Quadrangulare Bitter, and were throught to be related to a variety of New World groups. The group is an early-branching lineage of non-spiny solanums and characters shared with other vining New World solanums are homoplastic. The 14 species of the group occupy a wide range of habitats, from wet forests in western Africa to savanna and dry forests of southern Madagascar and dune habitats in South Africa. Many members of the group are highly variable morphologically, and habit can vary between shrub and canopy vine in a single locality. We here review the taxonomic history, morphology, potential relationships and ecology of these species; we provide keys for their identification, descriptions, full synonymy (including designations of lectotypes and neotypes) and nomenclatural notes. Illustrations, distribution maps and preliminary conservation assessments are provided for all species. PMID:27489494

  8. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-10-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

  9. Hierarchical chirality transfer in the growth of Towel Gourd tendrils.

    PubMed

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  10. Bitter Receptor Gene (TAS2R38), 6-n-Propylthiouracil (PROP) Bitterness and Alcohol Intake

    PubMed Central

    Duffy, Valerie B.; Davidson, Andrew C.; Kidd, Judith R.; Kidd, Kenneth K.; Speed, William C.; Pakstis, Andrew J.; Reed, Danielle R.; Snyder, Derek J.; Bartoshuk, Linda M.

    2006-01-01

    Background Phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP), chemically related compounds, are probes for genetic variation in bitter taste, although PROP is safer with less sulfurous odor. Threshold for PROP distinguishes nontasters (increased threshold) from tasters (lower threshold); perceived intensity subdivides tasters into medium tasters (PROP is bitter) and supertasters (PROP is very bitter). Compared with supertasters, nontasters have fewer taste papillae on the anterior tongue (fungiform papillae) and experience less negative (e.g., bitterness) and more positive (eg, sweetness) sensations from alcohol. We determined whether the TAS2R38 gene at 7q36 predicted PROP bitterness, alcohol sensation and use. Methods Healthy adults (53 women, 31 men; mean age 36 years)—primarily light and moderate drinkers—reported the bitterness of five PROP concentrations (0.032–3.2 mM) and intensity of 50% ethanol on the general Labeled Magnitude Scale. PROP threshold and density of fungiform papillae were also measured. Subjects had common TAS2R38 gene haplotypes [alanine-valine-isoleucine (AVI) and proline-alanine-valine (PAV)]. Results PROP bitterness varied significantly across genotypes with repeated measures ANOVA: 26 AVI/AVI homozygotes tasted less bitterness than either 37 PAV/AVI heterozygotes or 21 PAV/PAV homozygotes. The PAV/PAV group exceeded the PAV/AVI group for bitterness only for the top PROP concentrations. The elevated bitterness was musch less than if we defined the groups using psychophysical criteria. With multiple regression analyses, greater bitterness from 3.2 mM PROP was a significant predictor of greater ethanol intensity and less alcohol intake—effects separate from age and sex. Genotype was a significant predictor of alcohol intake, but not ethanol intensity. With ANOVA, AVI/AVI homozygotes reported higher alcohol use than either PAV/AVI heterozygotes or PAV/PAV homozygotes. When age effects were minimized, PROP bitterness

  11. Cholesterol modulates bitter taste receptor function.

    PubMed

    Pydi, Sai Prasad; Jafurulla, Md; Wai, Lisa; Bhullar, Rajinder P; Chelikani, Prashen; Chattopadhyay, Amitabha

    2016-09-01

    Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors. PMID:27288892

  12. Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats.

    PubMed

    Yadav, Umesh C S; Moorthy, K; Baquer, Najma Z

    2005-01-01

    Momordica charantia Linn., commonly called bitter gourd, is a medicinal plant used in the Ayurvedic system of medicine for treating various diseases including diabetes mellitus. Sodium orthovanadate (SOV) is also well-known insulin mimetic and an antidiabetic compound. Our laboratory has been using reduced doses of SOV along with administration of herbal extracts to alloxan diabetic rats and has established this combination as a good antihyperglycemic agent. The present study was undertaken to investigate the effects of treatment of Momordica fruit extract (MFE) and sodium orthovanadate, separately and in combination, on serum and tissue lipid profile and on the activities of lipogenic enzymes in alloxan induced diabetic rats. The results show that there was a significant (p < 0.01) increase in serum total lipids, triglycerides and total cholesterol levels after 21 days of alloxan diabetes. In the liver and kidney of diabetic rats the levels of total lipids and triglycerides also increased significantly (p < 0.01) while levels of total cholesterol decreased significantly (p < 0.01 and p < 0.05, respectively). The lipogenic enzymes showed decreased activity in the diabetic liver, while in kidney they showed an increased activity. When compared with the controls these changes were significant. The treatment of alloxan diabetic rats with MFE and SOV prevented these alterations and maintained all parameters near control values. Most effective prevention was however observed in a combined treatment of Momordica with a reduced dose of SOV (0.2%). The results suggest that Momordica fruit extract and SOV exhibit hypolipidemic as well as hypoglycemic effect in diabetic rats and their effect is pronounced when administered in combination. PMID:15724444

  13. Insights regarding sensory evaluation of bitterness development in citrus juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delayed bitterness is a well-known phenomenon in citrus juice and has a negative impact on juice quality. Bitterness results when the tasteless limonoic acid A-ring lactone (LARL) in juice is converted to the bitter compound limonin after juicing. Citrus varieties that produce juice that becomes bit...

  14. Activation of human bitter taste receptors by polymethoxylated flavonoids.

    PubMed

    Kuroda, Yuki; Ikeda, Riko; Yamazaki, Toyomi; Ito, Keisuke; Uda, Kazunari; Wakabayashi, Keiji; Watanabe, Tatsuo

    2016-10-01

    Tangeretin and nobiletin are polymethoxylated flavonoids in citrus peel. Both tangeretin and nobiletin are bitter; however, their bitterness has not been evaluated using human bitter taste receptors (hTAS2Rs). We screened 25 kinds of hTAS2Rs and found that hTAS2R14 and hTAS2R46 received both compounds. PMID:27379685

  15. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy.

    PubMed

    Kwatra, Deep; Subramaniam, Dharmalingam; Ramamoorthy, Prabhu; Standing, David; Moran, Elizabeth; Velayutham, Ravichandiran; Mitra, Ashim; Umar, Shahid; Anant, Shrikant

    2013-01-01

    Bitter melon fruit is recommended in ancient Indian and Chinese medicine for prevention/treatment of diabetes. However its effects on cancer progression are not well understood. Here, we have determined the efficacy of methanolic extracts of bitter melon on colon cancer stem and progenitor cells. Both, whole fruit (BMW) and skin (BMSk) extracts showed significant inhibition of cell proliferation and colony formation, with BMW showing greater efficacy. In addition, the cells were arrested at the S phase of cell cycle. Moreover, BMW induced the cleavage of LC3B but not caspase 3/7, suggesting that the cells were undergoing autophagy and not apoptosis. Further confirmation of autophagy was obtained when western blots showed reduced Bcl-2 and increased Beclin-1, Atg 7 and 12 upon BMW treatment. BMW reduced cellular ATP levels coupled with activation of AMP activated protein kinase; on the other hand, exogenous additions of ATP lead to revival of cell proliferation. Finally, BMW treatment results in a dose-dependent reduction in the number and size of colonospheres. The extracts also decreased the expression of DCLK1 and Lgr5, markers of quiescent, and activated stem cells. Taken together, these results suggest that the extracts of bitter melon can be an effective preventive/therapeutic agent for colon cancer. PMID:23533514

  16. Facial affective reactions to bitter-tasting foods and body mass index in adults.

    PubMed

    Garcia-Burgos, D; Zamora, M C

    2013-12-01

    Differences in food consumption among body-weight statuses (e.g., higher fruit intake linked with lower body mass index (BMI) and energy-dense products with higher BMI) has raised the question of why people who are overweight or are at risk of becoming overweight eat differently from thinner people. One explanation, in terms of sensitivity to affective properties of food, suggests that palatability-driven consumption is likely to be an important contributor to food intake, and therefore body weight. Extending this approach to unpalatable tastes, we examined the relationship between aversive reactions to foods and BMI. We hypothesized that people who have a high BMI will show more negative affective reactions to bitter-tasting stimuli, even after controlling for sensory perception differences. Given that hedonic reactions may influence consumption even without conscious feelings of pleasure/displeasure, the facial expressions were included in order to provide more direct access to affective systems than subjective reports. Forty adults (28 females, 12 males) participated voluntarily. Their ages ranged from 18 to 46 years (M=24.2, SD=5.8). On the basis of BMI, participants were classified as low BMI (BMI<20; n=20) and high BMI (BMI>23; n=20). The mean BMI was 19.1 for low BMI (SD=0.7) and 25.2 for high BMI participants (SD=1.8). Each subject tasted 5 mL of a grapefruit juice drink and a bitter chocolate drink. Subjects rated the drinks' hedonic and incentive value, familiarity and bitter intensity immediately after each stimulus presentation. The results indicated that high BMI participants reacted to bitter stimuli showing more profound changes from baseline in neutral and disgust facial expressions compared with low BMI. No differences between groups were detected for the subjective pleasantness and familiarity. The research here is the first to examine how affective facial reactions to bitter food, apart from taste responsiveness, can predict differences in BMI

  17. Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia L.) grown in northern parts of Turkey: a case study for adaptation.

    PubMed

    Yaldız, Gülsüm; Sekeroglu, Nazım; Kulak, Muhittin; Demirkol, Gürkan

    2015-01-01

    This study was designed to determine the adaptation capability of bitter melon (Momordica charantia L.), which is widely grown in tropical and subtropical climates, in northern parts of Turkey. In this study, plant height, number of fruits, fruit length, fruit width, number of seeds and fruit weight of bitter melon grown in field conditions were determined. The antimicrobial effect of the ethanol extract of fruit and seeds against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, Aspergillus niger and Candida albicans microorganisms was tested in vitro by the disc diffusion method. In conclusion, plant height (260 cm), number of fruits (16 per  plant), number of seeds (30.2  per fruit), fruit width (3.8 cm), fruit length (10.6 cm) and fruit weight (117.28 g fruit(- 1)) were determined; fruits were found to have antimicrobial activity against A. niger; oil and seeds were found to have antimicrobial activity against A. niger and E. coli. PMID:25141891

  18. Effect of Huanglongbing (HLB) disease on orange fruit flavor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that the destructive citrus greening, or Huanglongbing (HLB), disease causes orange fruit to be smaller, lopsided and greener. It was also reported that HLB fruit and resulting juice are perceived as being more sour, bitter and off-flavored, even though it hasn’t been well documented nor...

  19. Beneficial Role of Bitter Melon Supplementation in Obesity and Related Complications in Metabolic Syndrome

    PubMed Central

    Subhan, Nusrat; Rahman, Md Mahbubur; Jain, Preeti; Reza, Hasan Mahmud

    2015-01-01

    Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition both in vivo and in vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect of Momordica charantia extracts on metabolic syndrome and discuss its potential mechanism of actions. PMID:25650336

  20. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome.

    PubMed

    Alam, Md Ashraful; Uddin, Riaz; Subhan, Nusrat; Rahman, Md Mahbubur; Jain, Preeti; Reza, Hasan Mahmud

    2015-01-01

    Diabetes, obesity, and metabolic syndrome are becoming epidemic both in developed and developing countries in recent years. Complementary and alternative medicines have been used since ancient era for the treatment of diabetes and cardiovascular diseases. Bitter melon is widely used as vegetables in daily food in Bangladesh and several other countries in Asia. The fruits extract of bitter melon showed strong antioxidant and hypoglycemic activities in experimental condition both in vivo and in vitro. Recent scientific evaluation of this plant extracts also showed potential therapeutic benefit in diabetes and obesity related metabolic dysfunction in experimental animals and clinical studies. These beneficial effects are mediated probably by inducing lipid and fat metabolizing gene expression and increasing the function of AMPK and PPARs, and so forth. This review will thus focus on the recent findings on beneficial effect of Momordica charantia extracts on metabolic syndrome and discuss its potential mechanism of actions. PMID:25650336

  1. Bitter taste receptors: Extraoral roles in pathophysiology.

    PubMed

    Shaik, Feroz Ahmed; Singh, Nisha; Arakawa, Makoto; Duan, Kangmin; Bhullar, Rajinder P; Chelikani, Prashen

    2016-08-01

    Over the past decade tremendous progress has been made in understanding the functional role of bitter taste receptors (T2Rs) and bitter taste perception. This review will cover the recent advances made in identifying the role of T2Rs in pathophysiological states. T2Rs are widely expressed in various parts of human anatomy and have been shown to be involved in physiology of respiratory system, gastrointestinal tract and endocrine system. Empirical evidence has shown T2Rs to be an integral component of antimicrobial immune responses in upper respiratory tract infections. The studies on human airway smooth muscle cells have shown that a potent bitter tastant induced bronchodilatory effects mediated by bitter taste receptors. Clinical data suggests a role for T2R38 polymorphism in predisposition of individuals to chronic rhinosinusitis. The role of genetic variation in T2Rs and its impact on disease susceptibility have been investigated in various other disease risk factors such as alcohol dependence, head and neck cancers. Preliminary reports have demonstrated differential expression of functional T2Rs in breast cancer cell lines. Studies on the role of T2Rs in pathophysiology of diseases including chronic rhinosinusitis, asthma, cystic fibrosis, and cancer have been promising. However, research in this field is in its nascent stages, and more confirmatory studies on animal models and in clinical settings are required. PMID:27032752

  2. Vegetable Bitterness is Related to Calcium Content

    PubMed Central

    Tordoff, Michael G.; Sandell, Mari A.

    2009-01-01

    In the U.S. and Europe, most people do not consume the recommended amounts of either calcium or vegetables. We investigated whether there might be a connection; specifically, whether the taste of calcium in vegetables contributes to their bitterness and thus acceptability. We found a strong correlation between the calcium content of 24 vegetables, based on USDA Nutrient Database values, and bitterness, based on the average ratings of 35 people (r = 0.93). Correlations between the content of other nutrients and bitterness were lower and most were not statistically significant. To assess whether it is feasible that humans can detect calcium in vegetables we tested two animal models known to display a calcium appetite. Previous work indicates that calcium solutions are preferentially ingested by PWK/PhJ mice relative to C57BL/6J mice, and by rats deprived of dietary calcium relative to replete controls. In choice tests between collard greens, a high-calcium vegetable, and cabbage, a low-calcium vegetable, the calcium-favoring animals had higher preferences for collard greens than did controls. These observations raise the possibility that the taste of calcium contributes to the bitterness and thus acceptability of vegetables. PMID:19260165

  3. Vegetable bitterness is related to calcium content.

    PubMed

    Tordoff, Michael G; Sandell, Mari A

    2009-04-01

    In the U.S. and Europe, most people do not consume the recommended amounts of either calcium or vegetables. We investigated whether there might be a connection; specifically, whether the taste of calcium in vegetables contributes to their bitterness and thus acceptability. We found a strong correlation between the calcium content of 24 vegetables, based on USDA Nutrient Database values, and bitterness, based on the average ratings of 35 people (r = 0.93). Correlations between the content of other nutrients and bitterness were lower and most were not statistically significant. To assess whether it is feasible that humans can detect calcium in vegetables we tested two animal models known to display a calcium appetite. Previous work indicates that calcium solutions are preferentially ingested by PWK/PhJ mice relative to C57BL/6J mice, and by rats deprived of dietary calcium relative to replete controls. In choice tests between collard greens, a high-calcium vegetable, and cabbage, a low-calcium vegetable, the calcium-favoring animals had higher preferences for collard greens than did controls. These observations raise the possibility that the taste of calcium contributes to the bitterness and thus acceptability of vegetables. PMID:19260165

  4. First Report of Southern Blight on Bottle Gourd (Lagenaria siceraria) caused by Sclerotium Rolfsii in South Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd (Lagenaria siceraria [Mol.] Standl.) is an important rootstock in watermelon grafting in Asia and Middle East and is gaining momentum in the United States. We are currently testing bottle gourds for disease resistance. In the summer of 2007, symptoms of wilting and crown necrosis were...

  5. Development of oral acetaminophen chewable tablets with inhibited bitter taste.

    PubMed

    Suzuki, Hiroyuki; Onishi, Hiraku; Takahashi, Yuri; Iwata, Masanori; Machida, Yoshiharu

    2003-01-30

    Various formulations with some matrix bases and corrigents were examined for development of oral chewable tablets which suppressed the bitter taste of acetaminophen, often used as an antipyretic for infants. Corn starch/lactose, cacao butter and hard fat (Witepsol H-15) were used for matrix bases, and sucrose, cocoa powder and commercial bitter-masking powder mixture made from lecithin (Benecoat BMI-40) were used for corrigents against bitter taste. The bitter taste intensity was evaluated using volunteers by comparison of test samples with standard solutions containing quinine at various concentrations. For the tablets made of matrix base and drug, Witepsol H-15 best inhibited the bitter taste of the drug, and the bitter strength tended to be suppressed with increase in the Witepsol H-15 amount. When the inhibitory effect on the bitter taste of acetaminophen solution was compared among the corrigents, each tended to suppress the bitter taste; especially, Benecoat BMI-40 exhibited a more inhibitory effect. Further, chewable tablets were made of one matrix base and one corrigent, and of one matrix base and two kinds of corrigents, their bitter taste intensities after chewing were compared. As a result, the tablets made of Witepsol H-15/Benecoat BMI-40/sucrose, of Witepsol H-15/cocoa powder/sucrose and of Witepsol H-15/sucrose best masked the bitter taste so that they were tolerable enough to chew and swallow. The dosage forms best masking bitter taste showed good release of the drug, indicating little change in bioavailability by masking. PMID:12527182

  6. Bitter taste receptors confer diverse functions to neurons

    PubMed Central

    Delventhal, Rebecca; Carlson, John R

    2016-01-01

    Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers. DOI: http://dx.doi.org/10.7554/eLife.11181.001 PMID:26880560

  7. Technical and economical feasibility of buffalo gourd as a novel energy crop. Final report, 14 November 1983-31 December 1986

    SciTech Connect

    Goldstein, B.

    1988-02-01

    The New Mexico Solar Energy Institute has conducted a two-year investigation into the technical and economic feasibility of using the buffalo gourd plant as an energy feedstock in eastern New Mexico. The studies indicate that buffalo gourd is well suited for root production in eastern NM. Buffalo gourd has been shown to be an excellent feedstock for ethanol production provided necessary pre-fermentation processing (chopping of roots) is performed correctly. A model was created to determine the economic feasibility of growing buffalo gourd in eastern NM. It was determined that the net return to a farmer in eastern NM can be higher planting buffalo gourd than many traditionally grown crops because of buffalo gourd's low water and fertilizer requirements. A clearly defined RandD agenda and commercialization strategy is presented and discussed. Buffalo gourd has been demonstrated to have high potential as an alternative feedstock for ethanol production in eastern NM.

  8. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru

    PubMed Central

    Duncan, Neil A.; Pearsall, Deborah M.; Benfer, Robert A.

    2009-01-01

    In a study of residues from gourd and squash artifacts, we recovered starch grains from manioc (Manihot esculenta), potato (Solanum sp.), chili pepper (Capsicum spp.), arrowroot (Maranta arundinacea), and algarrobo (Prosopis sp.) from feasting contexts at the Buena Vista site, a central Peruvian preceramic site dating to ≈2200 calendar years B.C. This study has implications for the study of plant food use wherever gourds or squashes are preserved, documents the earliest evidence for the consumption of algarrobo and arrowroot in Peru, and provides insights into foods consumed at feasts. PMID:19633184

  9. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru.

    PubMed

    Duncan, Neil A; Pearsall, Deborah M; Benfer, Robert A

    2009-08-11

    In a study of residues from gourd and squash artifacts, we recovered starch grains from manioc (Manihot esculenta), potato (Solanum sp.), chili pepper (Capsicum spp.), arrowroot (Maranta arundinacea), and algarrobo (Prosopis sp.) from feasting contexts at the Buena Vista site, a central Peruvian preceramic site dating to approximately 2200 calendar years B.C. This study has implications for the study of plant food use wherever gourds or squashes are preserved, documents the earliest evidence for the consumption of algarrobo and arrowroot in Peru, and provides insights into foods consumed at feasts. PMID:19633184

  10. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells123

    PubMed Central

    Lipchock, Sarah V; Mennella, Julie A; Spielman, Andrew I; Reed, Danielle R

    2013-01-01

    Background: Alleles of the receptor gene TAS2R38 are responsible in part for the variation in bitter taste perception of 6-n-propylthiouracil (PROP) and structurally similar compounds (eg, glucosinolates in cruciferous vegetables). At low concentrations, people with the PAV (“taster” amino acid sequence) form of TAS2R38 perceive these bitter compounds, whereas most with the AVI (“nontaster” amino acid sequence) form do not; heterozygotes (PAV/AVI) show the widest range of bitter perception. Objectives: The objectives were to examine individual differences in expression of PAV-TAS2R38 messenger RNA (mRNA) among heterozygotes, to test the hypotheses that the abundance of allele-specific gene expression accounts for the variation in human bitter taste perception, and to relate to dietary intake of bitter-tasting beverages and foods. Design: Heterozygous individuals (n = 22) provided psychophysical evaluation of the bitterness of PROP, glucosinolate-containing broccoli juice, non–glucosinolate-containing carrot juice, and several bitter non-TAS2R38 ligands as well as dietary recalls. Fungiform taste papillae were examined for allele-specific TAS2R38 expression by using quantitative polymerase chain reaction. Results: PAV-TAS2R38 mRNA expression was measured in 18 of 22 heterozygous subjects. Relative expression varied widely and positively correlated with ratings of bitterness intensity of PROP (P = 0.007) and broccoli juice (P = 0.004) but not of the control solutions carrot juice (P = 0.26), NaCl (P = 0.68), caffeine (P = 0.24), or urea (P = 0.47). Expression amounts were related to self-reported recent and habitual caffeine intake (P = 0.060, P = 0.005); vegetable intake was too low to analyze. Conclusions: We provide evidence that PAV-TAS2R38 expression amount correlates with individual differences in bitter sensory perception and diet. The nature of this correlation calls for additional research on the molecular mechanisms associated with some individual

  11. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14.

    PubMed

    Levit, Anat; Nowak, Stefanie; Peters, Maximilian; Wiener, Ayana; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2014-03-01

    Bitter taste receptors (TAS2Rs) mediate aversive response to toxic food, which is often bitter. These G-protein-coupled receptors are also expressed in extraoral tissues, and emerge as novel targets for therapeutic indications such as asthma and infection. Our goal was to identify ligands of the broadly tuned TAS2R14 among clinical drugs. Molecular properties of known human bitter taste receptor TAS2R14 agonists were incorporated into pharmacophore- and shape-based models and used to computationally predict additional ligands. Predictions were tested by calcium imaging of TAS2R14-transfected HEK293 cells. In vitro testing of the virtual screening predictions resulted in 30-80% success rates, and 15 clinical drugs were found to activate the TAS2R14. hERG potassium channel, which is predominantly expressed in the heart, emerged as a common off-target of bitter drugs. Despite immense chemical diversity of known TAS2R14 ligands, novel ligands and previously unknown polypharmacology of drugs were unraveled by in vitro screening of computational predictions. This enables rational repurposing of traditional and standard drugs for bitter taste signaling modulation for therapeutic indications. PMID:24285091

  12. Magnetically Damped Furnace Bitter Magnet Coil 1

    NASA Technical Reports Server (NTRS)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  13. Volatile and sensory profiling of cocktail bitters.

    PubMed

    Johnson, Arielle J; Heymann, Hildegarde; Ebeler, Susan E

    2015-07-15

    Aromatic cocktail bitters are derived from the alcoholic extraction of a variety of plant materials and are used as additives in mixed drinks to enhance aroma and flavor. In this study sixteen commercial bitters were analyzed using volatile (GC-MS) and sensory profiling and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS). The samples differed significantly in their citrus, celery, and spice characteristics. 148 volatile compounds were tentatively identified and the composition varied significantly with the type of bitters sample evaluated. PLS analysis showed that the volatile data correlated well overall to the sensory data, explaining 60% of the overall variability in the dataset. Primary aldehydes and phenylpropanoids were most closely related to green and spice-related sensory descriptors. However, the sensory impact of terpenoid compounds was difficult to predict in many cases. This may be due to the wide range of aroma qualities associated with terpenes as well as to concentration, synergistic or masking effects. PMID:25722175

  14. Bitters: Time for a New Paradigm

    PubMed Central

    McMullen, Michael K.; Whitehouse, Julie M.; Towell, Anthony

    2015-01-01

    In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm. PMID:26074998

  15. Exopeptidases and their application to reduce bitterness in food: a review.

    PubMed

    Raksakulthai, Rocharake; Haard, Norman F

    2003-01-01

    When exopeptidases catalyze hydrolysis of peptide bonds, the product(s) may have a less bitter taste, and the free amino acids or small peptides formed may function in food as pleasant-tasting flavor compounds or as flavor precursors. There are several classes of exopeptidase based on specificity for hydrolysis of synthetic substrates. Exopeptidases in food-stuff may be of natural origin or may be extrinsic, that is, produced by microorganisms or parasites. Exopeptidases used to modify foods are also becoming increasingly available in the industrial enzyme market. Exopeptidases contribute to a variety of quality changes in postharvest fruit, meats, and food fermentations. Foodstuff impacted by these enzymes during processing include cocoa, beer, aged and cured meat products, koji, fish sauce, ripened cheeses, and protein hydrolysates. An important role of exopeptidases in food is the hydrolysis of hydrophobic, bitter peptides. The relationship between peptide structure and sensory transduction/receptor models is discussed. Research on the use of exopeptidases to reduce bitterness is reviewed. PMID:12940418

  16. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity

    PubMed Central

    Tan, Sing Pei; Stathopoulos, Costas; Parks, Sophie; Roach, Paul

    2014-01-01

    Bitter melon (Momordica charantia L.) is a tropical fruit claimed to have medicinal properties associated with its content of phenolic compounds (TPC). The aim of the study was to compare water with several organic solvents (acetone, butanol, methanol and 80% ethanol) for its efficiency at extracting the TPC from freeze-dried bitter melon powder. The TPC of the extracts was measured using the Folin-Ciocalteu reagent and their antioxidant capacity (AC) was evaluated using three assays. Before optimisation, the TPC and AC of the aqueous extract were 63% and 20% lower, respectively, than for the best organic solvent, 80% ethanol. However, after optimising for temperature (80 °C), time (5 min), water-to-powder ratio (40:1 mL/g), particle size (1 mm) and the number of extractions of the same sample (1×), the TPC and the AC of the aqueous extract were equal or higher than for 80% ethanol. Furthermore, less solvent (40 mL water/g) and less time (5 min) were needed than was used for the 80% ethanol extract (100 mL/g for 1 h). Therefore, this study provides evidence to recommend the use of water as the solvent of choice for the extraction of the phenolic compounds and their associated antioxidant activities from bitter melon. PMID:26785242

  17. Time-intensity profile of pitanga nectar (Eugenia uniflora L.) with different sweeteners: Sweetness and bitterness.

    PubMed

    Freitas, Mírian Luisa Faria; de Lima Dutra, Mariana Borges; Bolini, Helena Maria André

    2016-01-01

    Pitanga has been used by the Brazilian food industry mainly for juice production. This fruit shows good economic potential due to its high concentration of vitamins and minerals. The aim of the present work was to characterize the time-intensity profile of pitanga nectar sweetened with different sweeteners to verify differences on the perception of sweet and bitter tastes. The sweeteners used to replace sucrose were sucralose, aspartame, stevia 40% rebaudioside A, stevia 95% rebaudioside A, neotame, and 2:1 cyclamate/saccharin blend. Fifteen assessors were selected according to their discriminating capability and trained to participate in the time-intensity analysis for sweetness and bitterness. The samples prepared with sucralose and 2:1 cyclamate/saccharin blend presented a similar sweetness profile to the sample prepared with sucrose, and the samples prepared with sucralose and aspartame presented a similar bitterness profile to the sample prepared with sucrose. Thus, sucralose would be the most suitable sweetener to replace sucrose in pitanga nectar. PMID:25627677

  18. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity.

    PubMed

    Tan, Sing Pei; Stathopoulos, Costas; Parks, Sophie; Roach, Paul

    2014-01-01

    Bitter melon (Momordica charantia L.) is a tropical fruit claimed to have medicinal properties associated with its content of phenolic compounds (TPC). The aim of the study was to compare water with several organic solvents (acetone, butanol, methanol and 80% ethanol) for its efficiency at extracting the TPC from freeze-dried bitter melon powder. The TPC of the extracts was measured using the Folin-Ciocalteu reagent and their antioxidant capacity (AC) was evaluated using three assays. Before optimisation, the TPC and AC of the aqueous extract were 63% and 20% lower, respectively, than for the best organic solvent, 80% ethanol. However, after optimising for temperature (80 °C), time (5 min), water-to-powder ratio (40:1 mL/g), particle size (1 mm) and the number of extractions of the same sample (1×), the TPC and the AC of the aqueous extract were equal or higher than for 80% ethanol. Furthermore, less solvent (40 mL water/g) and less time (5 min) were needed than was used for the 80% ethanol extract (100 mL/g for 1 h). Therefore, this study provides evidence to recommend the use of water as the solvent of choice for the extraction of the phenolic compounds and their associated antioxidant activities from bitter melon. PMID:26785242

  19. Electronic Tongue on a way towards the universal bitterness scale

    NASA Astrophysics Data System (ADS)

    Legin, Andrey; Kirsanov, Dmitry; Rudnitskaya, Alisa; Seleznev, Boris; Legin, Evgeny; Papieva, Irina; Clapham, David; Saunders, Ken; Richardson, Marie

    2011-09-01

    The present work deals with the development and application of the artificial sensory system (Electronic Tongue) to quantification of the bitter taste of various chemically dissimilar substances and suggests a universal approach for artificial sensory evaluation of bitterness, irrespective of chemical nature of the substance eliciting bitter taste. This approach to artificial quantification of bitterness is practically feasible and may be particularly useful on the early stages of development of novel API in pharmaceutical research and for flavour control of various pharmaceutical compositions, healthcare products and food ingredients.

  20. Feasibility of enzymatic hydrolysis and alcoholic fermentation of starch contained in buffalo gourd (Cucurbita foetidissima) roots

    SciTech Connect

    Scheerens, J.C.; Kopplin, M.J.; Abbas, I.R.; Nelson, J.M.; Gathman, A.C.; Berry, J.W.

    1987-03-01

    The suitability of using annually grown, carrot-sized buffalo gourd (Cucurbita foetidissima) roots as a feedstock for alcoholic fermentation was explored. Roots grown in 1982 and 1983 were slurried, dextrinized and saccharified using Takatherm and Diazyme (commercial enzymes manufactured by Miles Laboratories), and fermented by the action of Saccharomyces cerevisiae. These processes were monitored in detail and results were compared with those displayed by controls formulated using potato tubers. The preparation of gourd root slurries with suitable viscosity characteristics for enzymatic digestion required the addition of water (at least 50% by weight) which reduced the proportion of fermentable sugars in the resulting saccharified suspensions. The resulting slurries were well-suited to enzymatic conversion of starch to sugar. Estimates of enzymatic efficiency in gourd root suspensions did not suggest the presence of naturally occurring amylase or glucosidase inhibitors in these plant materials. Saccharified gourd root mashes supported yeast growth well and produced ethanol yields at 82.2-86.5% of the theoretically maximum efficiency. 23 references.

  1. Development and field evaluation of multiple virus-resistant bottle gourd (Lagenaria siceraria)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to develop bottle gourd (Lagenaria siceraria) as a widely adapted rootstock for watermelon grafting, we were interested in selecting lines with broad resistance to several economically important cucurbit viruses in the United States. Preliminary analysis under greenhouse conditions ind...

  2. Confirming resistance in bottle gourd germplasm by quantifying powdery mildew conidia using a cellometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew (PM) caused by Podosphaera xanthii, an important foliar disease affecting cucurbit crops grown in the United States, commonly occurs on foliage, petioles, and stems. We have developed two highly resistant bottle gourd (Lagenaria siceraria) germplasm (USVL351 and USVL482) for use in o...

  3. Tolerance to Cucurbit Powdery Mildew in USDA Bottle Gourd (Lagenaria siceraria) Plant Introductions (PI)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew (Podosphaera xanthii) can cause severe damage to cucurbit crops grown in open fields and greenhouses. Bottle gourd plants (Lagenaria siceraria) are being used throughout the world as rootstocks for grafting watermelon. In recent years, there has been a growing interest in the USA in...

  4. Carbohydrate biofuels III: Consumptive-use and root yield of buffalo gourd

    SciTech Connect

    Smeal, D.; Gregory, E.J.; Tomko, J.

    1995-11-01

    Biofuel provided by the dried roots of the wild buffalo gourd, Cucurbita foetidissima, represents a potential, cleaner-burning alternative to other biofuels (i.e. wood and coal) currently used for cooking and heating on the Navajo Indian Reservation. However, no information is available regarding the plant`s water requirements for growth and viable root production on the Colorado Plateau in northwestern New Mexico where the Navajo Indian Irrigation Project is located. The primary purpose of this study was to evaluate the relationship between buffalo gourd root production and evapotranspiration under variable irrigation as provided by a line-source design. Total dry root yields ranged from 1.6 Mg ha{sup -1} (5.1 tons/acre), and increased linearly within an irrigation treatment range of 371 to 927 nm (14.6 to 36.5 in.), respectively. Peak average daily water-use of buffalo gourd providing maximum root yield was 8.6 mm (0.34 in.) and occurred in late July to early August. Results of this study indicate that buffalo gourd can be successfully grown in northwestern New Mexico when irrigated. Other observations during this study suggest that planting rates for optimum root production need to be established.

  5. Seasonal distributions of the western cherry fruit fly (Diptera: Tephritidae) among host and nonhost fruit trees.

    PubMed

    Yee, Wee L

    2014-01-01

    Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. PMID:25527581

  6. De Novo Assembly and Characterization of the Transcriptome, and Development of SSR Markers in Wax Gourd (Benicasa hispida)

    PubMed Central

    Jiang, Biao; Xie, Dasen; Liu, Wenrui; Peng, Qingwu; He, Xiaoming

    2013-01-01

    Background Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. Methodology/Principal Findings In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4%) showed significant similarity to known proteins in Nr database, and 24,969 (38.4%) had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats) were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8%) of them exhibited polymorphisms. Conclusion/Significance Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop. PMID:23951078

  7. The quantitative prediction of bitterness-suppressing effect of sweeteners on the bitterness of famotidine by sweetness-responsive sensor.

    PubMed

    Hashimoto, Yoshimi; Matsunaga, Chiharu; Tokuyama, Emi; Tsuji, Eriko; Uchida, Takahiro; Okada, Hiroaki

    2007-05-01

    The purpose of the present study was the quantitative prediction of the bitterness-suppressing effect of sweeteners (sucrose or sugar alcohols) on the bitterness of famotidine (or quinine sulfate as control) solutions using an artificial taste sensor. Firstly, we examined the response characteristics of the sensor response to sweetness. The sensor membrane is charged negatively in the presence of sweeteners, which tend to receive protons from one of the components of the sensor membrane. The magnitude of the sensor response was shown to increase in direct proportion to the concentration of the sweetener. Secondly, we used direct or indirect methods to evaluate and predict the bitterness-suppressing effect of sweeteners on 1 mg/ml famotidine and 81.4 microM quinine sulfate solutions. In direct method, a regression between the sensor output of the sweetness-responsive sensor and the bitterness intensity obtained in human gustatory tests of famotidine solutions containing sweeteners at various concentrations, was performed. As a result, we were able to predict directly the bitterness intensity of the mixed solution. Finally, we also evaluated the bitterness intensity of the dissolution media of commercially available, orally disintegrating tablets containing famotidine by the combined usage of bitterness- and sweetness-responsive sensor. We found that the sugar alcohols in the tablet seem to be effective in the bitterness-suppression of famotidine from these tablets, especially in the initial phase (within 30 s) of the disintegration process. PMID:17473460

  8. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    PubMed

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  9. Identification of Bitterness-Masking Compounds from Cheese

    PubMed Central

    2012-01-01

    Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049–0.0060% and 0.5 mM oleic acid to that of 0.0032–0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds. PMID:22502602

  10. Management of root-knot nematode (Meloidogyne incognita) in bottle gourd using different botanicals in pots.

    PubMed

    Singh, Tulika; Patel, B A

    2015-09-01

    A pot experiment was conducted to study the efficacy of different botanicals in varying doses for management of root-knot nematode, M. incognita in bottle gourd. The results exhibited that madar (Calotropis procera) and neem (Azadirachta indica) leaves application proved to be more effective in improving plant growth characters and reducing root-knot index and final nematode population. Among the doses tested, higher dose of 1.5 % (w/w) was more effective than lower ones. PMID:26345048

  11. Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals.

    PubMed

    Senyuk, Bohdan; Varney, Michael C M; Lopez, Javier A; Wang, Sijia; Wu, Ning; Smalyukh, Ivan I

    2014-08-28

    Particle shape and medium chirality are two key features recently used to control anisotropic colloidal self-assembly and dynamics in liquid crystals. Here, we study magnetically responsive gourd-shaped colloidal particles dispersed in cholesteric liquid crystals with periodicity comparable or smaller than the particle's dimensions. Using magnetic manipulation and optical tweezers, which allow one to position colloids near the confining walls, we measured the elastic repulsive interactions of these particles with confining surfaces and found that separation-dependent particle-wall interaction force is a non-monotonic function of separation and shows oscillatory behavior. We show that gourd-shaped particles in cholesterics reside not on a single sedimentation level, but on multiple long-lived metastable levels separated by a distance comparable to cholesteric periodicity. Finally, we demonstrate three-dimensional laser tweezers assisted assembly of gourd-shaped particles taking advantage of both orientational order and twist periodicity of cholesterics, potentially allowing new forms of orientationally and positionally ordered colloidal organization in these media. PMID:24994521

  12. Chlorotic curly stunt: a severe begomovirus disease of bottle gourd in northern India.

    PubMed

    Sohrab, S S; Mandal, B; Ali, A; Varma, A

    2010-06-01

    Bottle gourd (Lagenaria siceraria) an important vegetable crop in India was observed to be affected by a chlorotic curly stunt disease (CCSD) during 2003-2006 in the vegetable growing areas of Delhi and adjoining state of Haryana. The affected plants are severely stunted and bear very small chlorotic and mildly curled leaves. Incidence of the disease varied from 4.7 to 36%. The disease could be easily transmitted by whitefly, Bemisia tabaci but not by sap. The causal virus was found to be a Begomovirus on the basis of whitefly transmission and sequence identity of putative coat protein (CP) and replication initiator protein (Rep) genes. The virus was transmitted to Cucumis sativus, Luffa acutangula, L. cylndrica, Lycopersicon esculentum, Nicotiana tabacum and Praecitrullus fistulosus but not to Citrullus lunatus, Cucumis melo, Cucurbita moschata and Vigna unguiculata. The N-terminal 60 amino acids of CP of the virus had 100% sequence identity with all the isolates of Tomato leaf curl New Delhi virus (ToLCNDV) and two isolates of Squash leaf curl China virus (SLCCV). The full length amino acid sequence of the CP and Rep genes had 100% similarity with ToLCNDV-Svr and -Luffa isolates. The phylogenetic analysis showed that the virus associated with CCSD of bottle gourd belongs to ToLCNDV cluster of the begomoviruses. This is the first record of emergence of a Begomovirus associated severe disease in bottle gourd in India. PMID:23637479

  13. Round and large: morphological and genetic consequences of artificial selection on the gourd tree Crescentia cujete by the Maya of the Yucatan Peninsula, Mexico

    PubMed Central

    Aguirre-Dugua, Xitlali; Eguiarte, Luis E.; González-Rodríguez, Antonio; Casas, Alejandro

    2012-01-01

    Background and Aims Artificial selection, the main driving force of domestication, depends on human perception of intraspecific variation and operates through management practices that drive morphological and genetic divergences with respect to wild populations. This study analysed the recognition of varieties of Crescentia cujete by Maya people in relation to preferred plant characters and documents ongoing processes of artificial selection influencing differential chloroplast DNA haplotype distribution in sympatric wild and home-garden populations. Methods Fifty-three home gardens in seven villages (93 trees) and two putative wild populations (43 trees) were sampled. Through semi-structured interviews we documented the nomenclature of varieties, their distinctive characters, provenance, frequency and management. Phenotypic divergence of fruits was assessed with morphometric analyses. Genetic analyses were performed through five cpDNA microsatellites. Key Results The Maya recognize two generic (wild/domesticated) and two specific domesticated (white/green) varieties of Crescentia cujete. In home gardens, most trees (68 %) were from domesticated varieties while some wild individuals (32 %) were tolerated. Cultivation involves mainly vegetative propagation (76 %). Domesticated fruits were significantly rounder, larger and with thicker pericarp than wild fruits. Haplotype A was dominant in home gardens (76 %) but absent in wild populations. Haplotypes B–F were found common in the wild but at low frequency (24 %) in home gardens. Conclusions The gourd tree is managed through clonal and sexual propagules, fruit form and size being the main targets of artificial selection. Domesticated varieties belong to a lineage preserved by vegetative propagation but propagation by seeds and tolerance of spontaneous trees favour gene flow from wild populations. Five mutational steps between haplotypes A and D suggest that domesticated germplasm has been introduced to the region

  14. Biological control of Cucurbita pepo var texana (Texas gourd) in cotton (Gossypium hirsutum) with the fungus Fusarium solani f sp Cucurbitae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate various formulations and application methods of the fungus Fusarium solani f. sp. cucurbitae (FSC) for controlling Texas gourd (Cucurbita pepo var. texana) in cotton (Gosssypium hirsutum). In greenhouse tests, Texas gourd was controlled 93% and 96%, respective...

