Piñero, Jaime C.; Mau, Ronald F. L.; Vargas, Roger I.
2010-01-01
Bait stations represent an environmentally friendly attract-and-kill approach to fruit fly population suppression. Recently a novel, visually attractive, rain-fast bait station was developed in Hawaii for potential use against multiple species of pestiferous fruit flies. Here, we compared the efficacy of GF-120 NF Naturalyte Fruit Fly Bait applied either as foliar sprays or onto bait stations in reducing female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), population density and level of fruit infestation in commercial papaya orchards in Hawaii. Trapping and infestation data were used as indicators of the effectiveness of the two bait application methods. For the first 10 weeks of the study, captures of female B. dorsalis in monitoring traps were significantly greater in control plots than in plots treated with foliar sprays or bait stations. Six weeks after the first bait spray, incidence of infestation (i.e. number of fruit with one or more B. dorsalis larvae) of quarter to half-ripe papaya fruit was reduced by 71.4% and 63.1% for plots with bait stations and foliar sprays, respectively, as compared to control plots. Twelve weeks after first spray, incidence of infestation was reduced by only 54.5% and 45.4% for plots with bait stations and foliar sprays, respectively, as compared to control plots. About 42% less GF-120 was used in orchard plots with bait stations compared to those subject to foliar sprays. The impact of field sanitation on the outcome is also discussed. The results indicate that bait stations can provide a simple, efficient, and economical method of applying insecticidal baits to control fruit flies and a safer alternative to foliar sprays. PMID:21067423
Honeydew and insecticide-bait as competing food resources for a fruit fly and common parasitoids
USDA-ARS?s Scientific Manuscript database
Honeydew from phloem-feeding insects and fruit fly insecticidal baits may both serve as adult food resources for some insect species. In California olive orchards the black scale, Saissetia oleae (Olivier), is a common honeydew-producer, while spinosad-based fruit fly bait (GF-120) is used to contro...
Piñero, Jaime C; Mau, Ronald F L; Vargas, Roger I
2009-06-01
The efficacy of GF-120 NF Naturalyte Fruit Fly Bait in combination with field sanitation was assessed as a control for female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in papaya (Carica papaya L.) orchards in Hawaii. Three different bait spray regimes were evaluated: every row (high use of the bait), every fifth row (moderate use), and every 10th row (low use). Orchard plots in which no bait was applied served as controls. For five of the seven biweekly periods that followed the first bait spray, trapping data revealed significantly fewer female B. dorsalis captured in plots subject to high and moderate bait use than in control plots. Differences in incidence of infestation among treatments were detected only by the third (12 wk after first spray) fruit sampling with significantly fewer infested one-fourth to one-half ripe papaya fruit in plots subject to high and moderate bait use than in control plots. Parasitism rates by Fopius arisanus (Sonan) (Hymenoptera: Braconidae) were not negatively affected by bait application. Results indicate that foliar applications of GF-120 NF Naturalyte Fruit Fly Bait either to all rows (every other tree), or to every fifth row (every tree) in combination with good sanitation can effectively reduce infestation by B. dorsalis in papaya orchards in Hawaii.
Bait formulations of attractants and phagostimulants for targeted, area-wide fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies attack hundreds of species of fruits and vegetables and are responsible for trade restrictions wherever they occur. Traps and “bait and kill stations” are important means of monitoring and control and Bob Heath made important contributions to these technologies....
USDA-ARS?s Scientific Manuscript database
Control of western cherry fruit fly (Rhagoletis indifferens Curran) using thiamethoxam in sucrose bait and spinosad bait in cherry orchards under external fly pressure and its relation to rapidity of kill and residual bait activity were studied in Washington and Utah in 2010 and 2011. Thiamethoxam ...
McQuate, Grant T.; Vargas, Roger I.
2007-01-01
The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian pepper tree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), ti plant, Cordyline terminate (L.) Chev.(Liliales: Liliaceae), guava and several Citrus spp. were identified as preferred roosting hosts for oriental fruit fly. Guava had not previously been identified as a preferred roosting host for melon fly. Other than for the use of panax as a roosting host, there has previously been little attention to roosting hosts for oriental fruit fly. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. Further research is needed to assess the use of vegetation bordering other host crops as roosting hosts, especially for oriental fruit fly. PMID:20334596
Revis, Hannah C; Miller, Neil W; Vargas, Roger I
2004-10-01
Attractiveness and toxicity of GF-120 Fruit Fly Bait (Dow AgroScience Indianapolis, IN) to melon flies, Bactrocera cucurbitae Coquillett, were examined to assess the effects of concentration and aging. We tested dilutions of 20, 40, and 80 ppm (AI) (spinosad) against water controls. The 80 and 40 ppm treatments were significantly more attractive than the 20 ppm and control treatments. Attraction was compared between baits aged for 2 and 24 h, fresh bait and water controls. Age had significant effects on both attractiveness and toxicity of GF-120. Baits aged for 2 h were 11 times less attractive to female melon flies than fresh bait. Mortality rates were reduced by 50% when GF-120 was subjected to rain. Our results suggest the need for frequent applications of GF-120 to obtain maximum benefits, particularly in wet tropical climates.
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran, is a major pest of cherry, Prunus avium (L.) L., in the Pacific Northwest of the U.S. Spinosad bait is applied weekly to kill flies before they develop eggs, but its effects on oviposition by flies that are reproductively mature are unknown. ...
Piñero, Jaime C; Souder, Steven K; Smith, Trevor R; Fox, Abbie J; Vargas, Roger I
2015-04-01
Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait's effectiveness for fruit fly monitoring and suppression. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components.
Mangan, Robert L; Moreno, Aleena Tarshis
2009-08-01
Field tests were carried out to evaluate the repellency of the Dow AgroSciences fruit fly toxic bait GF-120 (NF Naturalyte) to domestic honey bees (Apis mellifera L.). GF-120 is an organically registered attractive bait for tephritid fruit flies composed of spinosad, hydrolyzed protein (Solulys), high-fructose corn syrup (ADM CornSweet 42 high-fructose corn syrup, referred to as invertose sugar or invertose here), vegetable oils, adjuvants, humectants, and attractants. Tests were carried out with non-Africanized honey bees in February and March 2005 and 2007 during periods of maximum hunger for these bees. In all tests, bees were first trained to forage from plates of 30% honey-water (2005) or 30% invertose (2007). In 2005 bees were offered choices between honey-water and various bait components, including the complete toxic bait. In 2007, similar tests were performed except bees were attracted with 30% invertose then offered the bait components or complete bait as no-choice tests. Initially, the 2005 tests used all the components of GF-120 except the spinosad as the test bait. After we were convinced that bees would not collect or be contaminated by the bait, we tested the complete GF-120. Behavior of the bees indicated that during initial attraction and after switching the baits, the bait components and the complete bait were repellent to honey bees, but the honey-water remained attractive. Invertose was shown to be less attractive to bees, addition of Solulys eliminated almost all bee activity, and addition of ammonium acetate completely eliminated feeding in both choice and no-choice tests. These results confirm previous tests showing that bees do not feed on GF-120 and also show that honey bees are repelled by the fruit fly attractant components of the bait in field tests.
McQuate, Grant T; Royer, Jane E; Sylva, Charmaine D
2018-05-01
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alpha-ionol + cade oil is a moderately effective male B. latifrons attractant, but is not as attractive as cuelure or methyl eugenol are to other fruit fly species. An improved attractant is therefore desired. With the recent success in finding other non-responsive fruit fly species attracted to isoeugenol, methyl-isoeugenol, or dihydroeugenol in Australia and other countries, we wanted to assess whether B. latifrons might also respond to these “eugenol analogs.” Working with wild B. latifrons populations in Hawaii, we assessed the relative catch of B. latifrons in traps baited with the eugenol analogs with catch in traps baited with alpha-ionol, alpha-ionol + cade oil, or alpha-ionol + eugenol. Catch was significantly higher in traps baited with alpha-ionol + cade oil relative to traps with any of the other baits. There was, though, some male B. latifrons catch in traps baited with dihydroeugenol or isoeugenol but none in traps baited with methyl-isoeugenol.
Neem derivatives are not effective as toxic bait for tephritid fruit flies.
Silva, M A; Bezerra-Silva, G C D; Vendramim, J D; Mastrangelo, T; Forim, M R
2013-08-01
Neem derivatives have been widely touted as replacements for pesticides. A feasible replacement of synthetic insecticides in the management of fruit flies could be to use neem products in baits. This study evaluated the bioactivity of neem (Azadirachta indica A. Juss) derivatives in bait for adults of Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann). The estimated LCs50 values for A. fraterculus and C. capitata were 7,522 ppm (18.40 ppm of azadirachtin) and 1,368 ppm (3.35 ppm of azadirachtin), respectively, using an aqueous extract of neem seeds in bait after 10 d of experimentation. No significant differences in the mortality of A. fraterculus and C. capitata adults exposed to baits made from different extracts and neem oil were observed after 3 h or 2 or 6 d; differences among the treatments were observed only on the 10th day of the evaluation. We conclude that neem derivatives applied as a bait spray over citrus plants did not demonstrate a toxic effect on A. fraterculus and C. capitata. The reasons for the low efficacy of the neem bait on Tephritid fruit flies are discussed.
Díaz-Fleischer, Francisco; Arredondo, José; Flores, Salvador; Montoya, Pablo; Aluja, Martín
2009-02-01
Field-cage experiments were performed to determine the effectiveness of MultiLure traps (Better World MFG Inc., Fresno, CA) baited with NuLure (Miller Chemical and Fertilizer Corp., Hanover, PA) or BioLure (Suterra LLC, Inc., Bend, OR) in capturing individually marked Mexican fruit fly, Anastrepha ludens (Loew), and West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), of both sexes. Experimental treatments involved wild and laboratory-reared flies of varying ages (2-4 and 15-18 d) and dietary histories (sugar only, open fruit, open fruit plus chicken feces, and hydrolyzed protein mixed with sugar). Data were divided into two parts: total captures over a 24-h period and trap visits/landings, entrances into interior of trap ,and effective captures (i.e., drowning in liquid bait or water) over a 5-h detailed observation period (0600-1100 hours). The response to the two baits varied by fly species, gender, physiological state, age, and strain. Importantly, there were several highly significant interactions among these factors, underlining the complex nature of the response. The two baits differed in attractiveness for A. obliqua but not A. ludens. The effect of strain (wild versus laboratory flies) was significant for A. ludens but not A. obliqua. For effect of dietary history, adults of both species, irrespective of sex, were significantly less responsive to both baits when fed on a mixture of protein and sugar when compared with adults fed the other diets. Finally, we confirmed previous observations indicating that McPhail-type traps are quite inefficient. Considering the total 24-h fly tenure in the cage, and independent of bait treatment and fly type (i.e., strain, adult diet, gender and age), of a total of 2,880 A. obliqua and 2,880 A. ludens adults released into the field cages over the entire study (15 replicates), only 564 (19.6%) and 174 (6%) individuals, respectively, were effectively caught. When only considering the 5-h detailed observation period and independent of bait treatment and fly type, of a total of 785 marked flies that landed on traps (519 females and 266 males, respectively), only 10.3% (144 females and 59 males) and 20.8% (25 females and 18 males) A. obliqua and A. ludens individuals, respectively, ended up being effectively captured. We discuss the practical implications of these findings with respect to developing new baits and designing new traps and to the interpretation of capture results in the field.
USDA-ARS?s Scientific Manuscript database
Efforts to monitor and detect tephritid fruit flies in the genus Anastrepha currently involve MultiLure traps baited with two food-based synthetic attractants; ammonium acetate and putrescine (1,4-diaminobutane). These baits are used in Central America, Florida, Texas, and the Caribbean, each region...
USDA-ARS?s Scientific Manuscript database
Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examine...
USDA-ARS?s Scientific Manuscript database
Mass trapping and attract-and-kill bait stations are two attractant based systems that are being used or are under development as pesticide alternatives for control of a number of pest tephritid fruit flies. Results of field trials for suppression of Caribbean fruit flies in guava orchards in Florid...
Efficacy of wax matrix bait stations for Mediterranean Fruit Flies (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
Tests were conducted that evaluated efficacy of wax matrix bait stations for Ceratitis capitata (Wiedemann) adults in Guatemala. Bait stations were exposed to outdoor conditions to determine effect of weathering on longevity as indicated by bait station age. Results of laboratory tests found that ba...
Yee, Wee L; Nash, Meralee J; Goughnour, Robert B; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L
2014-08-01
The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington State.
USDA-ARS?s Scientific Manuscript database
Many countries operate trapping programs to detect invasions of pestiferous fruit fly species (Diptera: Tephritidae). Surveillance relies heavily on traps baited with male lures, which, while powerful, have limited effectiveness, because (i) they are sex-specific and (ii) males of some species do no...
Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D
2009-12-01
Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.
USDA-ARS?s Scientific Manuscript database
With the aim of finding new, sugar-based volatile attractants for economically important tephritid fruit fly species, we used electroantennography (EAG) to quantify olfactory responses of female Caribbean fruit fly, Anastrepha suspensa (Loew), to volatiles of six different sugars (refined white and ...
Lasa, R; Herrera, F; Miranda, E; Gómez, E; Antonio, S; Aluja, M
2015-08-01
Monitoring population levels of the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), at the orchard level prior and during the fruit ripening period can result in significant savings in the costs of managing this pestiferous insect. Unfortunately, to date, no highly effective and economically viable trap is available to growers. To move toward this goal, trap-lure combinations were evaluated in trials performed in citrus orchards in Veracruz, Mexico. CeraTrap, an enzymatic hydrolyzed protein from pig intestinal mucose, was 3.6 times more attractive to A. ludens than the most commonly used bait of Captor (hydrolyzed protein and borax) when using Multilure traps. When several commercial traps were evaluated, the efficacy of a simple and inexpensive transparent polyethylene (PET) bottle with 10-mm lateral holes was similar to that of the costly Multilure trap when baited with CeraTrap and significantly more effective than a Multilure trap baited with Captor. PET bottles filled with Cera Trap, rebaited at 8-wk intervals, and tested in trials encompassing 72 ha of citrus groves, were significantly more effective than Multilure traps baited with Captor that need to be serviced weekly. In addition to this relevant finding, CeraTrap baited traps detected A. ludens at lower population densities and attracted a significantly higher number of flies at all densities when compared with Captor-baited traps. We conclude that CeraTrap represents a cost-effective and highly efficient bait that will enable us to pursue the goal of developing economic thresholds, a badly needed management tool for A. ludens. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Piñero, Jaime C; Souder, Steven K; Gomez, Luis E; Mau, Ronald F L; Vargas, Roger I
2011-12-01
The effectiveness of foliar applications of protein baits against pestiferous fruit flies (Tephritidae) can be adversely affected by a rapid loss of attractive volatile compounds and by rainfall due to the high water solubility of the baits. In a large coffee, Coffea arabica L., plantation in Hawaii with high and low populations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the relative attractiveness of GF-120 NF Naturalyte Fruit Fly Bait as either a 40% (vol:vol) spray solution (= GF-120 NF) or as a formulated proprietary amorphous polymer matrix (= GF-120 APM) was compared. The GF-120 APM formulations contained either, 25, 50, or 75% of GF-120 NF (wt:wt). All baits were tested in association with visually attractive yellow bait stations as a way of standardizing the evaluations. With both high and low C. capitata populations, significantly more females were attracted to the fresh sprayed GF-120 NF than to any of the three fresh GF-120 APM formulations. The attractiveness of GF-120 sprayed decreased significantly after 1 wk, whereas 1-wk-old GF-120 APM formulations were as attractive as similar fresh formulations. GF-120 APM 75% aged for 3 wk outperformed similarly-aged sprayed GF-120 NF with comparatively high C. capitata populations. With low populations, both GF-120 APM 75% and GF-120 APM 50% aged for 2 wk outperformed the similarly aged sprayed GF-120 NF. Combined findings indicate that APM mixed with either 50 or 75% GF-120 applied to bait stations can be attractive to female C. capitata for up to 3 wk longer than the standard sprayed GF-120 NF.
7 CFR 319.56-48 - Conditions governing the entry of baby squash and baby courgettes from Zambia.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Fruits and Vegetables § 319.56-48 Conditions governing the entry of baby squash and baby courgettes from... fly traps with an approved protein bait must be placed inside the greenhouses at a density of four... fly traps with an approved protein bait must be placed inside a buffer area 500 meters wide around the...
7 CFR 319.56-48 - Conditions governing the entry of baby squash and baby courgettes from Zambia.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Fruits and Vegetables § 319.56-48 Conditions governing the entry of baby squash and baby courgettes from... fly traps with an approved protein bait must be placed inside the greenhouses at a density of four... fly traps with an approved protein bait must be placed inside a buffer area 500 meters wide around the...
Feeding and attraction of non-target flies to spinosad-based fruit fly bait.
Wang, Xin-Geng; Messing, Russell H
2006-10-01
A spinosad-based fruit fly bait, GF-120, has recently become a primary tool for area-wide suppression or eradication of pest tephritid fruit flies. The present study assessed the attraction and feeding of five non-target fly species to GF-120 in Hawaii. These non-target flies include three beneficial tephritid species [Eutreta xanthochaeta (Aldrich), Tetreuaresta obscuriventris (Loew), Ensina sonchi (L.)] introduced for weed biological control, an endemic Hawaiian tephritid [Trupanea dubautiae (Bryan)] (all Diptera: Tephritidae) and the cosmopolitan Drosophila melanogaster Meigen (Diptera: Drosophilidae). All five non-target fly species were susceptible to GF-120, as was the target pest Mediterranean fruit fly Ceratitis capitata (Wiedemann). Feeding on, or even brief tasting of, GF-120 killed all fly species within 2 h. When individual flies were provided with a choice of GF-120 or honey solution, there was no difference in the frequency of first food encounter by E. xanthochaeta, D. melanogaster or C. capitata. The other three non-target species approached honey more often than GF-120 in their first food encounter. Feeding times on GF-120 and honey were not significantly different for D. melanogaster and C. capitata, while the other four non-target species fed longer on honey than on GF-120. There was no significant difference in feeding time on honey versus GF-120 between males and females of each species. These results suggest that area-wide treatment using GF-120 for the purpose of eradication of pest fruit flies has potential negative impacts on these and other non-target fly species in Hawaii.
Böckmann, Elias; Köppler, Kirsten; Hummel, Edmund; Vogt, Heidrun
2014-03-01
The European cherry fruit fly, Rhagoletis cerasi, is the major insect pest of sweet and tart cherries. Its management is becoming increasingly difficult in many countries as formerly effective but broad-spectrum insecticides are removed from the market. With the objective of identifying suitable and environmentally safe alternatives, we investigated bait sprays containing two families of plant-derived insecticides: azadirachtins (NeemAzal-T(®) and NeemAzal-T/S(®) ) and pyrethrins (Spruzit Neu(®) ). In 12 semi-field trials conducted within cages, weekly applications of 0.0001 or 0.0005% neem in a bait formulation effectively reduced fruit infestation. However, addition of 0.000125-0.001% pyrethrins did not improve the efficacy of the neem formulations, and when used alone pyrethrins were less effective than neem alone. Two years of field trials were also conducted within orchards wherein an insecticidal barrier of treated trees excluded immigration of fertile R. cerasi from elsewhere. In blocks treated with 0.0005% neem in a bait formulation, we observed 94% (2011) or 86% (2012) reduction of fruit infestation over control blocks. Bait sprays containing neem are a promising alternative for the management of R. cerasi, especially where the risk of immigration of fertilized females is low, as in isolated orchards or as part of area-wide treatments. © 2013 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Field tests that were conducted in south Florida to compare capture of the Caribbean fruit fly, Anastrepha suspensa (Loew), in Multilure traps baited with liquid protein baits torula yeast/borax or NuLure/borax, or with food-based synthetic lures including two component (ammonium acetate, putrescine...
USDA-ARS?s Scientific Manuscript database
The presence of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta was recorded in Bangladesh for the first time. B.nigrofemoralis was captured in traps baited with sweet orange oil and cue-lure at the Atomic Energy Research Establishment campus, Ganak bari, Savar, Dhaka, Banglades...
Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo
2013-04-01
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.
7 CFR 319.56-49 - Eggplant from Israel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-49 Eggplant...-exclusionary structures. APHIS-approved fruit fly traps with an approved protein bait must be placed inside the...
Robacker, David C; Thomas, Donald B
2007-08-01
Feral Mexican fruit flies, Anastrepha ludens (Loew) (Diptera: Tephritidae), were trapped in a citrus orchard in Mexico by using two types of synthetic food-odor lures, the AFF lure (Anastrepha fruit fly lure, APTIV, Inc., Portland, OR) and the BioLure (two-component MFF lure, Suterra LLC, Inc., Bend, OR). In Multilure traps (Better World Manufacturing, Inc., Miami, FL) containing water, BioLures captured about the same numbers of flies as AFF lures. In Multilure traps containing antifreeze solution, BioLures captured 2 and 5 times more flies than AFF lures in two experiments. BioLures, and AFF lures did not differ in attractiveness when used on sticky traps (Intercept trap, APTIV, Inc.; and sticky cylinder trap). Multilure traps captured >4 times as many flies as sticky traps with the exception that captures of females did not differ between Multilure and sticky traps baited with AFF lures. The percentage of females captured in Multilure traps was greater when traps were baited with BioLures compared with AFF lures, but the reverse was true for sticky traps. Sticky cylinder traps captured a higher percentage of females than Multilure traps. The most effective trap/lure combination was the Multilure trap baited with BioLure and antifreeze. In comparison with tests of these two lures in Texas, results were similar for Multilure traps, but they differed for sticky cylinder traps in that AFF lures were consistently more attractive than BioLures in Texas, but not in Mexico.
New developments in bait stations for control of pest Tephritids
USDA-ARS?s Scientific Manuscript database
Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...
Nontarget insects captured in fruit fly (Diptera: Tephritidae) surveillance traps.
Thomas, Donald B
2003-12-01
Traps baited with synthetic lures (ammonium acetate and putrescine) captured as many Mexican fruit flies as the traditional torula yeast/borax slurry, but with far fewer (ratio 5:1) nontarget insects. Ninety percent of the nontarget insects were dipterans. Consequently, neither trap is efficacious against other citrus pests, which are mainly Hemiptera or Lepidoptera. Although the nontarget catch is sometimes referred to as "trash," many nontarget insects are beneficials, including predators and parasites (especially tachinids). The traps with synthetic lures killed fewer of these beneficials by a ratio of 4:1 compared with the yeast-baited traps. Certain taxa, notably the chrysopids and halictid bees, exhibited a somewhat greater preference (10 and 50%, respectively) for the synthetic lures. Overall, with regard to the deployment of the newer baits, the threat to predators, parasites, and pollinators was found to be negligible, and certainly much less than that posed by the traditional traps.
Massebo, Fekadu; Tefera, Zenebe
2015-01-01
Bactrocera invadens, the Asian fruit fly, was first reported in Kenya in 2003, and it spread fast to most tropical countries in Africa. To our knowledge, there is no detailed data on the fruit damage and status of fruit flies in Arba Minch and elsewhere in Ethiopia. Hence, information on the species composition and pest status of the fruit fly species is urgent to plan management strategies in the area. Fruit flies were captured using male parapheromone-baited traps. Matured mango (Mangifera indica) fruits were collected from randomly selected mango trees and incubated individually in cages (15 by 15 by 15 cm) with sandy soil. B. invadens was the predominant (96%; 952 of 992) captured species and the only fruit fly species emerging from mango fruits incubated in the laboratory. The mean number of adult B. invadens emerging per mango fruit was 35.25, indicating that the species is the most devastating mango fruit fly in the area. The loss due to this species would be serious if no management strategies are implemented. PMID:25612742
Vargas, Roger I; Piñero, Jaime C; Mau, Ronald F L; Jang, Eric B; Klungness, Lester M; McInnis, Donald O; Harris, Ernest B; McQuate, Grant T; Bautista, Renato C; Wong, Lyle
2010-01-01
The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed.
