Science.gov

Sample records for fruit flies diptera

  1. Caribbean Fruit Fly (Diptera: Tephritidae) and Small Fruit in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tephritid fruit flies are among the most important pests of fruits and vegetables worldwide. The Caribbean fruit fly, Anastrepha suspensa (Loew), is a tephritid pest that became established in Florida following introduction in 1965. Populations of this fruit fly also occur in Puerto Rico and Cuba, ...

  2. Seasonal distributions of the western cherry fruit fly (Diptera: Tephritidae) among host and nonhost fruit trees.

    PubMed

    Yee, Wee L

    2014-01-01

    Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult.

  3. Susceptibility of low-chill blueberry cultivars to Mediterranean fruit fly, oriental fruit fly, and melon fly (Diptera: Tephritidae).

    PubMed

    Follett, Peter A; Zee, Francis T; Hamasaki, Randall T; Hummer, Kim; Nakamoto, Stuart T

    2011-04-01

    No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.

  4. Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).

    PubMed

    Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David

    2011-02-01

    The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.

  5. Ammonia Formulations and Capture of Anastrepha Fruit Flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted in numbers to protein baits. Synthetic lures based on the principle components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important ...

  6. Host Plant Record for the Fruit Flies, Anastrepha fumipennis and A. nascimentoi (Diptera, Tephritidae)

    PubMed Central

    Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.

    2008-01-01

    The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458

  7. Oral and Topical Toxicity of Fipronil to Melon Fly and Oriental Fruit Fly (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The objective of this study was to develop basic oral and topical toxicity data for Fipronil in Solulys protein bait to wild melon fly, Bactrocera cucurbitae (Coquillett) and the oriental fruit fly, Bactrocera dorsalis (Hendel). RESULTS: For the oral study, both females and males were ...

  8. Volatile host fruit odors as attractants for the oriental fruit fly (Diptera: Tephritidae).

    PubMed

    Cornelius, M L; Duan, J J; Messing, R H

    2000-02-01

    We examined the responses of oriental fruit flies, Bactrocera dorsalis Hendel, to the odors of different stages and types of fruit presented on potted trees in a field cage. Females were most attracted to odors of soft, ripe fruit. Odors of common guava were more attractive to females than papaya and starfruit, and equally as attractive as strawberry guava, orange, and mango. In field tests, McPhail traps baited with mango, common guava, and orange captured equal numbers of females. Traps baited with mango were compared with 2 commercially available fruit fly traps. McPhail traps baited with mango captured more females than visual fruit-mimicking sticky traps (Ladd traps) and equal numbers of females as McPhail traps baited with protein odors. Results from this study indicate that host fruit volatiles could be used as lures for capturing oriental fruit flies in orchards.

  9. Attraction and Mortality of Oriental Fruit Flies (Diptera: Tephritidae) to SPLAT-MAT- Methyl Eugenol with Spinosad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted in Hawaii to quantify attraction and feeding responses resulting in mortality of male oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to SPLAT-MAT-methyl eugenol (ME) with spinosad in comparison with Min-U-Gel-ME with naled (Dibrom). Our approach invol...

  10. Temperature-mediated kill and oviposition of Western Cherry Fruit Fly (Diptera: Tephritidae) in the presence of Spinosad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of sweet cherry (Prunus avium (L.) L.) that is managed using insecticides, including spinosad, an organic compound that can be applied in low spray volumes. Identifying factors that can increase the...

  11. Residential composting of infested fruit: A potential pathway for spread of Anastrepha fruit flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composting of plant waste is a beneficial practice commonly used by American gardeners, but disposal of infested fruit directly into the environment creates a potential pathway for introduction of insect pests. This study was designed to estimate the likelihood of entry of exotic fruit flies (Tephr...

  12. Cold storage enhances the efficacy and margin of security in postharvest irradiation treatments against fruit flies (Diptera: Tephritidae).

    PubMed

    Follett, Peter A; Snook, Kirsten

    2013-10-01

    Cold storage is used to preserve fruit quality after harvest during transportation in marketing channels. Low temperature can be a stressor for insects that reduces survivorship, and cold storage may contribute to the efficacy of postharvest quarantine treatments such as irradiation against quarantine insect pests. The combined effect of irradiation and cold storage was examined in a radiation-tolerant fruit fly, Bactrocera cucurbitae Coquillet (melon fly), and a radiation-intolerant fruit fly, Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) (Diptera: Tephritidae). Third instars on diet or in papaya were treated with a sublethal radiation dose of 30 Gy and stored at 4 or 11 degrees C for 3-13 d and held for adult emergence. For both fruit fly species, survival of third instars to the adult stage generally decreased with increasing cold storage duration at 4 or 11 degrees C in diet or papaya. Survivorship differences were highly significant for the effects of substrate (diet > papaya), temperature (11 > 4 degrees C),and irradiation (0 > 30 Gy). Few Mediterranean fruit flies survived in any cold storage treatment after receiving a radiation dose of 30 Gy. No melon fly larvae survived to the adult stage after irradiation and 11 d cold storage at 4 or 11 degrees C in papayas. Cold storage enhances the efficacy and widens the margin of security in postharvest irradiation treatments. Potentially irradiation and cold storage can be used in combination to reduce the irradiation exposure requirements of quarantine treatments. PMID:24224244

  13. Fruit flies of the genus Anastrepha (Diptera: Tephritidae) from some localities of Paraguay: new records, checklist, and illustrated key.

    PubMed

    Arias, Osmar René; Fariña, Nelson Librado; Lopes, Gleidyane Novaes; Uramoto, Keiko; Zucchi, Roberto Antonio

    2014-01-01

    This study deals with fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) collected in McPhail traps in the municipalities of Concepción, Belén, Horqueta, Loreto (state of Concepción) and Santa Rosa (state of Misiones), Paraguay. In total, 17 species were captured, 9 of which are new records for Paraguay. All morphological characters used for species identification are illustrated.

  14. Fruit flies of the genus Anastrepha (Diptera: Tephritidae) from some localities of Paraguay: new records, checklist, and illustrated key.

    PubMed

    Arias, Osmar René; Fariña, Nelson Librado; Lopes, Gleidyane Novaes; Uramoto, Keiko; Zucchi, Roberto Antonio

    2014-01-01

    This study deals with fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) collected in McPhail traps in the municipalities of Concepción, Belén, Horqueta, Loreto (state of Concepción) and Santa Rosa (state of Misiones), Paraguay. In total, 17 species were captured, 9 of which are new records for Paraguay. All morphological characters used for species identification are illustrated. PMID:25525098

  15. Hot Water Immersion Quarantine Treatment Against Mediterranean Fruit Fly and Oriental Fruit Fly (Diptera: Tephritidae) Eggs and Larvae in Litchi and Longan Fruits Exported from Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immersion of litchi fruit in 49ºC water for 20 min followed by hydrocooling in ambient (24 ± 4ºC) temperature water for 20 min was tested as a quarantine treatment against potential infestations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); and oriental fruit fly, Bactrocera dorsalis (...

  16. Chemosterilant bait stations coupled with sterile insect technique: an integrated strategy to control the Mediterranean fruit fly (Diptera: Tephritidae).

    PubMed

    Navarro-Llopis, V; Vacas, S; Sanchis, J; Primo, J; Alfaro, C

    2011-10-01

    During 2008 and 2009, the efficacy of the combination of two Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), control techniques, sterile insect technique (SIT) and a chemosterilant bait station system (Adress), was tested in three crops: citrus (Citrus spp.), stone fruit (Prunus spp.), and persimmon (Diospyros spp.). Two thousand sterile males were released per ha each week in the whole trial area (50,000 ha, SIT area). For 3,600 ha, within the whole trial area, 24 Adress traps per ha were hung (SIT + Adress area). Ten SIT + Adress plots and 10 SIT plots in each of three different fruit crops were arranged to assess Mediterranean fruit fly population densities and fruit damage throughout the trial period. To evaluate the efficacy of each treatment, the male and female populations were each monitored from August 2008 to November 2009, and injured fruit was assessed before harvest. Results showed a significant reduction in the C. capitata population in plots treated with both techniques versus plots treated only with the SIT. Likewise, a corresponding reduction in the percentage of injured fruit was observed. These data indicate the compatibility of these techniques and suggest the possibility of using Adress coupled with SIT to reduce C. capitata populations in locations with high population densities, where SIT alone is not sufficiently effective to suppress fruit fly populations to below damaging levels. PMID:22066195

  17. Chilling and host plant/site associated eclosion times of western cherry fruit fly (Diptera:Tephritidae) and a host-specific parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is native to bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ~100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of ad...

  18. An overview of tropical pest species of bactrocera fruit flies (Diptera:Tephritidae) and the integration of biopesticides with other biological approaches for their management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit flies (Diptera:Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas of the world. These species are such devastating crop pests that major control and eradication prog...

  19. Effects of adhesive powders on the mating and flight behavior of Mediterranean fruit fly (Diptera: Tephritidae).

    PubMed

    Armsworth, Clare G; Baxter, Ian H; Barton, Lucy E E; Poppy, Guy M; Nansen, Christian

    2006-08-01

    Powders that adhere to insect cuticle can be used as carrier particles for synthetic insecticides, entomopathogens, or pheromones in insect control systems, and insects can be lured into contact with such powder mixtures by using attractants. Secondary transfer of adhesive powders to conspecifics during social interactions has been reported; however, this transfer relies on insects leaving the source of powder and continuing normal behavior when contaminated. We examined the ability of the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), to fly and mate after being contaminated with one of two adhesive powders: an electrostatic wax powder, Entostat, and a proprietary metallic powder, Entomag. During continuous observations for 1 h in a flight tunnel, male C. capitata made significantly more flights than females. Treating C. capitata with either powder significantly suppressed the flight activity of male C. capitata compared with untreated controls, whereas powder treatment had a negligible effect on female flight activity. Within 1 h, male C. capitata treated with Entomag recovered normal flight activity, but Entostat-treated males were not fully recovered. Virgin male C. capitata treated with either Entostat or Entomag were able to mate with virgin female C. capitata, but the onset of mating was delayed compared with control C. capitata by approximately 1 h. Even though the effect of powder uptake on behavior seemed to be temporary, scanning electron micrograph images of treated C. capitata showed that both powders were retained for > 24 h on most body parts. The adhesive powders showed potential for use as carrier particles for pesticides, entomopathogens, or pheromones in novel C. capitata control systems.

  20. Attractant-based systems as pesticide alternatives for control of tropical fruit flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass trapping and attract-and-kill bait stations are two attractant based systems that are being used or are under development as pesticide alternatives for control of a number of pest tephritid fruit flies. Results of field trials for suppression of Caribbean fruit flies in guava orchards in Florid...

  1. An evaluation of alternative insecticides to diazinon for control of tephritid fruit flies (Diptera: Tephritidae) in soil.

    PubMed

    Stark, John D; Vargas, Roger

    2009-02-01

    Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies (Diptera: Tephritidae) as a soil drench, but it is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum, Force, Admire, Regent, and Warrior was estimated after application to sand and soil as drenches for control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), in Hawaii. Susceptibility of each species differed. In sand, the order of toxicity at LC50 based on the 95% confidence limit overlap approach for C. capitata from most toxic to least toxic was diazinon > Force = Warrior > Admire = Platinum > Regent. The order of toxicity for B. dorsalis was diazinon > Platinum = Warrior = Force > Regent = Admire. The order of toxicity for B. cucurbitae was Warrior = diazinon > Force = Regent = Platinum = Admire. Based on the dose ratio method, Warrior was not significantly different at LC50 than diazinon for B. cucurbitae only. All other insecticides were significantly different from diazinon at LC50. Studies in sand were followed by an evaluation of specific concentrations of Warrior and Force in soil collected from two sites on the island of Kauai. Average concentrations that caused at least 95% mortality in soil in all three fruit fly species were 121 g active ingredient (AI)/ha for Force and 363 g (AI)/ha for Warrior compared with 182 g (AI)/ha for diazinon. These results indicate that Force and Warrior could be used as soil treatments for control of tephritid fruit flies.

  2. Effectiveness of a sprayable male annihilation treatment with a biopesticide against fruit flies (Diptera:Tephritidae) attacking tropical fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SPLAT-MAT Spinosad ME(aka STATIC Spinosad ME),an "attract and kill" sprayable biopesticide, was evaluated as an area wide suppression treatment against Bactrocera carambolae(Drew & Hancock),carambola fruit fly, in Brazil and Bactrocera dorsalis(Hendel),oriental fruit fly, in Hawaii. In Brazil, a sin...

  3. Ammonium acetate enhances the attractiveness of a variety of protein-based baits to female Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and its derivatives are used largely by female fruit 32 flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally-based control strategies such a food-based lures a...

  4. Classical biological control of the olive fruit fly, Bactrocera olea (Diptera: Tephritidae), using the exotic parasitoie, Psyttalia lounsburyi (Hymenoptera: Braconidae) in France.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae) is an important pest of olives which is worldwide distributed and responsible for economic losses of approximately US$800 million per year. Since the 2000s both economical and environmental concerns have raised interested in clas...

  5. Caribbean fruit fly, Anastrepha suspensa (Diptera:Tephritidae): Life history and laboratory rearing methods.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Caribbean fruit fly, Anastrepha suspensa (Loew), is and agricultural pest established throughout south Florida, where it poses a threat to commercial citrus, guava, and other tropical and subtropical fruit crops. This poster outlines the protocols used at the USDA-ARS laboratory in Miami, FL, fo...

  6. Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field.

    PubMed

    Shelly, Todd E; McInnis, Donald O; Rodd, Charles; Edu, James; Pahio, Elaine

    2007-04-01

    The sterile insect technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating ability of the released males. One potential solution involves the prerelease exposure of males to particular attractants. In particular, exposure of male Mediterranean fruit flies to ginger, Zingiber officinale Roscoe, root oil (GRO) has been shown to increase mating success in laboratory and field cage trials. Here, we describe a field experiment that compares the level of egg sterility observed in two Hawaiian coffee, Coffea arabica L., plots, with GRO-exposed, sterile males released in one (treated) plot and nonexposed, sterile males released in the other (control) plot. Once per week in both plots over a 13-wk period, sterile males were released, trap captures were scored to estimate relative abundance of sterile and wild males, and coffee berries were collected and dissected in the laboratory to estimate the incidence of unhatched (sterile) eggs. Data on wild fly abundance and the natural rate of egg hatch also were collected in a remote area that received no sterile males. Despite that sterile:wild male ratios were significantly lower in the treated plot than in the control plot, the incidence of sterile eggs was significantly higher in the treated plot than in the control plot. Correspondingly, significantly higher values of Fried's competitiveness index (C) were found, on average, for treated than control sterile males. This study is the first to identify an association between the GRO "status" of sterile males and the incidence of egg sterility in the field and suggests that prerelease, GRO exposure may represent a simple and inexpensive means to increase the effectiveness of Mediterranean fruit fly SIT programs. PMID:17461047

  7. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance.

    PubMed

    Ben Ami, Eyal; Yuval, Boaz; Jurkevitch, Edouard

    2010-01-01

    The sterile insect technique (SIT) is a method of biological control whereby millions of factory reared sterile male insects are released into the field. This technique is commonly used to combat the Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae). Sterile medfly males are less competent in attracting and mating with wild females, a property commonly linked to the irradiation process responsible for the sterilization. As bacteria are important partners in the fly's life cycle, we used molecular analytical methods to study the community structure of the gut microbiota in irradiated male medflies. We find that the sterilizing irradiation procedure affects the gut bacterial community structure of the Mediterranean fruit fly. Although the Enterobacteriaceae family remains the dominant bacterial group present in the gut, the levels of Klebsiella species decreases significantly in the days after sterilization. In addition, we detected substantial differences in some bacterial species between the mass rearing strain Vienna 8 and the wild strain. Most notable among these are the increased levels of the potentially pathogenic species Pseudomonas in the industrial strain. Testing the hypothesis that regenerating the original microbiota community could result in enhanced competitiveness of the sterile flies, we found that the addition of the bacterial species Klebsiella oxytoca to the postirradiation diet enables colonization of these bacteria in the gut while resulting in decreased levels of the Pseudomonas sp. Feeding on diets containing bacteria significantly improved sterile male performance in copulatory tests. Further studies will determine the feasibility of bacterial amelioration in SIT operations. PMID:19617877

  8. Host range and distribution of fruit-infesting pestiferous fruit flies (Diptera, Tephritidae) in selected areas of Central Tanzania.

    PubMed

    Mwatawala, M W; De Meyer, M; Makundi, R H; Maerere, A P

    2009-12-01

    The host range of major fruit fly pests in Central Tanzania was evaluated from October 2004 to October 2006. Samples of 48 potential hosts were collected and incubated for fruit fly emergence. Bactrocera invadens was the dominant species in incidence expressed as the ratio of infested to total number samples collected, as well as infestation rate, expressed as number of flies emerging per unit weight. Eight new host fruits are reported. Infestation by native pests, such as Ceratitis capitata and C. cosyra, was minor compared to B. invadens. Ceratitis rosa was the dominant species in temperate fruits, and Cucurbitaceae were mainly infested by Bactrocera cucurbitae, a specialized cucurbit feeder. Among commercial fruits, high infestation incidences were observed in mango and guava, but they decreased throughout the fruiting season. Low infestation rates were observed in all Citrus species and in avocado, indicating these fruits as poor hosts for the studied fruit fly pests in this region. Widespread availability and abundance of fruit species studied here ensures year-round breeding of B. invadens. Seasonal infestation differs, with mango being the most important host in October to January, while guava being important from February to August. Tropical almond showed very high incidence and infestation rate for B. invadens and might act as an important reservoir host, bridging the fruiting seasons of mango and guava. Soursop acts as an important host for C. cosyra after the mango season. Ceratitis capitata is a pest of minor importance of the commercial fruits studied in this region. PMID:19323850

  9. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    PubMed

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly. PMID:23786078

  10. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    PubMed

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  11. Estimation of populations and sterility induction in Anastrepha luden (Diptera: Tephritidae) fruit flies.

    PubMed

    Flores, Salvador; Montoya, Pablo; Toledo, Jorge; Enkerlin, Walther; Liedo, Pablo

    2014-08-01

    The relationship between different release densities of sterile flies and fly trap captures, expressed as flies per trap per day, in the monitoring of Anastrepha ludens (Loew) populations was evaluated in mango orchards. The induction of sterility in fertile females was evaluated using different ratios of sterile: fertile males under field cage conditions. A direct relationship between recaptured flies and densities of release sterile flies was found. However, trap efficiency, expressed as percentage of recaptured flies, decreased as the density of released flies increased. Sterility induction was positively correlated to the ratio of sterile: fertile flies. A significant difference in egg fertility among treatments was observed. The trajectory of sterility induction slowed down after a sterile: wild ratio of 30:1, which suggests that this ratio could be appropriate in an sterile insect technique program with A. ludens. Sterility induction was greater when only sterile males were released than when releasing both sterile males and females, but the differences were not significant. Our findings contribute to a better interpretation of fly captures obtained from the field trapping networks, and to an improvement in the efficiency of sterile insect technique against A. ludens fruit flies, through the implementation of more rational sterile fly release densities.

  12. Olive fruit fly (Diptera: Tephritidae) populations in relation to region, trap type, season, and availability of fruit.

    PubMed

    Yokoyama, Victoria Y; Miller, Gina T; Stewart-Leslie, Judy; Rice, Richard E; Phillips, Phil A

    2006-12-01

    Olive fruit fly, Bactrocera oleae (Gmelin), was monitored with adult captures by season and trap type, and was related to fruit volume and nonharvested fruit to elucidate the occurrence of the newly introduced pest in California. The highest numbers of adults captured in ChamP traps in olive trees, Olea europaea, were in October in an inland valley location, and in September in a coastal location. Comparisons of trap types showed that the number of olive fruit fly adults captured in Pherocon AM traps in a commercial orchard was significantly greater than in ChamP traps. A significantly greater number of females were captured in Pherocon AM traps with bait packets and pheromone lures than traps with pheromone lures alone, while a significantly greater number of adults and males were captured in traps with pheromone lures alone. Significantly more adults were captured in ChamP traps with bait packets and pheromone lures versus traps with bait packets alone. Fruit volume increased by four times from mid-June to mid-November. Olive fruit fly was found to oviposit on small olive fruit <1 cm3 shortly after fruit set, the maximum number of ovipositional sites per fruit occurred in October, and the greatest number of pupae and adults were reared from fruit collected in September and October. The highest numbers of pupae were collected from nonharvested fruit in March when high numbers of adults were captured in the same orchard.

  13. The effect of irradiation and mass rearing on the anti-predator behaviour of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae).

    PubMed

    Rao, D; Aguilar-Argüello, S; Montoya, P; Díaz-Fleischer, F

    2014-04-01

    Fruit flies (Diptera: Tephritidae) are major pests worldwide. The sterile insect technique, where millions of flies are reared, sterilized by irradiation and then released, is one of the most successful and ecologically friendly methods of controlling populations of these pests. The mating behaviour of irradiated and non-irradiated flies has been compared in earlier studies, but there has been little attention paid to the anti-predator behaviour of mass-reared flies, especially with respect to wild flies. Tephritid flies perform a supination display to their jumping spider predators in order to deter attacks. In this study, we evaluated the possibility of using this display to determine the anti-predator capabilities of mass-reared irradiated, non-irradiated flies, and wild flies. We used an arena setup and observed bouts between jumping spiders (Phidippus audax Hentz) and male Mexican fruit flies (Anastrepha ludens Loew). We show that although all flies performed a supination display to their predator, wild flies were more likely to perform a display and were significantly more successful in avoiding attack than mass-reared flies. We suggest that this interaction can be used to develop a rapid realistic method of quality control in evaluating anti-predator abilities of mass-reared fruit flies. PMID:24345386

  14. Exposure to tea tree oil enhances the mating success of male Mediterranean fruit flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma of various plant essential oils has been shown to enhance the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Laboratory observations revealed that male medflies show strong short-range attraction to tea tree oil (TTO hereafter) deri...

  15. Artificial rearing of the peach fruit fly Bactrocera zonata (Diptera:Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of the sterile insect technique (SIT) into the area-wide management of the peach fruit fly Bactrocera zonata (Saunders) is a promising althernative to the localized use of chemical control tactics. Implementation of the SIT requires adequate numbers of sterile male insects that are produ...

  16. Reduction of Optimal Thermal Range in Aging Western Cherry Fruit Flies (Diptera: Tephritidae)

    PubMed Central

    Neven, Lisa G.

    2015-01-01

    The western cherry fruit fly is an economically important pest of sweet cherries in the western United States. The potential of this pest to establish and spread in areas in which it is not currently present has been the focus of recent research. Most published information on the thermal tolerance and optimal thermal range of this pest has focused primarily on the diapausing pupae and predictive phenology models. Microrespirometry and differential calorimetry can be useful tools in describing the thermotolerance and optimal thermal range of insects. This methodology was employed to investigate the effects of western cherry fruit fly adult age on the optimal thermal range. Newly emerged flies exhibited the widest optimal thermal range spanning from 6.6 to 42.2°C for a total range of 35.8°C during heating scans of 0.4°C/min from 2 to 50°C. This range diminished as the flies aged, with the shortest span observed with 28-d-old flies ranging from 10.5 to 37.8°C, a span of 27.2°C. Measurements of heat rate and oxygen consumption at isothermal, or static, temperatures indicated that all flies could survive exposure to 40°C for at least 20 min, and that metabolism was greatly reduced, with a concomitant reduction in oxygen consumption rate at 40 to 42°C. All flies exhibited a heat rate and oxygen consumption rate of zero when exposed to 45 and 50°C. The loss of thermotolerance in adult flies can influence its ability to establish and spread in climates where daily temperatures exceed the optimal thermal range of this species. PMID:26106089

  17. Reduction of Optimal Thermal Range in Aging Western Cherry Fruit Flies (Diptera: Tephritidae).

    PubMed

    Neven, Lisa G

    2015-01-01

    The western cherry fruit fly is an economically important pest of sweet cherries in the western United States. The potential of this pest to establish and spread in areas in which it is not currently present has been the focus of recent research. Most published information on the thermal tolerance and optimal thermal range of this pest has focused primarily on the diapausing pupae and predictive phenology models. Microrespirometry and differential calorimetry can be useful tools in describing the thermotolerance and optimal thermal range of insects. This methodology was employed to investigate the effects of western cherry fruit fly adult age on the optimal thermal range. Newly emerged flies exhibited the widest optimal thermal range spanning from 6.6 to 42.2°C for a total range of 35.8°C during heating scans of 0.4°C/min from 2 to 50°C. This range diminished as the flies aged, with the shortest span observed with 28-d-old flies ranging from 10.5 to 37.8°C, a span of 27.2°C. Measurements of heat rate and oxygen consumption at isothermal, or static, temperatures indicated that all flies could survive exposure to 40°C for at least 20 min, and that metabolism was greatly reduced, with a concomitant reduction in oxygen consumption rate at 40 to 42°C. All flies exhibited a heat rate and oxygen consumption rate of zero when exposed to 45 and 50°C. The loss of thermotolerance in adult flies can influence its ability to establish and spread in climates where daily temperatures exceed the optimal thermal range of this species.

  18. Comparison of Hydrolyzed Protein Baits and Various Grape Juice Products as Attractants for Anastrepha Fruit Flies (Diptera: Tephritidae).

    PubMed

    Herrera, F; Miranda, E; Gómez, E; Presa-Parra, E; Lasa, R

    2016-02-01

    Mexican fruit flies, Anastrepha ludens (Loew; Diptera: Tephritidae), have traditionally been trapped in citrus orchards in Mexico using protein hydrolysates as bait. Recently, CeraTrap(®), an enzymatic hydrolyzed protein, has emerged as an effective lure for monitoring A. ludens at the orchard level and is currently being used by growers in the region of Veracruz. Several studies have revealed that grape juice is highly attractive to A. ludens, and recent work supports its potential use for regulation purposes. In our study, the attraction of A. ludens to different grape products was evaluated in citrus orchards and in comparison to other Anastrepha species in an area composed of mango and chicozapote orchards. Attraction to grape lures was compared with CeraTrap and the standard protein Captor +borax trap. In general, CeraTrap was more attractive than different commercial grape products in several experiments. Only Jumex, a commercial grape juice, did not differ significantly from CeraTrap in the capture of A. ludens males and females in a citrus crop. However, several drawbacks were detected when using Jumex grape juice: 1) higher tendency to capture males, 2) less selectivity against non-targeted insects, 3) higher capture of beneficial lacewings, and iv) the need to re-bait weekly owing to lower stability. In the area containing mango and chicozapote, CeraTrap was more attractive than Captor + borax for Anastrepha obliqua and Anastrepha serpentina, followed by grape juice products, which were the least attractive for these fruit fly species. PMID:26396199

  19. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance.

    PubMed

    Hsu, Ju-Chun; Feng, Hai-Tung

    2006-06-01

    In this study, we assessed the potential for the development of resistance to the insecticide spinosad in a laboratory colony of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Resistance was selected by using topical applications of spinosad. After eight generations of selection, the LD50 of the selected line was 408 times greater compared with that of the untreated parental colony. This spinosad-resistant line did not exhibit cross-resistance to 10 other insecticides tested, including six organophosphates (naled, trichlorfon, fenitrothion. fenthion, formothion, and malathion) one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate). However, using lines previously selected for resistance to these same insecticides, two of the 10 lines tested (naled- and malathion-resistant) did show some cross-resistance to spinosad. Also, oriental fruit flies from different field collections where naled and malathion have been used for control purposes displayed some resistance to spinosad. In addition, the effects of direct ingestion of spinosad through dietary supplementation also were tested. Overall, the laboratory resistance and cross-resistance data developed in this study provide new information that will be useful for managing the development of resistance when spinosad is used to control B. dorsalis in the field. PMID:16813333

  20. Response of olive fruit fly (Diptera: Tephritidae) to an attract-and-kill trap in greenhouse cage tests.

    PubMed

    Yokoyama, Victoria Y

    2014-01-01

    A novel attract-and-kill trap for olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), was constructed with yellow corrugated plastic in an inverted cylindrical pan shape formed from a disk and collar. The trap components were tested under three greenhouse temperatures and humidities of warm, hot, and very hot for attractiveness to caged young or older adults. A greater proportion of adults regardless of age were found underneath the devices including disks, cylindrical pans, and pans with pheromone lures and test units of cylindrical pans sprayed with water, insecticidal bait spray, and with lures. The effect was related to lower temperatures on the underside compared with the top and the intolerance of the pest to heat. A circular collar added to the perimeter of the disk that formed the top of the inverted cylinder made the attract-and-kill trap more attractive to adults than the disk alone. Pheromone lures or bait sprays did not increase adult attraction, so were not needed for efficacy. The cylindrical pan was especially attractive to adults when temperatures were high by providing shelter from the heat. At very high temperatures, the pan became unattractive, possibly due to heating of the construction materials. Cylindrical pans sprayed with water on the underside attracted the highest number of adults especially at high temperatures. Greenhouse tests showed that the inverted cylindrical pan design has potential as an attract-and-kill device for olive fruit fly control. PMID:25368094

  1. Comparison of Hydrolyzed Protein Baits and Various Grape Juice Products as Attractants for Anastrepha Fruit Flies (Diptera: Tephritidae).

    PubMed

    Herrera, F; Miranda, E; Gómez, E; Presa-Parra, E; Lasa, R

    2016-02-01

    Mexican fruit flies, Anastrepha ludens (Loew; Diptera: Tephritidae), have traditionally been trapped in citrus orchards in Mexico using protein hydrolysates as bait. Recently, CeraTrap(®), an enzymatic hydrolyzed protein, has emerged as an effective lure for monitoring A. ludens at the orchard level and is currently being used by growers in the region of Veracruz. Several studies have revealed that grape juice is highly attractive to A. ludens, and recent work supports its potential use for regulation purposes. In our study, the attraction of A. ludens to different grape products was evaluated in citrus orchards and in comparison to other Anastrepha species in an area composed of mango and chicozapote orchards. Attraction to grape lures was compared with CeraTrap and the standard protein Captor +borax trap. In general, CeraTrap was more attractive than different commercial grape products in several experiments. Only Jumex, a commercial grape juice, did not differ significantly from CeraTrap in the capture of A. ludens males and females in a citrus crop. However, several drawbacks were detected when using Jumex grape juice: 1) higher tendency to capture males, 2) less selectivity against non-targeted insects, 3) higher capture of beneficial lacewings, and iv) the need to re-bait weekly owing to lower stability. In the area containing mango and chicozapote, CeraTrap was more attractive than Captor + borax for Anastrepha obliqua and Anastrepha serpentina, followed by grape juice products, which were the least attractive for these fruit fly species.

  2. Influence of irradiation on development of Caribbean fruit fly (diptera: tephritidae) larvae

    SciTech Connect

    Nation, J.L.; Milne, K.; Dykstra, T.M.

    1995-05-01

    Larvae of the Caribbean fruit fly, Anastrepha suspensa (Loew), were irradiated at hatching with 0, 5, 10, 20, 50, 75, 100 and 150 Gy doses from a Cesium-137 source and dissected for measurements of the supraesophageal ganglion (brain) and proventriculus (B/Prv) as mature third instars. Cross-sectional area of a plane through the brain and proventriculus, and simple dorsal width measurements of the two organs were evaluated as indicators of radiation exposure. Brain area, brain width, and brain/proventriculus (B/Prv) ratios were significantly different from controls in insects treated with a dose {ge}20 Gy. Detailed dissections of hatching larvae exposed to 50 Gy revealed reductions in brain growth, small and misshapen compound eye and leg imaginal disks, and a ventral nerve cord that was elongated and sinuous. Larvae irradiated on the 1st d of each of the three instars had smaller brains, with the percentage of reduction in brain size being greater the younger the larvae were at the time of exposure. Brain and proventriculus measurements and calculated B/Prv values are indicative of irradiation in Caribbean fruit fly larvae, but the procedure may not be adaptable for routine use by quarantine inspectors. 14 refs., 4 figs., 2 tabs.

  3. Economic and Highly Effective Trap-Lure Combination to Monitor the Mexican Fruit Fly (Diptera: Tephritidae) at the Orchard Level.

    PubMed

    Lasa, R; Herrera, F; Miranda, E; Gómez, E; Antonio, S; Aluja, M

    2015-08-01

    Monitoring population levels of the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), at the orchard level prior and during the fruit ripening period can result in significant savings in the costs of managing this pestiferous insect. Unfortunately, to date, no highly effective and economically viable trap is available to growers. To move toward this goal, trap-lure combinations were evaluated in trials performed in citrus orchards in Veracruz, Mexico. CeraTrap, an enzymatic hydrolyzed protein from pig intestinal mucose, was 3.6 times more attractive to A. ludens than the most commonly used bait of Captor (hydrolyzed protein and borax) when using Multilure traps. When several commercial traps were evaluated, the efficacy of a simple and inexpensive transparent polyethylene (PET) bottle with 10-mm lateral holes was similar to that of the costly Multilure trap when baited with CeraTrap and significantly more effective than a Multilure trap baited with Captor. PET bottles filled with Cera Trap, rebaited at 8-wk intervals, and tested in trials encompassing 72 ha of citrus groves, were significantly more effective than Multilure traps baited with Captor that need to be serviced weekly. In addition to this relevant finding, CeraTrap baited traps detected A. ludens at lower population densities and attracted a significantly higher number of flies at all densities when compared with Captor-baited traps. We conclude that CeraTrap represents a cost-effective and highly efficient bait that will enable us to pursue the goal of developing economic thresholds, a badly needed management tool for A. ludens. PMID:26470304

  4. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity. PMID:20069869

  5. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  6. Comparison of torula yeast and various grape juice products as attractants for Mexican fruit fly (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early research during the 1930’s focused on attractants for the Mexican fruit fly indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were ca...

  7. Quality management systems for fruit fly (Diptera: Tephritidae) sterile insect technique

    SciTech Connect

    Caceres, C.; Robinson, A.; Shelly, T.; Hendrichs, J.

    2007-03-15

    The papers presented in this issue are focused on developing and validating procedures to improve the overall quality of sterile fruit flies for use in area-wide integrated pest management (AW-IPM) programs with a sterile insect technique (SIT) component. The group was coordinated and partially funded by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, under a five-year Coordinated Research Project (CRP) on 'Quality Assurance in Mass-Reared and Released Fruit Flies for Use in SIT Programmes'. Participants in the CRP from 16 countries came from both basic and applied fields of expertise to ensure that appropriate and relevant procedures were developed. A variety of studies was undertaken to develop protocols to assess strain compatibility and to improve colonization procedures and strain management. Specific studies addressed issues related to insect nutrition, irradiation protocols, field dispersal and survival, field cage behavior assessments, and enhancement of mating competitiveness. The main objective was to increase the efficiency of operational fruit fly programs using sterile insects and to reduce their cost. Many of the protocols developed or improved during the CRP will be incorporated into the international quality control manual for sterile tephritid fruit flies, standardizing key components of the production, sterilization, shipment, handling, and release of sterile insects. (author) [Spanish] Los articulos presentados en este numero se enfocan en el desarrollo y la validacion de procedimientos para mejorar la calidad total de moscas de las frutas esteriles para su uso en programas de manejo integrado de plagas en donde la tecnica del insecto esteril (TIE) es uno de los componentes clave. El grupo fue coordinado y parcialmente financiado por la Division Conjunta de Tecnicas Nucleares para la Alimentacion y la Agricultura de la FAO/OIEA, Viena, Austria, por un periodo de

  8. Controlled-release panel traps for the Mediterranean fruit fly (Diptera: Tephritidae).

    PubMed

    Leonhardt, B A; Cunningham, R T; Chambers, D L; Avery, J W; Harte, E M

    1994-10-01

    Solid, controlled-release dispensers containing 2 g of the synthetic attractant trimedlure now are used in Jackson traps to detect the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Panel traps consisting of trimedlure mixed in a sticky substance and spread on the surfaces of a plastic panel are used to delineate the limits of discovered insect infestations in California. We describe the development of controlled-release, polymeric panels that prolong release of trimedlure and a highly attractive analog, ceralure. Attractants were incorporated in a polyethylene matrix to form panels and in a polymer coating on cardboard panels that then were evaluated by biological and chemical assay. In addition, commercial polymer matrix panels were evaluated. Field bioassay tests conducted in Hilo, HI, using released flies and in Guatemala in a natural population showed that the polyethylene matrix panel became brittle and cracked during field exposure and that release rates of the attractants were relatively low. The coated cardboard panels were stable under field conditions and yielded high fly captures for up to 6 wk. Farma Tech commercial panels containing 12.3 and 23.4 g of trimedlure remained highly attractive throughout a 134-d test in Hawaii and appear to be a long-lasting alternative to panels coated with trimedlure in Stikem. The cost of the relatively high dose of trimedlure is offset by the prolonged active life of the panel. Commercial panels from AgriSense (10 g trimedlure and 10 g ceralure) released the attractants at a slower rate and were less attractive.

  9. Threshold Concentration of Limonoids (Azamax) for Preventing Infestation by Mediterranean Fruit Fly (Diptera: Tephritidae).

    PubMed

    Silva, M A; Bezerra-Silva, G C D; Vendramim, J D; Forim, M R; Sá, I C G

    2015-04-01

    This study identified the threshold concentration of limonoids for the complete inhibition of oviposition of Ceratitis capitata (Wiedemann) in grapes 'Itália.' Choice and no-choice experiments with the insect were performed. The three no-choice bioassays were conducted following a completely randomized design with 18 treatments (three densities of insects [one, two, or three females]×five concentrations of limonoids and control) and 20 replicates. In a free choice bioassay, two fruits per cage (a treatment grape and a control) were provided for ovipositing. Three densities of insects (one, two, or three females) were used, with 15 replicates. Bioassays were conducted at 25±2°C, 60±10% relative humidity, and a photoperiod of 14:10 (L:D) h. The inhibition of oviposition of C. capitata was concentration dependent, with infestation occurring at lower concentrations of azadirachtin (+3-tigloylazadirachtol) and complete inhibition occurring at concentrations at or exceeding 100 ppm azadirachtin (+28.5 ppm of 3-tigloylazadirachtol), maintaining protective effects even at the most densely populated treatment (three females per fruit). When the pest had a free choice of host grapes (treatment vs. control), severe inhibition was observed at concentrations≥50 ppm azadirachtin (+14.3 ppm of 3-tigloylazadirachtol). We conclude that a threshold concentration of 100 ppm azadirachtin (+28.5 ppm of 3-tigloylazadirachtol) is capable of preventing grape infestation. This concentration is likely to provide a reliable level of protection, as the experimental population density of three females per fruit usually does not occur in the field and wild flies usually have more host options. PMID:26470174

  10. Evidence for potential of managing some african fruit fly species (Diptera: Tephritidae) using the mango fruit fly host-marking pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aq...

  11. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia.

    PubMed

    Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi

    2007-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established. PMID:17598524

  12. Chilling and Host Plant/Site-Associated Eclosion Times of Western Cherry Fruit Fly (Diptera: Tephritidae) and a Host-Specific Parasitoid.

    PubMed

    Yee, Wee L; Goughnour, Robert B; Hood, Glen R; Forbes, Andrew A; Feder, Jeffrey L

    2015-08-01

    The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is an endemic herbivore of bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ∼100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of adult R. indifferens from sweet and bitter cherry differ according to the phenology of their respective host plants and if eclosion times of the host-specific parasitoid Diachasma muliebre (Muesebeck) (Hymenoptera: Braconidae) attacking bitter and sweet cherry flies differ according to the eclosion phenology of their fly hosts. Fly pupae from sweet and bitter cherry fruit were collected from sympatric and allopatric sites in Washington state, and chilled at 5°C. Because timing of eclosion in R. indifferens depends on chill duration, eclosion time in wasps could also vary with chill duration. To account for this, fly pupae were chilled for 1, 2, 2.5, 3, 4, 6, or 8 mo. Both flies and wasps eclosed earlier with longer chill durations. Eclosion times of sweet and bitter cherry flies from a sympatric site in central Washington did not differ. However, at allopatric sites in northwestern and central Washington, bitter cherry flies eclosed later than sweet and bitter cherry flies at the sympatric site. Correspondingly, D. muliebre parasitizing a more isolated bitter cherry fly population eclosed later than D. muliebre parasitizing earlier-emerging sweet and bitter cherry fly populations. These results provide evidence for D. muliebre rapidly responding to changes in host plant shifts by R. indifferens.

  13. Managing Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae), Using Spinosad-Based Protein Bait Sprays in Papaya Orchards in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of GF-120 Fruit Fly Bait was evaluated as a control of female oriental fruit fly, Bactrocera dorsalis (Hendel) in papaya orchards in Hawaii. Two important components of this study were field sanitation and mass trapping using the male-specific lure methyl eugenol. Three different spray ...

  14. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae).

    PubMed

    Shishir, Md Asaduzzaman; Akter, Asma; Bodiuzzaman, Md; Hossain, M Aftab; Alam, Md Musfiqul; Khan, Shakil Ahmed; Khan, Shakila Nargis; Hoq, M Mozammel

    2015-01-01

    Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits.

  15. The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae).

    PubMed

    Fu, Liao; Li, Zhi-Hong; Huang, Guan-Sheng; Wu, Xing-Xia; Ni, Wen-Long; Qü, Wei-Wei

    2014-04-01

    The West Indian fruit fly, Anastrepha obliqua (Macquart), is one of the most important pests throughout the Americas. CLIMEX 3.0 and ArcGIS 9.3 were used to model the current and future potential geographical distribution of this pest. Under current climatic conditions, A. obliqua is predicted to be able to establish throughout much of the tropics and subtropics, including not only North and South America, where it has been reported, but also southern Asia, northeastern Australia and Sub-Saharan Africa. The main factors limiting the pest's range expansion may be cold stress. Climate change expands the potential distribution of A. obliqua poleward as cold stress boundaries recede, but the predicted distribution in northwestern Australia and northern parts of Sub-Saharan Africa will decrease because of heat stress. Considering the widely suitable range for A. obliqua globally and in China, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.

  16. Population structure and cryptic genetic variation in the mango fruit fly, Ceratitis cosyra (Diptera, Tephritidae)

    PubMed Central

    Virgilio, Massimiliano; Delatte, Hélène; Nzogela, Yasinta Beda; Simiand, Christophe; Quilici, Serge; De Meyer, Marc; Mwatawala, Maulid

    2015-01-01

    Abstract The fruit fly Ceratitis cosyra is an important agricultural pest negatively affecting the mango crop production throughout Africa and also feeding on a variety of other wild and cultivated hosts. The occurrence of deeply divergent haplotypes, as well as extensive morphological variability, previously suggested possible cryptic speciation within Ceratitis cosyra. Here we provide the first large-scale characterisation of the population structure of Ceratitis cosyra with the main objective of verifying cryptic genetic variation. A total of 348 specimens from 13 populations were genotyped at 16 polymorphic microsatellite loci. Hardy-Weinberg equilibrium (HWE) deviations were observed in 40.4% of locus-population combinations and suggested the occurrence of genetic substructuring within populations. Discriminant Analysis of Principal Components (DAPC) showed genetic divergence between the vast majority of vouchers from Burundi and Tanzania (plus a few outliers from other African countries) and all other specimens sampled. Individual Bayesian assignments confirmed the existence of two main genotypic groups also occurring in sympatry. These data provided further support to the hypothesis that Ceratitis cosyra might include cryptic species. However, additional integrative taxonomy, possibly combining morphological, ecological and physiological approaches, is required to provide the necessary experimental support to this model. PMID:26798276

  17. Global Assessment of Seasonal Potential Distribution of Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae)

    PubMed Central

    Szyniszewska, Anna M.; Tatem, Andrew J.

    2014-01-01

    The Mediterranean fruit fly (Medfly) is one of the world's most economically damaging pests. It displays highly seasonal population dynamics, and the environmental conditions suitable for its abundance are not constant throughout the year in most places. An extensive literature search was performed to obtain the most comprehensive data on the historical and contemporary spatio-temporal occurrence of the pest globally. The database constructed contained 2328 unique geo-located entries on Medfly detection sites from 43 countries and nearly 500 unique localities, as well as information on hosts, life stages and capture method. Of these, 125 localities had information on the month when Medfly was recorded and these data were complemented by additional material found in comprehensive databases available online. Records from 1980 until present were used for medfly environmental niche modeling. Maximum Entropy Algorithm (MaxEnt) and a set of seasonally varying environmental covariates were used to predict the fundamental niche of the Medfly on a global scale. Three seasonal maps were also produced: January-April, May-August and September-December. Models performed significantly better than random achieving high accuracy scores, indicating a good discrimination of suitable versus unsuitable areas for the presence of the species. PMID:25375649

  18. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae).

    PubMed

    Shishir, Md Asaduzzaman; Akter, Asma; Bodiuzzaman, Md; Hossain, M Aftab; Alam, Md Musfiqul; Khan, Shakil Ahmed; Khan, Shakila Nargis; Hoq, M Mozammel

    2015-01-01

    Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits. PMID:26133509

  19. A comparative assessment of the response of three fruit fly species (Diptera: Tephritidae) to a spinosad-based bait: effect of ammonium acetate, female age, and protein hunger.

    PubMed

    Piñero, J C; Mau, R F L; Vargas, R I

    2011-08-01

    Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources, and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examined the behavioural response of wild female oriental fruit fly (Bactrocera dorsalis (Hendel)), melon fly (B. cucurbitae (Coquillett)), and Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) to spinosad-based GF-120 NF Naturalyte Fruit Fly Bait(©) formulated to contain either 0, 1 or 2% ammonium acetate. Use of visually-attractive yellow bait stations for bait application in the field allowed for proper comparisons among bait formulations. Field cage tests were also conducted to investigate, using a comparative behavioural approach, the effects of female age and protein starvation on the subsequent response of F1 generation B. cucurbitae and B. dorsalis to the same three bait formulations that were evaluated in the field. Our field results indicate a significant positive effect of the presence, regardless of amount, of AA in GF-120 for B. dorsalis and B. cucurbitae. For C. capitata, there was a significant positive linear relationship between the relative amounts of AA in bait and female response. GF-120 with no AA was significantly more attractive to female C. capitata, but not to female B. dorsalis or B. cucurbitae, than the control treatment. Our field cage results indicate that the effects of varying amounts of AA present in GF-120 can be modulated by the physiological stage of the female flies and that the response of female B. cucurbitae to GF-120 was consistently greater than that of B. dorsalis over the various ages and levels of protein starvation regimes evaluated. Results are discussed in light of their applications for effective fruit fly suppression.

  20. Trap capture of three economically important fruit fly species (Diptera: Tephritidae): evaluation of a solid formulation containing multiple male lures in a Hawaiian coffee field.

    PubMed

    Shelly, Todd; Nishimoto, Jon; Kurashima, Rick

    2012-08-01

    Invasive fruit flies (Diptera: Tephritidae) pose a global threat to agriculture through direct damage to food crops and the accompanying trade restrictions that often result. Early detection is vital to controlling fruit flies, because it increases the probability of limiting the growth and spread of the invasive population and thus may greatly reduce the monetary costs required for eradication or suppression. Male-specific lures are an important component of fruit fly detection, and three such lures are used widely: trimedlure (TML), cue lure (CL), and methyl eugenol (ME), attractive to Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), respectively. In California, Florida, and Texas, the two Bactrocera lures are applied to separate species-specific traps as liquids (with a small amount of the insecticide naled added), whereas TML is delivered as a solid plug in another set of traps. Thus, the detection protocol involves considerable handling time as well as potential contact with a pesticide. The purpose of this study was to compare trap capture between liquid male lures and "trilure" wafers that contain TML, ME, raspberry ketone (RK, the hydroxy equivalent of CL), and the toxicant DDVP embedded within a solid matrix. Field studies were conducted in a Hawaiian coffee (Coffea arabica L.) field where the three aforementioned species co-occur, showed that the wafer captured at least as many flies as the liquid baits for all three species. This same result was obtained in comparisons using both fresh and aged (6-wk) baits. Moreover, the wafers performed as well as the single-lure traps in an ancillary experiment in which TML plugs were substituted for liquid TML. Additional experiments demonstrated explicitly that the presence of ME and RK had no effect on captures of C. capitata males and similarly that the presence of TML had no effect on the capture of B

  1. Half of the European fruit fly species barcoded (Diptera, Tephritidae); a feasibility test for molecular identification

    PubMed Central

    Smit, John; Reijnen, Bastian; Stokvis, Frank

    2013-01-01

    Abstract A feasibility test of molecular identification of European fruit flies (Diptera: Tephritidae) based on COI barcode sequences has been executed. A dataset containing 555 sequences of 135 ingroup species from three subfamilies and 42 genera and one single outgroup species has been analysed. 73.3% of all included species could be identified based on their COI barcode gene, based on similarity and distances. The low success rate is caused by singletons as well as some problematic groups: several species groups within the genus Terellia and especially the genus Urophora. With slightly more than 100 sequences – almost 20% of the total – this genus alone constitutes the larger part of the failure for molecular identification for this dataset. Deleting the singletons and Urophora results in a success-rate of 87.1% of all queries and 93.23% of the not discarded queries as correctly identified. Urophora is of special interest due to its economic importance as beneficial species for weed control, therefore it is desirable to have alternative markers for molecular identification. We demonstrate that the success of DNA barcoding for identification purposes strongly depends on the contents of the database used to BLAST against. Especially the necessity of including multiple specimens per species of geographically distinct populations and different ecologies for the understanding of the intra- versus interspecific variation is demonstrated. Furthermore thresholds and the distinction between true and false positives and negatives should not only be used to increase the reliability of the success of molecular identification but also to point out problematic groups, which should then be flagged in the reference database suggesting alternative methods for identification. PMID:24453563

  2. Seasonal Abundance of Mango Fruit Flies (Diptera: Tephritidae) and Ecological Implications for Their Management in Mango and Cashew Orchards in Benin (Centre & North).