  15. Promiscuity and selectivity of bitter molecules and their receptors.

    PubMed

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. PMID:25934224

  16. Identification of bitter compounds in whole wheat bread crumb.

    PubMed

    Bin, Qing; Peterson, Devin G

    2016-07-15

    Consumer acceptability of whole wheat foods is challenged by negative bitter flavour attributes. In this study, bitter compounds in whole wheat bread crumb were investigated. Utilising sensory-guided multi-dimensional fractionation techniques, the compounds with the highest bitterness intensity in the crumb were purified and identified by LC-MS-ToF and NMR techniques. The main bitter compounds were reported to be L-tryptophan, Wessely-Moser isomers apigenin-6-C-galactoside-8-C-arabinoside & apigenin-6-C-arabinoside-8-C-galactoside, and 9,12,13-trihydroxy-trans-10-octadecenoic acid (pinellic acid). Sensory recombination experiments of the bitter compounds formulated at the concentrations determined in expectorated saliva after bread mastication indicated pinellic acid had the greatest contribution to the bitterness perception of the crumb. Quantitative analysis of pinellic acid in the raw flour was reported to be inherently low compared to bread; the concentration increased more than 30-fold after flour hydration and baking. PMID:26948582

  17. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors.

    PubMed

    Upadhyaya, Jasbir D; Chakraborty, Raja; Shaik, Feroz A; Jaggupilli, Appalaraju; Bhullar, Rajinder P; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  18. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae.

    PubMed

    Kim, Haein; Choi, Min Sung; Kang, KyeongJin; Kwon, Jae Young

    2016-01-01

    Insect larvae, which recognize food sources through chemosensory cues, are a major source of global agricultural loss. Gustation is an important factor that determines feeding behavior, and the gustatory receptors (Grs) act as molecular receptors that recognize diverse chemicals in gustatory receptor neurons (GRNs). The behavior of Drosophila larvae is relatively simpler than the adult fly, and a gustatory receptor-to-neuron map was established in a previous study of the major external larval head sensory organs. Here, we extensively study the bitter taste responses of larvae using 2-choice behavioral assays. First, we tested a panel of 23 candidate bitter compounds to compare the behavioral responses of larvae and adults. We define 9 bitter compounds which elicit aversive behavior in a dose-dependent manner. A functional map of the larval GRNs was constructed with the use of Gr-GAL4 lines that drive expression of UAS-tetanus toxin and UAS-VR1 in specific gustatory neurons to identify bitter tastants-GRN combinations by suppressing and activating discrete subsets of taste neurons, respectively. Our results suggest that many gustatory neurons act cooperatively in larval bitter sensing, and that these neurons have different degrees of responsiveness to different bitter compounds. PMID:26512069

  19. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Shaik, Feroz A.; Jaggupilli, Appalaraju; Bhullar, Rajinder P.; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  20. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  1. Fruit Calcium: Transport and Physiology.

    PubMed

    Hocking, Bradleigh; Tyerman, Stephen D; Burton, Rachel A; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  2. Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric Cancer Risk in Koreans

    PubMed Central

    Choi, Jeong-Hwa; Lee, Jeonghee; Choi, Il Ju; Kim, Young-Woo; Ryu, Keun Won; Kim, Jeongseon

    2016-01-01

    The human TAS2R38 gene encodes a bitter taste receptor that regulates the bitterness perception and differentiation of ingested nutritional/poisonous compounds in the oral cavity and gastrointestinal tract. TAS2R38 gene variants are associated with alterations in individual sensitivity to bitter taste and food intake; hence, these genetic variants may modify the risk for diet-related diseases, including cancer. However, little is known about the association between TAS2R38 polymorphisms and gastric cancer susceptibility. The present case-control study examined the influence of TAS2R38 polymorphisms on food intake and determined whether they predict gastric cancer risk in Koreans. A total of 1,580 subjects, including 449 gastric cancer cases, were genotyped for TAS2R38 A49P, V262A, I296V and diplotypes. Dietary data were analysed to determine the total consumption of energy, fibre, vegetables, fruits, sweets, fats, alcohol and cigarettes. TAS2R38 diplotype was not associated with food, alcohol or cigarette consumption, either independent or dependent of gastric cancer phenotype. However, the PAV/AVI diplotype significantly increased gastric cancer risk (adjusted odds ratio: 1.513; 95% confidence interval: 1.148–1.994) independent of dietary intake. Findings suggest that TAS2R38 may be associated with the risk for gastric cancer in Koreans, although the TAS2R38 diplotype did not influence dietary intake. PMID:27245112

  3. Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric Cancer Risk in Koreans.

    PubMed

    Choi, Jeong-Hwa; Lee, Jeonghee; Choi, Il Ju; Kim, Young-Woo; Ryu, Keun Won; Kim, Jeongseon

    2016-01-01

    The human TAS2R38 gene encodes a bitter taste receptor that regulates the bitterness perception and differentiation of ingested nutritional/poisonous compounds in the oral cavity and gastrointestinal tract. TAS2R38 gene variants are associated with alterations in individual sensitivity to bitter taste and food intake; hence, these genetic variants may modify the risk for diet-related diseases, including cancer. However, little is known about the association between TAS2R38 polymorphisms and gastric cancer susceptibility. The present case-control study examined the influence of TAS2R38 polymorphisms on food intake and determined whether they predict gastric cancer risk in Koreans. A total of 1,580 subjects, including 449 gastric cancer cases, were genotyped for TAS2R38 A49P, V262A, I296V and diplotypes. Dietary data were analysed to determine the total consumption of energy, fibre, vegetables, fruits, sweets, fats, alcohol and cigarettes. TAS2R38 diplotype was not associated with food, alcohol or cigarette consumption, either independent or dependent of gastric cancer phenotype. However, the PAV/AVI diplotype significantly increased gastric cancer risk (adjusted odds ratio: 1.513; 95% confidence interval: 1.148-1.994) independent of dietary intake. Findings suggest that TAS2R38 may be associated with the risk for gastric cancer in Koreans, although the TAS2R38 diplotype did not influence dietary intake. PMID:27245112

  4. Identification and validation of a new male sex-specific ISSR marker in pointed gourd (Trichosanthes dioica Roxb.).

    PubMed

    Adhikari, Sinchan; Saha, Soumen; Bandyopadhyay, Tapas Kumar; Ghosh, Parthadeb

    2014-01-01

    The aim of the present study was to develop a genetic sex marker for the pointed gourd (Trichosanthes dioica Roxb.) to allow gender determination at any stage in the life cycle. Screening of genomic DNA with intersimple sequence repeat (ISSR) primers was used to discover sex-specific touch-down polymerase chain reaction (Td-PCR) amplification products. Using pooled DNA from male and female genotypes and 42 ISSR primers, a putative male specific marker (~550 bp) was identified. DNA marker specific to male is an indication of existence of nonepigenetic factors involved in gender development in pointed gourd. The ISSR technique has proved to be a reliable technique in gender determination of pointed gourd genotypes at the seedling phenophase. The sex marker developed here could also be used as a starting material towards sequence characterization of sex linked genes for better understanding the developmental as well as evolutionary pathways in sexual dimorphism. PMID:25538949

  5. Identification and Validation of a New Male Sex-Specific ISSR Marker in Pointed Gourd (Trichosanthes dioica Roxb.)

    PubMed Central

    Adhikari, Sinchan; Saha, Soumen; Bandyopadhyay, Tapas Kumar

    2014-01-01

    The aim of the present study was to develop a genetic sex marker for the pointed gourd (Trichosanthes dioica Roxb.) to allow gender determination at any stage in the life cycle. Screening of genomic DNA with intersimple sequence repeat (ISSR) primers was used to discover sex-specific touch-down polymerase chain reaction (Td-PCR) amplification products. Using pooled DNA from male and female genotypes and 42 ISSR primers, a putative male specific marker (~550 bp) was identified. DNA marker specific to male is an indication of existence of nonepigenetic factors involved in gender development in pointed gourd. The ISSR technique has proved to be a reliable technique in gender determination of pointed gourd genotypes at the seedling phenophase. The sex marker developed here could also be used as a starting material towards sequence characterization of sex linked genes for better understanding the developmental as well as evolutionary pathways in sexual dimorphism. PMID:25538949

  6. Bitter Taste Receptor Polymorphisms and Human Aging

    PubMed Central

    Carrai, Maura; Crocco, Paolina; Montesanto, Alberto; Canzian, Federico; Rose, Giuseppina; Rizzato, Cosmeri

    2012-01-01

    Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics. PMID:23133589

  7. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd.

    PubMed

    Xu, Pei; Xu, Shizhong; Wu, Xiaohua; Tao, Ye; Wang, Baogen; Wang, Sha; Qin, Dehui; Lu, Zhongfu; Li, Guojing

    2014-02-01

    Restriction site-associated DNA sequencing (RAD-Seq), a next-generation sequencing-based genome 'complexity reduction' protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low-to-medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F₂ population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high-density genetic map. Low-depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD-Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub-gene pools were suggested for association with fruit shape. The two sub-gene pools were moderately differentiated, as reflected by the Hudson's F(ST) value of 0.14, and they represent regions on LG7 with strikingly elevated F(ST) values. Seven-fold reduction in heterozygosity and two times increase in LD (r²) were observed in the same region for the round-fruited sub-gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD-Seq to population genomic studies for non-model species even under low-to-medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research. PMID:24320550

  8. New crops for arid lands. [Bladderpod, gumweed, guayule, jojoba, and buffalo gourd

    SciTech Connect

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential or arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required. 20 references.

  9. Buffalo gourd: potential as a fuel resource on semi-arid lands

    SciTech Connect

    Young, P.G.; Morgan, R.P.; Shultz, E.B. Jr.

    1982-01-01

    Buffalo gourd, (Cucurbita foetidissima), is a wild, hot-dry-land plant native to the semi-arid regions of North America. Its triglyceride oil and fermentable starch make it a potential biomass energy source. These products, along with the seed meal and foliage, also offer the potential for cultivation in semi-arid regions of the developing world as a food and feed source. Alternatively, the plant may help to maintain economic vitality in regions such as the Texas High Plains, where declining water supplies threaten present irrigation practices. Technical feasibility, impacts, commercialization requirements, and research needs are discussed.

  10. Bitter taste of saccharin and acesulfame-K.

    PubMed

    Horne, John; Lawless, Harry T; Speirs, Ward; Sposato, Domenic

    2002-01-01

    The relationships among suprathreshold taste responses to acesulfame-K, Na-saccharin and 6-n-propylthiouracil (PROP) were examined in two studies. In the first study, the labeled magnitude scale was used with the high anchor labeled as 'strongest imaginable oral sensation' and in the second study, it was labeled as 'strongest imaginable sensation of any kind'. Results from the two procedures were similar. Individual differences among 65 subjects were seen in bitter responses to acesulfame-K and saccharin. Bitter responses to acesulfame-K ands accharin were positively correlated, but showed no significant relationship with responses to PROP bitterness or with PROP taster groups. Saccharin and acesulfame-K may share a common mechanism for bitter taste reception and transduction, one that varies across individuals and is different from mechanisms mediating bitter responses to PROP. Changing the instructions of the labeled magnitude scale induced a context effect. Ratings of sweetness referenced to the 'strongest imaginable sensationof any kind' were lower than ratings referenced to just oral sensations. PMID:11751465

  11. The distinctiveness of ionic and nonionic bitter stimuli.

    PubMed

    Frank, Marion E; Bouverat, Brian P; MacKinnon, Bruce I; Hettinger, Thomas P

    2004-01-01

    The diverse chemical structures of stimuli that are bitter to humans suggest a need for multiple bitter receptors. Reactions of golden hamsters (Mesocricetus auratus) to 1 mM quinine hydrochloride, 3 mM denatonium benzoate, 180 mM magnesium sulfate, 30-100 mM caffeine, and 1-1.5 mM sucrose octaacetate (SOA) were studied to address whether there are multiple sensations elicited by bitter stimuli. Methods included behavioral generalization of LiCl-induced conditioned taste aversions (CTAs), intake preference tests, and electrophysiological recordings from the chorda tympani (CT) nerve. The five compounds, all bitter to humans, were all innately aversive to hamsters. CTA for the ionic quinine.HCl, denatonium benzoate, and MgSO(4) mutually cross-generalized and these ionic compounds were effective CT stimuli. Yet, the hamsters were much less sensitive to denatonium than humans, requiring a 100,000 times higher concentration for detection. CTA for nonionic caffeine and SOA did not cross-generalize to quinine or the other two ionic stimuli and these nonionic compounds were not effective CT stimuli. SOA and caffeine may elicit aversive reflexes or systemic reactions rather than taste sensations in the animals. Thus, the three ionic and two nonionic compounds form separate aversive stimulus classes in hamsters, neither of which appears to be a close homologue of the human bitter taste. PMID:14741226

  12. Structural requirements of bitter taste receptor activation

    PubMed Central

    Brockhoff, Anne; Behrens, Maik; Niv, Masha Y.; Meyerhof, Wolfgang

    2010-01-01

    An important question in taste research is how 25 receptors of the human TAS2R family detect thousands of structurally diverse compounds. An answer to this question may arise from the observation that TAS2Rs in general are broadly tuned to interact with numerous substances. Ultimately, interaction with chemically diverse agonists requires architectures of binding pockets tailored to combine flexibility with selectivity. The present study determines the structure of hTAS2R binding pockets. We focused on a subfamily of closely related hTAS2Rs exhibiting pronounced amino acid sequence identities but unique agonist activation spectra. The generation of chimeric and mutant receptors followed by calcium imaging analyses identified receptor regions and amino acid residues critical for activation of hTAS2R46, -R43, and -R31. We found that the carboxyl-terminal regions of the investigated receptors are crucial for agonist selectivity. Intriguingly, exchanging two residues located in transmembrane domain seven between hTAS2R46, activated by strychnine, and hTAS2R31, activated by aristolochic acid, was sufficient to invert agonist selectivity. Further mutagenesis revealed additional positions involved in agonist interaction. The transfer of functionally relevant amino acids identified in hTAS2R46 to the corresponding positions of hTAS2R43 and -R31 resulted in pharmacological properties indistinguishable from the parental hTAS2R46. In silico modeling of hTAS2R46 allowed us to visualize the putative mode of interaction between agonists and hTAS2Rs. Detailed structure-function analyses of hTAS2Rs may ultimately pave the way for the development of specific antagonists urgently needed for more sophisticated analyses of human bitter taste perception. PMID:20534469

  13. Probenecid Inhibits the Human Bitter Taste Receptor TAS2R16 and Suppresses Bitter Perception of Salicin

    PubMed Central

    Greene, Tiffani A.; Alarcon, Suzanne; Thomas, Anu; Berdougo, Eli; Doranz, Benjamin J.; Breslin, Paul A. S.; Rucker, Joseph B.

    2011-01-01

    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of

  14. A preliminary report on the genetic variation in pointed gourd (Trichosanthes dioica Roxb.) as assessed by random amplified polymorphic DNA.

    PubMed

    Adhikari, S; Biswas, A; Bandyopadhyay, T K; Ghosh, P D

    2014-06-01

    Pointed gourd (Trichosanthes dioica Roxb.) is an economically important cucurbit and is extensively propagated through vegetative means, viz vine and root cuttings. As the accessions are poorly characterized it is important at the beginning of a breeding programme to discriminate among available genotypes to establish the level of genetic diversity. The genetic diversity of 10 pointed gourd races, referred to as accessions was evaluated. DNA profiling was generated using 10 sequence independent RAPD markers. A total of 58 scorable loci were observed out of which 18 (31.03%) loci were considered polymorphic. Genetic diversity parameters [average and effective number of alleles, Shannon's index, percent polymorphism, Nei's gene diversity, polymorphic information content (PIC)] for RAPD along with UPGMA clustering based on Jaccard's coefficient were estimated. The UPGMA dendogram constructed based on RAPD analysis in 10 pointed gourd accessions were found to be grouped in a single cluster and may represent members of one heterotic group. RAPD analysis showed promise as an effective tool in estimating genetic polymorphism in different accessions of pointed gourd. PMID:24873909

  15. Response of U.S. Bottle Gourd (Lagenaria siceraria) Plant Introductions (PI) to Crown Rot caused by Phytophthora Capsici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici can cause severe damage to cucurbit crops grown in open fields in the southeast regions of US. In recent years, there has been a growing interest in the US in grafting watermelon plants onto various cucurbit rootstocks including bottle gourds for managing soil borne diseases. ...

  16. Complete nucleotide sequence and genome organization of an endornavirus from bottle gourd (Lagenaria siceraria) in California, U.S.A.

    PubMed

    Kwon, Sun-Jung; Tan, Shih-Hua; Vidalakis, Georgios

    2014-08-01

    The full-length nucleotide sequence and genome organization of an Endornavirus isolated from ornamental hard shell bottle gourd plants (Lagenaria siceraria (Molina) Standl.) in California (CA), USA tentatively named L. siceraria endornavirus-California (LsEV-CA) was determined. The LsEV-CA genome was 15088 bp in length, with a G + C content of 36.55 %. The lengths of the 5' and 3' untranslated regions were 111 and 52 bp, respectively. The genome of LsEV-CA contained one large ORF encoding a 576 kDa polyprotein. The predicted protein contains two glycosyltransferase motifs, as well as RNA-dependent RNA polymerase and helicase domains. LsEV-CA was detected in healthy-looking field-grown gourd plants, as well as plants expressing yellows symptoms. It was also detected in non-symptomatic greenhouse-grown gourd seedlings grown from seed obtained from the same field sites. These preliminary data indicate that LsEV-CA is likely not associated with the gourd-yellows syndrome observed in the field. PMID:24818693

  17. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characte...

  18. Molecular characterization of a distinct bipartite Begomovirus species infecting ivy gourd (Coccinia grandis L.) in Tamil Nadu, India.

    PubMed

    Nagendran, K; Satya, V K; Mohankumar, S; Karthikeyan, G

    2016-02-01

    A distinct bipartite begomovirus was found to be associated with the mosaic disease on ivy gourd (Coccinia grandis L.) in Tamil Nadu, India. The complete DNA A and DNA B components were cloned by rolling circle amplification. Genome organization of this virus is found to be typical of Old World bipartite begomovirus. The association of betasatellite component with this virus is absent. The closest nucleotide identity of 73.4 % was seen with the Loofa yellow mosaic virus (LYMV-[VN]-AF509739) suggesting that it is a new virus species Coccinia mosaic virus (CoMoV-Ivy gourd [TN TDV Coc1]) and distantly related to the other known begomoviruses. The DNA B component shared a maximum identity of 55 % with that of Tomato leaf curl New Delhi virus (ToLCNDV). In the phylogenetic analysis, CoMoV-Ivy gourd form cluster separate from other begomoviruses. Recombination analysis showed that there was no recombination event in the genome. This is the distinct begomovirus infecting ivy gourd. PMID:26739457

  19. Potential Sources of Resistance to Cucurbit Powdery Mildew in US Plant Introductions (PI) of Lagenaria Siceraria (bottle gourd)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew (Podosphaera xanthii) can cause severe damage to cucurbit crops grown in open fields and greenhouses. In recent years, there has been a growing interest in the USA in grafting watermelon plants onto various cucurbit rootstocks. Bottle gourd plants (Lagenaria siceraria) are being use...

  20. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.

    PubMed

    Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution. PMID:23128640

  1. Combined effect of blanching and sonication on quality parameters of bottle gourd (Lagenaria siceraria) juice.

    PubMed

    Bhat, Suheela; Sharma, Harish Kumar

    2016-11-01

    This study evaluated the combined effect of blanching and sonication treatment on selected quality parameters of bottle gourd juice (BGJ). Bottle gourd cubes were blanched and juice was extracted. Effect of frequency (20-50kHz), amplitude (50-90%) and time (10-30min) was also studied on quality parameters like titratable acidity (TA), pH, total soluble solids (TSS), physical stability (PS), ascorbic acid (AA), total phenolics (TP), total carotenoids (TC), browning index (BI), total plate count (TPC) and yeast & mold count (Y&M) of BGJ to derive the level of these parameters. Combined effect of blanching followed by sonication (BFS) showed significant (P⩽0.05) change in all quality parameters except TA. Highest percentage of TSS (5.9°B), PS (2%), AA (18.99mg/100g), TP (1010mg/100g) and TC (5.8mg/100g) was observed at 70% amplitude, 50kHz frequency and 20min. Results suggested 70% amplitude, 50kHz frequency and 20min as best treatment conditions for processing of BGJ. Microstructure examination, transmission electron microscopy (TEM) and laser diffraction analysis of BGJ showed significant change in particle size and distribution. Moreover, TEM of blanched and sonicated samples of BGJ also showed significant (P⩽0.05) change in microbial profile. PMID:27245969

  2. Sequence analysis of a bitter taste receptor gene repertoires in different ruminant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste r...

  3. Pattern of the Cyanide-Potential in Developing Fruits 1

    PubMed Central

    Frehner, Marco; Scalet, Mario; Conn, Eric E.

    1990-01-01

    The absolute cyanide content of developing fruits was determined in Costa Rican wild lima beans (Phaseolus lunatus), oil flax (Linum usitatissimum), and bitter almonds (Prunus amygdalus). The cyanide potential (HCN-p) of the lima bean and the almond fruit began to increase shortly after anthesis and then stopped before fruit maturity. In contrast, the flax inflorescence had a higher HCN-p in absolute terms than the mature flax fruit. At all times of its development the bean fruit contained the monoglucosides linamarin and lotaustralin. The almond and the flax fruits contained, at anthesis, the monoglucosides prunasin, and linamarin and lotaustralin, respectively, while, at maturity, only the corresponding diglucosides amygdalin, and linustatin and neolinustatin, respectively, were present. PMID:16667698

  4. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2014-01-01

    Background Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Methods Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Results Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. Conclusions This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes. PMID:24884680

  5. Chilling and Host Plant/Site-Associated Eclosion Times of Western Cherry Fruit Fly (Diptera: Tephritidae) and a Host-Specific Parasitoid.

    PubMed

    Yee, Wee L; Goughnour, Robert B; Hood, Glen R; Forbes, Andrew A; Feder, Jeffrey L

    2015-08-01

    The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is an endemic herbivore of bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ∼100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of adult R. indifferens from sweet and bitter cherry differ according to the phenology of their respective host plants and if eclosion times of the host-specific parasitoid Diachasma muliebre (Muesebeck) (Hymenoptera: Braconidae) attacking bitter and sweet cherry flies differ according to the eclosion phenology of their fly hosts. Fly pupae from sweet and bitter cherry fruit were collected from sympatric and allopatric sites in Washington state, and chilled at 5°C. Because timing of eclosion in R. indifferens depends on chill duration, eclosion time in wasps could also vary with chill duration. To account for this, fly pupae were chilled for 1, 2, 2.5, 3, 4, 6, or 8 mo. Both flies and wasps eclosed earlier with longer chill durations. Eclosion times of sweet and bitter cherry flies from a sympatric site in central Washington did not differ. However, at allopatric sites in northwestern and central Washington, bitter cherry flies eclosed later than sweet and bitter cherry flies at the sympatric site. Correspondingly, D. muliebre parasitizing a more isolated bitter cherry fly population eclosed later than D. muliebre parasitizing earlier-emerging sweet and bitter cherry fly populations. These results provide evidence for D. muliebre rapidly responding to changes in host plant shifts by R. indifferens. PMID:26314048

  6. Bitter taste receptors for saccharin and acesulfame K.

    PubMed

    Kuhn, Christina; Bufe, Bernd; Winnig, Marcel; Hofmann, Thomas; Frank, Oliver; Behrens, Maik; Lewtschenko, Tatjana; Slack, Jay P; Ward, Cynthia D; Meyerhof, Wolfgang

    2004-11-10

    Weight-conscious subjects and diabetics use the sulfonyl amide sweeteners saccharin and acesulfame K to reduce their calorie and sugar intake. However, the intrinsic bitter aftertaste, which is caused by unknown mechanisms, limits the use of these sweeteners. Here, we show by functional expression experiments in human embryonic kidney cells that saccharin and acesulfame K activate two members of the human TAS2R family (hTAS2R43 and hTAS2R44) at concentrations known to stimulate bitter taste. These receptors are expressed in tongue taste papillae. Moreover, the sweet inhibitor lactisole did not block the responses of cells transfected with TAS2R43 and TAS2R44, whereas it did block the response of cells expressing the sweet taste receptor heteromer hTAS1R2-hTAS1R3. The two receptors were also activated by nanomolar concentrations of aristolochic acid, a purely bitter-tasting compound. Thus, hTAS2R43 and hTAS2R44 function as cognate bitter taste receptors and do not contribute to the sweet taste of saccharin and acesulfame K. Consistent with the in vitro data, cross-adaptation studies in human subjects also support the existence of common receptors for both sulfonyl amide sweeteners. PMID:15537898

  7. [Preliminary analysis of bitter substances in spica of Prunella vulgaris].

    PubMed

    Zhai, Xin; Xi, Meng-Qian; Guo, Qiao-Sheng; Han, Huan-Huan; Zhang, Xiang; Yang, Wei; Zheng, Rong-bo; Huang, Xiao-Dan; Zhu, Huan-Rong

    2014-02-01

    Volatile oil components and the contents and types of amino acid in spica of Prunella vulgaris were analysed by GC-MS and amino acid analyzer. Esters, fatty acids, aromatic hydrocarbon, ketone and several alcohol compounds were identified by mass spectrum comparison. In these ingredients, beta-ionone smelled aroma of cedar, raspberry, nerolidol showed weak sweet soft orange blossom flavor, neroli tasted sweet and fresh, nerolidol tasted sweet with light aroma of wood, hexadecanal showed a weak aroma of flowers and wax, alpha-sinensal had rich and fresh sweet orange flavor. To some extent, these types of aromatic substances can affect the taste of herbal tea or decoction made of Spica Prunellae. Among amino acids detected, natural amino acids accounted for a larger proportion, and those natural amino acids showed bitterness, slight bitterness, sourness (freshness), sweetness, slight sweetness, sourness (slight freshness). The results indicated that bitter and slightly bitter amino acids have the greatest impacts on the sense of Spica Prunellae. PMID:24946541

  8. Chilling and host plant/site associated eclosion times of Western cherry fruit fly (Diptera:Tephritidae) and a host-specific parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is native to bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ~100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of ad...

  9. Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates.

    PubMed

    Lanier, Sarah A; Hayes, John E; Duffy, Valerie B

    2005-01-17

    Alcoholic beverages are complex stimuli, giving rise to sensations that promote or inhibit intake. Previous research has shown associations between 6-n-propylthiouracil (PROP) bitterness, one marker of genetic variation in taste, and alcohol behaviors. We tested the PROP bitterness and alcohol intake relationship as mediated by tastes of sampled alcoholic beverages. Forty-nine undergraduates (mean age=22 years) participated. According to the Alcohol Use Disorders Identification Test (AUDIT), only 3 of 49 subjects reported patterns indicating problematic drinking. Participants used the general Labeled Magnitude Scale to rate PROP bitterness and tastes from and preference for Pilsner beer, blended scotch whiskey, instant espresso and unsweetened grapefruit juice. Alcohol intake was reported over a typical week. Regression analysis tested the hypothesis that PROP bitterness influenced alcohol bitterness and sweetness, which in turn predicted alcohol intake. Those who tasted less PROP bitterness tasted all beverages as less bitter and more preferred. Sweetness of scotch was significantly greater in those who tasted PROP as least bitter. For scotch, greater sweetness and less bitterness from sampled scotch were direct predictors of greater alcohol intake. For beer, preference ratings were better predictors of alcohol intake than the bitter or sweet tastes of the sampled beer. These findings support that PROP bitterness predicts both positive and negative tastes from alcoholic beverages and that those tastes may predict alcohol intake. The college environment may attenuate direct effects of PROP bitterness and intake. Here, PROP bitterness does not predict alcohol intake directly, but acts instead through sweet and bitter tastes of alcoholic beverages. PMID:15639168

  10. [Three cases of spontaneous pneumothorax by ruptured paravertebral gourd-shaped bullae].

    PubMed

    Takata, Masahiko; Miyamoto, Yoshifumi

    2014-04-01

    We reported 3 elderly patients with right pneumothorax caused by ruptured paravertebral gourdshaped bullae. Two patients showed the characteristic symptom of air leakage of this type of pneumothorax, which decreased in the supine position, but increased in the sitting position. Chest computed tomography imaging showed bullae spreading in the space of the azygoesophageal recess. All patients underwent video-assisted thoracic surgery (VATS), and 2 patients underwent mini-thoracotomy because of adhesion and pyothorax. Ruptured bullae with stalks were found at the mediastinal sides of their right lower lobes in all patients. Bullectomy using an endoscopic stapler or ligation at the bulla root was performed easily and safely. The right pneumothorax caused by ruptured paravertebral gourd-shaped bulla was considered to be a good indication for the VATS due to the unique shape of the bulla, which has a stalk at its root. PMID:24917167

  11. Genetic and Environmental Determinants of Bitter Perception and Sweet Preferences

    PubMed Central

    Mennella, Julie A.; Pepino, M. Yanina; Reed, Danielle R.

    2006-01-01

    Objective Flavor is the primary dimension by which young children determine food acceptance. However, children are not merely miniature adults because sensory systems mature postnatally and their responses to certain tastes differ markedly from adults. Among these differences are heightened preferences for sweet-tasting and greater rejection of bitter-tasting foods. The present study tests the hypothesis that genetic variations in the newly discovered TAS2R38 taste gene as well as cultural differences are associated with differences in sensitivity to the bitter taste of propylthiouracil (PROP) and preferences for sucrose and sweet-tasting foods and beverages in children and adults. Design Genomic DNA was extracted from cheek cells of a racially and ethnically diverse sample of 143 children and their mothers. Alleles of the gene TAS2R38 were genotyped. Participants were grouped by the first variant site, denoted A49P, because the allele predicts a change from the amino acid alanine (A) to proline (P) at position 49. Henceforth, individuals who were homozygous for the bitter-insensitive allele are referred to as AA, those who were heterozygous for the bitter-insensitive allele are referred to as AP, and those who were homozygous for the bitter-sensitive allele are referred to as PP. Using identical procedures for children and mothers, PROP sensitivity and sucrose preferences were assessed by using forced-choice procedures that were embedded in the context of games that minimized the impact of language development and were sensitive to the cognitive limitations of pediatric populations. Participants were also asked about their preferences in cereals and beverages, and mothers completed a standardized questionnaire that measured various dimensions of their children’s temperament. Results Genetic variation of the A49P allele influenced bitter perception in children and adults. However, the phenotype-genotype relationship was modified by age such that 64% of

  12. Influence of Total Anthocyanins from Bitter Melon (Momordica charantia Linn.) as Antidiabetic and Radical Scavenging Agents

    PubMed Central

    Güdr, Aytaç

    2016-01-01

    The majority of the antioxidant and antidiabetic activities of fruits are anthocyanins; a group of polyphenolics that are responsible for the color of many fruits, vegetables and flowers. The harvesting time, storage conditions, maturity, extraction steps etc. are very important for the biological activities based on the alteration of chemical composition. The free radical scavenging and antidiabetic activities of total anthocyanins from bitter melon (Momordica charantia Linn) fruit (TAMC) were evaluated by considering four harvesting times. The free radical scavenging activities of the TAMC samples were assessed using DPPH•, DMPD•+ and ABTS•+ assays against BHA, rutin and trolox standards. September as a harvesting period (TAMC-S) had effective DPPH• (SC50 2.55 ± 0.08 μg/mL), DMPD•+ (SC50 2.68 ± 0.09 μg/mL) and ABTS•+ (SC50 8.19 ± 0.09 μg/mL) scavenging activities compared with other samples and standards. In addition, August (TAMC-A) as a harvesting period showed very influential inhibitory activity against α-amylase (IC50 56.86 ± 1.12 μg/mL) and moderate inhibitory activity against α-glucosidase (IC50 88.19 ± 0.74 μg/mL). In comparison, pharmaceutical active ingredients such as acarbose exhibited anti-amylase and anti-glucosidase activities with IC50 values of 93.07 ± 1.49 μg/mL and 77.25 ± 1.20 μg/mL respectively. These results suggest that the correct selection of harvest period can significantly increase anthocyanin quantity because of the pharmaceutic properties of TAMC. Consequently, TAMC may be interesting for incorporation in pharmaceutical preparations for human health, since it can suppress hyperglycaemia that can be also used as food additives due to its antiradical activity. PMID:27610171

  13. Influence of Total Anthocyanins from Bitter Melon (Momordica charantia Linn.) as Antidiabetic and Radical Scavenging Agents.

    PubMed

    Güdr, Aytaç

    2016-01-01

    The majority of the antioxidant and antidiabetic activities of fruits are anthocyanins; a group of polyphenolics that are responsible for the color of many fruits, vegetables and flowers. The harvesting time, storage conditions, maturity, extraction steps etc. are very important for the biological activities based on the alteration of chemical composition. The free radical scavenging and antidiabetic activities of total anthocyanins from bitter melon (Momordica charantia Linn) fruit (TAMC) were evaluated by considering four harvesting times. The free radical scavenging activities of the TAMC samples were assessed using DPPH(•), DMPD(•+) and ABTS(•+) assays against BHA, rutin and trolox standards. September as a harvesting period (TAMC-S) had effective DPPH(•) (SC50 2.55 ± 0.08 μg/mL), DMPD(•+) (SC50 2.68 ± 0.09 μg/mL) and ABTS(•+) (SC50 8.19 ± 0.09 μg/mL) scavenging activities compared with other samples and standards. In addition, August (TAMC-A) as a harvesting period showed very influential inhibitory activity against α-amylase (IC50 56.86 ± 1.12 μg/mL) and moderate inhibitory activity against α-glucosidase (IC50 88.19 ± 0.74 μg/mL). In comparison, pharmaceutical active ingredients such as acarbose exhibited anti-amylase and anti-glucosidase activities with IC50 values of 93.07 ± 1.49 μg/mL and 77.25 ± 1.20 μg/mL respectively. These results suggest that the correct selection of harvest period can significantly increase anthocyanin quantity because of the pharmaceutic properties of TAMC. Consequently, TAMC may be interesting for incorporation in pharmaceutical preparations for human health, since it can suppress hyperglycaemia that can be also used as food additives due to its antiradical activity. PMID:27610171

  14. Effect of liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: chemical and physical analyses.

    PubMed

    Baldwin, Elizabeth; Plotto, Anne; Manthey, John; McCollum, Greg; Bai, Jinhe; Irey, Mike; Cameron, Randall; Luzio, Gary

    2010-01-27

    More than 90% of oranges in Florida are processed, and since Huanglongbing (HLB) disease has been rumored to affect fruit flavor, chemical and physical analyses were conducted on fruit and juice from healthy (Las -) and diseased (Las +) trees on three juice processing varieties over two seasons, and in some cases several harvests. Fruit, both asymptomatic and symptomatic for the disease, were used, and fresh squeezed and processed/pasteurized juices were evaluated. Fruit and juice characteristics measured included color, size, solids, acids, sugars, aroma volatiles, ascorbic acid, secondary metabolites, pectin, pectin-demethylating enzymes, and juice cloud. Results showed that asymptomatic fruit from symptomatic trees were similar to healthy fruit for many of the quality factors measured, but that juice from asymptomatic and especially symptomatic fruits were often higher in the bitter compounds limonin and nomilin. However, values were generally below reported taste threshold levels, and only symptomatic fruit seemed likely to cause flavor problems. There was variation due to harvest date, which was often greater than that due to disease. It is likely that the detrimental flavor attributes of symptomatic fruit (which often drop off the tree) will be largely diluted in commercial juice blends that include juice from fruit of several varieties, locations, and seasons. PMID:20030384

  15. Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    PubMed Central

    Hayes, John E.; Wallace, Margaret R.; Knopik, Valerie S.; Herbstman, Deborah M.; Bartoshuk, Linda M.

    2011-01-01

    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands. PMID:21163912

  16. Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype

    PubMed Central

    2013-01-01

    Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306

  17. Fruit Flavor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a botanical sense, fruits are the developed part of the seed-containing ovary. Evolutionarily speaking, plants have developed fruit with the goal of attracting insects, birds, reptiles and mammals to spread the seeds. Fruit can be dry such as the pod of a pea, or fleshy such as a peach. As humans...

  18. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31

    PubMed Central

    Allen, Alissa L.; McGeary, John E.; Hayes, John E.

    2013-01-01

    In order to reduce calories in foods and beverages, the food industry routinely uses non-nutritive sweeteners. Unfortunately, many are synthetically derived, and many consumers have a strong preference for natural sweeteners, irrespective of the safety data on synthetic non-nutritive sweeteners. Additionally, many non-nutritive sweeteners elicit aversive side tastes such as bitter and metallic in addition to sweetness. Bitterness thresholds of acesulfame-K (AceK) and saccharin are known to vary across bitter taste receptors polymorphisms in TAS2R31. RebA has shown to activate hTAS2R4 and hTAS2R14 in vitro. Here we examined bitterness and sweetness perception of natural and synthetic non-nutritive sweeteners. In a follow-up to a previous gene-association study, participants (n=122) who had been genotyped previously rated sweet, bitter and metallic sensations from rebaudioside A (RebA), rebaudioside D (RebD), aspartame, sucrose and gentiobiose in duplicate in a single session. For comparison, we also present sweet and bitter ratings of AceK collected in the original experiment for the same participants. At similar sweetness levels, aspartame elicited less bitterness than RebD, which was significantly less bitter than RebA. The bitterness of RebA and RebD showed wide variability across individuals, and bitterness ratings for these compounds were correlated. However, RebA and RebD bitterness did not covary with AceK bitterness. Likewise, single nucleotide polymorphisms (SNPs) shown previously to explain variation in the suprathreshold bitterness of AceK (rs3741845 in TAS2R9 and rs10772423 in TAS2R31) did not explain variation in RebA and RebD bitterness. Because RebA activates hT2R4 and hT2R14, a SNP in TAS2R4 previously associated with variation in bitterness perception was included here; there are no known functional SNPs for TAS2R14. In present data, a putatively functional SNP (rs2234001) in TAS2R4 did not explain variation in RebA or RebD bitterness. Collectively

  19. Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31.

    PubMed

    Allen, Alissa L; McGeary, John E; Hayes, John E

    2013-09-01

    In order to reduce calories in foods and beverages, the food industry routinely uses non-nutritive sweeteners. Unfortunately, many are synthetically derived, and many consumers have a strong preference for natural sweeteners, irrespective of the safety data on synthetic non-nutritive sweeteners. Additionally, many non-nutritive sweeteners elicit aversive side tastes such as bitter and metallic in addition to sweetness. Bitterness thresholds of acesulfame-K (AceK) and saccharin are known to vary across bitter taste receptors polymorphisms in TAS2R31. RebA has shown to activate hTAS2R4 and hTAS2R14 in vitro. Here we examined bitterness and sweetness perception of natural and synthetic non-nutritive sweeteners. In a follow-up to a previous gene-association study, participants (n=122) who had been genotyped previously rated sweet, bitter and metallic sensations from rebaudioside A (RebA), rebaudioside D (RebD), aspartame, sucrose and gentiobiose in duplicate in a single session. For comparison, we also present sweet and bitter ratings of AceK collected in the original experiment for the same participants. At similar sweetness levels, aspartame elicited less bitterness than RebD, which was significantly less bitter than RebA. The bitterness of RebA and RebD showed wide variability across individuals, and bitterness ratings for these compounds were correlated. However, RebA and RebD bitterness did not covary with AceK bitterness. Likewise, single nucleotide polymorphisms (SNPs) shown previously to explain variation in the suprathreshold bitterness of AceK (rs3741845 in TAS2R9 and rs10772423 in TAS2R31) did not explain variation in RebA and RebD bitterness. Because RebA activates hT2R4 and hT2R14, a SNP in TAS2R4 previously associated with variation in bitterness perception was included here; there are no known functional SNPs for TAS2R14. In present data, a putatively functional SNP (rs2234001) in TAS2R4 did not explain variation in RebA or RebD bitterness. Collectively

  20. Long-Chain Fatty Acids Elicit a Bitterness-Masking Effect on Quinine and Other Nitrogenous Bitter Substances by Formation of Insoluble Binary Complexes.