Vargas, Roger I.; Piñero, Jaime C.; Mau, Ronald F. L.; Jang, Eric B.; Klungness, Lester M.; McInnis, Donald O.; Harris, Ernest B.; McQuate, Grant T.; Bautista, Renato C.; Wong, Lyle
2010-01-01
The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure® traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed. PMID:20883128
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a pest of cherry (Prunus spp.) in western North America that can be monitored using traps baited with ammonia. However, ammonia-based attractants also attract non-target Diptera that clutter traps. Here, the hypothe...
Delpoux, Camille; Deguine, Jean-Philippe
2015-01-01
Three species of fruit flies cause serious damage to cucurbit crops on Reunion Island: Bactrocera cucurbitae (Diptera: Tephritidae) (Coquillett 1899), Dacus ciliatus (Loew 1901), and Dacus demmerezi (Bezzi 1917). To control them, a program of agroecological management of cucurbit flies has been implemented based on the application of Synéis-appât, especially spot sprays on corn borders. However, the high rainfall on Reunion Island limits the long-term efficiency of the bait; in addition, this method cannot be used for large chayote trellises, because corn borders cannot be planted around them. The aim of this study was to design a bait station adapted to prevailing conditions on Reunion Island. An ‘umbrella trap’ tested in Taiwan was used as a reference to compare its efficacy with our local bait station. Experiments were conducted in field cages on B. cucurbitae to test different characteristics of bait stations and to construct one using local materials. Results were validated in the field. The attractiveness of the bait station was related mainly to the color of the external surface, yellow being the most attractive color. The efficacy of the bait station with respect to fly mortality was found to be linked to the accessibility of the bait, and direct application of Synéis-appât on the bait station was found to be the most efficient. In the field, B. cucurbitae were more attracted to the local bait station than to the umbrella trap, while the two other fly species displayed equal attraction to both trap types. Our local bait station is a useful alternative to spot sprays of Synéis-appât and is now included in a local pest management program and is well accepted by farmers. PMID:25688089
Delpoux, Camille; Deguine, Jean-Philippe
2015-01-01
Three species of fruit flies cause serious damage to cucurbit crops on Reunion Island: Bactrocera cucurbitae (Diptera: Tephritidae) (Coquillett 1899), Dacus ciliatus (Loew 1901), and Dacus demmerezi (Bezzi 1917). To control them, a program of agroecological management of cucurbit flies has been implemented based on the application of Synéis-appât, especially spot sprays on corn borders. However, the high rainfall on Reunion Island limits the long-term efficiency of the bait; in addition, this method cannot be used for large chayote trellises, because corn borders cannot be planted around them. The aim of this study was to design a bait station adapted to prevailing conditions on Reunion Island. An 'umbrella trap' tested in Taiwan was used as a reference to compare its efficacy with our local bait station. Experiments were conducted in field cages on B. cucurbitae to test different characteristics of bait stations and to construct one using local materials. Results were validated in the field. The attractiveness of the bait station was related mainly to the color of the external surface, yellow being the most attractive color. The efficacy of the bait station with respect to fly mortality was found to be linked to the accessibility of the bait, and direct application of Synéis-appât on the bait station was found to be the most efficient. In the field, B. cucurbitae were more attracted to the local bait station than to the umbrella trap, while the two other fly species displayed equal attraction to both trap types. Our local bait station is a useful alternative to spot sprays of Synéis-appât and is now included in a local pest management program and is well accepted by farmers. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
A preliminary account of the fruit fly fauna of Timor-Leste (Diptera: Tephritidae: Dacinae).
Bellis, Glenn A; Brito, Americo A; Jesus, Hipolito DE; Quintao, Valente; Sarmento, Joaquim C; Bere, Apolinario; Rodrigues, João; Hancock, David L
2017-12-05
Opportunistic monitoring using baited fruit fly traps throughout Timor-Leste revealed the presence of 16 species of Bactrocera and one species of Dacus, all of which are previously reported from the region. Sampling of a range of commercial fruit species detected an additional species, B. latifrons, and revealed that nine species are attacking commercial fruits and vegetables. A key for separating these species is provided. New host records were found for B. minuscula, B. floresiae and B. bellisi. Variation in the morphology of B. minuscula, B. floresiae and an undescribed species and within B. albistrigata confounded attempts at accurate identification of some specimens.
Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias
Kouloussis, Nikos A.; Papadopoulos, Nikos T.; Müller, Hans-Georg; Wang, Jane-Ling; Mao, Meng; Katsoyannos, Byron I.; Duyck, Pierre-François; Carey, James R.
2012-01-01
Though traps are used widely to sample phytophagous insects for research or management purposes, and recently in aging research, possible bias stemming from differential response of individuals of various ages to traps has never been examined. In this paper, we tested the response of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) males and females of four ages (spanning from 1 to 40 days) to McPhail-type traps baited with a synthetic food attractant in field cages and found that the probability of trapping was significantly influenced by age. The type of food on which flies were maintained before testing (sugar or protein) also had a strong effect and interacted with age. In another experiment, we collected wild C. capitata adults of unknown age using 1–3 methods and then reared them in the laboratory until death. The survival schedules of these flies were subsequently used in a life table assay to infer their age at the time of capture. Results showed that on a single sampling date, males captured in traps baited with a food attractant were younger compared with males aspirated from fruiting host trees, or males captured in traps baited with a sex attractant. Likewise, females captured in food-baited traps were younger compared with aspirated females. In addition to providing the first evidence of age-dependent sampling bias for a phytophagous insect species, this paper also provides a novel approach to estimate the differences in the age composition of samples collected with different techniques. These findings are of utmost importance for several categories of insects, medically important groups notwithstanding. PMID:22844133
USDA-ARS?s Scientific Manuscript database
It is known that adult tephritid fruit fly females require protein sources for adequate egg production and that ammonia and its derivatives serve as volatile cues to locate protein-rich food. The attractiveness of beer waste and the commercially available baits Nulure, Buminal, and Bugs 4 Bugs Fruit...
Manrakhan, Aruna; Addison, Pia
2014-04-01
Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch are important fruit fly pests of deciduous fruit in the Western Cape Province, South Africa. The main techniques used for fruit fly control in the Western Cape are the sterile insect technique (SIT) targeting C. capitata and the bait application technique (BAT). We determined the relative success of SIT by comparing adult fly-trap catches and fruit infestation in commercial orchards between three regions under SIT and two regions under BAT in the Western Cape, from 2006 to 2008. Ceratitis capitata was predominant in all regions. In commercial orchards, C. capitata catches peaked towards the end of the fruiting season (March to May) and were low between July and January. During the late season, C. capitata catches were significantly higher in two of the regions under SIT. The sterile to wild male ratio in those regions was found to be mostly <1. SIT is not being properly applied in some regions. SIT should be implemented when the pest population is low. The sterile to wild fly ratios should be increased. Alternatively, BAT should be used to lower the pest population before SIT application. Control methods should be more integrated and applied area-wide. © 2013 Society of Chemical Industry.
Herrera, F; Miranda, E; Gómez, E; Presa-Parra, E; Lasa, R
2016-02-01
Mexican fruit flies, Anastrepha ludens (Loew; Diptera: Tephritidae), have traditionally been trapped in citrus orchards in Mexico using protein hydrolysates as bait. Recently, CeraTrap(®), an enzymatic hydrolyzed protein, has emerged as an effective lure for monitoring A. ludens at the orchard level and is currently being used by growers in the region of Veracruz. Several studies have revealed that grape juice is highly attractive to A. ludens, and recent work supports its potential use for regulation purposes. In our study, the attraction of A. ludens to different grape products was evaluated in citrus orchards and in comparison to other Anastrepha species in an area composed of mango and chicozapote orchards. Attraction to grape lures was compared with CeraTrap and the standard protein Captor +borax trap. In general, CeraTrap was more attractive than different commercial grape products in several experiments. Only Jumex, a commercial grape juice, did not differ significantly from CeraTrap in the capture of A. ludens males and females in a citrus crop. However, several drawbacks were detected when using Jumex grape juice: 1) higher tendency to capture males, 2) less selectivity against non-targeted insects, 3) higher capture of beneficial lacewings, and iv) the need to re-bait weekly owing to lower stability. In the area containing mango and chicozapote, CeraTrap was more attractive than Captor + borax for Anastrepha obliqua and Anastrepha serpentina, followed by grape juice products, which were the least attractive for these fruit fly species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mass trapping for Anastrepha suspensa
USDA-ARS?s Scientific Manuscript database
Mass trapping has been found to be highly effective for control of pest fruit flies when populations are low and a highly effective lure is available for the target species. Successful population control through mass trapping is an indicator that attract-and-kill bait stations may be equally succes...
Robacker, David C; Czokajlo, Darek
2005-10-01
Sterile mass-reared Mexican fruit flies, Anastrepha ludens (Loew), were trapped in a citrus orchard by using multilure traps and cylindrical sticky traps baited with Advanced Pheromone Technologies Anastrepha fruit fly (AFF) lures or Suterra BioLure two-component (ammonium acetate and putrescine) MFF lures (BioLures). The cylinder trap/AFF lure combination was the best trap over the first 6 wk, the multilure trap/BioLure combination was best during weeks 6-12, and the multilure trap/AFF lure combination was best during the last 6 wk. The multilure trap/BioLure combination was best overall by 36% over the cylinder trap/AFF lure combination, and 57% over the multilure trap/AFF lure combination. Cylinder traps with BioLures were the least effective trap/lure combination throughout the experiment, capturing only half as many flies as cylinder traps with AFF lures. Captures with cylinder traps baited with either lure and multilure traps with BioLures were female biased. For the most part, both lures remained highly attractive and emitted detectable amounts of attractive components under hot field conditions for the duration of the 18-wk experiment. Total emission of ammonia was 4 times greater and 1-pyrroline at least 10 times greater from AFF lures compared with BioLures. Correlations of trap and lure performance with ammonia emission and weather were determined, but no conclusions were possible. Results indicate that BioLures would be the lure of choice in multilure or other McPhail-type traps and AFF lures would be superior with most sticky traps or kill stations that attract flies to outer (not enclosed) surfaces.
Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).
Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H
2013-04-01
Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.
Ortiz-Urquiza, Almudena; Garrido-Jurado, Inmaculada; Santiago-Alvarez, Cándido; Quesada-Moraga, Enrique
2009-10-01
The control of the Mediterranean fruit fly (medfly) Ceratitis capitata (Wied) is usually performed with protein bait sprays incorporating chemical insecticides that may have adverse effects on humans, non-target organisms and the environment. In recent years, scientists have sought more environmentally friendly insecticides for medfly control, such as plant- and microorganism-derived compounds. Among these compounds, entomopathogenic fungi are an unexplored source of natural insecticides. The crude soluble protein extract (CSPE) of the entomopathogenic fungus Metarhizium anisopliae (Mestch.) (strain EAMa 01/58-Su) shows chronic insecticidal activity when administered per os. Mortality in flies exhibits a dose response. The CSPE produces an antifeedant effect in adult flies, a result probably due to a progressive deterioration of the fly midgut after ingestion of the extract. Protease and temperature treatments show that insecticidal activity against C. capitata is due to proteinaceous compounds that are highly thermostable. Four monomeric proteins from this crude extract have been purified by liquid chromatography and gel electroelution. Although all four monomers seem to be involved in the insecticidal activity of the CSPE, the 15 kDa and the 11 kDa proteins appear to be mainly responsible for the observed insecticidal effect. Four new fungal proteins with insecticidal activity have been purified and identified. These proteins might be combined with insect baits for C. capitata biocontrol. Copyright 2009 Society of Chemical Industry.
Evaluation of trap types and food attractants for Rhagoletis cerasi (Diptera: Tephritidae).
Katsoyannos, B I; Papadopoulos, N T; Stavridis, D
2000-06-01
Trapping experiments were conducted during the period of flight activity of the cherry fruit fly Rhagoletis cerasi L. in the area of Thessaloniki, northern Greece, during the years 1993-1997 to test several traps alone and in combination with different food attractants. Yellow sticky-coated visual traps were more effective than McPhail-type traps baited with different food attractants. Of the visual traps, the most effective was the yellow Rebell trap. The Rebell trap, provided with a dispenser containing a slow release formulation of ammonium acetate attached to the lower part of the trap, was found to be the most effective of all treatments tested, capturing approximately 50% more R. cerasi flies than the Rebell trap without any attractant. Ammonium carbonate dispensers did not increase the performance of Rebell traps. More mature females were captured in Rebell traps baited with or without ammonium acetate than in McPhail-type traps baited with ammonium acetate. This study demonstrates that Rebell traps baited with an ammonium acetate dispenser can provide a more effective tool for monitoring and mass trapping of R. cerasi than the currently used unbaited Rebell traps.
Yokoyama, Victoria Y.
2014-01-01
Abstract A novel attract-and-kill trap for olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), was constructed with yellow corrugated plastic in an inverted cylindrical pan shape formed from a disk and collar. The trap components were tested under three greenhouse temperatures and humidities of warm, hot, and very hot for attractiveness to caged young or older adults. A greater proportion of adults regardless of age were found underneath the devices including disks, cylindrical pans, and pans with pheromone lures and test units of cylindrical pans sprayed with water, insecticidal bait spray, and with lures. The effect was related to lower temperatures on the underside compared with the top and the intolerance of the pest to heat. A circular collar added to the perimeter of the disk that formed the top of the inverted cylinder made the attract-and-kill trap more attractive to adults than the disk alone. Pheromone lures or bait sprays did not increase adult attraction, so were not needed for efficacy. The cylindrical pan was especially attractive to adults when temperatures were high by providing shelter from the heat. At very high temperatures, the pan became unattractive, possibly due to heating of the construction materials. Cylindrical pans sprayed with water on the underside attracted the highest number of adults especially at high temperatures. Greenhouse tests showed that the inverted cylindrical pan design has potential as an attract-and-kill device for olive fruit fly control. PMID:25368094
De Villiers, Marelize; Manrakhan, Aruna; Addison, Pia; Hattingh, Vaughan
2013-10-01
Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) are fruit fly species (Diptera: Tephritidae) of economic importance in South Africa. These pests cause direct damage to a number of commercially produced fruit and are of phytosanitary concern. A study was conducted to determine the distribution, relative abundance, and seasonal occurrence of the three species in different climatic regions of South Africa. The relative abundance and seasonal phenology of C. capitata and C. rosa were also compared between production areas and home gardens in Stellenbosch, Western Cape. Yellow bucket traps baited with Biolure were used to trap the flies over a 2-yr period in the different sampling areas. Different fruit types were sampled in Stellenbosch to determine fruit fly infestation. C. capitata was found to have a widespread distribution in South Africa, whereas C. rosa were absent from or only present in low numbers in the drier regions. C. cosyra was restricted to the North East and East coast, following a similar pattern to the distribution of marula, Sclerocarrya birrea, an important wild host. Fruit in home gardens provided a breeding ground for C. capitata and C. rosa and a source for infestation of orchards when fruit started to mature, highlighting the need for an area-wide strategy for the control of fruit flies.
USDA-ARS?s Scientific Manuscript database
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and male annihilation technique (MAT) based on traps baited with a synthetic analogue of raspberry ketone (RK) are two of the most effe...
Vargas, Roger I; Souder, Steven K; Rendon, Pedro; Mackey, Bruce
2018-02-09
To assess the potential to suppress Mediterranean fruit fly, Ceratitis capitata (Wiedemann; Diptera: Tephritidae), via mass trapping with Trimedlure (TML), we compared fly catch (as catch per trap per time period) provided by either a novel, solid, triple-lure dispenser with TML, methyl eugenol (ME), and raspberry ketone (RK) (TMR) or solid TML plugs, both without insecticides, in addition to Biolure bait stations. Work was done in a coffee plantation that had a dense C. capitata population. Three treatments were compared: 1) TMR or TML (50 traps per ha), 2) Biolure (50 traps per ha), 3) TML (25 per ha) or TMR (25 per ha) + Biolure (25 per ha), and 4) an untreated control. During coffee season, based on C. capitata captures (mean flies per trap per wk) inside plastic McPhail traps, all treatments were significantly different than the control: Biolure (9.57) = TMR (11.28) = Biolure +TMR (13.50) < Control (36.06 flies/trap/wk). During non-coffee season, all treatments were significantly different than the control and TML was significantly lower than Biolure (wax matrix bait stations): TML (0.95) < Biolure (1.43) = Biolure +TML (1.77) < Control (2.81 flies/trap/wk). Surprisingly, captures were not lower in plots treated with combinations of Biolure + TMR or TML, compared to individual plots with Biolure or TML or TMR alone. Mass trapping with either TML or TMR dispensers deserves further study as a component of Integrated Pest Management programs for C. capitata in Hawaii and may have global potential for management of C. capitata. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management
Dhillon, M.K.; Singh, Ram; Naresh, J.S.; Sharma, H.C.
2005-01-01
The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is distributed widely in temperate, tropical, and sub-tropical regions of the world. It has been reported to damage 81 host plants and is a major pest of cucurbitaceous vegetables, particularly the bitter gourd (Momordica charantia), muskmelon (Cucumis melo), snap melon (C. melo var. momordica), and snake gourd (Trichosanthes anguina). The extent of losses vary between 30 to 100%, depending on the cucurbit species and the season. Its abundance increases when the temperatures fall below 32° C, and the relative humidity ranges between 60 to 70%. It prefers to infest young, green, soft-skinned fruits. It inserts the eggs 2 to 4 mm deep in the fruit tissues, and the maggots feed inside the fruit. Pupation occurs in the soil at 0.5 to 15 cm below the soil surface. Keeping in view the importance of the pest and crop, melon fruit fly management could be done using local area management and wide area management. The melon fruit fly can successfully be managed over a local area by bagging fruits, field sanitation, protein baits, cue-lure traps, growing fruit fly-resistant genotypes, augmentation of biocontrol agents, and soft insecticides. The wide area management program involves the coordination of different characteristics of an insect eradication program (including local area options) over an entire area within a defensible perimeter, and subsequently protected against reinvasion by quarantine controls. Although, the sterile insect technique has been successfully used in wide area approaches, this approach needs to use more sophisticated and powerful technologies in eradication programs such as insect transgenesis and geographical information systems, which could be deployed over a wide area. Various other options for the management of fruit fly are also discussed in relation to their bio-efficacy and economics for effective management of this pest. PMID:17119622
USDA-ARS?s Scientific Manuscript database
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua and A. suspensa at four sites in Guánica, Puerto Rico; one forest fragment in Ponce, Puerto Rico; in a commercial mango orchard in Guayanilla, PR; and an experimental carambola orcha...
Evaluation of metaflumizone granular fly bait for management of houseflies.
Ahmad, A; Zurek, L
2009-06-01
The housefly, Musca domestica L. (Diptera: Muscidae), is a pest of great veterinary and public health importance. In this study, the efficacy of metaflumizone granular fly bait was assessed on first generation (F1) housefly adults raised from flies collected at a cattle feedlot in Kansas. All bioassays were conducted as choice tests, with flies having ad libitum access to water, granular sugar and bait. A commercial methomyl-based bait (Golden Malrin) was used as positive control; no bait (water and granular sugar only) was used as negative control. Fly mortality was recorded on days 2, 7 and 14. The metaflumizone bait was significantly more slow-acting than the methomyl bait (mortality rates after 2 days of exposure were 49.9% and 57.9%, respectively). However, there were no significant differences in cumulative mortality later in the bioassays. Cumulative mortality rates on days 7 and 14 were 96.1% (metaflumizone), 91.4% (methomyl) and 99.0% (metaflumizone), 97.6% (methomyl), respectively. Our results demonstrate that the metaflumizone granular fly bait may be an effective modality for incorporation into management programmes for houseflies in and around livestock production facilities as well as in residential settings.
Santer, Roger D.
2014-01-01
Palpalis group tsetse flies are the major vectors of human African trypanosomiasis, and visually-attractive targets and traps are important tools for their control. Considerable efforts are underway to optimise these visual baits, and one factor that has been investigated is coloration. Analyses of the link between visual bait coloration and tsetse fly catches have used methods which poorly replicate sensory processing in the fly visual system, but doing so would allow the visual information driving tsetse attraction to these baits to be more fully understood, and the reflectance spectra of candidate visual baits to be more completely analysed. Following methods well established for other species, I reanalyse the numbers of tsetse flies caught at visual baits based upon the calculated photoreceptor excitations elicited by those baits. I do this for large sets of previously published data for Glossina fuscipes fuscipes (Lindh et al. (2012). PLoS Negl Trop Dis 6: e1661), G. palpalis palpalis (Green (1988). Bull Ent Res 78: 591), and G. pallidipes (Green and Flint (1986). Bull Ent Res 76: 409). Tsetse attraction to visual baits in these studies can be explained by a colour opponent mechanism to which the UV-blue photoreceptor R7y contributes positively, and both the green-yellow photoreceptor R8y, and the low-wavelength UV photoreceptor R7p, contribute negatively. A tool for calculating fly photoreceptor excitations is made available with this paper, and this will facilitate a complete and biologically authentic description of visual bait reflectance spectra that can be employed in the search for more efficacious visual baits, or the analysis of future studies of tsetse fly attraction. PMID:25473844
Santer, Roger D
2014-12-01
Palpalis group tsetse flies are the major vectors of human African trypanosomiasis, and visually-attractive targets and traps are important tools for their control. Considerable efforts are underway to optimise these visual baits, and one factor that has been investigated is coloration. Analyses of the link between visual bait coloration and tsetse fly catches have used methods which poorly replicate sensory processing in the fly visual system, but doing so would allow the visual information driving tsetse attraction to these baits to be more fully understood, and the reflectance spectra of candidate visual baits to be more completely analysed. Following methods well established for other species, I reanalyse the numbers of tsetse flies caught at visual baits based upon the calculated photoreceptor excitations elicited by those baits. I do this for large sets of previously published data for Glossina fuscipes fuscipes (Lindh et al. (2012). PLoS Negl Trop Dis 6: e1661), G. palpalis palpalis (Green (1988). Bull Ent Res 78: 591), and G. pallidipes (Green and Flint (1986). Bull Ent Res 76: 409). Tsetse attraction to visual baits in these studies can be explained by a colour opponent mechanism to which the UV-blue photoreceptor R7y contributes positively, and both the green-yellow photoreceptor R8y, and the low-wavelength UV photoreceptor R7p, contribute negatively. A tool for calculating fly photoreceptor excitations is made available with this paper, and this will facilitate a complete and biologically authentic description of visual bait reflectance spectra that can be employed in the search for more efficacious visual baits, or the analysis of future studies of tsetse fly attraction.