    PubMed

    Vayssières, J-F; De Meyer, M; Ouagoussounon, I; Sinzogan, A; Adandonon, A; Korie, S; Wargui, R; Anato, F; Houngbo, H; Didier, C; De Bon, H; Goergen, G

    2015-10-01

    We report the results of a large-scale (six orchards) and long-term (5-yr) study on seasonal population fluctuations of fruit flies (Diptera Tephritidae) in mango (2005-2009) and cashew (2007-2009) orchards in the Borgou Department, Benin.During the five consecutive years of mango fruit fly monitoring, 25 tephritid species were captured including three species of Bactrocera, 11 of Ceratitis, and 11 of Dacus, which is represented by 2,138,150 specimens in mango orchards. We observed significant differences in Bactrocera dorsalis (Hendel) counts between "high" and "low" mango production years from 2005 to 2008 but not in Ceratitis cosyra (Walker) counts. The native species, C. cosyra, the most abundant species during the dry season, peaked beginning of May, while the exotic species, B. dorsalis, the most abundant species during the rainy season, peaked in June. Preliminary results underlined the role of nine species of wild hosts and seven species of cultivated ones around mango orchards that played an important role in maintaining B. dorsalis in this Sudan zone all year round. The presence of C. cosyra stretched over 9 mo.During the first 14 wk of tephritid monitoring on cashew orchards situated near mango orchards, most flies (62%) were captured in traps positioned in cashew orchards, showing the strong interest of an early fly control on cashew before the mango season. According to these results, in the Sudan zone, effective and compatible control methods as proposed by the IPM package validated by the West African Fruit Fly Initiative project against mango fruit flies are proposed for a large regional tephritid control program in same zones of West Africa.

  3. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with synthetic food-based lures that include blends of ammonia, either as ammonium acetate or ammonium bicarbonate, and putrescine capture a number of Anastrepha and Bactrocera species fruit flies. However, for many of these species, more flies are captured in traps baited with the pro...

  4. Effectiveness of GF-120 NF Fruit Fly Bait as a Suppression Tool for Bactrocera latifrons (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactrocera latifrons (Hendel) is a tephritid fruit fly of primarily Asian distribution that has invaded Hawaii and, more recently, the continent of Africa (Tanzania and Kenya). It primarily infests solanaceous fruits, so has the potential to impact production of crops such as peppers (Capsicum annuu...

  5. Establishment of the west indian fruit fly (Diptera: Tephritidae) parasitoid Doryctobracon areolatus (Hymenoptera: Braconidae)in the Dominican Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The West Indian fruit fly, Anastrepha obliqua (Macquart), infests numerous fruit species, particularly Anacardiaceae and most importantly mango (Mangifera indica L.). Widespread in the Neotropics, it was first reported in Hispaniola nearly 70 years ago. Continental populations are attacked by the op...

  6. Comparison of torula yeast and various grape juice products as attractants for Mexican fruit fly (Diptera: Tephritidae).

    PubMed

    Mangan, Robert L; Thomas, Donald B

    2014-04-01

    Early research investigating attractants for the Mexican fruit fly, Anastrepha ludens Loew, during the 1930s indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were carried out on populations of Mexican fruit flies from 2004 to 2011. Trapping experiments carried out at sites in the states Nuevo Leon and San Luis Potosi compared grape juice, reconstituted grape concentrate and powdered grape mixes, and torula yeast extract in orchards at each site. The Nuevo Leon orchard was mixed with alternate rows of pears and surrounded by alternate hosts. The San Luis Potosi site was surrounded by other orange orchards or nonhosts. Each test was run for at least 10 mo and included highest and lowest trapping periods. Results showed that grape juice captured the most total flies and had the fewest samples with zero flies. However, in the series of experiments, each product had the most captures in at least one experiment. Hydrolyzed torula was superior in one of the six experiments. In five of the tests, polyethylene glycol was tested as an additive to the grape products but never improved capture rate compared with the product without the additive. These results indicate that grape juice is superior to grape concentrate or powder and grape juice is at least equal to torula yeast hydrolysate for trapping pest populations of Mexican fruit flies in commercial citrus orchards.

  7. Insecticide toxicity to oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) is influenced by environmental factors.

    PubMed

    Lin, Yuying; Jin, Tao; Zeng, Ling; Lu, Yongyue

    2013-02-01

    In this study, we investigated the effects of environmental factors (temperature, dose, dietary source, and feeding density) on the insecticide tolerance of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). The results indicated that the toxicities of trichlorphon and abamectin to B. dorsalis increased with an increase in temperature. At 15-35 degrees C, the toxicity of beta-cypermethrin decreased with an increase in temperature at low doses (0.82 and 1.86 mg/L), but was similar at a high dose (4.18 mg/L). These results demonstrated that the temperature coefficient of beta-cypermethrin was related to both temperature and dosage. The insecticide sensitivity of B. dorsalis reared on different dietary sources was significantly different. Trichlorphon sensitivity of B. dorsalis fed on banana was the highest with an LC50 of 1.61 mg/L, followed by on apple, carambola, semiartificial diet, pear, mango, guava, orange, and papaya. With an increasing feeding density, the sensitivity of B. dorsalis adults to trichlorphon increased, while the sensitivities of B. dorsalis adults to abamectin and beta-cypermethrin decreased. The differences between LC50 values of insects reared at densities of 10 and 13 eggs/g of semiartificial diet to trichlorphon, abamectin and beta-cypermethrin were not significant. This result suggested that representative toxicity could be obtained by using adults developed at a feeding density between 10-13 eggs/g of semiartificial diet. Adult body weight was positively correlated with the LC50 value of trichlorphon, but was negatively correlated with the toxicities of abamectin and beta-cypermethrin. These results suggested that the effects of adult body weight on the toxicity of insecticides were different among different chemicals.

  8. Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case

    PubMed Central

    Virgilio, Massimiliano; Jordaens, Kurt; Breman, Floris C.; Backeljau, Thierry; De Meyer, Marc

    2012-01-01

    We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods. PMID:22359600

  9. Detection of Caribbean fruit fly [(Anastrepha suspensa Loew (Diptera: Tephritidae)]-infested grapefruit with portable gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New technologies are being sought by plant protection officials to more quickly and efficiently identify concealed pests in imported commodities. The zNose portable gas chromatography unit was investigated as a tool for identifying organic volatile signatures indicative of Caribbean fruit fly infest...

  10. A safe and effective propylene glycol based capture liquid for fruit fly (Diptera: Tephritidae) traps baited with synthetic lures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antifreeze is often used as the capture liquid in insect traps for its preservation and evaporation attributes. In tests reported herein, fruit fly traps using non-toxic household propylene glycol based antifreeze captured significantly more Anastrepha ludens than did traps with the automotive anti...

  11. Suitability of a liquid larval diet for rearing the Philippines fruit fly Bactrocera philippinensis (Diptera:Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A liquid larval diet as an artificial rearing medium was successfully tested for the Philippines fruit fly Bactrocera philippinensis Drew & Hancock. The biological parameters studied were pupal weight, adult emergence and fliers, sex ratio, fecundity and fertility. The insects performed most satisfa...

  12. An Evaluation of Alternative Insecticides to Diazinon for Control of Tephritid Fruit Flies (Diptera: Tephritidae) in Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies, but is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum®, Force®, Admire®, Regent®, and Warrior® was estimated after applica...

  13. Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi)(Diptera:Tephritidae) with a piggyBac transposon vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...

  14. Comparison of aggregation and feeding responses by normal and irradiated fruit flies, Ceratitis capitata and Anastrepha suspensa (Diptera: Tephritidae)

    SciTech Connect

    Galun, R.; Gothilf, S.; Blondheim, S.; Sharp, J.L.; Mazor, M.; Lachman, A.

    1985-12-01

    Olfactory, aggregatory, and feeding responses of normal (untreated) laboratory stocks of Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), and of Caribbean fruit fly (caribfly), Anastrepha suspensa (Loew), were compared to those of flies irradiated (10 krad in air) 2 days before eclosion. Females of both species consumed greater quantities of protein hydrolysate solutions, entered protein hydrolysate-baited olfactory traps, and aggregated on agar plates containing protein hydrolysate in greater numbers than males of the same age and condition. However, male medflies consumed more sucrose than did females of the same age and condition. In the medfly, irradiation resulted in reduced olfactory response, reduced total food intake by flies of both sexes, and a significant reduction in aggregation on and intake of protein hydrolysate by females and of sugar consumption by males. In the irradiated caribfly, there was a significant reduction in olfactory response of females to yeast hydrolysate. In both sexes, aggregation on and consumption of yeast hydrolysate were reduced. Effects of irradiation on feeding behavior are discussed in relation to the biology of the flies and their control by the sterile insect release method.

  15. Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    PubMed

    Radhakrishnan, Preethi; Marchini, Daniela; Taylor, Phillip W

    2009-05-01

    Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly (Q-fly), Bactrocera tryoni, were investigated and compared with those of other tephritid flies. Male accessory glands were found to comprise one pair of mesodermic glands and three pairs of ectodermic glands. The mesodermic accessory glands consist of muscle-lined, binucleate epithelial cells, which are highly microvillated and extrude electron-dense secretions by means of macroapocrine transport into a central lumen. The ectodermic accessory glands consist of muscle-lined epithelial cells which have wide subcuticular cavities, lined with microvilli. The electron-transparent secretions from these glands are first extruded into the cavities and then forced out through small pores of the cuticle into the gland lumen. Secretions from the two types of accessory glands then flow into the ejaculatory duct, which is highly muscular, with epithelial cells rich in rough endoplasmic reticulum and lined with a thick, deeply invaginated cuticle. While there are some notable differences, reproductive accessory glands of male Q-flies generally resemble those of the olive fruitfly, Bactrocera oleae, and to a lesser extent the Mediterranean fruit fly, Ceratitis capitata. PMID:19026762

  16. The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Nakou, Ifigeneia; Mavragani-Tsipidou, Penelope

    2014-10-01

    Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.

  17. Costly Nutritious Diets do not Necessarily Translate into Better Performance of Artificially Reared Fruit Flies (Diptera: Tephritidae).

    PubMed

    Pascacio-Villafán, C; Williams, T; Sivinski, J; Birke, A; Aluja, M

    2015-02-01

    Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. PMID:26470103

  18. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    PubMed

    Park, Soo J; Morelli, Renata; Hanssen, Benjamin L; Jamie, Joanne F; Jamie, Ian M; Siderhurst, Matthew S; Taylor, Phillip W

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605

  19. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    PubMed Central

    Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605

  20. Costly Nutritious Diets do not Necessarily Translate into Better Performance of Artificially Reared Fruit Flies (Diptera: Tephritidae)

    PubMed Central

    Pascacio-Villafán, C.; Williams, T.; Sivinski, J.; Birke, A.; Aluja, M.

    2015-01-01

    Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. PMID:26470103

  1. Pattern of association between endemic Hawaiian fruit flies (Diptera, Tephritidae) and their symbiotic bacteria: Evidence of cospeciation events and proposal of "Candidatus Stammerula trupaneae".

    PubMed

    Viale, E; Martinez-Sañudo, I; Brown, J M; Simonato, M; Girolami, V; Squartini, A; Bressan, A; Faccoli, M; Mazzon, L

    2015-09-01

    Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation.

  2. Pattern of association between endemic Hawaiian fruit flies (Diptera, Tephritidae) and their symbiotic bacteria: Evidence of cospeciation events and proposal of "Candidatus Stammerula trupaneae".

    PubMed

    Viale, E; Martinez-Sañudo, I; Brown, J M; Simonato, M; Girolami, V; Squartini, A; Bressan, A; Faccoli, M; Mazzon, L

    2015-09-01

    Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation. PMID:25959751

  3. Effectiveness of attract-and-kill systems using methyl eugenol incorporated with neonicotinoid insecticides against the oriental fruit fly (Diptera: Tephritidae).

    PubMed

    Chuang, Yi-Yuan; Hou, Roger F

    2008-04-01

    Laboratory bioassays and field trials were conducted to evaluate an "attract-and-kill" system using methyl eugenol (ME) with neonicotinoid insecticides against male oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). In laboratory bioassays, mortality of male flies resulting from the conventional toxicant, naled was 98.3-100% at 24 through 72 h after treatment, whereas the neonicotinoid insecticides imidacloprid and acetamiprid caused only approximately 60-80% at 24 through 72 h after treatment. In the assays of residual effect, naled was persistent up to 96 wk, whereas imidacloprid or acetamiprid was persistent up to 150 wk, resulting in 38.9 or 61.2% male mortality, respectively. Imidacloprid, in particular, caused a delayed lethal effect on flies. In another experiment, male mortality within 28 wk from clothianidin, another neonicotinoid insecticide, was approximately 80% after exposure for 24 h, suggesting a delayed lethal effect similar to those treated with imidacloprid, and mortality was up to 91.8%, if observed, 72 h after treatment. In field trials, attractiveness was similar between ME alone and ME incorporated with naled or neonicotinoids, indicating that addition of these insecticides to ME in traps is not repellent to B. dorsalis males. Using an improved wick-typed trap with longer attractiveness for simulating field application, addition of imidacloprid or acetamiprid maintained 40.1 or 64.3% male mortality, respectively, when assayed once every 2 wk from traps placed in orchards for 42 wk without changing the poison, whereas incorporation with naled resulted in as high as 98.1% after 34 wk and approximately 80% at 42 wk, indicating that persistence is increased compared with sugarcane fiberboard blocks for carrying poison attractants. This study also suggests that neonicotinoid insecticides could be used as an alternative for broad-spectrum insecticides as toxicants in fly traps. PMID:18459398

  4. Impact of Introduction of Oriental Fruit Fly (Diptera: Tephritidae) and Classical Biological Control Releases of the Natural Enemy, Fopius arisanus (Sonan) (Hymenoptera: Braconidae), on Economically Important Fruit Flies in F

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine attraction and feeding propensity of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillet) to different protein bait mixtures with and without the insecticides spinosad and malathion. The type of protein (GF-120 Fruit ...

  5. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae) and Their Phylogenetic Implications

    PubMed Central

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I. Wayan

    2016-01-01

    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general. PMID:26840430

  6. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae) and Their Phylogenetic Implications.

    PubMed

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I Wayan

    2016-01-01

    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general. PMID:26840430

  7. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae) and Their Phylogenetic Implications.

    PubMed

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I Wayan

    2016-01-01

    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  8. Seasonal Amounts of Nutrients in Western Cherry Fruit Fly (Diptera: Tephritidae) and Their Relation to Nutrient Availability on Cherry Plant Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and the availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral necta...

  9. Dispersion of fruit flies (Diptera: Tephritidae) at high and low densities and consequences of mismatching dispersions of wild and sterile flies

    SciTech Connect

    Meats, A.

    2007-03-15

    Both wild and released (sterile) Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and wild Bactrocera papayae (Drew and Hancock) in Australia had patchy distributions and comparisons with predictions of the negative binomial model indicated that the degree of clumping was sometimes very high, particularly at low densities during eradication. An increase of mean recapture rate of sterile B. tryoni on either of 2 trap arrays was not accompanied by a reduction in its coefficient of variation and when recapture rates were high, the percentage of traps catching zero decreased only slightly with increase in recapture rate, indicating that it is not practicable to decrease the heterogeneity of dispersion of sterile flies by increasing the number released. There was often a mismatch between the dispersion patterns of the wild and sterile flies, and the implications of this for the efficiency of the sterile insect technique (SIT) were investigated with a simulation study with the observed degrees of mismatch obtained from the monitoring data and assuming the overall ratio of sterile to wild flies to be 100:1. The simulation indicated that mismatches could result in the imposed rate of increase of wild flies being up to 3.5 times higher than that intended (i.e., 0.35 instead of 0.1). The effect of a mismatch always reduces the efficiency of SIT. The reason for this asymmetry is discussed and a comparison made with host-parasitoid and other systems. A release strategy to counter this effect is suggested. (author) [Spanish] Las moscas naturales y liberadas (esteriles) de Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) y Bactrocera papayae (Drew and Hancock) en Australia tuvieron distribuciones en parches y sus compariciones con las predicciones de un modelo binomial negativo indicaron un nivel de agregacion a veces fue muy alto, particularmente en las densidades bajas durante de eradicacion. Un aumento en el promedio de la tasa de B. tryoni esteriles recapturadas en las

  10. Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae)

    PubMed Central

    2014-01-01

    Background Anastrepha ludens is among the pests that have a major impact on México's economy because it attacks fruits as citrus and mangoes. The Mexican Federal government uses integrated pest management to control A. ludens through the Programa Nacional Moscas de la Fruta [National Fruit Fly Program, SAGARPA-SENASICA]. One of the main components of this program is the sterile insect technique (SIT), which is used to control field populations of the pest by releasing sterile flies. Results To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus. Ten strains producing wild-type (brown pupae) males and mutant (black pupae) females were isolated. Subsequent evaluations for several generations were performed in most of these strains. The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains. Genetic and cytogenetic analyses were performed using mitotic and polytene chromosomes and we succeeded to characterize the chromosomal structure of this reciprocal translocation and map the autosome breakpoint, despite the fact that the Y chromosome is not visible in polytene nuclei following standard staining. Conclusions We show that mitotic and polytene chromosomes can be used in cytogenetic analyses towards the development of genetic control methods in this pest species. The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program. PMID:25472896

  11. Production and quality assurance in the SIT Africa Mediterranean fruit fly (Diptera: Tephritidae) rearing facility in South Africa

    SciTech Connect

    Barnes, B.; Rosenberg, S.; Arnolds, L.; Johnson, J.

    2007-03-15

    A mass-rearing facility for Mediterranean fruit fly Ceratitis capitata (Wiedemann) was commissioned in Stellenbosch in 1999 to produce sterile male fruit flies for a sterile insect technique (SIT) project in commercial fruit orchards and vineyards in the Western Cape province of South Africa. The mass-rearing procedure was largely based on systems developed by the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria. A number of genetic sexing strains were used to produce only males for release. Initial cramped rearing and quality management conditions were alleviated in 2001 with the construction of a new adult rearing room and quality control laboratory. In 2002 a comprehensive Quality Management System was implemented, and in 2003 an improved genetic sexing strain, VIENNA 8, was supplied by the FAO/IAEA Laboratory in Seibersdorf. For most of the first 3 years the facility was unable to supply the required number of sterile male Mediterranean fruit flies for the SIT program without importing sterile male pupae from another facility. From mid-2002, after the quality management system was implemented, both production and quality improved but remained below optimum. After the introduction of the VIENNA 8 genetic sexing strain, and together with an improvement in the climate control equipment, production stability, and quality assurance parameters improved substantially. The critical factors influencing production and quality were an inadequate rearing infrastructure, problems with the quality of the larval diet, and the initial absence of a quality management system. The results highlight the importance of effective quality management, the value of a stable and productive genetic sexing strain, and the necessity for a sound funding base for the mass-rearing facility. (author) [Spanish] La facilidad para criar en masa la mosca mediterranea de la fruta, Ceratitis capitata (Wiedemann) fue comisionada en Stellenbosch en 1999 para producir machos

  12. Evaluation of SPLAT with spinosad and methyl eugenol or cue-lure for "attract-and-kill" of oriental and melon fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Hertlein, Mark; Neto, Agenor Mafra; Coler, Reginald; Piñero, Jaime C

    2008-06-01

    Specialized Pheromone and Lure Application Technology (SPLAT) methyl eugenol (ME) and cue-lure (C-L) "attract-and-kill" sprayable formulations containing spinosad were compared with other formulations under Hawaiian weather conditions against oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), respectively. Field tests were conducted with three different dispensers (Min-U-Gel, Acti-Gel, and SPLAT) and two different insecticides (naled and spinosad). SPLAT ME with spinosad was equal in performance to the standard Min-U-Gel ME with naled formulation up to 12 wk. SPLAT C-L with spinosad was equal in performance to the standard Min-U-Gel C-L with naled formulation during weeks 7 to12, but not during weeks 1-6. In subsequent comparative trials, SPLAT ME + spinosad compared favorably with the current standard of Min-U-Gel ME + naled for up to 6 wk, and it was superior from weeks 7 to 12 in two separate tests conducted in a papaya (Carica papaya L.) orchard and a guava (Psidium guajava L.) orchard, respectively. In outdoor paired weathering tests (fresh versus weathered), C-L dispensers (SPLAT + spinosad, SPLAT + naled, and Min-U-Gel + naled) were effective up to 70 d. Weathered ME dispensers with SPLAT + spinosad compared favorably with SPLAT + naled and Min-U-Gel + naled, and they were equal to fresh dispensers for 21-28 d, depending on location. Our current studies indicate that SPLAT ME and SPLAT C-L sprayable attract-and-kill dispensers containing spinosad are a promising substitute for current liquid organophosphate insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii. PMID:18613576

  13. Quality control method to measure predator evasion in wild and mass-reared Mediterranean fruit flies (Diptera: Tephritidae)

    SciTech Connect

    Hendrichs, M.; Wornoayporn, V.; Hendrichs, J.

    2007-03-15

    Sterile male insects, mass-reared and released as part of sterile insect technique (SIT) programs, must survive long enough in the field to mature sexually and compete effectively with wild males for wild females. An often reported problem in Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) SIT programs is that numbers of released sterile males decrease rapidly in the field for various reasons, including losses to different types of predators. This is a serious issue in view that most operational programs release sterile flies at an age when they are still immature. Previous field and field-cage tests have confirmed that flies of laboratory strains are less able to evade predators than wild flies. Such tests involve, however, considerable manipulation and observation of predators and are therefore not suitable for routine measurements of predator evasion. Here we describe a simple quality control method with aspirators to measure agility in medflies and show that this parameter is related to the capacity of flies to evade predators. Although further standardization of the test is necessary to allow more accurate inter-strain comparisons, results confirm the relevance of measuring predator evasion in mass-reared medfly strains. Besides being a measure of this sterile male quality parameter, the described method could be used for the systematic selection of strains with a higher capacity for predator evasion. (author) [Spanish] Insectos machos esteriles criados en forma masiva para ser liberados en programas que utilizan la tecnica del insecto esteril (TIE), tienen que tener la capacidad de sobrevivir en el campo el tiempo necesario para poder madurar sexualmente y competir efectivamente con los machos silvestres por hembras silvestres. Un problema frecuentemente reportado por dichos programas de la mosca del Mediterraneo, Ceratitis capitata (Wiedemann), es que el numero de machos esteriles de laboratorio liberados en el campo, decrecen rapidamente por

  14. The Sterile Insect Technique and the Mediterranean Fruit Fly (Diptera: Tephritidae): Assessing the Utility of Aromatherapy in a Hawaiian Coffee Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sterile Insect Technique (SIT) is widely used in integrated programs against tephritid fruit fly pests, particularly the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Unfortunately, the mass-rearing procedures inherent to the SIT often lead to a reduction in the mating abilit...

  15. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. PMID:26701614

  16. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region.

    PubMed

    Vargas, Roger I; Piñero, Jaime C; Leblanc, Luc

    2015-01-01

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186

  17. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    PubMed Central

    Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc

    2015-01-01

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186

  18. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region.

    PubMed

    Vargas, Roger I; Piñero, Jaime C; Leblanc, Luc

    2015-04-03

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas.

  19. Spatial dynamics of two oriental fruit fly (Diptera: Tephritidae) parasitoids, Fopius arisanus and Diachasmimorpha longicaudata (Hymenoptera: Braconidae), in a Guava orchard in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven

    2013-10-01

    We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field. PMID:24073692

  20. Spatial dynamics of two oriental fruit fly (Diptera: Tephritidae) parasitoids, Fopius arisanus and Diachasmimorpha longicaudata (Hymenoptera: Braconidae), in a Guava orchard in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven

    2013-10-01

    We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.

  1. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae)

    PubMed Central

    2010-01-01

    Background Quantitative real-time reverse transcriptase PCR (RT-qPCR) has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body) of the oriental fruit fly, Bactrocera dorsalis (Hendel). Results Two different programs, geNorm and Normfinder, were used to analyze the data. According to geNorm, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by Normfinder are quite the same as the results with geNorm; α-TUB is always one of the most stable genes in each sample validated by the two programs. Conclusions In this study, we validated the suitable reference genes for gene expression profiling in different tissues of B. dorsalis. Moreover, appropriate reference genes were selected out for gene expression profiling of the

  2. Gas-exchange patterns of Mediterranean fruit fly Pupae (Diptera: Tephritidae): A tool to forecast developmental stage

    SciTech Connect

    Nestel, D.; Nemny-Lavy, E.; Alchanatis, V.

    2007-03-15

    The pattern of gas-exchange (CO{sub 2} emission) was investigated for developing Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) pupae incubated at different temperatures. This study was undertaken to explore the usefulness of gas-exchange systems in the determination of physiological age in developing pupae that are mass produced for sterile insect technique projects. The rate of CO{sub 2} emission was measured in a closed flow-through system connected to commercial infrared gas analysis equipment. Metabolic activity (rate of CO{sub 2} emission) was related to pupal eye-color, which is the current technique used to determine physiological age. Eye-color was characterized digitally with 3 variables (Hue, Saturation and Intensity), and color separated by discriminant analysis. The rate of CO{sub 2} emission throughout pupal development followed a U-shape, with high levels of emission during pupariation, pupal transformation and final pharate adult stages. Temperature affected the development time of pupae, but not the basic CO{sub 2} emission patterns during development. In all temperatures, rates of CO{sub 2} emission 1 and 2 d before adult emergence were very similar. After mid larval-adult transition (e.g., phanerocephalic pupa), digital eye-color was significantly correlated with CO{sub 2} emission. Results support the suggestion that gas-exchange should be explored further as a system to determine pupal physiological age in mass production of fruit flies. (author) [Spanish] En el presente estudio se investigaron los patrones de intercambio gaseoso (emision de CO{sub 2}) en pupas de la mosca de las frutas del Mediterraneo (Ceratitis capitata Wiedemann) incubadas a diferentes temperaturas. El estudio fue realizado con la finalidad de explorar la utilizacion de sistemas de intercambio gaseoso en la determinacion de la edad fisiologica de pupas durante su produccion masiva en proyectos de mosca esteril. La proporcion de emision de CO{sub 2} fue

  3. Sexual performance of mass reared and wild Mediterranean fruit flies (Diptera: Tephritidae) from various origins of the Madeira Islands

    SciTech Connect

    Pereira, R.; Silva, N.; Quintal, C.; Abreu, R.; Andrade, J.; Dantas, L.

    2007-03-15

    The success of Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) control programs integrating the sterile insect technique (SIT) is based on the capacity of released the sterile males to compete in the field for mates. The Islands of Madeira are composed of 2 populated islands (Madeira and Porto Santo) where the medfly is present. To evaluate the compatibility and sexual performance of sterile flies we conducted a series of field cage tests. At same time, the process of laboratory domestication was evaluated. 3 wild populations, one semi-wild strain, and 1 mass reared strain were evaluated: the wild populations of (1) Madeira Island (north coast), (2) Madeira Island (south coast), and (3) Porto Santo Island; (4) the semi-wild population after 7 to 10 generations of domestication in the laboratory (respectively, for first and second experiment); and (5) the genetic sexing strain in use at Madeira medfly facility (VIENNA 7mix2000). Field cage experiments showed that populations of all origins are mostly compatible. There were no significant differences among wild populations in sexual competitiveness. Semi-wild and mass-reared males performed significantly poorer in both experiments than wild males in achieving matings with wild females. The study indicates that there is no significant isolation among strains tested, although mating performance is reduced in mass-reared and semi-wild flies after 7 to 10 generations in the laboratory. (author) [Spanish] El exito de los programas de control de la mosca mediterranea de la fruta (Ceratitis capitata (Wiedemann) que integran la tecnica del insecto esteril (TIE) esta basado en la capacidad de machos esteriles para competir en el campo por sus parejas. Las Islas de Madeira consisten de 2 islas pobladas (Madeira y Porto Santo) donde la mosca mediterranea de la fruta esta presente. Para evaluar la compatibilidad y el funcionamiento sexual de moscas esteriles nosotros realizamos una serie de pruebas de jaula en el

  4. Assessment of Navel oranges, Clementine tangerines and Rutaceous fruits as hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Export of Citrus spp., widely cultivated throughout the tropics and subtropics, may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. Two tephritid fruit fly species whose geographic ranges have...

  5. Weathering trials of Amulet cue-lure and Amulet methyl eugenol "attract-and-kill" stations with male melon flies and oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Mackey, Bruce; Bull, Richard

    2005-10-01

    Amulet C-L (cue-lure) and Amulet ME (methyl eugenol) molded paper fiber "attract-and-kill" dispensers containing fipronil were tested under Hawaiian weather conditions against Bactrocera cucurbitae (Coquillett) (melon fly) and Bactrocera dorsalis (Hendel) (oriental fruit fly), respectively. In paired tests (fresh versus weathered), C-L dispensers were effective for at least 77 d, whereas ME dispensers were effective for at least 21 d. Thus, C-L dispensers exceeded, whereas ME dispensers did not meet the label interval replacement recommendation of 60 d. Addition of 4 ml of ME to 56-d-old ME dispensers restored attraction and kill for an additional 21 d. This result suggested the fipronil added at manufacture was still effective. By enclosing and weathering ME dispensers inside small plastic bucket traps, longevity of ME dispensers was extended up to 56 d. Fipronil ME and C-L dispensers also were compared, inside bucket traps, to other toxicants: spinosad, naled, DDVP, malathion, and permethrin. Against B. dorsalis, fipronil ME dispensers compared favorably only up to 3 wk. Against B. cucurbitae, fipronil C-L dispensers compared favorably for at least 15 wk. Our results suggest that fipronil C-L dispensers can potentially be used in Hawaii; however, fipronil ME dispensers need to be modified or protected from the effects of weathering to extend longevity and meet label specifications. Nonetheless, Amulet C-L and ME dispensers are novel prepackaged formulations containing C-L or ME and fipronil that are more convenient and safer to handle than current liquid insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii. PMID:16334323

  6. Longevity of multiple species of tephritid (Diptera) fruit fly parasitoids (Hymenoptera: Braconidae: Opiinae) provided exotic and sympatric-fruit based diets.

    PubMed

    Stuhl, Charles; Cicero, Lizette; Sivinski, John; Teal, Peter; Lapointe, Stephen; Paranhos, Beatriz Jordão; Aluja, Martín

    2011-11-01

    While adult parasitic Hymenoptera in general feed on floral and extrafloral nectars, hemipteran-honeydews and fluids from punctured hosts, Diachasmimorpha longicaudata (Ashmead), an Old World opiine braconid introduced to tropical/subtropical America for the biological control of Anastrepha spp. (Tephritidae), can survive on fruit juices as they seep from injured fruit. An ability to exploit fruit juice would allow such a parasitoid to efficiently forage for hosts and food sources simultaneously. Two New World opiines, Doryctobracon areolatus (Szepligeti) and Utetes anastrephae (Viereck), are also prominent Anastrepha parasitoids and are roughly sympatric. All three species were provided with: (1) pulp and juice diets derived from a highly domesticated Old World fruit (orange, Citrus sinensis L.) that is only recently sympatric with the Mexican flies and parasitoids and so offered little opportunity for the evolution of feeding-adaptations and (2) a less-domesticated New World fruit (guava, Psidium guajava L.), sympatric over evolutionary time with D. areolatus and U. anastrephae. Both sexes of D. longicaudata died when provided guava pulp or juice at a rate similar to a water-only control. D. areolatus and U. anastrephae, presumably adapted to the nutrient/chemical constituents of guava, also died at a similar rate. Survival of all three species on orange pulp and juice was greater than on water, and often equaled that obtained on a honey and water solution. In confirmatory experiments in Mexico, D. areolatus and U. anastrephae, as well as other tephritid parasitoids Doryctobracon crawfordi (Viereck) and Opius hirtus (Fisher), all died at a significantly higher rates when provided guava in comparison to a honey and water diet. Such a result is likely due to guavas being repellent, innutritious or toxic. D. longicaudata clearly consumed guava juice tagged with a colored dye. Dilutions of orange and guava juice resulted in shorter lifespans than dilutions of orange

  7. Estimating Orientation of Flying Fruit Flies.

    PubMed

    Cheng, Xi En; Wang, Shuo Hong; Qian, Zhi-Ming; Chen, Yan Qiu

    2015-01-01

    The recently growing interest in studying flight behaviours of fruit flies, Drosophila melanogaster, has highlighted the need for developing tools that acquire quantitative motion data. Despite recent advance of video tracking systems, acquiring a flying fly's orientation remains a challenge for these tools. In this paper, we present a novel method for estimating individual flying fly's orientation using image cues. Thanks to the line reconstruction algorithm in computer vision field, this work can thereby focus on the practical detail of implementation and evaluation of the orientation estimation algorithm. The orientation estimation algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness and accuracy of the proposed algorithm by running experiments both on simulation data and on real-world data. This work complements methods for studying the fruit fly's flight behaviours in a three-dimensional environment.

  8. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications.

    PubMed

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements. PMID:27392643

  9. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications

    NASA Astrophysics Data System (ADS)

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.

  10. Ammonium carbonate loss rates from lures differentially affect trap captures of Rhagoletis indifferens (Diptera: Tephritidae) and non-target flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a pest of cherry (Prunus spp.) in western North America that can be monitored using traps baited with ammonia. However, ammonia-based attractants also attract non-target Diptera that clutter traps. Here, the hypothe...

  11. Breakfast of champions or kiss of death? Survival and sexual performance of protein-fed, sterile Mediterranean fruit flies (Diptera: Tephritidae)

    SciTech Connect

    Yuval, B.; Maor, M.; Levy, K.; Kaspi, R.; Taylor, P.; Shelly, T.

    2007-03-15

    The sterile insect technique (SIT) is increasingly being used around the world to control Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the Mediterranean fruit fly as part of an area-wide integrated approach. One option that may improve the effectiveness of the SIT, by increasing the sexual competitiveness of released sterile males, consists of feeding males protein during the post-teneral stage, a diet that increases sexual performance of wild males. We examine the effects of diet on the successive hurdles males must overcome in order to inseminate females, i.e., joining leks, copulating females, having their sperm stored and inhibition of female remating. In addition, we address the effects of diet on post-release foraging success, longevity, and the ability to withstand starvation. While protein feeding universally increases the sexual success of wild males, its effect on sterile males varies with strain, experimental settings, and environmental conditions. In some cases, treatments that resulted in the best sexual performance were significantly associated with increased vulnerability to starvation. However, no particular diet affected the ability of sterile males to find nutrients in the field when these where available. We suggest it may be better to release relatively short-lived flies that are highly competitive, rather than long-lived, sexually ineffective ones. (author) [Spanish] El uso de la tecnica de insecto esteril (TIE) esta aumentando alrededor del mundo para el control de Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), la mosca mediterranea de la fruta como parte de un enfoque integrado por toda el area. Una opcion que puede mejorar la eficiencia de TIE, por medio del aumento de la capacidad de los machos esteriles liberados para competir, consiste en la alimentacion de los machos con proteina durante la etapa de pos-teneral, una dieta que aumenta el desempeno sexual de los machos naturales. Nosotros examinamos los efectos de la

  12. Evaluation of Quality Production Parameters and Mating Behavior of Novel Genetic Sexing Strains of the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae).

    PubMed

    Rempoulakis, Polychronis; Taret, Gustavo; Haq, Ihsan Ul; Wornayporn, Viwat; Ahmad, Sohel; Sto Tomas, Ulysses; Dammalage, Thilakasiri; Gembinsky, Keke; Franz, Gerald; Cáceres, Carlos; Vreysen, Marc J B

    2016-01-01

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8-1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8-1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8-1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8-1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were equally

  13. Evaluation of Quality Production Parameters and Mating Behavior of Novel Genetic Sexing Strains of the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae)

    PubMed Central

    Haq, Ihsan ul; Wornayporn, Viwat; Ahmad, Sohel; Sto Tomas, Ulysses; Dammalage, Thilakasiri; Gembinsky, Keke; Franz, Gerald; Cáceres, Carlos; Vreysen, Marc J. B.

    2016-01-01

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8–1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8–1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8–1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8–1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were

  14. Evaluation of Quality Production Parameters and Mating Behavior of Novel Genetic Sexing Strains of the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae).

    PubMed

    Rempoulakis, Polychronis; Taret, Gustavo; Haq, Ihsan Ul; Wornayporn, Viwat; Ahmad, Sohel; Sto Tomas, Ulysses; Dammalage, Thilakasiri; Gembinsky, Keke; Franz, Gerald; Cáceres, Carlos; Vreysen, Marc J B

    2016-01-01

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8-1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8-1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8-1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8-1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were equally

  15. First record of the velvet ants (Hymenoptera: Mutillidae) reared from puparia of the ber fruit fly Carpomya vesuviana Costa (Diptera: Tephritidae) in Iran.

    PubMed

    Amini, Alieh; Lelej, Arkady S; Sadeghi, Hussein; Karimi, Javad

    2014-01-01

    Two species of mutillids, Smicromyrme (Astomyrme) nikolskajae Lelej, 1985 and S. (Eremotilla) tekensis Skorikov, 1935, reared from puparia of ber fruit fly, Carpomya vesuviana Costa, in South Khorasan, Iran are recorded. Both mutillids are newly recorded from Iran. An overview of eight species of mutillids associated with six species of flies is given in the appendix. 

  16. Recent progress in a classical biological control program for olive fruit fly in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  17. Simulated field applications of insecticide soil drenches for control of Tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key component in tephritid fruit fly (Diptera: Tephritidae) area-wide IPM programs has been application of insecticidal soil drenches under the drip line of host trees where fruit flies have been detected and as a regulatory treatment in the certification process for movement of nursery stock outs...

  18. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family ...

  19. Alcohol dehydrogenase activities and ethanol tolerance in Anastrepha (Diptera, Tephritidae) fruit-fly species and their hybrids

    PubMed Central

    2009-01-01

    The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits. PMID:21637665

  20. [Fruit flies (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae) associated to host plants in the southern region of Bahia State].

    PubMed

    Bittencourt, M A L; da Silva, A C M; Silva, V E S; Bomfim, Z V; Guimarães, J A; de Souza Filho, M F; Araujo, E L

    2011-01-01

    The association among Anastrepha species, braconid parasitoids and host fruits in southern Bahia is recorded. Doryctobracon areolatus (Szépligeti) was associated with A. serpentina (Wied.) in Pouteria caimito, A. bahiensis Lima in Helicostylis tomentosa, A. sororcula Zucchi in Eugenia uniflora, and A. obliqua (Macquart) in Spondias purpurea. Anatrepha obliqua was unique in fruits of Averrhoa carambola, but associated with D. areolatus, Asobara anastrephae (Muesebeck) and Utetes anastrephae (Viereck). In Achras sapota, A. serpentina was associated with A. anastrephae and D. areolatus, while in Psidium guajava, A. fraterculus (Wied.) and A. sororcula were associated with D. areolatus and U. anastrephae.

  1. Natural Parasitism in Fruit Fly (Diptera: Tephritidae) Populations in Disturbed Areas Adjacent to Commercial Mango Orchards in Chiapas and Veracruz, Mexico.

    PubMed

    Montoya, Pablo; Ayala, Amanda; López, Patricia; Cancino, Jorge; Cabrera, Héctor; Cruz, Jassmin; Martinez, Ana Mabel; Figueroa, Isaac; Liedo, Pablo

    2016-04-01

    To determine the natural parasitism in fruit fly populations in disturbed areas adjacent to commercial mango orchards in the states of Chiapas and Veracruz, Mexico, we recorded over one year the fruit fly-host associations, fly infestation, and parasitism rates in backyard orchards and patches of native vegetation. We also investigated the relationship between fruit size, level of larval infestation, and percent of parasitism, and attempted to determine the presence of superparasitism. The most recurrent species in trap catches was Anastrepha obliqua (Macquart), followed by Anastrepha ludens (Loew), in both study zones. The fruit infestation rates were higher in Chiapas than in Veracruz, with A. obliqua again being the most conspicuous species emerging from collected fruits. The diversity of parasitoids species attacking fruit fly larvae was greater in Chiapas, with a predominance of Doryctobracon areolatus (Szépligeti) in both sites, although the exotic Diachasmimorpha longicaudata (Ashmead) was well established in Chiapas. Fruit size was positively correlated with the number of larvae per fruit, but this relationship was not observed in the level of parasitism. The number of oviposition scars was not related to the number of immature parasitoids inside the pupa of D. areolatus emerging from plum fruits. Mass releases of Di. longicaudata seem not to affect the presence or prevalence of the native species. Our findings open new research scenarios on the role and impact of native parasitoid species attacking Anastrepha flies that can contribute to the development of sound strategies for using these species in projects for augmentative biological control. PMID:26850034

  2. Metalimnobia crane flies (Diptera: Limoniidae) from Korea.

    PubMed

    Podenas, Sigitas; Byun, Hye-Woo

    2016-01-01

    Korean species of the crane fly genus Metalimnobia Matsumura, 1911 (Diptera: Limoniidae), are taxonomically revised. Metalimnobia (Metalimnobia) channpayna new species, is described and figured, M. (M.) bifasciata (Schrank, 1781), M. (M.) quadrinotata (Meigen, 1818) and M. (M.) zetterstedti (Tjeder, 1968) are listed for the first time in Korea, new information for previously known species, M. (M.) quadrimaculata (Linnaeus, 1760) is added. Identification key for all Korean Metalimnobia species is given. Wings, male and female terminalia are illustrated for all species. PMID:27395675

  3. Trapping African fig fly (Diptera: Drosophilidae) with combinations of vinegar and wine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African fig fly, Zaprionus indianus Gupta (Diptera: Drosophilidae), is an invasive fruit pest that has spread rapidly through much of the eastern United States. Tests were conducted in southern Florida that recorded the response of Z. indianus to baits that included Merlot wine, rice vinegar, et...

  4. Wine and vinegar-based attractants for the African fig fly (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African fig fly (AFF), Zaprionus indianus Gupta (Diptera: Drosophilidae), is an invasive fruit pest that has spread rapidly through much of the eastern United States after first being detected in Florida in 2005. This drosophilid is a primary pest of figs in Brazil, so there were initial concern...

  5. Genetic structure and colonization history of the fruit fly Bactrocera tau (Diptera: Tephritidae) in China and Southeast Asia.

    PubMed

    Shi, W; Kerdelhué, C; Ye, H

    2014-06-01

    Bactrocera tau (Walker), a major invasive pest worldwide, was first described in Fujian (China) in 1849 and has dispersed to tropical and subtropical Asia and the South Pacific region. Few data are available on its colonization history and expansion processes. This pilot study attempted to reconstruct the colonization history and pathways of this pest in China and neighboring Southeast Asian countries based on mitochondrial DNA. Results of the study showed six genetic groups corresponding to geographical characteristics, although the pattern was relatively weak. Homogeneous genetic patterns were observed within southern and central China, and northern Vietnam. Continuous colonization from the coast of southern China to inland regions of China and northern Vietnam was suggested. Strong genetic structure was observed in western China, Thailand, and Laos. The isolation of four of the six groups was most probably attributable to major topographical barriers of western China. Yunnan acted as a contact zone of B. tau in China and neighboring Southeast Asia. The absence of isolation by distance and the overall low phylogeographic structure of B. tau suggested that long distance dispersal events and human activities could play a major role in the colonization and expansion patterns of B. tau. By analyzing the genetic diversity, gene flow, haplotype phylogeny, and demographic history of 23 fly populations, we hypothesized that B. tau could have been introduced long ago in southern China, from which it further expanded or that southern China could correspond to the native range of this species.

  6. Managing the Fruit Fly Experiment.

    ERIC Educational Resources Information Center

    Jeszenszky, Arleen W.

    1997-01-01

    Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)

  7. Estimating Orientation of Flying Fruit Flies

    PubMed Central

    Cheng, Xi En; Wang, Shuo Hong; Qian, Zhi-Ming; Chen, Yan Qiu

    2015-01-01

    The recently growing interest in studying flight behaviours of fruit flies, Drosophila melanogaster, has highlighted the need for developing tools that acquire quantitative motion data. Despite recent advance of video tracking systems, acquiring a flying fly’s orientation remains a challenge for these tools. In this paper, we present a novel method for estimating individual flying fly’s orientation using image cues. Thanks to the line reconstruction algorithm in computer vision field, this work can thereby focus on the practical detail of implementation and evaluation of the orientation estimation algorithm. The orientation estimation algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness and accuracy of the proposed algorithm by running experiments both on simulation data and on real-world data. This work complements methods for studying the fruit fly’s flight behaviours in a three-dimensional environment. PMID:26173128

  8. Forest fragments as barriers to fruit fly dispersal: Anastrepha (Diptera: Tephritidae) populations in orchards and adjacent forest fragments in Puerto Rico.

    PubMed

    Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo

    2013-04-01

    McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.

  9. Regional suppression of Bactrocera fruit flies (Diptera:Tephritidae) in the Pacific through biological control and prospects for future introductions into other areas of the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactrocera fruit fly species are important economically throughout the Pacific. The USDA, ARS, U.S Pacific Basin Agricultural Research Center has been a world wide leader in promoting biological control of Bactrocera spp that includes classical, augmentative, conservation and IPM approaches. In Hawa...

  10. Melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), infestation in host fruits in the Southwestern Islands of Japan before the initiation of Island-wide population suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern...

  11. Additional tests on the efficacy of ginger root oil in enhacing the mating competitiveness of sterile males of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that exposure to the aroma of ginger root oil (Zingiber officinale Roscoe; termed GRO hereafter) increases the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). This result suggests that pre-release exposure of sterile ...

  12. Evaluation of Cuelure and Methyl Eugenol solid lure and insecticide dispensers for fruit fly (Diptera: Tephritidae) monitoring and control in Tahiti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance of solid male lure (cuelure (C-L)/raspberry ketone (RK) - against Bactrocera tyroni (Froggatt), and methyl eugenol (ME) - against oriental fruit fly, B. dorsalis (Hendel) and insecticide formulations, were evaluated in Tahiti Island (French Polynesia), as alternatives to current monitori...

  13. Rhipidia crane flies (Diptera: Limoniidae) from Korea.

    PubMed

    Podenas, Sigitas; Byun, Hye-Woo; Kim, Sam-Kyu

    2016-01-01

    Korean species of the crane fly genus Rhipidia Meigen, 1818 (Diptera: Limoniidae), are taxonomically revised. Rhipidia (Rhipidia) serena, new species, is described and figured. Rhipidia (R.) longa Zhang, Li, Yang, 2014, R. (R.) maculata Meigen, 1818 and R. (R.) sejuga Zhang, Li, Yang, 2014 are recorded for the first time in Korea. Previously known species, Rhipidia (R.) septentrionis Alexander, 1913 is redescribed and illustrated. Identification key for all Korean Rhipidia species is given. Most antennae, wings, male and female terminalia of all species are illustrated for the first time. PMID:27395731

  14. Fruit Flies Help Human Sleep Research

    MedlinePlus

    ... Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 Table of Contents ... Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough to imagine a ...

  15. Diversity and seasonality of fruit flies (Diptera: Tephritidae and Lonchaeidae) and their parasitoids (Hymenoptera: Braconidae and Figitidae) in orchards of guava, loquat and peach.