    PubMed

    Ogi, Kayako; Yamashita, Haruyuki; Terada, Tohru; Homma, Ryousuke; Shimizu-Ibuka, Akiko; Yoshimura, Etsuro; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2015-09-30

    We have previously found that fatty acids can mask the bitterness of certain nitrogenous substances through direct molecular interactions. Using isothermal titration calorimetry, we investigated the interactions between sodium oleate and 22 bitter substances. The hydrochloride salts of quinine, promethazine, and propranolol interacted strongly with fatty acids containing 12 or more carbon atoms. The (1)H NMR spectra of these substances, obtained in the presence of the sodium salts of the fatty acids in dimethyl sulfoxide, revealed the formation of hydrogen bonds between the nitrogen atoms of the bitter substances and the carboxyl groups of the fatty acids. When sodium laurate and the hydrochloride salt of quinine were mixed in water, an equimolar complex formed as insoluble heterogeneous needlelike crystals. These results suggested that fatty acids interact directly with bitter substances through hydrogen bonds and hydrophobic interactions to form insoluble binary complexes that mask bitterness. PMID:26365517

  1. Physical approaches to masking bitter taste: lessons from food and pharmaceuticals.

    PubMed

    Coupland, John N; Hayes, John E

    2014-11-01

    Many drugs and desirable phytochemicals are bitter, and bitter tastes are aversive. Food and pharmaceutical manufacturers share a common need for bitterness-masking strategies that allow them to deliver useful quantities of the active compounds in an acceptable form and in this review we compare and contrast the challenges and approaches by researchers in both fields. We focus on physical approaches, i.e., micro- or nano-structures to bind bitter compounds in the mouth, yet break down to allow release after they are swallowed. In all of these methods, the assumption is the degree of bitterness suppression depends on the concentration of bitterant in the saliva and hence the proportion that is bound. Surprisingly, this hypothesis has only rarely been fully tested using a combination of adequate human sensory trials and measurements of binding. This is especially true in pharmaceutical systems, perhaps due to the greater experimental challenges in sensory analysis of drugs. PMID:25205460

  2. Physical Approaches to Masking Bitter Taste: Lessons from Food and Pharmaceuticals

    PubMed Central

    Hayes, John E.

    2016-01-01

    Many drugs and desirable phytochemicals are bitter, and bitter tastes are aversive. Food and pharmaceutical manufacturers share a common need for bitterness-masking strategies that allow them to deliver useful quantities of the active compounds in an acceptable form and in this review we compare and contrast the challenges and approaches by researchers in both fields. We focus on physical approaches, i.e., micro- or nano-structures to bind bitter compounds in the mouth, yet break down to allow release after they are swallowed. In all of these methods, the assumption is the degree of bitterness suppression depends on the concentration of bitterant in the saliva and hence the proportion that is bound. Surprisingly, this hypothesis has only rarely been fully tested using a combination of adequate human sensory trials and measurements of binding. This is especially true in pharmaceutical systems, perhaps due to the greater experimental challenges in sensory analysis of drugs. PMID:25205460

  3. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    PubMed

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces

  4. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus)

    PubMed Central

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces

  5. Factors affecting the bitterness intensities of ten commercial formulations of ambroxol.

    PubMed

    Uchida, Takahiro; Sugino, Yuka; Hazekawa, Mai; Yoshida, Miyako; Haraguchi, Tamami

    2012-01-01

    The bitterness of 10 different products with ambroxol as active ingredient, the original and nine generics, were evaluated by human gustatory sensation tests in which the tablets were kept in the mouth, with water, at 20 and 37°C. The products all showed different bitterness intensities. The original and some of the generic products had comparatively low bitterness intensities but some of the generic products had comparatively high bitterness intensities. The bitterness intensities of these 10 was found to be significantly correlated with both the disintegration time, as evaluated using the ODT-101 (a recently developed apparatus), and the drug concentration in dissolved medium, as measured in a conventional dissolution test. The bitterness threshold of ambroxol solution was found to increase when the temperature of the water with which the tablets were taken, was raised from 20 to 37°C. The equation was calculated to predict the bitterness intensity of ambroxol, a function based on temperature and the ambroxol concentration using data from a standard ambroxol solution at 4, 20 and 37°C. The bitterness intensities obtained for the 10 ambroxol formulations with water at 20 and 37°C, coincided with the bitterness values predicted by the equation. PMID:22863696

  6. Using genotyping-by-sequencing to identify SNPs linked to the Zucchini yellow mosaic virus resistance trait in bottle gourd and development of CAPS markers useful for marker assisted selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd [Lagenaria siceraria L.] is an important root stock for watermelon as well as a nutritious vegetable. Previously, we identified several sources of resistance in bottle gourd to Zucchini yellow mosaic virus (ZYMV). Breeding populations were generated from two resistant lines (USVL1VR-Ls ...

  7. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd.

    PubMed

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467

  8. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd

    PubMed Central

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467

  9. Optimization of oil extraction from giant bushel gourd seeds using response surface methodology.

    PubMed

    Popoola, Yetunde Yemisi; Akinoso, Rahman; Raji, Akeem Olayemi

    2016-09-01

    Gourd seeds have been identified as a source of edible oil, but there is sparse literature on the effect of processing factors on the characteristics of oil extracted from any Lagenaria spp. Optimization of oil extraction with the aid of expeller was achieved by applying response surface methodology. The variables were roasting temperature (87.70-172.0°C) and roasting duration (7.93-22.07 min), while the responses were oil yield and oil quality (free fatty acid, color, specific gravity, saponification value, moisture, and refractive index). Data obtained were analyzed at P < 0.05. Roasting conditions significantly influenced all the responses at P < 0.05. The optimum roasting condition was 100°C for 20 min, which gave 27.62% oil yield with good quality attributes (free fatty acid: 0.61%, color: 3.47 abs, specific gravity: 0.90 g/mL, saponification value: 289.66 mL, and refractive index: 1.47). PMID:27625780

  10. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates.

    PubMed

    Humiski, L M; Aluko, R E

    2007-10-01

    The effects of different proteolytic treatments on the physiochemical and bitterness properties of pea protein hydrolysates were investigated. A commercial pea protein isolate was digested using each of 5 different proteases to produce protein hydrolysates with varying properties. After 4 h of enzyme digestion, samples were clarified by centrifugation followed by desalting of the supernatant with a 1000 Da membrane; the retentates were then freeze-dried. Alcalase and Flavourzymetrade mark produced protein hydrolysates with significantly higher (P < 0.05) degree of hydrolysis when compared to the other proteases. Flavourzyme, papain, and alcalase produced hydrolysates that contained the highest levels of aromatic amino acids, while trypsin hydrolysate had the highest levels of lysine and arginine. Papain hydrolysate contained high molecular weight peptides (10 to 178 kDa) while hydrolysates from the other 4 proteases contained predominantly low molecular weight peptides (bitter while papain and alpha-chymotrypsin hydrolysates were the least. Among the 5 enzymes used in this study, papain and alpha-chymotrypsin appear to be the most desirable for producing high quality pea protein hydrolysates because of the low bitterness scores combined with a high level of angiotensin converting enzyme inhibition and moderate free radical scavenging activity. PMID:17995627

  11. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  12. Regional differences in suprathreshold intensity for bitter and umami stimuli.

    PubMed

    Feeney, Emma L; Hayes, John E

    2014-12-01

    The sense of taste is often referred to as a 'nutritional gatekeeper', thought to have evolved to indicate energy sources and prevent ingestion of potential toxins. Fungiform papillae are structures on the anterior tongue in which taste buds are situated. They are concentrated at the tongue's tip and they can provide a useful estimate of overall taste bud density for taste research. Some reports suggest taste perception may differ subtly across tongue regions, irrespective of FP number. Other data show an association between taste intensity perception for the bitter compound 6-n-propylthiouracil (PROP) and FP density. However, contradictions exist in the literature, with more recent, larger studies suggesting little or no association between FP number and perceived taste intensity. Much research has examined the relation between FP density and PROP perception, while other tastes have been less thoroughly studied. Here, in a cohort of mainly Caucasian individuals, aged 18-45, recruited from the campus of a large rural university, we examined regional and whole-mouth taste intensities, and FP density using an updated method of a digital still photography method first described in 2005. We found regional differences in suprathreshold intensity. Although all taste sensations were experienced all over the tongue, once again disproving the mythical tongue map, we also observed bitter and umami taste perception to be significantly greater on the posterior tongue than on the anterior tongue. In contrast, there were no regional differences observed for sweet, salty or sour tastes. The relation of FP density to whole-mouth intensity of 6-n-propylthiouracil, and to the intensity of saltiness of NaCl, sweetness from sucrose or from Acesulfame-K, bitterness of quinine, or burning from capsaicin delivered to different regions of the tongue are also discussed. PMID:25485034

  13. Regional differences in suprathreshold intensity for bitter and umami stimuli

    PubMed Central

    Feeney, Emma L.; Hayes, John E.

    2014-01-01

    The sense of taste is often referred to as a ‘nutritional gatekeeper’, thought to have evolved to indicate energy sources and prevent ingestion of potential toxins. Fungiform papillae are structures on the anterior tongue in which taste buds are situated. They are concentrated at the tongue’s tip and they can provide a useful estimate of overall taste bud density for taste research. Some reports suggest taste perception may differ subtly across tongue regions, irrespective of FP number. Other data show an association between taste intensity perception for the bitter compound 6-n-propylthiouracil (PROP) and FP density. However, contradictions exist in the literature, with more recent, larger studies suggesting little or no association between FP number and perceived taste intensity. Much research has examined the relation between FP density and PROP perception, while other tastes have been less thoroughly studied. Here, in a cohort of mainly Caucasian individuals, aged 18-45, recruited from the campus of a large rural university, we examined regional and whole-mouth taste intensities, and FP density using an updated method of a digital still photography method first described in 2005. We found regional differences in suprathreshold intensity. Although all taste sensations were experienced all over the tongue, once again disproving the mythical tongue map, we also observed bitter and umami taste perception to be significantly greater on the posterior tongue than on the anterior tongue. In contrast, there were no regional differences observed for sweet, salty or sour tastes. The relation of FP density to whole-mouth intensity of 6-n-propylthiouracil, and to the intensity of saltiness of NaCl, sweetness from sucrose or from Acesulfame-K, bitterness of quinine, or burning from capsaicin delivered to different regions of the tongue are also discussed. PMID:25485034

  14. TAS2R bitter taste receptors regulate thyroid function

    PubMed Central

    Clark, Adam A.; Dotson, Cedrick D.; Elson, Amanda E. T.; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Steinle, Nanette I.; Munger, Steven D.

    2015-01-01

    Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca2+ increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca2+ release in Nthy-Ori 3-1 cells, but not basal Ca2+ levels, in a dose-dependent manner. Ca2+ responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism.—Clark, A. A., Dotson, C. D., Elson, A. E. T., Voigt, A., Boehm, U., Meyerhof, W., Steinle, N. I., Munger, S. D. TAS2R bitter taste receptors regulate thyroid function. PMID:25342133

  15. Effects of Jamaican bitter yam (Dioscorea polygonoides) and diosgenin on blood and fecal cholesterol in rats.

    PubMed

    McKoy, Marsha-Lyn; Thomas, Peta-Gaye; Asemota, Helen; Omoruyi, Felix; Simon, Oswald

    2014-11-01

    A sapogenin-rich preparation from Jamaican bitter yam (Dioscorea polygonoides) has been shown to reduce blood cholesterol concentrations in hypercholesterolemic rats and mice. Also, diosgenin supplementation has been reported to have antilipemic effects in several animal species. We investigated potential mechanisms of the lipid-lowering actions of bitter yam and also whether the actions were mediated by diosgenin. Sprague-Dawley rats were fed a hypercholesterolemic diet (4% cholesterol) alone or with 5% bitter yam or 1% diosgenin supplementation for 6 weeks. The control group was fed normal rat chow. The serum lipid profile, fecal cholesterol concentration, and serum lipase activity were assessed at the end of the period. The induction of hypercholesterolemia was inhibited by coadministration of 5% bitter yam or 1% diosgenin in the diet. Serum lipid profiles were similar in rats fed bitter yam or diosgenin. The fecal cholesterol concentration was significantly (P < .01) higher in rats fed diosgenin compared to the cholesterol group. However, there was no corresponding elevation in the group fed bitter yam. Administration of bitter yam or diosgenin supplement significantly increased (P < .01) the serum lipase activity compared to the normal control and cholesterol groups. The cholesterol-supplemented diet inhibited normal gain in body weight over the period. This action was potentiated by diosgenin. The effects of the respective supplements on body weight were not completely explained by food consumption. Supplementation of the diet with Jamaican bitter yam may be therapeutically beneficial in the management of hypercholesterolemia. PMID:25058383

  16. Modulation of bitter taste perception by a small molecule hTAS2R antagonist

    PubMed Central

    Slack, Jay P.; Brockhoff, Anne; Batram, Claudia; Menzel, Susann; Sonnabend, Caroline; Born, Stephan; Galindo, Maria Mercedes; Kohl, Susann; Thalmann, Sophie; Ostopovici-Halip, Liliana; Simons, Christopher T.; Ungureanu, Ioana; Duineveld, Kees; Bologa, Cristian G.; Behrens, Maik; Furrer, Stefan; Oprea, Tudor I.; Meyerhof, Wolfgang

    2010-01-01

    Summary Human bitter taste is mediated by the hTAS2R family of G protein-coupled receptors [1-4]. The discovery of the hTAS2Rs enables the potential to develop specific bitter receptor antagonists that could be beneficial as chemical probes to examine the role of bitter receptor function in gustatory and non-gustatory tissues. In addition, they could have widespread utility in food and beverages fortified with vitamins, antioxidants and other nutraceuticals since many of these have unwanted bitter aftertastes. We employed a high-throughput screening approach to discover a novel bitter receptor antagonist (GIV3727) that inhibits activation of hTAS2R31 by saccharin and acesulfame K, two common artificial sweeteners. Pharmacological analyses revealed that GIV3727 likely acts as an orthosteric, insurmountable antagonist of hTAS2R31. Surprisingly, we also found that this compound could inhibit five additional hTAS2Rs, including the closely related receptor hTAS2R43. Molecular modeling and site-directed mutagenesis studies suggest that two residues in helix seven are important for antagonist activity in hTAS2R43/31. In human sensory trials, GIV3727 significantly reduced the bitterness associated with the two sulphonamide sweeteners, indicating that TAS2R antagonists are active in vivo. Our results demonstrate that small molecule bitter receptor antagonists can effectively reduce the bitter taste qualities of foods, beverages, and pharmaceuticals. PMID:20537538

  17. Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain.

    PubMed

    Hückesfeld, Sebastian; Peters, Marc; Pankratz, Michael J

    2016-01-01

    Bitter is a taste modality associated with toxic substances evoking aversive behaviour in most animals, and the valence of different taste modalities is conserved between mammals and Drosophila. Despite knowledge gathered in the past on the peripheral perception of taste, little is known about the identity of taste interneurons in the brain. Here we show that hugin neuropeptide-containing neurons in the Drosophila larval brain are necessary for avoidance behaviour to caffeine, and when activated, result in cessation of feeding and mediates a bitter taste signal within the brain. Hugin neuropeptide-containing neurons project to the neurosecretory region of the protocerebrum and functional imaging demonstrates that these neurons are activated by bitter stimuli and by activation of bitter sensory receptor neurons. We propose that hugin neurons projecting to the protocerebrum act as gustatory interneurons relaying bitter taste information to higher brain centres in Drosophila larvae. PMID:27619503

  18. Application of isothermal titration calorimeter for screening bitterness-suppressing molecules of quinine.

    PubMed

    Zhang, Yifan; Zhu, Youwei; Zhao, Na; Wu, Jinhui; Hu, Yiqiao

    2016-01-01

    Bitterness-suppressing molecules have drawn ever-increasing attention these years for some unique advantages like low molecular weight, tastelessness and no interference on drug bioavailability. L-Arg was reported to suppress the bitterness of quinine, and we happened to find that the suppressing effects could be demonstrated by isothermal titration calorimeter (ITC). In this study, we investigated the possibility of using ITC to screen bitterness-suppressing molecules for quinine. Among the amino acids we screened, L-Lys bond quinine with high affinity. The results of ITC correlated well with the results of human sensory experiments. L-Arg and L-Lys could suppress the bitterness of quinine while other amino acids could not. Therefore, ITC has the potential to screen bitterness-suppressing molecules. PMID:26213068

  19. Physico-chemical evaluation of bitter and non-bitter Aloe and their raw juice for human consumption.

    PubMed

    Azam, M M; Kumar, S; Pancholy, A; Patidar, M

    2014-11-01

    In addition to Aloe vera which is bitter in taste, a non-bitter Aloe is also found in arid part of Rajasthan. This non-bitter Aloe (NBA) is sporadically cultivated as vegetable and for health drink. In spite of its cultivation and various uses, very little information is available about its detailed botanical parameters and chemical characters. This study aims to evaluate the physico-chemical characters of NBA through employing floral morphology, leaf characters and leaf gel and to compare them with those of A. vera. Of eleven floral characters studied, eight characters of NBA were significantly different from that of A. vera. Most visible difference was observed in their reproductive shoots which are highly branched in NBA (5.21 inflorescence/shoot) as compared to A. vera (1.5 inflorescence/shoot). NBA produces less leaf-biomass (-29.32 %) with less leaf-thickness (-31.44 %) but higher leaf length, width, and no. of spine/side by 17.56 %, 21.34 % and 16.11 %, respectively, with significant difference as compared to A. vera. But its polysaccharide content (0.259 %) is at par with that of A. vera. The raw juice from the leaf of NBA has very low aloin content (4.1 ppm) compared to that from A. vera (427.3 ppm) making it a safer health drink compared to the one obtained from A. vera. Thus, NBA raw juice emerged as suitable alternative to A. vera juice for human consumption. PMID:26396351

  20. Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract

    PubMed Central

    Vegezzi, Gaia; Anselmi, Laura; Huynh, Jennifer; Barocelli, Elisabetta; Rozengurt, Enrique; Raybould, Helen; Sternini, Catia

    2014-01-01

    Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138), selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108) are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment. PMID:25238152

  1. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences

    PubMed Central

    Harwood, Meriel L.; Loquasto, Joseph R.; Roberts, Robert F.; Ziegler, Gregory R.; Hayes, John E.

    2016-01-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become

  2. Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences.

    PubMed

    Harwood, Meriel L; Loquasto, Joseph R; Roberts, Robert F; Ziegler, Gregory R; Hayes, John E

    2013-08-01

    Chocolate ice cream is commonly formulated with higher sugar levels than nonchocolate flavors to compensate for the inherent bitterness of cocoa. Bitterness, however, is an integral part of the complex flavor of chocolate. In light of the global obesity epidemic, many consumers and health professionals are concerned about the levels of added sugars in foods. Once a strategy for balancing undesirable bitterness and health concerns regarding added sugars has been developed, the task becomes determining whether that product will be acceptable to the consumer. Thus, the purpose of this research was to manipulate the bitterness of chocolate ice cream to examine how this influences consumer preferences. The main goal of this study was to estimate group rejection thresholds for bitterness in chocolate ice cream, and to see if solid chocolate preferences (dark vs. milk) generalized to ice cream. A food-safe bitter ingredient, sucrose octaacetate, was added to chocolate ice cream to alter bitterness without disturbing other the sensory qualities of the ice cream samples, including texture. Untrained chocolate ice cream consumers participated in a large-scale sensory test by indicating their preferences for blinded pairs of unspiked and spiked samples, where the spiked sample had increasing levels of the added bitterant. As anticipated, the group containing individuals who prefer milk chocolate had a much lower tolerance for bitterness in their chocolate ice cream compared with the group of individuals who prefer dark chocolate; indeed, the dark chocolate group tolerated almost twice as much added bitterant in the ice cream before indicating a significant preference for the unspiked (control) ice cream. This work demonstrates the successful application of the rejection threshold method to a complex dairy food. Estimating rejection thresholds could prove to be an effective tool for determining acceptable formulations or quality limits when considering attributes that become

  3. Bitter Fruits of Arranged Marriage: A Case Study of North Cyprus

    ERIC Educational Resources Information Center

    Akhmadeeva, L.; Kusch, J.

    2009-01-01

    Throughout the world people face confusion in their thinking about love, sex and marriage. Since the problem is universal, it is useful to examine its scope in a limited or local sense. This paper examines a story of one person in the hope of shedding light on a problem that exists for all. The method we use is to record a narrative told by one…

  4. Trypsin inhibitors from ridged gourd (Luffa acutangula Linn.) seeds: purification, properties, and amino acid sequences.

    PubMed

    Haldar, U C; Saha, S K; Beavis, R C; Sinha, N K

    1996-02-01

    Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is at pH 4.55 for LA-1 and at pH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 A. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0 x 10(9) M-1 sec-1 for LA-1 and 0.8 x 10(9) M-1 sec-1 for LA-2 and that of K2HPO4 quenching is 1.6 x 10(11) M-1 sec-1 for LA-1 and 1.2 x 10(11) M-1 sec-1 for LA-2. Analysis of the circular dichroic spectra yields 40% alpha-helix and 60% beta-turn for La-1 and 45% alpha-helix and 55% beta-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzyme-inhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors. PMID:8924202

  5. The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception

    PubMed Central

    Bufe, Bernd; Breslin, Paul A. S.; Kuhn, Christina; Reed, Danielle R.; Tharp, Christopher D.; Slack, Jay P.; Kim, Un-Kyung; Drayna, Dennis; Meyerhof, Wolfgang

    2006-01-01

    Summary Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis [1–4]. A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types [1, 5–8]. We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) [9–11]. Here, we map individual psychogenomic pathways for bitter taste by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil (PROP) to the in vitro responses of their TAS2R38 receptor variants. Functional expression studies demonstrate that five different haplotypes from the hTAS2R38 gene code for operatively distinct receptors. The responses of the three haplotypes we also tested in vivo correlate strongly with individuals’ psychophysical bitter sensitivities to a family of compounds. These data provide a direct molecular link between heritable variability in bitter taste perception to functional variations of a single G protein coupled receptor that responds to compounds such as PTC and PROP that contain the N-C═S moiety. The molecular mechanisms of perceived bitterness variability have therapeutic implications, such as helping patients to consume beneficial bitter-tasting compounds—for example, pharmaceuticals and selected phytochemicals. PMID:15723792

  6. Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models

    PubMed Central

    2011-01-01

    Background Bitter cumin (Centratherum anthelminticum (L.) Kuntze), is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models. Methods Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various in vitro model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA. Results The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI) to Mo(V)), ferricyanide Fe(III) to Fe(II), inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity. Conclusion Bitter cumin is a good source of natural antioxidants. PMID:21599890

  7. Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with high frequency oligonucleotide–targeting active gene (HFO–TAG) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbita pepo is a highly diverse, economically important member of the Cucurbitaceae. C. pepo encompasses hundreds of cultivars of pumpkins, squash, and gourds. Although C. pepo has been scrutinized with various types of DNA markers, the relationships among the cultivar-groups of C. pepo subsp. p...

  8. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children

  9. A comprehensive review on Nymphaea stellata: A traditionally used bitter.

    PubMed

    Raja, M K Mohan Maruga; Sethiya, Neeraj Kumar; Mishra, S H

    2010-07-01

    Nymphaea stellata Willd. (Syn. Nymphaea nouchali Burman f.) (Nymphaeaceae) is an important and well-known medicinal plant, widely used in the Ayurveda and Siddha systems of medicines for the treatment of diabetes, inflammation, liver disorders, urinary disorders, menorrhagia, blenorrhagia, menstruation problem, as an aphrodisiac, and as a bitter tonic. There seems to be an agreement between the traditional use and experimental observations, such as, hepatoprotective, anti-inflammatory, and particularly antidiabetic activity. Nymphayol, a steroid isolated from the flowers has been scientifically proved to be responsible for the traditionally claimed antidiabetic activity; it reverses the damaged endocrine tissue and stimulates secretion of insulin in the β-cells. However, taking into account the magnitude of its traditional uses, the studies conducted are still negligible. This review is an attempt to provide the pharmaceutical prospective of Nymphaea stellata. PMID:22247863

  10. A comprehensive review on Nymphaea stellata: A traditionally used bitter

    PubMed Central

    Raja, M. K. Mohan Maruga; Sethiya, Neeraj Kumar; Mishra, S. H.

    2010-01-01

    Nymphaea stellata Willd. (Syn. Nymphaea nouchali Burman f.) (Nymphaeaceae) is an important and well-known medicinal plant, widely used in the Ayurveda and Siddha systems of medicines for the treatment of diabetes, inflammation, liver disorders, urinary disorders, menorrhagia, blenorrhagia, menstruation problem, as an aphrodisiac, and as a bitter tonic. There seems to be an agreement between the traditional use and experimental observations, such as, hepatoprotective, anti-inflammatory, and particularly antidiabetic activity. Nymphayol, a steroid isolated from the flowers has been scientifically proved to be responsible for the traditionally claimed antidiabetic activity; it reverses the damaged endocrine tissue and stimulates secretion of insulin in the β-cells. However, taking into account the magnitude of its traditional uses, the studies conducted are still negligible. This review is an attempt to provide the pharmaceutical prospective of Nymphaea stellata. PMID:22247863

  11. Diverse tastes: Genetics of sweet and bitter perception.

    PubMed

    Reed, Danielle R; Tanaka, Toshiko; McDaniel, Amanda H

    2006-06-30

    Humans will eat almost anything, from caribou livers to rutabagas, but there are some types of foods, and their associated taste qualities, that are preferred by large groups of people regardless of culture or experience. When many choices are available, humans chose foods that taste good, that is, create pleasing sensations in the mouth. The concept of good taste for most people encompasses both flavor and texture of food, and these sensations merge with taste proper to form the concept of goodness. Although we acknowledge the universality of the goodness (sweet) or badness (bitter) of basic taste qualities, we also find that people differ, sometimes extremely so, in their ability to perceive and enjoy these qualities and, by extension, food and drink. The reasons for these differences among people are not clear but are probably due to a combination of experience beginning at an early age, perhaps in utero; learning, for example, as with conditioned taste aversions; sex and maturity; and perceptual differences that arise from genetic variation. In this review, we focus on individual variations that arise from genetic differences and review two domains of science: recent developments in the molecular biology of taste transduction, with a focus on the genes involved and second, studies that examine biological relatives to determine the heritability of taste perception. Because the receptors for sweet, savory (umami), and bitter have recently been discovered, we summarize what is known about their function by reviewing the effect of naturally occurring and man-made alleles of these receptors, their shape and function based on receptor modeling techniques, and how they differ across animal species that vary in their ability to taste certain qualities. We discuss this literature in the context of how taste genes may differ among people and give rise to individuated taste experience, and what is currently known about the genetic effects on taste perception in humans

  12. TAS2R bitter taste receptors regulate thyroid function.

    PubMed

    Clark, Adam A; Dotson, Cedrick D; Elson, Amanda E T; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Steinle, Nanette I; Munger, Steven D

    2015-01-01

    Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca(2+) increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca(2+) release in Nthy-Ori 3-1 cells, but not basal Ca(2+) levels, in a dose-dependent manner. Ca(2+) responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism. PMID:25342133

  13. Diverse tastes: Genetics of sweet and bitter perception

    PubMed Central

    Reed, Danielle R.; Tanaka, Toshiko; McDaniel, Amanda H.

    2006-01-01

    Humans will eat almost anything, from caribou livers to rutabagas, but there are some types of foods, and their associated taste qualities, that are preferred by large groups of people regardless of culture or experience. When many choices are available, humans chose foods that taste good, that is, create pleasing sensations in the mouth. The concept of good taste for most people encompasses both flavor and texture of food, and these sensations merge with taste proper to form the concept of goodness. Although we acknowledge the universality of the goodness (sweet) or badness (bitter) of basic taste qualities, we also find that people differ, sometimes extremely so, in their ability to perceive and enjoy these qualities and, by extension, food and drink. The reasons for these differences among people are not clear but are probably due to a combination of experience beginning at an early age, perhaps in utero; learning, for example, as with conditioned taste aversions; sex and maturity; and perceptual differences that arise from genetic variation. In this review, we focus on individual variations that arise from genetic differences and review two domains of science: recent developments in the molecular biology of taste transduction, with a focus on the genes involved and second, studies that examine biological relatives to determine the heritability of taste perception. Because the receptors for sweet, savory (umami), and bitter have recently been discovered, we summarize what is known about their function by reviewing the effect of naturally occurring and man-made alleles of these receptors, their shape and function based on receptor modeling techniques, and how they differ across animal species that vary in their ability to taste certain qualities. We discuss this literature in the context of how taste genes may differ among people and give rise to individuated taste experience, and what is currently known about the genetic effects on taste perception in humans

  14. A review on the taste masking of bitter APIs: hot-melt extrusion (HME) evaluation.

    PubMed

    Maniruzzaman, Mohammed; Boateng, Joshua S; Chowdhry, Babur Z; Snowden, Martin J; Douroumis, Dennis

    2014-02-01

    The majority of active pharmaceutical ingredients (APIs) found in oral dosage forms have a bitter taste. Masking the unpleasant taste of bitter, APIs is a major challenge in the development of such oral dosage forms. Taste assessment is an important quality-control parameter for evaluating taste-masked formulations of any new molecular entity. Hot-melt extrusion (HME) techniques, have very recently, been accepted from an industrial compliance viewpoint in relation to both manufacturing operations and development of pharmaceuticals. HME achieves taste masking of bitter APIs via various mechanisms such as the formation of solid dispersions and inter-molecular interactions and this has led to its wide-spread use in pharmaceutical formulation research. In this article, the uses of various taste evaluation methods and HME as continuous processing techniques for taste masking of bitter APIs used for the oral delivery of drugs are reviewed. PMID:23763436

  15. Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception

    PubMed Central

    Roudnitzky, Natacha; Behrens, Maik; Engel, Anika; Kohl, Susann; Thalmann, Sophie; Hübner, Sandra; Lossow, Kristina; Wooding, Stephen P.; Meyerhof, Wolfgang

    2015-01-01

    The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were

  16. Bitter tastant responses in the amoeba Dictyostelium correlate with rat and human taste assays.

    PubMed

    Cocorocchio, Marco; Ives, Robert; Clapham, David; Andrews, Paul L R; Williams, Robin S B

    2016-01-01

    Treatment compliance is reduced when pharmaceutical compounds have a bitter taste and this is particularly marked for paediatric medications. Identification of bitter taste liability during drug discovery utilises the rat in vivo brief access taste aversion (BATA) test which apart from animal use is time consuming with limited throughput. We investigated the suitability of using a simple, non-animal model, the amoeba Dictyostelium discoideum to investigate taste-related responses and particularly identification of compounds with a bitter taste liability. The effect of taste-related compounds on Dictyostelium behaviour following acute exposure (15 minutes) was monitored. Dictyostelium did not respond to salty, sour, umami or sweet tasting compounds, however, cells rapidly responded to bitter tastants. Using time-lapse photography and computer-generated quantification to monitor changes in cell membrane movement, we developed an assay to assess the response of Dictyostelium to a wide range of structurally diverse known bitter compounds and blinded compounds. Dictyostelium showed varying responses to the bitter tastants, with IC50 values providing a rank order of potency. Comparison of Dictyostelium IC50 values to those observed in response to a similar range of compounds in the rat in vivo brief access taste aversion test showed a significant (p = 0.0172) positive correlation between the two models, and additionally a similar response to that provided by a human sensory panel assessment test. These experiments demonstrate that Dictyostelium may provide a suitable model for early prediction of bitterness for novel tastants and drugs. Interestingly, a response to bitter tastants appears conserved from single-celled amoebae to humans. PMID:26708104

  17. Bitter avoidance in Guinea Pigs (Cavia porcellus) and Mice (Mus musculus and Peromyscus leucopus)

    PubMed Central

    Field, Kristin L.; Beauchamp, Gary K.; Kimball, Bruce A.; Mennella, Julie A.; Bachmanov, Alexander A.

    2010-01-01

    Rejection of bitter substances is common in many species and may function to protect an animal from ingestion of bitter-tasting toxins. Since many plants are bitter, it has been proposed that high tolerance for bitterness would be adaptive for herbivores. Earlier studies conducted on herbivorous guinea pigs (Cavia porcellus) have been used to support this proposal. We tested guinea pigs with bitter plant secondary metabolites (salicin, caffeine, quinine hydrochloride) and bitter protein hydrolysates (two types of hydrolyzed casein, hydrolyzed soy) in a series of two-choice preference tests. For comparison, we tested two non-herbivorous mouse species (Mus musculus and Peromyscus leucopus). Guinea pigs did show weaker avoidance of QHCl than did the mice, confirming predictions generated from earlier work. However, guinea pigs had similar responses to caffeine as did Peromyscus. Both of these species showed weaker avoidance responses than Mus to 10 mM caffeine. For salicin, guinea pigs were the only species to avoid it at 10 mM and their preference scores at this concentration were significantly lower than for the two mice species. Guinea pigs avoided all of the protein hydrolysates more strongly than the other species. Responses to the protein hydrolysates did not reflect the patterns observed with the simple bitter compounds, suggesting that other properties of these complex stimuli may be responsible for guinea pig avoidance of them. Our results suggest caution in accepting, without further empirical support, the premise that guinea pigs (and herbivores in general) have a generalized reduced bitter sensitivity. PMID:21090891

  18. Evolution of Functionally Diverse Alleles Associated with PTC Bitter Taste Sensitivity in Africa

    PubMed Central

    Campbell, Michael C.; Ranciaro, Alessia; Froment, Alain; Hirbo, Jibril; Omar, Sabah; Bodo, Jean-Marie; Nyambo, Thomas; Lema, Godfrey; Zinshteyn, Daniel; Drayna, Dennis; Breslin, Paul A. S.; Tishkoff, Sarah A.

    2012-01-01

    Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data

  19. Berry Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Horticulture: Plants for People and Places" co-edited by G.R. Dixon and D.E. Aldous (eds.) will be a three volume set to be published in 2014. It is designed to educate people on horticultural plants. For each fruit crop, different authors wrote overviews of the crops with information on genetic ...

  20. The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

    PubMed Central

    Kim, Hyun Young; Sin, Seung Mi; Lee, Sanghyun; Cho, Kye Man; Cho, Eun Ju

    2013-01-01

    To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-PK1 renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and 500 μg/mL, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (·OH). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-PK1 cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion (O2−). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite (ONOO−) formed by simultaneous releases of nitric oxide and O2−, caused cytotoxicity in the LLC-PK1 cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by ONOO−. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals. PMID:24471105

  1. Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31.

    PubMed

    Hayes, John E; Feeney, Emma L; Nolden, Alissa A; McGeary, John E

    2015-07-01

    Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP-phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5. PMID:26024668

  2. A novel human receptor involved in bitter tastant detection identified using Dictyostelium discoideum

    PubMed Central

    Robery, Steven; Tyson, Richard; Dinh, Christopher; Kuspa, Adam; Noegel, Angelika A.; Bretschneider, Till; Andrews, Paul L. R.; Williams, Robin S. B.

    2013-01-01

    Summary Detection of substances tasting bitter to humans occurs in diverse organisms including the social amoeba Dictyostelium discoideum. To establish a molecular mechanism for bitter tastant detection in Dictyostelium, we screened a mutant library for resistance to a commonly used bitter standard, phenylthiourea. This approach identified a G-protein-coupled receptor mutant, grlJ−, which showed a significantly increased tolerance to phenylthiourea in growth, survival and movement. This mutant was not resistant to a structurally dissimilar potent bitter tastant, denatonium benzoate, suggesting it is not a target for at least one other bitter tastant. Analysis of the cell-signalling pathway involved in the detection of phenylthiourea showed dependence upon heterotrimeric G protein and phosphatidylinositol 3-kinase activity, suggesting that this signalling pathway is responsible for the cellular effects of phenylthiourea. This is further supported by a phenylthiourea-dependent block in the transient cAMP-induced production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in wild-type but not grlJ− cells. Finally, we have identified an uncharacterized human protein γ-aminobutyric acid (GABA) type B receptor subunit 1 isoform with weak homology to GrlJ that restored grlJ− sensitivity to phenylthiourea in cell movement and PIP3 regulation. Our results thus identify a novel pathway for the detection of the standard bitter tastant phenylthiourea in Dictyostelium and implicate a poorly characterized human protein in phenylthiourea-dependent cell responses. PMID:24006265

  3. A novel human receptor involved in bitter tastant detection identified using Dictyostelium discoideum.

    PubMed

    Robery, Steven; Tyson, Richard; Dinh, Christopher; Kuspa, Adam; Noegel, Angelika A; Bretschneider, Till; Andrews, Paul L R; Williams, Robin S B

    2013-12-01

    Detection of substances tasting bitter to humans occurs in diverse organisms including the social amoeba Dictyostelium discoideum. To establish a molecular mechanism for bitter tastant detection in Dictyostelium, we screened a mutant library for resistance to a commonly used bitter standard, phenylthiourea. This approach identified a G-protein-coupled receptor mutant, grlJ(-), which showed a significantly increased tolerance to phenylthiourea in growth, survival and movement. This mutant was not resistant to a structurally dissimilar potent bitter tastant, denatonium benzoate, suggesting it is not a target for at least one other bitter tastant. Analysis of the cell-signalling pathway involved in the detection of phenylthiourea showed dependence upon heterotrimeric G protein and phosphatidylinositol 3-kinase activity, suggesting that this signalling pathway is responsible for the cellular effects of phenylthiourea. This is further supported by a phenylthiourea-dependent block in the transient cAMP-induced production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in wild-type but not grlJ(-) cells. Finally, we have identified an uncharacterized human protein γ-aminobutyric acid (GABA) type B receptor subunit 1 isoform with weak homology to GrlJ that restored grlJ(-) sensitivity to phenylthiourea in cell movement and PIP3 regulation. Our results thus identify a novel pathway for the detection of the standard bitter tastant phenylthiourea in Dictyostelium and implicate a poorly characterized human protein in phenylthiourea-dependent cell responses. PMID:24006265

  4. Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors.

    PubMed

    Hui, Guo-Hua; Ji, Peng; Mi, Shan-Shan; Deng, Shao-Ping

    2013-09-15

    Electrochemical impedance spectrum frequency optimization to bitter taste receptor cell-based sensors is discussed in this paper. The bitter taste receptor cells (the enteroendocrine STC-1 cells and the ICR mouse isolated taste bud cells) are cultured on carbon screen printed electrodes and used as sensing elements. The HEK-293 cells and dead isolated ICR mouse taste bud cells, without bitter taste receptor expression, are used in negative control experiments. The electrochemical impedance spectrum data is recorded and processed by bistable stochastic resonance for signal-to-noise ratio analysis. The bitter taste receptor cell-based sensor selectively responds to bitter tastants. The tastants species and concentrations can be decided by signal-to-noise ratio parameters. The signal-to-noise ratio eigen peak changes with the shift of electrochemical impedance spectrum frequencies. ICR mouse isolated taste bud cell-based sensor presents bitter tastants perception abilities. 9kHz is the optimal frequency for STC-1 cell-based sensor measurement. For isolated ICR mouse taste bud cells, 1.2kHz is the optimal frequency. Negative control experiments results indicate that cells with no taste receptor expression have no discriminating ability for tastant even if they are modulated by different frequencies. The taste cell-based sensor is of great practical value. PMID:23578970

  5. Perception of bitterness, sweetness and liking of different genotypes of lettuce.

    PubMed

    Chadwick, M; Gawthrop, F; Michelmore, R W; Wagstaff, C; Methven, L

    2016-04-15

    Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs, such as 8-deoxylactucin-15-sulphate, contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles. PMID:26616925

  6. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    PubMed

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  7. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface.