Epsky, Nancy D; Gill, Micah A; Mangan, Robert L
2015-08-01
In field tests conducted in south Florida to test grape juice as a bait for the Caribbean fruit fly, Anastrepha suspensa Loew, high numbers of Zaprionus indianus Gupta were captured in traps with aqueous grape juice. These experiments included comparisons of grape juice bait with established A. suspensa protein-based baits (ammonium acetate + putrescine lures, or torula yeast) or wine, a bait found previously to be attractive to Z. indianus. Effects of different preservatives (polypropylene glycol, polyethylene glycol, proxel, or sodium tetraborate) and bait age were also tested. Traps with grape juice baits captured more A. suspensa than unbaited traps, but more were captured in traps with grape juice plus preservative baits and the highest numbers were captured in traps containing the established protein-based baits. In contrast, grape juice baits without preservative that were prepared on the day of deployment (0 d) or that were aged for 3-4 d in the laboratory captured the highest numbers of Z. indianus, while solutions that were aged in the laboratory for 6 or 9 d captured fewer. Although these studies found that aqueous grape juice is a poor bait for A. suspensa, we found that actively fermenting aqueous grape juice may be an effective bait for Z. indianus. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Li, Q F; Li, X; Hunag, J B; Zhang, D M; Yuan, J Z
2015-09-01
Novel and effective baits are needed to manage pest housefly populations and avoid the development of insecticide resistance. In this study, we bioassayed the efficacy of Zyrox®, a novel fly bait containing a novel 0.5 % cyantraniliprole insecticide, to kill adult houseflies under laboratory conditions. We found that Zyrox® killed a significantly greater proportion of flies than the current competing fly bait, QuickBayt®, after a 24-h exposure. The cumulative mortalities of houseflies were up to 96.36 % and 92.57 % for Zyrox® and 78.88 % and 68.76 % for QuickBayt® in no-choice and choice tests, respectively. Our results suggested that there was negligible behavioral resistance to both fly baits but revealed that Zyrox® appeared to work slower than QuickBayt® (at a 3-h exposure, proportionally fewer flies were killed by Zyrox® than by QuickBayt®). Importantly, we found that the efficacy of Zyrox® did not diminish with the age of the bait (up to 90 days old). In actual knockdown time (KDT) feeding bioassay, the results showed that Zyrox® knocked down flies significantly slower (11.97 min for females; 12.30 min for males) than QuickBayt® (1.89 min for females; 2.24 min for males). These results reveal the high efficacy of Zyrox® bait to kill adult flies and suggest that it is a promising slow-action bait for management of houseflies.
Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc
2015-01-01
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186
USDA-ARS?s Scientific Manuscript database
A comparison of 9 commercial baited fly traps on Florida dairy farms demonstrated that Terminator traps collected significantly more (13,323/trap) house flies (Musca domestica L.) than the others tested; Final Flight, Fly Magnet and FliesBeGone traps collected intermediate numbers of flies (834-2,16...
Wallace, Ryan M; Lai, Yuching; Doty, Jeffrey B; Chen, Chen-Chih; Vora, Neil M; Blanton, Jesse D; Chang, Susan S; Cleaton, Julie M; Pei, Kurtis J C
2018-01-01
Taiwan had been considered rabies free since 1961, until a newly established wildlife disease surveillance program identified rabies virus transmission within the Formosan ferret-badger (Melogale moschata subaurantiaca) in 2013. Ferret-badgers occur throughout southern China and Southeast Asia, but their ecological niche is not well described. As an initial feasibility assessment for potential rabies control measures, field camera trapping and pen assessment of 6 oral rabies vaccine (ORV) baits were conducted in Taiwan in 2013. 46 camera nights were recorded; 6 Formosan ferret-badgers and 14 non-target mammals were sighted. No baits were consumed by ferret-badgers and 8 were consumed by non-target mammals. Penned ferret-badgers ingested 5 of the 18 offered baits. When pen and field trials were combined, and analyzed for palatability, ferret-badgers consumed 1 of 9 marshmallow baits (11.1%), 1 of 21 fishmeal baits (4.8%), 0 of 3 liver baits, and 3 of 3 fruit-flavored baits. It took an average of 261 minutes before ferret-badgers made oral contact with the non-fruit flavored baits, and 34 minutes for first contact with the fruit-based bait. Overall, ferret-badgers sought out the fruit baits 8 times faster, spent a greater proportion of time eating fruit baits, and were 7.5 times more likely to have ruptured the vaccine container of the fruit-based bait. Ferret-badgers are now recognized as rabies reservoir species in China and Taiwan, through two independent 'dog to ferret-badger' host-shift events. Species of ferret-badgers can be found throughout Indochina, where they may be an unrecognized rabies reservoir. Findings from this initial study underscore the need for further captive and field investigations of fruit-based attractants or baits developed for small meso-carnivores. Non-target mammals' competition for baits, ants, bait design, and dense tropical landscape represent potential challenges to effective ORV programs that will need to be considered in future studies.
Wallace, Ryan M.; Lai, Yuching; Doty, Jeffrey B.; Chen, Chen-Chih; Vora, Neil M.; Blanton, Jesse D.; Chang, Susan S.; Pei, Kurtis J. C.
2018-01-01
Background Taiwan had been considered rabies free since 1961, until a newly established wildlife disease surveillance program identified rabies virus transmission within the Formosan ferret-badger (Melogale moschata subaurantiaca) in 2013. Ferret-badgers occur throughout southern China and Southeast Asia, but their ecological niche is not well described. Methodology/Principle findings As an initial feasibility assessment for potential rabies control measures, field camera trapping and pen assessment of 6 oral rabies vaccine (ORV) baits were conducted in Taiwan in 2013. 46 camera nights were recorded; 6 Formosan ferret-badgers and 14 non-target mammals were sighted. No baits were consumed by ferret-badgers and 8 were consumed by non-target mammals. Penned ferret-badgers ingested 5 of the 18 offered baits. When pen and field trials were combined, and analyzed for palatability, ferret-badgers consumed 1 of 9 marshmallow baits (11.1%), 1 of 21 fishmeal baits (4.8%), 0 of 3 liver baits, and 3 of 3 fruit-flavored baits. It took an average of 261 minutes before ferret-badgers made oral contact with the non-fruit flavored baits, and 34 minutes for first contact with the fruit-based bait. Overall, ferret-badgers sought out the fruit baits 8 times faster, spent a greater proportion of time eating fruit baits, and were 7.5 times more likely to have ruptured the vaccine container of the fruit-based bait. Conclusions/Significance Ferret-badgers are now recognized as rabies reservoir species in China and Taiwan, through two independent ‘dog to ferret-badger’ host-shift events. Species of ferret-badgers can be found throughout Indochina, where they may be an unrecognized rabies reservoir. Findings from this initial study underscore the need for further captive and field investigations of fruit-based attractants or baits developed for small meso-carnivores. Non-target mammals’ competition for baits, ants, bait design, and dense tropical landscape represent potential challenges to effective ORV programs that will need to be considered in future studies. PMID:29293591
Ding, Yan-Mei; Hu, Yin; Yu, Bao-Ting; Mo, Xiao-Chang; Mo, Jian-Chu
2016-11-01
Mosquito adults usually need to obtain sugar from floral nectaries and damaged fruits/seed pods to replenish their energy reserves. The newly developed attractive toxic sugar baits have been successfully applied in controlling various mosquito species outdoors. However, the attraction of Culex pipiens pallens to different fruit-based sugar baits remains unknown. In the present study, we selected nine common fruit species, prepared the fruit-based sugar solutions, and investigated the attractiveness of different sugar baits to newly emerged Cx. pipiens pallens in the laboratory. The results showed that when tested against the 5% brown sugar solution, all the sugar baits were significantly attractive to both females and males. When tested together in the mesh-covered cage, there was a significant difference on the attractiveness between different fruit-based sugar baits. The most attractive fruit species included Broussonetia papyrifera, Cucumis melo, C. melo var. saccharinus, Amygdalus persica and Pyrus bretschneideri, and their seed pods could be potentially used as ingredients in ATSB for controlling mosquitoes outdoors. Copyright © 2016 Elsevier B.V. All rights reserved.
Does behaviour play a role in house fly resistance to imidacloprid-containing baits?
Seraydar, K R; Kaufman, P E
2015-03-01
The objective of this research was to examine the role and type of behavioural mechanisms that function in house fly, Musca domestica L. (Diptera: Muscidae), resistance to an imidacloprid-containing commercial fly bait, QuickBayt(®) , using an insecticide-susceptible and an imidacloprid-resistant strain. Mortality and feeding behaviour were observed through choice bioassays of three post-imidacloprid selected house fly generations to determine whether flies would consume the bait in the presence of an alternative food source. Mortality rates in choice containers progressively decreased in post-selection flies as QuickBayt(®) no-choice selections proceeded. There were no differences between the proportions of flies observed contacting QuickBayt(®) and sugar, respectively, a finding that eliminates repellency as a mechanism of stimulus-dependent behavioural resistance. However, differences in QuickBayt(®) consumption and subsequent mortality between choice and no-choice containers provided strong support for the evolution of consumption irritancy- or taste aversion-related behavioural resistance. The results of this study support the responsible rotation of insecticide bait formulations for house fly control. © 2015 The Royal Entomological Society.
Evaluation of a new toxic house fly scatter bait
USDA-ARS?s Scientific Manuscript database
Toxic scatter baits have been a popular tool for house fly control for many years. In fact, Starbar’s Golden Malrin has been sold since 1966. Because of long-term use, resistance to methomyl, the active ingredient in Golden Malrin, has rendered the bait useless in many parts of the US. Increased res...
Babcock, Tamara; Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard
2017-09-01
The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer's yeast, Saccharomyces cerevisiae, using gas chromatography-mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard
2017-01-01
Abstract The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer’s yeast, Saccharomyces cerevisiae, using gas chromatography–mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. PMID:28922898
Improving liquid bait programs for Argentine ant control: bait station density.
Nelson, Erik H; Daane, Kent M
2007-12-01
Argentine ants, Linepithema humile (Mayr), have a positive effect on populations of mealybugs (Pseudococcus spp.) in California vineyards. Previous studies have shown reductions in both ant activity and mealybug numbers after liquid ant baits were deployed in vineyards at densities of 85-620 bait stations/ha. However, bait station densities may need to be <85 bait stations/ha before bait-based strategies for ant control are economically comparable to spray-based insecticide treatments-a condition that, if met, will encourage the commercial adoption of liquid baits for ant control. This research assessed the effectiveness of baits deployed at lower densities. Two field experiments were conducted in commercial vineyards. In experiment 1, baits were deployed at 54-225 bait stations/ha in 2005 and 2006. In experiment 2, baits were deployed at 34-205 bait stations/ha in 2006 only. In both experiments, ant activity and the density of mealybugs in grape fruit clusters at harvest time declined with increasing bait station density. In 2005 only, European fruit lecanium scale [Parthenolecanium corni (Bouché)] were also present in fruit clusters, and scale densities were negatively related to bait station density. The results indicate that the amount of ant and mealybug control achieved by an incremental increase in the number of bait stations per hectare is constant across a broad range of bait station densities. The results are discussed in the context of commercializing liquid ant baits to provide a more sustainable Argentine ant control strategy.
Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster.
Zhu, Junwei; Park, Kye-Chung; Baker, Thomas C
2003-04-01
Bioassays with a variety of overripe fruits, including mango, plum, pear, and grape, and their extracts showed that odors from overripe mango were most attractive to adult vinegar flies, Drosophila melanogaster. Combined gas chromatography-electroantennographic detection (GC-EAD) analyses of solid-phase microextraction (SPME) and Tenax extracts of overripe mango odors showed that several volatile compounds, including ethanol, acetic acid, amyl acetate, 2-phenylethanol, and phenylethyl acetate elicited significant EAG responses from antennae of female flies. Most of the volatile compounds in the extracts were identified by mass spectral and retention index comparisons with synthetic standards. In cage bioassays, lures with a blend of ethanol, acetic acid, and 2-phenylethanol in a ratio of 1:22:5 attracted six times more flies than any single EAG-active compound. This blend also attracted four times more flies than traps baited with overripe mango or unripe mango. However, in field trials, the blend was not as attractive as suggested by the laboratory bioassay.
Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles.
Diaz-Santiz, Edvin; Rojas, Julio C; Cruz-López, Leopoldo; Hernández, Emilio; Malo, Edi A
2016-10-01
The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two-choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC-EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography-mass spectrometry (GC-MS) as ethyl butyrate, (Z)-3-hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6-component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Scott-Fiorenzano, Jodi M; Fulcher, Alice P; Seeger, Kelly E; Allan, Sandra A; Kline, Daniel L; Koehler, Philip G; Müller, Günter C; Xue, Rui-De
2017-01-05
Dual attractant toxic sugar baits (D-ATSB) containing two host kairomones, L-lactic (LA) and 1-octen-3-ol (O), and fruit-based attractants were evaluated through olfactory, consumption and mortality, and semi-field experiments to determine if host kairomones could first, enhance attraction of a fruit-based (attractant) toxic sugar bait (ATSB), and second, increase the efficacy of a fruit based attractive toxic sugar bait (ATSB). Four combinations of LA and O were incorporated into the ATSB and evaluated in an olfactometer to determine if these combinations could enhance attraction of Aedes aegypti (L.) to the bait. Ae. albopictus (Skuse) and Ae. aegypti were used to determine bait consumption through excrement droplet counts and percent mortality, of the most attractive D-ATSB (1% LA and 1% O) from the olfactory study. Semi-field evaluations were conducted in screened portable field cages to determine if the D-ATSB applied to non-flowering plants controlled more mosquitoes than the fruit-based ATSB, and ASB. Mosquitoes were exposed to D-ATSB and the two controls for 48 h and collected with BGS traps. The catch rates of the BGS traps were compared to determine efficacy of the D-ATSB. During olfactometer evaluations of D-ATSB, Ae. aegypti mosquitoes were more attracted to 1% LA and 1% O compared to the fruit-based toxic sugar bait alone. Both species of mosquito consumed more fruit-based non-toxic bait (ASB) and ATSB than the D-ATSB. For both species, percent mortality bioassays indicated D-ATSB controlled mosquitoes, as compared to non-toxic control, but not more than the fruit based ATSB. Semi-field evaluations, BioGents sentinel traps at 48 h confirmed that ATSB (positive control) controlled Ae. albopictus, but there was no statistical difference between ASB (negative control) and the D-ATSB. No differences were observed between the mosquitoes caught in any of the experimental formulations for Ae. aegypti. L-lactic (1%) and 1-octen-3-ol (1%) added to a fruit-based sugar bait increased attraction of Ae. aegypti and may have future implications in mosquito trapping devices. The addition of the host kairomones did not enhance the consumption and efficacy of the ATSB in laboratory or semi-field evaluations for both mosquito species. We attribute to the absence of other host cues leading to lack of alighting onto bait surfaces to imbibe the toxic bait, as well as a possible decrease in palatability of the bait caused by the addition of the host kairomones.
Eradication of tephritid fruit fly pest populations: outcomes and prospects.
Suckling, David Maxwell; Kean, John M; Stringer, Lloyd D; Cáceres-Barrios, Carlos; Hendrichs, Jorge; Reyes-Flores, Jesus; Dominiak, Bernard C
2016-03-01
The number of insect eradication programmes is rising in response to globalisation. A database of arthropod and plant pathogen eradications covers 1050 incursion responses, with 928 eradication programmes on 299 pest and disease taxa in 104 countries (global eradication database b3.net.nz/gerda). A subset of the database was assembled with 211 eradication or response programmes against 17 species of fruit flies (Tephritidae) in 31 countries, in order to investigate factors affecting the outcome. The failure rate for fruit fly eradication programmes was about 7%, with 0% for Ceratitis capitata (n = 85 programmes) and 0% for two Anastrepha species (n = 12 programmes), but 12% for 13 Bactrocera species (n = 108 programmes). A number of intended eradication programmes against long-established populations were not initiated because of cost and other considerations, or evolved during the planning phase into suppression programmes. Cost was dependent on area, ranged from $US 0.1 million to $US 240 million and averaged about $US 12 million (normalised to $US in 2012). In addition to the routine use of surveillance networks, quarantine and fruit destruction, the key tactics used in eradication programmes were male annihilation, protein bait sprays (which can attract both sexes), fruit destruction and the sterile insect technique. Eradication success generally required the combination of several tactics applied on an area-wide basis. Because the likelihood of eradication declines with an increase in the area infested, it pays to invest in effective surveillance networks that allow early detection and delimitation while invading populations are small, thereby greatly favouring eradication success. © 2014 Society of Chemical Industry.
Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone.
Mihok, S; Carlson, D A; Ndegwa, P N
2007-03-01
Octenol (1-octen-3-ol), acetone, 4-methylphenol, 3-n-propylphenol, and other potential attractants (human urine, stable fly faeces), as well as guiacol, creosol (potential repellents), were tested as baits for biting flies in North America using standard phthalogen blue IF3GM cotton Nzi traps, or similar commercial polyester traps. Baits were tested during the summers of 2001-04 at a residence in Canada and during January-August 2001 at a dairy in the U.S.A. Behaviour in the presence of octenol was also studied by intercepting flies approaching a trap through the use of transparent adhesive film. Analogous bait and/or trap comparisons were conducted in natural settings in June 1996 in Kenya and in September-December 1997 in Ethiopia. In Canada, catches of five of six common tabanids (Tabanus similis Macquart, Tabanus quinquevittatus Wiedemann, Hybomitra lasiophthalma [Macquart], Chrysops univittatus Macquart, Chrysops aberrans Philip) and the stable fly Stomoxys calcitrans L. were increased significantly by 1.2-2.1 times with octenol (1.5 mg/h). Catches of T. quinquevittatus and S. calcitrans were 3.5-3.6 times higher on a sticky enclosure surrounding a trap baited with octenol. No other baits or bait combinations had an effect on trap catches in North America. In Ethiopia, standard Nzi traps baited with a combination of acetone, octenol and cattle urine caught 1.8-9.9 times as many Stomoxys as similarly baited epsilon, pyramidal, NG2G, S3, biconical and canopy traps, in order of decreasing catch. When baits were compared, catches in Nzi traps of six stable fly species, including S. calcitrans, were not affected by octenol (released at approximately 1 mg/h), or cattle urine (140 mg/h), used alone or in combination with acetone (890 mg/h). Acetone alone, however, significantly increased the catches of common Stomoxys such as Stomoxys niger niger Macquart, Stomoxys taeniatus Bigot, and S. calcitrans by 2.4, 1.6 and 1.9 times, respectively. Catches of Glossina pallidipes Austen were increased significantly in traps baited with acetone, urine or octenol, or any combination, relative to those in unbaited traps (1.4-3.6x). Catches of Glossina morsitans submorsitans Newstead were increased significantly by 1.5-1.7 times, but only when baits were used individually. Unlike other studies with East African tsetse, catches of both tsetse species with the complete bait combination (acetone, urine and octenol) did not differ from those in unbaited traps. Experiments with an incomplete ring of electric nets surrounding a Nzi trap, and a new approach using a sticky enclosure made from transparent adhesive film, revealed diverse responses to artificial objects and baits among biting flies. In Kenya, daily trap efficiency estimates for traps baited with either carbon dioxide (6 L/min) or a combination of acetone, cattle urine and octenol were 21-27% for G. pallidipes, 7-36% for Glossina longipennis Corti, 27-33% for S. n. niger, and 19-33% for Stomoxys niger bilineatus Grünberg, assuming 100% electrocution efficiency. Actual trap efficiencies may have been lower, given observed outside : inside electric net catch ratios of 0.6 : 1.6. Observed ratios averaged 54% of expected values, with 10 of 15 possible ratios less than the minimum possible value of 1.0.
Epsky, Nancy D; Gill, Micah A
2017-06-01
Volatile chemicals produced by actively fermenting aqueous grape juice bait have been found to be highly attractive to the African fig fly, Zaprionus indianus Gupta. This is a highly dynamic system and time period of fermentation is an important factor in bait efficacy. A series of field tests were conducted that evaluated effects of laboratory versus field fermentation and sampling period (days after placement [DAP]) on bait effectiveness as the first step in identifying the chemicals responsible for attraction. Tests of traps with bait that had been aged in the laboratory for 0, 3, 6, and 9 d and then sampled 3 DAP found higher capture in traps with 0- and 3-d-old baits than in traps with 6- or 9-d-old baits. To further define the time period that produced the most attractive baits, a subsequent test evaluated baits aged for 0, 2, 4, and 6 d in the laboratory and sampled after 1-4 DAP, with traps sampled and bait discarded at the end of each DAP period. The highest capture was in traps with 4-d-old bait sampled 1 DAP, with the second best capture in traps with 0-d-old bait sampled 3 DAP. However, there tended to be fewer flies as DAP increased, indicating potential loss of identifiable flies owing to decomposition in the actively fermenting solutions. When traps were sampled and bait recycled daily, the highest capture was in 2- and 4-d-old baits sampled 1 DAP and in 0-d-old baits sampled 2-4 DAP. Similar patterns were observed for capture of nontarget drosophilids. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Pesticide Spill Prevention and Management
2009-08-01
Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait
USDA-ARS?s Scientific Manuscript database
Dual attractant toxic sugar baits (D-ATSB) containing two host kairomones, L-lactic (LA) and 1-octen-3-ol (O), and fruit-based attractants were evaluated through four experiments to determine if host kairomones could a. enhance attraction of a fruit-based toxic sugar bait (ATSB), and b. increase the...
Jayanthi, Pagadala D Kamala; Woodcock, Christine M; Caulfield, John; Birkett, Michael A; Bruce, Toby J A
2012-04-01
The oriental fruit fly, Bactrocera dorsalis, is an economically damaging, polyphagous pest of fruit crops in South-East Asia and Hawaii, and a quarantine pest in other parts of the world. The objective of our study was to identify new attractants for B. dorsalis from overripe mango fruits. Headspace samples of volatiles were collected from two cultivars of mango, 'Alphonso' and 'Chausa', and a strong positive behavioral response was observed when female B. dorsalis were exposed to these volatiles in olfactometer bioassays. Coupled GC-EAG with female B. dorsalis revealed 7 compounds from 'Alphonso' headspace and 15 compounds from 'Chausa' headspace that elicited an EAG response. The EAG-active compounds, from 'Alphonso', were identified, using GC-MS, as heptane, myrcene, (Z)-ocimene, (E)-ocimene, allo-ocimene, (Z)-myroxide, and γ-octalactone, with the two ocimene isomers being the dominant compounds. The EAG-active compounds from 'Chausa' were 3-hydroxy-2-butanone, 3-methyl-1-butanol, ethyl butanoate, ethyl methacrylate, ethyl crotonate, ethyl tiglate, 1-octen-3-ol, ethyl hexanoate, 3-carene, p-cymene, ethyl sorbate, α-terpinolene, phenyl ethyl alcohol, ethyl octanoate, and benzothiazole. Individual compounds were significantly attractive when a standard dose (1 μg on filter paper) was tested in the olfactometer. Furthermore, synthetic blends with the same concentration and ratio of compounds as in the natural headspace samples were highly attractive (P < 0.001), and in a choice test, fruit flies did not show any preference for the natural samples over the synthetic blends. Results are discussed in relation to developing a lure for female B. dorsalis to bait traps with.
USDA-ARS?s Scientific Manuscript database
Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...
USDA-ARS?s Scientific Manuscript database
Volatile chemicals increased trap catch of flies from the families Lauxaniidae [Homoneura bispina (Loew) and Camptoprosopella borealis Shewell], Chloropidae (Olcella sp.) and Anthomyiidae (Delia spp.) in field crops. With cotton rolls as dispensers, baiting with 2-phenylethanol increased catch of H...