    PubMed

    Souza-Filho, M F; Raga, A; Azevedo-Filho, J A; Strikis, P C; Guimarães, J A; Zucchi, R A

    2009-02-01

    This work was carried out in orchards of guava progenies, and loquat and peach cultivars, in Monte Alegre do Sul, SP, Brazil, in 2002 and 2003. Guavas and loquats were bagged and unbagged bi-weekly and weekly, respectively, for assessment of the infestation period. Peach was only bagged weekly. The assays started when the fruits were at the beginning of development, but still green. Ripe fruits were taken to the laboratory and placed individually into plastic cups. McPhail plastic traps containing torula yeast were hung from January 2002 to January 2004 to assess the fruit fly population in each orchard, but only the Ceratitis capitata population is here discussed. Five tephritid species were reared from the fruits: Anastrepha bistrigata Bezzi, A. fraterculus (Wiedemann), A. obliqua (Macquart), A. sororcula Zucchi, and C. capitata, in addition to six lonchaeid species: Neosilba certa (Walker), N. glaberrima (Wiedemann), N. pendula (Bezzi), N. zadolicha McAlpine and Steyskal, Neosilba sp. 4, and Neosilba sp. 10 (both species are in the process of being described by P. C. Strikis), as well as some unidentified Neosilba species. Ten parasitoid species were obtained from fruit fly puparia, of which five were braconids: Asobara anastrephae (Muesebeck), Doryctobracon areolatus (Szépligeti), D. brasiliensis (Szépligeti), Opius bellus Gahan, and Utetes anastrephae (Viereck), and five figitids: Aganaspis pelleranoi (Brèthes), Dicerataspis grenadensis Ashmead, Lopheucoila anastrephae (Rhower), Leptopilina boulardi (Barbotin, Carlton and Kelner-Pillaut), and Trybliographa infuscata Diaz, Gallardo and Uchôa. Ceratitis capitata showed a seasonal behavior with population density peaking at the second semester of each year. Anastrepha and Neosilba species remained in the orchards throughout both years.

  16. Radiation-induced changes in melanization and phenoloxidase in Caribbean fruit fly larvae (diptera:tephritidae) as the basis for a simple test of irradiation

    SciTech Connect

    Nation, J.L.; Milne, K.; Smittle, B.J.

    1995-03-01

    First instars of the Caribbean fruit fly, Anastrepha suspensa (Loew), were irradiated with 0, 5, 10, 20, 50, 75, 100, and 150 Gy doses from a Cs-137 source, and observed for whole body melanization as late third instars. Control larvae rapidly melanized, whereas larvae irradiated at {ge}20 Gy failed to show typical melanization after freezing and thawing. Assays of phenoloxidase in control and irradiated larvae showed greatly decreased enzyme activity at {ge}20 Gy and substantial reduction at lower doses. Larvae were also irradiated on the 1st d of each instar, and phenoloxidase activity was determined when they became late third instars. Larvae irradiated on the 1st d of the first instar and on 1st d of the second instar has {approx}90% or greater reduction in phenoloxidase activity as late third instars. Larvae irradiated on the 1st d of the instar had {approx}50% reduction in phenoloxidase activity at the time they became late third instars leaving the food to pupate. A simple spot test for phenoloxidase was developed that produced a red color with a crushed control larvae and no color with a larva irradiated at {ge}25 Gy. The radiation induced changes in melanization and phenoloxidase activity, and a simple spot test may serve as tests for irradiation treatment of Caribbean fruit fly larvae. 10 refs., 2 figs., 2 tabs.

  17. Effects of a fruit and host-derived compound on orientation and oviposition in Utetes anastrephae, a little studied opiine braconid (Hymenoptera) parasitoid of Anastrepha spp. fruit flies (Tephritidae:Diptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Augmentative biological control of tephritid fruit flies would benefit from: 1) synthetic attractants to monitor the survival and dispersal of released parasitoids and 2) synthetic oviposition stimulants to more economical to produce parasitoid species that are now prohibitively costly to mass-rear....

  18. Regional Suppression of Bactrocera Fruit Flies (Diptera: Tephritidae) in the Pacific through Biological Control and Prospects for Future Introductions into Other Areas of the World

    PubMed Central

    Vargas, Roger I.; Leblanc, Luc; Harris, Ernest J.; Manoukis, Nicholas C.

    2012-01-01

    Bactrocera fruit fly species are economically important throughout the Pacific. The USDA, ARS U.S. Pacific Basin Agricultural Research Center has been a world leader in promoting biological control of Bactrocera spp. that includes classical, augmentative, conservation and IPM approaches. In Hawaii, establishment of Bactrocera cucurbitae (Coquillett) in 1895 resulted in the introduction of the most successful parasitoid, Psyttalia fletcheri (Silvestri); similarly, establishment of Bactrocera dorsalis (Hendel) in 1945 resulted in the introduction of 32 natural enemies of which Fopius arisanus (Sonan), Diachasmimorpha longicaudata (Ashmead) and Fopius vandenboschi (Fullaway) were most successful. Hawaii has also been a source of parasitoids for fruit fly control throughout the Pacific region including Australia, Pacific Island Nations, Central and South America, not only for Bactrocera spp. but also for Ceratitis and Anastrepha spp. Most recently, in 2002, F. arisanus was introduced into French Polynesia where B. dorsalis had invaded in 1996. Establishment of D. longicaudata into the new world has been important to augmentative biological control releases against Anastrepha spp. With the rapid expansion of airline travel and global trade there has been an alarming spread of Bactrocera spp. into new areas of the world (i.e., South America and Africa). Results of studies in Hawaii and French Polynesia, support parasitoid introductions into South America and Africa, where B. carambolae and B. invadens, respectively, have become established. In addition, P. fletcheri is a candidate for biological control of B. cucurbitae in Africa. We review past and more recent successes against Bactrocera spp. and related tephritids, and outline simple rearing and release methods to facilitate this goal. PMID:26466626

  19. [Susceptibility of six Arabic coffee cultivars to fruit flies (Diptera: Tephritoidea) under shaded and unshaded organic management in Valença, State of Rio de Janeiro, Brazil].

    PubMed

    Aguiar-Menezes, Elen L; Souza, Silvana A S; Santos, Carlos M A; Resende, André L S; Strikis, Pedro C; Costa, Janaína R; Ricci, Marta S F

    2007-01-01

    The infestation indices by fruit flies were determined for six cultivars of Coffea arabica L. in shaded and unshaded systems under organic management. The experiment was set in a completely randomized design with a split-split-plot arrangement and four replicates. A 250g-sample of maturing fruits per plot was harvested in May 2005. The cultivars Icatu Amarelo and Catucaí Amarelo were the least susceptible to attack by tephritids in both systems. As for lonchaeids, Oeiras, Catucaí Amarelo and Catuaí Vermelho were the least susceptible cultivars in the shaded system, and there was no difference among the cultivars in the unshaded system. The following tephritid species were obtained: Ceratitis capitata (Wiedemann), Anastrepha fraterculus (Wiedemann) and A. sororcula Zucchi (Tephritidae). Lonchaeids were represented by Neosilba bifida Strikis & Prado, N. certa (Walker), N. glaberrima (Wiedemann), N. pendula (Bezzi), N. pseudopendula (Korytkowski and Ojeda), Dasiops rugifrons Hennig, Neosilba n.sp.10 and Neosilba n.sp.14.

  20. Male-specific Y-linked transgene markers to enhance biologically-based control of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae)

    PubMed Central

    2014-01-01

    Background Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific, have particular uses such as identifying wild females that have mated with released males. For tephritid fruit flies such as the Mexican fruit fly, Anastrepha ludens, polyubiquitin-regulated fluorescent protein body markers allow transgenic fly identification, and fluorescent protein genes regulated by the spermatocyte-specific β2-tubulin promoter effectively mark sperm. For sterile male release programs, both marking systems can be made male-specific by linkage to the Y chromosome. Results An A. ludens wild type strain was genetically transformed with a piggyBac vector, pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3}, having the polyubiquitin-regulated EGFP body marker, and the β2-tubulin-regulated DsRed.T3 sperm-specific marker. Autosomal insertion lines effectively expressed both markers, but a single Y-linked insertion (YEGFP strain) expressed only PUbnlsEGFP. This insertion was remobilized by transposase helper injection, which resulted in three new autosomal insertion lines that expressed both markers. This indicated that the original Y-linked Asβ2tub-DsRed.T3 marker was functional, but specifically suppressed on the Y chromosome. The PUbnlsEGFP marker remained effective however, and the YEGFP strain was used to create a sexing strain by translocating the wild type allele of the black pupae (bp+) gene onto the Y, which was then introduced into the bp- mutant strain. This allows the mechanical separation of mutant female black pupae from male brown pupae, that can be identified as adults by EGFP fluorescence. Conclusions A Y-linked insertion of the pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3} transformation vector in A. ludens resulted in male-specific expression of the EGFP

  1. Virulence of selected entomopathogenic fungi against the olive fruit fly and their potential for biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most serious pest of cultivated olives worldwide. Its recent invasion into North America, specifically California, has initiated renewed interest in management strategies for this pest. Research into classical biological control ha...

  2. Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), is an economically important pest that inhabits areas of South and Central America, Mexico and the Caribbean with occasional infestations in the southern United States. We examine intra-specific variation within Anastre...

  3. Behavioral responses, rate of mortality, and oviposition of western cherry fruit fly exposed to Malathion, Zeta-cypermethrin, and Spinetoram

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a pest of sweet and tart cherry, Prunus avium L. (L.) and P. cerasus L., respectively, in western North America. This fly is commonly controlled with spinosad bait sprays, but these sprays are ineffective against sp...

  4. Genetic identification of an unknown Rhagoletis fruit fly infesting Chinese crabapple (Malus spectabilis): implications for apple pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus s...

  5. How functional genomics will impact fruit fly pest control: the example of the Mediterranean fruit fly, Ceratitis capitata

    PubMed Central

    2014-01-01

    The highly invasive agricultural insect pest Ceratitis capitata (Diptera: Tephritidae) is the most thoroughly studied tephritid fruit fly at the genetic and molecular levels. It has become a model for the analysis of fruit fly invasions and for the development of area-wide integrated pest management (AW-IPM) programmes based on the environmentally-friendly Sterile Insect Technique (SIT). Extensive transcriptome resources and the recently released genome sequence are making it possible to unravel several aspects of the medfly reproductive biology and behaviour, opening new opportunities for comparative genomics and barcoding for species identification. New genes, promotors and regulatory sequences are becoming available for the development/improvement of highly competitive sexing strains, for the monitoring of sterile males released in the field and for determining the mating status of wild females. The tools developed in this species have been transferred to other tephritids that are also the subject of SIT programmes. PMID:25471105

  6. Fitness Cost Implications of PhiC31-Mediated Site-Specific Integrations in Target-Site Strains of the Mexican Fruit Fly, Anastrepha ludens (Diptera: Tephritidae)

    PubMed Central

    Meza, José S.; Díaz-Fleischer, Francisco; Sánchez-Velásquez, Lázaro R.; Zepeda-Cisneros, Cristina Silvia; Handler, Alfred M.; Schetelig, Marc F.

    2014-01-01

    Site-specific recombination technologies are powerful new tools for the manipulation of genomic DNA in insects that can improve transgenesis strategies such as targeting transgene insertions, allowing transgene cassette exchange and DNA mobilization for transgene stabilization. However, understanding the fitness cost implications of these manipulations for transgenic strain applications is critical. In this study independent piggyBac-mediated attP target-sites marked with DsRed were created in several genomic positions in the Mexican fruit fly, Anastrepha ludens. Two of these strains, one having an autosomal (attP_F7) and the other a Y-linked (attP_2-M6y) integration, exhibited fitness parameters (dynamic demography and sexual competitiveness) similar to wild type flies. These strains were thus selected for targeted insertion using, for the first time in mexfly, the phiC31-integrase recombination system to insert an additional EGFP-marked transgene to determine its effect on host strain fitness. Fitness tests showed that the integration event in the int_2-M6y recombinant strain had no significant effect, while the int_F7 recombinant strain exhibited significantly lower fitness relative to the original attP_F7 target-site host strain. These results indicate that while targeted transgene integrations can be achieved without an additional fitness cost, at some genomic positions insertion of additional DNA into a previously integrated transgene can have a significant negative effect. Thus, for targeted transgene insertions fitness costs must be evaluated both previous to and subsequent to new site-specific insertions in the target-site strain. PMID:25303238

  7. Improving mating performance of mass-reared sterile Mediterranean fruit flies (Diptera: Tephritidae) through changes in adult holding conditions: demography and mating competitiveness

    SciTech Connect

    Liedo, P.; Salgado, S.; Oropeza, A.; Toledo, J.

    2007-03-15

    Mass rearing conditions affect the mating behavior of Mediterranean fruit flies (medflies) Ceratitis capitata (Wiedemann). We evaluated the effect of slight changes in the adult holding conditions of adult flies maintained for egg production on their mating performance. Colonization was initiated from wild flies collected as larvae from infested coffee berries (Coffea arabica L.). When pupae were close to adult emergence, they were randomly divided into 3 groups and the emerging adults were reared under the following conditions: (1) Metapa System (MS, control), consisting of 70 x 45 x 15 cm aluminum frame, mesh covered cages, with a density of 2,200 flies per cage and a 1:1 initial sex ratio; (2) Insert System (IS), with the same type of cage, and the same fly density and sex ratio as in the MS treatment, but containing twelve Plexiglas pieces (23 x 8.5 cm) to provide additional horizontal surface areas inside the cage; and (3) Sex-ratio System (SS), same as IS, but in this case the initial male: female ratio was 4:1. Three d later, newly emerged females were introduced, so the ratio became 3:1 and on the 6th d another group of newly emerged females was added to provide a 2:1 final sex ratio, at which the final density reached 1,675 flies per cage. The eggs collected from each of the 3 treatments were reared independently following standard procedures and the adults were held under the same experimental conditions. This process was repeated for over 10 to 13 generations (1 year). The experiment was repeated 3 times in 3 consecutive years, starting each replicate with a new collection of wild flies. Life tables were constructed for each treatment at the parental, 3rd, 6th, and 9th generations. Standard quality control parameters (pupation at 24 h, pupal weight, adult emergence, and flight ability), were estimated for each treatment every third generation in the third year. For the last generation each year, mating competitiveness was evaluated in field cage tests

  8. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae)

    PubMed Central

    Chen, Li; Yang, Wen-Jia; Cong, Lin; Xu, Kang-Kang; Wang, Jin-Jun

    2013-01-01

    Chitin synthase (CHS), a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2) was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis. PMID:23965972

  9. Aromatherapy in the Mediterranean fruit fly (Diptera: Tephritidae): sterile males exposed to ginger root oil in prerelease storage boxes display increased mating competitiveness in field-cage trials.

    PubMed

    Shelly, Todd E; McInnis, Donald O; Pahio, Elaine; Edu, James

    2004-06-01

    Previous research showed that exposure to ginger root, Zingiber officinale Roscoe, oil increased the mating success of mass-reared, sterile males of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). This work, however, involved the exposure of small groups of males (n = 25) in small containers (volume 400 ml). Several sterile male release programs use plastic adult rearing containers (so-called PARC boxes; hereafter termed storage boxes; 0.48 by 0.60 by 0.33 m) to hold mature pupae and newly emerged adults before release (approximately = 36,000 flies per box). The objective of the current study was to determine whether the application of ginger root oil to individual storage boxes increases the mating competitiveness of sterile C. capitata males. Irradiated pupae were placed in storage boxes 2 d before adult emergence, and in the initial experiment (adult exposure) ginger root oil was applied 5 d later (i.e., 3 d after peak adult emergence) for 24 h at doses of 0.0625, 0.25, 0.5, 1.0, and 2.0 ml. In a second experiment (pupal-adult exposure), ginger root oil was applied to storage boxes immediately after pupal placement and left for 6 d (i.e., 4 d after peak adult emergence) at doses of 0.25 and 1.0 ml. Using field cages, we conducted mating trials in which ginger root oil-exposed (treated) or nonexposed (control) sterile males competed against wild-like males for copulations with wild-like females. After adult exposure, treated males had significantly higher mating success than control males for all doses of ginger root oil, except 2.0 ml. After pupal-adult exposure, treated males had a significantly higher mating success than control males for the 1.0-ml but not the 0.25-ml dose of ginger root oil. The results suggest that ginger root oil can be used in conjunction with prerelease, storage boxes to increase the effectiveness of sterile insect release programs. PMID:15279263

  10. Testing for Mutagens Using Fruit Flies.

    ERIC Educational Resources Information Center

    Liebl, Eric C.

    1998-01-01

    Describes a laboratory employed in undergraduate teaching that uses fruit flies to test student-selected compounds for their ability to cause mutations. Requires no prior experience with fruit flies, incorporates a student design component, and employs both rigorous controls and statistical analyses. (DDR)

  11. Heterangaeus Alexander, 1925 crane flies (Diptera: Pediciidae) of Korea.

    PubMed

    Podenas, Sigitas; Podeniene, Virginija; Byun, Hye-Woo

    2015-01-01

    The Korean crane fly species of the genus Heterangaeus Alexander, 1925 (Diptera: Pediciidae) is taxonomically revised. H. gloriosus gloriosus (Alexander, 1924) is redescribed. A new species Heterangaeus koreanus n. sp., which is the first species of Pediciidae from South Korea, is described and illustrated.

  12. Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa

    PubMed Central

    Tanga, Chrysantus M.; Manrakhan, Aruna; Daneel, John-Henry; Mohamed, Samira A.; Fathiya, Khamis; Ekesi, Sunday

    2015-01-01

    Abstract Comparative analysis of development and survivorship of two geographically divergent populations of the Natal fruit fly Ceratitis rosa Karsch designated as Ceratitis rosa R1 and Ceratitis rosa R2 from Kenya and South Africa were studied at seven constant temperatures (10, 15, 20, 25, 30, 33, 35 °C). Temperature range for development and survival of both populations was 15–35 °C. The developmental duration was found to significantly decrease with increasing temperature for Ceratitis rosa R1 and Ceratitis rosa R2 from both countries. Survivorship of all the immature stages of Ceratitis rosa R1 and Ceratitis rosa R2 from Kenya was highest over the range of 20–30 °C (87–95%) and lowest at 15 and 35 °C (61–76%). Survivorship of larvae of Ceratitis rosa R1 and Ceratitis rosa R2 from South Africa was lowest at 35 °C (22%) and 33 °C (0.33%), respectively. Results from temperature summation models showed that Ceratitis rosa R2 (egg, larva and pupa) from both countries were better adapted to low temperatures than R1, based on lower developmental threshold. Minimum larval temperature threshold for Kenyan populations were 11.27 °C and 6.34 °C (R1 and R2, respectively) compared to 8.99 °C and 7.74 °C (R1 and R2, respectively) for the South African populations. Total degree-day (DD) accumulation for the Kenyan populations were estimated at 302.75 (Ceratitis rosa R1) and 413.53 (Ceratitis rosa R2) compared to 287.35 (Ceratitis rosa R1) and 344.3 (Ceratitis rosa R2) for the South African populations. These results demonstrate that Ceratitis rosa R1 and Ceratitis rosa R2 from both countries were physiologically distinct in their response to different temperature regimes and support the existence of two genetically distinct populations of Ceratitis rosa. It also suggests the need for taxonomic revision of Ceratitis rosa, however, additional information on morphological characterization of Ceratitis rosa R1 and Ceratitis rosa R2 is needed. PMID:26798273

  13. Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa.

    PubMed

    Tanga, Chrysantus M; Manrakhan, Aruna; Daneel, John-Henry; Mohamed, Samira A; Fathiya, Khamis; Ekesi, Sunday

    2015-01-01

    Comparative analysis of development and survivorship of two geographically divergent populations of the Natal fruit fly Ceratitis rosa Karsch designated as Ceratitis rosa R1 and Ceratitis rosa R2 from Kenya and South Africa were studied at seven constant temperatures (10, 15, 20, 25, 30, 33, 35 °C). Temperature range for development and survival of both populations was 15-35 °C. The developmental duration was found to significantly decrease with increasing temperature for Ceratitis rosa R1 and Ceratitis rosa R2 from both countries. Survivorship of all the immature stages of Ceratitis rosa R1 and Ceratitis rosa R2 from Kenya was highest over the range of 20-30 °C (87-95%) and lowest at 15 and 35 °C (61-76%). Survivorship of larvae of Ceratitis rosa R1 and Ceratitis rosa R2 from South Africa was lowest at 35 °C (22%) and 33 °C (0.33%), respectively. Results from temperature summation models showed that Ceratitis rosa R2 (egg, larva and pupa) from both countries were better adapted to low temperatures than R1, based on lower developmental threshold. Minimum larval temperature threshold for Kenyan populations were 11.27 °C and 6.34 °C (R1 and R2, respectively) compared to 8.99 °C and 7.74 °C (R1 and R2, respectively) for the South African populations. Total degree-day (DD) accumulation for the Kenyan populations were estimated at 302.75 (Ceratitis rosa R1) and 413.53 (Ceratitis rosa R2) compared to 287.35 (Ceratitis rosa R1) and 344.3 (Ceratitis rosa R2) for the South African populations. These results demonstrate that Ceratitis rosa R1 and Ceratitis rosa R2 from both countries were physiologically distinct in their response to different temperature regimes and support the existence of two genetically distinct populations of Ceratitis rosa. It also suggests the need for taxonomic revision of Ceratitis rosa, however, additional information on morphological characterization of Ceratitis rosa R1 and Ceratitis rosa R2 is needed. PMID:26798273

  14. Field trials of spinosad as a replacement for naled, DDVP, and malathion in methyl eugenol and cue-lure bucket traps to attract and kill male oriental fruit flies and melon flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Miller, Neil W; Stark, John D

    2003-12-01

    Spinosad was evaluated in Hawaii as a replacement for organophosphate insecticides (naled, dichlorvos [DDVP], and malathion) in methyl eugenol and cue-lure bucket traps to attract and kill oriental fruit fly, Bactrocera dorsalis Hendel, and melon fly, B. cucurbitae Coquillett, respectively. In the first and second methyl eugenol trials with B. dorsalis, naled was in the highest rated group for all evaluation periods (at 5, 10, 15, and 20 wk). Spinosad was equal to naled at 5 and 10 wk during both trials 1 and 2, and compared favorably with malathion during trial 2. During the first cue-lure trial with B. cucurbitae, naled and malathion were in the top rated group at 5, 10, 15, and 20 wk. Spinosad was equal to naled at 5 wk. During the second cue-lure trial, spinosad and naled were both in the top rated group at 10, 15, and 20 wk. Use of male lure traps with methyl eugenol or cue-lure had no effect on attraction of females into test areas. Our results suggest that spinosad, although not as persistent as naled or malathion, is safer to handle and a more environmentally friendly substitute for organophosphate insecticides in methyl eugenol and cue-lure traps for use in B. dorsalis and B. cucurbitae areawide integrated pest management programs in Hawaii. PMID:14977115

  15. Population dynamics, distribution, and species diversity of fruit flies on cucurbits in Kashmir Valley, India.

    PubMed

    Ganie, S A; Khan, Z H; Ahangar, R A; Bhat, H A; Hussain, Barkat

    2013-01-01

    Given the economic importance of cucurbits and the losses incurred by fruit fly infestation, the population dynamics of fruit flies in cucurbit crops and the influence of abiotic parameters, such as temperature, relative humidity, rainfall, and total sunshine hours per day on the fruit fly population were studied. The study was carried out at six locations; in district Srinagar the locations were Batmaloo, Shalimar, and Dal, while in district Budgam the locations were Chadoora, Narkara, and Bugam (Jammu and Kashmir, India). Various cucurbit crops, such as cucumber, bottle gourd, ridge gourd and bitter gourd, were selected for the study. With regard to locations, mean fruit fly population was highest (6.09, 4.55, 3.87, and 3.60 flies/trap/week) at Batamaloo and Chadoora (4.73, 3.93, 2.73, and 2.73 flies/trap/week) on cucumber, bottle gourd, ridge gourd, and bitter gourd, respectively. The population of fruit flies was significantly correlated with the minimum and maximum temperature. The maximum species diversity of fruit flies was 0.511, recorded in Chadoora. Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) was the most predominant species in both Srinagar and Budgam, followed by B. dorsalis (Hendel) and B. tau (Walker), while B. scutellaris (Bezzi) was found only in Chadoora. Results of the present investigation may be utilized in developing a sustainable pest management strategy in the agroecological system.

  16. Population dynamics, distribution, and species diversity of fruit flies on cucurbits in Kashmir Valley, India.

    PubMed

    Ganie, S A; Khan, Z H; Ahangar, R A; Bhat, H A; Hussain, Barkat

    2013-01-01

    Given the economic importance of cucurbits and the losses incurred by fruit fly infestation, the population dynamics of fruit flies in cucurbit crops and the influence of abiotic parameters, such as temperature, relative humidity, rainfall, and total sunshine hours per day on the fruit fly population were studied. The study was carried out at six locations; in district Srinagar the locations were Batmaloo, Shalimar, and Dal, while in district Budgam the locations were Chadoora, Narkara, and Bugam (Jammu and Kashmir, India). Various cucurbit crops, such as cucumber, bottle gourd, ridge gourd and bitter gourd, were selected for the study. With regard to locations, mean fruit fly population was highest (6.09, 4.55, 3.87, and 3.60 flies/trap/week) at Batamaloo and Chadoora (4.73, 3.93, 2.73, and 2.73 flies/trap/week) on cucumber, bottle gourd, ridge gourd, and bitter gourd, respectively. The population of fruit flies was significantly correlated with the minimum and maximum temperature. The maximum species diversity of fruit flies was 0.511, recorded in Chadoora. Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) was the most predominant species in both Srinagar and Budgam, followed by B. dorsalis (Hendel) and B. tau (Walker), while B. scutellaris (Bezzi) was found only in Chadoora. Results of the present investigation may be utilized in developing a sustainable pest management strategy in the agroecological system. PMID:23906383

  17. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2015-04-01

    Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue. PMID:26313195

  18. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2015-04-01

    Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue.

  19. Area-Wide Suppression of the Mediterranean Fruit Fly, Ceratitis capitata, and the Oriental Fruit Fly, Bactrocera dorsalis, in Kamuela, Hawaii

    PubMed Central

    Vargas, Roger I.; Piñero, Jaime C.; Mau, Ronald F. L.; Jang, Eric B.; Klungness, Lester M.; McInnis, Donald O.; Harris, Ernest B.; McQuate, Grant T.; Bautista, Renato C.; Wong, Lyle

    2010-01-01

    The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure® traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed. PMID:20883128

  20. Packing of Fruit Fly Parasitoids for Augmentative Releases

    PubMed Central

    Montoya, Pablo; Cancino, Jorge; Ruiz, Lía

    2012-01-01

    The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634

  1. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas was evaluated. Emergence traps were deployed 19 May-20 Oct 2009 (22 wk) and 27 May-18 Nov 2010 (25 wk). A t...

  2. Tephritid fruit fly transgenesis and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tephritid fruit flies are among the most serious agricultural pests in the world, owing in large part to those species having broad host ranges including hundreds of fruits and vegetables. They are the largest group of insects subject to population control by a biologically-based systems, most notab...

  3. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae).

    PubMed

    McQuate, Grant T; Follett, Peter A; Liquido, Nicanor J; Sylva, Charmaine D

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed.

  4. Assessment of Attractiveness of Plants as Roosting Sites for the Melon Fly, Bactrocera cucurbitae, and Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    McQuate, Grant T.; Vargas, Roger I.

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae

  5. Capture of Mediterranean fruit flies (Diptera: Tephritidae) in dry traps baited with a food-based attractant and Jackson traps baited with trimedlure during sterile male release in Guatemala.

    PubMed

    Midgarden, David; Ovalle, Oscar; Epsky, Nancy D; Puche, Helena; Kendra, Paul E; Rendon, Pedro; Heath, Robert R

    2004-12-01

    Captures of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in Jackson traps baited with trimedlure were compared with captures in cylindrical open-bottom dry traps baited with a food-based synthetic attractant (ammonium acetate, putrescine, and trimethylamine). Tests were conducted in Guatemala during a sterile male release program in an area where wild flies were present in low numbers. More wild and sterile females were captured in food-based traps, and more wild and sterile males were captured in trimedlure traps. The food-based traps captured almost twice as many total (male plus female) wild flies as the trimedlure traps, but the difference was not significant. Females made up approximately 60% of the wild flies caught in the food-based attractant traps; the trimedlure traps caught no females. The ratio of capture of males in trimedlure traps to food-based traps was 6.5:1 for sterile and 1.7:1 for wild flies. Because fewer sterile males are captured in the food-based traps, there is a reduction in the labor-intensive process of examining flies for sterility. The results indicate that traps baited with food-based attractants could be used in place of the Jackson/trimedlure traps for C. capitata sterile release programs because they can monitor distributions of sterile releases and detect wild fly populations effectively; both critical components of fruit fly eradication programs by using the sterile insect technique.

  6. Improvement of mass-rearing procedures for an olive fruit fly parasitoid – duration of exposure to hosts affects production of Psyttalia lounsburyi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe economic damage in California. Control of this fly is currently limited to pesticides. The USDA-ARS European Biological Control Laboratory in Montpellier, France established a classical biological control program nearly 15 y...

  7. Interaction between visual and olfactory cues during host finding in the tomato fruit fly Neoceratitis cyanescens.

    PubMed

    Brévault, Thierry; Quilici, Serge

    2010-03-01

    Herbivorous insects searching for a host plant need to integrate a sequence of multimodal sensory inputs. We conducted a series of no-choice experiments in a laboratory wind tunnel to examine the behavioral response of the specialist fruit fly, Neoceratitis cyanescens (Diptera: Tephritidae), to host visual and olfactory stimuli presented singly or in combination (e.g., colored fruit model with or without host fruit odor). We also studied the influence of wind flow, age, and sex on the response of flies. In two-choice experiments, we evaluated the ability of mature females to discriminate between two fruit models emitting host vs. non-host fruit odor or clean air. Neoceratitis cyanescens mature females can use independently or interactively olfactory and visual stimuli to locate their host, whereas immature females and males respond primarily to host fruit odor. In the absence of wind, mature females mainly use visual information to locate the host fruit. In wind, host fruit odor significantly increases the probability and speed of locating the host fruit. In a two-choice situation between two bright orange spheres, flies accurately detected the sphere emitting host fruit odor vs. non-host fruit odor or odorless air. Nevertheless, they preferred to land on the bright orange sphere when the sphere emitting host fruit odor was blue. Furthermore, when odor source and fruit model were spatially decoupled (90 or 180 degrees ), >50% flies that landed on the fruit model initially performed an oriented flight toward the odor source, then turned back to the fruit model while in flight or after one landing, thus suggesting visual information to be the ultimate indicator of host fruit.

  8. Integrated Management of European Cherry Fruit Fly Rhagoletis cerasi (L.): Situation in Switzerland and Europe

    PubMed Central

    Daniel, Claudia; Grunder, Jürg

    2012-01-01

    The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities. PMID:26466721

  9. Species Diversity in the Parasitoid Genus Asobara (Hymenoptera: Braconidae) from the Native Area of the Fruit Fly Pest Drosophila suzukii (Diptera: Drosophilidae)

    PubMed Central

    Guerrieri, Emilio; Giorgini, Massimo; Cascone, Pasquale; Carpenito, Simona; van Achterberg, Cees

    2016-01-01

    Drosophila suzukii (Matsumura), commonly known as Spotted Wing Drosophila (SWD), is a worldwide serious economic threat to the production of berries and stone fruits. The chemical control widely used against this pest is often not able to preventing yield losses because wild flora offers an abundance of fruits to D. suzukii where the pest is able to reproduce and from where it recolonizes neighbouring cultivated fields. Alternatively, within Integrated Pest Management protocols for D. suzukii, biological control could play a key role by reducing its populations particularly in non-cultivated habitats, thus increasing the effectiveness and reducing the side negative effects of other management strategies. Because of the scarcity and of the low efficiency of autochthonous parasitoids in the new invaded territories, in the last few years, a number of surveys started in the native area of D. suzukii to find parasitoid species to be evaluated in quarantine structures and eventually released in the field, following a classical biological control approach. This paper reports the results of these surveys carried out in South Korea and for the first time in China. Among the parasitoids collected, those belonging to the genus Asobara Foerster resulted dominant both by number and species diversity. By combining morphological characters and the mitochondrial COI gene as a molecular marker, we identified seven species of Asobara, of which two associated with D. suzukii, namely A. japonica and A leveri, and five new to science, namely Asobara brevicauda, A. elongata, A mesocauda, A unicolorata, A. triangulata. Our findings offer new opportunity to find effective parasitoids to be introduced in classical biological control programmes in the territories recently invaded by D. suzukii. PMID:26840953

  10. Species Diversity in the Parasitoid Genus Asobara (Hymenoptera: Braconidae) from the Native Area of the Fruit Fly Pest Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Guerrieri, Emilio; Giorgini, Massimo; Cascone, Pasquale; Carpenito, Simona; van Achterberg, Cees

    2016-01-01

    Drosophila suzukii (Matsumura), commonly known as Spotted Wing Drosophila (SWD), is a worldwide serious economic threat to the production of berries and stone fruits. The chemical control widely used against this pest is often not able to preventing yield losses because wild flora offers an abundance of fruits to D. suzukii where the pest is able to reproduce and from where it recolonizes neighbouring cultivated fields. Alternatively, within Integrated Pest Management protocols for D. suzukii, biological control could play a key role by reducing its populations particularly in non-cultivated habitats, thus increasing the effectiveness and reducing the side negative effects of other management strategies. Because of the scarcity and of the low efficiency of autochthonous parasitoids in the new invaded territories, in the last few years, a number of surveys started in the native area of D. suzukii to find parasitoid species to be evaluated in quarantine structures and eventually released in the field, following a classical biological control approach. This paper reports the results of these surveys carried out in South Korea and for the first time in China. Among the parasitoids collected, those belonging to the genus Asobara Foerster resulted dominant both by number and species diversity. By combining morphological characters and the mitochondrial COI gene as a molecular marker, we identified seven species of Asobara, of which two associated with D. suzukii, namely A. japonica and A leveri, and five new to science, namely Asobara brevicauda, A. elongata, A mesocauda, A unicolorata, A. triangulata. Our findings offer new opportunity to find effective parasitoids to be introduced in classical biological control programmes in the territories recently invaded by D. suzukii.

  11. Indigenous and Invasive Fruit Fly Diversity along an Altitudinal Transect in Eastern Central Tanzania

    PubMed Central

    Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc

    2012-01-01

    The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017

  12. 76 FR 26654 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ..., 2011, we published in the Federal Register (76 FR 18419-18421, Docket No. APHIS-2010-0127) a proposal... Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist AGENCY: Animal and... from Mediterranean fruit fly quarantined areas in the United States with a certificate if the fruit...

  13. Melon Fly, Bactrocera cucurbitae (Diptera: Tephritidae), Infestation in Host Fruits in the Southwestern Islands of Japan Before the Initiation of Island-wide Population Suppression, as Recorded in Publications of Japanese Public Institutions.

    PubMed

    McQuate, Grant T; Teruya, Tadashi

    2015-01-01

    Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae).

  14. Melon Fly, Bactrocera cucurbitae (Diptera: Tephritidae), Infestation in Host Fruits in the Southwestern Islands of Japan Before the Initiation of Island-wide Population Suppression, as Recorded in Publications of Japanese Public Institutions

    PubMed Central

    McQuate, Grant T.; Teruya, Tadashi

    2015-01-01

    Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae). PMID:26816487

  15. Melon Fly, Bactrocera cucurbitae (Diptera: Tephritidae), Infestation in Host Fruits in the Southwestern Islands of Japan Before the Initiation of Island-wide Population Suppression, as Recorded in Publications of Japanese Public Institutions.

    PubMed

    McQuate, Grant T; Teruya, Tadashi

    2015-01-01

    Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae). PMID:26816487

  16. Multiplex PCR in determination of Opiinae parasitoids of fruit flies, Bactrocera sp., infesting star fruit and guava.

    PubMed

    Shariff, S; Ibrahim, N J; Md-Zain, B M; Idris, A B; Suhana, Y; Roff, M N; Yaakop, S

    2014-01-23

    Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b. Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs.

  17. Multiplex PCR in Determination of Opiinae Parasitoids of Fruit Flies, Bactrocera sp., Infesting Star Fruit and Guava

    PubMed Central

    Shariff, S.; Ibrahim, N. J.; Md-Zain, B. M.; Idris, A. B.; Suhana, Y.; Roff, M. N.; Yaakop, S.

    2014-01-01

    Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b. Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs. PMID

  18. Reconstructing the behavior of walking fruit flies

    NASA Astrophysics Data System (ADS)

    Berman, Gordon; Bialek, William; Shaevitz, Joshua

    2010-03-01

    Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.

  19. Liquid Larval Diet for Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit fly liquid larvae diet has been developed for rearing Bactrocera dorsalis and B. cucurbitae in small and large scales and is ready for technology transfer into factory scale. The most appropriate rearing conditions using liquid diet up-to-date have been identified as follows: (1) basic diet fo...

  20. Improve California trap programs for detection of fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. States and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers...

  1. Intraguild predation influences oviposition behavior of blow flies (Diptera: Calliphoridae).

    PubMed

    Galindo, Luciane A; Moral, Rafael A; Moretti, Thiago C; Godoy, Wesley A C; Demétrio, Clarice G B

    2016-05-01

    The objective of the present study was to determine whether blow flies (Diptera: Calliphoridae) are able to identify larvae of an intraguild predator species in the substrate and avoid laying eggs there. Blow flies oviposited in traps with different treatments: substrate only and substrate with larvae of Chrysomya albiceps (Wiedemann, 1819), Chrysomya megacephala (Fabricius, 1794), or Chrysomya putoria (Wiedemann, 1830). Ch. megacephala, Ch. putoria, and Lucilia eximia (Wiedemann, 1819) avoided laying eggs in the trap containing Ch. albiceps larvae. Cochliomyia macellaria (Fabricius, 1775) did not oviposit differently in each substrate but had overall low abundance. The prevalence of species on corpses may be influenced by the ability of the species to detect the presence of other species, mainly predators. In this sense, intraguild predation may result in misinterpretations of a crime scene and should be considered when assessing the minimum postmortem interval. PMID:26888288

  2. Intraguild predation influences oviposition behavior of blow flies (Diptera: Calliphoridae).

    PubMed

    Galindo, Luciane A; Moral, Rafael A; Moretti, Thiago C; Godoy, Wesley A C; Demétrio, Clarice G B

    2016-05-01

    The objective of the present study was to determine whether blow flies (Diptera: Calliphoridae) are able to identify larvae of an intraguild predator species in the substrate and avoid laying eggs there. Blow flies oviposited in traps with different treatments: substrate only and substrate with larvae of Chrysomya albiceps (Wiedemann, 1819), Chrysomya megacephala (Fabricius, 1794), or Chrysomya putoria (Wiedemann, 1830). Ch. megacephala, Ch. putoria, and Lucilia eximia (Wiedemann, 1819) avoided laying eggs in the trap containing Ch. albiceps larvae. Cochliomyia macellaria (Fabricius, 1775) did not oviposit differently in each substrate but had overall low abundance. The prevalence of species on corpses may be influenced by the ability of the species to detect the presence of other species, mainly predators. In this sense, intraguild predation may result in misinterpretations of a crime scene and should be considered when assessing the minimum postmortem interval.

  3. The Mitochondrial Genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the Evolutionary Timescale of Tachinid Flies

    PubMed Central

    Zhao, Zhe; Su, Tian-juan; Chesters, Douglas; Wang, Shi-di; Ho, Simon Y. W.; Zhu, Chao-dong; Chen, Xiao-lin; Zhang, Chun-tian

    2013-01-01

    Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene. PMID:23626734

  4. Relationships between parasitoid wasps (Hymenoptera: Braconidae: Opiinae), fruit flies (Diptera: Tephritidae) and their host plants based on 16S rRNA, 12S rRNA, and ND1 gene sequences

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. J.; Md-Zain, B. M.; Yaakop, S.

    2013-11-01

    Opiinae is among the l0 largest subfamilies under the family Braconidae. Opiines species have great potential as natural enemies against fruit fly pests. Before using them as a biological control agent, construction of the phylogenetic trees could facilitate in the molecular identification of individual species and their relationships among members of the Opiines, as well as between Opiines and their host plants. Larval specimens of tephritids were collected from four crop species at five localities throughout the Peninsular Malaysia. A total of 44 specimens of opiines had successfully emerged from the hosts, fruit fly larvae. The DNA sequences of 12S and 16S rRNA were obtained for the braconids while the mitochondrial ND1 sequences were obtained for the tephritids species through polymerase chain reaction. Maximum Parsimony and Bayesian trees were constructed by using PAUP 4.0b10 and MrBayes 3.1.2 to identify the relationships among the taxa. This study illustrates the phylogenetic relationships among parasitoid opiines collected and reared from parasitized fruit flies. The phylogenetic trees constructed based on the mitochondrial 12S and 16S rRNA sequences exhibited similar topology and sequence divergence. The opiines were divided into several clades and subclades according to the genus and species. Each clade also was supported by the similar host plants with high support values. However, their pests were not specific, except for Bactrocera cucurbitae. This study has reconfirmed the associations between Opiinae, tephritids, and host plants based on molecular data.

  5. Fruit Flies in Biomedical Research

    PubMed Central

    Wangler, Michael F.; Yamamoto, Shinya; Bellen, Hugo J.

    2015-01-01

    Many scientists complain that the current funding situation is dire. Indeed, there has been an overall decline in support in funding for research from the National Institutes of Health and the National Science Foundation. Within the Drosophila field, some of us question how long this funding crunch will last as it demotivates principal investigators and perhaps more importantly affects the long-term career choice of many young scientists. Yet numerous very interesting biological processes and avenues remain to be investigated in Drosophila, and probing questions can be answered fast and efficiently in flies to reveal new biological phenomena. Moreover, Drosophila is an excellent model organism for studies that have translational impact for genetic disease and for other medical implications such as vector-borne illnesses. We would like to promote a better collaboration between Drosophila geneticists/biologists and human geneticists/bioinformaticians/clinicians, as it would benefit both fields and significantly impact the research on human diseases. PMID:25624315

  6. Species composition of forensically important blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) through space and time.

    PubMed

    Fremdt, Heike; Amendt, Jens

    2014-03-01

    Weekly monitoring of forensically important flight-active blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) was performed using small baited traps. Sampling took place in two rural, one suburban and two urban habitats in and around Frankfurt (Main), Germany, lasting two years and eight months. Highest values for species richness and Chao-Shen entropy estimator for Shannon's index in both families were found at the urban sites, peaking during summer. Space-time interaction was tested and found to be significant, demonstrating the value of a statistical approach recently developed for community surveys in ecology. K-means partitioning and analysis of indicator species gave significant temporal and habitat associations of particular taxa. Calliphora vicina was an indicator species for lower temperatures without being associated with a particular habitat. Lucilia sericata was an indicator for urban sites, whereas Lucilia ampullacea and Lucilia caesar were indicators for rural sites, supplemented by the less frequent species Calliphora vomitoria. Sarcophagidae were observed during a clearly shorter period of year. Sarcophaga subvicina+Sarcophaga variegata was found to be an indicator for urban habitats during summer as well as Sarcophaga albiceps for rural habitats. A significant association of Sarcophaga caerulescens to rural habitats as well as one of Sarcophaga similis to urban habitats was observed.

  7. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe.

    PubMed

    Alten, B; Ozbel, Y; Ergunay, K; Kasap, O E; Cull, B; Antoniou, M; Velo, E; Prudhomme, J; Molina, R; Bañuls, A-L; Schaffner, F; Hendrickx, G; Van Bortel, W; Medlock, J M

    2015-12-01

    The distribution of phlebotomine sand flies is widely reported to be changing in Europe. This can be attributed to either the discovery of sand flies in areas where they were previously overlooked (generally following an outbreak of leishmaniasis or other sand fly-related disease) or to true expansion of their range as a result of climatic or environmental changes. Routine surveillance for phlebotomines in Europe is localized, and often one of the challenges for entomologists working in non-leishmaniasis endemic countries is the lack of knowledge on how to conduct, plan and execute sampling for phlebotomines, or how to adapt on-going sampling strategies for other haematophagous diptera. This review brings together published and unpublished expert knowledge on sampling strategies for European phlebotomines of public health concern in order to provide practical advice on: how to conduct surveys; the collection and interpretation of field data; suitable techniques for the preservation of specimens obtained by different sampling methods; molecular techniques used for species identification; and the pathogens associated with sand flies and their detection methods.

  8. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe.

    PubMed

    Alten, B; Ozbel, Y; Ergunay, K; Kasap, O E; Cull, B; Antoniou, M; Velo, E; Prudhomme, J; Molina, R; Bañuls, A-L; Schaffner, F; Hendrickx, G; Van Bortel, W; Medlock, J M

    2015-12-01

    The distribution of phlebotomine sand flies is widely reported to be changing in Europe. This can be attributed to either the discovery of sand flies in areas where they were previously overlooked (generally following an outbreak of leishmaniasis or other sand fly-related disease) or to true expansion of their range as a result of climatic or environmental changes. Routine surveillance for phlebotomines in Europe is localized, and often one of the challenges for entomologists working in non-leishmaniasis endemic countries is the lack of knowledge on how to conduct, plan and execute sampling for phlebotomines, or how to adapt on-going sampling strategies for other haematophagous diptera. This review brings together published and unpublished expert knowledge on sampling strategies for European phlebotomines of public health concern in order to provide practical advice on: how to conduct surveys; the collection and interpretation of field data; suitable techniques for the preservation of specimens obtained by different sampling methods; molecular techniques used for species identification; and the pathogens associated with sand flies and their detection methods. PMID:26271257

  9. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management

    PubMed Central

    Dhillon, M.K.; Singh, Ram; Naresh, J.S.; Sharma, H.C.

    2005-01-01

    The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is distributed widely in temperate, tropical, and sub-tropical regions of the world. It has been reported to damage 81 host plants and is a major pest of cucurbitaceous vegetables, particularly the bitter gourd (Momordica charantia), muskmelon (Cucumis melo), snap melon (C. melo var. momordica), and snake gourd (Trichosanthes anguina). The extent of losses vary between 30 to 100%, depending on the cucurbit species and the season. Its abundance increases when the temperatures fall below 32° C, and the relative humidity ranges between 60 to 70%. It prefers to infest young, green, soft-skinned fruits. It inserts the eggs 2 to 4 mm deep in the fruit tissues, and the maggots feed inside the fruit. Pupation occurs in the soil at 0.5 to 15 cm below the soil surface. Keeping in view the importance of the pest and crop, melon fruit fly management could be done using local area management and wide area management. The melon fruit fly can successfully be managed over a local area by bagging fruits, field sanitation, protein baits, cue-lure traps, growing fruit fly-resistant genotypes, augmentation of biocontrol agents, and soft insecticides. The wide area management program involves the coordination of different characteristics of an insect eradication program (including local area options) over an entire area within a defensible perimeter, and subsequently protected against reinvasion by quarantine controls. Although, the sterile insect technique has been successfully used in wide area approaches, this approach needs to use more sophisticated and powerful technologies in eradication programs such as insect transgenesis and geographical information systems, which could be deployed over a wide area. Various other options for the management of fruit fly are also discussed in relation to their bio-efficacy and economics for effective management of this pest. PMID:17119622

  10. Successful Utilization of the Area-Wide Approach for Management of Fruit Flies in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melon fly, Bactrocera cucurbitae (Coquillett), Mediterranean fruit fly, Ceratitis capitata (Wiedemann), oriental fruit fly, Bactrocera dorsalis (Hendel), and the so-called Malaysian (solenaceous) fruit fly, Bactrocera latifrons (Hendel), have accidentally become established in Hawaii, and attack mor...

  11. Fruit flies and intellectual disability

    PubMed Central

    Bolduc, François V.; Tully, Tim

    2011-01-01

    Mental retardation—known more commonly nowadays as intellectual disability—is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory. PMID:19182539

  12. Evolution: how fruit flies adapt to seasonal stresses.

    PubMed

    Williams, Karen D; Sokolowski, Marla B

    2009-01-27

    Fruit flies inhabit a wide range of latitudes, requiring adaptation to the varying local climates. A recent study reports evidence that the ability of North American flies to endure the winter involves adaptive polymorphism of the couch potato gene.