    PubMed

    Qin, Zhen; Zhang, Bin; Hu, Liang; Zhuang, Liujing; Hu, Ning; Wang, Ping

    2016-04-15

    Animals' gustatory system has been widely acknowledged as one of the most sensitive chemosensing systems, especially for its ability to detect bitterness. Since bitterness usually symbolizes inedibility, the potential to use rodent's gustatory system is investigated to detect bitter compounds. In this work, the extracellular potentials of a group of neurons are recorded by chronically coupling microelectrode array to rat's gustatory cortex with brain-machine interface (BMI) technology. Local field potentials (LFPs), which represent the electrophysiological activity of neural networks, are chosen as target signals due to stable response patterns across trials and are further divided into different oscillations. As a result, different taste qualities yield quality-specific LFPs in time domain which suggests the selectivity of this in vivo bioelectronic tongue. Meanwhile, more quantitative study in frequency domain indicates that the post-stimulation power of beta and low gamma oscillations shows dependence with concentrations of denatonium benzoate, a prototypical bitter compound, and the limit of detection is deduced to be 0.076 μM, which is two orders lower than previous in vitro bioelectronic tongues and conventional electronic tongues. According to the results, this in vivo bioelectronic tongue in combination with BMI presents a promising method in highly sensitive bitterness detection and is supposed to provide new platform in measuring bitterness degree. PMID:26655176

  8. 6-Methoxyflavanones as Bitter Taste Receptor Blockers for hTAS2R39

    PubMed Central

    Roland, Wibke S. U.; Gouka, Robin J.; Gruppen, Harry; Driesse, Marianne; van Buren, Leo; Smit, Gerrit; Vincken, Jean-Paul

    2014-01-01

    Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG), one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4′-fluoro-6-methoxyflavanone, 6,3′-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency). The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG), though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4′-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate. PMID:24722342

  9. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38

    PubMed Central

    2010-01-01

    Background The purpose of this study was to investigate the effect of TAS2R38 haplotypes and age on human bitter taste perception. Results Children (3 to 10 yrs), adolescents (11 to 19 yrs) and adults (mostly mothers, 20 to 55 yrs (N = 980) were measured for bitter taste thresholds for 6-n-propylthiouracil (PROP) and genotyped for three polymorphisms of the AS2R38 gene (A49P, V262A, I296V). Subjects were grouped by haplotype and age, as well as sex and race/ethnicity, and compared for PROP thresholds. Subjects with the same haplotype were similar in bitter threshold regardless of race/ethnicity (all ages) or sex (children and adolescents; all p-values > 0.05) but age was a modifier of the genotype-phenotype relationship. Specifically, AVI/PAV heterozygous children could perceive a bitter taste at lower PROP concentrations than could heterozygous adults, with the thresholds of heterozygous adolescents being intermediate (p < 0.001). Similar age effects were not observed for subjects with the PAV/PAV or AVI/AVI homozygous haplotypes (p > 0.05) perhaps because there is less variation in taste perception among these homozygotes. Conclusions These data imply that the change in PROP bitter sensitivity which occurs over the lifespan (from bitter sensitive to less so) is more common in people with a particular haplotype combination, i.e., AVI/PAV heterozygotes. PMID:20594349

  10. Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31

    PubMed Central

    Feeney, Emma L.; Nolden, Alissa A.; McGeary, John E.

    2015-01-01

    Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP–phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5. PMID:26024668

  11. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    PubMed Central

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  12. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia.

    PubMed

    Katare, Charu; Saxena, Sonali; Agrawal, Supriya; Joseph, Anish Zacharia; Subramani, Senthil Kumar; Yadav, Dhananjay; Singh, Nita; Bisen, Prakash Singh; Prasad, G B K S

    2014-04-01

    The study validated the antidyslipidemic, antioxidant, and antihyperglycemic effects of Lagenaria siceraria fruit extract in human subjects with dyslipidemia along with subjects of normal health. A total of 200 mL of freshly prepared Lagenaria siceraria fruit extract was administered daily on empty stomach for 90 days. Significant reductions (P < .01) were found in triglycerides and total cholesterol levels in blood. Cardiac risk ratio, atherogenic coefficient, and atherogenicity index of plasma were also improved. Appreciable reductions in body mass index (P < .01) and blood pressure (systolic P < .01, diastolic P < .05) along with a significant reduction (P < .05) in fasting blood glucose levels were also observed in these subjects. Lagenaria siceraria fruit extract exhibited significant antioxidant activity in dyslipidemic subjects as evident from elevations in SOD (P < .05) and GSH levels (P < .01) with marked improvement in catalase (P < .01) and TBARS levels (P < .05). Phytochemical screening confirmed the presence of saponins, glycosides, flavonoids, terpenoids, and phenolic compounds. Lagenaria siceraria fruit extract serves as dietary adjunct in treatment of human dyslipidemia and cardiovascular disease. PMID:24647091

  13. Why do we like sweet taste: A bitter tale?

    PubMed

    Beauchamp, Gary K

    2016-10-01

    Sweet is widely considered to be one of a small number of basic or primary taste qualities. Liking for sweet tasting substances is innate, although postnatal experiences can shape responses. The power of sweet taste to induce consumption and to motivate behavior is profound, suggesting the importance of this sense for many species. Most investigators presume that the ability to identify sweet molecules through the sense of taste evolved to allow organisms to detect sources of readily available glucose from plants. Perhaps the best evidence supporting this presumption are recent discoveries in comparative biology demonstrating that species in the order Carnivora that do not consume plants also do not perceive sweet taste due to the pseudogenization of a component of the primary sweet taste receptor. However, arguing against this idea is the observation that the sweetness of a plant, or the amount of easily metabolizable sugars contained in the plant, provides little quantitative indication of the plant's energy or broadly conceived food value. Here it is suggested that the perceptual ratio of sweet taste to bitter taste (a signal for toxicity) may be a better gauge of a plant's broadly conceived food value than sweetness alone and that it is this ratio that helps guide selection or rejection of a potential plant food. PMID:27174610

  14. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  15. Sensomics analysis of key bitter compounds in the hard resin of hops (Humulus lupulus L.) and their contribution to the bitter profile of Pilsner-type beer.

    PubMed

    Dresel, Michael; Dunkel, Andreas; Hofmann, Thomas

    2015-04-01

    Recent brewing trials indicated the occurrence of valuable bitter compounds in the hard resin fraction of hop. Aiming at the discovery of these compounds, hop's ε-resin was separated by means of a sensory guided fractionation approach and the key taste molecules were identified by means of UV/vis, LC-TOF-MS, and 1D/2D-NMR studies as well as synthetic experiments. Besides a series of literature known xanthohumol derivatives, multifidol glucosides, flavon-3-on glycosides, and p-coumaric acid esters, a total of 11 bitter tastants are reported for the first time, namely, 1",2"-dihydroxanthohumol F, 4'-hydroxytunicatachalcone, isoxantholupon, 1-methoxy-4-prenylphloroglucinol, dihydrocyclohumulohydrochinone, xanthohumols M, N, and P, and isoxanthohumols M, N, and P, respectively. Human sensory analysis revealed low bitter recognition threshold concentrations ranging from 5 (co-multifidol glucopyranoside) to 198 μmol/L (trans-p-coumaric acid ethyl ester) depending on their chemical structure. For the first time, LC-MS/MS quantitation of these taste compounds in Pilsner-type beer, followed by taste re-engineering experiments, revealed the additive contribution of iso-α-acids and the identified hard resin components to be truly necessary and sufficient for constructing the authentic bitter percept of beer. Finally, brewing trails using the ε-resin as the only hop source impressively demonstrated the possibility to produce beverages strongly enriched with prenylated hop flavonoids. PMID:25793563

  16. Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.).

    PubMed

    Dawid, Corinna; Hofmann, Thomas

    2014-02-15

    A sensitive HPLC-MS/MS method was developed enabling the simultaneous quantification of bitter-tasting mono- and bidesmosidic saponins in fresh and processed asparagus (Asparagus officinalis L.). Based on quantitative data and bitter taste recognition thresholds, dose-over-threshold factors were determined for the first time to determine the bitter impact of the individual saponins. Although 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl]-(25R/S)-spirost-5-ene-3β-ol was found based on dose-over-threshold factors to be the predominant bitter saponin in raw asparagus spears, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25R)-22-hydroxyfurost-5-ene-3β,26-diol, 3-O-[α-L-rhamnopyranosyl-(1 → 2)-{α-L-rhamnopyranosyl-(1 → 4)}-β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-(25S)-22-hydroxyfurost-5-ene-3β,26-diol, and (25R)- and (25S)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside were found as key bitter contributors after cooking. Interestingly, the monodesmosidic saponins 5a/b were demonstrated for the first time to be the major contributor to the bitter taste of fresh asparagus spears, while the bidesmosides 1a/b and 2a/b may be considered the primary determinants for the bitter taste of cooked asparagus. PMID:24128498

  17. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks.

    PubMed

    Li, Hao; Wang, Feng; Chen, Xiao-Juan; Shi, K; Xia, Xiao-Jian; Considine, Michael J; Yu, Jing-Quan; Zhou, Yan-Hong

    2014-11-01

    Shoot-root communication is involved in plant stress responses, but its mechanism is largely unknown. To determine the role of roots in stress tolerance, cucumber (Cucumis sativus) shoots from plants with roots of their own or with figleaf gourd (Cucurbita ficifolia, a chilling-tolerant species) or luffa (Luffa cylindrica (L.) M. Roem., a heat-tolerant species) rootstocks were exposed to low (18/13°C), optimal (27/22°C) and high (36/31°C) temperatures, respectively. Grafting onto figleaf gourd and luffa rootstocks significantly alleviated chilling and heat-induced reductions, respectively, in biomass production and CO(2) assimilation capacity in the shoots, while levels of lipid peroxidation and protein oxidation were decreased. Figleaf gourd and luffa rootstocks upregulated a subset of stress-responsive genes involved in signal transduction (MAPK1 and RBOH), transcriptional regulation (MYB and MYC), protein protection (HSP45.9 and HSP70), the antioxidant response (Cu/Zn-SOD, cAPX and GR), and photosynthesis (RBCL, RBCS, RCA and FBPase) at low and high growth temperatures, respectively, and this was accompanied by increased activity of the encoded enzymes and reduced glutathione redox homeostasis in the leaves. Moreover, Heat Shock Protein 70 (HSP70) expression in cucumber leaves was strongly induced by the luffa rootstock at the high growth temperature but slightly induced by the figleaf gourd rootstock at low or high growth temperatures. These results indicate that rootstocks could induce significant changes in the transcripts of stress-responsive and defense-related genes, and the ROS scavenging activity via unknown signals, especially at stressful growth temperatures, and this is one of mechanisms involved in the grafting-induced stress tolerance. PMID:24735050

  18. Genetic Structure of Colletotrichum fructicola Associated to Apple Bitter Rot and Glomerella Leaf Spot in Southern Brazil and Uruguay.

    PubMed

    Rockenbach, Mathias F; Velho, Aline C; Gonçalves, Amanda E; Mondino, Pedro E; Alaniz, Sandra M; Stadnik, Marciel J

    2016-07-01

    Colletotrichum fructicola is the main species causing apple bitter rot (ABR) and Glomerella leaf spot (GLS) in southern Brazil, and ABR in Uruguay where GLS remains unnoticed. Thus, this work aimed to determine the genetic structure of C. fructicola isolates of both the countries. A total of 28 out of 31 Brazilian isolates (90.3%) caused typical symptoms of GLS, while only 6 of 25 Uruguayan isolates (24.0%) originating from fruits were able to infect leaves, but causing atypical symptoms. Both populations showed similar levels of Nei's gene diversity (h = 0.088 and 0.079, for Brazilian and Uruguayan populations, respectively), and Bayesian cluster analysis inferred two genetic clusters correlated with the geographical origin of isolates. A principal coordinates analysis scatter plot and an unweighted pair group method with arithmetic mean-based dendrogram also grouped Brazilian and Uruguayan isolates into two groups. By pairwise comparison of nitrate-nonutilizing (nit) mutants with a proposed set of testers, all Uruguayan isolates were grouped into a unique vegetative compatibility group (namely VCG 1), while Brazilian isolates were grouped into four VCGs (VCG 1 to 4). Brazilian and Uruguayan populations of C. fructicola were found to be genetically distinct. Our results suggest that isolates of C. fructicola from Brazil capable of causing GLS and ABR arose independently of those from Uruguay. Possible causes leading to the evolutionary differences between populations are discussed. PMID:27019063

  19. Extract of Wax Gourd Peel Prevents High-Fat Diet-Induced Hyperlipidemia in C57BL/6 Mice via the Inhibition of the PPARγ Pathway

    PubMed Central

    Gu, Ming; Fan, Shengjie; Liu, Gaigai; Guo, Lu; Ding, Xiaobo; Lu, Yan; Zhang, Yu; Huang, Cheng

    2013-01-01

    Wax gourd is a popular vegetable in East Asia. In traditional Chinese medicine, wax gourd peel is used to prevent and treat metabolic diseases such as hyperlipidemia, hyperglycemia, obesity, and cardiovascular disease. However, there is no experimental evidence to support these applications. Here, we examined the effect of the extract of wax gourd peel (EWGP) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, EWGP blocked body weight gain and lowered serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), liver TG and TC contents, and fasting blood glucose in mice fed with a high-fat diet. In the therapeutic study, we induced obesity in the mice and treated with EWGP for two weeks. We found that EWGP treatment reduced serum and liver triglyceride (TG) contents and fasting blood glucose and improved glucose tolerance in the mice. Reporter assay and gene expression analysis showed that EWGP could inhibit peroxisome proliferator-activated receptor γ (PPARγ) transactivities and could decrease mRNA levels of PPARγ and its target genes. We also found that HMG-CoA reductase (HMGCR) was downregulated in the mouse liver by EWGP. Our data suggest that EWGP lowers hyperlipidemia of C57BL/6 mice induced by high-fat diet via the inhibition of PPARγ and HMGCR signaling. PMID:23533476

  20. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides.

    PubMed

    McAnuff, Marie A; Harding, Wayne W; Omoruyi, Felix O; Jacobs, Helen; Morrison, Errol Y; Asemota, Helen N

    2005-11-01

    In this study, three steroidal sapogenins (Delta3 diosgenin, diosgenin, and pennogenin) and the phytosterols, stigmasterol and beta-sitosterol were isolated from Jamaican bitter yam, Dioscorea polygonoides. Their effects on fasting blood glucose and intestinal amylase and ATPases in streptozotocin-induced diabetic rats were studied. The diabetic rats (fed supplemented and unsupplemented diets) lost weight significantly compared to the normal group. There was a significant increase in the activity of alpha-amylase in the proximal region of the small intestinal mucosa of diabetic rats fed sapogenin extract or commercial diosgenin. However, this did not result in increased fasting blood glucose. Instead, supplementation of the diet with bitter yam sapogenin extract significantly decreased fasting blood glucose compared to the diabetic group. Supplementation of the diet with bitter yam sapogenin extract or commercial diosgenin significantly reduced Na+-K+-ATPase activity in all three regions compared to the diabetic control group. Commercial diosgenin supplementation resulted in a significant increase in Ca2+ ATPase activity in proximal region compared to the diabetic control and bitter yam sapogenin extract groups. The effect of bitter yam sapogenin extract or commercial diosgenin on intestinal Na+-K+-ATPase activity could account for their hypoglycemic properties. However, there was adverse effect on the body weight. PMID:16000232

  1. Effect of Superfine Grinding on Antidiabetic Activity of Bitter Melon Powder

    PubMed Central

    Zhu, Ying; Dong, Ying; Qian, Xiwen; Cui, Fengjie; Guo, Qin; Zhou, Xinghua; Wang, Yun; Zhang, Yi; Xiong, Zhiyu

    2012-01-01

    The antidiabetic activities of bitter melon powders produced with lyophilization/superfine grinding and hot air drying/normal grinding were investigated in vivo for selecting a suitable bitter melon processing procedure. After a five-week treatment, bitter melon lyophilized superfine grinding powder (BLSP) had a higher antidiabetic activity with reducing fasting blood glucose levels from 21.40 to 12.54 mmol/L, the serum insulin levels from 40.93 to 30.74 mIU/L, and restoring activities of SOD compared with those in the bitter melon hot air drying powder (BAP) treated group. Furthermore, BLSP protected pancreatic tissues including islet beta cells and reduced the loss of islet cells. Combined with the difference of compositions in BLSP and BAP, it could be concluded that superfine grinding and lyophilization processes were beneficial for presenting the antidiabetic activity, which will provide a reference for direct utilization of bitter melon as a suitable functional food to relieve symptoms of diabetes. PMID:23203059

  2. Bitter and sweet taste receptors in the respiratory epithelium in health and disease

    PubMed Central

    Lee, Robert J.; Cohen, Noam A.

    2016-01-01

    Taste receptors on the tongue communicate information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has now shown that taste receptors are also expressed far beyond the tongue, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these so-called extraoral taste receptors remain unknown, but emerging basic science and clinical evidence suggests that bitter and sweet taste receptors in the airway are important in sensing bacteria and regulating innate immunity. This review focuses on the role of bitter and sweet taste receptors in human airway innate immunity and the potential clinical relevance to airway infections. The T2R38 bitter taste receptor in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates nitric oxide-dependent innate immune responses. Polymorphisms that underlie T2R38 functionality also appear to be involved in susceptibility to upper respiratory infection and chronic rhinosinusitis (CRS). Bitter and sweet receptors in specialized sinonasal solitary chemosensory cells control antimicrobial peptide secretion, which may have important implications for airway infections in CRS patients as well as patients with diabetes mellitus. Future research on taste receptors in the airway has tremendous potential to identify immune mechanisms involved in host-pathogen interactions and thus reveal novel therapeutic targets. PMID:25391251

  3. A bitter sweet asynchrony. The relation between eating attitudes, dietary restraint on smell and taste function.

    PubMed

    Stafford, Lorenzo D; Tucker, Megan; Gerstner, Nora

    2013-11-01

    Research has demonstrated that individuals with eating disorders have an impaired sense of smell and taste, though the influence of eating attitudes, dietary restraint and gender in a non-clinical sample is unknown. In two studies (study 1: 32 females, 28 males; study 2: 29 females) participants completed questionnaires relating to Eating Attitudes (EAT) and dietary restraint (DEBQ) followed by an odour (study 1: isoamyl acetate, study 2: chocolate) threshold and taste test. In study 2 we also measured the number of fungiform papillae taste buds. Study one revealed that increases in pathological eating attitudes predicted poorer olfactory sensitivity (males/females) and lower bitterness ratings for the bitter tastant (females only), suggestive of poorer taste acuity. In study two we found that both eating attitudes and restraint predicted poorer sensitivity to an odour associated to a forbidden food (chocolate) and that increasing eating attitudes predicted higher sweetness ratings for the bitter tastant. Interestingly increases in restraint were associated with an increased number of fungiform papillae which was not related to bitter or sweet intensity. These findings demonstrate that in a young healthy sample that subtle differences in eating pathology and dietary restraint predict impaired olfactory function to food related odours. Further that perception of bitter tastants is poorer with changes in eating pathology but not dietary restraint. PMID:23811349

  4. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes

    PubMed Central

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M.; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G.; Marambaud, Philippe; Foskett, J. Kevin

    2013-01-01

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of adenosine 5′-triphosphate (ATP), which acts as a neurotransmitter to activate afferent neural gustatory pathways1. However, how ATP is released to fulfill this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel2,3, is indispensable for taste stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas sour and salty taste recognition remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells to taste stimuli. Thus, CALHM1 is a voltage-gated ATP release channel required for sweet, bitter and umami taste perception. PMID:23467090

  5. Theoretical and functional complexity of white variegation of unripe fleshy fruits

    PubMed Central

    Lev-Yadun, Simcha

    2013-01-01

    In many plant species, the bright colors of ripe fruit serve to attract frugivores to enable efficient seed dispersal. Here I show that the fleshy fruit of several dozens of species originating from Asia (southeastern, eastern and central), the Middle East, Africa, America (South, Central and North), Australia, Polynesia and Micronesia, with fruit usually larger than 1 cm, have white or light green spots while they are still unripe. In many of these species, while the spots are conspicuous, the unripe fruit is known to be poisonous, bitter or sour. I propose that this fruit syndrome may signal frugivores that the fruit is still unripe. Similarly to the succulent leaves of window-plants, these spots form windows that enable light to penetrate deeper into the photosynthetic layers in the developing fruit. This seems to be a solution to overcome the limitations of light harvest because of the high volume to surface ratio of developing fleshy fruits. The white or whitish variegation in these unripe fleshy fruits may serve at least five functions: 1) Windows for photosynthesis, 2) camouflage, 3) signaling to frugivores that they are not ripe (possibly sometimes a type of mutualism with frugivores), 4) signaling to frugivores that they are poisonous - aposematism, and 5) mimicking insect eggs to reduce egg laying. All these functions may be partly or fully simultaneous. Because these white spots appear in plants of diverse geographical and taxonomic origin, it is probably an old adaptation, and such a syndrome has appeared and been selected for many times. PMID:23921545

  6. The bitter with the sweet: the taste/stress/temperament nexus.

    PubMed

    Dess, N K; Edelheit, D

    1998-06-01

    Is the tongue a window to the psyche? In rats, stress alters taste, and individual differences in taste are related to measures of emotion. The present study concerned stress-induced changes in taste and its modulation by temperament in people. College students rated saccharin's bitterness and sweetness and a tone's loudness after exposure to a mild stressor. Temperament (trait arousability, pleasure, and dominance) was assessed separately. When individual differences were ignored, stress appeared to selectively increase sensitivity to saccharin's bitterness. However, the stressor's impact was modulated by temperament: Stress nonselectively augmented stimulus magnitude ratings among highly arousable individuals; relative to high-pleasure counterparts, low-pleasure individuals gave higher bitterness ratings and lower sweetness ratings after stress. Taste does seem to provide a glimpse of the emotional life of humans and other animals and opens new avenues to the study of the biological bases of affect. PMID:9700013

  7. Determination of taste-active compounds of a bitter Camembert cheese by omission tests.

    PubMed

    Engel, E; Septier, C; Leconte, N; Salles, C; Le Quere, J L

    2001-11-01

    The taste-active compounds of a Camembert cheese selected for its intense bitterness defect were investigated. The water-soluble fraction (WSE) was extracted with pure water and fractionated by successive tangential ultrafiltrations and nanofiltration. The physicochemical assessment of these fractions led to the construction of a model WSE which was compared by sensory evaluation to the crude water-soluble extract, using a panel of 16 trained tasters. As no significant difference was perceived, this model WSE was then used directly or mixed with other cheese components for omission tests. Among the main taste characteristics of the WSE (salty, sour, umami and bitter), bitterness was found to be due to small peptides whose mass distribution was obtained by RPHPLC-MS (400-3000 Da) and whose taste properties are discussed. PMID:11928963

  8. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus.

    PubMed

    Chen, Hongdong; Guo, Jing; Pang, Bing; Zhao, Linhua; Tong, Xiaolin

    2015-01-01

    Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine. PMID:26557150

  9. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus

    PubMed Central

    Chen, Hongdong; Guo, Jing; Pang, Bing; Zhao, Linhua; Tong, Xiaolin

    2015-01-01

    Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine. PMID:26557150

  10. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Fish and Wildlife Service Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern... conservation plan (CCP) and environmental assessment (EA) for the Hopper Mountain, Bitter Creek, and Blue Ridge...-Person Drop-off: You may drop off comments at the Hopper Mountain NWR Complex Headquarters in...

  11. 77 FR 21797 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Ventura, Kern, San Luis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... intent published on April 6, 2010 (75 FR 17430), two planning updates, a CCP Web page ( http://www.fws... Fish and Wildlife Service Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges... Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for the Hopper Mountain, Bitter...

  12. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways.

    PubMed

    Yu, Yunli; Hao, Gang; Zhang, Quanying; Hua, Wenyan; Wang, Meng; Zhou, Wenjia; Zong, Shunlin; Huang, Ming; Wen, Xiaozhou

    2015-09-15

    Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect. PMID:26206195

  13. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)

    PubMed Central

    2013-01-01

    Background Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial

  14. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): A vegetable commonly used for diabetes management

    PubMed Central

    2011-01-01

    Background Although beneficial to health, dietary phytonutrients are bitter, acid and/or astringent in taste and therefore reduce consumer choice and acceptance during food selection. Momordica charantia, commonly known as bitter melon has been traditionally used in Ayurvedic and Chinese medicine to treat diabetes and its complications. The aim of this study was to develop bitter melon-containing recipes and test their palatability and acceptability in healthy individuals for future clinical studies. Methods A cross-sectional sensory evaluation of bitter melon-containing ethnic recipes was conducted among 50 healthy individuals. The primary endpoints assessed in this analysis were current consumption information and future intentions to consume bitter melon, before and after provision of attribute- and health-specific information. A convenience sample of 50, self-reported non-diabetic adults were recruited from the University of Hawaii. Sensory evaluations were compared using two-way ANOVA, while differences in stage of change (SOC) before and after receiving health information were analyzed by Chi-square (χ2) analyses. Results Our studies indicate that tomato-based recipes were acceptable to most of the participants and readily acceptable, as compared with recipes containing spices such as curry powder. Health information did not have a significant effect on willingness to consume bitter melon, but positively affected the classification of SOC. Conclusions This study suggests that incorporating bitter foods in commonly consumed food dishes can mask bitter taste of bitter melon. Furthermore, providing positive health information can elicit a change in the intent to consume bitter melon-containing dishes despite mixed palatability results. PMID:21794176

  15. Betaines in fruits of Citrus genus plants.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Balestrieri, Maria Luisa; Bata-Csere, Andrea; Cautela, Domenico; Castaldo, Domenico

    2011-09-14

    Numerous compounds, many of them osmolytes, were quantified in natural juices and in frozen concentrate juices from fruits of plants of the Citrus genus. L-proline, N-methyl-L-proline (hygric acid), N,N-dimethyl-L-proline (stachydrine), 4-hydroxy-L-prolinebetaine (betonicine), 4-hydroxy-L-proline, γ-aminobutyric acid (Gaba), 3-carboxypropyltrimethylammonium (GabaBet), N-methylnicotinic acid (trigonelline), and choline in the fruit juices of yellow orange, blood orange, lemon, mandarin, bitter orange (Citrus aurantium), chinotto (Citrus myrtifolia), and grapefruit were analyzed by sensitive HPLC-ESI-tandem mass spectrometry procedure. It was found that the most represented osmolytes in the juices, that is, L-proline, stachydrine, and betonicine, can be quantified with minimal sample preparation and short analysis time (about 1 min) also by flow injection analysis (FIA) ESI-MS/MS with the same results as obtained by HPLC ESI-MS/MS. In all of the juices, discrete amounts of choline and trigonelline were present. Conversely, GabaBet was always below detection limits. Notably, N-methyl-L-proline and 4-hydroxy-L-prolinebetaine, which were discovered for the first time in the juice of bergamot (Citrus bergamia Risso et Poit), are also present in all of the citrus juices examined. PMID:21838291

  16. Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties.

    PubMed

    Forero, Diana Paola; Masatani, Chieko; Fujimoto, Yoshinori; Coy-Barrera, Ericsson; Peterson, Devin G; Osorio, Coralia

    2016-07-01

    The bitterness in lulo (Solanum quitoense Lam.) fruit is increased during processing (juicing or drying). To identify the bitter-active compounds, the ethanolic fruit pulp extract was subjected to RP-18 solid-phase extraction, and then sensory-guided fractionated by HPLC. Two spermidine derivatives, N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine and N(1),N(8)-bis(dihydrocaffeoyl)spermidine, were isolated and their structures confirmed by analysis of their HPLC-ESI/MS and (1)H and (13)C NMR data. The N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine was synthesized and used as an authentic sample to unequivocally confirm the structure of this compound and to quantitate it in both fresh and dried fruit. In silico analyses demonstrated that spermidine derivatives identified in lulo pulp exhibited a strong ACE-I (angiotensin I-converting enzyme) inhibitory activity. Subsequently, these results were confirmed by in vitro analyses and showed the potential use of lulo fruit pulp as an ingredient of functional foods related to the prevention of blood hypertension. PMID:27292771

  17. Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance

    PubMed Central

    Rocha, Izabela Furtado de Oliveira; Bolini, Helena Maria André

    2015-01-01

    This study evaluated the effect of different sweeteners on the sensory profile, acceptance, and drivers of preference of passion fruit juice samples sweetened with sucrose, aspartame, sucralose, stevia, cyclamate/saccharin blend 2:1, and neotame. Sensory profiling was performed by 12 trained assessors using quantitative descriptive analysis (QDA). Acceptance tests (appearance, aroma, flavor, texture and overall impression) were performed with 124 consumers of tropical fruit juice. Samples with sucrose, aspartame and sucralose showed similar sensory profile (P < 0.05), without bitter taste, bitter aftertaste, and metallic taste, and samples with sucrose and sucralose did not differ from each other for the attribute sweet aftertaste. Passion fruit flavor affected positively and sweet aftertaste affected negatively the acceptance of the samples. Samples sweetened with aspartame, sucralose, and sucrose presented higher acceptance scores for the attributes flavor, texture, and overall impression, with no significant (P < 0.05) differences between them. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. PMID:25838891

  18. Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance.

    PubMed

    Rocha, Izabela Furtado de Oliveira; Bolini, Helena Maria André

    2015-03-01

    This study evaluated the effect of different sweeteners on the sensory profile, acceptance, and drivers of preference of passion fruit juice samples sweetened with sucrose, aspartame, sucralose, stevia, cyclamate/saccharin blend 2:1, and neotame. Sensory profiling was performed by 12 trained assessors using quantitative descriptive analysis (QDA). Acceptance tests (appearance, aroma, flavor, texture and overall impression) were performed with 124 consumers of tropical fruit juice. Samples with sucrose, aspartame and sucralose showed similar sensory profile (P < 0.05), without bitter taste, bitter aftertaste, and metallic taste, and samples with sucrose and sucralose did not differ from each other for the attribute sweet aftertaste. Passion fruit flavor affected positively and sweet aftertaste affected negatively the acceptance of the samples. Samples sweetened with aspartame, sucralose, and sucrose presented higher acceptance scores for the attributes flavor, texture, and overall impression, with no significant (P < 0.05) differences between them. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. PMID:25838891

  19. Synthesis and characterization of zinc sulfide quantum dots and their interaction with snake gourd (Trichosanthes anguina) seed lectin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Ahalya, Pichaikkannu; Sengan, Megarajan; Kamlekar, Ravikanth; Veerappan, Anbazhagan

    2015-12-01

    Owing to the use of quantum dots in biological labeling, and the specific interaction of lectins with tumor cells, studies on lectin-QDs interaction are of potential interest. Herein, we report a facile method to prepare zinc sulfide quantum dots (ZnS QDs) using pectin as a capping agent and studied their interaction with snake gourd seed lectin (SGSL) by fluorescence spectroscopy. The QDs were characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV-Vis absorption and fluorescence spectroscopy. The thermodynamic forces governing the interaction between ZnS-QDs and SGSL have been delineated from the temperature dependent association constant. These results suggest that the binding between ZnS QDs and SGSL is governed by enthalpic forces with negative entropic contribution. The red shift of synchronous fluorescence spectra showed that the microenvironment around the tryptophan residues of SGSL was perturbed by ZnS-QDs. The obtained results suggest that the development of optical bioimaging agents by using the conjugated lectin-QDs would be possible to diagnose cancerous tissues. PMID:26172461

  20. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    PubMed

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings. PMID:25789769

  1. Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings. PMID:25789769

  2. Expansion of a bitter taste receptor family in a polyphagous insect herbivore.

    PubMed

    Xu, Wei; Papanicolaou, Alexie; Zhang, Hui-Jie; Anderson, Alisha

    2016-01-01

    The Insect taste system plays a central role in feeding behaviours and co-evolution of insect-host interactions. Gustatory receptors form the interface between the insect taste system and the environment. From genome and transcriptome sequencing we identified 197 novel gustatory receptor (GR) genes from the polyphagous pest Helicoverpa armigera. These GRs include a significantly expanded bitter receptor family (180 GRs) that could be further divided into three categories based on polypeptide lengths, gene structure and amino acid sequence. Type 1 includes 29 bitter Gr genes that possess introns. Type 2 includes 13 long intronless bitter Gr genes, while Type 3 comprises 131 short intronless bitter Gr genes. Calcium imaging analysis demonstrated that three Type 3 GRs (HarmGR35, HarmGR50 and HarmGR195) can be activated by a crude extract of cotton leaves. HarmGR195, a GR specifically and selectively expressed in adult tarsi, showed a specific response to proline, an amino acid widely present in plant tissues. We hypothesise that the expansion in the H. armigera GR family may be functionally tied to its polyphagous behavior. Understanding the molecular basis of polyphagy may provide opportunities for the development of new environmentally friendly pest control strategies. PMID:27032373

  3. Individual differences in bitter taste preferences are associated with antisocial personality traits.

    PubMed

    Sagioglou, Christina; Greitemeyer, Tobias

    2016-01-01

    In two studies, we investigated how bitter taste preferences might be associated with antisocial personality traits. Two US American community samples (total N = 953; mean age = 35.65 years; 48% females) self-reported their taste preferences using two complementary preference measures and answered a number of personality questionnaires assessing Machiavellianism, psychopathy, narcissism, everyday sadism, trait aggression, and the Big Five factors of personality. The results of both studies confirmed the hypothesis that bitter taste preferences are positively associated with malevolent personality traits, with the most robust relation to everyday sadism and psychopathy. Regression analyses confirmed that this association holds when controlling for sweet, sour, and salty taste preferences and that bitter taste preferences are the overall strongest predictor compared to the other taste preferences. The data thereby provide novel insights into the relationship between personality and the ubiquitous behaviors of eating and drinking by consistently demonstrating a robust relation between increased enjoyment of bitter foods and heightened sadistic proclivities. PMID:26431683

  4. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis.

    PubMed

    Maehashi, Kenji; Matano, Mami; Saito, Makiko; Udaka, Shigezo

    2010-05-01

    Riboflavin-binding protein (RBP) is a glycophosphoprotein found in hen eggs. We previously identified the extraordinary characteristic of RBP in reducing bitterness. For a more detailed study on the mode of action and industrial application of this characteristic, we investigated the microbial production of recombinant RBP (rRBP). We constructed a chicken RBP gene expression vector by inserting the RBP cDNA in pNCMO2, the Escherichia coli-Brevibacillus choshinensis shuttle vector. B. choshinensis HPD31 transformants produced 0.8g/l of processed and unglycosylated RBP in a soluble form in the culture supernatant. However, the expressed RBP was partially dimerized and monomeric RBP was purified by two step anion-exchange and gel-filtration chromatographies. The purified rRBP elicited bitterness reduction against quinine and caffeine, although it largely lost its riboflavin-binding ability. These results indicated that glycosylation and riboflavin-binding ability are not essential for the bitterness reduction of RBP. In addition, we assessed the usefulness of the Brevibacillus system for the expression and secretion of RBP as a new type of bitterness inhibitor. PMID:20045733

  5. Sweet and bitter taste in the brain of awake behaving animals

    PubMed Central

    Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao; Tränkner, Dimitri; Ryba, Nicholas J. P.; Zuker, Charles S.

    2015-01-01

    Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviors, preventing the ingestion of toxic substances, and helping ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste permits the identification of energy-rich nutrients while bitter warns against the intake of potentially noxious chemicals1. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain2. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map3,4, with each taste quality encoded by distinct cortical fields4. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal’s internal representation, sensory perception, and behavioral actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviors in the absence of sensory input. PMID:26580015

  6. Sensory Threshold Studies of Picrocrocin, the Major Bitter Compound of Saffron.

    PubMed

    Chrysanthou, Andreas; Pouliou, Evangelia; Kyriakoudi, Anastasia; Tsimidou, Maria Z

    2016-01-01

    This study is part of a wider project on the bitter taste of saffron and its preparations. A deeper knowledge on the taste perception of picrocrocin is necessary in order to develop products that satisfy consumer senses and provide them with adequate amounts of saffron major constituents, also appreciated for bioactivity. A systematic approach on the bitterness of picrocrocin, the major responsible compound, was conducted. A panel was trained specifically for the determination of taste detection and recognition thresholds of picrocrocin, which were found to be 5.34 and 7.26 mg/L, respectively, using the Ascending Forced Choice of Limits methodology. The threshold values were examined in water in absence and presence of other saffron constituents and ethanol and were found to decrease when served hot (61 ± 4 °C). Bitterness was enhanced in 40% (v/v) aqueous ethanol. In both aqueous and ethanol extracts, the presence of saffron volatiles improved bitterness perception. The usefulness of the study was tested in the case of commercial saffron based infusions. PMID:26605534

  7. Characterization and Modulation of the Bitterness of Polymethoxyflavones Using Sensory and Receptor-Based Methods.

    PubMed

    Batenburg, A Max; de Joode, Teun; Gouka, Robin J

    2016-03-30

    An obstacle in the application of many "health ingredients" is their alleged off-flavor. We used a combination of chemical, sensory, and biological analyses to identify the bitter components in citrus peel-derived polymethoxyflavone preparations, claimed to be functional in the lowering of cholesterol. Nobiletin (56-81%) and tangeretin (10-33%) were found to be the main bitter components. Using in vitro receptor assays, hTAS2R14 was shown to be the main bitter receptor involved in their perception, with EC50 values of 14 and 63 μM, respectively. Our analysis provided several routes for off-flavor reduction. Purification is an option because a purified, single PMF species proved to be considerably less bitter upon application in emulsified foods, due to limited solubility in the aqueous phase. A second route, also demonstrated in vivo, is C5-specific demethoxylation, in line with the finding that 5-desmethylnobiletin does not activate hTAS2R14. A third route could be the use of TAS2R14 antagonists. As a proof of principle, several antagonists, with IC50 values ranging from 10 to 50 μM, were identified. PMID:26934534

  8. Sweet and bitter taste in the brain of awake behaving animals.

    PubMed

    Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao; Tränkner, Dimitri; Ryba, Nicholas J P; Zuker, Charles S

    2015-11-26

    Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviours, preventing the ingestion of toxic substances, and helping to ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste allows the identification of energy-rich nutrients whereas bitter warns against the intake of potentially noxious chemicals. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map, with each taste quality encoded by distinct cortical fields. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal's internal representation, sensory perception, and behavioural actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviours in the absence of sensory input. PMID:26580015

  9. Assessment of bitterness intensity and suppression effects using an Electronic Tongue

    NASA Astrophysics Data System (ADS)

    Legin, A.; Rudnitskaya, A.; Kirsanov, D.; Frolova, Yu.; Clapham, D.; Caricofe, R.

    2009-05-01

    Quantification of bitterness intensity and effectivness of bitterness suppression of a novel active pharmacological ingredient (API) being developed by GSK was performed using an Electronic Tongue (ET) based on potentiometric chemical sensors. Calibration of the ET was performed with solutions of quinine hydrochloride in the concentration range 0.4-360 mgL-1. An MLR calibration model was developed for predicting bitterness intensity expressed as "equivalent quinine concentration" of a series of solutions of quinine, bittrex and the API. Additionally the effectiveness of sucralose, mixture of aspartame and acesulfame K, and grape juice in masking the bitter taste of the API was assessed using two approaches. PCA models were produced and distances between compound containing solutions and corresponding placebos were calculated. The other approach consisted in calculating "equivalent quinine concentration" using a calibration model with respect to quinine concentration. According to both methods, the most effective taste masking was produced by grape juice, followed by the mixture of aspartame and acesulfame K.