Tian, Xiaolin; Zhu, Mingwei; Li, Long; Wu, Chunlai
2013-01-01
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond. PMID:24335807
Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Vandame, Rémy; Sánchez, Daniel
2014-08-01
We present the results of evaluating the response of three species of bees, Trigona fulviventris (Guérin), Scaptotrigona mexicana (Guérin-Meneville), and Apis mellifera (L.), to food sources baited with the toxic bait GF-120 (NF Naturalyte), a spinosad-based bait exclusively used to manage fruit flies. Groups of foragers were trained to collect honey and water from a feeder located 50 m from the colonies. Once a sufficient number of foragers were observed at the experimental location, the training feeder was changed to two or three feeders that offered either honey and water, GF-120, Captor (hydrolyzed protein), GF-120 and honey (4:6), or Captor and honey (1:19). T fulviventris and S. mexicana rarely visited GF-120, Captor, or their mixtures with honey, while approximately 28.5 and 1.5% of A. mellifera foragers visited the GF-120 and honey and Captor and honey mixtures, respectively. Our results show that GF-120 clearly repels T. fulviventris and S. mexicana, whereas for A. mellifera, repellence is not as marked when GF-120 is combined with highly nutritious substances like honey.
Reed, J J; Puckett, R T; Gold, R E
2015-10-01
Red imported fire ants, Solenopsis invicta Buren, are adversely affected by phorid flies in the genus Pseudacteon by instigating defensive behaviors in their hosts, and in turn reducing the efficiency of S. invicta foraging. Multiple Pseudacteon species have been released in Texas, and research has been focused on the establishment and spread of these introduced biological control agents. Field experiments were conducted to determine bait particle size selection of S. invicta when exposed to phorid populations. Four different particle sizes of two candidate baits were offered to foragers (one provided by a pesticide manufacturer, and a laboratory-created bait). Foragers selectively were attracted to, and removed more 1-1.4-mm particles than any other bait size. The industry-provided bait is primarily made of particles in the 1.4-2.0 mm size, larger than what was selected by the ants in this study. While there was a preference for foragers to be attracted to and rest on the industry-provided blank bait, S. invicta removed more of the laboratory-created bait from the test vials. There was an abundance of workers with head widths ranging from 0.5-0.75 mm collected from baits. This was dissimilar from a previous study wherein phorid flies were not active and in which large workers were collected in higher abundance at the site. This implies that phorid fly activity caused a shift for red imported fire ant colonies to have fewer large foragers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gerry, Alec C; Higginbotham, G E; Periera, L N; Lam, A; Shelton, C R
2011-06-01
Relative house fly, Musca domestica L., activity at three large dairies in central California was monitored during the peak fly activity period from June to August 2005 by using spot cards, fly tapes, bait traps, and Alsynite traps. Counts for all monitoring methods were significantly related at two of three dairies; with spot card counts significantly related to fly tape counts recorded the same week, and both spot card counts and fly tape counts significantly related to bait trap counts 1-2 wk later. Mean fly counts differed significantly between dairies, but a significant interaction between dairies sampled and monitoring methods used demonstrates that between-dairy comparisons are unwise. Estimate precision was determined by the coefficient of variability (CV) (or SE/mean). Using a CV = 0.15 as a desired level of estimate precision and assuming an integrate pest management (IPM) action threshold near the peak house fly activity measured by each monitoring method, house fly monitoring at a large dairy would require 12 spot cards placed in midafternoon shaded fly resting sites near cattle or seven bait traps placed in open areas near cattle. Software (FlySpotter; http://ucanr.org/ sites/FlySpotter/download/) using computer vision technology was developed to count fly spots on a scanned image of a spot card to dramatically reduce time invested in monitoring house flies. Counts provided by the FlySpotter software were highly correlated to visual counts. The use of spot cards for monitoring house flies is recommended for dairy IPM programs.
Epsky, Nancy D; Espinoza, Hernán R; Kendra, Paul E; Abernathy, Robert; Midgarden, David; Heath, Robert R
2010-10-01
Studies were conducted in Honduras to determine effective sampling range of a female-targeted protein-based synthetic attractant for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Multilure traps were baited with ammonium acetate, putrescine, and trimethylamine lures (three-component attractant) and sampled over eight consecutive weeks. Field design consisted of 38 traps (over 0.5 ha) placed in a combination of standard and high-density grids to facilitate geostatistical analysis, and tests were conducted in coffee (Coffea arabica L.),mango (Mangifera indica L.),and orthanique (Citrus sinensis X Citrus reticulata). Effective sampling range, as determined from the range parameter obtained from experimental variograms that fit a spherical model, was approximately 30 m for flies captured in tests in coffee or mango and approximately 40 m for flies captured in orthanique. For comparison, a release-recapture study was conducted in mango using wild (field-collected) mixed sex C. capitata and an array of 20 baited traps spaced 10-50 m from the release point. Contour analysis was used to document spatial distribution of fly recaptures and to estimate effective sampling range, defined by the area that encompassed 90% of the recaptures. With this approach, effective range of the three-component attractant was estimated to be approximately 28 m, similar to results obtained from variogram analysis. Contour maps indicated that wind direction had a strong influence on sampling range, which was approximately 15 m greater upwind compared with downwind from the release point. Geostatistical analysis of field-captured insects in appropriately designed trapping grids may provide a supplement or alternative to release-recapture studies to estimate sampling ranges for semiochemical-based trapping systems.
Improved capture of Drosophila suzukii by a trap baited with two attractants in the same device
Tadeo, Eduardo; Toledo-Hérnandez, Ricardo A.; Carmona, Lino; Lima, Itzel; Williams, Trevor
2017-01-01
The improvement of trap-lure combinations is an important part of integrated pest management programs that involve monitoring pests for timely insecticide applications, or for their use in control strategies such as mass trapping or bait stations. In this study improvements in the capture of Drosophila suzukii were not observed following the inclusion of different color stimuli with respect to a red-black stripe cup trap. This red-black stripe trap with a hemispherical dome-shaped lid had a significantly improved physical retention of flies compared to traps fitted with a flat lid. Retention was further improved when an additional tube device, which could be baited with a supplemental attractant, was introduced through the dome-shaped lid. Under laboratory conditions, this trap, in which apple cider vinegar + 10% ethanol was present as the drowning solution and the additional tube device was baited with a fermenting mixture of sugar and yeast, was significantly more effective in catching D. suzukii flies than other conventional attractants or a commercial lure. The capture rate of this trap-lure combination remained higher than that of a commercial lure, even after 20 days of use under laboratory conditions. In a guava orchard this trap was 15-fold more effective in catching D. suzukii flies than similar traps baited with apple cider vinegar alone, 4 to 7 fold more effective than similar traps baited with a commercial lure, and 1.7-fold more effective than a fermenting mixture of yeasts and wheat flour. In commercial blackberry orchards, this trap was 6-fold more effective in trapping D. suzukii flies than the clear trap baited with apple cider vinegar used by growers. The efficacy of this trap presents a promising line of future research for monitoring and control of D. suzukii and likely other drosophilid pests. PMID:29149190
Improved capture of Drosophila suzukii by a trap baited with two attractants in the same device.
Lasa, Rodrigo; Tadeo, Eduardo; Toledo-Hérnandez, Ricardo A; Carmona, Lino; Lima, Itzel; Williams, Trevor
2017-01-01
The improvement of trap-lure combinations is an important part of integrated pest management programs that involve monitoring pests for timely insecticide applications, or for their use in control strategies such as mass trapping or bait stations. In this study improvements in the capture of Drosophila suzukii were not observed following the inclusion of different color stimuli with respect to a red-black stripe cup trap. This red-black stripe trap with a hemispherical dome-shaped lid had a significantly improved physical retention of flies compared to traps fitted with a flat lid. Retention was further improved when an additional tube device, which could be baited with a supplemental attractant, was introduced through the dome-shaped lid. Under laboratory conditions, this trap, in which apple cider vinegar + 10% ethanol was present as the drowning solution and the additional tube device was baited with a fermenting mixture of sugar and yeast, was significantly more effective in catching D. suzukii flies than other conventional attractants or a commercial lure. The capture rate of this trap-lure combination remained higher than that of a commercial lure, even after 20 days of use under laboratory conditions. In a guava orchard this trap was 15-fold more effective in catching D. suzukii flies than similar traps baited with apple cider vinegar alone, 4 to 7 fold more effective than similar traps baited with a commercial lure, and 1.7-fold more effective than a fermenting mixture of yeasts and wheat flour. In commercial blackberry orchards, this trap was 6-fold more effective in trapping D. suzukii flies than the clear trap baited with apple cider vinegar used by growers. The efficacy of this trap presents a promising line of future research for monitoring and control of D. suzukii and likely other drosophilid pests.
Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies.
Moophayak, Kittikhun; Sukontason, Kabkaew L; Kurahashi, Hiromu; Vogtsberger, Roy C; Sukontason, Kom
2013-11-01
The behavioral response of flies to olfactory cues remains the focus of many investigations, and wind tunnels have sometimes been employed for assessment of this variable in the laboratory. In this study, our aim was to design, construct, and operate a new model of I-box wind tunnel with improved efficacy, highlighting the use of a new wind tunnel model to investigate the behavioral response of the medically important blow fly, Chrysomya megacephala (Fabricius). The I-box dual-choice wind tunnel designed for this study consists of seven conjoined compartments that resulted in a linear apparatus with clear glass tunnel of 30 × 30 × 190 cm ended both sides with wooden "fan compartments" which are equipped with adjustable fans as wind source. The clear glass tunnel consisted of two "stimulus compartments" with either presence or absence (control) of bait; two "trap compartments" where flies were attracted and allowed to reside; and one central "release compartment" where flies were introduced. Wind tunnel experiments were carried out in a temperature-controlled room, with a room light as a light source and a room-ventilated fan as odor-remover from tunnel out. Evaluation of testing parameters revealed that the highest attractive index was achieved with the use of 300 g of 1-day tainted pork scrap (pork meat mixed with offal) as bait in wind tunnel settings wind speed of 0.58 m/s, during 1.00-5.00 PM with light intensity of 341.33 lux from vertical light and 135.93 lux from horizontal light for testing a group of 60 flies. In addition, no significant response of well-fed and 24 h staved flies to this bait under these conditions was found. Results of this study supported this new wind tunnel model as a suitable apparatus for investigation of behavioral response of blow flies to bait chemical cues in the laboratory.
USDA-ARS?s Scientific Manuscript database
Recommendations for monitoring spotted wing drosophila (SWD) Drosophila suzukii, (Matsumura) are to use either vinegar or wine as a bait for traps. Traps baited with vinegar and traps baited with wine, in field tests in northern Oregon, captured large numbers of male and female SWD flies. Numbers of...
USDA-ARS?s Scientific Manuscript database
Studies in Argentina and Chile during 2010-11 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta-shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom center of the trap. The screened lid of ...
Weidner, Lauren M; Gemmellaro, M Denise; Tomberlin, Jeffery K; Hamilton, George C
2017-09-01
Information about blow fly (Diptera: Calliphoridae) species distributions can be valuable for criminal investigations, with regards to determining movement of remains from one location to another and time of colonization estimates, making these data extremely useful. Past work has been conducted on initial species community structure across New Jersey, USA using traps baited with beef liver; however, if these same species frequent vertebrate carrion remains unclear. In order to evaluate these data, piglet carcasses were placed out once every two weeks for a year in New Brunswick, New Jersey, USA. The same methods were implemented as those used for traps baited with beef liver, with length of collections being based on ADD values. Seven calliphorid species, Calliphora vicina (Robineau-Desvoidy), Lucilia sericata (Meigen), Lucilia coeruleiviridis (Macquart), Phormia regina (Meigen), Pollenia pediculata Macquart, Pollenia rudis (F.) and Protophormia terraenovae (Robineau-Desvoidy) were collected from the carcasses. During this experiment L. sericata, L. coeruleiviridis and P. regina were the dominant adult blow flies captured, totaling 38.2%, 29.2% and 29.2% respectively of all adults caught. All three species colonized the carcasses as well, although not all were dominant colonizers. C. vicina was recorded ovipositing in December, while the piglet was submerged in approximately 5cm of snow. All species that totaled at least 1% of the total collection (adults captured and larvae reared) were the same across baited traps and carcasses. This study supports the use of beef liver baits for surveying forensically important blow flies and the application of such information to forensic investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Passive Baited Sequential Fly Trap
USDA-ARS?s Scientific Manuscript database
Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Code of Federal Regulations, 2011 CFR
2011-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Ferro, C; Morrison, A C; Torres, M; Pardo, R; Wilson, M L; Tesh, R B
1995-07-01
Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Weekly sand fly collections were made from pigpens, houses, and natural resting sites, using hand-held aspirators, sticky (oiled) paper traps, and opossum-baited Disney traps. In total, 263,094 sand flies were collected; L. longipalpis predominated (86.1%), followed by L. trinidadensis (11.0%), L. cayennensis (2.7%), and 8 other Lutzomyia species. The species composition and sex ratio of these sand flies varied among sites and by collection method. L. longipalpis were captured most efficiently by direct aspiration from animal bait. Conversely, sticky paper traps, especially inside houses and at rock resting sites, collected a greater diversity of species, but a lower relative abundance of L. longipalpis.
Anderson, J R; Nilssen, A C
1996-10-01
At 340-360 km North of the Arctic Circle in Norway, Hypoderma tarandi (L.) and Cephenemyia trompe (Modeer) females were caught in baited traps from 10 July to 21 August. During three summers, adverse climatic conditions inhibited flight activity of these oestrids on 56-68% of the days. Flies were not caught prior to or after these dates, nor at winds above 8 m/s, temperatures below 10 degrees C, light intensities below 20,000 lux, or during periods of rain or snow. CO2-baited insect flight traps caught significantly more H.tarandi females than non-baited traps. However, neither a white reindeer hide or reindeer interdigital pheromone glands enhanced the attraction of CO2 to H.tarandi or C.trompe. Hypoderma tarandi females also were attracted to mobile people, but not to stationary individuals. There were no significant differences in the number of C.trompe or H.tarandi caught in CO2-baited traps in a birch/willow woods, on the treeless vidda (= tundra-like biome), or at woods:vida ecotone sites. Flies were caught in traps on days when the nearest reindeer herds were 25-100 km away. Significantly more H.tarandi and C.trompe were caught from 09.30 to 14.30 hours than from 14.30 to 19.30 hours; no flies were caught from 20.00 to 07.00 hours (Norwegian Standard Time = NST). Because of CO2-baited traps caught from hundreds to thousands of mosquitoes, blackflies and Culicoides midges, when climatic conditions inhibited oestrid activity, reindeer aggregations and movements attributed to insect attacks during warm sunny days may be largely in response to attacks by H.tarandi and C.trompe.
Tadeo, E; Muñiz, E; Rull, J; Yee, W L; Aluja, M; Lasa, R
2017-08-01
Few efforts have been made in Mexico to monitor Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) in commercial hawthorn (Crataegus spp.) crops. Therefore, the main objectives of this study were to evaluate infestation levels of R. pomonella in feral and commercial Mexican hawthorn and to assess the efficacy of different trap-lure combinations to monitor the pest. Wild hawthorn was more infested than commercially grown hawthorn at the sample site. No differences among four commercial baits (Biolure, ammonium carbonate, CeraTrap, and Captor + borax) were detected when used in combination with a yellow sticky gel (SG) adherent trap under field conditions. However, liquid lures elicited a slightly higher, although not statistically different, capture. Cage experiments in the laboratory revealed that flies tended to land more often on the upper and middle than lower-bottom part of polyethylene (PET) bottle traps with color circles. Among red, orange, green, and yellow circles attached to a bottle trap, only yellow circles improved fly captures compared with a colorless trap. A PET bottle trap with a red circle over a yellow background captured more flies than a similar trap with yellow circles. An SG adherent yellow panel trap baited with ammonium carbonate was superior to the improved PET bottle trap (red over a yellow background) baited with different liquid proteins, but a higher proportion of females and no differences in fly detection were measured in PET traps baited with protein lures. These trials open the door for future research into development of a conventional nonadherent trap to monitor or control R. pomonella. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rosa, J M da; Arioli, C J; Santos, J P Dos; Menezes-Netto, A C; Botton, M
2017-06-01
The Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is the main pest of fruit trees grown in temperate climates in the southern region of Brazil. The objective of this work was to evaluate the efficiency of the major commercial food lures used in Brazil for trapping and monitoring of A. fraterculus in plum, pear, and feijoa orchards. The assessed lures were hydrolyzed proteins of animal origin (CeraTrap) and plant origin (BioAnastrepha), torula yeast + borax (Torula), and grape juice. Response variables included the rate of adult capture (flies per trap per day, FTD) and the percentage of females captured. We also evaluated the number of times the weekly capture rate exceeded the traditional threshold of 0.5 FTD for each lure. Traps baited with grape juice, currently used for monitoring A. fraterculus in Southern Brazil, captured fewer adults and a lower percentage of females compared with the other lures. CeraTrap trapped a greater number of A. fraterculus adults and, in some cases, a lower percentage of females compared with the other lures in pears. Traps baited with CeraTrap had greater capture rates (FTD), particularly during the stages of fruit maturation and harvest, and even in years with low population density of A. fraterculus, thus demonstrating greater sensitivity in the detection of this pest. These results show that, in order to detect and monitor the presence of A. fraterculus in plum, feijoa, and pear crops, protein-based lures are superior to grape juice, especially the animal protein CeraTrap. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dunford, James C; Hoel, David F; Hertz, Jeffrey C; England, David B; Dunford, Kelly R; Stoops, Craig A; Szumlas, Daniel E; Hogsette, Jerome A
2013-01-01
Two field trials were conducted to evaluate if filth fly trap efficacy was increased by augmentation with an insecticide application to the trap's exterior. Four Fly Terminator Pro traps (Farnam Companies, Inc, Phoenix, AZ) baited with Terminator Fly Attractant (in water) were suspended on polyvinyl chloride pipe framing at a municipal waste transfer site in Clay County, Florida. The outer surfaces of 2 traps were treated with Maxforce Fly Spot Bait (Bayer Environmental Science, Research Triangle Park, NC) (10% imidacloprid) to compare kill rates between treated and untreated traps. Kill consisted of total flies collected from inside traps and from mesh nets suspended beneath all traps, both treated and untreated. Each of 2 treated and untreated traps was rotated through 4 trap sites every 24 hrs. In order to evaluate operational utility and conservation of supplies during remote contingency operations, fly attractant remained in traps for the duration of the first trial but was changed daily during the second trial (following manufacturer's recommendations). In addition, ½ strength Terminator Fly Attractant was used during the first trial and traps were set at full strength during the second trial. Flies collected within the traps and in mesh netting were counted and identified. Three species, Musca domestica (L.), Chrysomya megacephala (F.), and Lucilia cuprina (Wiedemann), comprised the majority of samples in both trials. The net samples recovered more flies when the outer surface was treated with imidacloprid, however, treated traps collected fewer flies inside the trap than did untreated traps for both trials. No significant statistical advantage was found in treating Fly Terminator Pro trap exteriors with Maxforce Fly Spot Bait. However, reducing manufacturer's recommended strength of Terminator Fly Attractant showed similar results to traps set at full strength. Treating the outer surfaces may improve kill of fly species that do not enter the trap. Terminator Fly Attractant was also found to be more effective if traps were not changed daily and left to hold dead flies for longer periods.
USDA-ARS?s Scientific Manuscript database
House flies (Musca domestica L.) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several strains are commercially available. Three str...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist AGENCY: Animal and... Mediterranean fruit fly quarantined areas in the United States with a certificate if the fruit is safeguarded... quarantine regulations to remove trapping requirements for Mediterranean fruit fly for Hass avocados imported...
USDA-ARS?s Scientific Manuscript database
Field trials were conducted to evaluate if filth fly trap efficacy was increased by application of an insecticide to a trap’s exterior. Four Fly Terminator® Pro traps baited with Fly Terminator® attractant were suspended on PVC pipe framing at a Florida waste transfer site. Exterior surfaces of tw...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... Fly or South American Fruit Fly Exist AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Mediterranean fruit fly quarantined areas in the United States with a certificate if the fruit is safeguarded... regulations to remove trapping requirements for Mediterranean fruit fly for Hass avocados imported from the...
Khan, Mohammed Abul Monjur; Manoukis, Nicholas C; Osborne, Terry; Barchia, Idris M; Gurr, Geoff M; Reynolds, Olivia L
2017-10-17
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia's $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and 'wild' males indiscriminately. In the present study we tested the effect of pre-release feeding of B. tryoni on RK on their post-release survival and response to MAT in field cages and in a commercial orchard. In both settings, survival was higher for RK supplemented adults compared to control (i.e. RK denied) adults. A lower number of RK supplemented sterile males were recaptured in MAT baited traps in both the field cages and orchard trials compared to RK denied sterile males. The advantage of this novel "male replacement" approach (relatively selective mortality of wild males at lure-baited traps while simultaneously releasing sterile males) is increasing the ratio of sterile to wild males in the field population, with potential for reducing the number of sterile males to be released.
2015-02-08
dinotefuran has successful con- trolled Culex and Aedes spp. in similar field sites in Morocco [22]. However, this if the first report of the use of...et al. Control of Aedes abopttus with attractive toxic sugar baits (A TSB) and potential Impact on non target organisms In St. Augustine, Florida...of Anopheles sergenti and Aedes CO!Pk.JS populations following presentation of attractive toxic (splnosad) sugar bait stations In an oasis. J Am
House Fly (Musca domestica L.) Attraction to Insect Honeydew.
Hung, Kim Y; Michailides, Themis J; Millar, Jocelyn G; Wayadande, Astri; Gerry, Alec C
2015-01-01
House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species.
House Fly (Musca domestica L.) Attraction to Insect Honeydew
Hung, Kim Y.; Michailides, Themis J.; Millar, Jocelyn G.; Wayadande, Astri; Gerry, Alec C.
2015-01-01
House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the development of improved house fly baits for management of this pest species. PMID:25970333
Vargas, Roger I; Piñero, Jaime C; Miller, Neil W
2018-05-28
Foraging behavior of wild female melon fly, Bactrocera (Zeugodacus) cucurbitae Coquillett, a worldwide pest of economically important cucurbit crops, was examined through mark and recapture studies in both wild (Kona: dominated by the invasive weed ivy gourd, Coccinea grandis [L.] Voigt [Cucurbitaceae]), and cultivated (Kapoho: dominated by papaya, Carica papaya L. [Caricaceae] orchards) habitats on Hawaii Island. In particular, the extent to which wild melon flies and color-marked F2 females responded to cucumber odor and Solulys yeast hydrolysate laced with ammonium acetate (1%, wt/vol) according to sexual maturity stage and degree of protein hunger was documented. Kona results indicated that more wild and color-marked F2 females responded to cucumber (Cucumis sativus L. [Cucurbitaceae]) odor than to protein odor with the exception of captured wild flies without eggs, which responded similarly to protein bait and cucumber odor. Results with captured wild females and color-marked F2 females in Kapoho suggested a significant preference for cucumber odor over protein odor regardless of whether or not they had eggs in their ovaries with the exception of protein-deprived color-marked F2 females, which responded to both odors in equal numbers. Implications of these new findings based on wild melon flies in natural habitats are discussed with respect to integrated pest management control strategies with protein bait sprays used in Hawaii. The possibility of adding cucurbit volatiles to protein-based baits is discussed.
Batista, Marcos R.D.; Uno, Fabiana; Chaves, Rafael D.; Tidon, Rosana; Rosa, Carlos A.