  13. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae)

    PubMed Central

    Shi, Zhanghong; Wang, Lili; Zhang, Hongyu

    2012-01-01

    Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel), and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 18 operational taxonomic units (OTUs) were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly. PMID:22754363

  14. Effects of diet, ginger root oil, and elevation on the mating competitiveness of male Mediterranean fruit flies (Diptera: Tephritidae) from a mass-reared, genetic sexing strain in Guatemala.

    PubMed

    Shelly, Todd E; Rendon, Pedro; Hernandez, Emilio; Salgado, Sergio; McInnis, Donald; Villalobos, Ethel; Liedo, Pablo

    2003-08-01

    The release of sterile males is a key component of an areawide program to eradicate the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), from Guatemala and southern Mexico. The objective of our study was to assess the effects of adult diet, exposure to ginger root oil (Zingiber officinale Roscoe), and elevation on the mating competitiveness of the sterile males used in an areawide program. Sterile males were maintained on a protein-sugar (protein-fed) or a sugar-only (protein-deprived) diet and were exposed (for 4 h 1 d before testing) or not exposed to ginger root oil. In field-cage trials conducted at a high (1,500 m) and low (700 m) site, we monitored the influence of these treatments on the mating success of sterile males in competition with wild males (reared exclusively on the protein-sugar diet and without ginger root oil exposure) for wild females. Elevation and ginger root oil exposure had significant effects, with sterile males having higher mating success at the low-elevation site and ginger root oil-exposed males having greater success than ginger root oil-deprived males at both sites. Diet did not have a significant overall effect, and its influence varied with elevation (dietary protein seemed to provide an advantage at the high-elevation site but not at the low-elevation site). Possible implications of these findings for eradication programs against the Mediterranean fruit fly are discussed. PMID:14503584

  15. Survival and fate of Salmonella enterica serovar Montevideo in adult Horn Flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.); Diptera: Muscidae), are intriguing ca...

  16. Effect of Metarhizium anisopliae on the Fertility and Fecundity of Two Species of Fruit Flies and Horizontal Transmission of Mycotic Infection

    PubMed Central

    Sookar, P.; Bhagwant, S.; Allymamod, M.N.

    2014-01-01

    In Mauritius, the peach fruit fly, Bactrocera zonata Saunders (Diptera: Tephritidae), and the melon fly, Bactrocera cucurbitae (Coquillett), are the major pest of fruits and vegetables, respectively. Fruit growers make use of broad-spectrum insecticides to protect their crops from fruit fly attack. This method of fruit fly control is hazardous to the environment and is a threat to beneficial insects. The entomopathogenic fungus, Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), which was isolated from the soils of Mauritius, was used to investigate whether fungus-treated adult fruit flies could transfer conidia to non-treated flies during mating, and whether fungal infection could have an effect on mating behavior, fecundity, and fertility of the two female fruit fly species. When treated male flies were maintained together with non-treated female flies, they were able to transmit infection to untreated females, resulting in high mortalities. Similarly, fungus-infected female flies mixed with untreated males also transmitted infections to males, also resulting in high mortalities. Infection by M. anisopliae also resulted in the reduction of the number of eggs produced by females of B. cucurbitae. The results suggest that M. anisopliae may have potential for use in integrated control programs of B. zonata and B. cucurbitae using the sterile insect technique in Mauritius. PMID:25201230

  17. Mediterranean fruit fly as a potential vector of bacterial pathogens.

    PubMed

    Sela, Shlomo; Nestel, David; Pinto, Riky; Nemny-Lavy, Esther; Bar-Joseph, Moshe

    2005-07-01

    The Mediterranean fruit fly (Ceratitis capitata) is a cosmopolitan pest of hundreds of species of commercial and wild fruits. It is considered a major economic pest of commercial fruits in the world. Adult Mediterranean fruit flies feed on all sorts of protein sources, including animal excreta, in order to develop eggs. After reaching sexual maturity and copulating, female flies lay eggs in fruit by puncturing the skin with their ovipositors and injecting batches of eggs into the wounds. In view of the increase in food-borne illnesses associated with consumption of fresh produce and unpasteurized fruit juices, we investigated the potential of Mediterranean fruit fly to serve as a vector for transmission of human pathogens to fruits. Addition of green fluorescent protein (GFP)-tagged Escherichia coli to a Mediterranean fruit fly feeding solution resulted in a dose-dependent increase in the fly's bacterial load. Flies exposed to fecal material enriched with GFP-tagged E. coli were similarly contaminated and were capable of transmitting E. coli to intact apples in a cage model system. Washing contaminated apples with tap water did not eliminate the E. coli. Flies inoculated with E. coli harbored the bacteria for up to 7 days following contamination. Fluorescence microscopy demonstrated that the majority of fluorescent bacteria were confined along the pseudotrachea in the labelum edge of the fly proboscis. Wild flies captured at various geographic locations were found to carry coliforms, and in some cases presumptive identification of E. coli was made. These findings support the hypothesis that the common Mediterranean fruit fly is a potential vector of human pathogens to fruits. PMID:16000820

  18. Human external ophthalmomyiasis caused by Lucilia sericata Meigen (Diptera: Calliphoridae)--a green bottle fly.

    PubMed

    Kalezić, Tanja; Stojković, Milenko; Vuković, Ivana; Spasić, Radoslava; Andjelkovic, Marko; Stanojlović, Svetlana; Božić, Marija; Džamić, Aleksandar

    2014-07-01

    Ophthalmomyiasis externa is the result of infestation of the conjunctiva by the larval form or maggots of flies from the order Diptera. If not recognized and managed appropriately, it can be complicated by the potentially fatal condition ophthalmomyiasis interna. Ophthalmomyiasis externa is mainly caused by the sheep bot fly (Oestrus ovis). We present the first case, to our knowledge, of ophthalmomyiasis externa in an elderly woman from Belgrade caused by Lucilia sericata Meigen--a green bottle fly.

  19. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  20. Multiple species of scuttle flies (Diptera: Phoridae) as contaminants in forensic entomology laboratory insect colony.

    PubMed

    Zuha, R M; Jenarthanan, L X Q; Disney, R H L; Omar, B

    2015-09-01

    In forensic entomology, larval rearing usually includes the presence of biological contaminants including scuttle flies (Diptera: Phoridae). Scuttle flies are recognized as forensically important insects and have been reported causing nuisance and contamination in laboratory environments. This paper reports for the first time the finding of multiple scuttle fly species affecting colonies of third instar larvae of the Oriental latrine blowfly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae), reared indoors at the Forensic Science Simulation Site, Universiti Kebangsaan Malaysia. Adult scuttle flies were discovered inside a rearing container after the emergence of adult C. megacephala., The scuttle fly species are Megaselia scalaris (Loew), M. spiracularis Schmitz and Puliciphora borinquenensis (Wheeler). Notes on the life history and biology of these species are discussed herein.

  1. Change of name for the Oriental robber fly Nyssomyia Hull, 1962 (Diptera: Asilidae, Asilinae), nec Nyssomyia Barretto, 1962 (Diptera: Psychodidae, Phlebotominae).

    PubMed

    Ibáñez-Bernal, Sergio; Fisher, Eric

    2015-08-14

    A new name for the Oriental genus Nyssomyia Hull, 1962 (Diptera: Asilidae) is proposed. Homonymy exists between this Oriental robber fly genus and the more senior Neotropical phlebotomine sand fly genus Nyssomyia Barretto, 1962 (sensu Galati 2003) (Diptera: Psychodidae), and the following replacement name is proposed: Ekkentronomyia nom. nov. for Nyssomyia Hull (nec Barretto 1962). Accordingly, a new combination is herein proposed for the only species currently included in this genus: Ekkentronomyia ochracea (Hull, 1962) comb. nov.

  2. Mating-induced recombination in fruit flies.

    PubMed

    Priest, Nicholas K; Roach, Deborah A; Galloway, Laura F

    2007-01-01

    In traditional deterministic models the conditions for the evolution of sex and sexual behavior are limited because their benefits are context dependent. In novel and adverse environments both multiple mating and recombination can help generate gene combinations that allow for rapid adaptation. Mating frequency often increases in conditions in which recombination might be beneficial; therefore, increased sexual behavior might evolve to act as a cue that stimulates recombination. We conducted two experiments in the fruit fly, Drosophila melanogaster, using linked phenotypic markers to determine how recent bouts of additional mating affect female recombination rate. The first experiment examined the effect of additional mating, mating history, and age on female recombination rate. The second experiment assessed the effect of recent mating events on recombination rate. Together, the experiments suggest that each additional bout of mating temporarily increases female recombination rate. These findings imply that the conditions favoring the evolution of sexual reproduction and multiple mating behaviors are broader than currently appreciated.

  3. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae)

    PubMed Central

    McQuate, Grant T.; Follett, Peter A.; Liquido, Nicanor J.; Sylva, Charmaine D.

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484

  4. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae).

    PubMed

    McQuate, Grant T; Follett, Peter A; Liquido, Nicanor J; Sylva, Charmaine D

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484

  5. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  6. The influence of host fruit and temperature on the body size of adult Ceratitis capitata (Diptera: Tephritidae) under laboratory and field conditions.

    PubMed

    Navarro-Campos, C; Martínez-Ferrer, M T; Campos, J M; Fibla, J M; Alcaide, J; Bargues, L; Marzal, C; Garcia-Marí, F

    2011-08-01

    The adult body size of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), varies in natural conditions. Body size is an important fitness indicator in the Mediterranean fruit fly; larger individuals are more competitive at mating and have a greater dispersion capacity and fertility. Both temperature during larval development and host fruit quality have been cited as possible causes for this variation. We studied the influence of host fruit and temperature during larval development on adult body size (wing area) in the laboratory, and determined body size variation in field populations of the Mediterannean fruit fly in eastern Spain. Field flies measured had two origins: 1) flies periodically collected throughout the year in field traps from 32 citrus groves, during the period 2003-2007; and 2) flies evolved from different fruit species collected between June and December in 2003 and 2004. In the lab, wing area of male and female adults varied significantly with temperature during larval development, being larger at the lowest temperature. Adult size also was significantly different depending on the host fruit in which larvae developed. The size of the flies captured at the field, either from traps or from fruits, varied seasonally showing a gradual pattern of change along the year. The largest individuals were obtained during winter and early spring and the smallest during late summer. In field conditions, the size of the adult Mediterannean fruit fly seems apparently more related with air temperature than with host fruit. The implications of this adult size pattern on the biology of C. capitata and on the application of the sterile insect technique are discussed.

  7. A fruitful endeavor: modeling ALS in the fruit fly.

    PubMed

    Casci, Ian; Pandey, Udai Bhan

    2015-05-14

    For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. This article is part of a Special Issue entitled ALS complex pathogenesis.

  8. A Fruitful Endeavor: Modeling ALS in the Fruit Fly

    PubMed Central

    Casci, Ian; Pandey, Udai Bhan

    2014-01-01

    For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. PMID:25289585

  9. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diptera are one of the three largest and most diverse animal groups of the world. As an often neglected, but important group of pollinators, they play a significant role in agrobiodiversity and biodiversity of plants everywhere. Flies are present in almost all habitats and biomes and for many food p...

  10. Effectiveness of genes for Hessian fly (Diptera: Cecidomyiidae) resistance in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is the most important insect pest of wheat (Triticum aestivum L. subsp. aestivum) in the southeastern United States, and the deployment of genetically resistant wheat is the most effective control. However, the use of resistant w...

  11. Picture-winged fly (Euxesta, Chaetopsis spp.; Diptera: Ulidiidae) semiochemical investigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Picture-winged flies (Euxesta, Chaetopsis spp., Diptera: Ulidiidae) are severe primary pests of sweet corn in southern Florida. Females oviposit in silks and larvae consume the silks and kernels, rendering the ear unmarketable. Growers treat their fields with numerous broad spectrum insecticide ap...

  12. Differences in Antennal Sensillae of Male and Female Peach Fruit Flies in Relation to Hosts

    PubMed Central

    Awad, Azza A.; Mohamed, Hend O.; Ali, Nashat A.

    2015-01-01

    Antennal sensillae of male and female peach fruit flies, Bactrocera zonata (Saunders) (Diptera: Tephritidae), obtained from three different host fruit species (guava, Psidium guajava L. (Myrtales: Myrtaceae); peach, Prunus persica (L.) Stokes (Rosales: Rosaceae); and orange, Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae)), were studied with scanning electron microscopy. This study was carried out to describe the different types of sensillae present on the three antennal segments (scape, pedicel, and flagellum or funiculus) of both sexes of B. zonata on different host fruit. The antennal segments of females tended to be larger than those of males feeding on peach and guava fruit. On orange, both sexes were similar (no significant differences were found). The first two antennal segments, scape and pedicel, are reinforced by some bristles and have different types of sensillae, including trichoid I, II, S; basiconic II; and sensilla chaetica in different numbers on different host fruit species. Numerous microtrichia, as well as trichoid (I, II), basiconic (I), clavate, and coeloconic (I, II) sensillae were observed on the funiculus with a great variation in number and length. As a result of feeding on different hosts, differences were found between sexes and some plasticity in size, number, distribution, and position of some sensillae, including trichoid, basiconic, chaetica, and clavate on the antennae of the female B. zonata. These sensillae were significantly larger in females. Also, some morphological and morphemetric differences have been found according to their feeding on different host fruit. PMID:25688086

  13. Chromosomal duplications in bacteria, fruit flies, and humans

    SciTech Connect

    Lupski, J.R.; Weinstock, G.M.; Roth, J.R.

    1996-01-01

    Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.

  14. An emerging example of tritrophic coevolution between flies (Diptera: Fergusoninidae) and nematodes (Nematoda: Neotylenchidae) on Myrtaceae host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique obligate mutualism occurs between species of Fergusonina Malloch flies (Diptera: Fergusoninidae) and nematodes of the genus Fergusobia Currie (Nematoda: Neotylenchidae). These mutualists together form different types of galls on Myrtaceae, mainly in Australia. The galling association appear...

  15. Acetylcholinesterase genes within the Diptera: takeover and loss in true flies

    PubMed Central

    Huchard, Elise; Martinez, Michel; Alout, Haoues; Douzery, Emmanuel J.P; Lutfalla, Georges; Berthomieu, Arnaud; Berticat, Claire; Raymond, Michel; Weill, Mylène

    2006-01-01

    It has recently been reported that the synaptic acetylcholinesterase (AChE) in mosquitoes is encoded by the ace-1 gene, distinct and divergent from the ace-2 gene, which performs this function in Drosophila. This is an unprecedented situation within the Diptera order because both ace genes derive from an old duplication and are present in most insects and arthropods. Nevertheless, Drosophila possesses only the ace-2 gene. Thus, a secondary loss occurred during the evolution of Diptera, implying a vital function switch from one gene (ace-1) to the other (ace-2). We sampled 78 species, representing 50 families (27% of the Dipteran families) spread over all major subdivisions of the Diptera, and looked for ace-1 and ace-2 by systematic PCR screening to determine which taxonomic groups within the Diptera have this gene change. We show that this loss probably extends to all true flies (or Cyclorrhapha), a large monophyletic group of the Diptera. We also show that ace-2 plays a non-detectable role in the synaptic AChE in a lower Diptera species, suggesting that it has non-synaptic functions. A relative molecular evolution rate test showed that the intensity of purifying selection on ace-2 sequences is constant across the Diptera, irrespective of the presence or absence of ace-1, confirming the evolutionary importance of non-synaptic functions for this gene. We discuss the evolutionary scenarios for the takeover of ace-2 and the loss of ace-1, taking into account our limited knowledge of non-synaptic functions of ace genes and some specific adaptations of true flies. PMID:17002944

  16. Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae)

    PubMed Central

    Qin, Yujia; Paini, Dean R.; Wang, Cong; Fang, Yan; Li, Zhihong

    2015-01-01

    The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region. PMID:25588025

  17. The Temporal Pattern of Mating Behavior of the Fruit Fly, Anastrepha zenildae in the Laboratory

    PubMed Central

    de Almeida, Lucia M.; Araújo, Arrilton; Mendes, Norma H.D.; de Souza, João M.G.A.; Menezes, Alexandre A.L.

    2011-01-01

    The state of Rio Grande do Norte is an important fruit-producing and exporting area in northeastern Brazil. The success of this industry depends on fruit fly population control, especially in fly-free exporting zones. However, many fruits are not exported because of quarantine restrictions imposed by importing countries. A survey in the state has detected a considerable increase of the fruit fly, Anastrepha zenildae Zucchi (Diptera: Tephritidae), probably a result of the introduction of irrigated guava orchards that make fruit available all year. Knowledge of the sexual behavior of Tephritidae has great importance to pest control programs, particularly those that employ the Sterile Insect Technique. In order to characterize the reproductive behavior of A. zenildae, 32 individuals (16 males; 16 females) in each of six generations were submitted to an artificial 12:12 L:D cycle (750: < 1 lux, lights on 07:00–19:00) and observed over their lifetimes. The courtship and copulation occurred in leks and the episodes varied with the time of day, courtship being most frequent between Zeitgeber time (ZT) 3 and ZT 7, peaking at ZT 5–6. Copulations occurred between ZT 2 and ZT 8, with a higher frequency between ZT 5–7 and a peak at ZT 6. Mean duration was 0.28 ± 0.03 min/male (range: 5–163 min). Males in the leks attempted to copulate mainly between ZT 3 and ZT 7 with a peak at ZT 6, and males outside leks peaked at ZT 7. The different timing of sexual behaviors among related sympatric species, including A. zenildae, may contribute to species isolation. PMID:22236152

  18. The temporal pattern of mating behavior of the fruit fly, Anastrepha zenildae in the laboratory.

    PubMed

    Almeida, Lucia M de; Araújo, Arrilton; Mendes, Norma H D; Souza, João M G A de; Menezes, Alexandre A L

    2011-01-01

    The state of Rio Grande do Norte is an important fruit-producing and exporting area in northeastern Brazil. The success of this industry depends on fruit fly population control, especially in fly-free exporting zones. However, many fruits are not exported because of quarantine restrictions imposed by importing countries. A survey in the state has detected a considerable increase of the fruit fly, Anastrepha zenildae Zucchi (Diptera: Tephritidae), probably a result of the introduction of irrigated guava orchards that make fruit available all year. Knowledge of the sexual behavior of Tephritidae has great importance to pest control programs, particularly those that employ the Sterile Insect Technique. In order to characterize the reproductive behavior of A. zenildae, 32 individuals (16 males; 16 females) in each of six generations were submitted to an artificial 12:12 L:D cycle (750: < 1 lux, lights on 07:00-19:00) and observed over their lifetimes. The courtship and copulation occurred in leks and the episodes varied with the time of day, courtship being most frequent between Zeitgeber time (ZT) 3 and ZT 7, peaking at ZT 5-6. Copulations occurred between ZT 2 and ZT 8, with a higher frequency between ZT 5-7 and a peak at ZT 6. Mean duration was 0.28 ± 0.03 min/male (range: 5-163 min). Males in the leks attempted to copulate mainly between ZT 3 and ZT 7 with a peak at ZT 6, and males outside leks peaked at ZT 7. The different timing of sexual behaviors among related sympatric species, including A. zenildae, may contribute to species isolation.

  19. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.

    PubMed

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.

  20. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena

    PubMed Central

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385

  1. Development and Oviposition Preference of House Flies and Stable Flies (Diptera: Muscidae) in Six Substrates From Florida Equine Facilities.

    PubMed

    Machtinger, E T; Geden, C J; Hogsette, J A; Leppla, N C

    2014-11-01

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), common pests on equine facilities, were studied in the laboratory to determine the success and duration of larval development and oviposition preferences on six substrates commonly found on equine facilities. Substrates tested were hay soiled with urine and manure, fresh horse manure, pine shaving bedding soiled with urine and manure (<12 h old), pine shaving bedding soiled with urine and manure (aged >72 h in a manure pile), builders sand bedding soiled with urine and manure aged 3 d, and soil from an overgrazed pasture mixed with urine and manure of variable age. House fly larvae failed to develop into adults in hay, soil, and sand substrates. Stable flies preferred to oviposit on substrates with plant material and not on fresh manure. However, when eggs were added to the substrates, pupariation was maximal in fresh manure and the fresh pine shaving substrate. Stable flies developed in all six equine substrates, but development was less successful on the substrates with soil. In choice tests, fresh manure and the fresh pine shaving substrates were the most attractive for house fly oviposition. These substrates also yielded the greatest number of house fly puparia from artificially added eggs. An understanding of oviposition preferences and differential larval development of house flies and stable flies on these substrates may help develop options for reducing pest populations by effectively managing equine waste and selecting appropriate bedding materials.

  2. Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in south Georgia.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2005-01-01

    The black soldier fly, Hermetia illucens (L.), is thought to colonize corpses 20-30 days postmortem. However, recent observations indicate this might not be true for all cases. Therefore, we conducted a study examining colonization by the black soldier fly and other Diptera on pig carrion in a plowed field in southern Georgia from 20 September through 21 February. Our data indicate black soldier flies could colonize a corpse within the first week after death. Knowing this information could prevent a serious mistake in estimating the time at which a corpse is colonized by this species. This study also represents the first record of Chrysomya rufifacies in Georgia. PMID:15831010

  3. Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in south Georgia.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2005-01-01

    The black soldier fly, Hermetia illucens (L.), is thought to colonize corpses 20-30 days postmortem. However, recent observations indicate this might not be true for all cases. Therefore, we conducted a study examining colonization by the black soldier fly and other Diptera on pig carrion in a plowed field in southern Georgia from 20 September through 21 February. Our data indicate black soldier flies could colonize a corpse within the first week after death. Knowing this information could prevent a serious mistake in estimating the time at which a corpse is colonized by this species. This study also represents the first record of Chrysomya rufifacies in Georgia.

  4. Classical Olfactory Conditioning in the Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Zeng, Xin Nian

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning. PMID:25837420

  5. A protocol for storage and long-distance shipment of Mediterranean fruit fly (Diptera: Tephritidae) eggs. 1. Effect of temperature, embryo age , and storage time on survival and quality

    SciTech Connect

    Caceres, C.; Wornoayporn, V.; Islam, S.M.; Ahmad, S.

    2007-03-15

    The operational use of Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann), genetic sexing strains in Sterile Insect Technique applications can be maximized by developing methods for effective shipment of eggs. This would enable a central production facility to maintain the relevant mother stocks and large colonies to supply eggs to satellite centers that would mass produce only males for irradiation and release. In order to achieve this, the survival of medfly embryos of different ages was assessed after storage at 5, 10, 15, 20, and 25 deg. C in water for different periods of time. Survival was affected by all 3 variables, i.e., embryo age, water temperature, and length of storage. Storage of embryos at any temperature for 120 h resulted in almost no survival. Controlling the age of the embryo at the time of the temperature treatment is crucial for the success of this procedure. Embryos collected between 0 to 12 h after oviposition and pre-incubated at 25 deg. C for 12 h provide a suitable 72 h window for shipment when maintained between 10 to 15 deg. C. Under these conditions, no significant reductions in survival during all the developmental stages were observed. (author) [Spanish] El uso operacional de cepas de la mosca del mediterraneo Ceratitis capitata (Wiedemann) en las cuales es posible separar los sexos a traves de mecanismos geneticos para su utilizacion en la Tecnica del Insecto Esteril (TIE), puede ser maximizado con el desarrollo de metodos efectivos para el envio y transporte de huevos. Esto permite que un laboratorio de produccion centralizada mantenga las respectivas colonias responsables por la produccion de huevos para este abastecer laboratorios satelites responsables por la produccion masiva de solamente machos para subsiguiente irradiacion y liberacion. Para ser posible esta alternativa fue evaluada la supervivencia de embriones de diferentes edades despues de su almacenamiento en agua a 5, 10, 15, 20 y 25 deg. C por diferentes

  6. A protocol for storage and long-distance shipment of Mediterranean fruit fly (Diptera: Tephritidae) eggs. II. Assessment of the optimal temperature and the substrate for male-only production

    SciTech Connect

    Maman, E.; Caceres, C.

    2007-03-15

    The present study has been conducted to assess the effect and interaction of various storage substrates and conditions on eggs of the Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann). Tests were carried out with the genetic sexing strain VIENNA 8/D53, a strain that carries a temperature sensitive lethal (tsl) mutation that allows the selective killing of female zygotes. This study identifies strategies to enhance the storage and transport conditions through assessment of effect on egg, pupal and adult survival in order to facilitate the establishment of satellite mass rearing facilities for the production of male medflies. Eggs were immersed in two different substrates and stored at different temperatures and for different time periods. Findings from this study suggest that egg storage periods, and to some extent, the storage substrates have significant effects on pupal and adult survival. For 72-h storage periods, the eggs preserved in agar solution at 10 deg. C produced the most pupae. There was an inverse relationship between the concentration of dissolved oxygen in the substrate during storage and the quality and survival of the stored/transported eggs. Apparently low levels of dissolved oxygen reduce metabolic rates, allowing the storage period to be prolonged. (author) [Spanish] El presente estudio fue conducido para evaluar el efecto e interaccion de varios substratos y condiciones de almacenamiento en huevos de la mosca mediterranea de la fruta, Ceratitis capitata (Wiedemann). Las pruebas se realizaron con la cepa en la cual es posible separar los sexos geneticamente VIENNA 8/D53, la cual contiene una mutacion letal sensible a la temperatura que permite la eliminacion selectiva de los zigotos femeninos. Este estudio identifica estrategias para mejorar las condiciones de almacenamiento y transporte por medio de la evaluacion de su efecto en la supervivencia de huevos, pupas y adultos, esto para facilitar el establecimiento de laboratorios

  7. Ultrastructure of the Antennal Sensillae of Male and Female Peach Fruit Fly, Bactrocera zonata

    PubMed Central

    Awad, Azza A.; Ali, Nashat A.; Mohamed, Hend O.

    2014-01-01

    Antennal morphology and funicular sensillae of male and female peach fruit flies, Bactrocera zonata (Saunders) (Diptera: Tephritidae), were studied with scanning electron microscopy (SEM). This study focused on the sensillae found on the antennal segments (scape, pedicel, and flagellum or funiculus that bears the arista) of B. zonata. Antennal segments of females tended to be larger than those of the males. The first two antennal segments, scape and pedicel, were heavily covered with microtrichia and bear bristles. Numerous microtrichia as well as trichoid (I, II), basiconic, clavate, and coeloconic sensillae were observed on the funiculus. SEM studies showed some differences in size and also in position of some sensillae on the antennae of the females of B. zonata. The sensillae found on the funiculus, such as trichoid and basiconic sensillae, were significantly larger in females. PMID:25373192

  8. Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Long, Jay; Miller, Neil W; Delate, Kathleen; Jackson, Charles G; Uchida, Grant K; Bautista, Renato C; Harris, Ernie J

    2004-10-01

    Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii. PMID:15568340

  9. Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow

    PubMed Central

    Cabrera, Stephanie; Theobald, Jamie C.

    2013-01-01

    As a fly flies through its environment, static objects produce moving images on its retina, and this optic flow is essential for steering and course corrections. Different types of rotation and translation produce unique flow fields, which fly brains are wired to identify. However, a feature of optic flow unique to translational motion is that adjacent images may move across the retina at different speeds, depending on their distance from the observer. Many insects take advantage of this depth cue, called motion parallax, to determine the distance to objects. We wanted to know if differential object speeds affect the corrective responses of fruit flies when they experience unplanned course deviations. We presented tethered flying flies with optic flow and measured their corrective responses to sideways perturbations of images with different relative forward speeds. We found that flying flies attend to the relative speed of dots during forward motion, and adjust their corrective responses to sideslip deviations depending on this cue. With no other distinguishing features (such as brightness or size), flies mounted a greater response to sideways deviations that were signaled by faster moving dots in the forward flow field, those that appeared radially closer by their speeds. This is consistent with the interpretation that fruit flies attend to seemingly nearer objects, and correct more strongly when they indicate a perturbation. PMID:23847482

  10. Persistence and Retention of Porcine Reproductive and Respiratory Syndrome Virus in Stable Flies (Diptera: Muscidae).

    PubMed

    Rochon, K; Baker, R B; Almond, G W; Gimeno, I M; Pérez de León, A A; Watson, D W

    2015-09-01

    We investigated the acquisition of porcine reproductive and respiratory syndrome (PRRS) virus by the stable fly (Diptera: Muscidae; Stomoxys calcitrans (L.)) through a bloodmeal, and virus persistence in the digestive organs of the fly using virus isolation and quantitative reverse-transcription PCR (qRT-PCR). Stable flies were fed blood containing live virus, modified live vaccine virus, chemically inactivated virus, or no virus. Stable flies acquired PRRSV from the bloodmeal and the amount of virus in the flies declined with time, indicating virus did not replicate in fly digestive tissues. Virus RNA was recovered from the flies fed live virus up to 24 h postfeeding using virus isolation techniques and 96 h using qRT-PCR. We further examined the fate of PRRSV in the hemolymph of the flies following intrathoracic injection to bypass the midgut barrier. PRRSV was detected in intrathoracically inoculated adult stable flies for 10 d using qRT-PCR. In contrast to what we observed in the digestive tract, detectable virus quantities in the intrathoracically inoculated stable flies followed an exponential decay curve. The amount of virus decreased fourfold in the first 3 d and remained stable thereafter, up to 10 d.

  11. Simulium (Inaequalium) marins, a new species of black fly (Diptera: Simuliidae) from inselbergs in Brazil.

    PubMed

    Pepinelli, Mateus; Hamada, Neusa; Currie, Douglas C

    2009-08-01

    A new species of black fly, Simulium (Inaequalium) marins (Diptera: Simuliidae), is described based on the male, female, pupa and larva. This new species was collected from two localities: a small stream on the Pico dos Marins, a high mountain with granite outcrops in Piquete County, state of São Paulo, and in a small stream in the Serra dos Orgãos National Park, state of Rio de Janeiro, Brazil.

  12. Black flies (Diptera: Simuliidae) of Turkish Thrace, with a new record for Turkey

    PubMed Central

    Çalışkan, Hakan; Şahin, Yalçın

    2015-01-01

    Abstract Background This paper includes 2742 specimens of 18 species of black flies (Diptera: Simuliidae) collected from 132 lotic sites in Turkish Thrace, the European part of Turkey, in the early summer of 2002 and 2003 and the spring of 2005 and 2006. New information All species are recorded from this region for the first time, and Metacnephia nigra (Rubtsov, 1940) is a new record for Turkey. Distributional and taxonomical remarks are given for each species. PMID:25941452

  13. First crane fly from the Upper Jurassic of Australia (Diptera: Limoniidae).

    PubMed

    Oberprieler, Stefanie K; Krzemiński, Wiesław; Hinde, Jack; Yeates, David K

    2015-01-01

    The first crane fly (Diptera: Tipuloidea) fossil discovered in the Upper Jurassic Talbragar Fish Bed in Australia is described and illustrated. Eotipula grangeri sp. nov., described from a single specimen, is assigned to the family Limoniidae based primarily on the conformation of wing veins. It is the second and oldest record of Limoniidae from Australia, and the first of Jurassic age from the southern hemisphere. PMID:26624125

  14. Molecular Phylogeny and Identification of the Peach Fruit Fly, Bactrocera zonata, Established in Egypt

    PubMed Central

    Abd-El-Samie, Emtithal M.; El Fiky, Zaki A.

    2011-01-01

    The genetic structure of the Egyptian peach fruit fly (Bactrocera zonata (Saunders) (Diptera: Tephritidae)) population was analyzed using total RNA from adult females. A portion of mitochondrial cytochrome oxidase I (COI), 369 bp was amplified using RT-PCR, and was sequenced and analyzed to clarify the phylogenetic relationship of B. zonata established in Egypt. The data suggested that the gene shared a similarity in sequence compared to Bactrocera COI gene found in GenBank. Molecular phylogenetic analyses were performed based on nucleotide sequences in order to examine the position of the Egyptian population among many other species of fruit flies. The results indicate that four accession numbers of B. zonata (three from New Zealand and one from India) are closely related, while the Egyptian B. zonata are close to the 71 accession numbers of Bactrocera include one B. zonata from New Zealand. These two B. zonata from Egypt and New Zealand showed a close relationship in neighbor—joining analysis using the seven accession numbers of B. zonata. In addition, a theoretical restriction map of the homology portion of the COI gene was constructed using 212 restriction enzymes obtained from the restriction enzyme database to identify the Egyptian and New Zealand B. zonata. PMID:22958094

  15. House fly (Musca domestica) (Diptera: Muscidae) mortality after exposure to commercial fungal formulations in a sugar bait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies (Musca domestica L.) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several strains are commercially available. Three str...

  16. An annotated checklist of the horse flies (Diptera: Tabanidae) of Lebanon with remarks on ecology and zoogeography: Pangoniinae and Chrysopsinae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the horse fly fauna (Diptera: Tabanidae) of Lebanon is fragmentary while in most neighboring countries it has been fairly well researched. Therefore USDA-CMAVE scientists and Israeli scientists worked cooperatively to survey the species of horse flies in the Lebanon. Chrysops flavipes ...

  17. Activity patterns and parasitism rates of fire ant decapitating flies (Diptera:Phoridae:Pseudacteon spp.) in their native Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: This work describes the annual and daily activity patterns of two parasitoid fly communities of the fire ant S. invicta (Hymenoptera: Formicidae) in their native Argentina. Pseudacteon (Diptera: Phoridae) flies were censused monthly for one year at two sites in northwestern Corr...

  18. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  19. Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet.

    PubMed

    Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas

    2014-01-01

    Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock, were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species' distribution in peninsular Thailand and other parts of the world.

  20. Effect of Temperature on the Development and Survival of Immature Stages of the Carambola Fruit Fly, Bactrocera carambolae, and the Asian Papaya Fruit Fly, Bactrocera papayae, Reared On Guava Diet

    PubMed Central

    Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas

    2014-01-01

    Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute wellrecognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock, were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species' distribution in peninsular Thailand and other parts of the world. PMID:25368070

  1. Dispersal of Rhagoletis cerasi in Commercial Cherry Orchards: Efficacy of Soil Covering Nets for Cherry Fruit Fly Control

    PubMed Central

    Daniel, Claudia; Baker, Brian

    2013-01-01

    Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards. PMID:26466801

  2. Predicting fruit fly's sensing rate with insect flight simulations.

    PubMed

    Chang, Song; Wang, Z Jane

    2014-08-01

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.

  3. Mating Reverses Actuarial Aging in Female Queensland Fruit Flies

    PubMed Central

    Yap, Sarsha; Fanson, Benjamin G.; Taylor, Phillip W.

    2015-01-01

    Animals that have a long pre-reproductive adult stage often employ mechanisms that minimize aging over this period in order to preserve reproductive lifespan. In a remarkable exception, one tephritid fruit fly exhibits substantial pre-reproductive aging but then mitigates this aging during a diet-dependent transition to the reproductive stage, after which life expectancy matches that of newly emerged flies. Here, we ascertain the role of nutrients, sexual maturation and mating in mitigation of previous aging in female Queensland fruit flies. Flies were provided one of three diets: ‘sugar’, ‘essential’, or ‘yeast-sugar’. Essential diet contained sugar and micronutrients found in yeast but lacked maturation-enabling protein. At days 20 and 30, a subset of flies on the sugar diet were switched to essential or yeast-sugar diet, and some yeast-sugar fed flies were mated 10 days later. Complete mitigation of actuarial aging was only observed in flies that were switched to a yeast-sugar diet and mated, indicating that mating is key. Identifying the physiological processes associated with mating promise novel insights into repair mechanisms for aging. PMID:26147734

  4. Resistance of Mexican fruit fly to quarantine treatments of high-pressure processing combined with cold.

    PubMed

    Castañón-Rodríguez, Juan F; Vargas-Ortiz, Manuel A; Montoya, Pablo; García, Hugo S; Velazquez, Gonzalo; Ramírez, José A; Vázquez, Manuel

    2011-07-01

    Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae) is one of the most important insects infesting fruits. Although high pressure has been proposed as an alternative quarantine process for this pest, conditions applied to destroy eggs and larvae can also damage the fruits. The objective of this study was to assess the biological viability of A. ludens eggs treated by high-pressure processing at 0°C, establishing whether nondestroyed eggs and larvae preserved their ability to develop and reproduce. One-, 2-, 3-, and 4-day-old eggs were pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min. The hatching ability of pressurized eggs and their capacity to develop larvae, pupae, and reproductive adults were evaluated. The ability of pressurized larvae to pupate was also registered. The results showed that most of the eggs that resisted the treatments were able to produce adults with capability to reproduce a new generation of A. ludens flies. Larvae were less resistant than eggs. All larvae were killed at 90 MPa for 9 min. The pressure induced the expression of heat shock proteins (HSP) in second- and third-instar larvae. The HSP showed a baroprotective effect in A. ludens larvae. These results are relevant to the industry because they show that eggs of insects infesting fruits treated by high-pressure processing were able to pupate after treatments. This indicates that efforts must be addressed to destroy all eggs because most of the surviving organisms could reach an adult stage and reproduce.

  5. TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies.

    PubMed

    Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H

    2008-06-15

    Modern neuroscience and the interest in biomimetic control design demand increasingly sophisticated experimental techniques that can be applied in freely moving animals under realistic behavioral conditions. To explore sensorimotor flight control mechanisms in free-flying fruit flies (Drosophila melanogaster), we equipped a wind tunnel with a Virtual Reality (VR) display system based on standard digital hardware and a 3D path tracking system. We demonstrate the experimental power of this approach by example of a 'one-parameter open loop' testing paradigm. It provided (1) a straightforward measure of transient responses in presence of open loop visual stimulation; (2) high data throughput and standardized measurement conditions from process automation; and (3) simplified data analysis due to well-defined testing conditions. Being based on standard hardware and software techniques, our methods provide an affordable, easy to replicate and general solution for a broad range of behavioral applications in freely moving animals. Particular relevance for advanced behavioral research tools originates from the need to perform detailed behavioral analyses in genetically modified organisms and animal models for disease research.

  6. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae)

    PubMed Central

    Andersson, Martin N.; Corcoran, Jacob A.; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D.; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1–2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  7. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae)

    PubMed Central

    Andersson, Martin N.; Corcoran, Jacob A.; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D.; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1–2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  8. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae).

    PubMed

    Andersson, Martin N; Corcoran, Jacob A; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1-2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  9. The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing.

    PubMed

    Choudhary, Jaipal S; Naaz, Naiyar; Prabhakar, Chandra S; Rao, Mathukumalli Srinivasa; Das, Bikash

    2015-09-15

    Mitochondrial genome can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. The complete 15,935 bp mitochondrial genome of Bactrocera zonata (Diptera: Tephritidae), is assembled from Illumina MiSeq read data. The mitogenome information for B. zonata was compared to the homologous sequences of other tephritids. Annotation indicated that the structure and orientation of 13 protein coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.34% and exhibits a slightly positive AT skew, which is similar to other known tephritid species. All PCGs are initiated by ATN codons, except for cox1 with TCG and atp8 with GTG. Nine PCGs use a common stop codon of TAA or TAG, whereas the remaining four use an incomplete termination codon T or TA likely to be completed by adenylation. All tRNAs have the typical clover-leaf structure, with an exception for trnS((AGN)). Four short intergenic spacers showed high degree of conservation among B. zonata and other ten tephritids. A poly(T) stretch at the 5' end followed by [TA(A)]n-like stretch and a tandem repeats of 39 bp has been observed in CR. The analysis of gene evolutionary rate revealed that the cox1 and atp6 exhibits lowest and highest gene substitution rates, respectively than other genes. The phylogenetic relationships based on Maximum Likelihood method using all protein-coding genes and two ribosomal RNA genes confirmed that B. zonata is closely related to Bactrocera correcta, Bactrocera carambolae, Bactrocera papayae, and Bactrocera philippinensis and Bactrocera dorsalis belonging to B. dorsalis species complex forms a monophyletic clade, which is in accordance with the traditional morphological classification and recent molecular works. PMID:26031235

  10. Update on Bait Stations for Tephritid Fruit Fly Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attract-and-kill devices, otherwise known as bait stations, are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a number of bait...

  11. Ammonia as a component of fruit fly attractants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted to protein baits. Synthetic lures based on the principal components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important Ana...

  12. Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit fly infestation can be a serious problem in pickling cucumber production. In the United States and many other countries, there is zero tolerance for fruit flies in pickled cucumber products. Currently, processors rely on manual inspection to detect and remove fruit fly-infested cucumbers, whic...

  13. Transcriptome of the egg parasitoid Fopius arisanus, an important biocontrol tool for Tephritid fruit fly suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The Braconoid wasp Fopius arisanus (Sonan) has been utilized for biological control of the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis), both phytophagous fruit flies pest of economic importance in Hawaii. We have sequenced and assembled t...

  14. Detection of Fruit Fly Infestation in Pickling Cucumbers using Hyperspectral Imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit fly infestation can be a serious problem in pickling cucumber production. In the United States and many other countries, there is zero tolerance for fruit flies in pickled products. Currently, processors rely on manual inspection to detect and remove fruit fly-infested cucumbers, which is labo...

  15. Vector competence of the stable fly (Diptera: Muscidae) for West Nile virus.

    PubMed

    Doyle, Michael S; Swope, Bethany N; Hogsette, Jerome A; Burkhalter, Kristen L; Savage, Harry M; Nasci, Roger S

    2011-05-01

    In 2006-2007, stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), were suspected of being enzootic vectors of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) during a die-off of American white pelicans (Pelecanus erythrorhynchos Gmelin) (Pelecanidae) in Montana, USA. WNV-positive stable flies were observed feeding en masse on incapacitated, WNV-positive pelicans, arousing suspicions that the flies could have been involved in WNV transmission among pelicans, and perhaps to livestock and humans. We assessed biological transmission by infecting stable flies intrathoracically with WNV and testing them at 2-d intervals over 20 d. Infectious WNV was detected in fly bodies in decreasing amounts over time for only the first 6 d postinfection, an indication that WNV did not replicate within fly tissues and that stable flies cannot biologically transmit WNV. We assessed mechanical transmission using a novel technique. Specifically, we fed WNV-infected blood to individual flies by using a cotton swab (i.e., artificial donor), and at intervals of 1 min-24 h, we allowed flies to refeed on a different swab saturated with WNV-negative blood (i.e., artificial recipient). Flies mechanically transmitted viable WNV from donor to recipient swabs for up to 6 h postinfection, with the majority of the transmission events occurring within the first hour. Flies mechanically transmitted WNV RNA to recipient swabs for up to 24 h, mostly within the first 6 h. Given its predilection to feed multiple times when disturbed, these findings support the possibility that the stable fly could mechanically transmit WNV.

  16. Studying aggression in Drosophila (fruit flies).

    PubMed

    Mundiyanapurath, Sibu; Certel, Sarah; Kravitz, Edward A

    2007-01-01

    Aggression is an innate behavior that evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, hormonal and environmental factors. In many organisms, aggression is critical to survival but controlling and suppressing aggression in distinct contexts also has become increasingly important. In recent years, invertebrates have become increasingly useful as model systems for investigating the genetic and systems biological basis of complex social behavior. This is in part due to the diverse repertoire of behaviors exhibited by these organisms. In the accompanying video, we outline a method for analyzing aggression in Drosophila whose design encompasses important eco-ethological constraints. Details include steps for: making a fighting chamber; isolating and painting flies; adding flies to the fight chamber; and video taping fights. This approach is currently being used to identify candidate genes important in aggression and in elaborating the neuronal circuitry that underlies the output of aggression and other social behaviors.

  17. Fruit Flies Medicate Offspring After Seeing Parasites

    PubMed Central

    Kacsoh, Balint Z.; Lynch, Zachary R.; Mortimer, Nathan T.; Schlenke, Todd A.

    2013-01-01

    Hosts have numerous defenses against parasites, of which behavioral immune responses are an important but under-appreciated component. Here we describe a behavioral immune response Drosophila melanogaster utilizes against endoparasitoid wasps. We found that when flies see wasps they switch to laying eggs in alcohol-laden food sources that protect hatched larvae from infection. This oviposition behavior change, mediated by neuropeptide F, is retained long after wasps are removed. Flies respond to diverse female larval endoparasitoids but not to pupal endoparasitoids or males, showing they maintain specific wasp search images. Furthermore, the response evolved multiple times across the genus Drosophila. Our data reveal a behavioral immune response based on anticipatory medication of offspring, and outline a non-associative memory paradigm based on innate parasite recognition by the host. PMID:23430653

  18. Limits to the host range of the highly polyphagous tephritid fruit fly Anastrepha ludens in its natural habitat.

    PubMed

    Birke, A; Acosta, E; Aluja, M

    2015-12-01

    Anastepha ludens (Diptera: Tephritidae) is a highly polyphagous fruit fly that is able to develop in a wide range of hosts. Understanding the limits of this pest's host range could provide valuable information for pest management and plant breeding for pest resistance. Previous studies have shown that guavas (Psidium guajava (Myrtaceae) L.), are not attacked under natural conditions by A. ludens. To understand this phenomenon, guavas were exposed to natural infestation by A. ludens and to other fruit fly species that infest guavas in nature (Anastrepha striata Schiner, Anastepha fraterculus (Wiedemann), Anastepha obliqua (Macquart)). Once the susceptible phenological stage of guavas was determined, fruit infestation levels were compared between A. ludens and A. striata. Choice and non-choice tests were performed under field-cage conditions. Under field conditions, guavas were susceptible to A. striata and A. fraterculus attack all the way from when fruit was undeveloped to when fruit began to ripen. No infestation by A. ludens was recorded under natural conditions. Similar results were obtained when forced exposures were performed, indicating that unripe guavas were preferred by A. striata over ripe fruit, and that infestation rates were higher at early fruit maturity stages. Under forced oviposition conditions, A. ludens larvae were unable to develop in unripe guavas but did so in fully ripe fruit. However, A. ludens fitness parameters were dramatically affected, exhibiting reduced survival and reduced pupal weight compared to conspecifics that developed in a natural host, grapefruit. We confirm that P. guajava should not be treated as a natural host of this pestiferous species, and suggest that both behavioral aspects and the fact that larvae are unable to adequately develop in this fruit, indeed represent clear limits to A. ludens's broad host range. PMID:26343267

  19. Superparasitism in the Fruit Fly Parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) and the Implications for Mass Rearing and Augmentative Release

    PubMed Central

    Montoya, Pablo; Pérez-Lachaud, Gabriela; Liedo, Pablo

    2012-01-01

    Superparasitism, a strategy in which a female lays eggs in/on a previously parasitized host, was attributed in the past to the inability of females to discriminate between parasitized and non-parasitized hosts. However, superparasitism is now accepted as an adaptive strategy under specific conditions. In fruit fly parasitoids, superparasitism has mainly been studied as concerns the new association between Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) and the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae), wherein this phenomenon is a common occurrence in both mass rearing and field conditions. Studies of this species have shown that moderate levels of superparasitism result in a female-biased sex ratio and that both massreared and wild females superparasitize their hosts without detrimental effects on offspring demographic parameters, including longevity and fecundity. These studies suggest that superparasitism in this species is advantageous. In this paper, we review superparasitism in D. longicaudata, discuss these findings in the context of mass rearing and field releases and address the possible implications of superparasitism in programs employing augmentative releases of parasitoids for the control of fruit fly pests. PMID:26466718

  20. Carbohydrate diet and reproductive performance of a fruit fly parasitoid, Diachasmimorpha tryoni.

    PubMed

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller understanding of the parasitoid's reproductive biology. In this study, mating status, fecundity, and size of female D. tryoni were determined under laboratory conditions. A range of pre-release diets, 10% concentrations of honey, white sugar, and golden syrup, were also assessed in the laboratory. Mature egg loads and progeny yields of mated and unmated parasitoid females were statistically similar, demonstrating that mating status was not a determinant of parasitoid performance. Female lifespan was not negatively impacted by the act of oviposition, though larger females carried more eggs than smaller individuals, indicating a need to produce large females in mass-rearing facilities to maintain this trait. White sugar gave the highest adult female lifespan, while honey and golden syrup shared similar survivorship curves, all significantly greater compared with water control females. Pre-release feeding of D. tryoni, particularly with white sugar, may enhance the impact of released parasitoids on B. tryoni. These findings are important because honey is currently the standard diet for mass-reared braconids, but white sugar is less than one-third the cost of other foods; however further work is required to assess postrelease performance of the parasitoid.