  10. Expansion of a bitter taste receptor family in a polyphagous insect herbivore

    PubMed Central

    Xu, Wei; Papanicolaou, Alexie; Zhang, Hui-Jie; Anderson, Alisha

    2016-01-01

    The Insect taste system plays a central role in feeding behaviours and co-evolution of insect-host interactions. Gustatory receptors form the interface between the insect taste system and the environment. From genome and transcriptome sequencing we identified 197 novel gustatory receptor (GR) genes from the polyphagous pest Helicoverpa armigera. These GRs include a significantly expanded bitter receptor family (180 GRs) that could be further divided into three categories based on polypeptide lengths, gene structure and amino acid sequence. Type 1 includes 29 bitter Gr genes that possess introns. Type 2 includes 13 long intronless bitter Gr genes, while Type 3 comprises 131 short intronless bitter Gr genes. Calcium imaging analysis demonstrated that three Type 3 GRs (HarmGR35, HarmGR50 and HarmGR195) can be activated by a crude extract of cotton leaves. HarmGR195, a GR specifically and selectively expressed in adult tarsi, showed a specific response to proline, an amino acid widely present in plant tissues. We hypothesise that the expansion in the H. armigera GR family may be functionally tied to its polyphagous behavior. Understanding the molecular basis of polyphagy may provide opportunities for the development of new environmentally friendly pest control strategies. PMID:27032373

  11. The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Mazija, Lorena; Wüst, Alexander; Thum, Andreas S.

    2014-01-01

    The sensation of bitter substances can alert an animal that a specific type of food is harmful and should not be consumed. However, not all bitter compounds are equally toxic and some may even be beneficial in certain contexts. Thus, taste systems in general may have a broader range of functions than just in alerting the animal. In this study we investigate bitter sensing and processing in Drosophila larvae using quinine, a substance perceived by humans as bitter. We show that behavioral choice, feeding, survival, and associative olfactory learning are all directly affected by quinine. On the cellular level, we show that 12 gustatory sensory receptor neurons that express both GR66a and GR33a are required for quinine-dependent choice and feeding behavior. Interestingly, these neurons are not necessary for quinine-dependent survival or associative learning. On the molecular receptor gene level, the GR33a receptor, but not GR66a, is required for quinine-dependent choice behavior. A screen for gustatory sensory receptor neurons that trigger quinine-dependent choice behavior revealed that a single GR97a receptor gene expressing neuron located in the peripheral terminal sense organ is partially necessary and sufficient. For the first time, we show that the elementary chemosensory system of the Drosophila larva can serve as a simple model to understand the neuronal basis of taste information processing on the single cell level with respect to different behavioral outputs. PMID:24478653

  12. Functional characterization of bitter-taste receptors expressed in mammalian testis.

    PubMed

    Xu, Jiang; Cao, Jie; Iguchi, Naoko; Riethmacher, Dieter; Huang, Liquan

    2013-01-01

    Mammalian spermatogenesis and sperm maturation are susceptible to the effects of internal and external factors. However, how male germ cells interact with and respond to these elements including those potentially toxic substances is poorly understood. Here, we show that many bitter-taste receptors (T2rs), which are believed to function as gatekeepers in the oral cavity to detect and innately prevent the ingestion of poisonous bitter-tasting compounds, are expressed in mouse seminiferous tubules. Our in situ hybridization results indicate that Tas2r transcripts are expressed postmeiotically. Functional analysis showed that mouse spermatids and spermatozoa responded to both naturally occurring and synthetic bitter-tasting compounds by increasing intracellular free calcium concentrations, and individual male germ cells exhibited different ligand-activation profiles, indicating that each cell may express a unique subset of T2r receptors. These calcium responses could be suppressed by a specific bitter-tastant blocker or abolished by the knockout of the gene for the G protein subunit α-gustducin. Taken together, our data strongly suggest that male germ cells, like taste bud cells in the oral cavity and solitary chemosensory cells in the airway, utilize T2r receptors to sense chemicals in the milieu that may affect sperm behavior and fertilization. PMID:22983952

  13. Ability of Food/Drink to Reduce the Bitterness Intensity of Topiramate as Determined by Taste Sensor Analysis.

    PubMed

    Haraguchi, Tamami; Uchida, Takahiro; Hazekawa, Mai; Yoshida, Miyako; Nakashima, Masaki; Sanda, Hotaka; Hase, Takema; Tomoda, Yutaka

    2016-01-01

    The purpose of this study was to determine which foods and/or drinks are capable of reducing the bitterness of topiramate when consumed together with the medicine. The inhibitory effects of foods/drinks (yoghurt and nine other foods/drinks) on the bitterness of topiramate (5 mg/mL) were evaluated with a taste sensor using a bitterness-responsive membrane (C00). The effect of topiramate on the taste characteristics of the foods/drinks themselves was also evaluated by taste sensor outputs. The viscosities of the foods/drinks and the influence of the lactic acid and orotic acid components of yoghurt, the most successful of the tested substances in taste masking, on the bitterness of topiramate were also measured. Yoghurt was predicted to be the most effective of the foods/drinks tested in reducing the acidic bitterness-responsive sensor output of topiramate. The outputs of the astringency sensor, sourness sensor, and saltiness sensor to yoghurt were not reduced by the addition of topiramate. The viscosity and lactic acid and orotic acid components of yoghurt seemed to be the keys in reducing the bitterness of topiramate. Yoghurt is predicted to be the food/drink most capable of reducing the bitterness of topiramate without losing the taste of the food/drink itself. PMID:26726740

  14. New bitter-masking compounds: hydroxylated benzoic acid amides of aromatic amines as structural analogues of homoeriodictyol.

    PubMed

    Ley, Jakob P; Blings, Maria; Paetz, Susanne; Krammer, Gerhard E; Bertram, Heinz-Jürgen

    2006-11-01

    Starting from the known bitter-masking flavanones eriodictyol and homoeriodictyol from herba santa some structurally related hydroxybenzoic acid amides of benzylamines were synthesized and evaluated as masking agents toward bitterness of caffeine by sensory methods. The closest structural relatives of homoeriodictyol, the hydroxybenzoic acid vanillylamides 5-9, were the most active and were able to reduce the bitterness of a 500 mg L(-1) caffeine solution by about 30% at a concentration of 100 mg L(-1). 2,4-Dihydroxybenzoic acid vanillylamide 7 showed a clear dose-dependent activity as inhibitor of the bitter taste of caffein between 5 and 500 mg L(-1). Additionally, it was possible to reduce the bitterness of quinine and salicine but not of the bitter peptide N-l-leucyl-l-tryptophan. Combinations of homoeriodictyol and amide 7 showed no synergistic or antagonistic changes in activity. The results for model compound 7 suggested that the hitherto unknown masking mechanism is probably the same for flavanones and the new amides. In the future, the new amides may be alternatives for the expensive flavanones to create flavor solutions to mask bitterness of pharmaceuticals or foodstuffs. PMID:17061836

  15. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.).

    PubMed

    Davidovich-Rikanati, Rachel; Shalev, Lior; Baranes, Nadine; Meir, Ayala; Itkin, Maxim; Cohen, Shahar; Zimbler, Kobi; Portnoy, Vitaly; Ebizuka, Yutaka; Shibuya, Masaaki; Burger, Yosef; Katzir, Nurit; Schaffer, Arthur A; Lewinsohn, Efraim; Tadmor, Ya'akov

    2015-01-01

    Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. PMID:25308777

  16. Electrophysiological and behavioural characterization of gustatory responses to antennal 'bitter' taste in honeybees.

    PubMed

    de Brito Sanchez, Maria Gabriela; Giurfa, Martin; de Paula Mota, Theo Rolla; Gauthier, Monique

    2005-12-01

    We combined behavioural and electrophysiological experiments to study whether bitter taste is perceived at the antennal level in honeybees, Apis mellifera. Our behavioural studies showed that neither quinine nor salicin delivered at one antenna at different concentrations induced a retraction of the proboscis once it was extended in response to 1 M sucrose solution delivered to the opposite antenna. Bees that extended massively their proboscis to 1 M sucrose responded only partially when stimulated with a mixture of 1 M sucrose and 100 mM quinine. The mixture of 1 m sucrose and 100 mM salicin had no such suppressive effect. No behavioural suppression was found for mixtures of salt solution and either bitter substance. Electrophysiological recordings of taste sensillae at the antennal tip revealed sensillae that responded specifically either to sucrose or salt solutions, but none responded to the bitter substances quinine and salicin at the different concentrations tested. The electrophysiological responses of sensillae to 15 mM sucrose solution were inhibited by a mixture of 15 mM sucrose and 0.1 mM quinine, but not by a mixture of 15 mM sucrose and 0.1 mM salicin. The responses of sensillae to 50 mM NaCl were reduced by a mixture of 50 mm NaCl and 1 mM quinine but not by a mixture of 50 mM NaCl and 1 mM salicin. We concluded that no receptor cells for the bitter substances tested, exist at the level of the antennal tip of the honeybee and that antennal bitter taste is not represented as a separate perceptual quality. PMID:16367782

  17. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  18. Amino Acid Derivatives as Bitter Taste Receptor (T2R) Blockers*

    PubMed Central

    Pydi, Sai P.; Sobotkiewicz, Tyler; Billakanti, Rohini; Bhullar, Rajinder P.; Loewen, Michele C.; Chelikani, Prashen

    2014-01-01

    In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues. PMID:25059668

  19. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity.

    PubMed

    Lim, Juyun; Green, Barry G

    2007-01-01

    Although it has long been studied as a pure sensory irritant, the ability of capsaicin to evoke, mask, and desensitize bitter taste suggests that burning sensations and bitter taste might be closely related perceptually. The current study investigated the psychophysical relationship between bitterness and burning using 2 different approaches. In Experiment 1, spatial discrimination of 4 taste stimuli was measured in the presence or absence of capsaicin. The subjects' task was to report which of 3 swabs, spaced 1 cm apart and presented to the tongue tip, contained a taste stimulus when 1) water was presented on the other 2 swabs or 2) when 10 muM capsaicin was presented on all 3 swabs. The presence of capsaicin did not change performance on the 3 alternative forced-choice (3-AFC) task for sweet, sour, and salty stimuli, while the localization error for 1.8 mM quinine sulfate (QSO(4)) increased significantly. In Experiment 2, the perceptual similarity/dissimilarity of taste stimuli and capsaicin was measured directly using pairs of stimuli applied to opposite sides of the tongue tip on swabs separated by 2 cm. Multidimensional scaling analyses showed that capsaicin fell nearer to QSO(4) than to any other taste stimulus. Cluster analysis corroborated this finding: capsaicin was closely linked with QSO(4) and the capsaicin-QSO(4) group was separated from the other taste stimuli. The latter result indicated that bitterness was more similar to burning than to the other tastes. These findings imply that despite being mediated by different sensory modalities, bitterness and burn are qualitatively similar. We speculate that this similarity reflects a common function of these 2 sensations as sensory signals of potentially harmful stimuli. PMID:17023521

  20. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway.

    PubMed

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J; Wang, Guodong

    2015-03-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  1. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.

    PubMed

    Yang, Yanjuan; Yu, Li; Wang, Liping; Guo, Shirong

    2015-08-15

    Previously, we found that the amelioration of photosynthetic capacity by bottle gourd (Lagenaria siceraria Standl.) rootstock in watermelon seedlings (Citrullus lanatus [Thunb.] Mansf.) with salt treatment might be closely related to the enzymes in Calvin cycle such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Yang et al., 2012). We confirmed this and showed more details in this study that improved photosynthesis of watermelon plants by bottle gourd rootstock was associated with the decreased stomata resistance and the increased photochemical activity and photosynthetic metabolism with or without 100mM NaCl stress for 3 days. The analysis of gas exchange parameters showed that self-grafted plants suffered serious non-stomatal limitation to photosynthesis under salt stress while rootstock-grafted plants were mainly affected by stomata limitation in stress conditions. Further, results showed that NaCl stress markedly reduced the chlorophyll content, damaged the structure of photosynthetic apparatus, and inhibited photochemical activity and CO2 assimilation in self-grafted plants. In contrast, rootstock-grafting increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosystem II (PSII) reaction center and the thylakoids structure induced by NaCl stress. Furthermore, rootstock-grafting enhanced the content and activity of Rubisco and thus elevated carbon fixation in the leaves of watermelon scions under salt stress. The gene expressions of enzymes related to ribulose-1,5-bisphosphate (RuBP) regeneration were also up-regulated by rootstock and this probably guaranteed the sufficient supply of RuBP for the operation of Calvin cycle in watermelon scions under salt stress. Thus, bottle gourd rootstock promoted photosynthesis by the activation of stomatal and non-stomatal abilities, especially the regulation of a variety of photosynthetic enzymes, including Rubisco in grafted watermelon plants under NaCl stress

  2. Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms.

    PubMed

    Gong, Li; Paris, Harry S; Nee, Michael H; Stift, Gertraud; Pachner, Martin; Vollmann, Johann; Lelley, Tamas

    2012-03-01

    Genetic relationships among 104 accessions of Cucurbita pepo were assessed from polymorphisms in 134 SSR (microsatellite) and four SCAR loci, yielding a total of 418 alleles, distributed among all 20 linkage groups. Genetic distance values were calculated, a dendrogram constructed, and principal coordinate analyses conducted. The results showed 100 of the accessions as distributed among three clusters representing each of the recognized subspecies, pepo, texana, and fraterna. The remaining four accessions, all having very small, round, striped fruits, assumed central positions between the two cultivated subspecies, pepo and texana, suggesting that they are relicts of undescribed wild ancestors of the two domesticated subspecies. In both, subsp. texana and subsp. pepo, accessions belonging to the same cultivar-group (fruit shape) associated with one another. Within subsp. pepo, accessions grown for their seeds or that are generalists, used for both seed and fruit consumption, assumed central positions. Specialized accessions, grown exclusively for consumption of their young fruits, or their mature fruit flesh, or seed oil extraction, tended to assume outlying positions, and the different specializations radiated outward from the center in different directions. Accessions of the longest-fruited cultivar-group, Cocozelle, radiated bidirectionally, indicating independent selection events for long fruits in subsp. pepo probably driven by a common desire to consume the young fruits. Among the accessions tested, there was no evidence for crossing between subspecies after domestication. PMID:22101929

  3. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.).

    PubMed

    Rosati, Adolfo; Cafiero, Caterina; Paoletti, Andrea; Alfei, Barbara; Caporali, Silvia; Casciani, Lorena; Valentini, Massimiliano

    2014-09-15

    We examined whether some agronomical practices (i.e. organic vs. conventional) affect olive fruit and oil composition, and oil sensory properties. Fruit characteristics (i.e. fresh and dry weight of pulp and pit, oil content on a fresh and dry weight basis) did not differ. Oil chemical traits did not differ except for increased content of polyphenols in the organic treatments, and some changes in the acidic composition. Sensory analysis revealed increased bitterness (both cultivars) and pungency (Frantoio) and decreased sweetness (Frantoio) in the organic treatment. Fruit metabolomic analysis with HRMAS-NMR indicated significant changes in some compounds including glycocholate, fatty acids, NADPH, NADP+, some amino acids, thymidine, trigonelline, nicotinic acid, 5,6-dihydrouracil, hesanal, cis-olefin, β-D-glucose, propanal and some unassigned species. The results suggest that agronomical practices may have effects on fruit composition that may be difficult to detect unless a broad-spectrum analysis is used. PMID:24767050

  4. Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh sweet oranges (Citrus sinensis) during fruit development.

    PubMed

    Chen, Jiajing; Zhang, Hongyan; Pang, Yibo; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan

    2015-10-01

    Four main flavanone glycosides (FGs) and four main polymethoxylated flavones (PMFs) were determined in fruits of 'Cara Cara' navel orange, 'Seike' navel orange, 'Anliu' and 'Honganliu' sweet orange (Citrus sinensis). No bitter neohesperidosides were detected in the FG profiles, indicating the functional inability of 1,2-rhamnosyltransferase, though relatively high transcription levels were detected in the fruit tissues of 'Anliu' and 'Honganliu' sweet oranges. Different to the FGs, the PMFs only exist abundantly in the peel and decreased gradually throughout fruit development of sweet oranges, suggesting the expression of methylation-related genes accounting for PMF biosynthesis have tissue-specificity. Significant changes in production of the eight flavonoids were found between red-flesh and blonde-flesh sweet oranges, indicating that lycopene accumulation might have direct or indirect effects on the modification of flavonoid biosynthesis in these citrus fruits. PMID:25872450

  5. In vitro propagation of spine gourd (Momordica dioica Roxb.) and assessment of genetic fidelity of micropropagated plants using RAPD analysis.

    PubMed

    Rai, Govind Kumar; Singh, Major; Rai, Neha Prakash; Bhardwaj, D R; Kumar, Sanjeev

    2012-07-01

    An efficient protocol for rapid in vitro clonal propagation of spine gourd (Momordica dioica Roxb.) genotype RSR/DR15 (female) and DR/NKB-28 (male) was developed through enhanced axillary shoot proliferation from nodal segments. Maximum shoot proliferation of 6.2 shoots per explant with 100 % shoot regeneration frequency was obtained from the female genotype on Murashige and Skoog's (1962) medium supplemented with 0.9 μM N6-benzyladenine (BA) and 200 mg l(-1) casein hydrolysate (CH). While from the male genotype the optimum shoot regeneration frequency (86.6 %) and 6.4 shoots per explant was obtained on MS medium supplemented with 2.2 μM BA. CH induced vigorous shoots, promoted callus formation, and proved inhibitory for shoot differentiation and shoot length, especially in explants from male genotype. Rooting was optimum on half-strength MS medium (male 92.8 %, female 74.6 %) containing 4.9 μM indole-3-butyric acid (IBA). Plantlets were transferred to plastic cups containing a mixture of cocopit and perlite (1:1 ratio) and then to soil after 2-3 weeks. 84 % female and 81 % male regenerated plantlets survived and grew vigorously in the field. Genetic stability of the regenerated plants was assessed using random amplified polymorphic DNA (RAPD). The amplification products were monomorphic in the in vitro propagated plants and similar to those of mother plant. No polymorphism was detected revealing the genetic integrity of in vitro propagated plants. This micropropagation procedure could be useful for raising genetically uniform planting material of known sex for commercial cultivation or build-up of plant material of a specific sex-type. PMID:23814442

  6. Variation in the Ability to Taste Bitter Thiourea Compounds: Implications for Food Acceptance, Dietary Intake, and Obesity Risk in Children.

    PubMed

    Keller, Kathleen L; Adise, Shana

    2016-07-17

    The ability to taste bitter thiourea compounds, such as phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP), is inherited. Polymorphisms in the bitter-taste receptor TAS2R38 explain the majority of phenotypic variation in the PROP phenotype. It has been hypothesized that the PROP phenotype is a marker for perception of a variety of chemosensory experiences. In this review, we discuss studies that have investigated the relationship between bitter-taste response and dietary behaviors and chronic health in children. Investigators have hypothesized that children who are PROP tasters have lower liking and consumption of bitter foods, such as cruciferous vegetables. Additionally, several studies suggest that children who are unable to taste PROP (i.e., nontasters) like and consume more dietary fat and are prone to obesity. The relationship between the PROP phenotype and obesity is influenced by multiple confounders, including sex, food access, ethnicity, and socioeconomic status. Future studies that adjust for these variables are needed. PMID:27070900

  7. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.

    PubMed

    Frank, Oliver; Blumberg, Simone; Kunert, Christof; Zehentbauer, Gerhard; Hofmann, Thomas

    2007-03-01

    Aimed at elucidating intense bitter-tasting molecules in coffee, various bean ingredients were thermally treated in model experiments and evaluated for their potential to produce bitter compounds. As caffeic acid was found to generate intense bitterness reminiscent of the bitter taste of a strongly roasted espresso-type coffee, the reaction products formed were screened for bitter compounds by means of taste dilution analysis, and the most bitter tastants were isolated and purified. LC-MS/MS as well as 1-D/2-D NMR experiments enabled the identification of 10 bitter compounds with rather low recognition threshold concentrations ranging between 23 and 178 micromol/L. These bitter compounds are the previously unreported 1,3-bis(3',4'-dihydroxyphenyl) butane, trans-1,3-bis(3',4'-dihydroxyphenyl)-1-butene, and eight multiply hydroxylated phenylindanes, among which five derivatives are reported for the first time. In addition, the occurrence of each of these bitter compounds in a coffee brew was verified by means of LC-MS/MS (ESI-) operating in the multiple reaction monitoring (MRM) mode. The structures of these bitter compounds show strong evidence that they are generated by oligomerization of 4-vinylcatechol released from caffeic acid moieties upon roasting. PMID:17269788

  8. Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents.

    PubMed

    Platel, K; Srinivasan, K

    1997-04-01

    Vegetables are among the numerous plant adjuncts tried for the treatment of diabetes mellitus. A few vegetables that are commonly consumed in India have been claimed to possess antidiabetic potency. In recent years, there has been a renewed interest to screen such plant food materials, for a possible beneficial use. Considerable amount of work has been carried out in this regard with bitter gourd (Momordica charantia) and ivy gourd (Coccinia indica) both in experimental animals and human diabetic subjects. Majority of these studies have documented the beneficial effect of the fruit of bitter gourd and leaf of ivy gourd when administered orally as a single dose. The hypoglycaemic influence is claimed to be mediated through an insulin secretagogue effect or through an influence on enzymes involved in glucose metabolism. The limited number of studies on other vegetables such as cabbage (Brassica oleracia), green leafy vegetables, beans and tubers have shown the beneficial hypoglycaemic influence in both experimental animals and humans. There is scope for more extensive research in this area, especially to examine the long term beneficial effect of dietary vegetables, to identify the active principle, and to understand the mechanism of action, which is at present unclear. Since diet forms the mainstay in the management of diabetes mellitus, there is scope for exploiting the antidiabetic potency of vegetables to the maximum extent. Such plant food adjuncts possessing hypoglycaemic activity appear to hold promise as potential antidiabetic agents. PMID:9188186

  9. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing.

    PubMed

    Liu, Na; Yang, Jinghua; Fu, Xinxing; Zhang, Li; Tang, Kai; Guy, Kateta Malangisha; Hu, Zhongyuan; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2016-04-01

    Grafting is an important agricultural technique widely used to improve plant growth, yield, and adaptation to either biotic or abiotic stresses. However, the molecular mechanisms underlying grafting-induced physiological processes remain unclear. Watermelon (Citrullus lanatus L.) is an important horticultural crop worldwide. Grafting technique is commonly used in watermelon production for improving its tolerance to stresses, especially to the soil-borne fusarium wilt disease. In the present study, we used high-throughput sequencing to perform a genome-wide transcript analysis of scions from watermelon grafted onto bottle gourd and squash rootstocks. Our transcriptome and digital gene expression (DGE) profiling data provided insights into the molecular aspects of gene regulation in grafted watermelon. Compared with self-grafted watermelon, there were 787 and 3485 genes differentially expressed in watermelon grafted onto bottle gourd and squash rootstocks, respectively. These genes were associated with primary and secondary metabolism, hormone signaling, transcription factors, transporters, and response to stimuli. Grafting led to changes in expression of these genes, suggesting that they may play important roles in mediating the physiological processes of grafted seedlings. The potential roles of the grafting-responsive mRNAs in diverse biological and metabolic processes were discussed. Obviously, the data obtained in this study provide an excellent resource for unraveling the mechanisms of candidate genes function in diverse biological processes and in environmental adaptation in a graft system. PMID:26500104

  10. Intestinal lipids and minerals in streptozotocin-induced diabetic rats fed bitter yam (Dioscorea polygonoides) sapogenin extract.

    PubMed

    Omoruyi, Felix O; McAnuff-Harding, Marie A; Asemota, Helen N

    2006-10-01

    Yam is the leading form of staple for millions of people in the tropical and subtropical countries. They are good sources of carbohydrate. However, the protein content of yam is low. The effect of bitter yam sapogenin extract or commercial diosgenin on faecal minerals and intestinal lipids in streptozotocin-induced diabetic rats was studied. Sapogenin extract or commercial diosgenin (1%) supplemented diets were fed to diabetic male Wistar rats for three weeks. Bitter yam sapogenin extract or commercial diosgenin did not significantly alter faecal magnesium, calcium, and zinc excretion but significantly decreased faecal sodium and potassium excretion. The absorption of iron was impaired by bitter yam sapogenin extract or commercial diosgenin during the first week of feeding. Bitter yam sapogenin extract or commercial diosgenin supplements significantly decreased intestinal lipids towards normal. Faecal lipids excreted was significantly higher in diabetic rats fed bitter yam sapogenin extract or commercial diosgenin for the three weeks period compared to the diabetic control group. These results show that bitter yam sapogenin extract or commercial diosgenin does not have the same effects on mineral excretion in diabetes. There was no direct correlation between the decrease in excretion of mono-valent cations and the activity of intestinal Na+/K+ATPase. PMID:17105702

  11. “A Spoonful of Sugar Helps the Medicine Go Down”: Bitter Masking by Sucrose Among Children and Adults

    PubMed Central

    Reed, Danielle R.; Mathew, Phoebe S.; Roberts, Kristi M.; Mansfield, Corrine J.

    2015-01-01

    Sweeteners are often added to liquid formulations of drugs but whether they merely make them better tasting or actually reduce the perception of bitterness remains unknown. In a group of children and adults, we determined whether adding sucrose to urea, caffeine, denatonium benzoate, propylthiouracil (PROP), and quinine would reduce their bitterness using a forced-choice method of paired comparisons. To better understand individual differences, adults also rated each solution using a more complex test (general Labeled Magnitude Scale [gLMS]) and were genotyped for the sweet taste receptor gene TAS1R3 and the bitter receptor TAS2R38. Sucrose suppressed the bitterness of each agent in children and adults. In adults, sucrose was effective in reducing the bitterness ratings from moderate to weak for all compounds tested, but those with the sensitive form of the sweet receptor reported greater reduction for caffeine and quinine. For PROP, sucrose was most effective for those who were genetically the most sensitive, although this did not attain statistical significance. Not only is the paired comparison method a valid tool to study how sucrose improves the taste of pediatric medicines among children but knowledge gleaned from basic research in bitter taste and how to alleviate it remains an important public health priority. PMID:25381313

  12. "A spoonful of sugar helps the medicine go down": bitter masking by sucrose among children and adults.

    PubMed

    Mennella, Julie A; Reed, Danielle R; Mathew, Phoebe S; Roberts, Kristi M; Mansfield, Corrine J

    2015-01-01

    Sweeteners are often added to liquid formulations of drugs but whether they merely make them better tasting or actually reduce the perception of bitterness remains unknown. In a group of children and adults, we determined whether adding sucrose to urea, caffeine, denatonium benzoate, propylthiouracil (PROP), and quinine would reduce their bitterness using a forced-choice method of paired comparisons. To better understand individual differences, adults also rated each solution using a more complex test (general Labeled Magnitude Scale [gLMS]) and were genotyped for the sweet taste receptor gene TAS1R3 and the bitter receptor TAS2R38. Sucrose suppressed the bitterness of each agent in children and adults. In adults, sucrose was effective in reducing the bitterness ratings from moderate to weak for all compounds tested, but those with the sensitive form of the sweet receptor reported greater reduction for caffeine and quinine. For PROP, sucrose was most effective for those who were genetically the most sensitive, although this did not attain statistical significance. Not only is the paired comparison method a valid tool to study how sucrose improves the taste of pediatric medicines among children but knowledge gleaned from basic research in bitter taste and how to alleviate it remains an important public health priority. PMID:25381313

  13. Variability in Human Bitter Taste Sensitivity to Chemically Diverse Compounds Can Be Accounted for by Differential TAS2R Activation.

    PubMed

    Roura, Eugeni; Aldayyani, Asya; Thavaraj, Pridhuvi; Prakash, Sangeeta; Greenway, Delma; Thomas, Walter G; Meyerhof, Wolfgang; Roudnitzky, Natacha; Foster, Simon R

    2015-07-01

    The human population displays high variation in taste perception. Differences in individual taste sensitivity may also impact on nutrient intake and overall appetite. A well-characterized example is the variable perception of bitter compounds such as 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC), which can be accounted for at the molecular level by polymorphic variants in the specific type 2 taste receptor (TAS2R38). This phenotypic variation has been associated with influencing dietary preference and other behaviors, although the generalization of PROP/PTC taster status as a predictor of sensitivity to other tastes is controversial. Here, we proposed that the taste sensitivities of different bitter compounds would be correlated only when they activate the same bitter taste receptor. Thirty-four volunteers were exposed to 8 bitter compounds that were selected based on their potential to activate overlapping and distinct repertoires of TAS2Rs. Taste intensity ratings were evaluated using the general Labeled Magnitude Scale. Our data demonstrate a strong interaction between the intensity for bitter substances when they activate common TAS2Rs. Consequently, PROP/PTC sensitivity was not a reliable predictor of general bitter sensitivity. In addition, our findings provide a novel framework to predict taste sensitivity based on their specific T2R activation profile. PMID:25999325

  14. Discovery and genetic analysis of non-bitter Tartary buckwheat (Fagopyrum tataricum Gaertn.) with trace-rutinosidase activity.

    PubMed

    Suzuki, Tatsuro; Morishita, Toshikazu; Mukasa, Yuji; Takigawa, Shigenobu; Yokota, Satoshi; Ishiguro, Koji; Noda, Takahiro

    2014-12-01

    In a screening of about 500 lines of Tartary buckwheat, we identified lines that contained no detectable rutinosidase isozymes using an in-gel detection assay. We confirmed that seeds of these individuals had only a trace level of in-vitro rutinosidase activity. To investigate the heritability of the trace-rutinosidase characteristic, we analyzed the progeny of crosses between rutinosidase trace-lines, 'f3g-162', and the 'Hokkai T8'. The F2 progeny clearly divided into two groups: those with rutinosidase activity under 1.5 nkat/g seed (trace-rutinosidase) and those with activity over 400 nkat/g seed (normal rutinosidase). The segregation pattern of this trait in F2 progeny exhibited 1 : 3 ratio (trace-rutinosidase : normal rutinosidase), suggesting that the trace-rutinosidase trait is conferred by a single recessive gene; rutinosidase-trace A (rutA). In addition, sensory panelists evaluated the bitterness of flour from trace-rutinosidase individuals and did not detect bitterness, whereas flour from normal rutinosidase individuals was found to have strong bitterness. Although at least three bitter compounds have been reported in Tartary buckwheat seeds, our present findings indicate that rutin hydrolysis is the major contributing factor to bitterness. In addition, the trace-rutinosidase line identified here, 'f3g-162', is a promising material for generating a non-bitter Tartary buckwheat variety. PMID:25914588

  15. Effects of sweet and bitter gustatory stimuli in anorexia nervosa on EEG frequency spectra.

    PubMed

    Tóth, Erika; Túry, Ferenc; Gáti, Agnes; Weisz, Júlia; Kondákor, István; Molnár, Márk

    2004-05-01

    The possible differences in processing gustatory stimuli in anorexic patients compared to healthy control subjects was investigated by electrophysiological methods. The electroencephalogram (EEG) was recorded in outpatients treated with anorexia nervosa (AN) and age-matched controls after exposure to sweet (milk chocolate) and bitter (black tea) taste stimuli. Power spectrum analysis was performed on EEG epochs recorded in the above conditions. Compared to controls a significantly higher percent of theta, and lower percent of alpha1 band power was found in anorexic patients, irrespective of the kind of taste effects and hemispheric side. The pattern of activation caused by sweet and bitter stimuli was found to be different in these two groups, possibly indicating altered gustatory processing mechanisms in AN. PMID:15094251

  16. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans.

    PubMed

    Lang, Roman; Klade, Stefan; Beusch, Anja; Dunkel, Andreas; Hofmann, Thomas

    2015-12-01

    Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) μmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%). PMID:26585544

  17. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire.

    PubMed

    Li, Diyan; Zhang, Jianzhi

    2014-02-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  18. Evolution of the taste of a bitter Camembert cheese during ripening: characterization of a matrix effect.

    PubMed

    Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic. PMID:11409989

  19. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    PubMed Central

    Li, Diyan; Zhang, Jianzhi

    2014-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  20. How Do Fruits Ripen?

    ERIC Educational Resources Information Center

    Sargent, Steven A.

    2005-01-01

    A fruit is alive, and for it to ripen normally, many biochemical reactions must occur in a proper order. After pollination, proper nutrition, growing conditions, and certain plant hormones cause the fruit to develop and grow to proper size. During this time, fruits store energy in the form of starch and sugars, called photosynthates because they…

  1. Masking the bitter taste of injectable lidocaine HCl formulation for dental procedures.

    PubMed

    Wei, Yangjie; Nedley, Michael P; Bhaduri, Sarit B; Bredzinski, Xavier; Boddu, Sai H S

    2015-04-01

    Several attempts have been made to mask the bitter taste of oral formulations, but none have been made for injectable formulations. This study aims to mask the bitter taste of dental lidocaine HCl (LID) injection using hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium saccharin. Inclusion complexes of LID and HP-β-CD were prepared by the solution method in 1:1 and 1:2 M ratios. Inclusion complexes in solution were studied using phase solubility in phosphate buffer solutions (pH 8, 9, and 10). Freeze-dried inclusion complexes were characterized using differential scanning calorimetry (DSC), X-ray, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and in vitro release. Injectable formulations were prepared using inclusion complexes and characterized for stability and for taste using an Alpha MOS ASTREE electronic tongue (ETongue). The association constants of HP-β-CD with lidocaine-free base and its ionized form were found to be 26.23 ± 0.00025 and 0.8694 ± 0.00045 M(-1), respectively. Characterization studies confirmed the formation of stable inclusion complexes of LID and HP-β-CD. Injectable formulations were found to be stable for up to 6 months at 4°C, 25°C, and 40°C. The taste evaluation study indicated that HP-β-CD (1:1 and 1:2 M ratios) significantly improved the bitter taste of LID injectable formulation. In conclusion, inclusion complex in the 1:1 M ratio with 0.09% sodium saccharin was considered to be optimum in masking the bitter taste of LID. PMID:25361901

  2. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    PubMed

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-01

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells. PMID:24613843

  3. The fruit, the whole fruit, and everything about the fruit.

    PubMed

    Kourmpetli, Sofia; Drea, Sinéad

    2014-08-01

    Fruits come in an impressive array of shapes, sizes, and consistencies, and also display a huge diversity in biochemical/metabolite profiles, wherein lies their value as rich sources of food, nutrition, and pharmaceuticals. This is in addition to their fundamental function in supporting and dispersing the developing and mature seeds for the next generation. Understanding developmental processes such as fruit development and ripening, particularly at the genetic level, was once largely restricted to model and crop systems for practical and commercial reasons, but with the expansion of developmental genetic and evo-devo tools/analyses we can now investigate and compare aspects of fruit development in species spanning the angiosperms. We can superimpose recent genetic discoveries onto the detailed characterization of fruit development and ripening conducted with primary considerations such as yield and harvesting efficiency in mind, as well as on the detailed description of taxonomically relevant characters. Based on our own experience we focus on two very morphologically distinct and evolutionary distant fruits: the capsule of opium poppy, and the grain or caryopsis of cereals. Both are of massive economic value, but because of very different constituents; alkaloids of varied pharmaceutical value derived from secondary metabolism in opium poppy capsules, and calorific energy fuel derived from primary metabolism in cereal grains. Through comparative analyses in these and other fruit types, interesting patterns of regulatory gene function diversification and conservation are beginning to emerge. PMID:24723396

  4. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  5. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  6. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes

    PubMed Central

    Wang, Kai; Zhao, Huabin

    2015-01-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  7. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals

    PubMed Central

    Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.

    2010-01-01

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764

  8. Functions of human bitter taste receptors depend on N-glycosylation.

    PubMed

    Reichling, Claudia; Meyerhof, Wolfgang; Behrens, Maik

    2008-08-01

    Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds. Moreover, the genetically highly polymorphic hTAS2Rs recognize an enormous number of structurally diverse toxic and non-toxic bitter substances, and hence, may substantially influence our individual eating habits. Heterologous expression in mammalian cells is a useful tool to investigate interactions between these receptors and their agonists. However, many bitter taste receptors are poorly expressed at the cell surface of heterologous cells requiring the addition of plasma membrane export promoting epitopes to the native receptor proteins. Currently, nothing is known about amino acid motifs or other receptor-intrinsic features of TAS2Rs affecting plasma membrane association. In the present study, we analyzed the Asn-linked glycosylation of hTAS2Rs at a consensus sequence in the second extracellular loop, which is conserved among all 25 hTAS2Rs. Non-glycosylated receptors exhibit substantially lower cell surface localization and reduced association with the cellular chaperone calnexin. As the auxiliary factors receptor transporting proteins 3 and 4 are able to restore the function of non-glycosylated hTAS2R16 partially, we conclude that glycosylation is important for receptor maturation but not for its function per se. PMID:18466324

  9. Formulation development and evaluation of metformin chewing gum with bitter taste masking

    PubMed Central

    Mostafavi, Sayed Abolfazl; Varshosaz, Jaleh; Arabian, Saber

    2014-01-01

    Background: Medicated gums are intended to be chewed and act either locally, absorbed via the buccal mucosa or swallowed with saliva. We prepared the metformin gum to overcome its side effects including vomiting, diarrhea, and abdomen discomfort. Furthermore, it could be useful for those who have swallowing problems. Materials and Methods: Metformin hydrochloride (250 mg) with suitable sweeteners was mixed manually for 5 min. This mixture was spray dried, freeze dried, or directly mixed with chewing gum base. Glycerin, xylitol, and menthol were added and the produced paste was kept in the freezer for 2 h to be stable. As the metformin shows bitter taste, we tried to mask this unpleasant taste with using different methods explained. The releasing pattern was evaluated by using a mechanical chewing machine. The best formulation with the optimized releasing pattern, suitable physicochemical properties and pleasant taste were selected. Content uniformity, releasing percent, and other physicochemical properties were identified as well. Taste, flavor, and appearance characteristics were evaluated by using a self-made questionnaire based on the hedonic test method. Results: The chewing gum dosage content was about 86.2%. The release rate of metformin chewing gum was about 70% after 5 min of mastication. Masking the bitter taste of drug was achieved by using acesulfame-isomalt as sweeteners and prepared it by freeze drying equipment. Conclusion: Metfornin chewing gum had suitable appearance and appropriate invitro characteristics that fallow the pharmacopeia suggestions. This chewable gum showed bitterness suppression with a suitable release rate. PMID:24800181

  10. Structural and Sensory Characterization of Bitter Tasting Steroidal Saponins from Asparagus Spears (Asparagus officinalis L.).

    PubMed

    Dawid, Corinna; Hofmann, Thomas

    2012-12-01

    Application of sequential solvent extraction and iterative chromatographic separation in combination with taste dilution analysis recently revealed a series of steroidal saponins as the key contributors to the typical bitter taste of white asparagus spears (Asparagus officinalis L.). Besides six previously reported saponins, (25R)-furost-5-en-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, (25R)-furostane-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, and (25S)-furostane-3β,22,26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside]-26-O-β-D-glucopyranoside, and 3-O-[{α-L-rhamnopyranosyl-(1→2)}{α-L-rhamnopyranosyl-(1→4)}-β-D-glucopyranosyl]-(25S)-spirost-5-ene-3β-ol were identified for the first time as key bitter compounds in the edible spears of white asparagus by means of LC-MS/MS, LC-TOF-MS, 1D/2D-NMR spectroscopy, and hydrolysis experiments. This paper presents the isolation, structure determination, and sensory activity of these saponins. Depending on their chemical structure, the saponins identified showed human bitter recognition thresholds between 10.9 and 199.7 μmol/L (water). PMID:23137023

  11. Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation

    PubMed Central

    Avau, Bert; Rotondo, Alessandra; Thijs, Theo; Andrews, Christopher N.; Janssen, Pieter; Tack, Jan; Depoortere, Inge

    2015-01-01

    Bitter taste receptors (TAS2Rs) are present in extra-oral tissues, including gut endocrine cells. This study explored the presence and mechanism of action of TAS2R agonists on gut smooth muscle in vitro and investigated functional effects of intra-gastric administration of TAS2R agonists on gastric motility and satiation. TAS2Rs and taste signalling elements were expressed in smooth muscle tissue along the mouse gut and in human gastric smooth muscle cells (hGSMC). Bitter tastants induced concentration and region-dependent contractility changes in mouse intestinal muscle strips. Contractions induced by denatonium benzoate (DB) in gastric fundus were mediated via increases in intracellular Ca2+ release and extracellular Ca2+-influx, partially masked by a hyperpolarizing K+-efflux. Intra-gastric administration of DB in mice induced a TAS2R-dependent delay in gastric emptying. In hGSMC, bitter compounds evoked Ca2+-rises and increased ERK-phosphorylation. Healthy volunteers showed an impaired fundic relaxation in response to nutrient infusion and a decreased nutrient volume tolerance and increased satiation during an oral nutrient challenge test after intra-gastric DB administration. These findings suggest a potential role for intestinal TAS2Rs as therapeutic targets to alter gastrointestinal motility and hence to interfere with hunger signalling. PMID:26541810

  12. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    PubMed Central

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice after their separation from the common ancestor and that lineage-specific pseudogenization becomes more conspicuous in humans than in nonhuman primates. Although positive selection has operated on some amino acids in extracellular domains, functional constraints against T2R genes are more relaxed in primates than in mice and this trend has culminated in the rapid deterioration of the bitter-tasting capability in humans. Since T2R molecules play an important role in avoiding generally bitter toxic and harmful substances, substantial modification of the T2R gene repertoire is likely to reflect different responses to changes in the environment and to result from species-specific food preference during primate evolution. PMID:15744053

  13. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  14. Characterization of the small RNA component of leaves and fruits from four different cucurbit species

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits. Results We generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted. Conclusion High-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable

  15. Theoretical and functional complexity of white variegation of unripe fleshy fruits.

    PubMed

    Lev-Yadun, Simcha

    2013-10-01

    In many plant species, the bright colors of ripe fruit serve to attract frugivores to enable efficient seed dispersal. Here I show that the fleshy fruit of several dozens of species originating from Asia (southeastern, eastern and central), the Middle East, Africa, America (South, Central and North), Australia, Polynesia and Micronesia, with fruit usually larger than 1 cm, have white or light green spots while they are still unripe. In many of these species, while the spots are conspicuous, the unripe fruit is known to be poisonous, bitter or sour. I propose that this fruit syndrome may signal frugivores that the fruit is still unripe. Similarly to the succulent leaves of window-plants, these spots form windows that enable light to penetrate deeper into the photosynthetic layers in the developing fruit. This seems to be a solution to overcome the limitations of light harvest because of the high volume to surface ratio of developing fleshy fruits. The white or whitish variegation in these unripe fleshy fruits may serve at least five functions: 1) Windows for photosynthesis, 2) camouflage, 3) signaling to frugivores that they are not ripe (possibly sometimes a type of mutualism with frugivores), 4) signaling to frugivores that they are poisonous--aposematism, and 5) mimicking insect eggs to reduce egg laying. All these functions may be partly or fully simultaneous. Because these white spots appear in plants of diverse geographical and taxonomic origin, it is probably an old adaptation, and such a syndrome has appeared and been selected for many times. PMID:23921545

  16. [Comparative analysis of ergogenic efficacy of energy drinks components (caffeine and bitter orange extract) in combination with alcohol].