2017-01-01
Background Yeasts are a necessary requisite in the diet of most Drosophila species that, in turn, may vector their dispersal in natural environments. Differential attractiveness experiments and the isolation of yeasts consumed by Drosophila may be informative for characterizing this association. Hanseniaspora uvarum is among the most common yeast species isolated from Drosophila crops, with high attractiveness to drosophilids. Saccharomyces cerevisiae has been widely used to collect flies, and it allows broad sampling of almost all local Drosophila species. Pronounced differences in the field concerning Drosophila attractivity to baits seeded with these yeast species have been previously reported. However, few explicit generalizations have been set. Since late fifties, no field experiments of Drosophila attractivity were carried out in the Neotropical region, which is facing shifts in abiotic and biotic factors. Our objective is to characterize preference behavior that mediates the interaction in the wild among Neotropical Drosophila species and yeasts associated with them. We want to set a broad generalization about drosophilids attracted to these yeasts. Here we present the results of a differential attractiveness experiment we carried out in a natural Atlantic Rainforest fragment to assess the preferences of Drosophila species groups to baits inoculated with H. uvarum and S. cerevisiae. Methods Both yeast species were cultured in GYMP broth and separately poured in autoclaved mashed banana that was left fermenting. In the field, we collected drosophilids over five arrays of three different baits: non-inoculated autoclaved banana and banana inoculated with each yeast. In the laboratory the drosophilids were sorted to five sets according to their external morphology and/or genitalia: tripunctata; guarani; willistoni; exotic; and the remaining flies pooled in others. Results and Conclusions Uninoculated banana baits attracted virtually no flies. We found significant departures from random distribution over the other two baits (1:1 proportion) for all sets, except the pooled others. Flies of the sets willistoni and exotic preferred H. uvarum over S. cerevisiae, while the remaining sets were more attracted to S. cerevisiae. Previously, various authors reported similar patterns in attraction experiments with S. cerevisiae and H. uvarum. It is also noteworthy that both yeast species have been isolated from natural substrates and crops of Drosophila species. Taken together, these results suggest that the preferences among Drosophila species groups may be reflecting deep and stable relations with yeast species in natural environments. They can be summarized as: forest dwelling species from subgenus Drosophila (such as tripunctata and guarani groups) are attracted to banana baits seeded with S. cerevisiae; while exotic (as D. melanogaster) and subgenus Sophophora species are preferentially attracted to baits seeded with H. uvarum. PMID:28289566
Vale, Glyn A; Hargrove, John W; Solano, Philippe; Courtin, Fabrice; Rayaisse, Jean-Baptiste; Lehane, Michael J; Esterhuizen, Johan; Tirados, Inaki; Torr, Stephen J
2014-06-01
Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ∼70%. Sex differences in behavior are explicable by females being larger and more mobile than males. Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit.
USDA-ARS?s Scientific Manuscript database
Forced infestation studies were conducted to determine if fruits of southern highbush blueberries (Vaccinium corymbosum L. hybrids) are hosts for three invasive tephritid fruit flies. Fruits of 17 blueberry cultivars were exposed to gravid female flies of Bactrocera dorsalis (Hendel) (oriental frui...
Caribbean Fruit Fly (Diptera: Tephritidae) and Small Fruit in Florida
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are among the most important pests of fruits and vegetables worldwide. The Caribbean fruit fly, Anastrepha suspensa (Loew), is a tephritid pest that became established in Florida following introduction in 1965. Populations of this fruit fly also occur in Puerto Rico and Cuba, ...
Abraham, John; Zhang, Aijun; Angeli, Sergio; Abubeker, Sitra; Michel, Caryn; Feng, Yan; Rodriguez-Saona, Cesar
2015-04-01
Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based volatile blends attractive to this fly have been identified. This is particularly important because females are able to cut into the epicarp of ripening fruit for oviposition. Thus, we conducted studies to: 1) investigate the behavioral responses of adult D. suzukii to volatiles from blueberry, cherry, raspberry, and strawberry fruit extracts; 2) identify the antennally active compounds from the most attractive among the tested extracts (raspberry) using gas chromatography (GC)-mass spectrometry and coupled gas chromatography -electroantennographic detection (GC-EAD); and 3) test a synthetic blend containing the EAD-active compounds identified from raspberry extract on adult attraction. In olfactometer studies, both female and male D. suzukii were attracted to all four fruit extracts. The attractiveness of the fruit extracts ranks as: raspberry ≥ strawberry > blueberry ≥ cherry. GC analyses showed that the fruit extracts emit distinct volatile compounds. In GC-EAD experiments, 11 raspberry extract volatiles consistently elicited antennal responses in D. suzukii. In choice test bioassays, a synthetic EAD-active blend attracted more D. suzukii than a blank control, but was not as attractive as the raspberry extract. To our knowledge, this is the first report of a behaviorally and antennally active blend of host fruit volatiles attractive to D. suzukii, offering promising opportunities for the development of improved monitoring and behaviourally based management tools. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos
2014-01-01
Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412
Basic Casting from A to Z. Student's Instruction Booklet.
ERIC Educational Resources Information Center
Zebco, Tulsa, OK.
A profusely illustrated student instruction booklet contains step-by-step directions and diagrams for learning four basic casting techniques. Separate sections cover basic spin-casting, spinning, bait-casting, and fly-casting. Each section details recommended equipment (reel, rod, line, plug, tackle, lures, leaders, flies), describes specific…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... dorsalis), peach fruit fly (Anastrepha zonata), and sapote fruit fly (Anastrepha serpentina) in the... obliqua, Anastrepha serpentina, and Anastrepha striata (Diptera: Tephritidae) in Mexico. J. Econ. Entomol...
Lasa, R; Williams, T
2017-12-05
Hydrolyzed protein lures are widely used to monitor fruit fly pests but are rapidly degraded by microbial activity and must be replaced frequently. To improve the stability of lures, the quaternary ammonium biocide, benzalkonium chloride (BC), was evaluated in mixtures with two hydrolyzed proteins commonly used to monitor Anastrepha spp. The mean number of Anastrepha obliqua adults captured during six consecutive weeks using Captor + borax with the addition of 240 mg BC/liter, not renewed during the test, was similar to Captor + borax that was replaced at weekly intervals and was more effective than Captor + borax without BC. Numbers of A. obliqua flies captured in 30% CeraTrap diluted in water containing 240 mg BC/liter were similar to those caught in traps baited with Captor + borax or 30% CeraTrap without BC in the first 9 d of evaluation but was significantly more effective than both lures after 56 d. After >2 mo of use, 30% CeraTrap containing 240 mg BC/liter remained as effective as newly prepared 30% CeraTrap. The addition of BC to lures reduced surface tension of liquid lures by ~40-50%. However, when BC was increased to 720 mg BC/liter, only a small additional reduction in surface tension was observed and higher concentrations of BC did not increase capture rates. These findings could contribute to reduced costs for trapping networks and the development of long-lasting formulations of liquid protein lures for bait stations and mass-trapping targeted at major tephritid pests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sigsgaard, Lene; Herz, Annette; Korsgaard, Maren; Wührer, Bernd
2017-01-01
Cydia pomonella is a major pest in apples in Denmark. Trichogramma spp. are known biocontrol agents of C. pomonella eggs and two naturally occurring species in Denmark, which are also both commercially available, were chosen for mass-release trials. Trichogramma evanescens, T. cacoeciae or a mix of the two species were evaluated for mass-release to control C. pomonella in two commercial organic apple orchards, one in 2012 and one in 2013, using a complete randomized block design. Pheromone disruption was used in both orchards, making the study one of the first to evaluate Trichogramma release under a mating disruption regime. Trichogramma activity was assessed using bait cards with Sitotroga cerealella eggs. The percent C. pomonella damaged fruit was recorded and the fruit yield was estimated. In 2012 cool and wet weather conditions resulted in low Trichogramma activity (<16% bait cards parasitized) and only T. evanescens was recovered from bait cards. The conditions in 2013 were warmer but T. evanescens was still >10 times more frequently found in bait cards than T. cacoeciae. There was a significant effect of the treatment and year (p = 0.009) and of the sampling period (p = 0.0008) on Trichogramma activity (proportion bait cards parasitized), with no significant difference between treatments in 2012. In 2013 the highest activity was found in T. evanescens and mixed treatments, in July reaching 69% and 47% bait cards parasitized, respectively. Fruit damage was highest in the control plots (7.1%) compared with Trichogramma treatments (T. evanescens 2.8%, T. cacoeciae 3.8%, mixed 3.3%) (p = 0.028). Yield did not differ significantly between treatments. In conclusion, Trichogramma mass release is a promising biocontrol method for use in the Danish climate, but further studies are needed regarding the performance of the two Trichogramma species (and potential other Trichogramma species) towards C. pomonella eggs in the field to identify the best biocontrol candidate. PMID:28375171
Sigsgaard, Lene; Herz, Annette; Korsgaard, Maren; Wührer, Bernd
2017-04-04
Cydia pomonella is a major pest in apples in Denmark. Trichogramma spp. are known biocontrol agents of C. pomonella eggs and two naturally occurring species in Denmark, which are also both commercially available, were chosen for mass-release trials. Trichogramma evanescens , T. cacoeciae or a mix of the two species were evaluated for mass-release to control C. pomonella in two commercial organic apple orchards, one in 2012 and one in 2013, using a complete randomized block design. Pheromone disruption was used in both orchards, making the study one of the first to evaluate Trichogramma release under a mating disruption regime. Trichogramma activity was assessed using bait cards with Sitotroga cerealella eggs. The percent C. pomonella damaged fruit was recorded and the fruit yield was estimated. In 2012 cool and wet weather conditions resulted in low Trichogramma activity (<16% bait cards parasitized) and only T. evanescens was recovered from bait cards. The conditions in 2013 were warmer but T. evanescens was still >10 times more frequently found in bait cards than T. cacoeciae . There was a significant effect of the treatment and year ( p = 0.009) and of the sampling period ( p = 0.0008) on Trichogramma activity (proportion bait cards parasitized), with no significant difference between treatments in 2012. In 2013 the highest activity was found in T. evanescens and mixed treatments, in July reaching 69% and 47% bait cards parasitized, respectively. Fruit damage was highest in the control plots (7.1%) compared with Trichogramma treatments ( T. evanescens 2.8%, T. cacoeciae 3.8%, mixed 3.3%) ( p = 0.028). Yield did not differ significantly between treatments. In conclusion, Trichogramma mass release is a promising biocontrol method for use in the Danish climate, but further studies are needed regarding the performance of the two Trichogramma species (and potential other Trichogramma species) towards C. pomonella eggs in the field to identify the best biocontrol candidate.
Kline, Daniel L; Hogsette, Jerome A; Rutz, Donald A
2018-06-01
Despite the veterinary and medical importance of horse flies, deer flies, and yellow flies, only a few trap types have been evaluated to monitor adult population dynamics. Currently, three trap types are being utilized (H-trap, Horse Pal® (HP), and Nzi trap), but no head-to-head comparisons have been reported. Thus, we conducted comparative trapping studies in Florida and North Carolina. At two study sites in Florida, the efficacy of all three trap types was compared, but only the H-trap and HP were compared in North Carolina. Although trap type was significant at all sites, the trap type which caught the most specimens was not the same. In Florida at the Lower Suwannee Wildlife Refuge (LSWR) site, the H-trap caught the most specimens (2,006), followed in decreasing order by Nzi (938) and HP (541). At the Cedar Ridge Ranch site, the Nzi caught significantly more specimens (1,439) than the H-trap (215) and HP (161), which were not significantly different from each other. In North Carolina, the H-trap caught approximately twice as many specimens as the HP (1,458 vs 720). These trap comparison studies were followed up by a study on the efficacy of various bait combinations: (No Bait (NB), dry ice only (DI), Trap Tech Lure (TTL) only, and DI + TTL), which was conducted only at the two Florida sites with H-traps. At both sites, bait combinations significantly affected trap collections. One pattern (DI +TTL > DI > TTL > NB) was recorded at the LSWR, while at the Cedar River Ranch the pattern was DI > DI +TTL > TTL > NB. Our data showed that trap type and bait combination significantly influence overall adult tabanid abundance as well as individual species composition. © 2018 The Society for Vector Ecology.
Kendra, Paul E; Epsky, Nancy D; Heath, Robert R
2010-04-01
Release-recapture studies were conducted with both feral and sterile females of the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae), to determine sampling range for a liquid protein bait (torula yeast/borax) and for a two-component synthetic lure (ammonium acetate and putrescine). Tests were done in a guava, Psidium guajava L., grove and involved releasing flies at a central point and recording the numbers captured after 7 h and 1, 2, 3, and 6 d in an array of 25 Multilure traps located 9-46 m from the release point. In all tests, highest rate of recapture occurred within the first day of release, so estimations of sampling range were based on a 24-h period. Trap distances were grouped into four categories (<10, 10-20, 20-30, and >30 m from release point) and relative trapping efficiency (percentage of capture) was determined for each distance group. Effective sampling range was defined as the maximum distance at which relative trapping efficiency was > or = 25%. This corresponded to the area in which 90% of the recaptures occured. Contour analysis was also performed to document spatial distribution of fly dispersal. In tests with sterile flies, immature females dispersed farther and were recovered in higher numbers than mature females, regardless of attractant, and recapture of both cohorts was higher with torula yeast. For mature feral flies, range of the synthetic lure was determined to be 30 m. With sterile females, effective range of both attractants was 20 m. Contour maps indicated that wind direction had a strong influence on the active space of attractants, as reflected by distribution of captured flies.
Edwards, John W; Lee, Su-Gil; Heath, Linda M; Pisaniello, Dino L
2007-01-01
In 2001, an outbreak of Mediterranean fruit fly in Adelaide was controlled by South Australian Government workers applying organophosphorus insecticides (OPs) to domestic gardens. Residents made claims of adverse effects associated with allegations that worker application practices were poor and led to contamination of homes, residents and pets. The concerns led to a Parliamentary enquiry, the suspension of OP applications for fruit fly control, and the investigation of alternative methods of combating fruit fly in metropolitan Adelaide. The extent of exposure of workers and residents was not estimated. This paper describes a simulated application of the OPs concerned (fenthion and malathion) with measurements of potential exposure through inhalation, dermal contact and deposition of pesticides on surfaces. The data were used as part of a toxicological risk assessment to determine the likely impact of the use of these insecticides. Malathion, used as a 1% suspension in a protein bait mixture, was found to have little potential for airborne exposure, although some workers were found to have up to 0.315 microg/cm(2) malathion deposited on overalls (principally on forearms) and over 500 microg deposited on liner gloves and hats, respectively. Risks to workers and residents were low, with exposures likely to be a small fraction of the acceptable daily intake. Fenthion, used as a 0.05% foliar cover spray, was found between 0.02 and 0.23 mg/m(3) in air 10 m downwind from spray activity and was unlikely to pose a significant risk to residents, since exposures were of short durations of up to 20 min. Personal air samples of spray workers averaged 0.55 mg/m(3) (Workplace Exposure Standard 0.20mg/m(3)). Since workers were usually engaged in spraying for a large proportion of the day, this demonstrates the need for respiratory protective equipment. Maximum deposition of fenthion on workers overalls ranged from 0.06 to over 0.20 microg/cm(2), although little was found on gloves and hats, suggesting workers were skilled in avoiding the plume of overspray. Dialkyl phosphates (metabolites of OP insecticides) were not detected in urine of workers, and there were no changes observed in serum cholinesterase (SChE) enzyme activities 24h following the simulation. These data suggest absorption of OP insecticides by workers was negligible. Deposition on surfaces 5 and 10 m downwind ranged from none detected to 145 microg/cm(2), suggesting that exposure of residents and children in contact with contaminated surfaces (such as garden furniture or play equipment) is possible. Estimates of the potential dermal intake of fenthion by children from contaminated surfaces suggested that risks of acute and chronic effects are slight, since exposures may occur for short periods at intervals of approximately 10 days during fruit fly outbreaks.
2009-01-09
Vector Ecology 34 (1): 99-103. 2009. Keyword Index : House fly, Musca domestica, trapping. INTRODUCTION Traps have been a mainstay of house fly (Musca...attract synanthropic flies. Proc. Pap. 46th Ann. Conf. Calif. Mosq. Vector Contr. Assoc. pp. 70-73. Pickens, L. G. and R. W. Miller. 1987. Techniques...1139: 279- 284. SAS Institute. 1992. SAS users guide: statistics. SAS Institute, Cary, NC. Warner, W. B. 1991. Attractant composition for synanthropic
Improve California trap programs for detection of fruit flies
USDA-ARS?s Scientific Manuscript database
There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. States and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers...
Szyniszewska, A. M.; Leppla, N. C.; Huang, Z.; Tatem, A. J.
2016-01-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January–August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May–August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. PMID:27594703
Dominiak, Bernard C; Mapson, Richard
2017-12-05
Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), commonly called 'Queensland fruit fly' in Australia, and Mediterranean fruit fly (Ceratitis capitata Wiedemann) (Diptera: Tephritidae) are the two most economically important fruit fly in Australia with B. tryoni in the east and Mediterranean fruit fly in the west. The two species coexisted for several decades, but it is believed that B. tryoni displaced Mediterranean fruit fly. In southeastern Australia, this was deemed inadequate for export market access, and a large fruit fly free zone (fruit fly exclusion zone) was developed in 1996 where B. tryoni was eradicated by each state department in their portion of the zone. This zone caused an artificial restricted distribution of B. tryoni. When the fruit fly exclusion zone was withdrawn in Victoria and New South Wales in 2013, B. tryoni became endemic once again in this area and the national distribution of B. tryoni changed. For export markets, B. tryoni is now deemed endemic to all eastern Australian states, except for the Greater Sunraysia Pest-Free Area. All regulatory controls have been removed between eastern states, except for some small zones, subject to domestic market access requirements. The eastern Australian states now form a B. tryoni endemic trading group or block. All Australian states and territories maintain legislation to regulate the movement of potentially infested host fruit into their states. In particular, eastern states remain active and regulate the entry of commodities possibly infested with Mediterranean fruit fly. The combination of regulatory controls limits the chances of Mediterranean fruit fly entering eastern states, and if it did, Mediterranean fruit fly is unlikely to establish in the opposition to a well-established B. tryoni population. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii, has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based vola...
Biological Control of Olive Fruit Fly
USDA-ARS?s Scientific Manuscript database
Domestication of olive fruit, Olea europaea L., produced a better host for olive fruit fly, Bactrocera oleae (Gmelin), than wild olives, but fruit domestication reduced natural enemy efficiency. Important factors for selection of natural enemies for control of olive fruit fly include climate matchi...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... amending the list of regulated articles in our domestic fruit fly quarantine regulations. The regulations... commercial packinghouses are not regulated articles for Mediterranean fruit fly. We are amending the... that, under certain conditions, yellow lemons are a host for Mediterranean fruit fly. As a result of...
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.
USDA-ARS?s Scientific Manuscript database
There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers of tra...
USDA-ARS?s Scientific Manuscript database
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis}). The goal of this study was to dev...
36 CFR 7.14 - Great Smoky Mountains National Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rod and line. (i) Only artificial flies or lures having one single hook may be used. (ii) The use or possession of any form of fish bait other than artificial flies or lures on any park stream while in... than 7″ in length may be retained. (ii) No size limit on redeye (rockbass). (8) Possession limit. (i...
Szyniszewska, A M; Leppla, N C; Huang, Z; Tatem, A J
2016-12-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January-August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May-August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elezaj, I. R.; Letaj, K. Rr.; Selimi, Q. I.; Zhushi-Etemi, F.
2003-05-01
The concentration of Pb, Cd, Zn and Cu, δ-aminolevulinic acid dehydratase activity (ALA-D: EC.4.2.1.24) hemoglobin and protein amount have been determined in three different populations of fruit fly (Drosophila melanogaster) caught at two urban sites (Mitrovica town, which is situated close to smelter of “Trepça” don close and Prishtina the capital of Kosova) and in Luki village as uncontaminated area. The results show that in the fruit fly of Mitrovica the concentration of Pb, Cd and Zn was significantly higher (P<0.00l) in comparison with that on the f-Liit fly of Prishtina and Luki. The concentration of Pb of fruit fly from Mitrovica was 3.1 times higher in comparison with that on fruit fly of Prishtina and 4.9 times higher in comparison with uncontaminated group of fruit fly. The ALA-D activity was significantly inhibited in the homogenate of fruit fly from Mitrovica in comparison with Prishtina and Luki localities (P<0.00l). ALA-D activity was also inhibited in the homogenate of Prishtina fruit fly in comparison with Luki group (P<0.00l). The amount of proteins was significantly lower in Mitrovica fruit fly in comparison with that in control and Prishtina group. The hemoglobin value was relatively unchanged.
Armstrong, J W
2001-02-01
Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.
Yee, Wee L.
2014-01-01
Abstract Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry ( Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) ( Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R . indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. PMID:25527581
Yee, Wee L
2014-01-01
Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. Published by Oxford University Press on behalf of the Entomological Society of America 2014. This work is written by a US Government employee and is in the public domain in the US.
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385
Armstrong, John W; Follett, Peter A
2007-08-01
Immersion of litchi fruit in 49 degrees C water for 20 min followed by hydrocooling in ambient (24 +/- 4 degrees C) temperature water for 20 min was tested as a quarantine treatment against potential infestations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); and oriental fruit fly, Bactrocera dorsalis Hendel, eggs or larvae in Hawaiian litchi, Litchi chinensis Sonnerat. The 49 degrees C hot-water immersion of litchi provided probit 9 (99.9968% mortality with >95% confidence) quarantine security against eggs and first instars. There were no survivors from 15,000 each feeding and nonfeeding Mediterranean fruit fly or oriental fruit fly third instars immersed in a computer-controlled water bath that simulated the litchi seed-surface temperature profile during the 49 degrees C hot-water immersion treatment. Litchi served as the model for longan, Dimocarpus longan Lour., a closely related fruit that is smaller and also has commercial potential for Hawaii. Modified fruit infestation and holding techniques used to obtain adequate estimated treated populations from poor host fruit, such as litchi and longan, are described. Data from these experiments were used to obtain approval of a hot-water immersion quarantine treatment against fruit flies for litchi and longan exported from Hawaii to the U.S. mainland.
Effect of Lures and Trap Placement on Sand Fly and Mosquito Traps
2008-01-01
species (Takken and Kline, 1989), and Lutzomyia spp. sand flies were attracted to the combination of human odors and carbon dioxide in laboratory...McCall, P.J., and Ward, R.D. 1994. Response of adult sandflies, Lutzomyia longipalpis (Diptera: Pyschodidae), to sticky traps baited with host odour...Placement on Sand Fly and Mosquito Traps 175 Rebollar-Tellez, E.A., Hamilton, J.G.C., and Ward, R.D. 1999. Response of female Lutzomyia longipalph to host
Schliserman, Pablo; Aluja, Martin; Rull, Juan; Ovruski, Sergio M
2016-10-01
A 4-yr study was done to analyze seasonal patterns underlying host plant-fruit fly-parasitoid interactions in a secondary forest in the Argentinean Yunga and its importance for the implementation of conservation and augmentative biological control. Larval-pupal hymenopteran parasitoids associated with all host plants and fruit fly species were identified and the seasonal occurrence of fruit, infestation levels, parasitism percentage, and relative parasitoid abundance were determined. Three fruit fly species in two genera were found in association with surveyed plants, two of which (Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)) are of major economic importance. Infestation levels were strongly influenced by environmental factors and peak fruit availability. Five fruit fly parasitoid species were recovered from fly pupae, four braconid species, and one figitid. Time windows for fruit fly population growth were pinpointed. Based on results, the present analysis proposes an effective fruit fly biological control strategy tailored for the northwestern Argentinean citrus-producing area. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Responses of tabanids to Nzi traps baited with octenol, cow urine and phenols in Canada.