  1. Carbohydrate Diet and Reproductive Performance of a Fruit Fly Parasitoid, Diachasmimorpha tryoni

    PubMed Central

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller understanding of the parasitoid's reproductive biology. In this study, mating status, fecundity, and size of female D. tryoni were determined under laboratory conditions. A range of pre-release diets, 10% concentrations of honey, white sugar, and golden syrup, were also assessed in the laboratory. Mature egg loads and progeny yields of mated and unmated parasitoid females were statistically similar, demonstrating that mating status was not a determinant of parasitoid performance. Female lifespan was not negatively impacted by the act of oviposition, though larger females carried more eggs than smaller individuals, indicating a need to produce large females in mass-rearing facilities to maintain this trait. White sugar gave the highest adult female lifespan, while honey and golden syrup shared similar survivorship curves, all significantly greater compared with water control females. Pre-release feeding of D. tryoni, particularly with white sugar, may enhance the impact of released parasitoids on B. tryoni. These findings are important because honey is currently the standard diet for mass-reared braconids, but white sugar is less than one-third the cost of other foods; however further work is required to assess postrelease performance of the parasitoid. PMID:24224552

  2. Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae).

    PubMed

    Dang, X L; Wang, Y S; Huang, Y D; Yu, X Q; Zhang, W Q

    2010-11-01

    The house fly, Musca domestica L. (Diptera: Muscidae), is involved in phoretic movement of pathogenic agents, but it has a very efficient defense mechanism against infection. It is believed that antimicrobial peptides play a significant role in the defense system of the house fly. Here, we isolated a peptide from the immunized house fly pupae, measured its molecular mass (3987.6 Da) by matrix-assisted laser desorption ionization/time of flight-mass spectrometry, and determined its amino acid sequence by using the Procise Protein Sequencing System (Applied Biosystems, Foster City, CA). The peptide was confirmed as a member of the insect defensin family. It displayed high activity against gram-positive bacteria but lower activity against gram-negative bacteria and fungi. Reverse transcription-polymerase chain reaction showed that the house fly defensin gene was constitutively expressed in naive pupae and strongly up-regulated after immunization. House fly defensin is an amphiphilic peptide with a structure similar to that of the CSalphabeta scaffold of insect defensin A from the flesh fly, Phormia terraenovae Robineau-Desvoidy. To our knowledge, this is the first isolated and characterized house fly antimicrobial peptide, and our work may provide useful information for developing pharmacologically active antimicrobial agents.

  3. Examination of nocturnal blow fly (Diptera: Calliphoridae) oviposition on pig carcasses in mid-Michigan.

    PubMed

    Zurawski, Kristi N; Benbow, M Eric; Miller, James R; Merritt, Richard W

    2009-05-01

    The most common application of forensic entomology involves estimating a portion of the postmortem interval (PMI), which usually assumes that blow flies (Diptera: Calliphoridae) do not oviposit nocturnally. Research objectives were to (1) investigate blow fly nocturnal oviposition in relation to sunrise and sunset in Michigan; (2) evaluate abiotic variables postulated to affect blow fly oviposition; and (3) conduct laboratory experiments testing blow fly activity under complete darkness. In 2006, nocturnal oviposition was evaluated in relation to sunset by exposing pigs to fly colonization at 1-h intervals, beginning 2 h before and ending 2 h after sunset. This test was replicated in 2007; however, replicate pigs were placed in the field 2 h after sunset, and hourly observations were made into the following morning. Oviposition was never observed at night. In a laboratory experiment, Lucilia sericata (Meigen), never oviposited on liver hanging above or placed directly on the ground in a completely dark room, Another dark room laboratory study documented that adult flies launched into the air could not fly. This study documents that the probability of nocturnal oviposition on pig carcasses in Michigan was extremely low to nonexistent. These results should be considered when estimating a portion of the PMI in forensic entomological investigations.

  4. Reproductive Organ of Blow Fly, Chrysomya megacephala (Diptera: Calliphoridae): Ultrastructural of Testis

    PubMed Central

    Sukontason, Kabkaew L.; Chaiwong, Tarinee; Chaisri, Urai; Kurahashi, Hiromu; Sanford, Michelle; Sukontason, Kom

    2011-01-01

    This work presents the ultrastructure of testis of the medically important blow fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) using light microscopy and electron microscopy. Reproductive organ of males was dissected to determine the testis in the pupal stage, 3-day-old flies and 7-day-old flies and observed under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM displayed a smooth surface which is occasionally penetrated by tracheoles. TEM of the testis in the pupal stage presents the thick testis wall covering underdeveloped cells containing a variable size of an electron-dense globule. For the 3-day-old males, the testicular wall is formed by an external layer, a peritoneal sheath, a muscular layer, a basement membrane, and a follicular epithelium. Follicular epithelium presented developing spermatozoa. Regarding the 7-day-old males, development of spermatozoa is apparent, displaying nucleus, centriolar adjunct, axoneme, and mitochondrial derivatives, with the 9 + 9 + 2 microtubule pattern of axoneme. PMID:21845212

  5. The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).

    PubMed

    Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N

    2014-02-01

    Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.

  6. Blow fly maggots (Diptera: Calliphoridae)from a human corpse in a vehicle.

    PubMed

    Sribanditmongkol, Pongruk; Monum, Tawachai; Wannasan, Anchalee; Tomberlin, Jeffery K; Sukontason, Kom; Sukontason, Kabkaew L

    2014-09-01

    Correct species identification and development data of insects associated with a cadaver can help estimate the time of colonization which could be used to infer a minimal post-mortem interval (minPMI) for forensic investigations. Human remains are found in a variety of locations ranging from open fields to inside automobiles. We report the investigation of blow fly larvae collected from a decomposing body located in the trunk of a car. There were two blow fly (Diptera: Calliphoridae) species: Achoetandrus rufifacies (Macquart) and Chrysomya megacephala (Fabricius). Blow flies can enter the vehicle and colonize human remains. Based on age estimations of third stage larvae of A. rufifacies, the minPMI was estimated to be 4-5 days, which was within the range of 3-5 days estimated by other forensically relevant information.

  7. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).

    PubMed

    Fanson, Benjamin G; Weldon, Christopher W; Pérez-Staples, Diana; Simpson, Stephen J; Taylor, Phillip W

    2009-09-01

    Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

  8. [MOTH FLIES (DIPTERA, PSYCHODIDAE) AS A NEW MEDICAL DISINSECTION OBJECT].

    PubMed

    Alekseev, M A

    2015-01-01

    This paper is dedicated to moth flies, a new medical disinsection object in our country. These insects are common in urban areas, generally in the premises with poor sanitary conditions. Moth fly larvae may cause accidental human urinary miasmata; imagoes, if many, become a worrisome factor; a source of allergy, and potential mechanical vectors of human diseases. In this connection, it is necessary to implement measures to control the number of the moth flies when the latter are detected on the objects particularly in therapeutic and preventive facilities and public catering esablishments.

  9. Predicting Fruit Fly's Sensing Rate From Insect Flight Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Jane; Chang, Song

    2013-11-01

    Without sensory feedbacks, flies cannot fly. Exactly how sensory feedback controls work in flying insects is a complex puzzle to solve. What do insects measure in order to stabilize their flight? What kinds of neural computations and muscle activities are involved in order to correct their flight course or to turn? How often and how fast do animals adjust their wings to remain stable? To understand the algorithms used by insects to control their dynamic instability, we have developed a simulation tool to study flapping flight, where motions of the insect body and wings are coupled instantaneously. To stabilize the flight in the simulation, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds both on the sensing rate and the delay time between sensing and actuation. Interpreting these findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we give a sharper bound on the sensing rate and further reason that fruit flies sense their kinematic states every wing-beat in order to stabilize their flight.

  10. An improved quarantine method for mangoes against the Mexican fruit fly based on high-pressure processing combined with heat.

    PubMed

    Velazquez, Gonzalo; Candelario, Hugo Ernesto; Ramírez, José A; Montoya, Pablo; Loera-Gallardo, Jesús; Vázquez, Manuel

    2010-05-01

    The Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae) is one of the most important insects infesting mangoes, citrus, and other fruits in Mexico and other Latin-American countries. Quarantine methods approved to destroy this insect decrease the shelf life of commodities. The objective of this study was to determine the effect of high-pressure processing using an initial temperature of 50 degrees C on the survivorship of eggs and larvae of the Mexican fruit fly. Eggs and larvae were pressurized at 25, 50, 75, 100, or 150 MPa for 0, 5, 10, or 20 min. The hatching ability of pressurized eggs of 1, 2, 3, and 4 days old and survivorship of the first, second, and third instars were registered. Further, the ability to pupate was studied in surviving third instars. The results showed that eggs were more resistant than larvae to the high-pressure processing. Treatments at 150 MPa at initial 50 degrees C for 10 min destroyed all eggs and larvae of A. ludens, indicating that this process might be useful as a quarantine method for infested mangoes or other fruits.

  11. Assessing Insecticide Susceptibility of Laboratory Lutzomyia longipalpis and Phlebotomus papatasi Sand Flies (Diptera: Psychodidae: Phlebotominae).

    PubMed

    Denlinger, David S; Lozano-Fuentes, Saul; Lawyer, Phillip G; Black, William C; Bernhardt, Scott A

    2015-09-01

    Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose-response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management.

  12. Environmental factors affecting early carcass attendance by four species of blow flies (Diptera: Calliphoridae) in Texas.

    PubMed

    Mohr, Rachel M; Tomberlin, Jeffery K

    2014-05-01

    As the most common primary colonizer of carrion, adult blow flies (Diptera: Calliphoridae) play an important role in initiating arthropod-mediated breakdown of soft tissue; however, their timing is highly variable. This variability complicates the estimation of precolonization intervals or periods of insect activity by forensic entomologists. In this study, the size of the adult blow fly on swine carcasses was compared with various environmental conditions including time of day, temperature, wind speed, and light levels. Four trials were conducted: two in August and September 2008, one in January 2009, and one in February-March 2010. Of the measured variables, time of day was the only consistent factor explaining the population size of blow fly on a carcass, although precipitation and high winds affected winter-active Calliphora vicina Robineau-Desvoidy. Male flies were also collected, suggesting that carcasses may play additional roles in adult blow fly ecology beyond that of a simple oviposition site. For both sexes of flies, a strong diel pattern of behavior emerged, which could be useful in estimating precolonization intervals by considering the environmental conditions at a scene, and thus forensic entomologists may be better able to estimate the likelihood of adult activity at a carcass.

  13. Assessing Insecticide Susceptibility of Laboratory Lutzomyia longipalpis and Phlebotomus papatasi Sand Flies (Diptera: Psychodidae: Phlebotominae)

    PubMed Central

    Denlinger, David S.; Lozano-Fuentes, Saul; Lawyer, Phillip G.; Black, William C.; Bernhardt, Scott A.

    2015-01-01

    Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose–response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management. PMID:26336231

  14. First Report of Zaprionus indianus (Diptera: Drosophilidae) in Commercial Fruits and Vegetables in Pennsylvania

    PubMed Central

    Joshi, Neelendra K.; Biddinger, David J.; Demchak, Kathleen; Deppen, Alan

    2014-01-01

    Zaprionus indianus (Gupta) (Diptera: Drosophilidae), an invasive vinegar fly, was found for the first time in Adams County, Pennsylvania, in 2011. It was found in a commercial tart cherry orchard using apple cider vinegar (ACV) traps that were monitoring another invasive vinegar fly, the spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Coincidentally, the first record of D. suzukii found in Pennsylvania was also found in this same cherry orchard only 3 months earlier as part of a spotted wing drosophila survey effort in raspberry, blackberry, grape, and tart cherry in Adams County. These same crops plus blueberry and tomato were monitored again in 2012. In this article, adult Z. indianus captures in ACV traps and other traps deployed in the aforementioned crops during 2012 season are presented and the economic importance of Z. indianus is discussed. PMID:25434039

  15. First report of Zaprionus indianus (Diptera: Drosophilidae) in commercial fruits and vegetables in Pennsylvania.

    PubMed

    Joshi, Neelendra K; Biddinger, David J; Demchak, Kathleen; Deppen, Alan

    2014-01-01

    Zaprionus indianus (Gupta) (Diptera: Drosophilidae), an invasive vinegar fly, was found for the first time in Adams County, Pennsylvania, in 2011. It was found in a commercial tart cherry orchard using apple cider vinegar (ACV) traps that were monitoring another invasive vinegar fly, the spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Coincidentally, the first record of D. suzukii found in Pennsylvania was also found in this same cherry orchard only 3 months earlier as part of a spotted wing drosophila survey effort in raspberry, blackberry, grape, and tart cherry in Adams County. These same crops plus blueberry and tomato were monitored again in 2012. In this article, adult Z. indianus captures in ACV traps and other traps deployed in the aforementioned crops during 2012 season are presented and the economic importance of Z. indianus is discussed. PMID:25434039

  16. Comparative efficacy of three suction traps for collecting phlebotomine sand flies (Diptera: Psychodidae) in open habitats.

    PubMed

    Faiman, Roy; Cuño, Ruben; Warburg, Alon

    2009-06-01

    The efficacy of three suction traps for trapping phlebotomine sand flies (Diptera: Psychodidae) was compared. Traps were baited with Co(2) and used without any light source. CO(2)-baited CDC traps were evaluated either in their standard downdraft orientation or inverted (iCDC traps). Mosquito Magnet-X (MMX) counterflow geometry traps were tested in the updraft orientation only. Both updraft traps (iCDC and MMX) were deployed with their opening ∼10 cm from the ground while the opening of the downdraft (CDC) trap was ∼40 cm above ground. Comparisons were conducted in two arid locations where different sand fly species prevail. In the Jordan Valley, 3,367 sand flies were caught, 2,370 of which were females. The predominant species was Phlebotomus (Phlebotomus) papatasi, Scopoli 1786 (>99%). The updraft-type traps iCDC and MMX caught an average of 118 and 67.1 sand flies per trap night, respectively. The CDC trap caught 32.9 sand flies on average per night, significantly less than the iCDC traps. In the Judean desert, traps were arranged in a 3 × 3 Latin square design. A total of 565 sand flies were caught, 345 of which were females. The predominant species was P. (Paraphlebotomus) sergenti Parrot 1917 (87%). The updraft traps iCDC and MMX caught an average of 25.6 and 17.9 sand flies per trap per night, respectively. The CDC trap caught 7.8 sand flies on average per night, significantly less than the iCDC traps. The female to male ratio was 1.7 on average for all trap types. In conclusion, updraft traps deployed with their opening close to the ground are clearly more effective for trapping sand flies than downdraft CDC traps in open habitats.

  17. Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae).

    PubMed

    Olafson, Pia Untalan; Lohmeyer, Kimberly H; Edrington, Thomas S; Loneragan, Guy H

    2014-09-01

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.)) (Diptera: Muscidae), are intriguing candidates for transmitting Salmonella to cattle because they provide a route of entry when they breach the skin barrier during blood feeding. Using a green fluorescent protein-expressing strain of Salmonella Montevideo (S. Montevideo-GFP), the current study demonstrated that horn fly grooming subsequent to tactile exposure to the bacteria resulted in acquisition of the bacteria on mouthparts as well as microbial ingestion. Consumption of a bloodmeal containing approximately 10(2), approximately 10(4), or 10(6) S. Montevideo-GFP resulted in horn fly colonization for up to 72 h postingestion (PI). Epifluorescent microscopy indicated that the bacteria were not localized to the crop but were observed within the endoperitrophic space, suggesting that regurgitation is not a primary route of transmission. S. Montevideo-GFP were cultured from excreta of 100% of flies beginning 6-7 h PI of a medium or high dose meal and > 12 h PI in excreta from 60% of flies fed the low-dose meal. Animal hides and manure pats are sources for horn flies to acquire the Salmonella and mechanically transmit them to an animal while feeding. Mean quantities of 5.65-67.5 x 10(2) CFU per fly were cultured from fly excreta passed within 1 d after feeding, suggesting the excreta can provide an additional microbial source on the animal's hide. PMID:25276929

  18. Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae).

    PubMed

    Olafson, Pia Untalan; Lohmeyer, Kimberly H; Edrington, Thomas S; Loneragan, Guy H

    2014-09-01

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.)) (Diptera: Muscidae), are intriguing candidates for transmitting Salmonella to cattle because they provide a route of entry when they breach the skin barrier during blood feeding. Using a green fluorescent protein-expressing strain of Salmonella Montevideo (S. Montevideo-GFP), the current study demonstrated that horn fly grooming subsequent to tactile exposure to the bacteria resulted in acquisition of the bacteria on mouthparts as well as microbial ingestion. Consumption of a bloodmeal containing approximately 10(2), approximately 10(4), or 10(6) S. Montevideo-GFP resulted in horn fly colonization for up to 72 h postingestion (PI). Epifluorescent microscopy indicated that the bacteria were not localized to the crop but were observed within the endoperitrophic space, suggesting that regurgitation is not a primary route of transmission. S. Montevideo-GFP were cultured from excreta of 100% of flies beginning 6-7 h PI of a medium or high dose meal and > 12 h PI in excreta from 60% of flies fed the low-dose meal. Animal hides and manure pats are sources for horn flies to acquire the Salmonella and mechanically transmit them to an animal while feeding. Mean quantities of 5.65-67.5 x 10(2) CFU per fly were cultured from fly excreta passed within 1 d after feeding, suggesting the excreta can provide an additional microbial source on the animal's hide.

  19. Some ultrastructural superficial changes in house fly (Diptera: Muscidae) and blow fly (Diptera: Calliphoridae) larvae induced by eucalyptol oil.

    PubMed

    Sukontason, Kabkaew L; Sukontason, Kom; Boonchu, Noppawan; Piangjai, Somsak

    2004-01-01

    The ultrastructural superficial changes in third instar house fly (Musca domestica) and blow fly (Chrysomya megacephala) induced by eucalyptol oil were observed using scanning electron microscopy. Dipped in 0.902 g/ml eucalyptol for 30 sec, the larvae integument of both species showed significant aberrant appearance of the body surface, particularly swelling integument, bleb formation, partial breach and deformation of spines. PMID:15517029

  20. Flesh flies (Diptera: Sarcophagidae) colonising large carcasses in Central Europe.

    PubMed

    Szpila, Krzysztof; Mądra, Anna; Jarmusz, Mateusz; Matuszewski, Szymon

    2015-06-01

    Sarcophagidae are an important element of carrion insect community. Unfortunately, results on larval and adult Sarcophagidae from forensic carrion studies are virtually absent mostly due to the taxonomic problems with species identification of females and larvae. The impact of this taxon on decomposition of large carrion has not been reliably evaluated. During several pig carcass studies in Poland, large body of data on adult and larval Sarcophagidae was collected. We determined (1) assemblages of adult flesh flies visiting pig carrion in various habitats, (2) species of flesh flies which breed in pig carcasses, and (3) temporal distribution of flesh fly larvae during decomposition. Due to species identification of complete material, including larvae, females, and males, it was possible for the first time to reliably answer several questions related to the role of Sarcophagidae in decomposition of large carrion and hence define their forensic importance. Fifteen species of flesh flies were found to visit pig carcasses, with higher diversity and abundance in grasslands as compared to forests. Sex ratio biased towards females was observed only for Sarcophaga argyrostoma, S. caerulescens, S. similis and S. carnaria species group. Gravid females and larvae were collected only in the case of S. argyrostoma, S. caerulescens, S. melanura and S. similis. Sarcophaga caerulescens and S. similis bred regularly in carcasses, while S. argyrostoma was recorded only occasionally. First instar larvae of flesh flies were recorded on carrion earlier or concurrently with first instar larvae of blowflies. Third instar larvae of S. caerulescens were usually observed before the appearance of the third instar blowfly larvae. These results contest the view that flesh flies colonise carcasses later than blowflies. Sarcophaga caerulescens is designated as a good candidate for a broad forensic use in Central European cases.

  1. Laboratory colonization of the blow flies, Chrysomya megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chrysomya rufifacies is a blow fly commonly found in corpses at crime scene investigations. This study was designed to develop laboratory colonization methods for Ch. rufifacies and utilize Chrysomya megacephala as its larval food source. Both fly species were collected in the wild and easily colon...

  2. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families

    PubMed Central

    Rombauts, Stephane; Chrisargiris, Antonis; Van Leeuwen, Thomas; Vontas, John

    2013-01-01

    The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology. PMID:23824998

  3. Antocha crane flies from Taiwan (Diptera: Limoniidae: Limoniinae).

    PubMed

    Podenas, Sigitas; Young, Chen W

    2015-01-01

    Taiwanese species of the crane fly subgenus Antocha (Antocha) Osten Sacken, 1860, are reviewed. Antocha (Antocha) taiwanensis, new species, is described and figured. Previously known species, Antocha (A.) bifida Alexander, 1924a and Antocha (A.) styx Alexander, 1930 are redescribed and illustrated. Antocha (A.) javanensis Alexander, 1915 is removed from the list of Taiwanese crane flies. Antocha (A.) gracillima Alexander, 1924b and species close to Antocha (A.) streptocera Alexander, 1949 are listed for the first time in Taiwan. Identification key for all Taiwanese Antocha species is given.

  4. NEW RECORDS OF PHLEBOTOMINE SAND FLIES (DIPTERA: PSYCHODIDAE) FROM ECUADOR.

    PubMed

    Jones, Lynn A; Cohnstaedt, Lee W; Beati, Lorenza; Terán, Rommy; León, Renato; Munstermann, Leonard E

    2010-01-01

    The number of recorded phlebotomine sand fly species in Ecuador has nearly doubled during the past 20 years as a result of surveys. In 2005, a sand fly survey of two localities, Tiputini in the Amazon rain forest and Paraiso Escondido in the Pacific coastal lowland forest, resulted in the capture of 25 species. New records for Ecuador consisted of five species from the Amazonian region and one from Paraiso Escondido. The Amazonian species were Nyssomyia richardwardi (Ready and Fraiha), Psathyromyia dreisbachi (Causey and Damasceno), Psathyromyia runoides (Fairchild and Hertig), Trichophoromyia pabloi (Barretto, Burbano and Young), and Trichopygomyia witoto (Young and Morales). The Pacific coastal lowland species was Psathyromyia punctigeniculata (Floch and Abonnenc).

  5. Passive cellular microrheology in developing fruit fly embryos

    NASA Astrophysics Data System (ADS)

    Crews, Sarah; Ma, Xiaoyan; Lawrence, Stacey; Hutson, M. Shane

    2012-02-01

    The development of fruit fly (Drosophila) embryos involves spatial and temporal regulation of cellular mechanical properties. These properties can be probed in vivo using laser hole drilling experiments; however, this technique only infers relative forces. Conversion to absolute forces requires measurement of cellular viscoelastic properties. Here, we use passive microrheology of fluorescently labeled cell membranes to measure the viscoelastic properties of amnioserosa cells. These dynamic epithelial cells play an important mechanical role during two developmental stages: germ band retraction and dorsal closure. Passive microrheology in this system is confounded by active contractions in the cytoskeleton. Thus, the fruit fly embryos are transiently anesthetized with CO2, halting active cellular movements, leaving only passive Brownian motion. The power spectra of these fluctuations are well fit by a Lorentzian -- as expected for Brownian motion -- and allow us to extract cellular viscoelastic parameters at different developmental stages. These measured parameters inform previous hole-drilling experiments and provide inputs for quantitative computational models of fruit fly embryonic development.

  6. The Value of Patch-Choice Copying in Fruit Flies

    PubMed Central

    Golden, Shane; Dukas, Reuven

    2014-01-01

    Many animals copy the choices of others but the functional and mechanistic explanations for copying are still not fully resolved. We relied on novel behavioral protocols to quantify the value of patch-choice copying in fruit flies. In a titration experiment, we quantified how much nutritional value females were willing to trade for laying eggs on patches already occupied by larvae (social patches). Females were highly sensitive to nutritional quality, which was positively associated with their offspring success. Females, however, perceived social, low-nutrition patches (33% of the nutrients) as equally valuable as non-social, high-nutrition ones (100% of the nutrients). In follow-up experiments, we could not, however, either find informational benefits from copying others or detect what females' offspring may gain from developing with older larvae. Because patch-choice copying in fruit flies is a robust phenomenon in spite of potential costs due to competition, we suggest that it is beneficial in natural settings, where fruit flies encounter complex dynamics of microbial communities, which include, in addition to the preferred yeast species they feed on, numerous harmful fungi and bacteria. We suggest that microbial ecology underlies many cases of copying in nature. PMID:25375776

  7. Virulence of Hessian Fly (Diptera: Cecidomyiidae) in the Fertile Crescent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly, Mayetiola destructor (Say), is an important insect pest of wheat (Triticum spp.) in North Africa, North America, South Europe and North Kazakhstan. Similarly to wheat this pest is believed to originate from West Asia in the Fertile Crescent. To determine the virulence of the Hessian...

  8. Visual responses of corn silk flies (Diptera: Ulidiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...

  9. The horse and deer flies (Diptera: Tabanidae) of Rhode Island

    USGS Publications Warehouse

    Bartlett, K.; Alm, S.R.; LeBrun, R.; Ginsberg, H.

    2002-01-01

    The Tabanidae of Rhode Island were surveyed using Rhode Island canopy traps placed at 20 locations in the state during the summers of 1999 and 2000. In total, 5,120 flies were collected, which included 55 species in the genera Chrysops, Hybomitra, Tabanus, Merycomyia, and Stonemyia. Distributional and ecological information is provided for each species in Rhode Island.

  10. External morphology of stable fly (Diptera: Muscidae) larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron microscopy was used to examine the external morphology of first-, second-, and third-instar stable flies (Stomoxys calcitrans (L.)). In the cephalic region, the antennae, labial lobe, and maxillary palpi are morphologically similar among instars. Antennae comprise a prominent ante...

  11. Distribution of sand fly (Diptera: Psychodidae) species and efficiency of capturing methods in Sanliurfa province, Turkey.

    PubMed

    Toprak, Sahin; Ozer, Nurdan

    2007-01-01

    The population dynamics of sand flies (Diptera: Psychodidae) were studied in Sanliurfa province in southeastern Turkey, in the country's largest focus of typical anthroponotic cutaneous leishmaniasis, during 2000-2002. Sand flies were collected at nine different sampling stations, located throughout the city, representing a cross section of urban and rural habitats. In total, 29,771 sand flies were collected, 45.35% of which were Phlebotomus papatasi Scopoli. In this study, the overall sand fly species diversity, relative abundance of each species, biodiversity, and similarity indices among sampling stations and efficiency of trapping methods were evaluated. Among the sampling stations, Sanliurfa city center and Suruç were shown to have the highest number of sand fly species; Harran-Akcakale and Hilvan habitats produced the largest number of individuals. The greatest similarity rates (80%) in terms of sand fly species were observed between Hilvan and city center, Harran-Akcakale and city center, Harran-Akcakale and Yenice, and Siverek and Viransehir. The lowest similarity rate (16%) was observed between Bozova-Birecik and city center. Comparison of biodiversity and similarity indices between the various sampling stations reveals the distribution of the suspected vector species and provides basic knowledge required to develop logical and effective control strategies. Among the trapping methods used, light traps showed the highest capture efficiency, above aspirators and sticky papers. It was concluded that light traps alone were sufficient to determine the sand fly fauna of the study area. It is recommended that the spatial and temporal dynamics of sand fly populations be monitored throughout the southeastern Anatolia Project (GAP) construction period, considering the potential impact the project may have on mean temperature, humidity, and human population movements.

  12. Characterization of stable fly (Diptera: Muscidae) larval developmental habitat at round hay bale feeding sites.

    PubMed

    Talley, Justin; Broce, Alberto; Zurek, Ludek

    2009-11-01

    In this study, we examined the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), larval developmental habitat within the round hay bale feeding sites on cattle pastures, and we identified three zones with distinct characteristics around two types of hay feeders (ring and cone). The parameters monitored in each zone included stable fly emergence, substrate temperature, moisture, pH, thickness of hay-manure layer, and concentration of fecal coliform bacteria (Escherichia coli and Klebsiella oxytoca) as indicators of fecal material. All measurements were conducted during the period of high stable fly prevalence (HSF) in May-June and low stable fly prevalence (LSF) in July-August to better understand the environmental factors influencing stable fly seasonality. Substrate temperature and fecal coliform concentration were the only two significantly different factors between HSF and LSF. Temperatures ranged from 21 to 25 degrees C during HSF versus 25-30 degrees C in LSF but all were within the range for successful stable fly development. Fecal coliform concentrations ranged from 4.2 x 10(3) to 4.1 x 10(4) colony-forming units (CFU)/g of the substrate during HSF and from undetectable (<10) to 100 CFU/g during LSF. Furthermore, we evaluated the effect of different hay:manure ratios (0:1, 1:1, 2:1, and 5:1) on stable fly development (egg to adult). Temperature was significantly higher and stable fly developmental time significantly shorter in all substrates containing hay when compared with that of manure alone, but no significant differences were detected in stable fly emergence among the substrates. These results strongly indicate that the fecal microbial community plays an important role in stable fly larval development in hay feeding sites and that it is the main factor behind stable fly developmental seasonality on pastures. Our results also demonstrate that animal manure mixed with hay provides conditions for faster stable fly development than manure alone

  13. Molecular identification of sand flies (Diptera: Psychodidae) in eastern North America by using PCR-RFLP.

    PubMed

    Minter, Logan M; Yu, Tian; Florin, David A; Nukmal, Nismah; Brown, Grayson C; Zhou, Xuguo

    2013-07-01

    Sand flies (Diptera: Psychodidae) are small blood-feeding dipterans that are primary vectors of numerous human and livestock pathogens. Effective surveillance programs with accurate identification tools are critical in development and implementation of modern integrated pest management programs. Although morphological keys are available for North American species, identification can still be challenging owing to the nature of sample preparation and incompatibility with molecular or biochemical-based pathology assays. Further, the potential for introduction of Old World or other exotic species is not accounted for by current keys. Herein, we present the development and validation of a restriction fragment-length polymorphism-based molecular identification method. Specifically, cytochrome c oxidase subunit I, a mitochondrial DNA marker, was used to distinguish two species of adult sand flies indigenous to eastern North America with two exotic species not yet known to occur in the United States.

  14. Comparison of Rain-Fast Bait Stations Versus Foliar Bait Sprays for Control of Oriental Fruit Fly, Bactrocera dorsalis, in Papaya Orchards in Hawaii

    PubMed Central

    Piñero, Jaime C.; Mau, Ronald F. L.; Vargas, Roger I.

    2010-01-01

    Bait stations represent an environmentally friendly attract-and-kill approach to fruit fly population suppression. Recently a novel, visually attractive, rain-fast bait station was developed in Hawaii for potential use against multiple species of pestiferous fruit flies. Here, we compared the efficacy of GF-120 NF Naturalyte Fruit Fly Bait applied either as foliar sprays or onto bait stations in reducing female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), population density and level of fruit infestation in commercial papaya orchards in Hawaii. Trapping and infestation data were used as indicators of the effectiveness of the two bait application methods. For the first 10 weeks of the study, captures of female B. dorsalis in monitoring traps were significantly greater in control plots than in plots treated with foliar sprays or bait stations. Six weeks after the first bait spray, incidence of infestation (i.e. number of fruit with one or more B. dorsalis larvae) of quarter to half-ripe papaya fruit was reduced by 71.4% and 63.1% for plots with bait stations and foliar sprays, respectively, as compared to control plots. Twelve weeks after first spray, incidence of infestation was reduced by only 54.5% and 45.4% for plots with bait stations and foliar sprays, respectively, as compared to control plots. About 42% less GF-120 was used in orchard plots with bait stations compared to those subject to foliar sprays. The impact of field sanitation on the outcome is also discussed. The results indicate that bait stations can provide a simple, efficient, and economical method of applying insecticidal baits to control fruit flies and a safer alternative to foliar sprays. PMID:21067423

  15. Susceptibility of 15 mango (Sapindales: Anacardiaceae) cultivars to the attack by Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae) and the role of underdeveloped fruit as pest reservoirs: management implications.

    PubMed

    Aluja, M; Arredondo, J; Díaz-Fleischer, F; Birke, A; Rull, J; Niogret, J; Epsky, N

    2014-02-01

    We evaluated the susceptibility of 15 mango cultivars to the attack of Anastrepha ludens (Loew) and Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the main tephritid pests of this crop in Mexico. In a field experiment, bagged fruit-bearing branches were exposed to gravid females of both fly species. Infestation rates, developmental time, adult eclosion, and F1 adult longevity, fecundity, and fertility were recorded, ranking cultivars in terms of susceptibility to fly attack and development. We also compared the volatile profile in selected resistant and susceptible cultivars in search of possible correlations. In a second experiment, clutch size for A. ludens was determined in each cultivar. Infestation rates, developmental time, and F1 demographic parameters varied sharply among cultivars and between fly species for bagged fruit. Cultivars 'Vishi,' '74-82,' and 'Brooks' were most susceptible to A. ludens infestation while "Tommy,' 'Sensation,' and 'Ataulfo "niño"' (parthenocarpic fruit) were most susceptible to A. obliqua infestation. 'Edward,' 'Kent,' 'Brooks late,' 'Palmer, and 'Ataulfo' exhibited tolerance to attack of both fly species. Fruit of susceptible and resistant cultivars exhibited unique volatile profiles. Fly development and F1 adult demographic parameters varied significantly among cultivars. A. ludens females laid larger clutches in larger and harder fruit. We highlight the important role of Ataulfo "niño" as pest reservoir if fruit is left unharvested on trees. We discuss the possible use of highly resistant cultivars as trap crops or egg sinks. PMID:24665723

  16. Susceptibility of 15 mango (Sapindales: Anacardiaceae) cultivars to the attack by Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae) and the role of underdeveloped fruit as pest reservoirs: management implications.

    PubMed

    Aluja, M; Arredondo, J; Díaz-Fleischer, F; Birke, A; Rull, J; Niogret, J; Epsky, N

    2014-02-01

    We evaluated the susceptibility of 15 mango cultivars to the attack of Anastrepha ludens (Loew) and Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the main tephritid pests of this crop in Mexico. In a field experiment, bagged fruit-bearing branches were exposed to gravid females of both fly species. Infestation rates, developmental time, adult eclosion, and F1 adult longevity, fecundity, and fertility were recorded, ranking cultivars in terms of susceptibility to fly attack and development. We also compared the volatile profile in selected resistant and susceptible cultivars in search of possible correlations. In a second experiment, clutch size for A. ludens was determined in each cultivar. Infestation rates, developmental time, and F1 demographic parameters varied sharply among cultivars and between fly species for bagged fruit. Cultivars 'Vishi,' '74-82,' and 'Brooks' were most susceptible to A. ludens infestation while "Tommy,' 'Sensation,' and 'Ataulfo "niño"' (parthenocarpic fruit) were most susceptible to A. obliqua infestation. 'Edward,' 'Kent,' 'Brooks late,' 'Palmer, and 'Ataulfo' exhibited tolerance to attack of both fly species. Fruit of susceptible and resistant cultivars exhibited unique volatile profiles. Fly development and F1 adult demographic parameters varied significantly among cultivars. A. ludens females laid larger clutches in larger and harder fruit. We highlight the important role of Ataulfo "niño" as pest reservoir if fruit is left unharvested on trees. We discuss the possible use of highly resistant cultivars as trap crops or egg sinks.

  17. Synergistic Trap Response of the False Stable Fly and Little House Fly (Diptera: Muscidae) to Acetic Acid and Ethanol, Two Principal Sugar Fermentation Volatiles.

    PubMed

    Landolt, Peter J; Cha, Dong H; Zack, Richard S

    2015-10-01

    In an initial observation, large numbers of muscoid flies (Diptera) were captured as nontarget insects in traps baited with solutions of acetic acid plus ethanol. In subsequent field experiments, numbers of false stable fly Muscina stabulans (Fallén) and little house fly Fannia canicularis (L.) trapped with the combination of acetic acid plus ethanol were significantly higher than those trapped with either chemical alone, or in unbaited traps. Flies were trapped with acetic acid and ethanol that had been formulated in the water of the drowning solution of the trap, or dispensed from polypropylene vials with holes in the vial lids for diffusion of evaporated chemical. Numbers of both species of fly captured were greater with acetic acid and ethanol in glass McPhail traps, compared to four other similar wet trap designs. This combination of chemicals may be useful as an inexpensive and not unpleasant lure for monitoring or removing these two pest fly species.

  18. NEW RECORDS OF PHLEBOTOMINE SAND FLIES (DIPTERA: PSYCHODIDAE) FROM ECUADOR

    PubMed Central

    Jones, Lynn A.; Cohnstaedt, Lee W.; Beati, Lorenza; Terán, Rommy; León, Renato; Munstermann, Leonard E.

    2012-01-01

    The number of recorded phlebotomine sand fly species in Ecuador has nearly doubled during the past 20 years as a result of surveys. In 2005, a sand fly survey of two localities, Tiputini in the Amazon rain forest and Paraiso Escondido in the Pacific coastal lowland forest, resulted in the capture of 25 species. New records for Ecuador consisted of five species from the Amazonian region and one from Paraiso Escondido. The Amazonian species were Nyssomyia richardwardi (Ready and Fraiha), Psathyromyia dreisbachi (Causey and Damasceno), Psathyromyia runoides (Fairchild and Hertig), Trichophoromyia pabloi (Barretto, Burbano and Young), and Trichopygomyia witoto (Young and Morales). The Pacific coastal lowland species was Psathyromyia punctigeniculata (Floch and Abonnenc). PMID:22628901

  19. Oviposition Substrate of the Mountain Fly Drosophila nigrosparsa (Diptera: Drosophilidae)

    PubMed Central

    Tratter, Magdalena; Bächli, Gerhard; Kirchmair, Martin; Kaufmann, Rüdiger; Arthofer, Wolfgang; Schlick-Steiner, Birgit C.; Steiner, Florian M.

    2016-01-01

    The survival of insect larvae often depends on the mother’s choice of oviposition substrate, and thus, this choice is an essential part of an insect species’ ecology. Especially species with narrow substrate preferences may suffer from changes in substrate availability triggered by, for example, climate change. Recent climate warming is affecting species directly (e.g., physiology) but also indirectly (e.g., biological interactions) leading to mismatching phenologies and distributions. However, the preferred oviposition substrate is still unknown for many drosophilid species, especially for those at higher elevations. In this study, we investigated the oviposition-substrate preference of the montane-alpine fly Drosophila nigrosparsa in rearing and multiple-choice experiments using natural substrates in the laboratory. Insect emergence from field-collected substrates was tested. More than 650 insects were reared from natural substrates, among them 152 drosophilids but no individual of D. nigrosparsa. In the multiple-choice experiments, D. nigrosparsa preferred ovipositing on mushrooms (> 93% of eggs); additionally, a few eggs were laid on berries but none on other substrates such as cow faeces, rotten plant material, and soil. The flies laid 24 times more eggs per day when mushrooms were included in the substrates than when they were excluded. We infer that D. nigrosparsa is a mushroom breeder with some variation in oviposition choice. The flies favoured some mushrooms over others, but they were not specialised on a single fungal taxon. Although it is unclear if and how climate change will affect D. nigrosparsa, our results indicate that this species will not be threatened by oviposition-substrate limitations in the near future because of the broad altitudinal distribution of the mushrooms considered here, even if the flies will have to shift upwards to withstand increasing temperatures. PMID:27788257

  20. What do tiger-fly larvae (Diptera: Muscidae) eat?

    PubMed

    Santos, S; Martins, J; Marcelino, J; Mateus, C; Figueiredo, E

    2013-01-01

    Coenosia attenuata, usually known as tiger-fly, is a generalist predator of agricultural and forest pests in both larval and adult stages; it has potential to be an effective biocontrol agent in protected crops. To contribute for the knowledge of which prey this predator larvae potentially consumes, and of the occurrence and the conditions that promote cannibalism by tiger-fly larvae, intact alive specimens and portions of the earthworm Lumbricus terrestris were tested as prey and the cannibalism was evaluated in the presence or in absence of fungus gnat larvae. The tiger-fly larvae fed on the bisected earthworm portions but seem to have difficulty to penetrate in the cuticle of the alive and moving L. terrestris. However, the time to start feeding on the portions of L terrestris was shorter than on fungus gnats. Cannibalism by C. attenuato was not detected, but mortality occurred in several modalities. Nevertheless, escaping from the Petri dishes was the dominant behaviour of the larvae in the cannibalism evaluation assay. PMID:25145255

  1. Rearing methods for the black soldier fly (Diptera: Stratiomyidae).

    PubMed

    Sheppard, D Craig; Tomberlin, Jeffery K; Joyce, John A; Kiser, Barbara C; Sumner, Sonya M

    2002-07-01

    The black soldier fly, Heretia illucens (L.), is a nonpest tropical and warm-temperate region insect that is useful for managing large concentrations of animal manure and other biosolids. Manure management relying on wild fly oviposition has been successful in several studies. However, confidence in this robust natural system was low and biological studies were hampered by the lack of a dependable source of eggs and larvae. Larvae had been reared easily by earlier investigators, but achieving mating had been problematic. We achieved mating reliably in a 2 by 2 by 4-m screen cage in a 7 by 9 by 5-m greenhouse where sunlight and adequate space for aerial mating were available. Mating occurred during the shortest days of winter if the sun was not obscured by clouds. Adults were provided with water, but no food was required. Techniques for egg collection and larval rearing are given. Larvae were fed a moist mixture of wheat bran, corn meal, and alfalfa meal. This culture has been maintained for 3 yr. Maintainance of a black soldier fly laboratory colony will allow for development of manure management systems in fully enclosed animal housing and in colder regions.

  2. Rearing methods for the black soldier fly (Diptera: Stratiomyidae).

    PubMed

    Sheppard, D Craig; Tomberlin, Jeffery K; Joyce, John A; Kiser, Barbara C; Sumner, Sonya M

    2002-07-01

    The black soldier fly, Heretia illucens (L.), is a nonpest tropical and warm-temperate region insect that is useful for managing large concentrations of animal manure and other biosolids. Manure management relying on wild fly oviposition has been successful in several studies. However, confidence in this robust natural system was low and biological studies were hampered by the lack of a dependable source of eggs and larvae. Larvae had been reared easily by earlier investigators, but achieving mating had been problematic. We achieved mating reliably in a 2 by 2 by 4-m screen cage in a 7 by 9 by 5-m greenhouse where sunlight and adequate space for aerial mating were available. Mating occurred during the shortest days of winter if the sun was not obscured by clouds. Adults were provided with water, but no food was required. Techniques for egg collection and larval rearing are given. Larvae were fed a moist mixture of wheat bran, corn meal, and alfalfa meal. This culture has been maintained for 3 yr. Maintainance of a black soldier fly laboratory colony will allow for development of manure management systems in fully enclosed animal housing and in colder regions. PMID:12144307

  3. Implications of Rhagoletis zephyria, 1894 (Diptera: Tephritidae), captures for apple maggot surveys and fly ecology in Washington state, U.S.A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot, Rhagoletis pomonella (Walsh), 1867 (Diptera: Tephritidae), is an introduced quarantine pest of apple (Malus domestica Borkhausen) (Rosaceae) in Washington state, U.S.A. A morphologically similar native fly, Rhagoletis zephyria Snow, 1894, infests snowberries (Symphoricarpos spp.) ...

  4. Effect of Simulated Dasiops inedulis (Diptera: Lonchaeidae) Injury on Yield and Fruit Quality Parameters in Yellow Passionfruit.

    PubMed

    Salamanca, Leidy; Manzano, Maria R; Baena, Diosdado; Tovar, Diego; Wyckhuys, Kris A G

    2015-02-01

    Yellow passionfruit (Passiflora edulis f. flavicarpa O. Deg.) is a tropical fruit crop that is meeting increasing demand both in local and international markets in South America. The lance fly, Dasiops inedulis (Diptera: Lonchaeidae), affects P. edulis floral buds and flowers, and is thought to cause important yield losses in this crop. In Colombia, D. inedulis are commonly controlled through calendar-based applications of chemically synthesized insecticides, and no scientific criteria exist to guide pest management. In the present study, we simulated D. inedulis injury to passionfruit plants, over the course of three production cycles. We assessed the effect of seven different categories of flower bud removal (from 0% to 79.9%) on passionfruit yield and fruit quality parameters. Removal rates above 20% caused a significant reduction in the number of flowers, while yield levels were lowest at 50-79.9% bud removal. With increasing rates of flower bud removal, we observed higher initial production of buds and lower levels of natural abortion of floral and fruiting structures. For the three consecutive harvests, maximum yield levels were 7.57±5.51 kg (mean±SD; with 0-9.9% damage), and minimum yield was 2.37±2.15 kg (60-69.9% damage) per plant. For fruit quality parameters, D. inedulis injury did not affect fruit pulp weight or the content of soluble solids (Brix). Our work provides insights into the impact of D. inedulis on yellow passionfruit production, and constitutes a basis for future integrated pest management programs for this pest.

  5. Effect of Simulated Dasiops inedulis (Diptera: Lonchaeidae) Injury on Yield and Fruit Quality Parameters in Yellow Passionfruit.

    PubMed

    Salamanca, Leidy; Manzano, Maria R; Baena, Diosdado; Tovar, Diego; Wyckhuys, Kris A G

    2015-02-01

    Yellow passionfruit (Passiflora edulis f. flavicarpa O. Deg.) is a tropical fruit crop that is meeting increasing demand both in local and international markets in South America. The lance fly, Dasiops inedulis (Diptera: Lonchaeidae), affects P. edulis floral buds and flowers, and is thought to cause important yield losses in this crop. In Colombia, D. inedulis are commonly controlled through calendar-based applications of chemically synthesized insecticides, and no scientific criteria exist to guide pest management. In the present study, we simulated D. inedulis injury to passionfruit plants, over the course of three production cycles. We assessed the effect of seven different categories of flower bud removal (from 0% to 79.9%) on passionfruit yield and fruit quality parameters. Removal rates above 20% caused a significant reduction in the number of flowers, while yield levels were lowest at 50-79.9% bud removal. With increasing rates of flower bud removal, we observed higher initial production of buds and lower levels of natural abortion of floral and fruiting structures. For the three consecutive harvests, maximum yield levels were 7.57±5.51 kg (mean±SD; with 0-9.9% damage), and minimum yield was 2.37±2.15 kg (60-69.9% damage) per plant. For fruit quality parameters, D. inedulis injury did not affect fruit pulp weight or the content of soluble solids (Brix). Our work provides insights into the impact of D. inedulis on yellow passionfruit production, and constitutes a basis for future integrated pest management programs for this pest. PMID:26470121

  6. Resistance of Mexican fruit fly to quarantine treatments of high hydrostatic pressure combined with heat.

    PubMed

    Candelario, Hugo Ernesto; Velazquez, Gonzalo; Castañón-Rodríguez, Juan Francisco; Ramírez, José Alberto; Montoya, Pablo; Vázquez, Manuel

    2010-08-01

    High-pressure processing (HPP) has been proposed as an alternative quarantine method against the Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae), which is one of the most important pests infesting mangoes, citrus, and other fruits in Mexico and other Latin-American countries. However, processing conditions used to destroy eggs and larvae also affect the shelf life of fruits. The objective of this study was to assess the biological viability of A. ludens eggs treated with HPP, establishing whether undestroyed eggs were able to develop larvae, pupae, and adults capable of reproduction. Eggs of 1, 2, 3, and 4 days old were pressurized at 50, 75, or 100 MPa for 0, 5, 10, or 20 min. The hatching ability of pressurized eggs; survivorship of third instars, pupae, and adults emerged; and their capability to produce viable eggs were examined. The results showed that the hatching capacity of eggs and the larval development were affected negatively by the treatment duration and level of pressure. Treatments with 100 MPa for 20 min inhibited the hatching capacity of eggs of 2, 3, or 4 days old by 100%, but the inhibition was of 99.8% for 1-day-old eggs. Most of the eggs that survived the treatments were able to produce adults that can reproduce. The percent of hatching of eggs of A. ludens oviposited for adults obtained from pressurized 1-day-old eggs treated with 100 MPa for 20 min was 64.81%. Thus, more efforts must be addressed to destroy eggs and larvae during HPP because surviving organisms can reach adult stage and reproduce.

  7. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    NASA Astrophysics Data System (ADS)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  8. Benzyl acetates as attractants for the male oriental fruit fly, Dacus dorsalis, and the male melon fly, Dacus cucurbitae

    PubMed Central

    Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.