    PubMed

    Anuchin, A M; Iuvs, G G

    2014-01-01

    Estimation of ergogenic effects of caffeine and bitter orange exract combined with alcohol is presented in the article. Investigations were performed on 3 groups (8 animals in each group) of male Wistar rats aged 4 months. Animals in group 1 were treated orally for 7 days, the mixture comprising caffeine and alcohol (0.6 g of caffeine, 72 ml of ethanol, water to 1 liter) in an amount equivalent to 4.28 mg caffeine per kg of body weight. Animals in group 2 received a mixture containing bitter orange extract and alcohol (1 g bitter orange extract, 72 ml of ethanol, water to 1 liter) in an amount equivalent to 0.43 mg of synephrine per kg body weight. Animals in the control group received the same volume (7.1 ml/kg) 7.2% aqueous solution of ethanol. Group of animals consumed caffeine in mixture with alcohol and the control group exhibited a significant weight gain, while the body weight of animals treated with the extract of bitter orange didn't significantly change. Using the methodology of the open field the effects of caffeine and bitter orange extract in combination with alcohol on the ratio of the active components of the orienting-exploratory behavior and passive-defensive behavior have been determined. Administration of mixture with caffeine increased locomotory activity by 164%, administration of bitter orange extract didn't affect this performance. Introduction of caffeine containing mixture significantly reduced the level of situational anxiety, which was manifested in the reduction of time spent by the animal in the center of the arena. The effects of ergogenic components on the performance of static and dynamic muscle endurance have been investigated. Single administration of the mixture containing caffeine, after 30 min caused a significant increase in performance and, consequently, endurance of glycolytic muscle fibers measured using the "inverted grid" test. Animals from this group produced 186% more work compared with control animals. Acute

  17. QSBR study of bitter taste of peptides: application of GA-PLS in combination with MLR, SVM, and ANN approaches.

    PubMed

    Soltani, Somaieh; Haghaei, Hossein; Shayanfar, Ali; Vallipour, Javad; Asadpour Zeynali, Karim; Jouyban, Abolghasem

    2013-01-01

    Detailed information about the relationships between structures and properties/activities of peptides as drugs and nutrients is useful in the development of drugs and functional foods containing peptides as active compounds. The bitterness of the peptides is an undesirable property which should be reduced during drug/nutrient production, and quantitative structure bitter taste relationship (QSBR) studies can help researchers to design less bitter peptides with higher target efficiency. Calculated structural parameters were used to develop three different QSBR models (i.e., multiple linear regression, support vector machine, and artificial neural network) to predict the bitterness of 229 peptides (containing 2-12 amino acids, obtained from the literature). The developed models were validated using internal and external validation methods, and the prediction errors were checked using mean percentage deviation and absolute average error values. All developed models predicted the activities successfully (with prediction errors less than experimental error values), whereas the prediction errors for nonlinear methods were less than those for linear methods. The selected structural descriptors successfully differentiated between bitter and nonbitter peptides. PMID:24371826

  18. A 60day double-blind, placebo-controlled safety study involving Citrus aurantium (bitter orange) extract.

    PubMed

    Kaats, Gilbert R; Miller, Howard; Preuss, Harry G; Stohs, Sidney J

    2013-05-01

    Bitter orange (Citrus aurantium) extract and its primary protoalkaloid p-synephrine are widely consumed in dietary supplements for weight management and sports performance. p-Synephrine is also present in foods derived from a variety of Citrus species. Bitter orange extract is commonly used in combination with multiple herbal ingredients. Most clinical studies conducted on bitter orange extract alone have involved single doses. The purpose of this study was to assess the safety of bitter orange extract (approximately 49mg p-synephrine) alone or in combination with naringin and hesperidin twice daily given to 25 healthy subjects per group for 60days in a double-blinded, placebo-controlled protocol. No significant changes occurred in systolic or diastolic blood pressures, blood chemistries or blood cell counts in control or p-synephrine treated groups. Small, clinically insignificant differences in heart rates were observed between the p-synephrine plus naringin and hesperidin group and the p-synephrine alone as well as the placebo group. No adverse effects were reported in the three groups. Bitter orange extract and p-synephrine appear to be without adverse effects at a dose of up to 98mg daily for 60days based on the parameters measured. PMID:23354394

  19. A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny.

    PubMed

    Cervellati, Claudia; Paetz, Christian; Dondini, Luca; Tartarini, Stefano; Bassi, Daniele; Schneider, Bernd; Masia, Andrea

    2012-06-30

    In apricot the bitter flavor of seeds is determined by the amount of amygdalin, a cyanogenic glucoside whose cleavage by endogenous enzymes, upon seed crushing, releases toxic hydrogen cyanide. The presence of such a poisonous compound is an obstacle to the use and commercialization of apricot seeds for human or animal nutrition. To investigate the genetic loci involved in the determination of the bitter phenotype a combined genetic and biochemical approach was used, involving a candidate gene analysis and a fine phenotyping via quantitative nuclear magnetic resonance, on an F1 apricot progeny. Seven functional markers were developed and positioned on the genetic maps of the parental lines Lito and BO81604311 and seven putative QTLs for the bitterness level were determined. In conclusion, this analysis has revealed some loci involved in the shaping of the bitterness degree; has proven the complexity of the bitter trait in apricot, reporting an high variance of the QTLs found over the years; has showed the critical importance of the phenotyping step, whose precision and accuracy is a pre-requisite when studying such a multifactorial character. PMID:21939695

  20. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  1. Breeding of 'Manten-Kirari', a non-bitter and trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.).

    PubMed

    Suzuki, Tatsuro; Morishita, Toshikazu; Mukasa, Yuji; Takigawa, Shigenobu; Yokota, Satoshi; Ishiguro, Koji; Noda, Takahiro

    2014-12-01

    Here, we developed a new Tartary buckwheat cultivar 'Manten-Kirari', whose flour contains only trace amounts of rutinosidase and lacked bitterness. The trace-rutinosidase breeding line 'f3g-162' (seed parent), which was obtained from a Nepalese genetic resource, was crossed with 'Hokkai T8' (pollen parent), the leading variety in Japan, to improve its agronomic characteristics. The obtained progeny were subjected to performance test. 'Manten-Kirari' had no detectable rutinosidase isozymes in an in-gel detection assay and only 1/266 of the rutinosidase activity of 'Hokkai T8'. Dough prepared from 'Manten-Kirari' flour contained almost no hydrolyzed rutin, even 6 h after the addition of water, whereas the rutin in 'Hokkai T8' dough was completely hydrolyzed within 10 min. In a sensory evaluation of the flour from the two varieties, nearly all panelists detected strong bitterness in 'Hokkai T8', whereas no panelists reported bitterness in 'Manten-Kirari'. This is the first report to describe the breeding of a Tartary buckwheat cultivar with reduced rutin hydrolysis and no bitterness in the prepared flour. Notably, the agronomic characteristics of 'Manten-Kirari' were similar to those of 'Hokkai T8', which is the leading variety in Japan. Based on these characteristics, 'Manten-Kirari' is a promising for preparing non-bitter, rutin-rich foods. PMID:25914589

  2. Preserving Fresh Fruit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Geo-Centers, Inc. has developed an Ethlyene Monitoring and Control System through an SBIR contract with Kennedy Space Center. As plants grow, they produce by products of ethylene and ammonia which are harmful to plant development. The system provides optimal exposure of fruit to ethylene since the proper balance in ethylene is necessary to prevent fruit loss. It can be used to monitor the de-greening process of citrus fruits, in particular.

  3. Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners.

    PubMed

    Roudnitzky, Natacha; Bufe, Bernd; Thalmann, Sophie; Kuhn, Christina; Gunn, Howard C; Xing, Chao; Crider, Bill P; Behrens, Maik; Meyerhof, Wolfgang; Wooding, Stephen P

    2011-09-01

    Bitter taste perception is initiated by TAS2R receptors, which respond to agonists by triggering depolarization of taste bud cells. Mutations in TAS2Rs are known to affect taste phenotypes by altering receptor function. Evidence that TAS2Rs overlap in ligand specificity suggests that they may also contribute joint effects. To explore this aspect of gustation, we examined bitter perception of saccharin and acesulfame K, widely used artificial sweeteners with aversive aftertastes. Both substances are agonists of TAS2R31 and -43, which belong to a five-member subfamily (TAS2R30-46) responsive to a diverse constellation of compounds. We analyzed sequence variation and linkage structure in the ∼140 kb genomic region encoding TAS2R30-46, taste responses to the two sweeteners in subjects, and functional characteristics of receptor alleles. Whole-gene sequences from TAS2R30-46 in 60 Caucasian subjects revealed extensive diversity including 34 missense mutations, two nonsense mutations and high-frequency copy-number variants. Thirty markers, including non-synonymous variants in all five genes, were associated (P< 0.001) with responses to saccharin and acesulfame K. However, linkage disequilibrium (LD) in the region was high (D', r(2) > 0.95). Haplotype analyses revealed that most associations were spurious, arising from LD with variants in TAS2R31. In vitro assays confirmed the functional importance of four TAS2R31 mutations, which had independent effects on receptor response. The existence of high LD spanning functionally distinct TAS2R loci predicts that bitter taste responses to many compounds will be strongly correlated even when they are mediated by different genes. Integrative approaches combining phenotypic, genetic and functional analysis will be essential in dissecting these complex relationships. PMID:21672920

  4. Selection on the human bitter taste gene, TAS2R16, in Eurasian populations.

    PubMed

    Li, Hui; Pakstis, Andrew J; Kidd, Judith R; Kidd, Kenneth K

    2011-06-01

    Bitter taste is one of the most important senses alerting humans to noxious foods. In gatherer communities, sensitivity to bitterness is presumably advantageous because of various noxious plants. TAS2R16 is the gene coding the taste receptor molecules for some of the most common toxins in plants. A previous study of this gene indicated selection has increased the frequency of a derived allele in this gene that arose before the human expansion out of Africa. We have applied a different methodology for detecting selection, the Long Range Haplotype (LRH) analysis, to TAS2R16 in a larger sampling of populations from around the world. The haplotype with the derived alleles at both the functional polymorphism and a polymorphism in the regulatory region of TAS2R16 showed evidence for recent positive selection in most of the Eurasian populations, though the highest selection signal occurs in Mbuti Pygmies, an African hunter-gatherer group. In Eurasia, only populations of Mesopotamia and the southeast coast of China have no signals of selection. The evidence of recent selection found in most Eurasian populations differs from the geographic pattern seen in the earlier study of selection. One can speculate that the difference may result from a gathering lifestyle extending into the most recent 10,000 yrs and the need to recognize newly encountered bitter natural toxins as populations expanded into new environments and the biota changes with the ending of the most recent ice age. Alternatively, the promoter region variant may be a marker for altered function beyond what the derived amino acid allele conferred. PMID:21740153

  5. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    PubMed Central

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  6. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. PMID:26102274

  7. Efficacy of various techniques on biochemical characteristics and bitterness of pummelo juice.

    PubMed

    Kore, Vijaykumar T; Chakraborty, I

    2015-09-01

    The consumer acceptability of pummelo juice is affected badly due to the presence of bitter principles in it. Therefore in order to avoid such bitterness development, the extracted juice from pummelo was subjected to five different treatments like juice diffused into syrup (70°Brix), lye peeling of segments in boiling NaOH for 2-3 min, increasing the pH of juice, hot water treatment (50 °C) prior to peeling for 20 min and without any treatment (control) for suppressing the development of bitterness in the juice. Based on bio-chemical analysis, diffusion of juice into syrup (70°Brix) showed better result as compared to other treatments. The maximum amount of TSS was found in juice diffused into syrup (i. e. 45, 30 and 15°Brix) along with highest TSS/acid ratio (92.21, 49.87 and 17.53). Higher amount of acidity was observed in pH adjusted samples with 4.25, 4.50 and 4.75 respectively. However, control samples showed higher amount of ascorbic acid (73.97 mg/100 ml juice) content followed by pH adjusted samples. The highest organoleptic score for taste (8.00), colour (8.83), aroma (8.66), overall acceptability (7.88) and extent of debittering (7.50) were recorded in juice diffused into syrup 70°Brix and achieved final TSS of juice at 45, 30 and 15°Brix respectively. Moreover, the above treatment (juice diffused into syrup 70°Brix) showed promising low cost and easy to adopt technique of debittering in respect of extent of debittering and maintaining sensory quality during storage of pummel juice. PMID:26345031

  8. Immunomodulatory activities of Yoyo bitters: recommended dose precipitated inflammatory responses in male Wistar rats.

    PubMed

    Oyewo, E B; Adetutu, A; Adebisi, J A

    2013-12-15

    This study investigated the immunomodulatory capabilities of the sub-chronic administration of Yoyo bitters in male Wistar rats. Eighteen rats weighing 86.2 +/- 4.43 g were randomly picked into three equal groups. The rats were acclimatized for 14 days, after which 0.308 and 0.462 mL kg(-1) b.wt. of Yoyo bitters were administered once daily to groups B and C respectively for 56 days, while group A received distilled water. The feed intake, body weight, blood glucose, interleukin 2 (IL-2), interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-alpha), haematological parameters, serum lipid profile and uric acid, liver reduced glutathione and malodialdehyde were determined. The feed intake, body weight and blood glucose concentrations were reduced (p < 0.05) at the doses. No changes were recorded in the concentration of serum IL-2 (p > 0.05), but IL-6 decreased (p < 0.05) in group B and increased (p < 0.05) in group C, while TNF-alpha were increased (p < 0.05) dose dependent. The haematological parameters were decreased at all the doses (p < 0.05), except the ESR, WBC and lymphocytes that were increased (p < 0.05) and platelets in group C (p < 0.05). The serum total cholesterol, TAG, LDL-C and atherogenic index were decreased (p < 0.05) and HDL-C increased (p < 0.05) in group B only. Serum uric acid was reduced (p < 0.05) in group B, but increased in group C with the concentration of liver MDA (p < 0.05). The study, therefore, established that a dose lower than the manufacturer's recommended dose presented the desired immunomodulatory activities and the habitual use of Yoyo bitters at the adult recommended dose calls for caution. PMID:24517005

  9. Temporal coding mediates discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Rai, Meelu

    2006-08-30

    The mechanisms that mediate discriminative taste processing in insects are poorly understood. We asked whether temporal patterns of discharge from the peripheral taste system of an insect (Manduca sexta caterpillars; Sphingidae) contribute to the discrimination of three "bitter" taste stimuli: salicin, caffeine, and aristolochic acid. The gustatory response to these stimuli is mediated exclusively by three pairs of bitter-sensitive taste cell, which are located in the medial, lateral, and epipharyngeal sensilla. We tested for discrimination by habituating the caterpillars to salicin and then determining whether the habituation generalized to caffeine or aristolochic acid. We ran habituation-generalization tests in caterpillars with their full complement of taste sensilla (i.e., intact) and in caterpillars with ablated lateral sensilla (i.e., lat-ablated). The latter perturbation enabled us to examine discrimination in caterpillars with a modified peripheral taste profile. We found that the intact and lat-ablated caterpillars both generalized the salicin-habituation to caffeine but not aristolochic acid. Next, we determined whether this pattern of stimulus-generalization could be explained by salicin and aristolochic acid generating distinct ensemble, rate, temporal, or spatiotemporal codes. To this end, we recorded excitatory responses from the bitter-sensitive taste cells and then used these responses to formulate predictions about whether the salicin-habituation should generalize to caffeine or aristolochic acid, separately for each coding framework. We found that the pattern of stimulus generalization in both intact and lat-ablated caterpillars could only be predicted by temporal coding. We conclude that temporal codes from the periphery can mediate discriminative taste processing. PMID:16943545

  10. A sedimentological model for the Loves Creek Member of the Bitter Springs Formation, northern Amadeus Basin

    NASA Astrophysics Data System (ADS)

    Southgate, P. N.

    Sediments of the Loves Creek Member of the Bitter Springs Formation comprise the transgressive and highstand systems tracts of a stratigraphic sequence. The member is bounded top and bottom by disconformity surfaces and is divisible into three sedimentary packages referred to as units. Each unit represents a series of depositional environments related to each other by position on a large-scale sea-level cycle. The uppermost redbed and dolomitic limestone/dolostone unit provides evidence for continued regression and progradation as the underlying marine sediments are succeeded by carbonate rocks and redbeds deposited in lacustrine and terrestrial environments respectively.

  11. Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds.

    PubMed

    Engel, E; Tournier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed. PMID:11409990

  12. The effect of bitter melon (Mormordica charantia) in patients with diabetes mellitus: a systematic review and meta-analysis

    PubMed Central

    Yin, R V; Lee, N C; Hirpara, H; Phung, O J

    2014-01-01

    Background: Mormordica charantia (bitter melon) has been investigated for lowering plasma glucose in patients with diabetes mellitus (DM). Previous data has offered inconclusive and inconsistent results about the benefits of bitter melon in patients with DM. Our current project aims to determine whether bitter melon has a favorable effect in lowering plasma glucose in patients with DM. Methods: We searched PubMed, EMBASE and the Cochrane Library from inception to July 2013 without any language restrictions for randomized controlled trials (RCTs) evaluating bitter melon to no treatment in patients with type 1 or type 2 diabetes. Study selection, data extraction and validity of each article were independently assessed by two investigators. Articles were appraised for proper random sequence generation, allocation concealment, blinding, selective reporting and completeness of outcomes reporting to assess the risk for biases. The glycemic results of each RCT were analyzed to yield weighted mean differences (WMDs) and 95% confidence intervals (CIs). Results: A total of four RCTs, each with 40–66 participants, followed between 4 and 12 weeks were identified in this meta-analysis. Overall risk of bias for each article included was determined to be unclear. In total, 208 participants with type 2 DM (mean age of 56.5 years) were evaluated. Compared with no treatment, bitter melon did not significantly lower A1C (WMD −0.13%, 95% CI −0.41 to 0.16) nor fasting plasma glucose (FPG) 47 (WMD 2.23 mg dl−1, 95% CI −14.91 to 19.37). Conclusions: Bitter melon supplementation compared with no treatment did not show significant glycemic improvements on either A1c or FPG. PMID:25504465

  13. Regulation of fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is a process unique to plants in which floral seed bearing organs mature into fleshy structures attractive and nutritious to seed dispersing organisms. While the specific characteristics of ripening fruit vary among species, a number of general themes are exhibited in many fleshy rip...

  14. Fruit and Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of fruit and vegetable products has dramatically increased by more than 30% over the last few decades in the U.S. It is also estimated that about 20% of all fruit and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on mi...

  15. Exploring bitterness of traditional Chinese medicine samples by potentiometric electronic tongue and by capillary electrophoresis and liquid chromatography coupled to UV detection.

    PubMed

    Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Sun, Qiyong; Wan, Haitong; He, Yu; Wang, Ping; Legin, Andrey

    2016-05-15

    Instrumental bitterness assessment of traditional Chinese herbal medicine (TCM) preparations was addressed in this study. Three different approaches were evaluated, high-performance liquid chromatography coupled to UV detector (HPLC), capillary electrophoresis coupled to UV detector (CE) and a potentiometric multisensor system - electronic tongue (ET). Most studies involving HPLC and CE separations use these as selective instruments for quantification of individual substances. However we employed these techniques to provide chromatographic or electrophoretic sample profiles. These profiles are somewhat analogous to the profiles produced by the ET. Profiles from all instruments were then related to professional sensory panel evaluations using projections on latent structures (PLS) regression. It was found that all three methods allow for bitterness assessment in TCM samples in terms of human sensory panel with root mean squared errors of prediction ca. 0.9 within bitterness scale from 0 (no bitterness) to 6 (maximal bitterness). PMID:26992500

  16. Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31.

    PubMed

    Allen, Alissa L; McGeary, John E; Knopik, Valerie S; Hayes, John E

    2013-06-01

    Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216

  17. Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31

    PubMed Central

    2013-01-01

    Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216

  18. Prototype of 10 Tesla Water Cooled Bitter-type Magnet System

    NASA Astrophysics Data System (ADS)

    Bates, E. M.; Birmingham, W. J.; Riverva, W. F.; Romero-Talamas, C. A.

    2015-11-01

    A 1 Tesla water cooled Bitter-type magnetic system has been designed and is under construction at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). It is a scaled version of a 10 T Bitter-type magnet that will be used in dusty plasma experiments where dust larger than 500 nm diameter will be strongly magnetized. We present here the design methods used for both magnets, and discuss the design parameters that drive the magnet cooling and power storage bank subsystems. The pressure vessel and plasma vacuum chamber subsystems are then built with the aforementioned subsystems as constraints. To validate our design, magnetic field and temperature measurements within the prototype magnet are compared to finite element analysis (FEA) and analytical methods used for preliminary designing. This knowledge will be used to finalize the 10 T magnet design. Once operational, the 10 T magnet will be programmable to be on for at least ten seconds to several minutes, with up to 20 plasma events planned per day.

  19. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes.

    PubMed

    Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas; Klein, Jochen; Bschleipfer, Thomas; Kummer, Wolfgang

    2014-06-01

    Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content. PMID:24843119

  20. Fluorescence-based optimization of human bitter taste receptor expression in Saccharomyces cerevisiae

    SciTech Connect

    Sugawara, Taishi; Ito, Keisuke; Shiroishi, Mitsunori; Tokuda, Natsuko; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Misaka, Takumi; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So; and others

    2009-05-15

    Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these five bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-{beta}-D-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.

  1. Impact of Prior Consumption on Sour, Sweet, Salty, and Bitter Tastes.

    PubMed

    Christina, Josephine; Palma-Salgado, Sindy; Clark, Diana; Kahraman, Ozan; Lee, Soo-Yeun

    2016-02-01

    Food sensory tests generally require panelists to abstain from food or beverage consumption 30 min to an hour before a tasting session. However, investigators do not have a complete control over panelists' intentional or unintentional consumption prior to a tasting session. Currently, it is unclear how prior consumption impacts the results of the tasting session. The aim of this study was to determine the effects of temporary and lingering mouth irritation caused by the consumption of coffee, orange juice, and gum within 1, 15, or 30 min prior to the tasting session on the perception of 4 basic tastes: sweet, salty, sour, and bitter. Fifty-two panelists were served a beverage (orange juice, coffee, and water) or were asked to chew a piece of gum, and then, remained in the waiting room for 1, 15, or 30 min. They were then asked to report taste intensities using 15-cm unstructured line scales. Mean intensities of all tastes were not significantly different when orange juice was a primer at 1, 15, and 30 min when compared to water. Mean intensities of bitter were significantly lower when coffee was a primer at 1, 15, and 30 min than when water was a primer. Mean intensities of sweet were significantly lower when gum was a primer at 1 and 15 min than when water was a primer. The findings showed that it is necessary for 30 min or more waiting period of no food or beverage consumption prior to sensory testing. PMID:26709855

  2. In vitro evaluation of potential bitterness-masking terpenoids from the Canada goldenrod (Solidago canadensis).

    PubMed

    Li, Jie; Pan, Li; Fletcher, Joshua N; Lv, Wei; Deng, Ye; Vincent, Michael A; Slack, Jay P; McCluskey, T Scott; Jia, Zhonghua; Cushman, Mark; Kinghorn, A Douglas

    2014-07-25

    In a screening of extracts of selected plants native to Ohio against the human bitterness receptor hTAS2R31, a chloroform-soluble extract of the aerial parts of Solidago canadensis (Canada goldenrod) was determined to have hTAS2R31 antagonistic activity and, thus, was fractionated for isolation of potential bitterness-masking agents. One new labdane diterpenoid, solidagol (1), and six known terpenoids, including two labdane diterpenoids (2 and 3), three clerodane diterpenoids (6β-angeloyloxykolavenic acid, 6β-tigloyloxykolavenic acid, and crotonic acid), and a triterpenoid (longispinogenin), were isolated. Among these compounds, 3β-acetoxycopalic acid (2) was found to be the first member of the labdane diterpene class shown to have inhibitory activity against hTAS2R31 activation (IC50 8 μM). A homology model of hTAS2R31 was constructed, and the molecular docking of 2 to this model indicated that this diterpenoid binds well to the active site of hTAS2R31, whereas this was not the case for the closely structurally related compound 3 (sempervirenic acid). The content of 2 in the chloroform-soluble portion of the methanolic extract of S. canadensis was up to 2.24 g/100 g dry weight, as determined by HPLC. PMID:24999828

  3. Independent evolution of bitter-taste sensitivity in humans and chimpanzees.

    PubMed

    Wooding, Stephen; Bufe, Bernd; Grassi, Christina; Howard, Michael T; Stone, Anne C; Vazquez, Maribel; Dunn, Diane M; Meyerhof, Wolfgang; Weiss, Robert B; Bamshad, Michael J

    2006-04-13

    It was reported over 65 years ago that chimpanzees, like humans, vary in taste sensitivity to the bitter compound phenylthiocarbamide (PTC). This was suggested to be the result of a shared balanced polymorphism, defining the first, and now classic, example of the effects of balancing selection in great apes. In humans, variable PTC sensitivity is largely controlled by the segregation of two common alleles at the TAS2R38 locus, which encode receptor variants with different ligand affinities. Here we show that PTC taste sensitivity in chimpanzees is also controlled by two common alleles of TAS2R38; however, neither of these alleles is shared with humans. Instead, a mutation of the initiation codon results in the use of an alternative downstream start codon and production of a truncated receptor variant that fails to respond to PTC in vitro. Association testing of PTC sensitivity in a cohort of captive chimpanzees confirmed that chimpanzee TAS2R38 genotype accurately predicts taster status in vivo. Therefore, although Fisher et al.'s observations were accurate, their explanation was wrong. Humans and chimpanzees share variable taste sensitivity to bitter compounds mediated by PTC receptor variants, but the molecular basis of this variation has arisen twice, independently, in the two species. PMID:16612383

  4. Amino acids and peptides activate at least five members of the human bitter taste receptor family.

    PubMed

    Kohl, Susann; Behrens, Maik; Dunkel, Andreas; Hofmann, Thomas; Meyerhof, Wolfgang

    2013-01-01

    Amino acids and peptides represent important flavor molecules eliciting various taste sensations. Here, we present a comprehensive assessment of the interaction of various peptides and all proteinogenic amino acids with the 25 human TAS2Rs expressed in cell lines. L-Phenylalanine and L-tryptophan activate TAS2R1 and TAS2R4, respectively, whereas TAS2R4 and TAS2R39 responded to D-tryptophan. Structure-function analysis uncovered the basis for the lack of stereoselectivity of TAS2R4. The same three TAS2Rs or subsets thereof were also sensitive to various dipeptides containing L-tryptophan, L-phenylalanine, or L-leucine and to Trp-Trp-Trp, whereas Leu-Leu-Leu specifically activated TAS2R4. Trp-Trp-Trp also activated TAS2R46 and TAS2R14. Two key bitter peptides from Gouda cheese, namely, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser and Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn, both activated TAS2R1 and TAS2R39. Thus, the data demonstrate that the bitterness of amino acids and peptides is not mediated by specifically tuned TAS2Rs but rather is brought about by an unexpectedly complex pattern of sensitive TAS2Rs. PMID:23214402

  5. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. PMID:21925651

  6. Simultaneous determination of prenylflavonoid and hop bitter acid in beer lee by HPLC-DAD-MS.

    PubMed

    Kao, T H; Wu, G Y

    2013-11-15

    An HPLC-DAD-MS method with high accuracy and precision was developed for determination of prenylflavonoids and hop bitter acids in beer lee, a by-product from beer brewing process. Four prenylflavonoids and nine hop bitter acids can be simultaneously separated in 29 min using a Thermo HyPURITY C18 column in combination with diode array dectector and mass spectrometer with HPLC solvent gradient system of phosphoric acid aqueous solution at pH 1.6 and acetonitrile at a flow rate of 1.5 mL/min and detection wavelength at 314 nm. Beer lee is found to contain isoxanthohumol (36.2 μg/g), xanthohumol (29.6 μg/g), 8-prenylnaringenin (7.84 μg/g), 6-prenylnaringenin (19.2 μg/g), cohumulone (44.7 μg/g), humulone (123 μg/g), adhumulone (21.8 μg/g), colupulone (44.2 μg/g), lupulone (33.2 μg/g), and adlupulone (5.76 μg/g). PMID:23790907

  7. Dextromethorphan Mediated Bitter Taste Receptor Activation in the Pulmonary Circuit Causes Vasoconstriction

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Pydi, Sai P.; Bhullar, Rajinder P.; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways. PMID:25340739

  8. Influence of the fruit's ripeness on virgin olive oil quality.

    PubMed

    Franco, Ma Nieves; Sánchez, Jacinto; De Miguel, Concepción; Martínez, Manuel; Martín-Vertedor, Daniel

    2015-01-01

    Virgin Olive Oil (VOO) is a product much demanded by consumers looking for the highest quality and certain traits considered to be typical of the Mediterranean area. The olive fruit's properties and the industry-regulated physicochemical and sensory parameters of seven cultivars were evaluated during the ripening process. In general, the oil percentage in both the wet and dry material increased for all the cultivars from the green to the spotted stages of maturation, and they stayed constant statistically until the ripe stage with just a few exceptions. The lowest oil content was observed in the Manzanilla Cacereña cultivar in all stages of maturation. The cultivars that presented the lowest oil yields in the Abencor system were Manzanilla Cacereña and Carrasqueña, and the highest Corniche. In general, all the cultivars except one presented good behaviour during the mixing process, the exception being Manzanilla Cacereña which presented the lowest values of the extractability percentage. The moisture content of the olives presented a common pattern, increasing from the green to the spotted stage, with the differences being significant in the Corniche, Picual, and Verdial de Badajoz cultivars. All the oils analysed were classified into the "extra virgin" category according to the results for the regulated parameters. The fruity, bitter, and pungent attributes decreased during ripening in all the cultivars studied. In the green stage of maturation, Arbequina had the least intensity of bitterness and pungency, but there were no significant differences among cultivars in the fruity attribute. PMID:25757430

  9. Seedless Fruit Production by Hormonal Regulation of Fruit Set

    PubMed Central

    Pandolfini, Tiziana

    2009-01-01

    Seed and fruit development are intimately related processes controlled by internal signals and environmental cues. The absence of seeds is usually appreciated by consumers and producers because it increases fruit quality and fruit shelf-life. One method to produce seedless fruit is to develop plants able to produce fruits independently from pollination and fertilization of the ovules. The onset of fruit growth is under the control of phytohormones. Recent genomic studies have greatly contributed to elucidate the role of phytohormones in regulating fruit initiation, providing at the same time genetic methods for introducing seedlessness in horticultural plants. PMID:22253976

  10. Bitter Melon

    MedlinePlus

    ... worms. It is also used for diabetes, kidney stones, fever, a skin condition called psoriasis, and liver ... Psoriasis. HIV/AIDS. Stomach and intestinal disorders. Kidney stones. Liver disease. Skin abscesses and wounds. Other conditions. ...

  11. Effects of pectinase clarification treatment on phenolic compounds of pummelo (Citrus grandis l. Osbeck) fruit juice.

    PubMed

    Shah, Nor Nadiah Abdul Karim; Rahman, Russly Abdul; Shamsuddin, Rosnah; Adzahan, Noranizan Mohd

    2015-08-01

    The purpose of this study is to investigate the changes occured on phenolic compounds between two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52) post-enzymatic clarification. The changes in polyphenols composition were monitored using High Performance Liquid Chromatography Diode Array Detection and Folin Ciocalteu's method. Clarification treatment of pummelo fruit juice with a commercial pectinase was optimized based on incubation temperature, time and enzyme concentration. Both varieties of pummelo fruit juice were treated with different optimized variables which produced the highest clarities with the least effect to the juice physical quality. Tambun variety was found to have significantly more total phenolic compounds (p <0.05) in comparison to Ledang variety, possibly due to the amount of naringin. Three types of hydroxycinnamic acids (chlorogenic, caffeic and coumaric acid) and three compounds of flavanones (naringin, hesperidin and narirutin) were found in both fruit juices, where naringin and chlorogenic acid were the major contributor to the total phenolic content. Naringin, which gave out bitter aftertaste to the juice, was found to decrease, 1.6 and 0.59 % reduction in Ledang and Tambun respectively, post-enzymatic treatment. The decrease in naringin, albeit nominal, could be a potential benefit to the juice production in reducing the bitterness of the juice. Post-enzymatic analysis furthermore resulted in no significance differences (p <0.05) on the total phenolic compounds of both varieties. This study in summary provides a compositional database for Malaysian pummelo fruit juice of various phenolic compounds, which can provide useful information for evaluating the authenticity and the health benefits from the juice. PMID:26243926

  12. Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats

    PubMed Central

    Torregrossa, A-M.; Loney, G.C.; Smith, J.C.; Eckel, L.A.

    2015-01-01

    Sucralose avoiding rats detect a bitter-like taste quality in concentrations of sucralose that are strongly preferred over water by sucralose preferring rats. Here, we investigated whether sucralose preferrers (SP) also detect a bitter-like quality in sucralose that may be masked by increased perception of sucralose’s sweet-like quality. A microstructural analysis of sucralose intake revealed that, at concentrations they avoided in preference tests, sucralose avoiders (SA) consumed smaller and fewer bouts of sucralose than SP. Interestingly, the concentration-dependent increase in sucralose preference in SP was not associated with larger bouts or increased lick rate, two measures that are expected to increase with increasing perceived sweetness. This suggests that SP can detect an aversive quality in sucralose, but this perception of a presumably bitter-like quality may be masked by increased salience of a sweet-like quality that sustains high levels of intake in SP. Further evidence for increased sweet-taste perception in SP, relative to SA, was obtained in a second study in which SP consumed more of a palatable sweet-milk diet than SA. These are the first data to suggest that SP are not blind to the bitter-like quality in sucralose, and that there may be differences in sweet-taste perception between SP and SA. PMID:25497078

  13. The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...

  14. Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats.

    PubMed

    Torregrossa, A-M; Loney, G C; Smith, J C; Eckel, L A

    2015-03-01

    Sucralose avoiding rats detect a bitter-like taste quality in concentrations of sucralose that are strongly preferred over water by sucralose preferring rats. Here, we investigated whether sucralose preferrers (SP) also detect a bitter-like quality in sucralose that may be masked by an increased perception of sucralose's sweet-like quality. A microstructural analysis of sucralose intake revealed that, at concentrations they avoided in preference tests, sucralose avoiders (SA) consumed smaller and fewer bouts of sucralose than SP. Interestingly, the concentration-dependent increase in sucralose preference in SP was not associated with larger bouts or increased lick rate, two measures that are expected to increase with increasing perceived sweetness. This suggests that SP can detect an aversive quality in sucralose, but this perception of a presumably bitter-like quality may be masked by increased salience of a sweet-like quality that sustains high levels of intake in SP. Further evidence for increased sweet-taste perception in SP, relative to SA, was obtained in a second study in which SP consumed more of a palatable sweet-milk diet than SA. These are the first data to suggest that SP are not blind to the bitter-like quality in sucralose, and that there may be differences in sweet-taste perception between SP and SA. PMID:25497078

  15. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network

    PubMed Central

    LIU, RUIXIN; ZHANG, XIAODONG; ZHANG, LU; GAO, XIAOJIE; LI, HUILING; SHI, JUNHAN; LI, XUELIN

    2014-01-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue. PMID:24926369

  16. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components.

    PubMed

    Taniguchi, Yoshimasa; Matsukura, Yasuko; Taniguchi, Harumi; Koizumi, Hideki; Katayama, Mikio

    2015-01-01

    The bitter acids in hops (Humulus lupulus L.) and beer, such as α-, β-, and iso-α-acids, are known to affect beer quality and display various physiological effects. However, these compounds readily oxidize, and the effect of the oxides on the properties of beer or their potential health benefits are not well understood. In this study, we developed a simple preparative method for the bitter acid oxide fraction derived from hops and designated the constituents as matured hop bitter acids (MHBA). HPLC-PDA-ESI/HRMS and MS(2) revealed that MHBA are primarily composed of α-acid-derived oxides, which possess a common β-tricarbonyl moiety in their structures similar to α-, β-, and iso-α-acids. We also developed a quantitative analytical method of whole MHBA by HPLC, which showed high precision and reproducibility. Using our newly developed method, the concentration of whole MHBA in several commercial beers was evaluated. Our results will promote the study of bitter acid oxides. PMID:25996959

  17. The role of carbonic anhydrase VI in bitter taste perception: evidence from the Car6−/− mouse model

    PubMed Central

    2014-01-01

    Background Carbonic anhydrase VI (CA VI) is a secretory isozyme of the α-CA gene family. It is highly expressed in the salivary and mammary glands and secreted into saliva and milk. Although CA VI was first described as a gustatory protein, its exact functional roles have remained enigmatic. Interestingly, polymorphism of the CA6 gene was recently linked to bitter taste perception in humans. In this study, we compared the preference of Car6−/− and wild-type mice for different taste modalities in an IntelliCage monitoring environment. Morphologies of taste buds, tongue papillae, and von Ebner’s glands were evaluated by light microscopy. Cell proliferation and rate of apoptosis in tongue specimens were examined by Ki67 immunostaining and fluorescent DNA fragmentation staining, respectively. Results The behavioral follow up of the mice in an IntelliCage system revealed that Car6−/− mice preferred 3 μM quinine (bitter) solution, whereas wild type mice preferred water. When the quinine concentration increased, both groups preferentially selected water. Histological analysis, Ki67 immunostaining and detection of apoptosis did not reveal any significant changes between tongue specimens of the knockout and wild type mice. Conclusions Our knockout mouse model confirms that CA VI is involved in bitter taste perception. CA VI may be one of the factors which contribute to avoidance of bitter, potentially harmful, substances. PMID:25134447

  18. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and synerg...

  19. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and syner...

  20. Fruits and vegetables (image)

    MedlinePlus

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, ...

  1. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    PubMed Central

    Clapp, Tod R; Stone, Leslie M; Margolskee, Robert F; Kinnamon, Sue C

    2001-01-01

    Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3) was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction. PMID:11346454

  2. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    PubMed Central

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  3. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  4. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  5. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species.

    PubMed

    Ferreira, Ana M; Marques, Andreia T; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S; Almeida, André M

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  6. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process.

    PubMed

    Yatabe, Rui; Noda, Junpei; Tahara, Yusuke; Naito, Yoshinobu; Ikezaki, Hidekazu; Toko, Kiyoshi

    2015-01-01

    It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG), which is called "preconditioning". However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods. PMID:26404301

  7. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond.

    PubMed

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-01-01

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography-mass spectrometry (GC-MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide. PMID:27589723

  8. Characteristics and functionality enhancement by glycosylation of bitter melon (Momordica charantia) seed protein.

    PubMed

    Horax, Ronny; Hettiarachchy, Navam; Chen, Pengyin

    2014-11-01

    Seeds of ripe bitter melon (Momordica charantia) contain approximately 30% protein. However, this protein, which is less functional than soy protein, may have desirable functionalities as a food ingredient after modification. Bitter melon seed protein isolate (BMSPI) was prepared under optimal extraction conditions (defatted meal to 1.3 M NaCl was 1:10 w/v; pH 9.0) and its functional properties were investigated before and after modification by glycosylation. Glycosylation was conducted at varying relative humidities (50%/65%/80%) and temperatures (40 °C/50 °C/60 °C) using a response surface central composite design. Degree of glycosylation (DG) ranged from 39.3 to 52.5%, 61.7 to 70.9%, and 81.2 to 94.8% at 40 °C, 50 °C, and 60 °C, respectively (P values < 0.0001). Denaturation temperatures of all DGs ranged from 111.6 °C to 114.6 °C, while unmodified/native BMSPI had a value of 113.2 °C. Surface hydrophobicity decreased to approximately 60% when the DG was maximal (94.8%). Solubility decreased almost 90% when the DG was maximal in comparison to the native BMSPI (62.0%). Emulsifying activity increased from 0.35 to 0.80 when the DGs were ≥80%, while emulsion stability increased from 63 to 72 min when the DGs were greater than 70%. A similar trend was observed with foaming capacity and foaming stability of the glycosylated proteins. This glycosylated BMSPI with improved emulsifying and foaming properties could be used as an ingredient in food products where such properties are required. PMID:25350230

  9. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells

    PubMed Central

    Pham, Hung; Hui, Hongxiang; Morvaridi, Susan; Cai, Jiena; Zhang, Sanqi; Tan, Jun; Wu, Vincent; Levin, Nancy; Knudsen, Beatrice; Goddard, William A.; Pandol, Stephen J.; Abrol, Ravinder

    2016-01-01

    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor’s potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ~2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release. PMID:27208775

  10. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells.