Mihok, S; Mulye, H
2010-09-01
Cow urine and the two phenols responsible for the attraction of biting flies to cow urine (4-methylphenol, 3-n-propylphenol) were compared with octenol (1-octen-3-ol) as baits for Tabanidae. Relative to an unbaited Nzi trap, catches of the horseflies Hybomitra lasiophthalma (Macquart), Tabanus similis Macquart and Tabanus quinquevittatus Wiedemann (Diptera: Tabanidae) were increased by 1.5-2.6, 1.4-2.0 and 1.4-1.9 times, respectively, whenever a bait included octenol released at either 0.13 mg/h or 1.5 mg/h, regardless of the presence of phenols or urine. Catches were not affected when traps were baited with phenols alone at evaporation rates of 0.38 mg/h (4-methylphenol) and 0.022 mg/h (3-n-propylphenol). Catches of Hybomitra horseflies were increased by 1.5-1.9 times with cow urine and 2.6 times with cow urine + octenol. This bait combination could prove to be particularly useful for Hybomitra horseflies, the common tabanids of northern environments.
USDA-ARS?s Scientific Manuscript database
Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...
Host status of Vaccinium reticulatum (Ericaceae) to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Zee, Francis T
2011-04-01
Ohelo (Vaccicinium reticulatum Small) (Ericaceae) is a native Hawaiian plant that has commercial potential in Hawaii as a nursery crop to be transplanted for berry production or for sale as a potted ornamental. No-choice infestation studies were conducted to determine whether ohelo fruit are hosts for four invasive tephritid fruit fly species. Ohelo berries were exposed to gravid female flies ofBactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera cucurbitae Coquillet (melon fly),or Bactrocera latifrons (Hendel) in screen cages outdoors for 24 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Only B. dorsalis successfully attacked and developed in ohelo berries. In total, 1570 berries produced 10 puparia, all of which emerged as adults, for a fruit infestation rate of 0.0064% and an average of 0.0053 puparia per gram of fruit. By comparison, papaya fruit used as controls produced an average of 1.44 B. dorsalis puparia per g of fruit. Ohelo berry is a marginal host for B. dorsalis and apparently a nonhost for C. capitata, B. cucurbitae, and B. latifrons. Commercial plantings of ohelo will rarely be attacked by fruit flies in Hawaii.
USDA-ARS?s Scientific Manuscript database
Studies in Oregon, California, Pennsylvania, and Italy evaluated the relative performance of the Ajar trap for Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta-shaped trap with a screened jar filled with a t...
Cha, Dong H; Adams, Todd; Werle, Christopher T; Sampson, Blair J; Adamczyk, John J; Rogg, Helmuth; Landolt, Peter J
2014-02-01
A mixture of wine and vinegar is more attractive than wine or vinegar to spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), and ethanol and acetic acid are considered key to that attractiveness. In addition to ethanol and acetic acid, 13 other wine and vinegar volatiles are antennally active to D. suzukii and might be involved in food finding. Out of the 13 antennally active chemicals, acetoin, ethyl lactate and methionol increased fly response to a mixture of acetic acid and ethanol in field trapping experiments. A five-component blend of acetic acid, ethanol, acetoin, ethyl lactate and methionol was as attractive as the starting mixture of wine and vinegar in field tests conducted in the states of Oregon and Mississippi. Subtracting ethyl lactate from the five-component blend did not reduce the captures of flies in the trap. However, subtracting any other compound from the blend significantly reduced the numbers of flies captured. These results indicate that acetic acid, ethanol, acetoin and methionol are key olfactory cues for D. suzukii when attracted to wine and vinegar, which may be food-finding behavior leading flies to fermenting fruit in nature. It is anticipated that this four-component blend can be used as a highly attractive chemical lure for detection and management of D. suzukii. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study.
Aitken, T H; Woodall, J P; De Andrade, A H; Bensabath, G; Shope, R E
1975-03-01
Pacui virus, originally obtained from forest rodents, was isolated 100 times from 61,437 specimens (658 pools) of the phlebotomine fly Lutzomyia flaviscutellata, collected from rodent-baited traps in the forests of Belem, Para, Brazil in the period October 1968 through September 1970. Isolations were made from engorged and unengorged females and from males (3 strains), and occurred in all 24 months. Pacui virus also was isolated from the blood of two wild rodents (Oryzomys), but not from 424 L. infraspinosa, 12,000 mosquitoes, or sentinel mice. Pacui virus neutralizing antibodies were detected in serum of six bait animals after exposure to biting flies in the forest, in 30% of wild rodents surveyed (including two from Amapa Territory), and in 10% of marsupials, but were absent in human survey sera and in bats. Low-passage Pacui virus produced viremia in and was lethal to infant mice by the subcutaneous route. L. flaviscutellata was most abundant in the dry season, in which period Pacui virus isolations increased. This fly is strongly attracted to rodents close to the ground. L. flaviscutellata also yielded single strains of Guama, Icoaraci, and BeAr 177325 viruses.
Sterilization Effects of Adult-targeted Baits Containing Insect Growth Regulators on Delia antiqua
Zhou, Fangyuan; Zhu, Guodong; Zhao, Haipeng; Wang, Zheng; Xue, Ming; Li, Xianxian; Xu, Huaqiang; Ma, Xiaodan; Liu, Yanyan
2016-01-01
The onion maggot, Delia antiqua, is a devastating pest of liliaceous crops and current control measures fail to avert pesticide residues, threats to agroecosystem, and costly expenditures. Insect growth regulators (IGRs) are used as trypetid pest chemosterilants for their suppression on adult fertility and fecundity, but their effects on onion flies are unknown. Here, three IGRs (lufenuron, cyromazine, pyriproxyfen) were incorporated into baits to evaluate their effects on onion fly survival, fecundity, fertility, susceptibility of adults in different ages and offspring development. Lufenuron and cyromazine did not affect survival of new-emerged adults, but lufenuron inhibited adult fertility without affecting fecundity, and cyromazine reduced fertility and fecundity. Differently, pyriproxyfen enhanced fecundity within 10 days after treatment, while it reduced adult survival without affecting fertility. The fertility of younger adults was affected by lufenuron and cyromazine whereas the fecundity was affected with cyromazine and pyriproxyfen. For offspring of onion flies treated with lufenuron or cyromazine, most of larvae died within 5 days after hatch, but surviving larvae pupated and emerged normally. Pyriproxyfen did not affect offspring larval survival or pupation but affected pupal emergence. Thus, lufenuron and cyromazine could be potential chemosterilants for onion flies. PMID:27619006
Fruit Flies Help Human Sleep Research
Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough ...
Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae)
Qin, Yujia; Paini, Dean R.; Wang, Cong; Fang, Yan; Li, Zhihong
2015-01-01
The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region. PMID:25588025
A Systems Approach to Mitigate Oriental Fruit Fly Risk in ‘Sharwil’ Avocados Exported From Hawaii
USDA-ARS?s Scientific Manuscript database
Avocados, Persea americana Miller, grown in Hawaii cannot be exported to the United States mainland without quarantine treatment for melon fly, oriental fruit fly, and Mediterranean fruit fly. The most widely grown cultivar of avocado in Hawaii is ‘Sharwil’. ‘Sharwil’, like other avocado varieties, ...
Santer, Roger D.
2015-01-01
Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse are intercepted at visual baits due to their initial attraction to the bait, and their subsequent contact with it due to landing or accidental collision. Attraction is proposed to be driven in part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively, and a UV and a green photoreceptor contribute negatively. Landing responses are elicited by stimuli with low luminance, but many studies also find apparently strong landing responses when stimuli have high UV reflectivity, which would imply that UV wavelengths contribute negatively to attraction at a distance, but positively to landing responses at close range. The strength of landing responses is often judged using the number of tsetse sampled at a cloth panel expressed as a proportion of the combined catch of the cloth panel and a flanking net that samples circling flies. I modelled these data from two previously published field studies, using calculated fly photoreceptor excitations as predictors. I found that the proportion of tsetse caught on the cloth panel increased with an index representing the chromatic mechanism driving attraction, as would be expected if the same mechanism underlay both long- and close-range attraction. However, the proportion of tsetse caught on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in an apparently separate but interacting behavioural mechanism. This R7p-driven effect resembles the fly open-space response which is believed to underlie their dispersal towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely reflects a combination of deliberate landings by potentially host-seeking tsetse, and accidental collisions by those seeking to disperse, with a separate visual mechanism underlying each behaviour. PMID:26474406
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
USDA-ARS?s Scientific Manuscript database
SPLAT-MAT Spinosad ME(aka STATIC Spinosad ME),an "attract and kill" sprayable biopesticide, was evaluated as an area wide suppression treatment against Bactrocera carambolae(Drew & Hancock),carambola fruit fly, in Brazil and Bactrocera dorsalis(Hendel),oriental fruit fly, in Hawaii. In Brazil, a sin...
USDA-ARS?s Scientific Manuscript database
Early research during the 1930’s focused on attractants for the Mexican fruit fly indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were ca...
Daniel, Claudia; Grunder, Jürg
2012-10-16
The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities.
Daniel, Claudia; Grunder, Jürg
2012-01-01
The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities. PMID:26466721
Johnston, D H; Voigt, D R; MacInnes, C D; Bachmann, P; Lawson, K F; Rupprecht, C E
1988-01-01
An aerial baiting system was developed to deliver oral rabies vaccines to wild carnivore vectors of rabies, e.g., red fox, striped skunk, and raccoon. The bait consists of a polyethylene bag that contains either a 30-g hamburger ball or a 25-mL cube of polyurethane sponge coated with a wax-beef tallow mixture containing 100-150 mg of tetracycline as a biomarker. Attractants used with the sponge were added to the bag (e.g., liver slurry, cheeses, fish oils, or fruits). Baits (greater than 80,000) were dropped from light aircraft at densities of 18-120 baits/km2 over test areas in Ontario and Pennsylvania. Rates of bait acceptance were assessed by the presence of fluorescent tetracycline deposits in the teeth of animals obtained from hunters and trappers. Bait acceptance reached 74% in foxes, 54% in skunks, 43% in raccoons, and 85% in coyotes in the Ontario trials; bait acceptance by raccoons in a small trial in Pennsylvania reached 76%. Also, 66% of juvenile foxes that ate baits ate a second bait 7 or more days after eating the first, thus giving the potential for a booster effect. The cost of aerial distribution of bait (excluding cost of bait and vaccine) in Canadian dollars was $1.45/km2. The aerial distribution system is capable of economically reaching a high proportion of foxes, skunks, and raccoons over large areas. Trials with attenuated ERA (Evelyn-Rokitnicki-Abelseth) vaccines are under way in Ontario.
Testing for Mutagens Using Fruit Flies.
ERIC Educational Resources Information Center
Liebl, Eric C.
1998-01-01
Describes a laboratory employed in undergraduate teaching that uses fruit flies to test student-selected compounds for their ability to cause mutations. Requires no prior experience with fruit flies, incorporates a student design component, and employs both rigorous controls and statistical analyses. (DDR)
USDA-ARS?s Scientific Manuscript database
Temperate fruit flies in the genus Rhagoletis (Diptera: Tephritidae) have narrow host ranges relative to those of tropical fruit flies, suggesting they will not attack or are incapable of developing in most novel fruit. Here we tested the hypothesis that apple maggot fly, Rhagoletis pomonella (Wals...
Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).
Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David
2011-02-01
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.
Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2012-03-01
The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.
Field infestation of rambutan fruits by internal-feeding pests in Hawaii.
McQuate, G T; Follett, P A; Yoshimoto, J M
2000-06-01
More than 47,000 mature fruits of nine different varieties of rambutan (Nephelium lappaceum L.) were harvested from orchards in Hawaii to assess natural levels of infestation by tephritid fruit flies and other internal feeding pests. Additionally, harvested, mature fruits of seven different rambutan varieties were artificially infested with eggs or first-instars of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) to assess host suitability. When all varieties were combined over two field seasons of sampling, fruit infestation rates were 0.021% for oriental fruit fly, 0.097% for Cryptophlebia spp. (Lepidoptera: Tortricidae), and 0.85% for pyralids (Lepidoptera). Species of Cryptophlebia included both C. illepida (Butler), the native Hawaiian species, and C. ombrodelta (Lower), an introduced species from Australia. Cryptophlebia spp. had not previously been known to attack rambutan. The pyralid infestation was mainly attributable to Cryptoblabes gnidiella (Milliere), a species also not previously recorded on rambutan in Hawaii. Overall infestation rate for other moths in the families Blastobasidae, Gracillariidae, Tineidae, and Tortricidae was 0.061%. In artificially infested fruits, both species of fruit fly showed moderately high survivorship for all varieties tested. Because rambutan has such low rates of infestation by oriental fruit fly and Cryptophlebia spp., the two primary internal-feeding regulatory pests of rambutan in Hawaii, it may be amenable to the alternative treatment efficacy approach to postharvest quarantine treatment.
Arévalo-Galarza, Lourdes; Follett, Peter A
2011-02-01
Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.
Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil
Garcia, Flávio R. M.; Ricalde, Marcelo P.
2012-01-01
The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus) was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA) to evaluate the parasitoid’s potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets. PMID:26466795
USDA-ARS?s Scientific Manuscript database
Oriental fruit fly, Bactrocera dorsalis(Hendel)(aka B.invadens Drew, Tsuruta, and White) was first reported in Africa in 2003 and has since spread to over 27 countries. It has become a serious tree fruit pest, particularly in mango (Mangifera indica L.). Because of uncertainty as to the exact status...
ERIC Educational Resources Information Center
Christensen, Timothy J.; Labov, Jay B.
1997-01-01
Details the construction of a viewing chamber for fruit flies that connects to a dissecting microscope and features a design that enables students to easily move fruit flies in and out of the chamber. (DDR)
Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven
2013-10-01
We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.
77 FR 10381 - Metaflumizone; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... regulation establishes tolerances for residues of metaflumizone in or on citrus fruit, tree nuts, almond... metaflumizone, in or on: Fruit, citrus, group 10 at 0.04 ppm; nut, tree, group 14 at 0.04 ppm; almond, hulls at... Registration for a Fire Ant Bait for Application to Citrus, Tree Nuts, and Grape, and a new Section 3...
ERIC Educational Resources Information Center
Bierema, Andrea; Schwartz, Renee
2016-01-01
The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…
Host Plants of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann), version 3.5
USDA-ARS?s Scientific Manuscript database
Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), commonly known as the Mediterranean fruit fly, is a tephritid fruit fly species native to Africa but now found in every country surrounding the Mediterranean Sea, in Central and South America, in Australia, in Hawaii and in other oceanic islands...
Recent progress in a classical biological control program for olive fruit fly in California
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...
Jenkins, Cheryl; Chapman, Toni A.; Micallef, Jessica L.; Reynolds, Olivia L.
2012-01-01
Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management. PMID:26466628
McQuate, Grant T; Sylva, Charmaine D; Liquido, Nicanor J
2017-01-01
Mango, Mangifera indica (Anacardiaceae), is a crop cultivated pantropically. There are, however, many other Mangifera spp ("mango relatives") which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa . Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported.
McQuate, Grant T; Sylva, Charmaine D; Liquido, Nicanor J
2017-01-01
Mango, Mangifera indica (Anacardiaceae), is a crop cultivated pantropically. There are, however, many other Mangifera spp (“mango relatives”) which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa. Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported. PMID:28890657
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Max Sanchezviewing Drosophila (fruit fly) inside insect containers used during flight.
Trapping related to phytosanitary status and trade
USDA-ARS?s Scientific Manuscript database
Detection of incipient fruit fly populations can occur through a number of means such as visual surveys, fruit cutting (to reveal the presence of immatures), collection and holding of fruits to determine if fruit flies emerge from the collected fruits and perhaps the most commonly used method, trapp...
Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A
2013-04-01
The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.
USDA-ARS?s Scientific Manuscript database
We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aq...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly larvae at the USDA-APHIS-PPQ, Petapa Quarantine Laboratory in Guatemala and shipped to the USDA-ARS, Parlier for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in California. Improved ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
...] Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries... blueberries for Mediterranean fruit fly and South American fruit fly. We have prepared a treatment evaluation... at neutralizing these fruit flies. We are making the treatment evaluation document available to the...
USDA-ARS?s Scientific Manuscript database
The combination of putrescine with ammonium acetate into one unit had no significant effect on the attractance of Caribbean fruit fly to trap(s) when compared with the individual BioLure dispseners. Additionally, there were no significant differences in attractancy to the Mediterranean fruit fly wh...
USDA-ARS?s Scientific Manuscript database
The larval parasitoid, Psyttalia cf. concolor (Szépligeti), reared on Mediterranean fruit fly, Ceratitis capitata (Weidemann), by the USDA-APHIS, PPQ, Guatemala City, Guatemala, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europae...
USDA-ARS?s Scientific Manuscript database
Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...
Alcohol consumption as self-medication against blood-borne parasites in the fruit fly.
Milan, Neil F; Kacsoh, Balint Z; Schlenke, Todd A
2012-03-20
Plants and fungi often produce toxic secondary metabolites that limit their consumption, but herbivores and fungivores that evolve resistance gain access to these resources and can also gain protection against nonresistant predators and parasites. Given that Drosophila melanogaster fruit fly larvae consume yeasts growing on rotting fruit and have evolved resistance to fermentation products, we decided to test whether alcohol protects flies from one of their common natural parasites, endoparasitoid wasps. Here, we show that exposure to ethanol reduces wasp oviposition into fruit fly larvae. Furthermore, if infected, ethanol consumption by fruit fly larvae causes increased death of wasp larvae growing in the hemocoel and increased fly survival without need of the stereotypical antiwasp immune response. This multifaceted protection afforded to fly larvae by ethanol is significantly more effective against a generalist wasp than a wasp that specializes on D. melanogaster. Finally, fly larvae seek out ethanol-containing food when infected, indicating that they use alcohol as an antiwasp medicine. Although the high resistance of D. melanogaster may make it uniquely suited to exploit curative properties of alcohol, it is possible that alcohol consumption may have similar protective effects in other organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Matt Lera doing sample preparation for post light analysis of Drosophila melanogaster (fruit fly) larva
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Computer screen showing green fluorescent protein used to visualize blood cells in Drosophila (fruit fly).
Development of a Novel Trap for the Collection of Black Flies of the Simulium ochraceum Complex
Rodríguez-Pérez, Mario A.; Adeleke, Monsuru A.; Burkett-Cadena, Nathan D.; Garza-Hernández, Javier A.; Reyes-Villanueva, Filiberto; Cupp, Eddie W.; Toé, Laurent; Salinas-Carmona, Mario C.; Rodríguez-Ramírez, Américo D.; Katholi, Charles R.; Unnasch, Thomas R.
2013-01-01
Background Human landing collections are currently the standard method for collecting onchocerciasis vectors in Africa and Latin America. As part of the efforts to develop a trap to replace human landing collections for the monitoring and surveillance of onchocerciasis transmission, comprehensive evaluations of several trap types were conducted to assess their ability to collect Simulium ochraceum sensu lato, one of the principal vectors of Onchocerca volvulus in Latin America. Methodology/Principal Findings Diverse trap designs with numerous modifications and bait variations were evaluated for their abilities to collect S. Ochraceum s.l. females. These traps targeted mostly host seeking flies. A novel trap dubbed the “Esperanza window trap” showed particular promise over other designs. When baited with CO2 and BG-lure (a synthetic blend of human odor components) a pair of Esperanza window traps collected numbers of S. Ochraceum s.l. females similar to those collected by a team of vector collectors. Conclusions/Significance The Esperanza window trap, when baited with chemical lures and CO2 can be used to collect epidemiologically significant numbers of Simulium ochraceum s.l., potentially serving as a replacement for human landing collections for evaluation of the transmission of O. volvulus. PMID:24116169
Strawberry Accessions with Reduced Drosophila suzukii Emergence From Fruits
Gong, Xiaoyun; Bräcker, Lasse; Bölke, Nadine; Plata, Camila; Zeitlmayr, Sarah; Metzler, Dirk; Olbricht, Klaus; Gompel, Nicolas; Parniske, Martin
2016-01-01
Drosophila suzukii is threatening soft fruit production worldwide due to the females’ ability to pierce through the intact skin of ripe fruits and lay eggs inside. Larval consumption and the associated microbial infection cause rapid fruit degradation, thus drastic yield and economic loss. Cultivars that limit the proliferation of flies may be ideal to counter this pest; however, they have not yet been developed or identified. To search for potential breeding material, we investigated the rate of adult D. suzukii emergence from individual fruits (fly emergence) of 107 accessions of Fragaria species that had been exposed to egg-laying D. suzukii females. We found significant variation in fly emergence across strawberries, which correlated with accession and fruit diameter, and to a lesser extent with the strawberry species background. We identified accessions with significantly reduced fly emergence, not explained by their fruit diameter. These accessions constitute valuable breeding material for strawberry cultivars that limit D. suzukii spread. PMID:28066452
Surendran, S N; Karunaratne, S H P P; Adams, Z; Hemingway, J; Hawkes, N J
2005-08-01
With an increasing incidence of cutaneous leishmaniasis in Sri Lanka, particularly in northern provinces, insecticide-mediated vector control is under consideration. Optimizing such a strategy requires the characterization of sand fly populations in target areas with regard to species composition and extant resistance, among other parameters. Sand flies were collected by human bait and cattle-baited net traps on Delft Island, used as an illegal transit location by many refugees returning to the north of Sri Lanka from southern India where leishmaniasis is endemic. For species identification, genomic DNA was extracted and a fragment of the ribosomal 18S gene amplified. The sequence from all flies analysed matched that of Phlebotomus argentipes Annandale & Brunetti, the primary vector in India and the most likely vector in Sri Lanka. Independent morphological analysis also identified P. argentipes. To establish the current susceptibility status of vector species, data were obtained at the biochemical level, from which potential cross-resistance to alternative insecticides can be predicted. The Delft Island collection was assayed for the activities of four enzyme systems involved in insecticide resistance (acetylcholinesterase, non-specific carboxylesterases, glutathione-S-transferases and cytochrome p450 monooxygenases), establishing baselines against which subsequent collections can be evaluated. There was preliminary evidence for elevated esterases and altered acetylcholinesterase in this population, the first report of these resistance mechanisms in sand flies to our knowledge, which probably arose from the malathion-based spraying regimes of the Anti-Malarial Campaign.
USDA-ARS?s Scientific Manuscript database
A potential fruit fly steilizing diet was evaluated on fertility, mating, survival, and protein anaylsis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron(LFN) for an initial 7d after emergence and then switched to a control diet to simulate the actual field ...
USDA-ARS?s Scientific Manuscript database
The determination of mated status in wild female fruit fly detections provides information to program managers that is useful in two respects. Firstly, the mated (or unmated) status, is a factor in triggering quarantine restrictions at the detection location. Invasive female fruit flies that have ma...
An Inquiry-Based Investigation of Modes of Inheritance Using "Flightless" Fruit Flies
ERIC Educational Resources Information Center
Chinnici, Joseph P.; Farland, Andrew M.