    1986-01-01

    Fifty compounds related to benzyl acetate were evaluated quantitatively as attractants to the male oriental fruit fly (Dacus dorsalis) and the male melon fly (Dacus cucurbitae). Thienylmethyl acetate was nearly as attractive as benzyl acetate to both species, but cyclohexylmethyl acetate was completely unattractive, emphasizing the role of the planar aromatic ring in receptor interaction. Although benzyl acetate was equally attractive to both species, para substituents invariably reduced attraction to the oriental fruit fly. A number of derivatives, including p-hydroxy-, p-methoxy-, p-acetoxy-, and p-cyanobenzyl acetates were highly attractive to the melon fly. Selective fluorination indicated that the polarizability of the carbonyl carbon is important in receptor interaction with the melon fly but is not specifically involved in the oriental fruit fly. Attraction to the melon fly was lost with ortho, meta, or dimethoxy substitution of benzyl acetate, but the 3,4- and 2,5-dimethoxybenzyl acetates were attractive to the oriental fruit fly. These results are interpreted in terms of specific olfactory receptor interactions for the two species of fruit flies. PMID:16593663

  9. Toxicity of fruit fly baits to beneficial insects in citrus.

    PubMed Central

    Michaud, J.P.

    2003-01-01

    Two fruit fly baits, Nu-Lure®/malathion and GF-120 (Spinosad®) were evaluated in the laboratory for non-target impacts on beneficial insects. Nu-Lure/malathion proved attractive and toxic to adults and larvae of the coccinellid species, Curinus coeruleus Mulsant, Cycloneda sanguinea L. and Harmonia axyridis Pallas, a lacewing species, Chrysoperla rufilabris Burmeister. The coccinellids Olla v-nigrum Mulsant, Scymnus sp. and nymphs of the insidious flower bug, Orius insidiosus (Say) did not succumb to Nu-Lure baits, even in no-choice situations. Nu-Lure was also attractive and lethal to adults of two aphidophagous flies; Leucopis sp. and the syrphid fly Pseudodorus clavatus (F.). Both Nu-Lure and GF-120 caused significant mortality to the parasitoid wasps, Aphytis melinus De Bach and Lysiphlebus testaceipes Cresson, within 24 h of exposure. However, GF-120 caused no significant mortality to any coccinellid in either choice or no-choice situations, despite considerable consumption of baits. Adults of P. clavatus tended to avoid GF-120, although mortality was significant in no-choice tests. Although larvae and adults of the lacewing C. rufilabris consumed GF-120, mortality was delayed; adults died 48 -96 h post-exposure and those exposed as larvae died two weeks later in the pupal stage. The Nu-Lure bait did not appear palatable to any of the insects, but the high concentration of malathion (195,000 ppm) caused rapid mortality to susceptible insects. Nu-Lure bait without malathion also caused significant mortality to flies and lacewings in cage trials. Although GF-120 bait appeared more benign overall, further research efforts are warranted to increase its selectivity for target fly species and reduce its attractiveness to parasitoids and lacewings. I conclude that the Florida “fly free zone” protocol in its current form is not compatible with an IPM approach to commercial citrus production. PMID:15841224

  10. Estimating the Number of Eggs in Blow Fly (Diptera: Calliphoridae) Egg Masses Using Photographic Analysis.

    PubMed

    Rosati, J Y; Pacheco, V A; Vankosky, M A; Vanlaerhoven, S L

    2015-07-01

    Little work has been done to quantify the number of eggs oviposited by blow flies (Diptera: Calliphoridae) in studies examining colonization behavior. Egg counting methods currently available are time-consuming and destructive. This study used ImageJ software and analysis of covariance to relate the volume of egg masses to the number of eggs laid by three different blow fly species: Lucilia sericata (Meigen), Phormia regina (Meigen), and Chrysomya rufifacies (Macquart). Egg mass volume, species, and the interaction of species and egg mass volume all affected the number of blow fly eggs deposited in egg masses. Both species identity and egg mass volume are important when predicting egg number, as such a single regression equation cannot be used to estimate egg number for these three species. Therefore, simple linear regression equations were determined for each species. The volume of individual eggs was incorporated into the model, yet differences between species were observed, suggesting that the orientation of the eggs oviposited by multiple conspecific females within egg masses influences egg estimates. Based on our results, we expect that imaging software can be used for other blow fly species, as well as other insect species; however, equations specific to each species must be developed. This study describes an important tool for quantifying egg deposition in a nondestructive manner, which is important in studying the colonization behavior and life history of insects of ecological and forensic importance.

  11. BdorOBP83a-2 Mediates Responses of the Oriental Fruit Fly to Semiochemicals

    PubMed Central

    Wu, Zhongzhen; Lin, Jintian; Zhang, He; Zeng, Xinnian

    2016-01-01

    The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs) were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologs, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control. PMID:27761116

  12. Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua.

    PubMed

    Scally, M; Into, F; Thomas, D B; Ruiz-Arce, R; Barr, N B; Schuenzel, E L

    2016-08-01

    The West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae), is an economically important pest that inhabits areas of South and Central America, Mexico and the Caribbean with occasional infestations in the southern United States. We examine intra-specific relationships within A. obliqua as well as interspecific relationships to other Anastrepha species using a multi-locus data set comprising nine loci (seven nuclear, two mitochondrial) with 105 operational taxonomic units. The results based on a concatenated set of nuclear loci strongly support the monophyly of A. obliqua and most of the other species previously identified by morphology. A split between Peruvian A. obliqua samples and those from other locations was also identified. These results contrast with prior findings of relationships within A. obliqua based on mitochondrial data, as we found a marked discrepancy between nuclear and mitochondrial loci. These analyses suggest that introgression, particularly between A. obliqua and fraterculus species, may be one explanation for the discrepancy and the high mitochondrial diversity reported for A. obliqua could be the result of incomplete lineage sorting. PMID:27126185

  13. Susceptibility of cranberries to Drosophila suzukii (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii Mastsumura (Diptera: Drosophilidae), commonly referred to as the spotted-wing drosophila, is an exotic species that has proven a troublesome pest of fruit production in the U.S. The fly targets small fruit and thus represents a concern for the U.S. cranberry industry. Two studies ...

  14. Mapping the stereotyped behaviour of freely moving fruit flies.

    PubMed

    Berman, Gordon J; Choi, Daniel M; Bialek, William; Shaevitz, Joshua W

    2014-10-01

    A frequent assumption in behavioural science is that most of an animal's activities can be described in terms of a small set of stereotyped motifs. Here, we introduce a method for mapping an animal's actions, relying only upon the underlying structure of postural movement data to organize and classify behaviours. Applying this method to the ground-based behaviour of the fruit fly, Drosophila melanogaster, we find that flies perform stereotyped actions roughly 50% of the time, discovering over 100 distinguishable, stereotyped behavioural states. These include multiple modes of locomotion and grooming. We use the resulting measurements as the basis for identifying subtle sex-specific behavioural differences and revealing the low-dimensional nature of animal motions. PMID:25142523

  15. Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis

    PubMed Central

    Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.; Lee, Lena W. Y.

    1979-01-01

    Male oriental fruit flies (Dacus dorsalis) from colonies in Taiwan and Hawaii were evaluated for limit of response to various analogues of methyl eugenol. The results are interpreted in terms of the geometry and allosteric requirements of the antennal receptor that triggers the characteristic methyl eugenol reflex. This receptor has evolved for complementarity to all portions of the methyl eugenol molecule and responds only to ortho-substituted benzenes with adjacent oxygen atoms or isoelectronic equivalents. Substantial differences in responses of Taiwan and Hawaiian D. dorsalis suggest that perceptible evolution of the receptor protein has occurred during the past 50 years. A plausible scheme for the coevolution of dacini flies with plants containing phenylpropionoid essential oils is outlined. Images PMID:16592640

  16. Light, heat, action: neural control of fruit fly behaviour

    PubMed Central

    Owald, David; Lin, Suewei; Waddell, Scott

    2015-01-01

    The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory. PMID:26240426

  17. New records of Rhagoletis species (Diptera: Tephritidae) and their host plants in western Montana, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information exists concerning the distribution of Rhagoletis fruit flies (Diptera: Tephritidae) in the state of Montana in the western U.S.A. In this study, the presence of and host plant use by Rhagoletis species are documented in northwestern Montana. The western cherry fruit fly, Rhagolet...

  18. Equipment for transporting live black fly larvae (Diptera: Simuliiae)

    USGS Publications Warehouse

    Tarshis, I.B.; Adkins, T.R.

    1971-01-01

    In studies relating to the biology and ecology of black flies, live larvae of at least 70 species of Simuliidae have been collected from their natural breeding sites and transported in containers with nonagitated water for short distances to the laboratory. One of us (Tarshis 1966) found, however, that even small numbers of simuliid larvae cannot survive in containers with nonagitated water for more than 6 hr. Additionally, when massive numbers of larvae are introduced into transport containers in which the water is not agitated, the larvae perish because they become entangled within the masses of silken threads they emit whenever disturbed (Tarshis and Neil 1970). Therefore, when transporting larvae long distances or when transporting large numbers of larvae any distance, it is essential to agitate the water in the transport containers.

  19. Traps and baits for flies (Diptera) on Pacific Islands.

    PubMed

    Pickens, L G; Jaworski, J; Kovac, B; Mills, G D

    1994-11-01

    Studies conducted on Oahu, HI, and on islands of the Kwajalein Atoll, Marshall Islands, demonstrated that adult house flies, Musca domestica L., were attracted to a mixture of cooked rice and chicken and to a commercial bait, whereas adults of Chrysomya megacephala F. and Musca sorbens Wiedemann were attracted to shark fluids or to ripe breadfruit. M. domestica and M. sorbens could be captured in standard inverted-cone traps, whereas C. megacephala could be captured in traps fitted with horizontal entry cones or in cone traps in which the bait was placed inside the cone chamber. M. sorbens and C. megacephala were killed by horizontal electric grids placed over yellow plastic or paper at ground level. M. sorbens was attracted to 15-cm cubes, but not to larger objects.

  20. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias

    PubMed Central

    Kouloussis, Nikos A.; Papadopoulos, Nikos T.; Müller, Hans-Georg; Wang, Jane-Ling; Mao, Meng; Katsoyannos, Byron I.; Duyck, Pierre-François; Carey, James R.

    2012-01-01

    Though traps are used widely to sample phytophagous insects for research or management purposes, and recently in aging research, possible bias stemming from differential response of individuals of various ages to traps has never been examined. In this paper, we tested the response of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) males and females of four ages (spanning from 1 to 40 days) to McPhail-type traps baited with a synthetic food attractant in field cages and found that the probability of trapping was significantly influenced by age. The type of food on which flies were maintained before testing (sugar or protein) also had a strong effect and interacted with age. In another experiment, we collected wild C. capitata adults of unknown age using 1–3 methods and then reared them in the laboratory until death. The survival schedules of these flies were subsequently used in a life table assay to infer their age at the time of capture. Results showed that on a single sampling date, males captured in traps baited with a food attractant were younger compared with males aspirated from fruiting host trees, or males captured in traps baited with a sex attractant. Likewise, females captured in food-baited traps were younger compared with aspirated females. In addition to providing the first evidence of age-dependent sampling bias for a phytophagous insect species, this paper also provides a novel approach to estimate the differences in the age composition of samples collected with different techniques. These findings are of utmost importance for several categories of insects, medically important groups notwithstanding. PMID:22844133

  1. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review.

    PubMed

    Baldacchino, Frédéric; Muenworn, Vithee; Desquesnes, Marc; Desoli, Florian; Charoenviriyaphap, Theeraphap; Duvallet, Gérard

    2013-01-01

    Stomoxys flies are mechanical vectors of pathogens present in the blood and skin of their animal hosts, especially livestock, but occasionally humans. In livestock, their direct effects are disturbance, skin lesions, reduction of food intake, stress, blood loss, and a global immunosuppressive effect. They also induce the gathering of animals for mutual protection; meanwhile they favor development of pathogens in the hosts and their transmission. Their indirect effect is the mechanical transmission of pathogens. In case of interrupted feeding, Stomoxys can re-start their blood meal on another host. When injecting saliva prior to blood-sucking, they can inoculate some infected blood remaining on their mouthparts. Beside this immediate transmission, it was observed that Stomoxys may keep some blood in their crop, which offers a friendly environment for pathogens that could be regurgitated during the next blood meal; thus a delayed transmission by Stomoxys seems possible. Such a mechanism has a considerable epidemiological impact since it allows inter-herd transmission of pathogens. Equine infectious anemia, African swine fever, West Nile, and Rift Valley viruses are known to be transmitted by Stomoxys, while others are suspected. Rickettsia (Anaplasma, Coxiella), other bacteria and parasites (Trypanosoma spp., Besnoitia spp.) are also transmitted by Stomoxys. Finally, Stomoxys was also found to act as an intermediate host of the helminth Habronema microstoma and may be involved in the transmission of some Onchocerca and Dirofilaria species. Being cosmopolite, Stomoxys calcitrans might have a worldwide and greater impact than previously thought on animal and human pathogen transmission. PMID:23985165

  2. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review

    PubMed Central

    Baldacchino, Frédéric; Muenworn, Vithee; Desquesnes, Marc; Desoli, Florian; Charoenviriyaphap, Theeraphap; Duvallet, Gérard

    2013-01-01

    Stomoxys flies are mechanical vectors of pathogens present in the blood and skin of their animal hosts, especially livestock, but occasionally humans. In livestock, their direct effects are disturbance, skin lesions, reduction of food intake, stress, blood loss, and a global immunosuppressive effect. They also induce the gathering of animals for mutual protection; meanwhile they favor development of pathogens in the hosts and their transmission. Their indirect effect is the mechanical transmission of pathogens. In case of interrupted feeding, Stomoxys can re-start their blood meal on another host. When injecting saliva prior to blood-sucking, they can inoculate some infected blood remaining on their mouthparts. Beside this immediate transmission, it was observed that Stomoxys may keep some blood in their crop, which offers a friendly environment for pathogens that could be regurgitated during the next blood meal; thus a delayed transmission by Stomoxys seems possible. Such a mechanism has a considerable epidemiological impact since it allows inter-herd transmission of pathogens. Equine infectious anemia, African swine fever, West Nile, and Rift Valley viruses are known to be transmitted by Stomoxys, while others are suspected. Rickettsia (Anaplasma, Coxiella), other bacteria and parasites (Trypanosoma spp., Besnoitia spp.) are also transmitted by Stomoxys. Finally, Stomoxys was also found to act as an intermediate host of the helminth Habronema microstoma and may be involved in the transmission of some Onchocerca and Dirofilaria species. Being cosmopolite, Stomoxys calcitrans might have a worldwide and greater impact than previously thought on animal and human pathogen transmission. PMID:23985165

  3. Cranberry anthocyanin extract prolongs lifespan of fruit flies.

    PubMed

    Wang, Lijun; Li, Yuk Man; Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Ma, Ka Ying; Chen, Zhen-Yu

    2015-09-01

    Cranberry is an excellent source of dietary antioxidants. The present study investigated the effect of cranberry anthocyanin (CrA) extract on the lifespan of fruit flies with focus on its interaction with aging-related genes including superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), insulin receptor (InR), target of rapamycin (TOR), hemipterus (Hep), and phosphoenolpyruvate carboxykinase (PEPCK). Results showed that diet containing 20mg/mL CrA could significantly prolong the mean lifespan of fruit flies by 10% compared with the control diet. This was accompanied by up-regulation of SOD1 and down-regulation of MTH, InR, TOR and PEPCK. The stress resistance test demonstrated that CrA could reduce the mortality rate induced by H2O2 but not by paraquat. It was therefore concluded that the lifespan-prolonging activity of CrA was most likely mediated by modulating the genes of SOD1, MTH, InR, TOR and PEPCK. PMID:26159161

  4. Near Infrared Imaging As a Method of Studying Tsetse Fly (Diptera: Glossinidae) Pupal Development.

    PubMed

    Moran, Zelda R; Parker, Andrew G

    2016-01-01

    Near infrared (NIR) photography and video was investigated as a method for observing and recording intrapuparial development in the tsetse fly Glossina palpalis gambiensis and other Muscomorpha (Cyclorrhapha) Diptera. We showed that NIR light passes through the puparium, permitting images of the true pupae and pharate adult to be captured. Various wavelengths of NIR light from 880 to 1060 nm were compared to study the development of tsetse fly pupae from larviposition to emergence, using time-lapse videos and photographs. This study was carried out to advance our understanding of tsetse pupal development, specifically with the goal of improving a sorting technique which could separate male from female tsetse flies several days before emergence. Separation of the sexes at this stage is highly desirable for operational tsetse sterile insect technique control programmes, as it would permit the easy retention of females for the colony while allowing the males to be handled, irradiated and shipped in the pupal stage when they are less sensitive to vibration. In addition, it presents a new methodology for studying the pupal stage of many coarctate insects for many applications. NIR imaging permits observation of living pupae, allowing the entire development process to be observed without disruption. PMID:27402791

  5. Rearing the scuttle fly Megaselia scalaris (Diptera: Phoridae) on industrial compounds: implications on size and lifespan

    PubMed Central

    2015-01-01

    Megaselia scalaris (Loew, 1866) (Diptera, phoridae) is a cosmopolitan fly species used in forensic science, and has been developed as a laboratory model species. They feed on decaying corpses as well as a wide variety of organic matter, and previous studies have even found them feeding on liquid paint or shoe polish, suggesting the possibility that they could breakdown industrial compounds. To test this possibility, we fed M. scalaris on a variety of industrially obtained materials and found that it was unable to complete its life cycle, dying at the larval stage, with the majority of compounds tested. However, when fed on modeling clay, a substrate that contains starch and inedible compounds, it was able to complete its life cycle. On this diet we observed increased larval development time, decreased pupal development time and a shortened adult life span. Additionally, pupae and adult flies were smaller than control flies. Contrary to previous reports, we find no evidence that M. scalaris is able to survive on modern formulations of liquid paint. PMID:26207192

  6. Rearing the scuttle fly Megaselia scalaris (Diptera: Phoridae) on industrial compounds: implications on size and lifespan.

    PubMed

    Alcaine-Colet, Anna; Wotton, Karl R; Jimenez-Guri, Eva

    2015-01-01

    Megaselia scalaris (Loew, 1866) (Diptera, phoridae) is a cosmopolitan fly species used in forensic science, and has been developed as a laboratory model species. They feed on decaying corpses as well as a wide variety of organic matter, and previous studies have even found them feeding on liquid paint or shoe polish, suggesting the possibility that they could breakdown industrial compounds. To test this possibility, we fed M. scalaris on a variety of industrially obtained materials and found that it was unable to complete its life cycle, dying at the larval stage, with the majority of compounds tested. However, when fed on modeling clay, a substrate that contains starch and inedible compounds, it was able to complete its life cycle. On this diet we observed increased larval development time, decreased pupal development time and a shortened adult life span. Additionally, pupae and adult flies were smaller than control flies. Contrary to previous reports, we find no evidence that M. scalaris is able to survive on modern formulations of liquid paint. PMID:26207192

  7. Near Infrared Imaging As a Method of Studying Tsetse Fly (Diptera: Glossinidae) Pupal Development

    PubMed Central

    Moran, Zelda R.; Parker, Andrew G.

    2016-01-01

    Near infrared (NIR) photography and video was investigated as a method for observing and recording intrapuparial development in the tsetse fly Glossina palpalis gambiensis and other Muscomorpha (Cyclorrhapha) Diptera. We showed that NIR light passes through the puparium, permitting images of the true pupae and pharate adult to be captured. Various wavelengths of NIR light from 880 to 1060 nm were compared to study the development of tsetse fly pupae from larviposition to emergence, using time-lapse videos and photographs. This study was carried out to advance our understanding of tsetse pupal development, specifically with the goal of improving a sorting technique which could separate male from female tsetse flies several days before emergence. Separation of the sexes at this stage is highly desirable for operational tsetse sterile insect technique control programmes, as it would permit the easy retention of females for the colony while allowing the males to be handled, irradiated and shipped in the pupal stage when they are less sensitive to vibration. In addition, it presents a new methodology for studying the pupal stage of many coarctate insects for many applications. NIR imaging permits observation of living pupae, allowing the entire development process to be observed without disruption. PMID:27402791

  8. Phylogenetic radiation of the greenbottle flies (Diptera, Calliphoridae, Luciliinae)

    PubMed Central

    Williams, Kirstin A.; Lamb, Jennifer; Villet, Martin H.

    2016-01-01

    Abstract The subfamily Luciliinae is diverse and geographically widespread. Its four currently recognised genera (Dyscritomyia Grimshaw, 1901, Hemipyrellia Townsend, 1918, Hypopygiopsis Townsend 1916 and Lucilia Robineau-Desvoidy, 1830) contain species that range from saprophages to obligate parasites, but their pattern of phylogenetic diversification is unclear. The 28S rRNA, COI and Period genes of 14 species of Lucilia and Hemipyrellia were partially sequenced and analysed together with sequences of 11 further species from public databases. The molecular data confirmed molecular paraphyly in three species-pairs in Lucilia that hamper barcode identifications of those six species. Lucilia sericata and Lucilia cuprina were confirmed as mutual sister species. The placements of Dyscritomyia and Hypopygiopsis were ambiguous, since both made Lucilia paraphyletic in some analyses. Recognising Hemipyrellia as a genus consistently left Lucilia s.l. paraphyletic, and the occasionally-recognised (sub)genus Phaenicia was consistently paraphyletic, so these taxa should be synonymised with Lucilia to maintain monophyly. Analysis of a matrix of 14 morphological characters scored for adults of all genera and for most of the species included in the molecular analysis confirmed several of these findings. The different degrees of parasitism were phylogenetically clustered within this genus but did not form a graded series of evolutionary stages, and there was no particular relationship between feeding habits and biogeography. Because of the ubiquity of hybridization, introgression and incomplete lineage sorting in blow flies, we recommend that using a combination of mitochondrial and nuclear markers should be a procedural standard for medico-criminal forensic identifications of insects. PMID:27103874

  9. Diversity of phlebotomine sand flies (Diptera: Psychodidae) in Ibitipoca State Park, Minas Gerais, Brazil.

    PubMed

    Carvalho, Gustavo Mayr de Lima; De Vasconcelos, Fernanda Bernardes; Da Silva, Daniela Gonçalves; Botelho, Helbert Antônio; Filho, José Dilermando Andrade

    2011-07-01

    Leishmaniasis is a complex of zoonotic diseases that are endemic to many Brazilian states. They are transmitted to the vertebrates by the bite of the hematophagous female sand fly (Diptera: Psychodidae) vectors. Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in large urban centers, their transmission continues to occur primarily in a wild environment and may be associated with professional activities, ecotourism activities, or both. This study investigates the ecological parameters of the sand flies present in Ibitipoca State Park, Minas Gerais, Brazil. During 2009, systematic collections of sand flies were made monthly using HP light traps installed at five sites, including three natural settings (a cave, riparian vegetation, and a rain forest), the tourist and researchers' accommodations, and a surrounding domestic livestock area. In total, 161 sand flies (seven species) were collected, the most abundant, particularly in the surrounding domestic livestock area, being Lutzomyia (Psychodopygus) lloydi (Antunes, 1937). Furthermore, a previously unidentified Lutzomyia (Sciopemyia) sp. was prevalent in the cave environment. There are no existing records of the occurrence of leishmaniasis in Ibitipoca State Park; however, the some species of the subgenus Psychodopygus are known vectors of Leishmania spp in Brazil. Hence, the presence of a species of this genus in areas surrounding the park may represent a risk to ecotourism and the local inhabitants. Our study shows the importance of regular monitoring of the various areas used by humans to determine the distribution and spread of sand fly vectors for preventive management to forestall potential risk to health and consequent effect on ecotourists.

  10. Efficacy of commercial mosquito traps in capturing phlebotomine sand flies (Diptera: Psychodidae) in Egypt.

    PubMed

    Hoel, D F; Kline, D L; Hogsette, J A; Bernier, U R; El-Hossary, S S; Hanafi, H A; Watany, N; Fawaz, E Y; Furman, B D; Obenauer, P J; Szumlas, D E

    2010-11-01

    Four types of commercial mosquito control traps, the Mosquito Magnet Pro (MMP), the Sentinel 360 (S360), the BG-Sentinel (BGS), and the Mega-Catch Ultra (MCU), were compared with a standard Centers for Disease Control and Prevention (CDC) light trap for efficacy in collecting phlebotomine sand flies (Diptera: Psychodidae) in a small farming village in the Nile River Valley 10 km north of Aswan, Egypt. Each trap was baited with either carbon dioxide (CO2) from combustion of butane gas (MMP), dry ice (CDC and BGS traps), light (MCU and S360), or dry ice and light (CDC). Traps were rotated through five sites in a5 x 5 Latin square design, repeated four times during the height of the sand fly season (June, August, and September 2007) at a site where 94% of sand flies in past collections were Phlebotomus papatasi (Scopoli). A total of 6,440 sand flies was collected, of which 6,037 (93.7%) were P. papatasi. Of the CO2-baited traps, the BGS trap collected twice as many P. papatasi as the MMP and CDC light traps, and at least three times more P. papatasi than the light-only MCU and S360 traps (P < 0.05). Mean numbers (+/- SE) of P. papatasi captured per trap night were as follows: BGS 142.1 (+/- 45.8) > MMP 56.8 (+/- 9.0) > CDC 52.3 (+/- 6.1) > MCU 38.2 (+/- 6.4) > S360 12.6 (+/- 1.8). Results indicate that several types of commercial traps are suitable substitutes for the CDC light trap in sand fly surveillance programs.

  11. Morphology and Developmental Rate of the Blow Fly, Hemipyrellia ligurriens (Diptera: Calliphoridae): Forensic Entomology Applications

    PubMed Central

    Bunchu, Nophawan; Thaipakdee, Chinnapat; Vitta, Apichat; Sanit, Sangob; Sukontason, Kom; Sukontason, Kabkaew L.

    2012-01-01

    Hemipyrellia ligurriens (Diptera: Calliphoridae) is a forensically important blow fly species presented in many countries. In this study, we determined the morphology of all stages and the developmental rate of H. ligurriens reared under natural ambient conditions in Phitsanulok province, northern Thailand. Morphological features of all stages based on observing under a light microscope were described and demonstrated in order to use for identification purpose. Moreover, development time in each stage was given. The developmental time of H. ligurriens to complete metamorphosis; from egg, larva, pupa to adult, took 270.71 h for 1 cycle of development. The results from this study may be useful not only for application in forensic investigation, but also for study in its biology in the future. PMID:22792441

  12. Five new records of bee flies (Bombyliidae, Diptera) from Saudi Arabia with zoogeographical remarks

    PubMed Central

    El-Hawagry, Magdi S.; Dhafer, Hathal M. Al

    2015-01-01

    Abstract Five bee-fly species (Bombyliidae, Diptera) have been listed in this paper as new to the Kingdom of Saudi Arabia. Four of the recorded species have been identified to the level of species, namely: Bombomyia discoidea (Fabricius, 1794), Spogostylum candidum (Sack, 1909), Exoprosopa linearis Bezzi, 1924, and Exoprosopa minos (Meigen, 1804), while the fifth one only to genus, Desmatoneura sp. The species have been collected from Al-Baha and Asir Provinces in the south-western part of the Kingdom. One of the four identified species, Exoprosopa linearis, has an Afrotropical affinity, and another two, Spogostylum candidum and Bombomyia discoidea, have considerable Afrotropical distributions, and this result agrees to some extent with studies considering these parts of the Arabian Peninsula, including Al-Baha and Asir Provinces, having Afrotropical influences and may be included in the Afrotropical Region rather than in the Palaearctic Region or the Eremic zone. PMID:25878533

  13. New spider flies from the Neotropical Region (Diptera, Acroceridae) with a key to New World genera

    PubMed Central

    Schlinger, Evert I.; Gillung, Jessica P.; Borkent, Christopher J.

    2013-01-01

    Abstract Two new genera and five new species of spider flies (Diptera: Acroceridae) are described from the Neotropical Region. A new genus of Philopotinae (Neophilopota brevirostris Schlinger gen. et sp. n.) is described from Mexico, while an unusual new species of Sphaerops Philippi, 1865 (Acrocerinae: Sphaerops micella Schlinger sp. n.) is described from Chile. A new Panopinae genus near Lasia Wiedemann, 1824 (Coquena stangei Schlinger gen. et sp. n.), is described from Argentina and two new species of Pialea Erichson, 1840 (Pialea brunea Schlinger sp. n. and Pialea corbiculata Schlinger sp. n.)are described from Venezuela. Each genus is diagnosed and figured, and a key to species provided. The Neotropical fauna presently includes 19 genera, containing approximately 100 species. A key to New World genera is also included. PMID:23730188

  14. Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster

    PubMed Central

    Syed, Zainulabeuddin; Pelletier, Julien; Flounders, Eric; Chitolina, Rodrigo F.; Leal, Walter S.

    2011-01-01

    Background Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have “generic repellent detector(s),” which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the “empty neuron” and showed to be sensitive to the three insect repellents. Conclusions For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have also identified the insect repellent-sensitive receptor, DmOr42a. This generic detector fulfils the requirements for a simplified bioassay for early screening of test insect repellents. PMID:21436880

  15. Olfactory receptors in the melon fly Dacus cucurbitae and the oriental fruit fly Dacus dorsalis

    PubMed Central

    Metcalf, Robert L.; Mitchell, Wallace C.; Metcalf, Esther R.

    1983-01-01

    Male melon flies (Dacus cucurbitae) from a colony in Hawaii were evaluated for limit of response to the olfactory stimulant raspberry ketone and to more than 40 related molecules. The results were compared with the limits of response of oriental fruit flies (Dacus dorsalis) under identical conditions. The nature of the response of the two species to attractive compounds appeared to be identical with regard to orientation, searching, pulsating mouthparts, and compulsive feeding. However, there was very little overlap in the response of the two species to phenylpropanoid-type compounds. D. cucurbitae responded most strongly to p-hydroxyphenylpropanoids while D. dorsalis responded most strongly to 3,4-dimethoxyphenylpropanoids. The results are discussed in terms of antennal receptor site geometry and with regard to the coevolution of two major groups of Dacini with plant kairomones. Images PMID:16593321

  16. Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber

    PubMed Central

    2011-01-01

    Background Both sexes of bat flies in the families Nycteribiidae and Streblidae (Diptera: Hippoboscoidea) reside in the hair or on the wing membranes of bats and feed on blood. Members of the Nycteribiidae transmit bat malaria globally however extant streblids have never been implemented as vectors of bat malaria. The present study shows that during the Tertiary, streblids also were vectors of bat malaria. Results A new haemospororidan, Vetufebrus ovatus, n. gen., n. sp., (Haemospororida: Plasmodiidae) is described from two oocysts attached to the midgut wall and sporozoites in salivary glands and ducts of a fossil bat fly (Diptera: Streblidae) in Dominican amber. The new genus is characterized by ovoid oocysts, short, stubby sporozoites with rounded ends and its occurrence in a fossil streblid. This is the first haemosporidian reported from a streblid bat fly and shows that representatives of the Hippoboscoidea were vectoring bat malaria in the New World by the mid-Tertiary. Conclusions This report is the first evidence of an extant or extinct streblid bat fly transmitting malaria. Discovering a mid-tertiary malarial parasite in a fossil streblid that closely resembles members of a malarial genus found in nycteribiid bat flies today shows how little we know about the vector associations of streblids. While no malaria parasites have been found in extant streblids, they probably occur and it is possible that streblids were the earliest lineage of flies that transmitted bat malaria to Chiroptera. PMID:22152687

  17. Honeybee Foraging Preferences, Effects of Sugars and Fruit Fly Toxic Bait Components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were carried out to evaluate the repellence of the fruit fly toxic bait, GF-120, for domestic honeybees. This bait is an organically registered attractive bait for tephritid fruit flies and is composed of hydrolyzed protein (Solulys), invertose sugar, vegetable oils, adjuvants, and oth...

  18. Quality testing of three species of Tephritid fruit flies after embryo cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates characteristics commonly used to define insect quality or fitness by using a complement of three species of tephritid fruit flies obtained from cryopreserved embryos. The Mexican, Anastrepah ludens, Caribbean, A. suspense, and Mediterranean, Certatitis capitata, fruit flies were...

  19. An Inquiry-Based Investigation of Modes of Inheritance Using "Flightless" Fruit Flies

    ERIC Educational Resources Information Center

    Chinnici, Joseph P.; Farland, Andrew M.

    2005-01-01

    The various strains of flightless fruit flies that were developed at the Virginia Commonwealth University (VCU) and an exercise that helps students in determining the inheritance pattern in the fruit fly mutant trait are described. The study and the resulting exercise helped the students in scientifically determining the two important aspects of…

  20. Honeydew and insecticide-bait as competing food resources for a fruit fly and common parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honeydew from phloem-feeding insects and fruit fly insecticidal baits may both serve as adult food resources for some insect species. In California olive orchards the black scale, Saissetia oleae (Olivier), is a common honeydew-producer, while spinosad-based fruit fly bait (GF-120) is used to contro...

  1. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  2. Of flies and men: insights on organismal metabolism from fruit flies

    PubMed Central

    2013-01-01

    The fruit fly Drosophila has contributed significantly to our general understanding of the basic principles of signaling, cell and developmental biology, and neurobiology. However, answers to questions pertaining to energy metabolism have been so far mostly addressed in more complex model organisms such as mice. We review in this article recent studies that show how the genetic tractability and simplicity of Drosophila are being used to identify novel regulatory mechanisms at the organismal level, and to query the co-ordination between energy metabolism and other processes such as neurodegeneration, circadian rhythms, immunity, and tumor biology. PMID:23587196

  3. Preparation and Use of an Easily Constructed, Inexpensive Chamber for Viewing Courtship Behaviors of Fruit Flies, Drosophila sp.

    ERIC Educational Resources Information Center

    Christensen, Timothy J.; Labov, Jay B.

    1997-01-01

    Details the construction of a viewing chamber for fruit flies that connects to a dissecting microscope and features a design that enables students to easily move fruit flies in and out of the chamber. (DDR)

  4. Population structure of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) assessed on a global scale using Amplified Fragment Length Polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is a major pest of livestock in the United States and worldwide. To assess the genetic variability in geographically distant stable flies, samples were obtained from four biogeographical regions: Nearctic, Neotropical, Palearctic, and Aus...

  5. Tympanal hearing in tachinid flies (Diptera, Tachinidae, Ormiini): the comparative morphology of an innovation.

    PubMed

    Robert, D; Edgecomb, R S; Read, M P; Hoy, R R

    1996-06-01

    Tympanal hearing organs have been reported only recently for Diptera. All the cases documented so far relate to parasitoid tachinid flies of the ormiine tribe. In the ormiine flies, the presence of tympanal hearing is functionally linked to their reproductive behavior. Indeed, female ormiine flies detect and localize their host, typically singing orthopterans, by hearing their calling songs. The three ormiine fly species investigated here at the comparative level share the key morphological features associated with tympanal hearing. The extent of these structural modifications becomes evident in the light of comparison with the closely related atympanate tachinid Myiopharus doryphorae. We document a series of eight characters that constitute specialized modifications of the ventral prothorax: (1) an inflation of the probasisternum, providing a rigid frame to span the large tympanal membranes; (2) an increased surface area of the prosternal membranes that constitute very thin, corrugated tympanal membranes; (3) a forked, broad presternum with tympanal pits to which the sensory organs directly attach; (4) several modifications of the tracheal system comprising the enlargement of the prosternal air sac, a supplementary tracheal tube to the prosternal air sac accompanied by a subpartioning of the spiracular atrium, and larger mesothoracic spiracles; (5) the presence of two scolopophorous chordotonal organs in the unpartitioned prosternal air sac; (6) stiff cuticular apodemes linking the chordotonal organs to the presternum; (7) reduction in size of the cervical sclerites; and (8) several structural modifications of the prosternal apophyses, creating new attachment sites for neck muscles. This comparative approach brings out differences and similarities of the homologous cuticular structures found on the ventral prothorax of both tympanate and atympanate tachinids. It is proposed that, given the degree of similarity between the ormiine hearing organs, the ormiine tribe

  6. A normative theory of forgetting: lessons from the fruit fly.

    PubMed

    Brea, Johanni; Urbanczik, Robert; Senn, Walter

    2014-06-01

    Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system. PMID:24901935

  7. A normative theory of forgetting: lessons from the fruit fly.

    PubMed

    Brea, Johanni; Urbanczik, Robert; Senn, Walter

    2014-06-01

    Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system.

  8. A Normative Theory of Forgetting: Lessons from the Fruit Fly

    PubMed Central

    Brea, Johanni; Urbanczik, Robert; Senn, Walter

    2014-01-01

    Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system. PMID:24901935

  9. Seasonal occurrence of black flies (Diptera: Simuliidae) in a desert stream receiving trout farm effluent.

    PubMed

    Pachón, R Trudith; Walton, William E

    2011-06-01

    The distribution and abundance of black flies (Diptera: Simuliidae) in a small desert stream were influenced by environmental changes caused by recharge of water supply storage basins and an aquaculture operation. Simulium virgatum was the most abundant benthic insect collected in Whitewater Canyon (Riverside County, CA) after April; however, it was never found in trout farm effluent where the ammonium-nitrogen concentration was > 0.25 mg/liter. S. virgatum densities downstream of the input of water from the Colorado River aqueduct were lower than at other sampling sites in the Whitewater River. Simulium tescorum, an especially anthropophilic black fly, was most abundant during February and March, was not collected from late spring through early autumn, and was found only in the highly enriched, less variable flow of trout farm effluent. The mean concentrations of ammonium nitrogen and nitrate nitrogen in the trout farm effluent nearly 1 km from the fish holding ponds were ten and two times, respectively, the ambient levels in the Whitewater River upstream of the effluent discharge point. A combination of factors probably contributed to the presence of S. tescorum in the trout farm effluent including homogenization of the flow regime, enrichment of larval resources, and the development of riparian vegetation that provided oviposition and attachment sites. PMID:21635657

  10. Seasonal occurrence of black flies (Diptera: Simuliidae) in a desert stream receiving trout farm effluent.

    PubMed

    Pachón, R Trudith; Walton, William E

    2011-06-01

    The distribution and abundance of black flies (Diptera: Simuliidae) in a small desert stream were influenced by environmental changes caused by recharge of water supply storage basins and an aquaculture operation. Simulium virgatum was the most abundant benthic insect collected in Whitewater Canyon (Riverside County, CA) after April; however, it was never found in trout farm effluent where the ammonium-nitrogen concentration was > 0.25 mg/liter. S. virgatum densities downstream of the input of water from the Colorado River aqueduct were lower than at other sampling sites in the Whitewater River. Simulium tescorum, an especially anthropophilic black fly, was most abundant during February and March, was not collected from late spring through early autumn, and was found only in the highly enriched, less variable flow of trout farm effluent. The mean concentrations of ammonium nitrogen and nitrate nitrogen in the trout farm effluent nearly 1 km from the fish holding ponds were ten and two times, respectively, the ambient levels in the Whitewater River upstream of the effluent discharge point. A combination of factors probably contributed to the presence of S. tescorum in the trout farm effluent including homogenization of the flow regime, enrichment of larval resources, and the development of riparian vegetation that provided oviposition and attachment sites.

  11. Diversification in Hawaiian long-legged flies (Diptera: Dolichopodidae: Campsicnemus): biogeographic isolation and ecological adaptation.

    PubMed

    Goodman, Kari Roesch; Evenhuis, Neal L; Bartošová-Sojková, Pavla; O'Grady, Patrick M

    2014-12-01

    Flies in the genus Campsicnemus have diversified into the second-largest adaptive radiation of Diptera in the Hawaiian Islands, with 179 Hawaiian endemic species currently described. Here we present the first phylogenetic analysis of Campsicnemus, with a focus on the Hawaiian fauna. We analyzed a combination of two nuclear (CAD, EF1α) and five mitochondrial (COI, COII, 12S, 16S, ND2) loci using Bayesian and maximum likelihood approaches to generate a phylogenetic hypothesis for the genus Campsicnemus. Our sampling included a total of 84 species (6 species from Europe, 1 from North America, 7 species from French Polynesia and 70 species from the Hawaiian Islands). The phylogenies were used to estimate divergence times, reconstruct biogeographic history, and infer ancestral ecological associations within this large genus. We found strong support for a South Pacific+Hawaiian clade, as well as for a monophyletic Hawaiian lineage. Divergence time estimates suggest that Hawaiian Islands were colonized approximately 4.6 million years ago, suggesting that most of the diversity within Campsicnemus evolved since the current high islands began forming ∼5 million years ago. We also observe a novel ecotype within the Pacific Campsicnemus; a widespread obligate water-skating form that has arisen multiple times across the Pacific Islands. Together, these analyses suggest that a combination of ecological, biogeographic and temporal factors have led to the impressive diversity of long-legged flies in Hawaii and elsewhere in the Pacific.

  12. Bionomics of phlebotomine sand flies (Diptera: Psychodidae) in the province of Al-Baha, Saudi Arabia.

    PubMed

    Doha, Said Abdallah; Samy, Abdallah M

    2010-11-01

    The bionomics of phlebotomine sand flies (Diptera: Psychodidae) were studied for two successive years (January 1996-December 1997) at 12 collecting stations representing six sectors of the province of Al-Baha, Saudi Arabia. The predominant species was Phlebotomus bergeroti (41.7%), followed by lesser numbers of Phlebotomus sergenti (11%), Phlebotomus arabicus (10.6%), Sergentomyia tiberiadis (10.5%), Phlebotomus papatasi (10.2%), Sergentomyia antennata (9.6%), Phlebotomus alexandri (3%), Phlebotomus orientalis (2.3%) and Sergentomyia clydei (1.1%). The distribution of the collected species including species that are elsewhere known to act as vectors of human cutaneous leishmaniasis were distributed across different altitudes in Al-Baha. P. bergeroti, P. papatasi and P. arabicus were more abundant indoors; however, P. sergenti was more abundant outdoors. Sand fly populations exhibited three patterns of seasonal abundance in terms of their monthly activity. P. bergeroti, P. sergenti and P. arabicus were found to be naturally infected with Leishmania-like flagellates at an infection rate of 0.2%. PMID:21120352

  13. Influence of adding borax and modifying pH on effectiveness of food attractants for melon fly (Diptera: Tephritidae).

    PubMed

    Duyck, P F; Rousse, P; Ryckewaert, P; Fabre, F; Quilici, S

    2004-06-01

    The melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), is the most damaging pest of cucurbits in Reunion Island. The influence of adding borax and modifying pH on the effectiveness of different food attractants for both sexes of the melon fly is analyzed by a release-recapture method in field cages. Adding borax to protein hydrolysates Nulure and Buminal strongly reduced their attractiveness for B. cucurbitae. Acidification of 5% Buminal solution (from pH 6 to pH 3) doubled its attractiveness for melon fly. Conversely, Torula yeast at pH 10.5 was significantly more attractive than the standard Torula yeast at pH 9 (28% of captured flies compared with 17%). However, a further pH increase of the yeast solution does not improve its attractiveness. The results are discussed in relation to other studies on pH modification of various baits for Tephritidae.

  14. Molecular detection of canine parvovirus in flies (Diptera) at open and closed canine facilities in the eastern United States.

    PubMed

    Bagshaw, Clarence; Isdell, Allen E; Thiruvaiyaru, Dharma S; Brisbin, I Lehr; Sanchez, Susan

    2014-06-01

    More than thirty years have passed since canine parvovirus (CPV) emerged as a significant pathogen and it continues to pose a severe threat to world canine populations. Published information suggests that flies (Diptera) may play a role in spreading this virus; however, they have not been studied extensively and the degree of their involvement is not known. This investigation was directed toward evaluating the vector capacity of such flies and determining their potential role in the transmission and ecology of CPV. Molecular diagnostic methods were used in this cross-sectional study to detect the presence of CPV in flies trapped at thirty-eight canine facilities. The flies involved were identified as belonging to the house fly (Mucidae), flesh fly (Sarcophagidae) and blow/bottle fly (Calliphoridae) families. A primary surveillance location (PSL) was established at a canine facility in south-central South Carolina, USA, to identify fly-virus interaction within the canine facility environment. Flies trapped at this location were pooled monthly and assayed for CPV using polymerase chain reaction (PCR) methods. These insects were found to be positive for CPV every month from February through the end of November 2011. Fly vector behavior and seasonality were documented and potential environmental risk factors were evaluated. Statistical analyses were conducted to compare the mean numbers of each of the three fly families captured, and after determining fly CPV status (positive or negative), it was determined whether there were significant relationships between numbers of flies captured, seasonal numbers of CPV cases, temperature and rainfall. Flies were also sampled at thirty-seven additional canine facility surveillance locations (ASL) and at four non-canine animal industry locations serving as negative field controls. Canine facility risk factors were identified and evaluated. Statistical analyses were conducted on the number of CPV cases reported within the past year

  15. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling.

    PubMed

    Kumar, Sunil; Neven, Lisa G; Yee, Wee L

    2014-06-01

    Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature < or = 3 degree C for at least 15 wk) was used as the criterion for whether establishment can occur. Furthermore, these countries have no host plant species available for R. indifferens. Our results can be used to make scientifically informed international trade decisions and negotiations by policy makers.

  16. Fly artifact documentation of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) - a forensically important blowfly species in Malaysia.

    PubMed

    Zuha, R M; Supriyani, M; Omar, B

    2008-04-01

    Analysis on fly artifacts produced by forensically important blowfly, Chrysomya megacephala (Fabricius) (Diptera:Calliphoridae), revealed several unique patterns. They can be divided into fecal spots, regurgitation spots and swiping stains. The characteristics of fecal spots are round with three distinct levels of pigmentation; creamy, brownish and darkly pigmented. Matrix of the spots appears cloudy. The round spots are symmetrical and non-symmetrical, delineated by irregular and darker perimeter which only visible in fairly colored fecal spots. Diameter of these artifacts ranged from 0.5 mm to 4 mm. Vomit or regurgitation spots are determined by the presence of craters due to sucking activity of blowflies and surrounded by thickly raised and darker colored perimeter. The size of these specks ranged from 1 mm to 2 mm. Matrix of the spots displays irregular surface and reflective under auxiliary microscope light. Swiping stains due to defecation by flies consists of two distinguishable segments, the body and tail. It can be seen as a tear drop-like, sperm-like, snake-like and irregular tadpole-like stain. The direction of body and tail is inconsistent and length ranged between 4.8 mm to 9.2 mm. A finding that should be highlighted in this observation is the presence of crater on tadpole-like swiping stain which is apparent by its raised border characteristic and reflective under auxiliary microscope light. The directionality of this darkly brown stain is random. This unique mix of regurgitation and swiping stain has never been reported before. Highlighting the features of artifacts produced by flies would hopefully add our understanding in differentiating them from blood spatters produced from victims at crime scenes.

  17. Multilocus molecular and phylogenetic analysis of phlebotomine sand flies (Diptera: Psychodidae) from southern Italy.

    PubMed

    Latrofa, Maria Stefania; Dantas-Torres, Filipe; Weigl, Stefania; Tarallo, Viviana Domenica; Parisi, Antonio; Traversa, Donato; Otranto, Domenico

    2011-08-01

    This study reports a combined analysis of mitochondrial and ribosomal DNA target regions of phlebotomine sand flies (Diptera: Psychodidae) from the Mediterranean region. A ∼900 bp long fragment of the mitochondrial DNA encompassing regions within cytb and nd1 gene and the complete ITS2 ribosomal region (∼500 bp) were sequenced and characterized for Phlebotomus perniciosus, Phlebotomus perfiliewi, Phlebotomus neglectus, Phlebotomus papatasi, and Sergentomyia minuta, captured in two sites of southern Italy. From one to eight mitochondrial haplotypes and from one to three ITS2 sequence types were found for the examined specimens according to the different sand fly species. The mean interspecific difference in the mitochondrial sequences was of 16.1%, with an overall intraspecific nucleotide variation from 0.1 to 2.8%. A higher interspecific difference (mean 25.1%) was recorded for the ITS2 sequence, with an overall intraspecific nucleotide variation up to 4.9%. The sequence types alignment of ITS2 region showed that all phlebotomine specimens possessed a split 5.8S rRNA, consisting of a mature 5.8S rRNA and a 2S rRNA separated by a short transcribed spacer. Phylogenetic analysis of the Phlebotomus spp. sequences, herein determined and of those available in GenBank™ were concordant in clustering P. neglectus, P. perfiliewi and P. papatasi with the same species collected from different geographic areas of the Mediterranean basin in four main clades for mtDNA and ITS2, respectively. This study demonstrates the utility of multilocus sequencing, provides a dataset for the molecular identification of the most prevalent phlebotomine sand flies in southern Europe and defines the phylogenetic relationships among species examined.

  18. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachycera): frequent cosmopolitism and moderate host specificity.