    PubMed

    Pham, Hung; Hui, Hongxiang; Morvaridi, Susan; Cai, Jiena; Zhang, Sanqi; Tan, Jun; Wu, Vincent; Levin, Nancy; Knudsen, Beatrice; Goddard, William A; Pandol, Stephen J; Abrol, Ravinder

    2016-07-01

    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor's potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release. PMID:27208775

  11. Fruit and vegetable allergy.

    PubMed

    Fernández-Rivas, Montserrat

    2015-01-01

    Fruit and vegetable allergies are the most prevalent food allergies in adolescents and adults. The identification of the allergens involved and the elucidation of their intrinsic properties and cross-reactivity patterns has helped in the understanding of the mechanisms of sensitisation and how the allergen profiles determine the different phenotypes. The most frequent yet contrasting fruit and vegetable allergies are pollen-food syndrome (PFS) and lipid transfer protein (LTP) syndrome. In PFS, fruit and vegetable allergies result from a primary sensitisation to labile pollen allergens, such as Bet v 1 or profilin, and the resulting phenotype is mainly mild, consisting of local oropharyngeal reactions. In contrast, LTP syndrome results from a primary sensitisation to LTPs, which are stable plant food allergens, inducing frequent systemic reactions and even anaphylaxis. Although much less prevalent, severe fruit allergies may be associated with latex (latex-fruit syndrome). Molecular diagnosis is essential in guiding the management and risk assessment of these patients. Current management strategies comprise avoidance and rescue medication, including adrenaline, for severe LTP allergies. Specific immunotherapy with pollen is not indicated to treat pollen-food syndrome, but sublingual immunotherapy with LTPs seems to be a promising therapy for LTP syndrome. PMID:26022876

  12. Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana.

    PubMed

    Min, Ji-Hee; Ju, Hyun-Woo; Yang, Kwang-Yeol; Chung, Jung-Sung; Cho, Baik-Ho; Kim, Cheol Soo

    2014-04-01

    Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. LsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase LsRZF1 is an important regulator of water deficit stress during early seedling development. PMID:24525351

  13. Determination of free amino acids in African gourd seed milks by capillary electrophoresis with light-emitting diode induced fluorescence and laser-induced fluorescence detection.

    PubMed

    Enzonga, Josiane; Ong-Meang, Varravaddheay; Couderc, François; Boutonnet, Audrey; Poinsot, Véréna; Tsieri, Michel Mvoula; Silou, Thomas; Bouajila, Jalloul

    2013-09-01

    A CE technique coupled to LIF detection (488 nm) or LED-induced fluorescence detection (470 nm) has been evaluated to acquire a cheap way to analyze amino acids (AAs) whilst maintaining the best sensitivity. To quantitate AAs in milk of Cucurbitaceae of Sub-Saharan Africa, they were labeled with FITC. We used an optimized separation buffer composed of 30 mM boric acid buffer adjusted to pH 9.3 with NaOH (1 M) containing 12 mM SDS and 5% ethylene glycol v/v; prior to the injections, the derivatized samples are diluted 100 times. The LOQs in the sample are Arg: 1.1 μM, Ala: 3.5 μM, and Glu 8.9 μM. Cucumeropsis mannii (CM) Naudin and Citrullus lanatus (CL) are vegetable sources rich in proteins and AAs of high quality. Our analyses have led to the identification of 11 AAs in CL and CM milks. Phe, Trp, and Ala are predominant in the two types of lyophilized milks, while Asp and Val demonstrate very low contents. Six essential AAs (Phe, Thr, Val, Trp, Ile, and Leu) are present in both types of extracts, but lysine was not detected, indicating that this AA is missing in gourd milk. These results should be useful in efforts to complement or replace very expensive cow milk or the less-appreciated soya milk with milk from available local agroressources. PMID:23857426

  14. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe).

    PubMed

    Horax, Ronny; Hettiarachchy, Navam; Chen, Pengyin

    2010-04-14

    Bitter melon (Momordica charantia) is an exotic vegetable used for consumption and medicinal purposes mainly throughout Asia. Phenolics were extracted from pericarp (fleshy portion) and seeds of bitter melons harvested at three maturation stages (immature, mature, and ripe) using ethanol and water solvent systems. Total phenolic assessment demonstrated 80% of ethanol to be the optimal solvent level to extract phenolics either from pericarp or seed. Main phenolic constituents in the extracts were catechin, gallic acid, gentisic acid, chlorogenic acid, and epicatechin. Free radical scavenging assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH) demonstrated the bitter melon extracts as slow rate free radical scavenging agents. There were low correlations between the total phenolic contents and antiradical power values of the extracts, suggesting a possible interaction among the phenolic constituents occurred. Bitter melon phenolic extracts contain natural antioxidant substances, and could be used as antioxidant agents in suitable food products. PMID:20225855

  15. Focus on Fruits: 10 Tips to Eat More Fruits

    MedlinePlus

    ... at breakfast At breakfast, top your cereal with bananas, peaches, or strawberries; add blueberries to pancakes; drink ... fruit at lunch At lunch, pack a tangerine, banana, or grapes to eat, or choose fruits from ...

  16. Focus on Fruits: 10 Tips to Eat More Fruits

    MedlinePlus

    ... lunch At lunch, pack a tangerine, banana, or grapes to eat, or choose fruits from a salad ... coleslaw, or include orange sections, dried cranberries, or grapes in a tossed salad. 9 snack on fruits ...

  17. Impact of Fruit Smoothies on Adolescent Fruit Consumption at School

    ERIC Educational Resources Information Center

    Bates, Dylan; Price, Joseph

    2015-01-01

    We examine the impact of serving fruit smoothies during school breakfast on fruit consumption among middle school and high school students. We draw on observational plate-waste data over a 10-week period during which fruit smoothies were introduced for breakfast at two Utah schools. Our total sample includes 2,760 student-day observations. We find…

  18. Pesticides on fruits and vegetables

    MedlinePlus

    ... option, you may want to buy and serve organic produce. Organic growers do not use pesticides on their fruits ... To remove harmful bacteria, you must wash both organic and nonorganic fruits and vegetables.

  19. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats

    PubMed Central

    2012-01-01

    Background Various therapeutic effects of fenugreek (Trigonella foenum-graecum L.) on metabolic disorders have been reported. However, the bitterness of fenugreek makes it hard for humans to eat sufficient doses of it for achieving therapeutic effects. Fenugreek contains bitter saponins such as protodioscin. Fenugreek with reduced bitterness (FRB) is prepared by treating fenugreek with beta-glucosidase. This study has been undertaken to evaluate the effects of FRB on metabolic disorders in rats. Methods Forty Sprague–Dawley rats were fed with high-fat high-sucrose (HFS) diet for 12 week to induce mild glucose and lipid disorders. Afterwards, the rats were divided into 5 groups. In the experiment 1, each group (n = 8) was fed with HFS, or HFS containing 2.4% fenugreek, or HFS containing 1.2%, 2.4% and 4.8% FRB, respectively, for 12 week. In the experiment 2, we examined the effects of lower doses of FRB (0.12%, 0.24% and 1.2%) under the same protocol (n = 7 in each groups). Results In the experiment 1, FRB dose-dependently reduced food intake, body weight gain, epididymal white adipose tissue (EWAT) and soleus muscle weight. FRB also lowered plasma and hepatic lipid levels and increased fecal lipid levels, both dose-dependently. The Plasma total cholesterol levels (mmol/L) in the three FRB and Ctrl groups were 1.58 ± 0.09, 1.45 ± 0.05*, 1.29 ± 0.07* and 2.00 ± 0.18, respectively (*; P < 0.05 vs. Ctrl). The Hepatic total cholesterol levels (mmol/g liver) were 0.116 ± 0.011, 0.112 ± 0.006, 0.099 ± 0.007* and 0.144 ± 0.012, respectively (*; P < 0.05 vs. Ctrl). The calculated homeostasis model assessment as an index of insulin resistance (HOMA-IR) indicated 0.52 ± 0.04*, 0.47 ± 0.06*, 0.45 ± 0.05* and 1.10 ± 0.16, respectively (*; P < 0.05 vs. Ctrl). None of the FRB groups showed any adverse effect on the liver, kidney or hematological functions. In the experiment 2, no significant

  20. An evidence-based systematic review of bitter orange (Citrus aurantium) by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine; Costa, Dawn; Giese, Nicole; Isaac, Richard; Liu, Angela; Liu, Yanze; Osho, Olufemi; Poon, Linda; Rusie, Erica; Stock, Tera; Weissner, Wendy; Windsor, Regina C

    2013-12-01

    An evidence-based systematic review of bitter orange (Citrus aurantium) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing. PMID:24237193

  1. The Bitter Taste Receptor Agonist Quinine Reduces Calorie Intake and Increases the Postprandial Release of Cholecystokinin in Healthy Subjects

    PubMed Central

    Andreozzi, Paolo; Sarnelli, Giovanni; Pesce, Marcella; Zito, Francesco P; D’Alessandro, Alessandra; Verlezza, Viviana; Palumbo, Ilaria; Turco, Fabio; Esposito, Katherine; Cuomo, Rosario

    2015-01-01

    Background/Aims Bitter taste receptors are expressed throughout the digestive tract. Data on animals have suggested these receptors are involved in the gut hormone release, but no data are available in humans. Our aim is to assess whether bitter agonists influence food intake and gut hormone release in healthy subjects. Methods Twenty healthy volunteers were enrolled in a double-blind cross-over study. On 2 different days, each subject randomly received an acid-resistant capsule containing either placebo or 18 mg of hydrochloride (HCl) quinine. After 60 minutes, all subjects were allowed to eat an ad libitum meal until satiated. Plasma samples were obtained during the experiment in order to evaluate cholecystokinin (CCK) and ghrelin levels. Each subject was screened to determine phenylthiocarbamide (PTC) tasting status. Results Calorie intake was significantly lower when subjects received HCl quinine than placebo (514 ± 248 vs 596 ± 286 kcal; P = 0.007). Significantly higher CCK ΔT90 vs T0 and ΔT90 vs T60 were found when subjects received HCl quinine than placebo (0.70 ± 0.69 vs 0.10 ± 0.86 ng/mL, P = 0.026; 0.92 ± 0.75 vs 0.50 ± 0.55 ng/mL, P = 0.033, respectively). PTC tasters ingested a significantly lower amount of calories when they received HCl quinine compared to placebo (526 ± 275 vs 659 ± 320 kcal; P = 0.005), whereas no significant differences were found for PTC non-tasters (499 ± 227 vs 519 ± 231 kcal; P = 0.525). Conclusions This study showed that intra-duodenal release of a bitter compound is able to significantly affect calorie intake and CCK release after a standardized meal. Our results suggest that bitter taste receptor signaling may have a crucial role in the control of food intake. PMID:26351252

  2. The immobilization of all spermatozoa in vitro by bitter lemon drink and the effect of alkaline pH.

    PubMed

    Nwoha, P U

    1992-12-01

    Researchers at Obafemi Awolowo University in Ile-Ife, Nigeria, collected semen samples from 7 healthy men 25-30 years old who had abstained from sex for at least 5 days in order to examine the spermicidal action of 4 soft drinks (Krest bitter lemon, Afri-Cola, Coca-Cola, and Pepsi-Cola), the effect of increased temperature of the drinks on spermicidal action, and the effect of changing the soft drinks from an acid, as it comes from the factory, (ph 2.4) to an alkaline (pH 7.5). Increasing the temperature of the soft drinks from room temperature (22 degrees Celsius) to body temperatures (37 degrees Celsius) did not significantly change the spermicidal action any of the soft drinks. All soft drinks with an acid pH, except Coca-Cola, had a significantly lower percent of sperm motility than those with an alkaline pH (0-42.3% vs. 20-52.1%; p .001). In fact, Krest bitter lemon in its factory form (acid pH) completely immobilized all spermatozoa within 1 minute after the researchers diluted the semen with the soft drink. Alkaline Coca-Cola had a significantly lower percent of sperm motility than did acid Coca-Cola (35.8% vs. 46.5%; p .001). Other than Krest bitter lemon, the significant decreases in sperm motility were not enough to prevent pregnancy. These findings indicated that researchers should test Krest bitter lemon for effectiveness as a postcoital contraceptive. If indeed it proves effective, it has great potential as such a contraceptive among the poor in the densely population developed countries since it is readily available and inexpensive. PMID:1493713

  3. Ethylene and Fruit Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments designed to down-regulate specific tomato ethylene receptor isoforms using antisense suppression have been reported for LeETR1, NR and LeETR4. Down-regulation of LeETR1 expression in transgenic plants did not alter fruit ripening but resulted in plants with shorter internodes and reduce...

  4. Raspberry Crumbly Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry crumbly fruit, widespread in the Pacific Northwest of the United States and British Columbia, Canada, can be caused by virus infection. Raspberry bushy dwarf virus (RBDV) has long been attributed as the causal agent of the disease. Recently, the identification of two new viruses, Raspberry...

  5. Emerging fruit crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hundreds of fruit species with commercial potential are currently in a status of low economic importance. Some, such as quince (Cydonia oblonga L.), pomegranate (Punica granatum L.), and figs (Ficus carica L.) , have been cultivated for thousands of years. Others have only been locally collected an...

  6. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice

    PubMed Central

    Avau, Bert; Bauters, Dries; Steensels, Sandra; Vancleef, Laurien; Laermans, Jorien; Lesuisse, Jens; Buyse, Johan; Lijnen, H. Roger; Tack, Jan; Depoortere, Inge

    2015-01-01

    Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R) have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/-) mice became less obese than wild type (WT) mice when fed a high-fat diet (HFD). White adipose tissue (WAT) mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT) thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB) or quinine (Q) during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB), but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism. PMID:26692363

  7. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

    PubMed

    Sparks, Jackson T; Dickens, Joseph C

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents. PMID:27108454

  8. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    NASA Astrophysics Data System (ADS)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  9. Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor.

    PubMed

    Singla, Ramit; Jaitak, Vikas

    2016-05-01

    Steviol glycosides (SG's) from Stevia rebaudiana (Bertoni) have been used as a natural low-calorie sweeteners. Its aftertaste bitterness restricts its use for human consumption and limits its application in food and pharmaceutical products. In present study, we have performed computational analysis in order to investigate the interaction of two major constituents of SG's against homology model of the hTAS2R4 receptor. Molecular simulation study was performed using stevioside and rebaudioside A revealed that, sugar moiety at the C-3'' position in rebaudioside A causes restriction of its entry into the receptor site thereby unable to trigger the bitter reception signaling cascade. Encouraged by the current finding, we have also developed a greener route using β-1,3-glucanase from Irpex lacteus for the synthesis of de-bittered rebaudioside A from stevioside. The rebaudioside A obtained was of high quality with percent conversion of 62.5%. The results here reported could be used for the synthesis of rebaudioside A which have large application in food and pharmaceutical industry. PMID:26976334

  10. Inhibition of seed germination by extracts of bitter Hawkesbury watermelon containing cucurbitacin, a feeding stimulant for corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Martin, Phyllis A W; Blackburn, Michael

    2003-04-01

    Cucurbitacins are feeding stimulants for corn rootworm used in baits to control the adults of this insect pest. Corn rootworm larvae also feed compulsively on cucurbitacins. Cucurbitacins are reported to be gibberellin antagonists that may preclude their use as seed treatments for these soil-dwelling insects. The crude extract of a bitter Hawkesbury watermelon containing cucurbitacin E-glycoside significantly inhibited germination of watermelon, squash, and tomato seeds. Although the germination of corn seed was not significantly inhibited, root elongation was inhibited by crude extracts, but not by high-performance liquid chromatography-purified cucurbitacin E-glycoside. Therefore, the effects of the major components in the bitter watermelon extract (e.g., sugars) on seed germination and root elongation were determined. Pure sugars (glucose and fructose), at concentrations found in watermelon extract, mimicked the inhibition of seed germination and root elongation seen with the crude bitter Hawkesbury watermelon extract. Removal of these sugars may be necessary to use this extract as a bait for corn rootworm larvae as a seed or root treatment. PMID:14994812

  11. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities

    PubMed Central

    Jabri karoui, Iness; Marzouk, Brahim

    2013-01-01

    Citrus aurantium peel and juice aroma compounds were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), whereas phenolic compounds analysis was performed by reversed-phase high-performance liquid chromatography (RP-HPLC). Limonene was the major volatile compound of bitter orange peel (90.25%) and juice (91.61%). HPLC analysis of bitter orange peel and juice methanolic extracts indicated that phenolic acids constitute their main phenolic class representing 73.80% and 71.25%, respectively, followed by flavonoids (23.02% and 23.13%, resp.). p-Coumaric and ferulic acids were the most abundant phenolic compounds representing 24.68% and 23.79%, respectively, in the peel, while the juice contained 18.02% and 19.04%, respectively. The antioxidant activities of bitter orange peel and juice methanolic extracts have been evaluated using four in vitro assays, and the results were compared with the standard antioxidants (BHT, BHA, and ascorbic acid). Our findings demonstrated that Citrus aurantium peel and juice possess antioxidant activities which were less effective than those of antioxidant standards. Both extracts may be suggested as a new potential source of natural antioxidant. PMID:23841062

  12. Thermal Design of a Bitter-Type Electromagnet for Dusty Plasma Experiments: Prototype Design and Construction

    NASA Astrophysics Data System (ADS)

    Birmingham, W. J.; Bates, E. M.; Romero-Talamás, Carlos; Rivera, W. F.

    2015-11-01

    For the purpose of analyzing magnetized dusty plasma at the University of Maryland Baltimore County (UMBC) Dusty Plasma Laboratory, we are designing a resistive water cooled Bitter-Type electromagnet. When completed, the magnet will be programmable to generate fields of up to 10 T for at least 10 seconds and up to several minutes. An analytic thermal design method was developed for establishing the location of elongated axial cooling passages. Comparisons with finite element analysis (FEA) data reveals that the thermal design method was capable of generating cooling channel patterns which establish manageable temperature profiles within the magnet. With our analytic method, cooling hole patterns can be generated in seconds instead of hours with FEA software. To further validate our thermal analysis as well as manufacturing techniques of our magnet design, we are now constructing a prototype electromagnet. The prototype is designed to operate continuously at 1 T with a current of 750 A, and has four diagnostic ports that can accommodate thermocouples and optical access to the water flow. A 1.25 inch diameter bore allows for axial field measurements and provides space for small scale experiments. Thermal analysis and specifics of the electromagnet design are presented.

  13. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal

    PubMed Central

    Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-01-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342

  14. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics.

    PubMed

    Orsmark-Pietras, Christina; James, Anna; Konradsen, Jon R; Nordlund, Björn; Söderhäll, Cilla; Pulkkinen, Ville; Pedroletti, Christophe; Daham, Kameran; Kupczyk, Maciek; Dahlén, Barbro; Kere, Juha; Dahlén, Sven-Erik; Hedlin, Gunilla; Melén, Erik

    2013-07-01

    The causes of severe childhood asthma are poorly understood. Our aim was to define global patterns of gene expression in children with severe therapy-resistant and controlled asthma. White blood cells were isolated and the global transcriptome profile was characterised using the Affymetrix Human Gene ST 1.0 chip in children with severe, therapy-resistant asthma (n=17), controlled asthma (n=19) and healthy controls (n=18). Receptor expression was studied in separated leukocyte fractions from asthmatic adults (n=12). Overall, 1378 genes were differentially expressed between children with severe/controlled asthma and controls. Three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were represented: natural killer cell-mediated cytotoxicity (upregulated in controlled asthma); N-glycan biosynthesis (downregulated in severe asthma); and bitter taste transduction receptors (TAS2Rs) (upregulated in severe asthma). Quantitative PCR experiments confirmed upregulation of TAS2Rs in severe asthmatics. TAS2R expression was replicated in leukocytes from adult asthmatics, in which TAS2R agonists also inhibited LPS-induced cytokine release. Significant correlations between expression of TAS2Rs and clinical markers of asthma severity were found in both adults and children. In conclusion, specific gene expression patterns were observed in children with severe, therapy-resistant asthma. The increased expression of bronchodilatory TAS2Rs suggests a new target for the treatment of asthma. PMID:23222870

  15. A modified Bitter-type electromagnet and control system for cold atom experiments

    SciTech Connect

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-15

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.

  16. As bitter as a trombone: synesthetic correspondences in nonsynesthetes between tastes/flavors and musical notes.

    PubMed

    Crisinel, Anne-Sylvie; Spence, Charles

    2010-10-01

    In parallel to studies of various cases of synesthesia, many cross-modal correspondences have also been documented in nonsynesthetes. Among these correspondences, implicit associations between taste and pitch have been reported recently (Crisinel & Spence, 2009, 2010). Here, we replicate and extend these findings through explicit matching of sounds of varying pitch to a range of tastes/flavors. In addition, participants in the experiment reported here also chose the type of musical instrument most appropriate for each taste/flavor. The association of sweet and sour tastes to high-pitched notes was confirmed. By contrast, umami and bitter tastes were preferentially matched to low-pitched notes. Flavors did not display such strong pitch associations. The choice of musical instrument seems to have been driven primarily by a matching of the hedonic value and familiarity of the two types of stimuli. Our results raise important questions about our representation of tastes and flavors and could also lead to applications in the marketing of food products. PMID:20952795

  17. “The Bitter Laughter”. When Parody Is a Moral and Affective Priming in Political Persuasion

    PubMed Central

    D’Errico, Francesca; Poggi, Isabella

    2016-01-01

    Research on socially aware systems requires fine-grained knowledge of the mechanisms of persuasion in order to promote civic knowledge and aware political participation. Within humor studies, political parody is generally considered a simple pleasant weapon for political evaluation, currently explained by referring to the so called “just a joke effect” (Nabi et al., 2007). Indeed the funny side of parody can induce positive emotions, but it also includes a discrediting act that sometimes produces a “bitter laughter.” The present study aims to understand the role played by negative and moral emotions aroused by parody. A parody is defined as a communicative behavior (a discourse, text, body movement, song) that imitates a communicative behavior or trait displayed by some Target by reproducing it in a distorted way, with the aim of making fun of the Target. Based on a socio-cognitive approach, a distinction is made between “surface” and “deep” parody (Poggi and D’Errico, 2013), with the former simply imitating behaviors actually displayed by the Target, and the latter implying a (humorous) re-categorization of the Target. The paper studies the effect of these two different types of parody on persuasion processes. Results show that the deep parody, as opposed to surface parody, triggers more negative emotions, and in particular indignation, that in turn lead to more negative evaluations of the Target. Moreover, the moral priming of parody is influenced by the Target politician’s gender. PMID:27555825

  18. "The Bitter Laughter". When Parody Is a Moral and Affective Priming in Political Persuasion.

    PubMed

    D'Errico, Francesca; Poggi, Isabella

    2016-01-01

    Research on socially aware systems requires fine-grained knowledge of the mechanisms of persuasion in order to promote civic knowledge and aware political participation. Within humor studies, political parody is generally considered a simple pleasant weapon for political evaluation, currently explained by referring to the so called "just a joke effect" (Nabi et al., 2007). Indeed the funny side of parody can induce positive emotions, but it also includes a discrediting act that sometimes produces a "bitter laughter." The present study aims to understand the role played by negative and moral emotions aroused by parody. A parody is defined as a communicative behavior (a discourse, text, body movement, song) that imitates a communicative behavior or trait displayed by some Target by reproducing it in a distorted way, with the aim of making fun of the Target. Based on a socio-cognitive approach, a distinction is made between "surface" and "deep" parody (Poggi and D'Errico, 2013), with the former simply imitating behaviors actually displayed by the Target, and the latter implying a (humorous) re-categorization of the Target. The paper studies the effect of these two different types of parody on persuasion processes. Results show that the deep parody, as opposed to surface parody, triggers more negative emotions, and in particular indignation, that in turn lead to more negative evaluations of the Target. Moreover, the moral priming of parody is influenced by the Target politician's gender. PMID:27555825

  19. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal.

    PubMed

    Risso, Davide S; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-01-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342

  20. Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.

    2014-10-01

    A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.

  1. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal

    NASA Astrophysics Data System (ADS)

    Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-05-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.

  2. Vibrational spectroscopy and chemometrics for rapid, quantitative analysis of bitter acids in hops (Humulus lupulus).

    PubMed

    Killeen, Daniel P; Andersen, David H; Beatson, Ron A; Gordon, Keith C; Perry, Nigel B

    2014-12-31

    Hops, Humulus lupulus, are grown worldwide for use in the brewing industry to impart characteristic flavor and aroma to finished beer. Breeders produce many varietal crosses with the aim of improving and diversifying commercial hops varieties. The large number of crosses critical to a successful breeding program imposes high demands on the supporting chemical analytical laboratories. With the aim of reducing the analysis time associated with hops breeding, quantitative partial least-squares regression (PLS-R) models have been produced, relating reference data acquired by the industrial standard HPLC and UV methods, to vibrational spectra of the same, chemically diverse hops sample set. These models, produced from rapidly acquired infrared (IR), near-infrared (NIR), and Raman spectra, were appraised using standard statistical metrics. Results demonstrated that all three spectroscopic methods could be used for screening hops for α-acid, total bitter acids, and cohumulone concentrations in powdered hops. Models generated from Raman and IR spectra also showed potential for use in screening hops varieties for xanthohumol concentrations. NIR analysis was performed using both a standard benchtop spectrometer and a portable NIR spectrometer, with comparable results obtained by both instruments. Finally, some important vibrational features of cohumulone, colupulone, and xanthohumol were assigned using DFT calculations, which allow more insightful interpretation of PLS-R latent variable plots. PMID:25485767

  3. Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells

    PubMed Central

    Gaida, Matthias Martin; Dapunt, Ulrike; Hänsch, Gertrud Maria

    2016-01-01

    Quorum-sensing molecules, also known as autoinducer, are essential for bacterial biofilm formation. Our focus is on N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), because it is also known as an ‘interkingdom signalling molecule’, which means that it also interacts with mammalian cells. AHL-12 activates defence-relevant functions of phagocytic cells, including enhancement of phagocytosis, increased expression of adhesion receptors and induction of chemotaxis. This leads to the hypothesis that early recognition of developing biofilms might be the key to a successful host defence against biofilm infection. In that context we studied activation of phagocytic cells by AHL-12, and found that phagocytes are activated via a rather specialized receptor that was not previously described on myeloid cells, the bitter taste receptor T2R38. Taste receptors are commonly associated with cells of the gustatory system. The extragustatory expression, however, suggests an additional role, namely the sensing of the onset of bacterial biofilm infection. PMID:26782143

  4. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    NASA Astrophysics Data System (ADS)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  5. Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae)

    PubMed Central

    2012-01-01

    Background The Cucurbitaceae genus Trichosanthes comprises 90–100 species that occur from India to Japan and southeast to Australia and Fiji. Most species have large white or pale yellow petals with conspicuously fringed margins, the fringes sometimes several cm long. Pollination is usually by hawkmoths. Previous molecular data for a small number of species suggested that a monophyletic Trichosanthes might include the Asian genera Gymnopetalum (four species, lacking long petal fringes) and Hodgsonia (two species with petals fringed). Here we test these groups’ relationships using a species sampling of c. 60% and 4759 nucleotides of nuclear and plastid DNA. To infer the time and direction of the geographic expansion of the Trichosanthes clade we employ molecular clock dating and statistical biogeographic reconstruction, and we also address the gain or loss of petal fringes. Results Trichosanthes is monophyletic as long as it includes Gymnopetalum, which itself is polyphyletic. The closest relative of Trichosanthes appears to be the sponge gourds, Luffa, while Hodgsonia is more distantly related. Of six morphology-based sections in Trichosanthes with more than one species, three are supported by the molecular results; two new sections appear warranted. Molecular dating and biogeographic analyses suggest an Oligocene origin of Trichosanthes in Eurasia or East Asia, followed by diversification and spread throughout the Malesian biogeographic region and into the Australian continent. Conclusions Long-fringed corollas evolved independently in Hodgsonia and Trichosanthes, followed by two losses in the latter coincident with shifts to other pollinators but not with long-distance dispersal events. Together with the Caribbean Linnaeosicyos, the Madagascan Ampelosicyos and the tropical African Telfairia, these cucurbit lineages represent an ideal system for more detailed studies of the evolution and function of petal fringes in plant-pollinator mutualisms. PMID:22759528

  6. Dose-Dependent Effects of L-Arginine on PROP Bitterness Intensity and Latency and Characteristics of the Chemical Interaction between PROP and L-Arginine

    PubMed Central

    Melis, Melania; Arca, Massimiliano; Aragoni, Maria Carla; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J.; Tomassini Barbarossa, Iole

    2015-01-01

    Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the –NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a ‘carrier’ of various bitter molecules in saliva. PMID:26103639

  7. Myxobacteria Fruiting Body Formation

    NASA Astrophysics Data System (ADS)

    Jiang, Yi

    2006-03-01

    Myxobacteria are social bacteria that swarm and glide on surfaces, and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies, inside which cells differentiate into nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction mediated by diffusing chemicals. However, myxobacteria aggregation is the consequence of direct cell-contact interactions. I will review our recent efforts in modeling the fruiting body formation of Myxobacteria, using lattice gas cellular automata models that are based on local cell-cell contact signaling. These models have reproduced the individual phases in Myxobacteria development such as the rippling, streaming, early aggregation and the final sporulation; the models can be unified to simulate the whole developmental process of Myxobacteria.

  8. Preparation of a Co-doped hierarchically porous carbon from Co/Zn-ZIF: An efficient adsorbent for the extraction of trizine herbicides from environment water and white gourd samples.

    PubMed

    Jiao, Caina; Li, Menghua; Ma, Ruiyang; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2016-05-15

    A Co-doped hierarchically porous carbon (Co/HPC) was synthesized through a facile carbonization process by using Co/ZIF-8 as the precursor. The textures of the Co/HPC were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibration sample magnetometry and nitrogen adsorption-desorption isotherms. The results showed that the Co/HPC is in good polyhedral shape with uniform size, sufficient magnetism, high surface area as well as hierarchical pores (micro-, meso- and macropores). To evaluate the extraction performance of the Co/HPC, it was applied as a magnetic adsorbent for the enrichment of triazine herbicides from environment water and white gourd samples prior to high performance liquid chromatographic analysis. The main parameters that affected the extraction efficiency were investigated. Under the optimum conditions, a good linearity for the four triazine herbicides was achieved with the correlation coefficients (r) higher than 0.9970. The limits of detection, based on S/N=3, were 0.02 ng/mL for water and 0.1-0.2 ng/g for white gourd samples, respectively. The recoveries of all the analytes for the method fell in the range from 80.3% to 120.6%. PMID:26992527

  9. Breeding of ‘Manten-Kirari’, a non-bitter and trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.)

    PubMed Central

    Suzuki, Tatsuro; Morishita, Toshikazu; Mukasa, Yuji; Takigawa, Shigenobu; Yokota, Satoshi; Ishiguro, Koji; Noda, Takahiro

    2014-01-01

    Here, we developed a new Tartary buckwheat cultivar ‘Manten-Kirari’, whose flour contains only trace amounts of rutinosidase and lacked bitterness. The trace-rutinosidase breeding line ‘f3g-162’ (seed parent), which was obtained from a Nepalese genetic resource, was crossed with ‘Hokkai T8’ (pollen parent), the leading variety in Japan, to improve its agronomic characteristics. The obtained progeny were subjected to performance test. ‘Manten-Kirari’ had no detectable rutinosidase isozymes in an in-gel detection assay and only 1/266 of the rutinosidase activity of ‘Hokkai T8’. Dough prepared from ‘Manten-Kirari’ flour contained almost no hydrolyzed rutin, even 6 h after the addition of water, whereas the rutin in ‘Hokkai T8’ dough was completely hydrolyzed within 10 min. In a sensory evaluation of the flour from the two varieties, nearly all panelists detected strong bitterness in ‘Hokkai T8’, whereas no panelists reported bitterness in ‘Manten-Kirari’. This is the first report to describe the breeding of a Tartary buckwheat cultivar with reduced rutin hydrolysis and no bitterness in the prepared flour. Notably, the agronomic characteristics of ‘Manten-Kirari’ were similar to those of ‘Hokkai T8’, which is the leading variety in Japan. Based on these characteristics, ‘Manten-Kirari’ is a promising for preparing non-bitter, rutin-rich foods. PMID:25914589

  10. Implications of Stratigraphic and Structural Data from the Bitter Spring Region, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Donatelle, A.; Goeden, J.; Hannon, M.; Hickson, T.; Holter, S.; Johnson, T.; Lamb, M.; Lindberg, J.

    2004-05-01

    Deposition of the Tertiary Horse Spring Formation (HSF) in southern Nevada has been used to infer varying styles of extensional and strike-slip basin formation. Beard (1996) proposes an initial large contiguous basin of Rainbow Gardens age (ca. 26-18 Ma) that is subsequently broken up into sub-basins during Thumb time (16-14 Ma). A key locality to test this hypothesis is near the southern end of East and West Longwell Ridges, on the Bitter Spring USGS 1:24000 quadrangle (BSQ). However, the stratigraphic framework in this area is poorly defined. The BSQ is located west of the Overton arm of Lake Mead near the junction of the Las Vegas Valley Shear Zone and the Lake Mead Fault System. By mapping a portion of the quadrangle at 1:5000 scale, measuring detailed sections, and collecting ash samples from key localities, we investigated the structural and sedimentary framework of the area and have begun to clarify the stratigraphic relationships between members of the HSF. Faults fall into three categories: one set strikes north and dips moderately to the west; another strikes east-northeast and dips shallowly to the northwest; and the last strikes north and dips to the east. Many of these faults show an oblique sense of movement and may be related to movement on the White Basin (WBF) and Rodgers Spring Faults (Bohannon, 1983). A distinctive resistant limestone caps gypsiferous and clastic units on both sides of the north-south trending WBF. To the west of the WBF, this limestone is mapped as the Bitter Ridge Limestone Member of the HSF, whereas to the east it is mapped as the Thumb Member by Beard (unpub) and as the Rainbow Gardens Member by Bohannon (1983). We suspect that these limestones may be correlative; geochemical and petrographic fingerprinting of numerous ashes from our sections should allow correlation of these units across the WBF. In addition, sections from the east side of the WBF spaced over 1.5 km show conglomerate at the base, overlain by a sequence of

  11. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  12. Antioxidant activity of Citrus fruits.

    PubMed

    Zou, Zhuo; Xi, Wanpeng; Hu, Yan; Nie, Chao; Zhou, Zhiqin

    2016-04-01

    Citrus is well-known for its nutrition and health-promotion values. This reputation is derived from the studies on the biological functions of phytochemicals in Citrus fruits and their derived products in the past decades. In recent years, the antioxidant activity of Citrus fruits and their roles in the prevention and treatment of various human chronic and degenerative diseases have attracted more and more attention. Citrus fruits are suggested to be a good source of dietary antioxidants. To have a better understanding of the mechanism underlying the antioxidant activity of Citrus fruits, we reviewed a study on the antioxidant activity of the phytochemicals in Citrus fruits, introduced methods for antioxidant activity evaluation, discussed the factors which influence the antioxidant activity of Citrus fruits, and summarized the underlying mechanism of action. Some suggestions for future study were also presented. PMID:26593569

  13. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    SOMASAGARA, RANGANATHA R.; DEEP, GAGAN; SHROTRIYA, SANGEETA; PATEL, MANISHA; AGARWAL, CHAPLA; AGARWAL, RAJESH

    2015-01-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy. PMID:25672620

  14. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  15. Transport of hop bitter acids across intestinal Caco-2 cell monolayers.

    PubMed

    Cattoor, Ko; Bracke, Marc; Deforce, Dieter; De Keukeleire, Denis; Heyerick, Arne

    2010-04-14

    Several health-beneficial properties of hop bitter acids have been reported (inhibition of bone resorption and anticarcinogenic and anti-inflammatory activities); however, scientific data on the bioavailability of these compounds are lacking. As a first approach to study the bioavailability, the epithelial transport of hop alpha- and beta-acids across Caco-2 monolayers was investigated. Hop acids were added either to the apical or to the basolateral chamber and, at various time points, amounts transported to the receiving compartment were determined. The monolayer integrity control was performed by using marker compounds (atenolol and propranolol), transepithelial electrical resistance (TEER) measurement, and determination of the fluorescein efflux. The TEER and fluorescein efflux confirmed the preservation of the monolayer integrity. The membrane permeability of the alpha-acids (apparent permeability coefficients for apical to basolateral transport (P(appAB)) ranged from 14 x 10(-6) to 41 x 10(-6) cm/s) was determined to be substantially higher than that of the beta-acids (P(appAB) values ranging from 0.9 x 10(-6) to 2.1 x 10(-6) cm/s). Notably, the beta-acids exhibited significantly different bidirectional P(app) values with efflux ratios around 10. The involvement of carrier-mediated transport for beta-acids (active efflux pathway by P-gp, BCRP, and/or MRP-2 type efflux pumps) could be confirmed by transport experiments with specific inhibitors (verapamil and indomethacin). It appears that alpha-acids are efficiently absorbed, whereas the permeability of beta-acids is low. Limiting factors in the absorption of beta-acids could involve P-gp and MRP-2 type efflux transporters and phase II metabolism. PMID:20329731

  16. Is sensory-specific satiety for a bitter-sweet infusion modulated by context?

    PubMed

    Garcia-Burgos, David; Secchiari, Florencia; Calviño, Amalia

    2015-03-01

    The sensory-affective attributes of beverages have an important influence on a given intake and successive consumptions because of sensory-specific satiety (SSS; defined as a decrease in pleasantness ratings of a food eaten relative to uneaten foods). No studies have, however, investigated how multiple sessions of SSS for familiar drinks over a period of several days up to a week may change their pleasantness and how these hedonic-related judgments are affected by the context during SSS testing. With twenty-six participants, the present study explored the medium lasting and contextual effects of repeated SSS sessions for a bitter-sweet infusion on olfactory and flavour pleasantness over the course of three exposures in either a laboratory or a cafeteria setting. The results showed olfactory and flavour SSS for the infusion following each consumption in both the artificial and the natural setting. More interestingly, despite the failure to detect medium-term SSS (i.e., a greater decrease in pleasantness ratings of a food eaten relative to uneaten foods after repeated SSS sessions over several days as compared to the first SSS session), a contextual modulation of olfactory SSS was observed with a lesser overall magnitude in the cafeteria compared to the laboratory setting. To the best of our knowledge, the impact of eating location on the development of satiation and the differential contextual sensitivity of SSS for orthonasal odours and flavours has not been reported previously. The implications of potential environmental control of SSS are considered in this study. PMID:25542889

  17. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes.

    PubMed

    Li, Keyou; Yang, Wenhua; Li, Zhe; Jia, Wangwang; Li, Jiazhou; Zhang, Pengfei; Xiao, Tiancun

    2016-05-01

    Psoriasis is a chronic skin disease that affects approximately 2% of the world's population. Conventional therapeutic approaches are not effective or necessarily safe for treating symptoms due to the serious side effects and resistance to currently prescribed drugs. Traditionally, in oriental medicine, apricot seed (Semen Armeniacae amarum) is used to treat skin diseases. However, the underlying mechanism of action has not been systematically elucidated. In the present study, the anti-proliferative effect of bitter apricot essential oil (BAEO) on cultured HaCaT cells was evaluated and the mechanism of action investigated. BAEO was isolated by hydrodistillation, and gas chromatography-mass spectrometry (GC-MS) analysis identified benzaldehyde (75.35%), benzoic acid (6.21%) and mandelonitrile (5.38%). HaCaT cell growth, measured by sulforhodamine B assay (SRB), was inhibited by BAEO with an IC50 value of 142.45 μg/ml. Apoptosis of HaCaT cells treated with BAEO was detected by cell cycle, flow cytometry, and western blot analyses. These measurements revealed G0/G1 cell cycle arrest, elevated numbers of early and late stage apoptotic cells, and caspases-3/8/9 and PARP activation. Z-VAD-FMK, a broad-spectrum caspase inhibitor, attenuated BAEO-induced apoptosis. Also, increased Bax and decreased Bcl-2 levels suggest that BAEO-induced apoptosis is mediated through both death receptor and mitochondrial pathways. Moreover, reduced Rel/NF-κB levels suggest that BAEO-mediated apoptosis is also associated with inhibition of the NF-κB pathway. These data suggest that BAEO is a naturally occurring material that functions as a potent pro-apoptotic factor for human keratinocytes. Thus, it is a promising candidate to treat psoriasis. PMID:26971222

  18. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  19. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy. PMID:25672620

  20. Deconstructing a fruit serving: comparing the antioxidant density of select whole fruit and 100% fruit juices.

    PubMed

    Crowe, Kristi Michele; Murray, Elizabeth

    2013-10-01

    Research suggests phytonutrients, specifically phenolic compounds, within fruit may be responsible for the putatively positive antioxidant benefits derived from fruit. Given the prominence of fruit juice in the American diet, the purpose of this research was to assess the antioxidant density of fresh fruit and 100% fruit juice for five commonly consumed fruits and juices and to compare the adequacy of 100% juice as a dietary equivalent to whole fruit in providing beneficial antioxidants. Antioxidant density was measured using an oxygen radical absorbance capacity method on six samples assayed in triplicate for each fruit (grape, apple, orange, grapefruit, pineapple), name-brand 100% juice, and store-brand 100% juice. One-way analysis of variance and Tukey's honestly significant difference or Student t test were used to assess significance (P<0.05). Antioxidant density (mmol TE/100 g) of apple, orange, and grapefruit was 23% to 54% higher than the mean antioxidant density of name-brand and store-brand juices for each fruit; however, only apple and grapefruit exhibited significantly greater (P<0.05) antioxidant density than either of their name-brand or store-brand juices. In contrast, the mean antioxidant density of name-brand grape and pineapple juice was higher than fresh grape or pineapple fruit; however, both fresh grapes and commercial grape juice contained significantly more (P<0.05) antioxidants than store-brand grape juice. Regardless of the convenience of fruit juice, results support the recommendations of the 2010 Dietary Guidelines for Americans for increasing fruit servings in the whole fruit form due to their provision of beneficial antioxidants and fiber with approximately 35% less sugar. PMID:23810279

  1. Fruit photosynthesis in Satsuma mandarin.

    PubMed

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. PMID:26706059

  2. Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides).