2005-01-01
The various strains of flightless fruit flies that were developed at the Virginia Commonwealth University (VCU) and an exercise that helps students in determining the inheritance pattern in the fruit fly mutant trait are described. The study and the resulting exercise helped the students in scientifically determining the two important aspects of…
Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development
Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory
2018-01-01
ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576
Yokoyama, Victoria Y; Rendón, Pedro A; Sivinski, John
2008-06-01
The larval parasitoid, Psyttalia cf. concolor (Szépligeti), reared on Mediterranean fruit fly, Ceratitis capitata (Weidemann), by the USDA-APHIS-PPQ, Guatemala City, Guatemala, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. Mean percentage parasitism of olive fruit fly third instars infesting fruit in field cages ranged from 7.0 in Grapevine to 59.7 in Santa Barbara and in free releases ranged from 0 in Grapevine to 10.6 in Santa Barbara after 4- to 6-d exposures. In the laboratory, more parasitoids developed to adults in olive fruit fly larvae that were 11-13 d old than in larvae 8-10 d old. Adult parasitoids lived significantly longer when provided with water than adults without water in environmental chambers at 5 degrees C, 85% RH; 15 degrees C, 65% RH; 25 degrees C, 25% RH; and 35 degrees C, 25% RH. Adult parasitoids lived for 48 d with honey for food and water and 32 d with food and sugar solution at 15 degrees C and 65% RH. Survival of adult parasitoids without food and water in greenhouse tests was approximately 4 d in a simulated coastal climate and 1 d in a simulated inland valley climate and was significantly increased by providing food and water. The parasitoid did not develop in the beneficial seedhead fly, Chaetorellia succinea (Costa), in yellow star thistle. The rate of parasitism of walnut husk fly, Rhagoletis completa Cresson, larvae in green walnut husks was 28.4% in laboratory no-choice tests. In choice tests, the rate of parasitism of walnut husk fly versus olive fruit fly larvae in olives was 11.5 and 24.2%, respectively.
Ovruski, Sergio M.; Schliserman, Pablo
2012-01-01
In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina’s various fruit growing regions. PMID:26466633
Dube, Zakheleni P; Mashela, Phatu W; Mathabatha, Raesibe V
2016-08-01
Claims abound that the Transvaal red milkwood, Mimusops zeyheri, indigenous to areas with tropical and subtropical commercial fruit trees and fruiting vegetables in South Africa, is relatively pest free owing to its copious concentrations of latex in the above-ground organs. On account of observed fruit fly damage symptoms, a study was conducted to determine whether M. zeyheri was a host to the notorious quarantined Mediterranean fruit fly (Ceratitis capitata). Fruit samples were kept for 16-21 days in plastic pots containing moist steam-pasteurised growing medium with tops covered with a mesh sheath capable of retaining emerging flies. Microscopic diagnosis of the trapped flies suggested that the morphological characteristics were congruent with those of C. capitata, which was confirmed through cytochrome c oxidase I (COI) gene sequence alignment with a 100% bootstrap value and 99% confidence probability when compared with those from the National Centre for Biotechnology Information database. This study demonstrated that M. zeyheri is a host of C. capitata. Therefore, C. capitata from infestation reservoirs of M. zeyheri fruit trees could be a major threat to the tropical and subtropical fruit industries in South Africa owing to the fruit-bearing nature of the new host. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Small bait traps as accurate predictors of dipteran early colonizers in forensic studies
Farinha, Ana; Dourado, Catarina G.; Centeio, Neiva; Oliveira, Ana Rita; Dias, Deodália; Rebelo, Maria Teresa
2014-01-01
Abstract Insect carrion communities vary among habitats and over time. Concerning the dipteran early colonizers of carrion, the use of small bait traps should be accurate because the odors emitted from meat baits should contain many of the volatile organic compounds emitted from the freshly dead mammals. In addition, this kind of trap is easy to replicate and set in position in a given habitat. In the present study, small bait preferences of early Diptera carrion colonizers were examined in an urban biotope. Specifically, three baits were compared (pork muscle, pork liver, and fish flavored cat food) in respect to the number of specimens and species captured and the presence or absence of oviposition at high and low environmental temperatures. A total of 2371 specimens were trapped, primarily belonging to three insect orders, Diptera, Coleoptera, and Hymenoptera. Diptera was the predominant order, with blowflies (Calliphoridae) being the most representative family, followed by filth flies (Muscidae). The pork muscle bait was responsible for the highest number of captures and the highest diversity. The community of Diptera collected with the most efficient bait, pork muscle, was compared with the carrion communities reported in the literature from the Iberian Peninsula. Similar taxonomic species composition was found regarding Calliphoridae species. A specimen from all species morphologically identified were also identified at a molecular level using the cytochrome c oxidase I (COI) barcode region, and the sequences were submitted to online databases. PMID:25373224
Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets
USDA-ARS?s Scientific Manuscript database
Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly larvae at the USDA-APHIS-PPQ, Petapa Quarantine Laboratory in Guatemala and shipped to the USDA-ARS, Parlier, for wide-spread release and biological control of olive fruit fly in California. As many as 3...
Yee, Wee L; Chapman, Peter S
2008-10-01
Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.
7 CFR 305.6 - Methyl bromide fumigation treatment schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., fumigation with methyl bromide for sapote fruit fly. Regulated citrus fruits originating inside an area quarantined for sapote fruit fly that are to be moved outside the quarantined area may be treated with methyl...
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Here we have sample preparation for post flight analysis of Drosophila (fruit fly) larva with Oana Marcu and Laura Higgins
Neuronal encoding of sound, gravity, and wind in the fruit fly.
Matsuo, Eriko; Kamikouchi, Azusa
2013-04-01
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.
Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model
NASA Astrophysics Data System (ADS)
Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore
FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.
Pedersen, Andrew B; Godfrey, Larry D
2011-08-01
The bitter plant-derived compounds cucurbitacins are known to stimulate feeding of adult cucumber beetles (Coleoptera: Chrysomelidae). A cucurbitacin-based gustatory stimulant applied as a flowable bait combined with either spinosad or carbaryl was compared with foliar sprays of spinosad and carbaryl for controlling two cucumber beetle species (Diabrotica undecimpunctata undecimpunctata Mannerheim and Acalymma trivittatum Mannerheim) in honeydew melons (Cucumis melo L.). Field studies were conducted on the University of California-Davis plant pathology farm in 2008 and 2009. Beetle densities after applications and fruit damage from beetle feeding were compared among treatments. In addition, beetle survival was compared within field cages placed over the treated foliage infested with beetles. Using all three measures of efficacy, we determined that the addition of cucurbitacin bait had no effect on the level of cucumber beetle control with carbaryl in either 2008 or 2009. In both years, spinosad did not significantly reduce cucumber beetle densities in either field cages or field plots and did not reduce fruit damage relative to the untreated control. The addition of the bait to spinosad did not improve its efficacy. A laboratory bioassay of the spinosad formulation used in the field showed it had significant lethal effects on adults of both cucumber beetle species. Results indicated that the bait formulation used did not improve cucumber beetle control but may benefit from the addition of floral attractants or using a different type of cucurbitacin.
Symbiotic bacteria enable olive fly larvae to overcome host defences
Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz
2015-01-01
Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275
Rearing two fruit flies pests on artificial diet with variable pH.
Dias, N P; Nava, D E; Smaniotto, G; Garcia, M S; Valgas, R A
2018-04-23
Fruit flies (Diptera: Tephritidae) are considered the main fruit pests worldwide. In Brazil, two species are predominant: the South American fruit fly, Anastrepha fraterculus and the Mediterranean fruit fly, Ceratitis capitata. In this study, we evaluated the effect of artificial diets with variable pH in their larval development and adult performance. The experiments were carried out in the laboratory at 25 ± 2 °C, 70 ± 10% RH and 12:12h (L:D) photoperiod. Semisolid diets with pH values of 6.0, 5.0, 4.0, 3.0, 2.0, 1.5, and 1.0, adjusted by adding hydrochloric acid were tested. Results indicated that the diet with pH 6.0 did not support larval development of both species of fruit fly. Diets with greater acidic pH values did not allow egg, larvae or pupae development and adult reproduction of A. fraterculus. For C. capitata , the pH of artificial diet exerts greater influence compared to A. fraterculus on the duration and viability of the larval stage, number of pupae, sex ratio and longevity of males.
Rayaisse, J B; Tirados, I; Kaba, D; Dewhirst, S Y; Logan, J G; Diarrassouba, A; Salou, E; Omolo, M O; Solano, P; Lehane, M J; Pickett, J A; Vale, G A; Torr, S J; Esterhuizen, J
2010-03-16
Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced ( approximately 5x) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2x) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (approximately 5x) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (approximately 500 mg/h) doses of acetone also consistently produced significant but slight (approximately 1.6x) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only approximately 50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short-range interaction.
Lindsay, T C; Jawara, M; D'Alessandro, U; Pinder, M; Lindsay, S W
2013-01-01
Objective To explore ways of controlling Chrysomya putoria, the African latrine fly, in pit latrines. As pit latrines are a major source of these flies, eliminating these important breeding sites is likely to reduce village fly populations, and may reduce the spread of diarrhoeal pathogens. Methods We treated 24 latrines in a Gambian village: six each with (i) pyriproxyfen, an insect juvenile hormone mimic formulated as Sumilarv® 0.5G, a 0.5% pyriproxyfen granule, (ii) expanded polystyrene beads (EPB), (iii) local soap or (iv) no treatment as controls. Flies were collected using exit traps placed over the drop holes, weekly for five weeks. In a separate study, we tested whether latrines also function as efficient flytraps using the faecal odours as attractants. We constructed six pit latrines each with a built-in flytrap and tested their catching efficiency compared to six fish-baited box traps positioned 10 m from the latrine. Focus group discussions conducted afterwards assessed the acceptability of the flytrap latrines. Results Numbers of emerging C. putoria were reduced by 96.0% (95% CIs: 94.5–97.2%) 4–5 weeks after treatment with pyriproxyfen; by 64.2% (95% CIs: 51.8–73.5%) after treatment with local soap; by 41.3% (95% CIs = 24.0–54.7%) after treatment with EPB 3–5 weeks after treatment. Flytraps placed on latrines collected C. putoria and were deemed acceptable to local communities. Conclusions Sumilarv 0.5G shows promise as a chemical control agent, whilst odour-baited latrine traps may prove a useful method of non-chemical fly control. Both methods warrant further development to reduce fly production from pit latrines. A combination of interventions may prove effective for the control of latrine flies and the diseases they transmit. PMID:23198767
Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi
2007-06-01
Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.
Unahawutti, Udorn; Intarakumheng, Rachada; Oonthonglang, Pitawat; Phankum, Salukjit; Follett, Peter A
2014-08-01
Postharvest quarantine treatments (irradiation or vapor heat) are used to control fruit flies and other pests in mangosteen (Garcinia mangostana L) exported to the United States and Japan from Thailand. No-choice tests were conducted in the laboratory to determine whether Thai mangosteen is a host for Bactrocera dorsalis (Hendel) (oriental fruit fly) and Bactrocera carambolae Drew & Hancock (carambola fruit fly). Ripe commercial quality fruit (1 wk after harvest) that were either undamaged or damaged by puncturing or peeling the pericarp were exposed to a high density of gravid flies in screen cages and then held for 10 d and dissected to inspect for immature life stages. Undamaged mangosteen fruit were not infested by B. dorsalis and B. carambolae. Partially damaged fruit with shallow punctures in the pericarp that did not extend to the aril also were not infested. Both fruit flies could infest damaged fruit if the pericarp damage allowed oviposition in the aril. Results suggest that natural infestation of mangosteen by B. dorsalis and B. carambolae can only occur if fruit exhibit physical cracks or mechanical injury. Resistance appears to be due to the pericarp hardness and thickness as well as latex secretion. Nonhost status could be used without additional quarantine measures to achieve quarantine security against B. dorsalis and B. carambolae in mangosteen exported from Thailand.
Nojima, Satoshi; Linn, Charles; Roelofs, Wendell
2003-10-01
Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.
77 FR 40320 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... irradiation treatment of imported fruits and vegetables including a minimum generic dose for the fruit fly family, the minimum dose of irradiation for some specific fruit fly species, and provides for the use of irradiation as a treatment for cut flowers and foliage. Need and Use of the Information: Certain fruits and...
Renkema, Justin M; Cutler, G Christopher; Gaul, Sonia O
2014-11-01
Blueberry maggot, Rhagoletis mendax Curran (Diptera: Tephritidae), is the most important pest of blueberries in eastern North America. Insecticide use in fruit-bearing lowbush blueberry fields could be reduced with management strategies focused on vegetative fields. Fly distribution and fruit infestation levels were assessed where fruit-bearing and vegetative fields adjoin and along forested edges of vegetative fields. Along adjoining edges, immature female flies were captured in fruiting fields and mature females in vegetative fields throughout the season. Male fly captures and fruit infestation levels were greater at 5 m than at 30 m from the edge. Along forested edges, fly captures were best predicted by densities of ripe lowbush blueberries and large coniferous trees. Maggot infestation level in lowbush blueberries was best predicted by blueberry density and small deciduous trees. Bunchberry, Cornus canadensis L., was the only non-crop host in which blueberry maggot was found. We have shown that relatively high numbers of flies occur in vegetative fields and at edges of fruiting fields. Ripe blueberries and certain vegetation in forested edges affect fly distribution and probably maintain populations. These results may help to predict where controls for blueberry maggot should be targeted and suggest that management strategies focused on vegetative fields and field edges may be worthwhile. © 2013 Society of Chemical Industry.
Shariff, S.; Ibrahim, N. J.; Md-Zain, B. M.; Idris, A. B.; Suhana, Y.; Roff, M. N.; Yaakop, S.
2014-01-01
Abstract Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b . Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs. PMID:25373154
Zou, Yingxin; Liu, Yuxiang; Ruan, Minghua; Feng, Xu; Wang, Jiachun; Chu, Zhiyong; Zhang, Zesheng
2015-10-01
This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process.
ZOU, YINGXIN; LIU, YUXIANG; RUAN, MINGHUA; FENG, XU; WANG, JIACHUN; CHU, ZHIYONG; ZHANG, ZESHENG
2015-01-01
This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process. PMID:26239097
Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C
2010-01-01
Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.
Foelkel, E; Voss, M; Monteiro, L B; Nishimura, G
2017-03-01
Entomopathogenic nematodes (EPNs) are a promising alternative to integrated control in many fruit pests. Few studies were made on the relationship of Anastrepha fraterculus natural population with native EPNs population and other biotic and abiotic factors. The aim of this work was to verify the occurrence of endemic nematodes in an apple orchard, concerning environmental conditions and technical procedure, and access isolates virulence to A. fraterculus larvae. The experiment was conducted during a year taking monthly soil samples from an apple orchard, with and without fallen fruits just above the soil. Samples were baited with Tenebrium molitor and A. fraterculus larvae in laboratory. Canopy and fallen fruits were sampled to access the pest infestation. Seventy three EPN isolates were captured, in 23.2% soil samples, more with T. molitor than with A. fraterculus baits. From the 20 isolates tested against A. fraterculus, only five were pathogenic, and they were identified as Oscheius sp. The nematodes were captured during all seasons in a similar frequency. Soil and weather conditions, presence of fruit over the orchard soil, and A. fraterculus pupae in the fruits had no significant influence on the capture. As a conclusion, nematodes of the genera Oscheius are found in an apple orchard of Porto Amazonas constantly along the year, independently of fluctuations in A. fraterculus population, climate conditions and presence of fruit over the soil. Some of the isolates are pathogenic to A. fraterculus.
Bombykol receptors in the silkworm moth and the fruit fly
Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.
2010-01-01
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang
2016-01-01
A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228
Predicting fruit fly's sensing rate with insect flight simulations.
Chang, Song; Wang, Z Jane
2014-08-05
Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia
2016-01-01
Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107
USDA-ARS?s Scientific Manuscript database
The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...
Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.
Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas
2018-03-20
Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. IMPORTANCE Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii , also known as Spotted wing drosophila. Our study results demonstrate that the abundance and structure of microbiota in D. suzukii are strongly affected by the environment, where microbes have variable roles depending on the nutritional situation. For instance, we found that the presence of microbes is deleterious for flies growing on a protein-rich diet and yet is beneficial for flies growing on a diet of protein-poor fruits. Additionally, germ-free flies must feed on microbes to obtain the necessary protein for larval development on strawberries and blueberries. Our report validates the complexity seen in host-microbe interactions and may provide information useful for D. suzukii pest control. Copyright © 2018 Bing et al.
Van Mele, Paul; Vayssières, Jean-François; Van Tellingen, Esther; Vrolijks, Jan
2007-06-01
Six mango, Mangifera indica L., plantations around Parakou, northern Benin, were sampled at 2-wk intervals for fruit fly damage from early April to late May in 2005. Mean damage ranged from 1 to 24% with a weaver ant, Oecophylla longinoda (Latreille), being either abundant or absent. The fruit fly complex is made up of Ceratitis spp. and Bactrocera invadens Drew et al., a new invasive species in West Africa. In 2006, Ceratitis spp. peaked twice in the late dry season in early April and early May, whereas B. invadens populations quickly increased at the onset of the rains, from mid-May onward. Exclusion experiments conducted in 2006 with 'Eldon', 'Kent', and 'Gouverneur' confirmed that at high ant abundance levels, Oecophylla significantly reduced fruit fly infestation. Although fruit fly control methods are still at an experimental stage in this part of the world, farmers who tolerated weaver ants in their orchard were rewarded by significantly better fruit quality. Conservation biological control with predatory ants such as Oecophylla in high-value tree crops has great potential for African and Asian farmers. Implications for international research for development at the Consultative Group on International Agricultural Research level are discussed.
Müller, Günter C; Beier, John C; Traore, Sekou F; Toure, Mahamoudou B; Traore, Mohamed M; Bah, Sekou; Doumbia, Seydou; Schlein, Yosef
2010-09-20
Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control. Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light. Of the 26 fruits and seedpods tested, 6 were attractive to An. gambiae s.l. females and males, respectively. Guava (Psidium guajava) and honey melon (Cucumis melo) were the two most attractive fruits for both females and males. Of the 26 flowering plants tested, 9 were significantly attractive for females, and 8 were attractive for males. Acacia macrostachya was the most attractive flowering plant. Periodicity studies using this plant showed peaks of An. gambiae s.l. attraction between 1930 and 2200 h and 0400-0500 h, which differed considerably from the response to human odors, which expectedly peaked at around midnight. These field experiments in Mali highlight that female and male An. gambiae s.l. have pronounced differences in attraction for diverse types of indigenous fruits/seedpods and flowering plants. The identification of attractive fruits and seedpods shows that a variety of indigenous and locally abundant natural products could potentially be used as juices to make ATSB solution for mosquito control. As well, the simple methods used to identify the most attractive flowering plants provide valuable insights into the natural history of sugar feeding for An. gambiae s.l. These observations can be used to guide future strategies for employing ATSB methods for malaria vector control in Africa. They also provide a basis for subsequent chemical analysis and development of attractive baits for mosquito control.
2010-01-01
Background Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control. Methods Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light. Results Of the 26 fruits and seedpods tested, 6 were attractive to An. gambiae s.l. females and males, respectively. Guava (Psidium guajava) and honey melon (Cucumis melo) were the two most attractive fruits for both females and males. Of the 26 flowering plants tested, 9 were significantly attractive for females, and 8 were attractive for males. Acacia macrostachya was the most attractive flowering plant. Periodicity studies using this plant showed peaks of An. gambiae s.l. attraction between 1930 and 2200 h and 0400-0500 h, which differed considerably from the response to human odors, which expectedly peaked at around midnight. Conclusion These field experiments in Mali highlight that female and male An. gambiae s.l. have pronounced differences in attraction for diverse types of indigenous fruits/seedpods and flowering plants. The identification of attractive fruits and seedpods shows that a variety of indigenous and locally abundant natural products could potentially be used as juices to make ATSB solution for mosquito control. As well, the simple methods used to identify the most attractive flowering plants provide valuable insights into the natural history of sugar feeding for An. gambiae s.l. These observations can be used to guide future strategies for employing ATSB methods for malaria vector control in Africa. They also provide a basis for subsequent chemical analysis and development of attractive baits for mosquito control. PMID:20854666
Brundage, Adrienne; Bros, Shannon; Honda, Jeffrey Y
2011-10-10
Seasonal and habitat calliphorid abundance and distribution were examined weekly for two years (2001-2003) in Santa Clara County, California, using sentinel traps baited with bovine liver. Of the 34,389 flies examined in three defined habitats (rural, urban, and riparian), 38% of the total catch represented Compsomyiops callipes (Bigot) and 23% represented Phormia regina (Meigen). Other flies collected in this survey included Calliphora vomitoria (Linnaeus), Calliphora latifrons (Hough), Lucilia sericata (Meigen), Lucilia cuprina (Wiedemann), and Lucilia mexicana (Macquart), which is a new record for the area. Multivariate MANOVA and ANOVA (P ≤ 0.05) analysis indicate significant seasonal habitat preference for all fly species examined. This information may be used to identify potentially forensically impo rtant fly species within Santa Clara County, California. Published by Elsevier Ireland Ltd.
Sridhar, Madhu; Kang, Chang-kwon
2015-05-06
Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.
Tephritid fruit fly transgenesis and applications
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are among the most serious agricultural pests in the world, owing in large part to those species having broad host ranges including hundreds of fruits and vegetables. They are the largest group of insects subject to population control by a biologically-based systems, most notab...
Evaluation of imported parasitoid fitness for biocontrol of olive fruit fly in California olives
USDA-ARS?s Scientific Manuscript database
A parasitoid, Psyttalia humilis (Silvestri), was reared on irradiated Mediterranean fruit fly (Medfly), Ceratitis capitata (Weidemann), at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala, and imported into California for biological control of olive fruit ...
USDA-ARS?s Scientific Manuscript database
The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...
Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate
Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.
2012-01-01
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093
36 CFR 7.34 - Blue Ridge Parkway.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Parkway boundary the use of bait other than single hook artificial flies is prohibited. (B) On all of the... single hook is prohibited. (B) On the above-designated water in Virginia the daily creel and size limits... winter bird and wildlife counts, and depending on local weather conditions, the Superintendent may allow...
36 CFR 7.34 - Blue Ridge Parkway.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Parkway boundary the use of bait other than single hook artificial flies is prohibited. (B) On all of the... single hook is prohibited. (B) On the above-designated water in Virginia the daily creel and size limits... winter bird and wildlife counts, and depending on local weather conditions, the Superintendent may allow...
Apply Pesticides Correctly, A Guide for Commercial Applicators: Food Processing Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. Characteristics, life cycles and habits of pests such as roaches, beetles, flies, ants and rodents are discussed. Additionally, pest control measures, especially by application of aerosols, dusts, baits, fumigants or vapors, is presented. (CS)
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), causes direct damage to fruits and vegetables through oviposition and larval feeding. Rigorous quarantine procedures are currently enforced to prevent domestic and transnational spread of Medfly. Accessible and reliable informatio...
USDA-ARS?s Scientific Manuscript database
Host plant chemicals can influence sex pheromone communication of tephritid fruit flies, and affect strategies optimizing mating and reproduction. Previous studies suggest that females of the South American fruit fly, Anastrepha fraterculus, prefer to mate with laboratory males previously exposed to...
USDA-ARS?s Scientific Manuscript database
Irradiation and vapor–heating treatments are commonly used to disinfest the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:Tephritidae), and other pests on mango fruits before export from Thailand to foreign markets. Modified atmosphere packaging (MAP) used during export of mangoes create...
Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical
USDA-ARS?s Scientific Manuscript database
Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from over-exploiting these sites for egg-laying. Previous studies have identified and used HMPs to manage certain fruit fly species. However, few examples are known for African indigenous fruit flie...
Campolo, Orlando; Medina, Raul F.; Palmeri, Vincenzo
2018-01-01
Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas. PMID:29518170
Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.
Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A
2012-05-15
The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.
Managing the Fruit Fly Experiment.
ERIC Educational Resources Information Center
Jeszenszky, Arleen W.
1997-01-01
Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)
Dambroski, Hattie R; Linn, Charles; Berlocher, Stewart H; Forbes, Andrew A; Roelofs, Wendell; Feder, Jeffrey L
2005-09-01
Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation.
Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang
2017-07-01
Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Field trials were conducted in south Florida to compare capture of wild Caribbean fruit flies, Anastrepha suspensa (Loew), and sterile male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), in Multilure traps, which are McPhail-type traps that use an aqueous solution to retain attracted fli...