    PubMed

    Týč, Jiří; Votýpka, Jan; Klepetková, Helena; Suláková, Hana; Jirků, Milan; Lukeš, Julius

    2013-10-01

    Widely distributed, highly prevalent and speciose, trypanosomatid flagellates represent a convenient model to address topics such as host specificity, diversity and distribution of parasitic protists. Recent studies dealing with insect parasites of the class Kinetoplastea have been focused mainly on trypanosomatids from true bugs (Heteroptera), even though flies (Diptera, Brachycera) are also known as their frequent hosts. Phylogenetic position, host specificity and geographic distribution of trypanosomatids parasitizing dipteran hosts collected in nine countries on four continents (Bulgaria, Czech Republic, Ecuador, Ghana, Kenya, Madagascar, Mongolia, Papua New Guinea and Turkey) are presented. Spliced leader (SL) RNA gene repeats and small subunit (SSU) rRNA genes were PCR amplified from trypanosomatids infecting the gut of a total of forty fly specimens belonging to nine families. While SL RNA was mainly used for barcoding, SSU rRNA was utilized in phylogenetic analyses. Thirty-six different typing units (TUs) were revealed, of which 24 are described for the first time and represent potential new species. Multiple infections with several TUs are more common among brachyceran hosts than in true bugs, reaching one third of cases. When compared to trypanosomatids from heteropteran bugs, brachyceran flagellates are more host specific on the genus level. From seven previously recognized branches of monoxenous trypanosomatids, the Blastocrithidia and "jaculum" clades accommodate almost solely parasites of Heteroptera; two other clades (Herpetomonas and Angomonas) are formed primarily by flagellates found in dipteran hosts, with the most species-rich Leishmaniinae and the small Strigomonas and "collosoma" clades remaining promiscuous. Furthermore, two new clades of trypanosomatids from brachyceran flies emerged in this study. While flagellates from brachyceran hosts have moderate to higher host specificity, geographic distribution of at least some of them seems to be

  19. Female access and diet affect insemination success, senescence, and the cost of reproduction in male Mexican fruit flies Anastrepha ludens

    PubMed Central

    HARWOOD, JAMES F.; CHEN, KEHUI; LIEDO, PABLO; MÜLLER, HANS-GEORG; WANG, JANE-LING; MORICE, AMY E.; CAREY, JAMES R.

    2014-01-01

    Hypotheses exploring the influence of dietary conditions on the life history trade-off between survival and reproductive success are extensively tested in female insects, but are rarely explored in males. Here, the impact of dietary quality and female access on age-specific reproduction and survival of male Mexican fruit flies, Anastrepha ludens Loew (Diptera: Tephritidae), are examined. There is a clear cost of female access for males with access to dietary protein, measurable as a decrease in life expectancy, which is further influenced by the age when females are introduced. A protein deficient diet reduces the lifespan benefit of virginity and masks the detrimental effect of female access on male life expectancy. Dietary protein is not necessary for reproductive success, but access to protein at eclosion improves the lifetime reproductive success of males compared to when it is delayed. Overall, reproductive success diminishes as the male flies age, regardless of the dietary conditions, providing evidence for reproductive senescence in males. Delaying the males’ access to a protein source fails to influence the negative effect of age on reproductive ability. Because age specific reproductive rates decline with age, regardless of diet, male fitness does not benefit from lifespan extension. Therefore, males can be expected to allocate available resources towards reproductive effort in favour of extended lifespan, regardless of mate and protein availability. PMID:25709143

  20. Grazing trails formed by soldier fly larvae (Diptera: Stratiomyidae) and their paleoenvironmental and paleoecological implications for the fossil record

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; Claps, G.L.

    1996-01-01

    Recent trails formed by soldier fly larvae (Diptera: Stratiomyidae) were examined in a shallow pond in the floodplain of a braided river in Jujuy Province, northwestern Argentina. Collected specimens were identified as Stratiomys convexa van der Wulp. Simple, irregularly meandering trails were produced across the surface of a muddy-silty substrate. Since soldier fly larvae extend their caudal respiratory tube to the water-air interface, they are restricted to extremely shallow water. The presence of benthic algal remains within the mouthparts of the larvae suggests a feeding habit of algal grazing. If preserved, these trails would be included in the ichnogenus Helminthopsis, a common element in ancient freshwater ichnofaunas. Helminthopsis preserved in pond and lacustrine margin deposits younger than Late Jurassic is regarded as one possible trace fossil analogue of the trails documented herein. Additionally, it is suggested that larvae of many aquatic Diptera with similar ecologic restrictions are potential tracemakers of Helminthopsis and other simple trails in these environments, particularly in post-Paleozoic deposits. Studies of modern shallow aquatic habitats and reexamination of the ichnologic record stress the importance of fly larvae as tracemakers in lake margin and pond ecosystems. Ecologic requirements of soldier fly larvae make them inappropriate analogues of Helminthopsis tracemakers in deeper water, lacustrine settings. ?? 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands by Harwood Academic Publishers GmbH.

  1. Carambola Cultivar, Fruit Ripeness, and Damage by Conspecific Larvae Influence the Host-Related Behaviors of Anastrepha obliqua (Diptera: Tephritidae).

    PubMed

    López-Ley, Jorge Ulises; Toledo, Jorge; Malo, Edi A; Gomez, Jaime; Santiesteban, Antonio; Rojas, Julio C

    2016-02-01

    In this study, we investigated the influence of cultivar type, fruit ripeness, and damage by conspecific larvae on the attraction of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) to and oviposition on carambola fruit (Averroha carambola L.). The attraction of both sexes of A. obliqua to fruit of different quality was evaluated through cage experiments in the field, and the oviposition preferences of mated females were examined in laboratory tests. Both sexes, mated or virgin, were more attracted to the "Maha" fruit than to the "Golden Star" fruit, and the females oviposited more frequently on the Maha cultivar than the Golden Star cultivar. Both sexes were more attracted to ripe and half-ripe Maha fruits than to mature green fruit, and although females did not show a preference for ovipositing on half-ripe or ripe fruits, they did not oviposit on mature green fruits. Males did not show a preference for the volatiles from uninfested, artificially damaged, or infested Maha fruits, but females were more attracted to uninfested fruits than to artificially damaged and infested Maha fruits. Furthermore, females preferred to oviposit on uninfested fruits compared with artificially damaged fruit, and they did not oviposit on infested fruits.

  2. A Plain English Map of the Chromosomes of the Fruit Fly Drosophila Melanogaster.

    ERIC Educational Resources Information Center

    Offner, Susan

    1996-01-01

    Presents a plain English map of the chromosomes of the fruit fly that contains genes from very different kinds of studies. Represents the work of nearly a century by thousands of researchers using a tremendous variety of techniques. (JRH)

  3. Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1997-01-01

    Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)

  4. Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae).

    PubMed

    Khan, Hafiz Azhar Ali; Shad, Sarfraz Ali; Akram, Waseem

    2012-09-01

    The house fly, Musca domestica L. (Diptera: Muscidae) is one of the major pests of confined and pastured livestock worldwide. Livestock manures play an important role in the development and spread of M. domestica. In the present study, we investigated the impact of different livestock manures on the fitness and relative growth rate of M. domestica and intrinsic rate of natural increase. We tested the hypotheses by studying life history parameters including developmental time from egg to adult's eclosion, fecundity, longevity, and survival on manures of buffalo, cow, nursing calf, dog, horse, poultry, sheep, and goat, which revealed significant differences that might be associated with fitness costs. The maggots reared on poultry manure developed faster compared to any other host manure. The total developmental time was the shortest on poultry manure and the longest on horse manure. The fecundity by females reared on poultry, nursing calf, and dog manures was greater than on any other host manures. Similarly, percent survival of immature stages, pupal weight, eggs viability, adults' eclosion, survival and longevity, intrinsic rate of natural increase, and biotic potential were significantly higher on poultry, nursing calf, and dog manures compared to any other livestock manures tested. However, the sex ratio of adult flies remained the same on all types of manures. The low survival on horse, buffalo, cow, sheep, and goat manures suggest unsuitability of these manures, while the higher pupal weight on poultry, nursing calf, and dog manures suggest that these may provide better food quality to M. domestica compared with any other host manures. Our results point to the role of livestock manures in increasing local M. domestica populations. Such results could help to design cultural management strategies which may include sanitation, moisture management, and manure removal.

  5. DNA barcoding distinguishes pest species of the black fly genus Cnephia (Diptera: Simuliidae).

    PubMed

    Conflitti, I M; Pruess, K P; Cywinska, A; Powers, T O; Currie, D C

    2013-11-01

    Accurate species identification is essential for cost-effective pest control strategies. We tested the utility of COI barcodes for identifying members of the black fly genus Cnephia Enderlein (Diptera: Simuliidae). Our efforts focus on four Nearctic Cnephia species-Cnephia dacotensis (Dyar & Shannon), Cnephia eremities Shewell, Cnephia ornithophilia (Davies, Peterson & Wood), and Cnephia pecuarum (Riley)--the latter two being current or potential targets of biological control programs. We also analyzed one Palearctic species, Cnephia pallipes (Fries). Although Cnephia adults can be identified anatomically to species, control programs target the larval stage, which is difficult or impossible to distinguish morphologically. By using neighbor-joining, maximum parsimony, and Bayesian methods, we found that COI barcodes successfully identified three Nearctic Cnephia species, but not C. pecuarum. The Palearctic C. pallipes was also successfully identified. Despite nonmonophyly of C. pecuarum, we show that data from COI barcoding, in combination with geographical and ecological information, can be used to distinguish all four Nearctic species. Finally, we discussed 1) possible reasons for paraphyly in C. pecuarum, 2) topological concordance to previously reported chromosomal dendrograms, and 3) evolution of diverse feeding strategies within the genus Cnephia. PMID:24843929

  6. Seasonal fluctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco.

    PubMed

    Boussaa, S; Guernaoui, S; Pesson, B; Boumezzough, A

    2005-08-01

    Phlebotomine sand flies (Diptera: Psychodidae) were collected continuously, using sticky traps, during 1 year from October 2002 to September 2003, in an urban area of Marrakech city (Morocco). A total of 3277 specimens were collected belonging to five species. Phlebotomus (Phlebotomus) papatasi (54.6%) is the predominant species followed by Sergentomyia (Sergentomyia) minuta (20%), S. (S.) fallax (11.3%), P. (Paraphlebotomus) sergenti (10.3%) and P. (Larroussius) longicuspis (3.8%). Data analyses showed a mono-modal annual pattern for P. sergenti and a bi-modal one for the other species. P. papatasi, the proven vector of Leishmania major in Morocco, was active throughout the year. This species did not diapause in this region. P. papatasi population peaked in June and November, which relating to the periods of risk in this area. Its preferred temperature ranged between 32 and 36 degrees C but no significant correlation was found between its density and the temperature. Considering the high density and long activity period of P. papatasi, the area of Marrakech should be regarded as a potential focus for L. major. This suggests the need for a continuously surveillance to prevent risk of zoonotic cutaneous leishmaniasis. PMID:15985259

  7. Ultrastructure of antennal sensory organs of horse nasal-myiasis fly, Rhinoestrus purpureus (Diptera: Oestridae).

    PubMed

    Liu, X H; Li, X Y; Li, K; Zhang, D

    2015-07-01

    Rhinoestrus purpureus (Brauer, 1858) (Diptera: Oestridae) is an economically important parasite that can cause severe nasal myiasis in equids or even attacking humans. The antennae of R. purpureus were examined using stereoscopic microscopy and scanning electron microscopy. The general morphology was provided detailedly, together with distribution, type, size, and ultrastructure of antennal sensilla. All the three antennal segments, antennal scape, pedicel, and funiculus, are interspersed by microtrichiae. Only mechanoreceptors are detected on antennal scape and pedicel. On antennal funiculus, three types of sensilla were observed, including basiconic sensilla, coeloconic sensilla and clavate sensilla. Two features are characterized of this host-specific bot fly: (1) numerous sensory pits with branched basiconic sensilla on antennal funiculus and (2) the absence of trichoid sensilla. The function of these distinctive traits are discussed in association with the life history. We suggest that more sensory pits with branched sensilla could increase the sensitivity of olfactory system for host orientation, while the capability of pheromone identification might be reduced due to the absence of trichoid sensilla. Besides, we support both thermo- and chemo-functions of coeloconic sensilla. PMID:25859927

  8. Dynamics of Social Behavior in Fruit Fly Larvae

    PubMed Central

    Durisko, Zachary; Kemp, Rebecca; Mubasher, Rameeshay; Dukas, Reuven

    2014-01-01

    We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior. PMID:24740198

  9. 70 years of radiation genetics: Fruit flies, mice and humans

    SciTech Connect

    Abrahamson, S.

    1997-03-01

    Radiation protection`s function is to protect society from the potential hazards that might occur through the human use of radiation, whether it be from energy production, medical uses or other sources of exposure. To do so, various scientific bodies are called upon to develop risk estimates which will provide society with adequate protection to the adverse effects of radiation, as best we can understand those adverse affects. Geneticists have the added burden, in that they must attempt to provide protection not only to the offspring of the present generation but also for all subsequent generations. While most of us have difficulty in thinking of effects that might be manifest only one or two generations into the future, some have projected potential risks for 50 to 100 generations. Here the author reviews work on fruit flies and mice, and studies of human exposures, which has provided much of the foundational information upon which geneticists can derive conclusions with regard to radiation protection questions.

  10. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  11. Methyl Farnesoate a naturally occurring juvenoid that accelerates reproductive development in Caribbean Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl farnesoate, the immediate biosynthetic precursor of juvenile hormone III (JH III) and the bisepoxide homolog of JH III was identified from hemolymph of adult males and females of the Caribbean fruit fly. Application of methyl farnesoate to newly eclosed flies resulted in precocious sexual dev...

  12. Development of Rhagoletis indifferens Curran (Diptera:Tephritidae) in crabapple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western cherry fruit fly, Rhagoletis indifferens, Curran, 1932 (Diptera: Tephritidae), was reared from naturally-infested Chinese crabapple, Malus spectabilis (Ait.) Borkh. (Rosaceae), in Washington state, U.S.A. Pupae from Chinese crabapple were smaller than those from sweet cherry, Prunus avium (...

  13. Using sex pheromone trapping to explore threats to wheat from Hessian fly (Diptera: Cecidomyiidae) in the Upper Great Plains.

    PubMed

    Anderson, K M; Hillbur, Y; Reber, J; Hanson, B; Ashley, R O; Harris, M O

    2012-12-01

    Before embarking on the 5-10 yr effort it can take to transfer plant resistance (R) genes to adapted crop cultivars, a question must be asked: is the pest a sufficient threat to warrant this effort? We used the recently discovered female-produced sex pheromone of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae),to explore this question for populations in the Upper Great Plains. Methods for pheromone trapping were established and trapping data were used to explore geographic distribution, phenology, and density. The pheromone lure remained attractive for up to 10 d and only attracted male Hessian flies. Traps placed within the crop canopy caught flies but traps placed above the crop canopy did not. Hessian flies were trapped throughout North Dakota starting in the spring and continuing through the summer and autumn. Densities were low in the spring but increased greatly during the early part of the summer, with peak adult emergence taking place at a time (July/August) when spring wheat was being harvested and winter wheat had not yet been planted. In the autumn, adults were found at a time when winter wheat seedlings are growing. The discovery of flies on Conservation Reserve Program land supports the idea that pasture grasses serve as alternate hosts. We conclude that the Hessian fly is a risk to wheat in the Upper Great Plains and predict that global warming and the increasing cultivation of winter wheat will add to this risk.

  14. Is the alpine divide becoming more permeable to biological invasions? - Insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland.

    PubMed

    Aluja, M; Guillén, L; Rull, J; Höhn, H; Frey, J; Graf, B; Samietz, J

    2011-08-01

    The Walnut Husk Fly, Rhagoletis completa Cresson (Diptera: Tephritidae), is native to North America (Midwestern US and north-eastern Mexico) and has invaded several European countries in the past decades by likely crossing the alpine divide separating most parts of Switzerland from Italy. Here, we determined its current distribution in Switzerland by sampling walnuts (Juglans regia L.) in ecologically and climatically distinct regions along potential invasion corridors. R. completa was found to be firmly established in most low altitude areas of Switzerland where walnuts thrive, but notably not a single parasitoid was recovered from any of the samples. Infested fruit was recovered in 42 of the 71 localities that were surveyed, with mean fruit infestation rate varying greatly among sites. The incidence of R. completa in Switzerland is closely related to meteorological mean spring temperature patterns influencing growing season length, but not to winter temperatures, reflecting survival potential during hibernation. Importantly, areas in which the fly is absent correspond with localities where the mean spring temperatures fall below 7°C. Historical data records show that the natural cold barrier around the Alpine divide in the central Swiss Alps corresponding to such minimal temperatures has shrunk significantly from a width of more than 40 km before 1990 to around 20 km after 2000. We hypothesize on possible invasion/expansion routes along alpine valleys, dwell on distribution patterns in relation to climate, and outline future research needs as the incursion of R. completa into Switzerland; and, more recently, other European countries, such as Germany, Austria, France and Slovenia, represent an example of alien species that settle first in the Mediterranean Basin and from there become invasive by crossing the Alps. PMID:21320363

  15. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera indica L.)

    PubMed Central

    Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia

    2016-01-01

    Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107

  16. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae)

    PubMed Central

    2014-01-01

    Background The chemical senses of insects mediate behaviors that are closely linked to survival and reproduction. The order Diptera contains two model organisms, the vinegar fly Drosophila melanogaster and the mosquito Anopheles gambiae, whose chemosensory genes have been extensively studied. Representing a third dipteran lineage with an interesting phylogenetic position, and being ecologically distinct by feeding on plants, the Hessian fly (Mayetiola destructor Say, Diptera: Cecidomyiidae) genome sequence has recently become available. Among plant-feeding insects, the Hessian fly is unusual in ‘reprogramming’ the plant to create a superior food and in being the target of plant resistance genes, a feature shared by plant pathogens. Chemoreception is essential for reproductive success, including detection of sex pheromone and plant-produced chemicals by males and females, respectively. Results We identified genes encoding 122 odorant receptors (OR), 28 gustatory receptors (GR), 39 ionotropic receptors (IR), 32 odorant binding proteins, and 7 sensory neuron membrane proteins in the Hessian fly genome. We then mapped Illumina-sequenced transcriptome reads to the genome to explore gene expression in male and female antennae and terminal abdominal segments. Our results reveal that a large number of chemosensory genes have up-regulated expression in the antennae, and the expression is in many cases sex-specific. Sex-specific expression is particularly evident among the Or genes, consistent with the sex-divergent olfactory-mediated behaviors of the adults. In addition, the large number of Ors in the genome but the reduced set of Grs and divergent Irs suggest that the short-lived adults rely more on long-range olfaction than on short-range gustation. We also report up-regulated expression of some genes from all chemosensory gene families in the terminal segments of the abdomen, which play important roles in reproduction. Conclusions We show that a large number of the

  17. Compendium of fruit fly host information (CoFFHI), version 1.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compendium of Fruit Fly Host Information (CoFFHI), developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS and the Center for Integrated Pest Management (CIPM) provides centralized, comprehensive documentation of what is known worldwide about the status of fruits and vegeta...

  18. Variation in Sharwil avocado maturity during the harvest season and resistance to fruit fly infestation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Avocados cannot be exported from Hawaii without a quarantine treatment to prevent the spread of fruit flies. Research on the maturity and infestability of ‘Sharwil’ avocados was conducted to support development of a systems approach for quarantine security of exported fruit. Th...

  19. Is aggregated oviposition by the blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) really pheromone-mediated?

    PubMed

    Brodie, Bekka S; Wong, Warren H L; VanLaerhoven, Sherah; Gries, Gerhard

    2015-10-01

    When female blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) oviposit in aggregations on carrion, even-aged larval offspring reportedly develop faster, and fewer are parasitized or preyed upon. The benefits of aggregated oviposition equally affect con- and heterospecific larvae sharing a resource. The benefits imply that female blow flies engage in coordinated, pheromone-mediated oviposition behavior. Yet, repeated attempts to identify oviposition pheromones have failed invoking doubt that they exist. Simply by regurgitating and feeding on carrion, flies may produce attractive semiochemicals. If flies were to aggregate in response to feeding flies rather than ovipositing flies, then the semiochemical cue(s) may be associated with the salivary gland. Working with L. sericata and P. regina and using liver as a surrogate oviposition medium, we test the hypotheses, and present data in their support, that (i) gravid or nongravid females ovipositing and/or feeding on liver enhance its attractiveness to gravid and nongravid females; (ii) females respond to semiochemicals from feeding heterospecific females; (iii) females respond equally well to semiochemicals from feeding con- and heterospecific females; (iv) macerated head tissues of females applied to liver enhance its attractiveness; and (v) females in direct contact with and feeding on liver, but not when next to yet physically separated from liver, enhance attraction of flies. We conclude that oviposition site-seeking females do not respond to an oviposition pheromone. Instead, they appear to coopt semiochemicals associated with feeding flies as resource indicators, taking chances that resources are suitable for oviposition, and that ovipositing flies are present.

  20. The forgotten flies: the importance of non-syrphid Diptera as pollinators

    PubMed Central

    Orford, Katherine A.; Vaughan, Ian P.; Memmott, Jane

    2015-01-01

    Bees, hoverflies and butterflies are taxa frequently studied as pollinators in agricultural and conservation contexts. Although there are many records of non-syrphid Diptera visiting flowers, they are generally not regarded as important pollinators. We use data from 30 pollen-transport networks and 71 pollinator-visitation networks to compare the importance of various flower-visiting taxa as pollen-vectors. We specifically compare non-syrphid Diptera and Syrphidae to determine whether neglect of the former in the literature is justified. We found no significant difference in pollen-loads between the syrphid and non-syrphid Diptera. Moreover, there was no significant difference in the level of specialization between the two groups in the pollen-transport networks, though the Syrphidae had significantly greater visitation evenness. Flower visitation data from 33 farms showed that non-syrphid Diptera made up the majority of the flower-visiting Diptera in the agricultural studies (on average 82% abundance and 73% species richness), and we estimate that non-syrphid Diptera carry 84% of total pollen carried by farmland Diptera. As important pollinators, such as bees, have suffered serious declines, it would be prudent to improve our understanding of the role of non-syrphid Diptera as pollinators. PMID:25808886

  1. The forgotten flies: the importance of non-syrphid Diptera as pollinators.

    PubMed

    Orford, Katherine A; Vaughan, Ian P; Memmott, Jane

    2015-04-22

    Bees, hoverflies and butterflies are taxa frequently studied as pollinators in agricultural and conservation contexts. Although there are many records of non-syrphid Diptera visiting flowers, they are generally not regarded as important pollinators. We use data from 30 pollen-transport networks and 71 pollinator-visitation networks to compare the importance of various flower-visiting taxa as pollen-vectors. We specifically compare non-syrphid Diptera and Syrphidae to determine whether neglect of the former in the literature is justified. We found no significant difference in pollen-loads between the syrphid and non-syrphid Diptera. Moreover, there was no significant difference in the level of specialization between the two groups in the pollen-transport networks, though the Syrphidae had significantly greater visitation evenness. Flower visitation data from 33 farms showed that non-syrphid Diptera made up the majority of the flower-visiting Diptera in the agricultural studies (on average 82% abundance and 73% species richness), and we estimate that non-syrphid Diptera carry 84% of total pollen carried by farmland Diptera. As important pollinators, such as bees, have suffered serious declines, it would be prudent to improve our understanding of the role of non-syrphid Diptera as pollinators.

  2. How fruit flies came to launch the chromosome theory of heredity.

    PubMed

    Carlson, Elof Axel

    2013-01-01

    Fruit flies were used by several laboratories between 1901 and 1910 for studies of experimental evolution at Harvard, Indiana University, and Cold Spring Harbor before Thomas Hunt Morgan found his white-eyed mutation that we associate with the beginnings of the fly lab at Columbia University. The major players prior to Morgan were William Castle and his students at Harvard University, Frank Lutz at Cold Spring Harbor, and Fernandus Payne whose ideas for working with fruit flies were shaped by his studies of blind cave fauna at Indiana University. Payne's interests were stimulated by the work of Carl Eigenmann, an authority on blind cave fauna, and William Moenkhaus, who introduced Payne to fruit flies at Indiana University before Payne moved to Columbia to pursue graduate work with Morgan and Edmund Wilson. The motivations of the laboratories differed in the theories used for their work. Castle spread the word about the utility of fruit flies for research, but Payne gave Morgan his first fruit flies for research leading to the discovery of the white-eye mutation.

  3. Alcohol consumption as self-medication against blood-borne parasites in the fruit fly.

    PubMed

    Milan, Neil F; Kacsoh, Balint Z; Schlenke, Todd A

    2012-03-20

    Plants and fungi often produce toxic secondary metabolites that limit their consumption, but herbivores and fungivores that evolve resistance gain access to these resources and can also gain protection against nonresistant predators and parasites. Given that Drosophila melanogaster fruit fly larvae consume yeasts growing on rotting fruit and have evolved resistance to fermentation products, we decided to test whether alcohol protects flies from one of their common natural parasites, endoparasitoid wasps. Here, we show that exposure to ethanol reduces wasp oviposition into fruit fly larvae. Furthermore, if infected, ethanol consumption by fruit fly larvae causes increased death of wasp larvae growing in the hemocoel and increased fly survival without need of the stereotypical antiwasp immune response. This multifaceted protection afforded to fly larvae by ethanol is significantly more effective against a generalist wasp than a wasp that specializes on D. melanogaster. Finally, fly larvae seek out ethanol-containing food when infected, indicating that they use alcohol as an antiwasp medicine. Although the high resistance of D. melanogaster may make it uniquely suited to exploit curative properties of alcohol, it is possible that alcohol consumption may have similar protective effects in other organisms.

  4. Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil.

    PubMed

    Garcia, Flávio R M; Ricalde, Marcelo P

    2012-01-01

    The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus) was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA) to evaluate the parasitoid's potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets. PMID:26466795

  5. An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies

    PubMed Central

    Manoukis, Nicholas; Geib, Scott; Seo, Danny; McKenney, Michael; Vargas, Roger; Jang, Eric

    2011-01-01

    Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements. PMID:21750493

  6. Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil

    PubMed Central

    Garcia, Flávio R. M.; Ricalde, Marcelo P.

    2012-01-01

    The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus) was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA) to evaluate the parasitoid’s potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets. PMID:26466795

  7. Viability of Cabralea canjerana Extracts to Control the South American Fruit Fly, Anastrepha fraterculus

    PubMed Central

    Magrini, Flaviane Eva; Specht, Alexandre; Gaio, Juliano; Girelli, Cristiane Priscila; Migues, Ignacio; Heinzen, Horacio; Sartori, Valdirene Camatti; Cesio, Veronica

    2014-01-01

    Several representatives of Meliaceae contain biologically active compounds that are toxic to insects with few negative effects on the environment and humans. Our study evaluated the activity of ethyl acetate and ethanol extracts from the fruit and seeds of Cabralea canjerana (Vellozo) Mart (Sapindales: Meliaceae) on Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). Limonoids and triterpenes were detected in fruit and seed extracts. Each extract was added to an artificial diet at three concentrations and tested after 24, 48, and 72 hr of extract application. Ethyl acetate extracts were the most active ones and showed the effect of both dose and time elapses after application on the insects. The highest toxic effect on A. fraterculus adults was from ethyl acetate extracts from fruit, followed by extracts from seeds. These extracts showed antifeedant activities. Extract solutions sprinkled on fruits of Carica papaya (L.) (Brassicales: Caricaceae) caused oviposition repellency and negatively affected the biological development of A. fraterculus. Ethyl acetate extracts highly hampered oviposition, but seed extracts showed lesser oviposition deterrence. The fruit and seed extracts diminished pupal viability. Particularly, the ethyl acetate fruit extract caused malformed adults. The sex ratio was also affected, resulting in female predominance for the fruit extract, while the seed extract showed a dose-dependent effect. Low doses caused male abundance, but at higher concentrations the effect was reversed. These encouraging results showed that the C. canjerana extracts have great potential as new tools to be used in integrated pest management programs to protect fruits against A. fraterculus. PMID:25373194

  8. Evaluation of different insecticides and fabric types for development of treated targets for stable fly (Diptera: Muscidae) control.

    PubMed

    Hogsette, Jerome A; Nalli, Alyce; Foil, Lane D

    2008-06-01

    Stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), once only a pest of pastured cattle, has become a serious pest of range cattle in the United States. Because of the difficulties associated with stable fly management under range conditions, a pesticide-impregnated cloth target is being developed as a management tool. We conducted studies to determine the influence of weather, time, fabric type, insecticide type, and insecticide concentration on the mortality of stable flies from a susceptible laboratory colony exposed for 30 s to treated cloth targets. We found that 100% of the flies exposed to trigger (Trigger-Royal Box, 65% polyester and 35% cotton) fabric targets that were treated with 0.1% h-cyhalothrin or 0.1% zeta-cypermethrin and weathered outdoors in Gainesville, FL., for up to 3 mo, were dead within 20 min after a 30-s exposure. The results of this study support the concept that treated targets can be developed for integration into stable fly control programs.

  9. Records and Distribution of New World Phlebotomine Sand Flies (Psychodidae, Diptera), With Special Emphasis on Primary Types and Species Diversity.

    PubMed

    Rueda, Leopoldo M; Foley, Desmond H; Pecor, David; Wolkoff, Matthew

    2015-01-01

    This article includes the records and distribution of Phlebotomine sand flies (Psychodidae, Diptera) in the New World based on the specimen collections housed in 2 repositories, the US National Museum of Natural History and the Museum of Entomology, Florida State Collection of Arthropods. Approximately 128 species have primary types housed in the 2 repositories, including holotypes (47 species, 3 subspecies), "types" (7 species), allotypes (52 species, 6 subspecies), lectotypes (4 species), paratypes (93 species, 10 subspecies), and neoallotype (1 species), mounted on slides, with a total of 1,107 type slides. For species diversity, collection data from 24 countries in the sand fly database were analyzed according to the number of species present, specimen records, decade of collections, and countries where collections were conducted.

  10. The black soldier fly Hermetia illucens (Diptera: Stratiomyidae) as a potential measure of human postmortem interval: observations and case histories.

    PubMed

    Lord, W D; Goff, M L; Adkins, T R; Haskell, N H

    1994-01-01

    The black soldier fly, Hermetia illucens (L.), has been shown to be a ubiquitous inhabitant of both surface and buried human remains throughout the southern, central and western United States and Hawaii. Unlike most other species of forensically important Diptera, this species frequently dominates bodies in the dry/post decay stage of decomposition. Adults of the black soldier fly appear to initiate oviposition (egg laying) 20 to 30 days postmortem. Even at warm temperatures (27.8 degrees C), subsequent completion of the life cycle can require an additional 55 days. Life history data for H. illucens, when used in combination with data for other cohabiting arthropod species and viewed in the context of local environmental conditions, can provide medicolegal investigators with valuable parameters for estimating the postmortem intervals for badly decomposed remains. PMID:8113702

  11. The black soldier fly Hermetia illucens (Diptera: Stratiomyidae) as a potential measure of human postmortem interval: observations and case histories.

    PubMed

    Lord, W D; Goff, M L; Adkins, T R; Haskell, N H

    1994-01-01

    The black soldier fly, Hermetia illucens (L.), has been shown to be a ubiquitous inhabitant of both surface and buried human remains throughout the southern, central and western United States and Hawaii. Unlike most other species of forensically important Diptera, this species frequently dominates bodies in the dry/post decay stage of decomposition. Adults of the black soldier fly appear to initiate oviposition (egg laying) 20 to 30 days postmortem. Even at warm temperatures (27.8 degrees C), subsequent completion of the life cycle can require an additional 55 days. Life history data for H. illucens, when used in combination with data for other cohabiting arthropod species and viewed in the context of local environmental conditions, can provide medicolegal investigators with valuable parameters for estimating the postmortem intervals for badly decomposed remains.

  12. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae).

    PubMed

    Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K

    2015-07-01

    Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and

  13. Response of melon fly (Diptera: Tephritidae) to weathered SPLAT-Spinosad-Cue-Lure.

    PubMed

    Vargas, Roger I; Piñero, Jaime C; Jang, Eric B; Mau, Ronald F L; Stark, John D; Gomez, Luis; Stoltman, Lyndsie; Mafra-Neto, Agenor

    2010-10-01

    Studies were conducted in Hawaii to measure attraction of male melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to SPLAT-Cue-Lure (C-L) and SPLAT-Melo-Lure (M-L) (raspberry ketone formate). Direct field comparisons of SPLAT-C-L and SPLAT-M-L at low (5%) and high (20%) concentrations indicated few differences in attraction over a 15-wk period. Subsequently, only SPLAT-Spinosad-C-L (5%) was compared with Min-U-Gel C-L with naled (standard used in California) in weathering studies. Treatments were weathered for 1, 2, 4, and 8 wk in Riverside, CA, and shipped to Hawaii for attraction/toxicity tests under field and semifield conditions by using released males of controlled ages, and for feeding tests in the laboratory. In terms of attraction, SPLAT-Spinosad-C-L compared favorably to, or outperformed the current standard of Min-U-Gel-C-L with naled. In terms of toxicity, the cumulative 24-h mortality did not differ between the two insecticide-containing C-L treatments in field cage studies after 8 wk. However, in feeding studies in which individual males were exposed for 5 min to the different C-L treatments after 4 wk of weathering, SPLAT-Spinosad-C-L demonstrated reduced mortality compared with the Min-U-Gel-C-L with naled, suggesting reduced persistence of the spinosad material. Spinosad has low contact toxicity and when mixed with SPLAT and C-L offers a reduced risk alternative for control of B. cucurbitae and related C-L-responding species, without many of the negative effects to humans and nontargets of broad-spectrum contact poisons such as naled. PMID:21061958

  14. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae).

    PubMed

    Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K

    2015-07-01

    Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and

  15. Survival and development of the forensically important blow fly, Calliphora varifrons (Diptera: Calliphoridae) at constant temperatures.

    PubMed

    Voss, Sasha C; Cook, David F; Hung, Wei-Feng; Dadour, Ian R

    2014-09-01

    The influence of temperature on the development of the forensically important blow fly, Calliphora varifrons Malloch 1932 (Diptera: Calliphoridae), was investigated at seven constant temperatures ranging from 12 to 30 °C. C. varifrons completed development between 12 and 27 °C. At 30 °C larvae formed pupae but did not successfully emerge. Temperature significantly influenced development time, mortality, maximum larval length, and adult body size. Development time (larviposition to adult emergence) ranged from 16.65 ± 0.17 days at 27 °C to 49.93 ± 0.26 days at 12 °C. Development rate was essentially linear throughout the 12-27 °C temperature range. Linear estimates of lower developmental threshold and thermal requirement (K) for development of C. varifrons were 4.20 °C and 368.46 ± 26.38 K. At 30 °C, a slight inhibitory effect of high temperature on third instar development rate was observed followed by a rapid decline when subsequent development and survival ceased. Nonlinear estimates of lower developmental threshold for third instar development were comparatively higher (6.29 °C). Nonlinear estimates of optimal developmental temperature and upper lethal developmental threshold were 25.94 and 32.13 °C respectively. Mortality was high at both temperature extremes (12 and 27 °C) and lowest between 18 and 24 °C. Maximum larval length was inversely related to temperature. Adult body size was significantly smaller at 12 °C, peaked at 18 °C, and declined as temperatures increased. The species-specific development data presented are the first available for C. varifrons for use by forensic practitioners for estimation of minimum time since death.

  16. Identification of host blends that attract the African invasive fruit fly, Bactrocera invadens.

    PubMed

    Biasazin, Tibebe Dejene; Karlsson, Miriam Frida; Hillbur, Ylva; Seyoum, Emiru; Dekker, Teun

    2014-09-01

    Bactrocera invadens, an invasive fruit fly species in the Afro-tropical region belonging to the Bactrocera dorsalis complex, causes considerable damage to fruit production and productivity. We sought to find attractants from hosts of B. invadens that could serve as baits in traps for monitoring and management of this pest. The attractiveness of volatiles from four different fruit species (mango, guava, banana and orange) at two stages of ripeness (ripe or unripe) was tested in an olfactometer assay. All fruits were attractive against a clean air control. Using hexane extracts of volatile collections of fruits, we demonstrated that male flies preferred the volatiles of ripe guava and orange over unripe fruit extracts. There was a slight difference in preference between females and males; females preferred orange to guava and mango, whereas males preferred mango and guava to orange. Gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry (GC/MS) were used to identify compounds to which B. invadens antennae were sensitive. GC/EAD recordings from distal and medio-central parts of the fly antenna showed responses to a number of compounds from each fruit species, with esters dominating the responses. Synthetic blends were made for each fruit species using the shared antennally active compounds in ratios found in the extracts. In the olfactometer, B. invadens was most attracted to the banana and orange blends, followed by the mango and guava blends. The synthetic banana blend was as attractive as the volatile collection of banana, although both were less attractive than the fruit. The results demonstrate that composing attractive blends from GC/EAD-active constituents shared by host fruits can be effective for formulating attractive synthetic host mimics for generalist fruit fly species, such as B. invadens.

  17. Retention of Escherichia coli by house fly and stable fly (Diptera: Muscidae) during pupal metamorphosis and eclosion.

    PubMed

    Rochon, K; Lysyk, T J; Selinger, L B

    2005-05-01

    Populations of Escherichia coli obtained by feeding larval house flies, Musca domestica L. and stable flies, Stomoxys calcitrans (L.), persisted through the pupal stage. The abundance of E. coli in house fly pupae increased initially then declined before adult emergence. Abundance of E. coli in stable fly pupae increased through pupal development and remained high. Infected stable fly pupal cases typically contained more E. coli than house fly pupal cases. A greater proportion of emerging adult house flies were infected with E. coli compared with stable flies; however, the abundance of E. coli on infected flies was similar between species. Adult flies contained 0.04-0.19% of the E. coli in the pupal cases. The proportion of infected house fly adults and the amount of E. coli on the infected flies were related to the levels of E. coli in the pupal cases; however, these relationships did not occur with the stable fly. Results suggest that retention of E. coli from larval to adult house flies could play a role in the transmission and spread of E. coli, whereas stable fly adults probably play a minor role in E. coli spread. However, pupae of both species have potential to act as reservoirs for E. coli.

  18. Neuronal encoding of sound, gravity, and wind in the fruit fly.

    PubMed

    Matsuo, Eriko; Kamikouchi, Azusa

    2013-04-01

    The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.

  19. Medhost: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), version 3.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), causes direct damage to fruits and vegetables through oviposition and larval feeding. Rigorous quarantine procedures are currently enforced to prevent domestic and transnational spread of Medfly. Accessible and reliable informatio...

  20. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    PubMed

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest. PMID:27423980

  1. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    PubMed

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.

  2. Seasonal and Geographic Variation in Biodiversity of Forensically Important Blow Flies (Diptera: Calliphoridae) in New Jersey, USA.

    PubMed

    Weidner, L M; Jennings, D E; Tomberlin, J K; Hamilton, G C

    2015-09-01

    Determining the time of colonization of human or other animal remains by blow flies (Diptera: Calliphoridae) can play an important role in criminal investigations. However, blow fly presence in a given area is strongly influenced by abiotic and biotic variables such as temperature and habitat. We wanted to assess the biodiversity of adult blow flies in New Jersey, USA, where very little is known about these taxa. Toward that end we collected adult blow flies biweekly from traps baited with bovine liver and placed across three regions in New Jersey over a 2-yr period (2011-2013). We collected and identified 9,257 adult calliphorids, comprising six genera and 12 species. Blow fly assemblages composed of these species varied by season, but community composition did not vary among regions within a given season. Three species, Lucilia coeruleiviridis (Macquart), Lucilia sericata (Meigen), and Phormia regina (Meigen) comprised 88.5% of all adult blow flies collected (42.6, 25.9, 20.0%, respectively). Combining all regions, the dominant species for both spring and summer was L. coeruleiviridis comprising 35.1% of all adults caught in spring and 64.1% in summer. P. regina was the dominant species in fall, totaling 40.1% of all adults caught and Calliphora vicina (Robineau-Desvoidy) was the dominant species for winter, totaling 44.8% of all adults caught. Our findings provide the first assessment of blow fly communities in New Jersey, and these results can be applied to surrounding states where data are severely lacking for forensic application.

  3. Detection of fruit fly infestation in pickling cucumbers using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Renfu; Ariana, Diwan P.

    2011-06-01

    Fruit fly infestation can be a serious problem in pickling cucumber production. In the United States and many other countries, there is zero tolerance for fruit flies in pickled products. Currently, processors rely on manual inspection to detect and remove fruit fly-infested cucumbers, which is labor intensive and also prone to error due to human fatigue and the difficulty of visually detecting infestation that is hidden inside the fruit. In this research, a laboratory hyperspectral imaging system was used to detect fruit fly-infested pickling cucumbers. Hyperspectral reflectance (450-740 nm) and transmittance (740-1,000 nm) images were acquired simultaneously for 329 normal (infestation free) and fruit flyinfested pickling cucumbers of three size classes with the mean diameters of 16.8, 22.1, and 27.6 mm, respectively. Mean spectra were extracted from the hyperspectral image of each cucumber, and they were then corrected for the fruit size effect using a diameter correction equation. Partial least squares discriminant analyses for the reflectance, transmittance and their combined data were performed for differentiating normal and infested pickling cucumbers. With reflectance mode, the overall classification accuracies for the three size classes and mixed class were between 82% and 88%, whereas transmittance achieved better classification results with the overall accuracies of 88%-93%. Integration of reflectance and transmittance did not result in noticeable improvements, compared to transmittance mode. Overall, the hyperspectral imaging system performed better than manual inspection, which had an overall accuracy of 75% and decreased significantly for smaller size cucumbers. This research demonstrated that hyperspectral imaging is potentially useful for detecting fruit fly-infested pickling cucumbers.

  4. Checklist of the leaf-mining flies (Diptera, Agromyzidae) of Finland

    PubMed Central

    Kahanpää, Jere

    2014-01-01

    Abstract A checklist of the Agromyzidae (Diptera) recorded from Finland is presented. 279 (or 280) species are currently known from the country. Phytomyza linguae Lundqvist, 1947 is recorded as new to Finland. PMID:25337025

  5. Turning behaviour depends on frictional damping in the fruit fly Drosophila.

    PubMed

    Hesselberg, Thomas; Lehmann, Fritz-Olaf

    2007-12-01

    Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre. PMID:18055621

  6. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis.

    PubMed

    Pagadala Damodaram, Kamala Jayanthi; Aurade, Ravindra Mahadappa; Kempraj, Vivek; Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham

    2015-01-01

    The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of 'natural plant defenses' by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis. PMID:26422203

  7. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis.

    PubMed

    Pagadala Damodaram, Kamala Jayanthi; Aurade, Ravindra Mahadappa; Kempraj, Vivek; Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham

    2015-01-01

    The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of 'natural plant defenses' by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis.

  8. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham

    2015-01-01

    The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of ‘natural plant defenses’ by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis. PMID:26422203

  9. Neotropical Copestylum Macquart (Diptera: Syrphidae) Breeding in Fruits and Flowers, Including 7 New Species

    PubMed Central

    Ricarte, Antonio; Marcos-García, M. Ángeles; Hancock, E. Geoffrey; Rotheray, Graham E.

    2015-01-01

    Ten species of Copestylum (Diptera: Syrphidae) were reared from fruits and flowers in Costa Rica, Ecuador and Trinidad. Seven were new and in this paper, we describe them, their development sites and the third stage larva and/or the puparium of all ten species. One new synonym is proposed, Copestylum pinkusi (Curran) [= Copestylum cinctiventre (Curran)]. Similarities and differences between these new and other Copestylum species, suggest they separate into two groups, referred to as the Vagum and Cinctiventre species groups. Features characterising these groups for both adult and early stages are assessed. Each species was also distinguished using adult and early stage characters. Within the Vagum group, adults were more disparate morphologically than the larval stage; this was reversed in the Cinctiventre group. Adult colour patterns are probably cryptic in function and for disguise. Vagum species have disruptive marks, while the Cinctiventre species have reflective colours. Biologically, the groups are almost distinguished by larval development sites. Vagum species use predominantly fruits and have a larval stage that is relatively generalised in form and habit. Cinctiventre species are confined to developing in flowers and the larva is more specialised. A key to both adult and early stages of all ten species is provided. PMID:26580811

  10. Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.

    PubMed

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas

    2013-11-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.

  11. Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster

    PubMed Central

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F.

    2013-01-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations. PMID:24014528

  12. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies

    PubMed Central

    Papadopoulos, Nikos T.; Plant, Richard E.; Carey, James R.

    2013-01-01

    Since 1954, when the first tropical tephritid fruit fly was detected in California, a total of 17 species in four genera and 11 386 individuals (adults/larvae) have been detected in the state at more than 3348 locations in 330 cities. We conclude from spatial mapping analyses of historical capture patterns and modelling that, despite the 250+ emergency eradication projects that have been directed against these pests by state and federal agencies, a minimum of five and as many as nine or more tephritid species are established and widespread, including the Mediterranean, Mexican and oriental fruit flies, and possibly the peach, guava and melon fruit flies. We outline and discuss the evidence for our conclusions, with particular attention to the incremental, chronic and insidious nature of the invasion, which involves ultra-small, barely detectable populations. We finish by considering the implications of our results for invasion biology and for science-based invasion policy. PMID:23926154

  13. Genetic dissection of sleep-metabolism interactions in the fruit fly.

    PubMed

    Yurgel, Maria E; Masek, Pavel; DiAngelo, Justin; Keene, Alex C

    2015-09-01

    Dysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders including type II diabetes and cardiovascular disease. Interactions between sleep and metabolism involve the integration of signaling from brain regions regulating sleep, feeding, and metabolic function. Investigating the relationship between these processes provides a model to address more general questions of how the brain prioritizes homeostatically regulated behaviors. The availability of powerful genetic tools in the fruit fly, Drosophila melanogaster, allows for precise manipulation of neural function in freely behaving animals. There is a strong conservation of genes and neural circuit principles regulating sleep and metabolic function, and genetic screens in fruit flies have been effective in identifying novel regulators of these processes. Here, we review recent findings in the fruit fly that further our understanding of how the brain modulates sleep in accordance with metabolic state.

  14. Genetic dissection of sleep-metabolism interactions in the fruit fly

    PubMed Central

    Yurgel, Maria E.; Masek, Pavel; DiAngelo, Justin; Keene, Alex C.

    2015-01-01

    Dysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders including type II diabetes and cardiovascular disease. Interactions between sleep and metabolism involve the integration of signaling from brain regions regulating sleep, feeding, and metabolic function. Investigating the relationship between these processes provides a model to address more general questions of how the brain prioritizes homeostatically regulated behaviors. The availability of powerful genetic tools in the fruit fly, Drosophila melanogaster, allows for precise manipulation of neural function in freely behaving animals. There is a strong conservation of genes and neural circuit principles regulating sleep and metabolic function, and genetic screens in fruit flies have been effective in identifying novel regulators of these processes. Here, we review recent findings in the fruit fly that further our understanding of how the brain modulates sleep in accordance with metabolic state. PMID:25236355

  15. Are apple and hawthorn fruit volatiles more attractive than ammonium carbonate to Rhagoletis pomonella (Diptera: Tephritidae) in Washington state?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...

  16. El Niño-Southern Oscillation (ENSO) effects on Hessian fly (Diptera: Cecidomyiidae) infestation in the southeastern United States.

    PubMed

    Woli, P; Ortiz, B V; Buntin, D; Flanders, K

    2014-12-01

    Climate variability is expected to have an influence on the population of Hessian fly, Mayetiola destructor Say (Diptera: Cecidomyiidae), a serious insect pest of winter wheat in the southeastern United States. This study had two objectives: 1) to examine the effects of El Niño-Southern Oscillation (ENSO) on Hessian fly infestation and 2) to develop a weather-based Hessian fly infestation model for wheat yield loss prediction. At least 20 years of Hessian fly infestation and wheat yield records from two locations in South Georgia were used for this study. The yearly values of infestation were separated by ENSO phase and tested to assess the infestation differences across ENSO phases. Each year, yield losses from infestation were calculated by subtracting the yields of resistant varieties from those of susceptible ones. The yield losses were then separated by ENSO phase and tested. Multiple regression analyses were conducted to identify the contribution of monthly weather variables and changes in wheat acreage to Hessian fly infestation. Results showed that Hessian fly infestation and yield losses were greatest during the La Niña and least during the El Niño phase. The weather conditions that significantly increased the risk for infestation were those of the August-February period. The risk of infestation was higher during August-September under wetter, cooler conditions and during October-February under drier, warmer conditions. These findings could help wheat growers reduce the risk of infestation in the years that are expected to have more infestation through the adoption of necessary mitigation measures before the crop season.