    PubMed

    McAnuff-Harding, Marie A; Omoruyi, Felix O; Asemota, Helen N

    2006-04-25

    In this study, the effects of bitter yam sapogenin extract or commercial diosgenin on intestinal disaccharidases and some renal enzymes in diabetic rats were investigated. Diabetic male Wistar rats were fed diets supplemented with 1% sapogenin extract or commercial diosgenin for 3 weeks. Plasma glucose, intestinal disaccharidases and the activities of transaminases, acid phosphatase, glucose-6-phosphatase, ATP citrate lyase, glucose-6-phosphate dehydrogenase and pyruvate kinase were assessed for the level of metabolic changes in the kidney of diabetic rats. Sapogenin extract or commercial diosgenin supplementation resulted in a significant decrease in lactase and maltase activities in all three regions of the intestine compared to the diabetic control group. However, the test diets significantly reduced intestinal sucrase activity in the proximal and mid regions. Test diets supplementation resulted in a significant decrease in the activities of the transaminases compared to the normal and diabetic control groups. The activity of glucose-6-phosphatase was significantly increased while the activities of ATP citrate lyase, pyruvate kinase and glucose-6-phosphate dehydrogenase were significantly reduced in the kidney of the diabetic control rats compared to the normal group. Test diets supplementation did not significantly alter glucose-6-phosphatase, ATP citrate lyase and pyruvate kinase activities compared to the diabetic control. However, there was a significant increase in glucose-6-phosphate dehydrogenase activity toward the normal group. In conclusion, the consumption of bitter yam sapogenin extract or commercial diosgenin demonstrated hypoglycemic properties, which are beneficial in diabetes by reducing intestinal disaccharidases activities; however, bitter yam sapogenin extract may adversely affect the integrity of kidney membrane. PMID:16497337

  3. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning.

    PubMed

    Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2016-01-01

    A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called "MSG preconditioning". However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299

  4. Abscisic Acid Acts as a Blocker of the Bitter Taste G Protein-Coupled Receptor T2R4.

    PubMed

    Pydi, Sai P; Jaggupilli, Appalaraju; Nelson, Ken M; Abrams, Suzanne R; Bhullar, Rajinder P; Loewen, Michele C; Chelikani, Prashen

    2015-04-28

    Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. In humans, 25 T2Rs mediate bitter taste sensation. In addition to the oral cavity, T2Rs are expressed in many extraoral tissues, including the central nervous system, respiratory system, and reproductive system. To understand the mechanistic roles of the T2Rs in oral and extraoral tissues, novel blockers or antagonists are urgently needed. Recently, we elucidated the binding pocket of T2R4 for its agonist quinine, and an antagonist and inhibitory neurotransmitter, γ-aminobutyric acid. This structure-function information about T2R4 led us to screen the plant hormone abscisic acid (ABA), its precursor (xanthoxin), and catabolite phaseic acid for their ability to bind and activate or inhibit T2R4. Molecular docking studies followed by functional assays involving calcium imaging confirmed that ABA is an antagonist with an IC50 value of 34.4 ± 1.1 μM. However, ABA precursor xanthoxin acts as an agonist on T2R4. Interestingly, molecular model-guided site-directed mutagenesis suggests that the T2R4 residues involved in quinine binding are also predominantly involved in binding to the novel antagonist, ABA. The antagonist ability of ABA was tested using another T2R4 agonist, yohimbine. Our results suggest that ABA does not inhibit yohimbine-induced T2R4 activity. The discovery of natural bitter blockers has immense nutraceutical and physiological significance and will help in dissecting the T2R molecular pathways in various tissues. PMID:25844797

  5. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    PubMed Central

    Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2016-01-01

    A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299

  6. Bitter, sweet and umami taste receptors and downstream signaling effectors: Expression in embryonic and growing chicken gastrointestinal tract.

    PubMed

    Cheled-Shoval, Shira L; Druyan, Shelly; Uni, Zehava

    2015-08-01

    Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCβ2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT. PMID:26049797

  7. A new chemical tool for absinthe producers, quantification of α/β-thujone and the bitter components in Artemisia absinthium.

    PubMed

    Bach, Benoit; Cleroux, Marilyn; Saillen, Mayra; Schönenberger, Patrik; Burgos, Stephane; Ducruet, Julien; Vallat, Armelle

    2016-12-15

    The concentrations of α/β-thujone and the bitter components of Artemisia absinthium were quantified from alcoholic wormwood extracts during four phenological stages of their harvest period. A solid-phase micro-extraction method coupled to gas chromatography-mass spectrometry was used to determine the concentration of the two isomeric forms of thujone. In parallel, the combination of ultra-high pressure liquid chromatography and high resolution mass spectrometry allowed to quantify the compounds absinthin, artemisetin and dihydro-epi-deoxyarteannuin B. This present study aimed at helping absinthe producers to determine the best harvesting period. PMID:27451252

  8. Stevisalioside A, a novel bitter-tasting ent-atisene glycoside from the roots of Stevia salicifolia.

    PubMed

    Mata, R; Rodríguez, V; Pereda-Miranda, R; Kaneda, N; Kinghorn, A D

    1992-05-01

    A new acetylated ent-atisene glycoside, stevisalioside A [1], has been isolated as a bitter-tasting principle from Stevia salicifolia roots. The structure was established by the interpretation of spectral data, with the nmr assignments of this compound being based on 1H-1H COSY, 1H-13C HETCOR, and selective INEPT experiments. A rearrangement product 4 of the aglycone moiety obtained by alkaline hydrolysis supported the structure of 1. This is the first report of the occurrence of an atisane-type diterpene from the genus Stevia. PMID:1517738

  9. Moulds and yeasts in fruit salads and fruit juices.

    PubMed

    Tournas, V H; Heeres, J; Burgess, L

    2006-10-01

    Thirty-eight fruit salad samples including cantaloupe, citrus fruits, honeydew, pineapple, cut strawberries and mixed fruit salads, and 65 pasteurized fruit juice samples (apple, carrot, grapefruit, grape and orange juices, apple cider, and soy milk) were purchased from local supermarkets in the Washington, DC area and tested for fungal contamination. The majority of fruit salad samples (97%) were contaminated with yeasts at levels ranging from <2.0 to 9.72 log10 of colony forming units per gram (cfu/g). Frequently encountered yeasts were Pichia spp., Candida pulcherrima, C. lambica, C. sake, Rhodotorula spp., and Debaryomyces polymorphus. Low numbers of Penicillium spp. were found in pineapple salads, whereas Cladosporium spp. were present in mixed fruit and cut strawberry salads. Twenty-two per cent of the fruit juice samples tested showed fungal contamination. Yeasts were the predominant contaminants ranging from <1.0 to 6.83 log10 cfu/ml. Yeasts commonly found in fruit juices were C. lambica, C. sake, and Rhodotorula rubra. Geotrichum spp. and low numbers of Penicillium and Fusarium spp. (1.70 and 1.60 log10 cfu/ml, respectively) were present in grapefruit juice. PMID:16943069

  10. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  11. Anthocyanins Present in Some Tropical Fruits.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many tropical fruits are rich in anthocyanins, though limited information is available about the characterization and quantification of these anthocyanins. The identification of anthocyanin pigments in four tropical fruits was determined by ion trap mass spectrometry. Fruits studied included acero...

  12. Smart Shopping for Veggies and Fruits

    MedlinePlus

    ... Waste Food Safety Newsroom Dietary Guidelines Communicator’s Guide Smart Shopping for Veggies and Fruits You are here ... Fruits Print Share 10 TIPS NUTRITION EDUCATION SERIES Smart Shopping for Veggies and Fruits 10 tips for ...

  13. The Hopi Fruit Tree Book.

    ERIC Educational Resources Information Center

    Nyhuis, Jane

    Referring as often as possible to traditional Hopi practices and to materials readily available on the reservation, the illustrated booklet provides information on the care and maintenance of young fruit trees. An introduction to fruit trees explains the special characteristics of new trees, e.g., grafting, planting pits, and watering. The…

  14. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.).

    PubMed

    Toppino, Laura; Barchi, Lorenzo; Lo Scalzo, Roberto; Palazzolo, Eristanna; Francese, Gianluca; Fibiani, Marta; D'Alessandro, Antonietta; Papa, Vincenza; Laudicina, Vito A; Sabatino, Leo; Pulcini, Laura; Sala, Tea; Acciarri, Nazzareno; Portis, Ezio; Lanteri, Sergio; Mennella, Giuseppe; Rotino, Giuseppe L

    2016-01-01

    Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines "305E40" × "67/3." The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs. PMID:26973692

  15. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.)

    PubMed Central

    Toppino, Laura; Barchi, Lorenzo; Lo Scalzo, Roberto; Palazzolo, Eristanna; Francese, Gianluca; Fibiani, Marta; D'Alessandro, Antonietta; Papa, Vincenza; Laudicina, Vito A.; Sabatino, Leo; Pulcini, Laura; Sala, Tea; Acciarri, Nazzareno; Portis, Ezio; Lanteri, Sergio; Mennella, Giuseppe; Rotino, Giuseppe L.

    2016-01-01

    Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines “305E40” × “67/3.” The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs. PMID:26973692

  16. Geochemistry and Hydrogeology of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM

    NASA Astrophysics Data System (ADS)

    Premo, Z. E.; Crossey, L. J.

    2008-12-01

    Bitter Lake NWR in southeast (Roswell) New Mexico is located at the convergence of the Pecos River and the surface discharge region in the Roswell Artesian Basin (shallow alluvial aquifer and carbonate aquifer). The Refuge hosts approximately 50 water-filled sinkholes, which each support a unique and diverse aquatic ecosystem. An initial survey of water chemistries indicates that each sink has a unique chemical identity and neutral to alkaline pH. Sinkholes are filled by one or more artesian springs, groundwater seepage and possible hydrothermal water sources. We present results of water and gas analyses of 10 representative sinkholes, sampled during spring and summer, 2008. Analytical results, including major ions, metals (arsenic, selenium, iron), and gas chemistries are compared with monitoring well data from wells found to the north of the Refuge, along the Pecos River, and to the west, along the Pecos Slope - the regional aquifer recharge area. Well samples representative of regional groundwater provide potential end member perspectives for sources of sinkhole waters. Samples were collected incrementally from the surface to sinkhole floor to profile the limnological structure and to assess chemical variation and mixing through the water column. A sonde was deployed to measure and record physical parameters. Results of the analysis are used to describe the geochemical mixing that is occurring within the sinks. As each sink behaves as an independent unit, those separated by less than 10 meters can have dramatic variability in chemical signature and biological influence. For example, among the 29 sinks sampled during the initital survey, chloride concentrations range from 1.912x10-3 to 1.405 mol/kg; sulfate from 7.204x10-4 to 0.1364 mol/kg; and fluoride from 3.579x10-4 to 3.453x10-3 mol/kg. Along the Pecos Slope, groundwater chloride concentrations increase from less than 1.410x10-3 mol/kg near the major recharge area in the Sacramento Mountains to 0.141 mol

  17. Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor

    PubMed Central

    Giorgetti, Alejandro; Lanzara, Carmela; Gasparini, Paolo; Carloni, Paolo; Born, Stephan; Brockhoff, Anne; Behrens, Maik; Meyerhof, Wolfgang

    2010-01-01

    Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models. PMID:20811630

  18. Non-human tools for the evaluation of bitter taste in the design and development of medicines: a systematic review.

    PubMed

    Mohamed-Ahmed, Abeer H A; Soto, Jessica; Ernest, Terry; Tuleu, Catherine

    2016-07-01

    Taste evaluation is a crucial factor for determining acceptance of medicines by patients. The human taste panel test is the main method used to establish the overall palatability and acceptability of a drug product to a patient towards the end of development. Non-human in vitro and in vivo taste-evaluation tools are very useful for pre-formulation, quality control and screening of formulations. These non-human taste assessment tools can be used to evaluate all aspects of taste quality. The focus of this review is bitterness because it is a key aspect of taste in association with the development of medicines. In this review, recent in vitro (analytical) and in vivo (non-human) tools are described for the assessment of the bitter taste of medicines. Their correlations with human taste data are critically discussed. The potential for their use in early screening of the taste of active pharmaceutical ingredients (APIs) to expedite paediatric formulation development is also considered. PMID:27240776

  19. Gibberellin metabolism in isolated pea fruit tissue and intact fruits

    SciTech Connect

    Maki, S.; Brenner, M.L. )

    1989-04-01

    Gibberellins (GAs) have been shown by others to be required for normal development of pea fruit. Whether the pericarp of the developing pea fruit produces GAs in situ is not known. To determine if the pericarp has the capacity to produce GAs during fruit growth, the metabolism of the first two committed GAs in the biosynthetic pathway, ({sup 14}C)GA{sub 12}-aldehyde and ({sup 14}C)GA{sub 12} was examined in tissue obtained from pollinated, parthenocarpic, and control fruit over 4 days from treatment. ({sup 14}C)GA{sub 12}-aldehyde was converted primarily to conjugates, including ({sup 14}C)GA{sub 12}-aldehyde conjugate. ({sup 14}C)GA{sub 12} was converted to ({sup 14}C)GA{sub 53} in all tissue, but by day 4 only tissue from pollinated or parthenocarpic fruits showed sustained formation of ({sup 14}C)GA{sub 53}. When ({sup 14}C)GA{sub 12} is applied to 4-day-old fruits attached to the plants, the major product obtained after 24 hours is ({sup 14}C)GA{sub 20} (as identified by GC-MS). No transport to the developing seed was observed. These results indicate that the elongating fruit tissue has the capacity to produce GAs.

  20. Fruits and vegetables dehydration

    NASA Astrophysics Data System (ADS)

    de Ita, A.; Flores, G.; Franco, F.

    2015-01-01

    Dehydration diagrams were determined by means of Differential Thermal Analysis, DTA, and Thermo Gravimetric Analysis, TGA, curves of several simultaneous fruits and vegetables, all under the same conditions. The greater mass loss is associated with water containing in the structure of the investigated materials at low temperature. In poblano chile water is lost in a single step. The banana shows a very sharply two stages, while jicama can be observed although with a little difficulty three stages. The major mass loss occurs in the poblano chile and the lower in banana. The velocity and temperature of dehydration vary within a small range for most materials investigated, except for banana and cactus how are very different.

  1. Essential oil composition of Foeniculum vulgare Mill. fruits from pharmacies in different countries.

    PubMed

    Raal, Ain; Orav, Anne; Arak, Elmar

    2012-01-01

    Variations in the essential oil composition of Foeniculum vulgare Mill. commercial fruits obtained from retail pharmacies in Estonia, Norway, Austria and Moldova and from a spice shop in Turkey were determined using capillary GC techniques. The essential oil content of all the samples was 5-51 mL kg(-1) and between 22 and 51 mL kg(-1) in fennel fruits bought from pharmacies. A total of 34 compounds were identified. The major component was trans-anethole (34.8-82.0%); the other principal compounds in oils were fenchone (1.6-22.8%), estragole (2.4-17.0%), limonene (0.8-16.5%), and cis-anethole (0.1-8.6%). The yield of essential oil (5.0 mL kg(-1)) and content of trans-anethole was very low (34.8%) in the Turkish spice sample. Maximum yield of essential oil was found in fennel from Norway and Austria (50.7 and 50.5 mL kg(-1), respectively); these samples were rich in fenchone (21.2% and 22.8%), but contained less trans-anethole (64.6-63.7) than samples from Estonia and Moldova (82.0% and 80.9%). The typical samples of sweet fennel (bought from Estonia and Moldova) and bitter fennel (from Norway and Austria) were found to conform completely or partially to EP standards, although fennel type was always not marked on the packages. PMID:21827282

  2. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    PubMed

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  3. Anti-inflammatory effect of Momordica charantia in sepsis mice.

    PubMed

    Chao, Che-Yi; Sung, Ping-Jyun; Wang, Wei-Hsien; Kuo, Yueh-Hsiung

    2014-01-01

    Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. PMID:25153878

  4. 76 FR 81401 - Importation of Litchi Fruit From Australia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... pests, and 1 mite. Fruit flies Jarvis's fruit fly (Bactrocera jarvisi). Queensland fruit fly (Bactrocera tryoni). Mediterranean fruit fly (Ceratitis capitata). Lepidopteran pests Yellow peach moth (Conogethes... of Litchi Fruit From Australia AGENCY: Animal and Plant Health Inspection Service, USDA....

  5. Data in support of optimized production of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins

    PubMed Central

    Priyanto, Anugerah Dany; Doerksen, Robert J.; Chang, Chi-I; Sung, Wang-Chou; Widjanarko, Simon Bambang; Kusnadi, Joni; Lin, Ya-Chi; Wang, Ting-Chin; Hsu, Jue-Liang

    2015-01-01

    VY-7 has been demonstrated as a potent ACE inhibitory peptide in the previous study [1]. In this article, we provide accompanying data about the identification of bitter melon seed proteins (BMSPs), and quantitative analysis and optimized production of VY-7 in BMSPs hydrolysate. PMID:26958600

  6. The Threat of Captivity: Hollywood and the Sexualization of Race Relations in "The Girls of the White Orchid" and "The Bitter Tea of General Yen."

    ERIC Educational Resources Information Center

    Marchetti, Gina

    1987-01-01

    Discusses the captivity tale as an outgrowth of two fundamental contradictions within patriarchal ideology. Considers American popular thought in relation to this tale. Relates xenophobia in the 1980s to the sexual and racial politics of "The Girls of the White Orchid." Discusses the racial, sexual, and textual ambivalence in "The Bitter Tea of…

  7. Probing the Binding Pocket of the Broadly Tuned Human Bitter Taste Receptor TAS2R14 by Chemical Modification of Cognate Agonists.

    PubMed

    Karaman, Rafik; Nowak, Stefanie; Di Pizio, Antonella; Kitaneh, Hothaifa; Abu-Jaish, Alaa; Meyerhof, Wolfgang; Niv, Masha Y; Behrens, Maik

    2016-07-01

    Sensing potentially harmful bitter substances in the oral cavity is achieved by a group of (˜) 25 receptors, named TAS2Rs, which are expressed in specialized sensory cells and recognize individual but overlapping sets of bitter compounds. The receptors differ in their tuning breadths ranging from narrowly to broadly tuned receptors. One of the most broadly tuned human bitter taste receptors is the TAS2R14 recognizing an enormous variety of chemically diverse synthetic and natural bitter compounds, including numerous medicinal drugs. This suggests that this receptor possesses a large readily accessible ligand binding pocket. To allow probing the accessibility and size of the ligand binding pocket, we chemically modified cognate agonists and tested receptor responses in functional assays. The addition of large functional groups to agonists was usually possible without abolishing agonistic activity. The newly synthesized agonist derivatives were modeled in the binding site of the receptor, providing comparison to the mother substances and rationalization of the in vitro activities of this series of compounds. PMID:26825540

  8. Sugar Cane: A Bitter-Sweet Legacy. A Study of the Disappearing African-American Worker on the Sugar Cane Plantations in Southern Louisiana.

    ERIC Educational Resources Information Center

    Jones, John A., Jr.; And Others

    This resource/study guide is designed to accompany the instructional video, "Sugar Cane: A Bitter-Sweet Legacy," which explores the significance of cultivating, harvesting, and refining sugar cane. It is also a brief study of the disappearing African-American workers on the sugar cane plantations in southern Louisiana. Seven main ideas are…

  9. Biological Control of Olive Fruit Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestication of olive fruit, Olea europaea L., produced a better host for olive fruit fly, Bactrocera oleae (Gmelin), than wild olives, but fruit domestication reduced natural enemy efficiency. Important factors for selection of natural enemies for control of olive fruit fly include climate matchi...

  10. Smart Shopping for Veggies and Fruits

    MedlinePlus

    ... Veggies and Fruits Print Share 10 TIPS NUTRITION EDUCATION SERIES Smart Shopping for Veggies and Fruits 10 tips for affordable vegetables and fruits It is possible to fit vegetables and fruits into any budget. Making nutritious choices does not have to hurt ...

  11. Evaluating health benefits of various fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits are an essential part of our daily diets. Most fruits are naturally low in fat, sodium and calories. Fruits are important sources of many nutrients, including potassium, dietary fiber, vitamin C, folic acid and they do not contain cholesterol. Some fruits have laxative effects, prevent uri...

  12. 21 CFR 73.250 - Fruit juice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Fruit juice. 73.250 Section 73.250 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.250 Fruit juice. (a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or...

  13. 7 CFR 906.5 - Fruit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Fruit. 906.5 Section 906.5 Agriculture Regulations of... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.5 Fruit. Fruit means either or both...

  14. 21 CFR 73.250 - Fruit juice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Fruit juice. 73.250 Section 73.250 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.250 Fruit juice. (a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or...

  15. 7 CFR 906.5 - Fruit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Fruit. 906.5 Section 906.5 Agriculture Regulations of... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.5 Fruit. Fruit means either or both...

  16. 7 CFR 906.5 - Fruit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Fruit. 906.5 Section 906.5 Agriculture Regulations of... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.5 Fruit. Fruit means either or both...

  17. 21 CFR 73.250 - Fruit juice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Fruit juice. 73.250 Section 73.250 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.250 Fruit juice. (a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or...

  18. 21 CFR 73.250 - Fruit juice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Fruit juice. 73.250 Section 73.250 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.250 Fruit juice. (a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or...

  19. 21 CFR 73.250 - Fruit juice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Fruit juice. 73.250 Section 73.250 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.250 Fruit juice. (a) Identity. (1) The color additive fruit juice is prepared either by expressing the juice from mature varieties of fresh, edible fruits, or...

  20. 7 CFR 906.5 - Fruit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Fruit. 906.5 Section 906.5 Agriculture Regulations of... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.5 Fruit. Fruit means either or both...

  1. 7 CFR 906.5 - Fruit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Fruit. 906.5 Section 906.5 Agriculture Regulations of... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.5 Fruit. Fruit means either or both...

  2. The Hydrochemical Evolution of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM

    NASA Astrophysics Data System (ADS)

    Premo, E.; Crossey, L. J.

    2013-12-01

    Bitter Lake National Wildlife Refuge in Roswell, NM houses one of the most ecologically significant wetlands in the US-SW including approximately 52 water-filled sinkholes each supporting a unique biological assemblage, including several endangered and endemic species (e.g., Pecos pupfish and Noel's amphipod, respectively). Forming in the karst landscape adjacent to the Pecos River where the regional dual-aquifer system discharges through a network of springs and seeps, these sinkholes are recharged by saline groundwater that is subject to anthropogenic withdrawals for irrigation and hydrocarbon production and chemically altered by a complex series of evaporation-precipitation reactions after discharge. This study investigates the hydrochemical differences among these sinkholes while considering the evolutionary processes affecting water column structure, geochemical mixing and ecological sustainability. Two major sampling suites, pre- and post-irrigation, yielded waters from 1.0m increments along the water columns of 10 representative sinkholes. Samples were analyzed for major ions, stable isotopes [δ18O, δD ], and dissolved gases; PHREEQc was used to model mineral saturation and speciation. An in-situ mineral precipitation experiment provided growth rate and mineral morphological (SEM) data. Source water is chemically similar to shallow springs found at the Refuge (Sago Spring). Sinkholes exhibit bimodal water column structure (well-mixed or stratified) organized in response to water density (with ~1.035 g/cm3 forming the modal transition threshold). By measuring the density, TDS or conductivity at sinkhole surface it is possible to predict modality of water column structure. Sinkhole waters - regardless of depth or season - fall along a common isotopic evaporation trajectory (δ D = 3.387*δ18O - 19.38), and adopt a Na-Cl chemical endmember facies. Driven primarily by physical sinkhole geometry (e.g., depth and surface area), sinkhole water follows a

  3. Managing the Fruit Fly Experiment.

    ERIC Educational Resources Information Center

    Jeszenszky, Arleen W.

    1997-01-01

    Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)

  4. Fruiting organs of Cladosporium werneckii.

    PubMed

    Volcán, G; Godoy, G A; Battistini, F; Alvarez, A

    1976-07-01

    Submerged mycelia of a strain of Cladosporium werneckii isolated from tinea nigra palmaris, when cultured on enriched corn-meal agar media, developed fruiting bodies resembling perithecia. PMID:986694

  5. Effect of S. macrosiphon and L. perfoliatum seed gums on rheological characterization of bitter orange (Citrus aurantium L.) and pomegranate (Punica granatum L.) paste blends.

    PubMed

    Asnaashari, Maryam; Motamedzadegan, Ali; Farahmandfar, Reza; Rad, Tandis Khosravi

    2016-02-01

    The steady shear flow properties of bitter orange and pomegranate pastes and blend of two pastes including 0.5% Salvia macrosiphon (SMG) and L. perfoliatum (LPG) seed gums, two traditional Iranian hydrocolloids, were determined. All treatments exhibited shear-thinning behaviour. LPG added sample showed stronger shear thinning behaviour than the other due to its high molecular weight and intermolecular through hydrogen bonds and polymer entanglement. Ostwald model was found the best model to describe steady shear flow behaviour among different time-independent rheological model applied. Treatments including 0.5% these two seed gums indicated a flow behaviour index less than 0.6 and consistency coefficient raised by increasing concentration from 60 °Bx to 76 °Bx in bitter orange paste (from 0.55 Pa s(n) to 32.58 Pa s(n)), pomegranate paste (from 0.55 Pa s(n) to 84.87 Pa s(n)) and mix of these two pastes (from 0.64 Pa s(n) to 56.9 Pa s(n)). Oscillatory shear data showed weak gel-like behaviour of bitter orange and pomegranate pastes treatments including seed gums with the elastic modulus predominating over the viscous one at lower frequency. However, after weak gel formation, G″ was higher than G' in the frequency range of 0.01 to 10 Hz. An Ostwald model was used to describe the changes of viscose modulus with frequency. The results indicate that the elastic properties of bitter orange/ pomegranate paste and bitter orange paste may be increased by the presence of LPG and SMG due to associations of ordered chain segments of these gums, resulting in a weak three-dimensional network. PMID:27162409

  6. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes.

    PubMed

    Xu, Haiyang; Zhang, Fengxia; Liu, Baoxiu; Huhman, David V; Sumner, Lloyd W; Dixon, Richard A; Wang, Guodong

    2013-07-01

    Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyl-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HlCCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (K cat /K m = 4100 s(-1) M(-1)), whereas recombinant HlCCL4 specifically utilized isobutyric acid (Kcat/K m = 1800 s(-1) M(-1)) and 2-methylbutyric acid (Kcat/K m = 6900 s(-1) M(-1)) as substrates. Both HlCCLs, like hop valerophenone synthase (HlVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HlCCL2 and HlCCL4 with HlVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HlCCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed. PMID:23300257

  7. Molecular cloning and evolutionary analysis of captive forest musk deer bitter taste receptor gene T2R16.

    PubMed

    Zhao, G J; Wu, N; Li, D Y; Zeng, D J; Chen, Q; Lu, L; Feng, X L; Zhang, C L; Zheng, C L; Jie, H

    2015-01-01

    Sensing bitter tastes is crucial for most animals because it can prevent them from ingesting harmful food. This process is mainly mediated by the bitter taste receptors (T2R) that are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires. Marked variation in repertoire size has been noted among species. However, research on T2Rs is still limited and the mechanisms underlying the evolution of vertebrate T2Rs remain poorly understood. In the present study, we analyzed the structure and features of the protein encoded by the forest musk deer (Moschus berezovskii) T2R16 and submitted the gene sequence to NCBI GenBank. The results showed that the full coding DNA sequence (CDS) of musk deer T2R16 (GenBank accession No. KP677279) was 906 bp, encoding 301 amino acids, which contained ATG start codon and TGA stop codon, with a calculated molecular weight of 35.03 kDa and an isoelectric point of 9.56. The T2R16 protein receptor had seven conserved transmembrane regions. Hydrophobicity analysis showed that most amino acid residues in T2R16 protein were hydrophobic, and the grand average of hydrophobicity (GRAVY) was 0.657. Phylogenetic analysis based on this gene revealed that forest musk deer had the closest association with sheep (Ovis aries), as compared to cow (Bos taurus), Tursiops truncatus, and other species, whereas it was genetically farthest from humans (Homo sapiens). We hope these results would complement the existing data on T2R16 and encourage further research in this respect. PMID:26662411

  8. The structure-function role of C-terminus in human bitter taste receptor T2R4 signaling.

    PubMed

    Upadhyaya, Jasbir; Singh, Nisha; Bhullar, Rajinder P; Chelikani, Prashen

    2015-07-01

    Bitter taste, in humans, is sensed by 25 G protein-coupled receptors, referred to as bitter taste receptors (T2Rs). The diverse roles of T2Rs in various extraoral tissues have implicated them as a potential target for therapeutic intervention. Structure-function studies have provided insights into the role of transmembrane and loop regions in the activation mechanism of T2Rs. However, studies aimed at deciphering the role of their carboxyl-terminus (C-terminus) are limited. In this study, we identified a KLK/R motif in the C-terminus that is conserved in 19 of the 25 T2Rs. Using site-directed mutagenesis we studied the role of 16 residues in the C-terminus of T2R4. The C-terminus of T2R4 is polybasic with 6 of the 16 residues consisting of lysines, constituting two separate KK motifs. We analyzed the effect of the C-terminus mutations on plasma membrane trafficking, and characterized their function in response to the T2R4 agonist quinine. The majority of the mutants showed defective receptor trafficking with ≤50% expression on the cell surface. Interestingly, mutation of the distal Lys296 of the KLK motif in T2R4 resulted in constitutive activity. The K296A mutant displayed five-fold basal activity over wild type T2R4, while the conservative substitution K296R showed wild type characteristics. The Lys294, Leu295 and Lys296 of the KLK motif in T2R4 were found to perform crucial roles, both, in receptor trafficking and function. Results from this study provide unique mechanistic insights into the structure-function role of the C-terminus in T2R signaling. PMID:25858111

  9. Biomechanics of fruits and vegetables.

    PubMed

    Peleg, K

    1985-01-01

    The scope of fruit and vegetable biomechanics is reviewed. Sources of mechanical injury to produce in harvesting, processing, storage, packaging and transportation are briefly described. A survey of produce handling and transportation environments was conducted, whereby an envelope model encompassing composite spectra of trucks, railroad, marine and cargo aircraft is presented. The protective quality, i.e. strength of shipping containers is quantified in static and dynamic loading such as encountered in storage, handling and transportation. Mechanical response of fruits and vegetables in quasistatic and dynamic loading are formulated by a nonlinear rheological model, whereby a time and deformation dependent relaxation modulus is defined. A realistic link is established between the model and real fruits and vegetables by test procedures for determination of the parameters in the governing nonlinear equations. Based on the nonlinear relaxation modulus, mechanical damage of fruits and vegetables is quantified for static compression, transients and vibration loading as well as for combined static and dynamic loading, by equations of contact circle diameter, bruise depth and contact pressure. Distribution of loads over a maximal number of contact points per fruit is linked to geometrical patterns of produce packs. The application of Shock Damage Boundary techniques for produce-package testing is described along with a case study comparing the protective qualities of two types of apple packs. Produce damage quantification by direct fruit inspection in terms of a 'Bruise Index' is described, including a practical example, comparing the protective qualities of three types of apple packs in shipping tests. Indirect methods of mechanical injury evaluation, based on weight loss and CO2 emission differences between bruised and wholesome fruits are also briefly discussed. PMID:4077855

  10. Freeze-frame fruit selection by birds

    USGS Publications Warehouse

    Foster, Mercedes S.

    2008-01-01

    The choice of fruits by an avian frugivore is affected by choices it makes at multiple hierarchical levels (e.g., species of fruit, individual tree, individual fruit). Factors that influence those choices vary among levels in the hierarchy and include characteristics of the environment, the tree, and the fruit itself. Feeding experiments with wild-caught birds were conducted at El Tirol, Departamento de Itapua, Paraguay to test whether birds were selecting among individual fruits based on fruit size. Feeding on larger fruits, which have proportionally more pulp, is generally more efficient than feeding on small fruits. In trials (n = 56) with seven species of birds in four families, birds selected larger fruits 86% of the time. However, in only six instances were size differences significant, which is likely a reflection of small sample sizes.

  11. Bioactivities and Health Benefits of Wild Fruits

    PubMed Central

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154

  12. Processing of fresh palm fruits using microwaves.

    PubMed

    Chow, Mee Chin; Ma, Ah Ngan

    2007-01-01

    Microwave heating was determined in this study to be suitable for the detachment and drying of palm fruits from whole bunches, cut bunches and spikelets. Microwave treatment of the palm fruits was able to attain the objectives of conventional fresh palm fruits sterilization processeses such as fruit softening, nut conditioning and halting of enzymatic lipolysis. Palm oil and kernel oil solvent extracted respectively from the microwave treated whole fruits and kernel were found to have a good quality of low free fatty acid content. This technology, together with the solvent extraction of the dehydrated fruits, may have the potential to be a continuous, dry and clean technology for palm oil milling. PMID:17645207

  13. Bioactivities and Health Benefits of Wild Fruits.

    PubMed

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154

  14. Antihyperglycemic effects of three extracts from Momordica charantia.

    PubMed

    Virdi, Jaspreet; Sivakami, S; Shahani, S; Suthar, A C; Banavalikar, M M; Biyani, M K

    2003-09-01

    Momordica charantia (L.) (Cucurbitaceae) commonly known as bitter gourd or karela is a medicinal plant, used in Ayurveda for treating various diseases, one of which is diabetes mellitus. In this study, various extract powders of the fresh and dried whole fruits were prepared and their blood glucose lowering effect compared by administrating them orally to diabetic rats. The aqueous extract powder of fresh unripe whole fruits at a dose of 20mg/kg body weight was found to reduce fasting blood glucose by 48%, an effect comparable to that of glibenclamide, a known synthetic drug. This extract was tested for nephrotoxicity, hepatotoxicity and biochemical parameters such as SGOT, SGPT and lipid profile. The extract did not show any signs of nephrotoxicity and hepatotoxicity as judged by histological and biochemical parameters. Thus the aqueous extract powder of Momordica charantia, an edible vegetable, appears to be a safe alternative to reducing blood glucose. PMID:12902059

  15. Molecular regulation of fruit ripening

    PubMed Central

    Osorio, Sonia; Scossa, Federico; Fernie, Alisdair R.

    2013-01-01

    Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tomato, mutations blocking the transition to ripe fruits have provided insights into the role of ethylene and its associated molecular networks involved in the control of ripening. However, the role of other plant hormones is still poorly understood. In this review, we describe how plant hormones, transcription factors, and epigenetic changes are intimately related to provide a tight control of the ripening process. Recent findings from comparative genomics and system biology approaches are discussed. PMID:23785378

  16. Fruit biomechanics based on anatomy: a review

    NASA Astrophysics Data System (ADS)

    Li, Zhiguo; Yang, Hongling; Li, Pingping; Liu, Jizhan; Wang, Jizhang; Xu, Yunfeng

    2013-01-01

    Fruit biomechanics is needed for quality determination, multiscale modelling and engineering design of fruit processes and equipments. However, these determined fruit biomechanics data often have obvious differences for the same fruit or tissue. In order to investigate it, the fruit biomechanics based on anatomy was reviewed in this paper. First, the anatomical characteristics of fruit biomaterials were described at the macroscopic `tissue' level and microscopic `cellular' level. Subsequently, the factors affecting fruit biomechanics based on anatomy and the relationships between fruit biomechanics, texture and mechanical damage were summarised according to the published literature. Fruit biomechanics is mainly affected by size, number and arrangement of cells, quantity and volume of intracellular spaces, structure, thickness, chemical composition and permeability of cell walls, and pectin degradation level and turgor pressure within cells based on microanatomy. Four test methods and partial determined results of fruit biomechanics were listed and reviewed. The determined mechanical properties data of fruit are only approximate values by using the existing four test methods, owing to the fruit biomaterials being non-homogeneous and living. Lastly, further aspects for research on fruit biomechanics were proposed for the future.

  17. Flowering and Fruiting Patterns of Primocane-Fruiting Blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flowering morphology of the erect, thorny, primocane-fruiting blackberry (Rubus L. subgenus Rubus, Watson) cultivars Prime-Jan® and Prime-Jim® were studied in 2005 and 2006 in Aurora, Ore. Primocanes that were "soft-tipped" in early summer to 1 m were compared to un-tipped primocanes. In both ...

  18. Flowering and Fruiting Morphology of Primocane-Fruiting Blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flowering morphology of the erect, thorny primocane-fruiting blackberry (Rubus L. subgenus Rubus) cultivars Prime-JanTM and Prime-JimTM were studied in 2005 in Aurora, Oregon. Primocanes that were "soft-tipped" in early summer to 1 m were compared to un-tipped primocanes and floricanes. On avera...

  19. Competitive Interactions between Immature Stages of Bactrocera cucurbitae (Coquillett) and Bactrocera tau (Walker) (Diptera: Tephritidae) under Laboratory Conditions.

    PubMed

    Shen, K; Hu, J; Wu, B; An, K; Zhang, J; Liu, J; Zhang, R

    2014-08-01

    The melon fly, Bactrocera cucurbitae (Coquillett), and the pumpkin fly, Bactrocera tau (Walker), are economically important pests that attack mainly cucurbitacean fruits. The two fruit fly species have similar natural distributions, host ranges, and population growth capacities. This study was designed to assess the asymmetrical competitions through resource exploitation between the larvae of B. cucurbitae and B. tau at different density levels and temperatures, and on different hosts by comparing the relative effects of interspecific and intraspecific interactions on four life history parameters: survival rate, puparial mass, puparial duration, and developmental duration. Our results showed that intraspecific and interspecific competitions occurred under some laboratory conditions, and B. cucurbitae took advantage over B. tau at the high-density level and at low and high temperatures on pumpkin, bitter gourd, and bottle gourd when interspecific competition took place. Intraspecific and interspecific competitions mainly affected the puparial mass and the survival rate of the two fruit fly species but had no marked effect on the puparial duration or development duration. PMID:27193811

  20. Determination of bitter orange alkaloids in dietary supplement Standard Reference Materials by liquid chromatography with atmospheric-pressure ionization mass spectrometry.

    PubMed

    Putzbach, Karsten; Rimmer, Catherine A; Sharpless, Katherine E; Wise, Stephen A; Sander, Lane C

    2007-09-01

    A liquid chromatographic atmospheric-pressure ionization electrospray mass spectrometry (LC-API-ES-MS) method has been developed for the determination of five bitter orange alkaloids (synephrine, octopamine, n-methyltyramine, tyramine, and hordenine) in bitter orange-containing dietary supplement standard reference materials (SRMs). The materials represent a variety of natural, extracted, and processed sample matrices. Two extraction techniques were evaluated: pressurized-fluid extraction (PFE) and sonication extraction. The influence of different solvents, extraction temperatures, and pH were investigated for a plant material and a processed sample. The LC method uses a new approach for the separation of highly polar alkaloids. A fluorinated, silica-based stationary phase separated the five alkaloids and the internal standard terbutaline in less than 20 min. This method enabled the determination of the dominant alkaloid synephrine and other minor alkaloids in a variety of dietary supplement SRMs. PMID:17579842