  17. Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...

  18. Nematocera flies recorded in Serra do Courel, northwest Spain, May 2012 (Diptera: Anisopodidae, Blepharoceridae, Cylindrotomidae, Limoniidae, Pediciidae, Tipulidae and Trichoceridae) including descriptions of two new species of Limoniidae.

    PubMed

    Hancock, E Geoffrey; Hewitt, Stephen M; Horsfield, David; Lyszkowsi, Richard M; Macgowan, Iain; Ricarte, Antonio; Rotheray, Graham E; Watt, Kenneth

    2015-01-01

    During May 2012 Diptera were sampled in the Serro do Courel area of Lugo Province, Galicia, northwest Spain. The authors of this paper, members of the Malloch Society (see website) are active in attempting to understand the detailed ecology of flies. Much of this work is through targeting larval stages often with an emphasis on saproxylic situations. By rearing adults from larvae direct relationships between them and their detailed habitat requirements are established. The list of nematocerous Diptera that were sampled includes 36 species two of them new to science and records of six others new to the Iberian peninsula are provided. We describe Lipsothrix galiciensis Hancock & Hewitt sp. nov., and Prionolabis pjotri Hancock sp. nov. of the family Limoniidae and provide a key to adults of European Lipsothrix species. Such results from this brief opportunity indicate the potential of the area for further field work in these and other families of Diptera

  19. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization could be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine...

  20. Neural mechanisms of context-dependent processing of CO2 avoidance behavior in fruit flies.

    PubMed

    Siju, K P; Bräcker, Lasse B; Grunwald Kadow, I C

    2014-01-01

    The fruit fly, Drosophila melanogaster, innately avoids even low levels of CO2. CO2 is part of the so-called Drosophila stress odor produced by stressed flies, but also a byproduct of fermenting fruit, a main food source, making the strong avoidance behavior somewhat surprising. Therefore, we addressed whether feeding states might influence the fly's behavior and processing of CO2. In a recent report, we showed that this innate behavior is differentially processed and modified according to the feeding state of the fly. Interestingly, we found that hungry flies require the function of the mushroom body, a higher brain center required for olfactory learning and memory, but thought to be dispensable for innate olfactory behaviors. In addition, we anatomically and functionally characterized a novel bilateral projection neuron connecting the CO2 sensory input to the mushroom body. This neuron was essential for processing of CO2 in the starved fly but not in the fed fly. In this Extra View article, we provide evidence for the potential involvement of the neuromodulator dopamine in state-dependent CO2 avoidance behavior. Taken together, our work demonstrates that CO2 avoidance behavior is mediated by alternative neural pathways in a context-dependent manner. Furthermore, it shows that the mushroom body is not only involved in processing of learned olfactory behavior, as previously suggested, but also in context-dependent innate olfaction. PMID:25483251

  1. Persistence of Escherichia coli in immature house fly and stable fly (Diptera: Muscidae) in relation to larval growth and survival.

    PubMed

    Rochon, K; Lysyk, T J; Selinger, L B

    2004-11-01

    The persistence of Escherichia coli in artificially fed larvae was examined for up to 48 h after ingestion by house flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.). The rate of change in the E. coli load was similar for both species for up to 5 h after ingestion. Up to 48 h after ingestion, abundance of E. coli declined in immature house flies but remained constant in immature stable flies. When different E. coli concentrations were fed to larvae, the abundance of E. coli increased in stable fly larvae regardless of the initial concentration. The E. coli load in house fly larvae increased when larvae were fed a low concentration of bacteria, but it declined when larvae were fed a high concentration of bacteria. Survival of house fly and stable fly larvae averaged 62 and 25%, respectively, when reared on pure E. coli cultures. These observations suggest that house fly larvae digest E. coli and use it as a food source but stable fly larvae do not.

  2. Host status of blueberry to invasive tephritid fruit flies in Hawaii.

    PubMed

    Follett, Peter A; Armstrong, John W; Zee, Francis T

    2009-10-01

    Forced infestation studies were conducted to determine whether northern or southern highbush blueberries, Vaccinium corymbosum L., are hosts for the invasive tephritid fruit flies in Hawaii. Fruit were exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal and adult emergence. The number of puparia, number of puparia per gram, and percentage of adult emergence on 'Bluecrop' blueberry were significantly higher for B. dorsalis and C. capitata than B. cucurbitae; B. dorsalis, C. capitata, and B. cucurbitae produced an average of 1.06, 0.60, and 0.09 pupae per g fruit and had 5.8, 54.1, and 12.7% adult emergence, respectively. 'Berkeley' blueberries produced an average of only 0.06, 0.02, and 0.0 pupae per g fruit for B. dorsalis, C. capitata, and B. cucurbitae, respectively. Similarly, six blueberry cultivars were harvested weekly for 10 wk, exposed to Bactrocera latifrons (Hendel) in cages, and held for pupal and adult emergence on either sand or artificial diet. In total, 2,677 blueberries were exposed to 2681 B. latifons and held on sand, and no pupariation or adult emergence was observed. Small numbers of B. latifrons puparia and adults emerged from the artificial diet treatment in all cultivars. Results from rearing on sand and diet indicate that blueberry is an acceptable oviposition host for B. latifrons but not an adequate developmental host. These data suggest blueberry is potentially a good host for B. dorsalis and C. capitata, and an adequate host for Bactrocera cucurbitae, but that there may be significant variation in resistance among cultivars. Blueberry seems to be a nonhost for B. latifrons.

  3. Phylogeography of stable fly (Diptera: Muscidae) estimated by diversity at ribosomal 16S and cytochrome oxidase I mitochondrial genes.

    PubMed

    Marquez, J G; Cummings, M A; Krafsur, E S

    2007-11-01

    The blood-feeding cosmopolitan stable fly, Stomoxys calcitrans L. (Diptera: Muscidae), is thought to disperse rapidly and widely, and earlier studies of allozyme variation were consistent with high vagility in this species. The geographic origins of New World populations are unknown. Diversity at mitochondrial loci r16S and cytochrome oxidase I was examined in 277 stable flies from 11 countries, including five zoogeographical regions. Of 809 nucleotides, 174 were polymorphic and 133 were parsimony informative. Seventy-six haplotypes were found in frequencies consistent with the Wright-Fisher infinite allele model. None were shared among four or more zoogeographical regions. The null hypothesis of mutation neutrality was not rejected, thereby validating the observed distribution. Fifty-nine haplotypes were singular, eight were private and confined to the Old World, and three of 76 haplotypes were shared between the Old and New World. Only 19 haplotypes were found in the New World, 14 of which were singletons. Haplotype and nucleotide diversities were heterogeneous among countries and regions. The most diversity was observed in sub-Saharan Africa. Regional differentiation indices were C(RT) = 0.26 and N(RT) = 0.31, indicating populations were highly structured macrogeographically. Palearctic and New World flies were the least differentiated from each other. There were strong genetic similarities among populations in the Nearctic, Neotropical, and Palearctic regions, and it is most likely that New World populations were derived from the Palearctic after 1492 CE, in the colonial era. PMID:18047198

  4. Sergentomyia (Neophlebotomus) monticola, a new species of sand fly (Diptera: Psychodidae) from the Western Ghats, Thiruvananthapuram District, Kerala, India.

    PubMed

    Srinivasan, R; Jambulingam, P; Kumar, N Pradeep

    2014-09-01

    Sergentomyia (Neophlebotomus) monticola, a new species of sand fly (Diptera: Psychodidae), from the Kani tribal settlements, Thiruvananthapuram District, Kerala, southern India was described. These settlements were located in the Western Ghats, which is one of the 25 biodiversity hotspots in the world. Morphological characters of male and female specimens of Sergentomyia (Neophlebotomus) monticola were described with illustrations and its taxonomic position is defined within the genus. The DNA barcode analysis showed that both male and female specimens of the species were belonging to a single taxonomic category. The genetic distance with the most similar taxonomic neighbour was 14.61%, which confirms its distinctness from its congeners. Voucher specimens of the new species were deposited at the museum, Vector Control Research Centre (Indian Council of Medical Research), Puducherry, India, Zoological Survey of India, India and Smithsonian National Museum of Natural History (NMNH), Washington, D.C., USA.

  5. Inquiry-Based Environmental Science Investigations with the Fantastic Fruit Fly

    ERIC Educational Resources Information Center

    Beals, Ashlie M.; Krall, Rebecca M.

    2010-01-01

    The use of inquiry in life science can be particularly daunting because of the additional management and care living systems require. However, there are some low-maintenance organisms that work well in the classroom. One of these is the common fruit fly, "Drosophila melanogaster." Its small size, low cost, easy availability and maintenance, and…

  6. Characterization of endosymbiotic bacteria in Psyttalia lounsburyi, a beneficial insect against the olive fruit fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization between different populations of one parasitoid of the olive fruit fly, Psyttalia lounsburyi, is challenged by reproductive isolations induced by microbial endosymbionts belonging to Wolbachia. In this study, we aimed at characterizing, using a Multi-Locus Sequence Typing appro...

  7. Ammonium Acetate and Ammonium Bicarbonate in Traps for Anastrepha Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted to protein baits. Synthetic lures based on the principal components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important Anastrepha s...

  8. Identification and analysis of the major yolk polypeptide from the caribbean fruit fly, Anastrepha suspensa (Loew)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single major yolk polypeptide (YP) having a molecular mass of approximately 48,000 daltons (Da), was identified in the ovaries and oviposited eggs of the Caribbean fruit fly, Anastrepha suspensa. The polypeptide was partially purified from oviposited eggs using gel permeation and ion-exchange chro...

  9. Proteomics/qPCR approach on estimating physical ages of wild male oriental fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male fruit flies reared in the laboratory in DKI-PBARC rearing facility in Hilo, Hawaii, were collected and whole insects were run through standard proteomic analysis. An odorant binding protein 99b (OBP) (Bdor0907381) located at molecular weight between 9226 dalton and PI 4.56 was identified throug...

  10. Small-scale field tests of attract-and-kill stations for pest Tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted at UF-TREC, Homestead to test efficacy of wax-matrix bait stations and mass trapping for control of the Caribbean fruit fly in a 5 by 30 tree guava planting. Results of the study and the ability to document control using small-scale field tests will be discussed....

  11. Resveratrol modifies tephritid fruit fly response to nutritional and radiation stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resveratrol is a recently discovered compound. Three concentrations (50, 100, 200 µM) of resveratrol were evaluated against Bactrocera dorsalis and B. cucurbitae by incorporating resveratrol into fruit fly liquid larval diet under the following conditions: 1) with or without wheat germ oil (WGO) in ...

  12. Reduction of optimal thermal range in aging western cherry fruit flies(Rhagoletis indifferens Curran)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western cherry fruit fly is an economically important pest of sweet cherries in the western United States. The potential of this pest to establish and spread in areas in which it is not currently present has been the focus of recent research. Most published information on the thermal tolerance a...

  13. More than apples and oranges - Detecting cancer with a fruit fly's antenna

    PubMed Central

    Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; Di Natale, Corrado

    2014-01-01

    Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction. PMID:24389870

  14. More than apples and oranges - Detecting cancer with a fruit fly's antenna

    NASA Astrophysics Data System (ADS)

    Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado

    2014-01-01

    Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.

  15. Detection/monitoring of Bactrocera latifrons (Diptera: Tephritidae): assessing the potential of prospective new lures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactrocera latifrons is a tephritid fruit fly (Diptera: Tephritidae) which has a host list of 59 plant species from 14 plant families, with over 70% of the host plant species coming from the plant families Solanaceae and Cucurbitaceae. Bactrocera latifrons is of primarily Asian distribution, but it...

  16. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

  17. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  18. Experimental evolution of learning ability in fruit flies.

    PubMed

    Mery, Frederic; Kawecki, Tadeusz J

    2002-10-29

    The presence of genetic variation for learning ability in animals opens the way for experiments asking how and under what ecological circumstances improved learning ability should evolve. Here we report experimental evolution of learning ability in Drosophila melanogaster. We exposed experimental populations for 51 generations to conditions that we expected to favor associative learning with regard to oviposition substrate choice. Flies that learned to associate a chemical cue (quinine) with a particular substrate, and still avoided this substrate several hours after the cue had been removed, were expected to contribute more alleles to the next generation. From about generation 15 on, the experimental populations showed marked ability to avoid oviposition substrates that several hours earlier had contained the chemical cue. The improved response to conditioning was also expressed when the flies were faced with a choice of novel media. We demonstrate that these behavioral changes are caused by the evolution of both a higher learning rate and a better memory.

  19. Wing attachment position of fruit fly minimizes flight cost

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.

  20. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  1. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity. PMID:24472199

  2. Afrotropical flower flies (Diptera: Syrphidae). A new genus and species from Kenya, with a review of the melanostomine group of genera.

    PubMed

    Thompson, F Christian; Skevington, Jeffrey H

    2014-01-01

    A new genus and species of flower flies (Diptera: Syrphidae: Syrphinae: Syrphini) are described from central Africa (Kenya & Uganda), Afrostoma quadripunctatum. A key to the Afrotropical genera of the subfamily Syrphinae is given. A review of the melanostomine [Bacchini] genera and subgenera is provided along with a key to them. Phylogenetic placement of Afrostoma is included based on mitochondrial cytochrome c oxidase subunit I (COI) data.

  3. Pheromones, male lures and trapping of tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dipteran family of Tephritidae consists of many genera, of which several namely, Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis and Toxotrypana possess species of high economic importance as major pests of fruits and vegetables. Hitherto, pheromones isolated and identified for possible use...

  4. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots

    PubMed Central

    Hesler, Louis S.

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed. PMID:27531905

  5. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots.

    PubMed

    Hesler, Louis S

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed. PMID:27531905

  6. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots.

    PubMed

    Hesler, Louis S

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed.

  7. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  8. Persistence and retention of porcine reproductive and respiratory syndrome virus in stable flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acquisition of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) by the stable fly (Stomoxys calcitrans L.) was assessed through a bloodmeal, and virus persistence in the digestive organs of the fly using virus isolation and real-time PCR. Stable flies were fed blood containing live vi...

  9. Pyriproxyfen and house flies (Diptera: Muscidae): effects of direct exposure and autodissemination to larval habitats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult house flies (Musca domestica L.) that were exposed as young flies to filter paper (3.75 % a.i.) or sugar (0.01-0.1 %) treated with pyriproxyfen produced significantly fewer F1 pupae than untreated flies but adult emergence success from pupae was unaffected. In contrast, treatment of larval re...

  10. Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids

    PubMed Central

    Cancino, Jorge; Ruíz, Lía; Viscarret, Mariana; Sivinski, John; Hendrichs, Jorge

    2012-01-01

    The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures. PMID:26466729

  11. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles

    PubMed Central

    Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2010-01-01

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  12. 76 FR 18419 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... (74 FR 651-664, Docket No. APHIS-2008- 0126), that led to establishment of the Peruvian Hass avocado... effective on January 4, 2010 (75 FR 1-13), we stated that more research would need to be done in accordance... retain the fruit cutting requirement for avocado seed moth and the inspection for quarantine pests....

  13. 76 FR 43804 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... of the United States. The regulations designate soil and many fruits, nuts, vegetables, and berries... conducted. On April 4, 2011, we published in the Federal Register (76 FR 18419-18421, Docket No. APHIS-2010... document published in the Federal Register on May 9, 2011 (76 FR 26654-26655). We received 30 comments...

  14. Evaluation of rhodamine B as an orally delivered biomarker for rodents and a feed-through transtadial biomarker for phlebotomine sand flies (Diptera: Psychodidae).

    PubMed

    Mascari, T M; Foil, L D

    2009-09-01

    The purpose of this study was to evaluate the use of rhodamine B as an orally delivered biomarker for rodents and a feed-through transtadial biomarker for phlebotomine sand flies (Diptera: Psychodidae). Rhodamine B-treated hamsters were visibly marked for up to 8 wk, and their feces were fluorescent when examined under a fluorescence microscope. The development and survival of sand fly larvae fed feces of rhodamine B-treated hamsters were not significantly different from control sand flies. Adult male and female sand flies, that had been fed as larvae the feces of rhodamine B-treated hamsters, were fluorescent when examined using fluorescent microscopy and could be distinguished from control sand flies. Adult female sand flies that took bloodmeals from rhodamine B-treated hamsters were fluorescent when examined immediately after feeding. Rhodamine B incorporated rodent baits could be used to detect adult male and female sand flies that fed on the feces of baited rodents as larvae, or adult female sand flies that have taken a bloodmeal from bait-fed rodents. This would allow the delineation of specific foci with rodent-sand fly associations that would be susceptible to control by using feed-through or systemic insecticides.

  15. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control

    PubMed Central

    Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.

    2012-01-01

    This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni. PMID:26466726

  16. The distribution of blow fly (Diptera: Calliphoridae) larval lengths and its implications for estimating post mortem intervals.

    PubMed

    Moffatt, Colin; Heaton, Viv; De Haan, Dorine

    2016-01-01

    The length or stage of development of blow fly (Diptera: Calliphoridae) larvae may be used to estimate a minimum postmortem interval, often by targeting the largest individuals of a species in the belief that they will be the oldest. However, natural variation in rate of development, and therefore length, implies that the size of the largest larva, as well as the number of larvae longer than any stated length, will be greater for larger cohorts. Length data from the blow flies Protophormia terraenovae and Lucilia sericata were collected from one field-based and two laboratory-based experiments. The field cohorts contained considerably more individuals than have been used for reference data collection in the literature. Cohorts were shown to have an approximately normal distribution. Summary statistics were derived from the collected data allowing the quantification of errors in development time which arise when different sized cohorts are compared through their largest larvae. These errors may be considerable and can lead to overestimation of postmortem intervals when making comparisons with reference data collected from smaller cohorts. This source of error has hitherto been overlooked in forensic entomology.

  17. Target of rapamycin activation predicts lifespan in fruit flies

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Naudí, Alba; Ayala, Victoria; Jové, Mariona; Pamplona, Reinald; Sanz, Alberto

    2015-01-01

    Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory. PMID:26259964

  18. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2002-06-01

    Dosage-mortality regressions were determined for black soldier fly, Hermetia illucens (L.), larvae fed cyromazine or pyriproxifen treated media. Cyromazine LC50 for larvae dying before becoming prepupae ranged from 0.25 to 0.28 ppm with dosage-mortality regression slopes between 5.79 and 12.04. Cyromazine LC50s for larvae dying before emergence ranged from 0.13 to 0.19 ppm with dosage-mortality regression slopes between 3.94 and 7.69. Pyriproxifen dosage-mortality regressions were not generated for larvae failing to become prepupae since <32% mortality was recorded at the highest concentration of 1,857 ppm. LC50s for larvae failing to become adults ranged from 0.10 to 0.12 ppm with dosage mortality-regression slopes between 1.67 and 2.32. Lambda-cyhalothrin and permethrin dosage-mortality regressions were determined for wild adult black soldier flies and house flies, Musca domestica L., and for susceptible house flies. Our results indicate that the wild house fly, unlike the black soldier fly, population was highly resistant to each of these pyrethroids. Regression slopes for black soldier flies exposed to lambda-cyhalothrin were twice as steep as those determined for the wild house fly strain. Accordingly, LC50s for the black soldier fly and susceptible house fly were 10- to 30-fold lower than those determined for wild house flies. The differential sensitivity between wild black soldier flies and house flies might be due to behavioral differences. Adult house flies usually remain in animal facilities with the possibility of every adult receiving pesticide exposure, while black soldier fly adults are typically present only during emergence and oviposition thereby limiting their exposure. PMID:12076006

  19. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2002-06-01

    Dosage-mortality regressions were determined for black soldier fly, Hermetia illucens (L.), larvae fed cyromazine or pyriproxifen treated media. Cyromazine LC50 for larvae dying before becoming prepupae ranged from 0.25 to 0.28 ppm with dosage-mortality regression slopes between 5.79 and 12.04. Cyromazine LC50s for larvae dying before emergence ranged from 0.13 to 0.19 ppm with dosage-mortality regression slopes between 3.94 and 7.69. Pyriproxifen dosage-mortality regressions were not generated for larvae failing to become prepupae since <32% mortality was recorded at the highest concentration of 1,857 ppm. LC50s for larvae failing to become adults ranged from 0.10 to 0.12 ppm with dosage mortality-regression slopes between 1.67 and 2.32. Lambda-cyhalothrin and permethrin dosage-mortality regressions were determined for wild adult black soldier flies and house flies, Musca domestica L., and for susceptible house flies. Our results indicate that the wild house fly, unlike the black soldier fly, population was highly resistant to each of these pyrethroids. Regression slopes for black soldier flies exposed to lambda-cyhalothrin were twice as steep as those determined for the wild house fly strain. Accordingly, LC50s for the black soldier fly and susceptible house fly were 10- to 30-fold lower than those determined for wild house flies. The differential sensitivity between wild black soldier flies and house flies might be due to behavioral differences. Adult house flies usually remain in animal facilities with the possibility of every adult receiving pesticide exposure, while black soldier fly adults are typically present only during emergence and oviposition thereby limiting their exposure.

  20. Horizontal Transmission of Metarhizium anisopliae in Fruit Flies and Effect of Fungal Infection on Egg Laying and Fertility

    PubMed Central

    Dimbi, Susan; Maniania, Nguya K.; Ekesi, Sunday

    2013-01-01

    Fly-to-fly transmission of conidia of the entomopathogenic fungus Metarhizium anisopliae and the effect of fungal infection on the reproductive potential of females surviving infection were investigated in three fruit fly species, Ceratitis cosyra, C. fasciventris, and C. capitata. The number of conidia picked up by a single fruit fly was determined in C. cosyra. The initial uptake (Day 0) of conidia by a single fly was approx. 1.1 × 106 conidia after exposure to the treated substrate. However, the number of conidia dropped from 7.2 × 105 to 4.1 × 105 conidia after 2 and 8 h post-exposure, respectively. The number of conidia picked up by a single fungus-treated fly (“donor”) varied between 3.8 × 105 and 1.0 × 106 in the three fruit fly species, resulting in 100% mortality 5–6 days post-exposure. When fungus-free flies of both sexes (“recipient” flies) were allowed to mate with “donor” flies, the number of conidia picked up by a single fly varied between 1.0 × 105 and 2.5 × 105, resulting in a mortality of 83–100% in C. capitata, 72–85% in C. cosyra and 71–93% in C. fasciventris 10–15 days post-inoculation. There was an effect of fungal infection on female egg laying in the three species of fruit flies as control flies laid more eggs than fungus-treated females. The percentage reduction in fecundity in flies infected with M. anisopliae was 82, 73 and 37% in C. capitata, C. fasciventris and C. cosyra, respectively. The results are discussed with regard to application in autodissemination techniques. PMID:26464386

  1. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Coria, C; Almiron, W; Valladares, G; Carpinella, C; Ludueña, F; Defago, M; Palacios, S

    2008-05-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main urban vector of dengue, has developed resistance to various insecticides, making its control increasingly difficult. We explored the effects of Argentine Melia azedarach L. (Meliaceae) fruit and senescent leaf extracts on Ae. aegypti larval development and survival, by rearing cohorts of first instar mosquitoes in water with different extract concentrations. We also analysed oviposition deterrent activity in choice tests with extract-treated ovitraps. The leaf extract showed a strong larvicide activity, with all larvae dying before pupation, and significantly delayed development time. It strongly inhibited oviposition by Ae. aegypti females. The fruit extract showed much weaker effects. This first report of highly effective larvicidal, growth regulating and oviposition deterrent activity of a senescent leaf extract of M. azedarach against Ae. aegypti, suggests that such extract could represent a promising tool in the management of this mosquito pest.

  2. Oviposition Deterrence and Immature Survival of Filth Flies (Diptera: Muscidae) When Exposed to Commercial Fungal Products

    PubMed Central

    Machtinger, E.T.; Weeks, E.N.I.; Geden, C. J.

    2016-01-01

    Filth flies are pests of livestock, and can transmit pathogens that cause disease to animals and their caretakers. Studies have shown successful infection of adult filth flies following exposure to different strains and formulations of entomopathogenic fungi. This study aimed to examine the effects of commercial formulations of Beauveria bassiana (Balsamo) (Moniliales: Moniliaceae) (i.e., BotaniGard ES, Mycotrol O, balEnce), and Metarhizium brunneum (Metsch.) (Ascomycota: Hypocreales) (i.e., Met52 EC), on filth fly oviposition and immature fly survival after exposure. House flies, Musca domestica L., laid significantly fewer eggs on Met52 EC-treated surfaces than on surfaces treated with all other products and the control. Similar numbers of eggs were laid on surfaces treated with all B. bassiana products, but egg production was half of the control. Stable flies, Stomoxys calcitrans (L.), laid the fewest eggs on Met52 EC- and Mycotrol O-treated surfaces. This species did not distinguish between the remaining products and the control. In a second experiment, house fly eggs were placed on treated cloths so that hatched larvae contacted the treatment prior to development. Met52 EC had the greatest effect on immature survival with a significant reduction in recovered pupae at the medium and high doses of fungi. Overall, Met52 EC, containing M. brunneum, had the greatest effect on house fly and stable fly oviposition deterrence and immature development of house flies. Management implications are discussed. PMID:27302955

  3. Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae).

    PubMed

    Macedo-Silva, Virgínia P; Martins, Daniella R A; De Queiroz, Paula Vivianne Souza; Pinheiro, Marcos Paulo G; Freire, Caio C M; Queiroz, José W; Dupnik, Kathryn M; Pearson, Richard D; Wilson, Mary E; Jeronimo, Selma M B; Ximenes, Maria De Fátima F M

    2014-01-01

    Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source ofbloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil.

  4. Laboratory evaluation of the efficacy of fluorescent biomarkers for sugar-feeding sand flies (Diptera: Psychodidae).

    PubMed

    Mascari, T M; Foil, L D

    2010-07-01

    The purpose of this study was to evaluate the use of four fluorescent dyes (rhodamine B, uranine O, auramine O, and erythrosin B) and two nonfluorescent dyes (carmoisine and indigotine) incorporated into sugar baits as biomarkers for phlebotomine sand flies. Each dye could be detected in sand flies fed baits with dye for 24 h when examined using bright field microscopy, although there was considerable variability in the marking produced; all sand flies that had ingested rhodamine B-treated sucrose solution were marked clearly. Sand flies that had ingested sucrose solution containing rhodamine B or uranine O at concentrations as low as 10 mg/L were consistently detected under fluorescence microscopy. None of the treatments in this study reduced the longevity of sand flies. All sand flies fed sucrose solution containing rhodamine B or uranine O were marked for at least 14 d, whereas only 20% of sand flies were marked 3 d after feeding on a carmoisine-treated solution. When rhodamine B and uranine O were combined in a single sucrose solution or when the dyes were fed sequentially to sand flies, both dyes could be detected in sand flies using fluorescence microscopy. We propose that rhodamine B- or uranine O-treated sucrose baits could be used in ecological studies or to identify portions of the adult sand fly population that could be targeted with insecticide-treated sugar baits.

  5. Oviposition Deterrence and Immature Survival of Filth Flies (Diptera: Muscidae) When Exposed to Commercial Fungal Products.

    PubMed

    Machtinger, E T; Weeks, E N I; Geden, C J

    2016-01-01

    Filth flies are pests of livestock, and can transmit pathogens that cause disease to animals and their caretakers. Studies have shown successful infection of adult filth flies following exposure to different strains and formulations of entomopathogenic fungi. This study aimed to examine the effects of commercial formulations of Beauveria bassiana (Balsamo) (Moniliales: Moniliaceae) (i.e., BotaniGard ES, Mycotrol O, balEnce), and Metarhizium brunneum (Metsch.) (Ascomycota: Hypocreales) (i.e., Met52 EC), on filth fly oviposition and immature fly survival after exposure. House flies, Musca domestica L., laid significantly fewer eggs on Met52 EC-treated surfaces than on surfaces treated with all other products and the control. Similar numbers of eggs were laid on surfaces treated with all B. bassiana products, but egg production was half of the control. Stable flies, Stomoxys calcitrans (L.), laid the fewest eggs on Met52 EC- and Mycotrol O-treated surfaces. This species did not distinguish between the remaining products and the control. In a second experiment, house fly eggs were placed on treated cloths so that hatched larvae contacted the treatment prior to development. Met52 EC had the greatest effect on immature survival with a significant reduction in recovered pupae at the medium and high doses of fungi. Overall, Met52 EC, containing M. brunneum, had the greatest effect on house fly and stable fly oviposition deterrence and immature development of house flies. Management implications are discussed.

  6. Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila

    PubMed Central

    Bartussek, Jan; Mutlu, A. Kadir; Zapotocky, Martin; Fry, Steven N.

    2013-01-01

    In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's ‘gyroscopic’ organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator. PMID:23282849

  7. Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures

    PubMed Central

    Shelly, Todd E.; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost

  8. Molecular Techniques for the Detection and Differentiation of Host and Parasitoid Species and the Implications for Fruit Fly Management

    PubMed Central

    Jenkins, Cheryl; Chapman, Toni A.; Micallef, Jessica L.; Reynolds, Olivia L.

    2012-01-01

    Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management. PMID:26466628

  9. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Weidmann): a highly invasive and destructive pest of fruits and vegetables throughout the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...

  10. [Horse infestation with the larva of the deer warble fly, Hypoderma diana Brauer, 1985 (Diptera, Hypodermatidae)].

    PubMed

    Minár, J

    1987-03-01

    In South Bohemia a case was discovered of a yearling colt attacked by the larva of the IIIrd instar of the deer warble fly Hypoderma diana Brauer. The dead, almost mature larva of the fly was squeezed out of a subcutaneous lump above the shoulder in the first decade of April, 1985. The case is evaluated from the point of view of the possibility of the transition of specific parasites--warble flies--to another host. The attacking of a non-specific kind can occasionally occur only when there is a large number of the parasites and both kinds of host. At present the degree of attacking of deer by subcutaneous warble flies is high and therefore under favourable circumstances even domestic animals can be attacked by this type of warble fly. The above case is the first to be ascertained of a horse being attacked by a deer warble fly. PMID:3107199

  11. [Horse infestation with the larva of the deer warble fly, Hypoderma diana Brauer, 1985 (Diptera, Hypodermatidae)].

    PubMed

    Minár, J

    1987-03-01

    In South Bohemia a case was discovered of a yearling colt attacked by the larva of the IIIrd instar of the deer warble fly Hypoderma diana Brauer. The dead, almost mature larva of the fly was squeezed out of a subcutaneous lump above the shoulder in the first decade of April, 1985. The case is evaluated from the point of view of the possibility of the transition of specific parasites--warble flies--to another host. The attacking of a non-specific kind can occasionally occur only when there is a large number of the parasites and both kinds of host. At present the degree of attacking of deer by subcutaneous warble flies is high and therefore under favourable circumstances even domestic animals can be attacked by this type of warble fly. The above case is the first to be ascertained of a horse being attacked by a deer warble fly.

  12. Laboratory evaluation of rubidium as a long-lasting marker for bloodfeeding sand flies (Diptera: Psychodidae).

    PubMed

    Mascari, T M; Stout, R W; Foil, L D

    2012-01-01

    The objective of this study was to evaluate the use of the trace element rubidium (Rb) as a long-lasting systemic biomarker for bloodfeeding females of the sand fly Phlebotomus papatasi Scopoli. Baits containing Rb chloride were found to be palatable to hamsters in this study. We were able to detect Rb using a portable X-ray fluorescence analyzer in all sand flies that fed on Rb-treated hamsters for at least 14 d postbloodmeal. We also detected Rb in sand flies that took a bloodmeal from hamsters up to 10 d after the hamsters were withdrawn from a Rb-treated diet. Results of this study constitute proof of concept for the incorporation of Rb chloride into rodent baits for marking bloodfeeding sand flies, and suggest that Rb marking could be used as a technique for evaluating rodent-targeted sand fly control methods and in ecological studies on sand flies.

  13. Ecological and Control Techniques for Sand Flies (Diptera: Psychodidae) Associated with Rodent Reservoirs of Leishmaniasis

    PubMed Central

    Mascari, Thomas M.; Hanafi, Hanafi A.; Jackson, Ryan E.; Ouahabi, Souâd; Ameur, Btissam; Faraj, Chafika; Obenauer, Peter J.; Diclaro, Joseph W.; Foil, Lane D.

    2013-01-01

    Background Leishmaniasis remains a global health problem because of the substantial holes that remain in our understanding of sand fly ecology and the failure of traditional vector control methods. The specific larval food source is unknown for all but a few sand fly species, and this is particularly true for the vectors of Leishmania parasites. We provide methods and materials that could be used to understand, and ultimately break, the transmission cycle of zoonotic cutaneous leishmaniasis. Methods and Findings We demonstrated in laboratory studies that analysis of the stable carbon and nitrogen isotopes found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture the sand fly larvae themselves. In a field trial, we also demonstrated using this technique that half of captured adult sand flies had fed as larvae on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that have been shown in previous studies to pass into the rodents' feces and kill sand fly larvae also could play a future role in sand fly control. In a second study we showed that rubidium incorporated into rodent baits could be used to demonstrate the level of bloodfeeding by sand flies on baited rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of baited rodents. Conclusions Combined, the techniques described could help to identify larval food sources of other important vectors of the protozoa that cause visceral or dermal leishmaniasis. Unveiling aspects of the life cycles of sand flies that could be targeted with insecticides would guide future sand fly control programs for prevention of leishmaniasis. PMID:24069489

  14. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    NASA Astrophysics Data System (ADS)

    Li, Hefu; Gong, Xianwei; Ni, Qiliang; Zhao, Jingli; Zhang, Hongsheng; Wang, Taisheng; Yu, Weixing

    2014-10-01

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicated polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.

  15. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    SciTech Connect

    Li, Hefu; Gong, Xianwei; Ni, Qiliang; Zhao, Jingli; Zhang, Hongsheng; Wang, Taisheng; Yu, Weixing

    2014-10-06

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicated polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.

  16. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations.

    PubMed

    Pirrotta, Vincenzo; Gross, David S

    2005-05-13

    Transcriptional silencing in budding yeast and fruit fly is mediated by fundamentally unrelated proteins that assemble very different chromatin structures. Surprisingly, the repressive mechanisms evolved from these very different materials have similar features, including an epigenetic mode of inheritance and a block to transcription based on interference with the assembly or function of the promoter complex rather than with the binding of gene-specific activators. PMID:15893722

  17. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations.

    PubMed

    Pirrotta, Vincenzo; Gross, David S

    2005-05-13

    Transcriptional silencing in budding yeast and fruit fly is mediated by fundamentally unrelated proteins that assemble very different chromatin structures. Surprisingly, the repressive mechanisms evolved from these very different materials have similar features, including an epigenetic mode of inheritance and a block to transcription based on interference with the assembly or function of the promoter complex rather than with the binding of gene-specific activators.

  18. Sucrose mixed with spinosad enhances kill and reduces oviposition of Rhagoletis indifferens (Diptera: Tephritidae) under low-food conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether sugar mixed with insecticides enhances kill of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), may depend on insecticide rate and food availability. Here, the hypothesis that sucrose mixed with the insecticide spinosad (in the Entrust® SC formulation) enhance...

  19. Habitat preferences of phlebotomine sand flies (Diptera: Psychodidae) in southwestern Morocco.

    PubMed

    Guernaoui, S; Boumezzough, A

    2009-09-01

    Data from a 4-yr study of phlebotomine sand flies in 44 stations in southwestern Morocco are presented. Correspondence analysis is used to describe the habitat preferences of nine sand fly species on a meso-scale (station) and a micro-scale (biotope). This work, based on highly diversified data from various stations, comprising several biotopes sampled during different seasons, provides new information on the ecology of sand flies in southwestern Morocco. It highlights many natural and artificial factors that affect the abundance and distribution of sand fly populations. The impact of climate, urbanization, proximity of humans and domestic animals, organic matter in the soil, shelter, and vegetation type is discussed.

  20. SPECIES DIVERSITY AND SEASONALITY OF PHLEBOTOMINE SAND FLIES (DIPTERA: PSYCHODIDAE) IN SATUN PROVINCE, THAILAND.

    PubMed

    Panthawong, Amonrat; Chareonviriyaphap, Theeraphap; Phasuk, Jumnongjit

    2015-09-01

    Leishmaniasis is prevalent mainly in the southern provinces of Thailand where sand flies are considered to be an important vector. Sand flies were collected using Centers for Disease Control (CDC) light traps in Satun Province from June 2013 to July 2014. A total of 1,982 sand flies (1,228 females and 754 males) were collected. Only female sand flies were identified to the species level and were tested for Leishmania infection using polymerase chain reaction (PCR). Morphological identification revealed 2 genera and 9 species: Phlebotomus stantoni, P. argentipes, Sergentomyia gemmea, S. indica, S. barraudi, S. iyengari, S. bailyi, S. perturbans, and S. silvatica. S. gemmea (57.2%) was the most abundant species. The diversity of sand flies was highest in Thung Wa District. The sand flies were most abundant late in the hot season and early in the rainy season (April to June). The highest number of sand flies was collected in June. Significant correlations between the number of female sand flies and rainfall and between S. gemmea and rainfall were found. Of the female sand flies tested, none were positive for Leishmania spp.

  1. Spontaneous decisions and operant conditioning in fruit flies.

    PubMed

    Brembs, Björn

    2011-05-01

    Already in the 1930s Skinner, Konorski and colleagues debated the commonalities, differences and interactions among the processes underlying what was then known as "conditioned reflexes type I and II", but which is today more well-known as classical (Pavlovian) and operant (instrumental) conditioning. Subsequent decades of research have confirmed that the interactions between the various learning systems engaged during operant conditioning are complex and difficult to disentangle. Today, modern neurobiological tools allow us to dissect the biological processes underlying operant conditioning and study their interactions. These processes include initiating spontaneous behavioral variability, world-learning and self-learning. The data suggest that behavioral variability is generated actively by the brain, rather than as a by-product of a complex, noisy input-output system. The function of this variability, in part, is to detect how the environment responds to such actions. World-learning denotes the biological process by which value is assigned to environmental stimuli. Self-learning is the biological process which assigns value to a specific action or movement. In an operant learning situation using visual stimuli for flies, world-learning inhibits self-learning via a prominent neuropil region, the mushroom-bodies. Only extended training can overcome this inhibition and lead to habit formation by engaging the self-learning mechanism. Self-learning transforms spontaneous, flexible actions into stereotyped, habitual responses.

  2. Fruit flies use flight auto-stabilization to recover from aerial ``stumbles''

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Bergou, Attila; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2009-11-01

    Just as manned flight was made possible by control mechanisms, the flapping-wing flight of animals also relies on strategies that ensure recovery from disturbances. Previous studies performed on tethered and dissected insects indicate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, have yet to produce an integrative model of flight stability since they do not incorporate the interaction of these systems with free-flight aerodynamics. Here, we directly investigate control and stability through the application of brief torques to free-flying fruit flies and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial ``stumble'', and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. This accurate and fast recovery motivates a feedback control model that includes the insect's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, as with modern fighter jets, the common fruit fly employs an auto-stabilization scheme that maintains its flight course and allows for navigation through complex aerial environments.

  3. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.

    PubMed

    Givon, Lev E; Lazar, Aurel A

    2016-01-01

    We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation. PMID:26751378

  4. Phylogenetic, Metabolic, and Taxonomic Diversities Shape Mediterranean Fruit Fly Microbiotas during Ontogeny

    PubMed Central

    Aharon, Yael; Pasternak, Zohar; Ben Yosef, Michael; Behar, Adi; Lauzon, Carol; Yuval, Boaz

    2013-01-01

    The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping “core” diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers. PMID:23104413

  5. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.

    PubMed

    Givon, Lev E; Lazar, Aurel A

    2016-01-01

    We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation.

  6. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  7. Contrasting brood-sex ratio flexibility in two opiine (Hymenoptera: Braconidae) parasitoids of tephritid (Diptera) fruit files

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass-rearing of fruit fly parasitoids for augmentative release would be more economical if production could be biased towards females. If sex ratios are ever to be manipulated under rearing conditions it is important to determine if, then understand why, sex ratio flexibility exists. Unequal brood-s...

  8. Seasonal changes in english walnut (Juglans regia L.) (Juglandaceae), fruit properties and host use patterns by Rhagoletis zoqui (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhagoletis zoqui Bush is a Neosubtropical, univoltine, frugivorous tephritid fly that exploits both native Juglans spp. and the introduced, Palearctic English walnut, Juglans regia. The seasonal development of commercial J. regia fruit and the pattern of host exploitation by R. zoqui were tracked ov...

  9. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

    PubMed Central

    Siciliano, P.; He, X.L.; Woodcock, C.; Pickett, J.A.; Field, L.M.; Birkett, M.A.; Kalinova, B.; Gomulski, L.M.; Scolari, F.; Gasperi, G.; Malacrida, A.R.; Zhou, J.J.

    2014-01-01

    The Mediterranean fruit fly (or medfly), Ceratitis capitata (Wiedemann; Diptera: Tephritidae), is a serious pest of agriculture worldwide, displaying a very wide larval host range with more than 250 different species of fruit and vegetables. Olfaction plays a key role in the invasive potential of this species. Unfortunately, the pheromone communication system of the medfly is complex and still not well established. In this study, we report the isolation of chemicals emitted by sexually mature individuals during the “calling” period and the electrophysiological responses that these compounds elicit on the antennae of male and female flies. Fifteen compounds with electrophysiological activity were isolated and identified in male emissions by gas chromatography coupled to electroantennography (GC–EAG). Within the group of 15 identified compounds, 11 elicited a response in antennae of both sexes, whilst 4 elicited a response only in female antennae. The binding affinity of these compounds, plus 4 additional compounds known to be behaviourally active from other studies, was measured using C. capitata OBP, CcapOBP83a-2. This OBP has a high homology to Drosophila melanogaster OBPs OS-E and OS-F, which are associated with trichoid sensilla and co-expressed with the well-studied Drosophila pheromone binding protein LUSH. The results provide evidence of involvement of CcapOBP83a-2 in the medfly's odorant perception and its wider specificity for (E,E)-α-farnesene, one of the five major compounds in medfly male pheromone emission. This represents the first step in the clarification of the C. capitata and pheromone reception pathway, and a starting point for further studies aimed towards the creation of new powerful attractants or repellents applicable in the actual control strategies. PMID:24607850

  10. Tolerance as a potential control method for Hessian fly (Diptera:Cecidomyiidae) in winter wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tolerance in wheat may hold the key to reducing damage caused by the Hessian fly, Mayetiola destructor, while enabling the plant to grow normally and reducing the selection pressures leading to increased virulence in fly populations. The susceptible lines Pioneer 25R75, susceptible wheat cultivar ‘N...

  11. Honeydew sugars in wild-caught female horse flies (Diptera: Tabanidae).

    PubMed

    Hunter, F F; Ossowski, A M

    1999-11-01

    Three species of horse fly, Hybomitra illota (Osten Sacken), H. affinis (Kirby), and H. zonalis (Kirby), were collected by sweep-netting around human bait at 2 sites (abandoned airfield and Davies Bog) in Algonquin Provincial Park, Ontario. There were 3 times more horse flies collected at Davies Bog than at the abandoned airfield. The crop contents of all specimens were identified by thin-layer chromatography. Using melezitose and stachyose as honeydew indicator sugars, the relative importance of homopteran honeydew and floral nectar as carbohydrate sources for these flies was determined. Of flies testing sugar-positive, 42.0% of H. illota (n = 50), 52.8% of H. affinis (n = 36), and 100% of H. zonalis (n = 4) had recently fed on honeydew. Pooled data for the 3 species showed that 38.9% of flies at the abandoned airfield (n = 18) and 51.4% of flies at Davies Bog (n = 72) were honeydew-fed. There were no significant differences among species or between sites. These findings are compared with recent black fly and deer fly studies from the same sites. PMID:10593099

  12. Bacterial communities associated with larval development of stable flies (Diptera: Muscidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Adult stable flies are hematophagous parasites that preferentially feed on cattle. Persistent attacks and painful bites of the adults contribute to an economic impact of ~$2 billion/yr on the US cattle industry. Although stable flies are important livestock pests, relatively little is ...

  13. Identification of volatile compounds from a food-grade vinegar attractive to house flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report our recent findings on the identification of volatile compounds released from the ChiangKiang vinegar that is attractive to house flies, Musca domestica. The field trapping experiments showed that the traps baited with 50-ml of the vinegar captured the highest house flies in the diary farm...

  14. Detection of Blood in Stable Flies (Diptera: Muscidae) with Hemoccult® Test Strips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoccult® test kits were used to detect the remnants of blood meals in stable flies. The strips were able to detect remnants of blood meals in > 90% of the stable flies up to 8 days after blood feeding. This can be compared with detecting blood in the gut visually which was possible in less than 5%...

  15. Oviposition deterrence and immature survival if filth flies (Diptera: Muscidae) when exposed to commercial fungal products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filth flies are pests of livestock, and can transmit pathogens that cause disease to animals and their caretakers. Studies have shown successful infection of adult filth flies following exposure to different strains and formulations of entomopathogenic fungi. This study aimed to examine the subletha...

  16. Evaluation of ULV applications against Old World sand fly (Diptera: Psychodidae) species in equatorial Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing populations of phlebotomine sand flies in areas prevalent for human leishmaniases is of ongoing importance to US military operations and civilian populations in endemic regions. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of ...

  17. Effects of fly abundance on catch index of traps for Glossina fuscipes fuscipes (Diptera: Glossinidae).

    PubMed

    Muhigwa, J B; Saini, R K; Hassanali, A

    1998-03-01

    The effect of fly abundance on the catch index of traps and that of rain as a source of variation in fly abundance were investigated for Glossina fuscipes fuscipes Newstead around Lake Victoria, western Kenya, using odor-baited and color-improved traps. There was a significant inverse relationship between the catch index of experimental traps and abundance of flies; the catch index being the ratio of catch in the experimental trap per catch in a reference trap. At low tsetse abundance (< 10 flies per trap per day) there was a 3-fold increase of the catch of females in the experimental trap compared with the control. Rainfall alone explained 22-87% of the total variation of fly abundance. It is suggested that fly abundance should be considered in evaluating baits for G. f. fuscipes or when using traps for monitoring. The relative depression of the catch index at high abundance may be related to avoidance of conspecifics. Flies entered standard traps in an inverse proportion to the number observed at the trap. Females approached traps in greater numbers when fewer decoys (dead flies) were placed on traps.

  18. Vector competence of the stable fly (Diptera: Muscidae)for West Nile virus.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable flies, which are notorious pests of cattle and other livestock, were suspected of transmitting West Nile virus (WNV) among American white pelicans at the Medicine Lake Wildlife Refuge in northeastern Montana in 2006-2007. However the ability of stable flies to transmit the virus was unknown. ...

  19. Evaluation of a transient barrier trapping system to manage the canyon fly (Diptera: Muscidae).

    PubMed

    Ekanayake, Panchali K; Gerry, Alec C

    2014-01-01

    ABSTRACT A circular perimeter barrier of CO,-baited Centers for Disease Control and Prevention (CDC) suction traps (without the light) was placed at a hilltop location in southern California known for high "canyon fly" activity, to determine whether a transiently operated barrier trapping system using attractive traps would reduce the number of these nuisance flies to successfully reach a human host within the protected area Preliminary studies demonstrated that the number of flies captured by a human host was reduced when a single CO2 trap was placed < or =20 m from the host, an indication that these traps are attractive enough to reduce fly pressure on nearby human hosts. The use of eight transiently operated CO2 traps placed equidistant along either a 15- or 5-m radius barrier perimeter significantly reduced the number of flies to reach a human host within the protected area Attack rates at the protected human host were reduced by a maximum of 51% in the presence of a protective barrier. However, with attack rates on a human host in the hundreds of flies per minute at the study site, this level of protection was not deemed sufficient for recommendation of this technique to homeowners or others who want temporary suppression of these nuisance flies in a limited area, such as a backyard. Implications of using a transient barrier trapping system to manage canyon flies are discussed.

  20. The large decapitating fly Pseudacteon litoralis (Diptera: Phoridae): Successfully established on fire ant populations in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large fire ant decapitating fly, Pseudacteon litoralis Borgmeier from northeastern Argentina was successfully released as a self-sustaining biocontrol agent of imported fire ants in south central Alabama in 2005. Five years later, this fly is firmly established at this site and has expanded out...