USDA-ARS?s Scientific Manuscript database
Attraction of tephritid fruit flies to light and its role in fly biology and management has received little attention. Here, the objective was to show that western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is attracted to white light in the presence and absence of ammo...
Biological Control of Olive Fruit Fly in California with a Parasitoid Imported from Guatemala
USDA-ARS?s Scientific Manuscript database
The parasitoid, Psyttalia cf. concolor (Szépligeti), was imported into California from the USDA-APHIS-PPQ, Moscamed, San Miguel Petapa, Guatemala for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. The parasitoid did not develop in the seedhead fly, Cha...
Poyet, Mathilde; Le Roux, Vincent; Gibert, Patricia; Meirland, Antoine; Prévost, Geneviève; Eslin, Patrice; Chabrerie, Olivier
2015-01-01
The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas) of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology) potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these “trap plants” may attract and lure D. suzukii, therefore contributing to the control of the invasive fly. PMID:26581101
Burgess, Edwin R; King, B H
2015-06-01
Various insecticides for the control of the house fly Musca domestica L. were tested for compatibility with a biological control agent, the pupal parasitoid Spalangia endius Walker. Bioassays used the mode in which each organism was expected to be harmed by the insecticides, a surface contact bioassay for S. endius and a feeding bioassay for M. domestica. A Pesticide Compatibility Index (PCI) was created that allows comparison of LC50 values when the mode of exposure to a pesticide differs. First LC50 values were converted into units of prescribed dosages (LPR=LC50-to-prescribed dosage ratio). This study used dosages from labels of granular baits. PCI is the ratio of LPRbiological control agent to LPRpest. For these PCI values, order of compatibility with S. endius was spinosad>thiamethoxam>inotefuran>methomyl>imidacloprid. That spinosad was better than imidacloprid or methomyl, both for parasitoid survival and for killing flies, is consistent with conclusions from the LC50 values. Permethrin and nitenpyram were also tested, but their PCIs were not calculated. Permethrin is prescribed as a contact insecticide against flies rather than being consumed as a bait, and nitenpyram has not been formulated as a fly insecticide. Compared with the other insecticides in terms of LC50 values, permethrin was moderately toxic to S. endius but one of the most toxic for M. domestica, whereas nitenpyram was least toxic for both S. endius and the flies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shariff, S; Ibrahim, N J; Md-Zain, B M; Idris, A B; Suhana, Y; Roff, M N; Yaakop, S
2014-01-23
Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b. Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
USDA-ARS?s Scientific Manuscript database
The West Indian fruit fly, Anastrepha obliqua (Macquart), infests numerous fruit species, particularly Anacardiaceae and most importantly mango (Mangifera indica L.). Widespread in the Neotropics, it was first reported in Hispaniola nearly 70 years ago. Continental populations are attacked by the op...
USDA-ARS?s Scientific Manuscript database
Gas chromatography coupled with electroantennogram detection (GC-EAD) was used to identify volatiles from the fruit of Snowberry, Symphoricarpos albus laevigatus, as key attractants for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), ...
USDA-ARS?s Scientific Manuscript database
Geographic strains of the African endoparasitoids Psyttalia lounsburyi and Psyttalia humilis (Hymenoptera: Braconidae) were released to suppress the olive fruit fly, Bactrocera oleae, in California from 2006 – 2016. Both parasitoid species were recovered post-release within the same fruit season; ho...
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Avocados cannot be exported from Hawaii without a quarantine treatment to prevent the spread of fruit flies. Research on the maturity and infestability of ‘Sharwil’ avocados was conducted to support development of a systems approach for quarantine security of exported fruit. Th...
Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Giam, Xingli; Forget, Pierre-Michel; Campos-Arceiz, Ahimsa
2017-01-01
As tropical landscapes become increasingly human-dominated, conflicts between people and wildlife threaten ecological processes. Old World fruit bats such as flying foxes are especially susceptible to extinction risk because there is low interest in their conservation, particularly when they are considered pests. In order to arrest fruit bat declines, there is an urgent need to understand human-bat conflict and its implications. On a tropical island in Peninsular Malaysia, we conducted a questionnaire survey to investigate coexistence between people and the island flying fox ( Pteropus hypomelanus ). Among 119 respondents, knowledge of ecosystem services provided by flying foxes was extremely low. Most respondents held negative attitudes towards the bats, and older male locals were more likely to support killing them. This was also true for older owners of fruit trees who derived income from selling fruit, and experienced flying fox raids. Our results can be used to design appropriate interventions to support conservation efforts, and has important implications for managing conflicts between humans and synanthropic wildlife.
Search for potent attractants of onion flies.
Miller, J R; Harris, M O; Breznak, J A
1984-10-01
Of various chopped vegetables tested,Allium spp. high in propyl-containing alkyl sulfides (e.g.,cepa group) caught the most onion flies in trapping tests in the field. Fly catches to chopped onion increased with bait quantity. Attractancy of chopped onion changed dramatically during aging in the field; catch increased over the first few days, peaked at ca. fivefold over fresh material by 3-5 days, and then declined sharply. This age-dependent increase in attraction was not seen for garlic (known to have antimicrobial properties) nor with chopped onion mixed with chopped garlic. These data suggested that attraction of onion flies to onions was strongly influenced by microbial activity associated with decomposing onions. The bacteriumKlebsiella pneumoniae was identified as a major colonizer of onions maximally attractive to onion flies. This increased attraction is not due to the previously reported microbially produced volatiles ethyl acetate and tetramethyl pyrazine.
Social attraction mediated by fruit flies' microbiome.
Venu, Isvarya; Durisko, Zachary; Xu, Jianping; Dukas, Reuven
2014-04-15
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L.
2012-01-01
In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar (13C6-glucose) for 12 h – either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate – possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism. PMID:23185587
Synergism between ammonia and phenols for Hybomitra tabanids in northern and temperate Canada.
Mihok, S; Lange, K
2012-09-01
Baits for tabanids (Diptera: Tabanidae) were tested in the Northwest Territories (60 °N) and Ontario (45 °N) using Nzi traps. Tests targeted ammonia, phenols/cow urine and octenol. About 200 000 tabanids were captured in 15 experiments with a maximum capture of 4182 in one trap in 1 day. In the Northwest Territories, phenols, urine and octenol were effective single baits for only some species. At both locations, adding ammonia to an unbaited or an octenol-baited trap had no effect on catches. By contrast, catches were increased for several species when ammonia was combined with phenols or urine. In Ontario, including ammonia in various baits increased catches by 1.5- to 3.4-fold relative to octenol alone for three Hybomitra and one Tabanus species. Synergism between ammonia and phenols was clearly demonstrated for the dominant Hybomitra species in Ontario (Hybomitra lasiophthalma), but not for the dominant species in the Northwest Territories (Hybomitra epistates). In five other northern Hybomitra species, baits of ammonia and/or octenol in combination with phenols resulted in a 1.7- to 4.1-fold increase in catch relative to an unbaited trap. Further tests of ammonia as a synergist for biting flies may prove useful in, for example, tsetse, which respond strongly to phenols. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.
Mahmoud, Y I; Taha, A; Soliman, S
2018-03-29
We evaluated the sterilizing effect of 3-monochloropropane-1, 2-diol (3-MCPD) in male Egyptian fruit bats (Rousettus aegyptiacus). We used three groups. One was treated with 70 mg/kg 3-MCPD for 4 days. The second group was treated with 3-MCPD as a bait formulation (known concentration of 3-MCPD mixed with a known amount of food). The third group was untreated controls. We compared the weights of the reproductive organs, histology of the testes, occurrence of spermatogenesis, and the count, motility and abnormalities of epididymal sperm of treated males with those of the untreated control group. 3-MCPD caused significantly decreased weights of reproductive organs, several testicular histological alterations and spermatogenic arrest accompanied by significant decreases in sperm count and motility, and significantly increased number of abnormal sperm. 3-MCPD bait was readily accepted by the animals. 3-MCPD, even in low doses and after limited exposure, disrupted spermatogenesis in males of the Egyptian fruit bat. Our findings have potential value for public health and agricultural authorities, and for vertebrate pest managers. 3-MCPD may have application for control of this pest.
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Tephritidae), discovered in 1998 in California, is a direct pest of olives that has invaded the Mediterranean Region and California (Rice et al. 2003; Zalom et al. 2009). The fly is believed to have originated from Africa (Hoelmer et al. 2011), and Psyttalia lo...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe economic damage in California. Control of this fly is currently limited to pesticides. The USDA-ARS European Biological Control Laboratory in Montpellier, France established a classical biological control program nearly 15 y...
Insecticide-Treated Rodent Baits for Sand Fly Control
2013-04-28
Agricul- tural Research Institute study area (KARI; lat 0.47, long 36.00) was comprised of land used for small-scale farming and for forage by goats ...study area. The sites at the KARI and Bogoria study areas had large numbers of a variety of non-reservoir ani- mals, including other small mammals, goats
Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae)
Mascarenhas, Rodrigo O; Prezotto, Leandro F; Perondini, André Luiz P; Marino, Celso Luiz; Selivon, Denise
2016-01-01
Abstract The endosymbiont Wolbachia is efficiently transmitted from females to their progenies, but horizontal transmission between different taxa is also known to occur. Aiming to determine if horizontal transmission might have occurred between Anastrepha fruit flies and associated braconid wasps, infection by Wolbachia was screened by amplification of a fragment of the wsp gene. Eight species of the genus Anastrepha were analyzed, from which six species of associated parasitoid wasps were recovered. The endosymbiont was found in seven Anastrepha species and in five species of braconids. The WSP Typing methodology detected eight wsp alleles belonging to Wolbachia supergroup A. Three were already known and five were new ones, among which four were found to be putative recombinant haplotypes. Two samples of Anastrepha obliqua and one sample of Doryctobracon brasiliensis showed multiple infection. Single infection by Wolbachia was found in the majority of samples. The distribution of Wolbachia harboring distinct alleles differed significantly between fruit flies and wasps. However, in nine samples of fruit flies and associated wasps, Wolbachia harbored the same wsp allele. These congruences suggest that horizontal transfer of Wolbachia might have occurred in the communities of fruit flies and their braconid parasitoids. PMID:27648768
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and e...
77 FR 22510 - Importation of Fresh Bananas From the Philippines Into the Continental United States
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... consider 2 years' worth of data on how fruit flies affect a commodity to be sufficient to make... importation of fruits and vegetables to allow the importation of fresh bananas from the Philippines into the... fruit flies to establish low- prevalence places of production, harvesting only of hard green bananas...
USDA-ARS?s Scientific Manuscript database
The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is native to bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ~100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of ad...
Knight, Alan L; Basoalto, Esteban; Yee, Wee; Hilton, Rick; Kurtzman, Cletus P
2016-08-01
Drosophila suzukii is a major pest of cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in laboratory and field trials in cherry. Adding cane sugar alone or in combination with the yeasts Saccharomyces cerevisiae or Aureobasidium pullulans significantly improved insecticide efficacy. However, the significance of adding yeasts to the sugar plus insecticide on fly mortality varied with respect to both the insecticide and yeast species. The addition of S. cerevisiae to sugar also did not significantly reduce egg densities in fruit compared with sugar alone. The addition of a yeast plus sugar significantly reduced egg densities in three field trials with cyantraniliprole and in two out of three trials with spinosad. The addition of cane sugar with or without yeast can improve the effectiveness of diamide and spinosyn insecticides for D. suzukii in cherry. Inclusion of these two insecticides in D. suzukii management programs may alleviate the strong selection pressure currently being imposed on a few mode-of-action insecticide classes used by growers to maintain fly suppression over long continuous harvest periods of mixed cultivars. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Investigation of nocturnal oviposition by necrophilous flies in central Texas.
Baldridge, Robert S; Wallace, Susan G; Kirkpatrick, Ryan
2006-01-01
The need to accurately estimate the postmortem interval (PMI) has prompted research into factors affecting fly oviposition (i.e., oviposition and/or larviposition) on a corpse. Research efforts have focused on whether or not diurnally active flies oviposit during nighttime hours. This study reports that nocturnal oviposition (defined as occurring between 2100-0600 h CDST (Central Daylight Savings Time)) did not occur on freshly killed white rats or mice, on beef (fresh or aged up to 48 h), on freshly thawed pigs, nor, usually, on thawed pigs that were aged for up to 48 h. Limited oviposition did occur between 2100 and 2120 h on one bloated pig at a lighted rural site. Necrophilous flies were present and active at lighted and dark sites (urban and rural) before and immediately after sunset, but fly activity on the bait ceased within 50 min postsunset and did not resume until after 0600 h. These observations support other studies reporting that diurnally active flies do not oviposit during the nighttime.
Gonul, Saban; Bozkurt, Banu; Okudan, Suleyman; Tugal-Tutkun, Ilknur
2015-03-01
Bilateral acute iris transillumination (BAIT) is a relatively new clinical entity characterized by bilateral acute loss of iris pigment epithelium, iris transillumination, pigment dispersion in the anterior chamber and atonic pupilla. We report herein a 50-year-old female who presented with bilateral ocular pain, severe photophobia and red eyes. One month ago, a fly hit her eye, and she instantly complained of a discomfort and sensation of a foreign body in both eyes. She used a fumigation therapy, a traditional method for the treatment of ophthalmomyiasis. During follow-up examinations, intraocular pressures increased over 40 mmHg bilaterally despite maximal medical therapy, which necessitated trabeculectomy surgery with mitomycin. This is a typical BAIT case with no antecedent fluoroquinolone use or viral disease, but a fumigation therapy. There might be a possible relationship between BAIT and traditional fumigation therapy or this association might be coincidental, both of which need further evaluation.
Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.
Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096
Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc
2012-01-01
The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran, is a pest of sweet cherry, Prunus avium (L.) L., in western North America that is found in relatively moist and dry habitats. In this study, fly pupae from Kennewick and Roslyn in Washington state, U.S.A., were used to test the hypotheses tha...
Reconstructing the behavior of walking fruit flies
NASA Astrophysics Data System (ADS)
Berman, Gordon; Bialek, William; Shaevitz, Joshua
2010-03-01
Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.
7 CFR 319.56-36 - Watermelon, squash, cucumber, and oriental melon from the Republic of Korea.
Code of Federal Regulations, 2011 CFR
2011-01-01
... QUARANTINE NOTICES Fruits and Vegetables § 319.56-36 Watermelon, squash, cucumber, and oriental melon from... McPhail traps (or a similar type with a protein bait that has been approved for the pests of concern) in...
7 CFR 319.56-36 - Watermelon, squash, cucumber, and oriental melon from the Republic of Korea.
Code of Federal Regulations, 2010 CFR
2010-01-01
... QUARANTINE NOTICES Fruits and Vegetables § 319.56-36 Watermelon, squash, cucumber, and oriental melon from... McPhail traps (or a similar type with a protein bait that has been approved for the pests of concern) in...
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
USDA-ARS?s Scientific Manuscript database
Brown sugar or hot water methods have been developed to detect larvae of tephritid fruit flies in post-harvest fruit in order to maintain quarantine security. It would be useful to determine if variations of these methods can yield better results and if less expensive alternatives exist. This stud...
USDA-ARS?s Scientific Manuscript database
Background The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family ...
Daniel, Claudia; Baker, Brian
2013-03-12
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards.
Daniel, Claudia; Baker, Brian
2013-01-01
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards. PMID:26466801
Di Iorio, Osvaldo
2014-04-17
A compilation of the known natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries is provided. Food items of adult Cetoniinae include pollen and/or nectar (flower visitors), sap and/or slime flux, ripened fruits on plants, green tissues and leaves, and honey. Of the 36 species of Cetoniinae from Argentina, food items are known only for 11 species (30.5%). Attraction to light and bait-traps, adult activity periods, vertebrate predators, and the occurrence in bird nests are presented and discussed. Other insects that share the same food sources and bait-traps with Cetoniinae are mentioned.
Cancino, Jorge; Ruíz, Lía; Viscarret, Mariana; Sivinski, John; Hendrichs, Jorge
2012-01-01
The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures. PMID:26466729
Chromosomal duplications in bacteria, fruit flies, and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupski, J.R.; Weinstock, G.M.; Roth, J.R.
1996-01-01
Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.
DNA barcode variability and host plant usage of fruit flies (Diptera: Tephritidae) in Thailand.
Kunprom, Chonticha; Pramual, Pairot
2016-10-01
The objectives of this study were to examine the genetic variation in fruit flies (Diptera: Tephritidae) in Thailand and to test the efficiency of the mitochondrial cytochrome c oxidase subunit I (COI) barcoding region for species-level identification. Twelve fruit fly species were collected from 24 host plant species of 13 families. The number of host plant species for each fruit fly species ranged between 1 and 11, with Bactrocera correcta found in the most diverse host plants. A total of 123 COI sequences were obtained from these fruit fly species. Sequences from the NCBI database were also included, for a total of 17 species analyzed. DNA barcoding identification analysis based on the best close match method revealed a good performance, with 94.4% of specimens correctly identified. However, many specimens (3.6%) had ambiguous identification, mostly due to intra- and interspecific overlap between members of the B. dorsalis complex. A phylogenetic tree based on the mitochondrial barcode sequences indicated that all species, except for the members of the B. dorsalis complex, were monophyletic with strong support. Our work supports recent calls for synonymization of these species. Divergent lineages were observed within B. correcta and B. tuberculata, and this suggested that these species need further taxonomic reexamination.
Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
Schuster, Stefan; Strauss, Roland; Götz, Karl G
2002-09-17
Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.
Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
Hawkes, Elliot W; Lentink, David
2016-10-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).
Fruit fly scale robots can hover longer with flapping wings than with spinning wings
Lentink, David
2016-01-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. PMID:27707903
Vertical distribution of haematophagous Diptera in temperate forests of the southeastern U.S.A.
Swanson, D A; Adler, P H
2010-06-01
The vertical distribution of blood-feeding flies in two temperate forests in the southeastern U.S.A. was determined by placing 15 Centers for Disease Control and Prevention miniature light traps (12 CO(2)-baited, three unbaited controls), without lights, at three heights (1.5 m, 5.0 m, 10.0 m). More than 6550 haematophagous flies, representing 49 species in four families, were collected. Eighteen species were taken almost exclusively (90-100%) at 1.5 m or 10.0 m, and the mean number of flies per trap differed significantly with height for another six species. Five species exhibited shifts in vertical distribution between the two forests, indicating that forest structure could influence the height of host searching. Most (52.5%) mammalophilic flies were collected at 1.5 m, whereas most (56.4%) ornithophilic flies were taken at 10.0 m, suggesting that host associations influence vertical distributions. The significant differences in the composition of haematophagous fly populations among forest strata emphasize the importance of trap placement in vector surveillance and of understanding the ecological relationships of blood-feeding flies.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...
USDA-ARS?s Scientific Manuscript database
Three strains (standard lab, DTWP pupal color sexing strain and wild strain) of adult oriental fruit flies, which were reared as larvae on a liquid diet, mill feed diet (Tanaka’s diet), or natural host fruit diet, were evaluated for mating competitiveness in both indoor and outdoor Boller’s mating c...
Zheng, Chunyan; Yang, Dongyu; Li, Zhiqiang; Xu, Yijuan
2018-04-11
The objective of this study was to evaluate the toxicity of flavor enhancers to the oriental fruit fly Bactrocera dorsalis (Hendel). The flavor enhancers glycine, disodium guanylate, succinic acid disodium salt, monosodium glutamate (MSG), disodium inosinate, and L-alanine significantly increased the mortality of B. dorsalis flies. The mortality of flies that fed on glycine, disodium guanylate, succinic acid disodium salt, and MSG was greater than 90%. Additionally, fruit fly mortality increased with increases in both time and concentration. Glycine not only reduced the climbing ability of B. dorsalis but also affected the duration and frequency of its behavioral patterns (flight, walking, grooming and inactivity). Compared with adult flies in the control group, adult B. dorsalis flies that fed on glycine exhibited a significantly increased duration and frequency of inactivity and a decreased duration and frequency of both flight and walking. However, the effect of glycine on grooming activity was not significant. These findings demonstrate the toxic effects of flavor enhancers on B. dorsalis. Glycine also affected the behavior of adult flies at a low dose. Therefore, glycine has potentially toxic to insects and also likely to have a negative impact at sublethal concentrations.
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Abstract Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock , were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species’ distribution in peninsular Thailand and other parts of the world. PMID:25368070
Effect of Surround WP on behavior and mortality of apple maggot (Diptera: Tephritidae).
Leskey, Tracy C; Wright, Starker E; Glenn, D Michael; Puterka, Gary J
2010-04-01
Apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a key pest in apple (Malus spp.) production areas located in the northeastern and midwestern United States and the eastern provinces of Canada. The development of Surround WP has offered a new approach for controlling apple maggot and other tephritid species, because this material is considered to be compatible with advanced integrated pest management and organic production systems. We conducted studies aimed at identifying the behavioral and biological effects of this material on apple maggots. Specifically, we examined the effect of Surround WP on the visual ecology of adult flies under field conditions, on tactile responses of flies in semifield trials, and on fly mortality in laboratory-based-bioassays. We demonstrated that an even coating of white particles over a fruit-mimicking sphere surface reduced visual attractiveness. We also found that spotty-coated fruit-mimicking spheres (meant to mimic ripe fruit bearing an uneven coating of Surround WP) were perceived by flies as not having the ideal round silhouette shape stimulus. Surround WP served as a tactile deterrent; the residence time of females introduced on to treated fruit was much shorter compared with untreated fruit. Surround WP also had a toxic effect on both adult apple maggot and Rhagoletis suavis (Loew); flies exposed to and forced to stand on Surround-treated surfaces died in <2 d in all trials. The combined effectiveness of Surround WP is based on a reduction in the attractiveness of fruit-based visual cues, an increase in the likelihood of flies leaving treated surfaces due to tactile deterrence, and a potential for increased mortality due to exposure to Surround WP particles.
McQuate, Grant T.; Follett, Peter A.; Liquido, Nicanor J.; Sylva, Charmaine D.
2015-01-01
Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484
Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep.
Hendricks, Joan C; Sehgal, Amita
2004-03-15
Among simple model systems, Drosophila has specific advantages for neurobehavioral investigations. It has been particularly useful for understanding the molecular basis of circadian rhythms. In addition, the genetics of fruit-fly sleep are beginning to develop. This review summarizes the current state of understanding of circadian rhythms and sleep in the fruit fly for the readers of Sleep. We note where information is available in mammals, for comparison with findings in fruit flies, to provide an evolutionary perspective, and we focus on recent findings and new questions. We propose that sleep-specific neural activity may alter cellular function and thus accomplish the restorative function or functions of sleep. In conclusion, we sound some cautionary notes about some of the complexities of working with this "simple" organism.
History and development of food-based attractants
USDA-ARS?s Scientific Manuscript database
Adult tephrids require sugar and protein for survival and for development of eggs, and volatile chemicals from these substances are the basis for food-based lures developed as baits for these pests. In this chapter, we discuss food-based lures that mimic food sources for adults other than host fruit...
USDA-ARS?s Scientific Manuscript database
Phytophagous stink bugs (Hemiptera: Pentatomidae) are primary pests in most fruit, vegetable, grain, and row crops worldwide. Pheromones have been identified and synthesized for several species of economically important stink bug pests. When yellow pyramid traps are baited with lures containing thes...
NASA Astrophysics Data System (ADS)
Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.
2013-11-01
Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.
7 CFR 301.32-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with § 301.32-10; or (ii) Based on inspection of the premises of origin, the premises are free... interstate movement will not result in the spread of fruit flies because life stages of the fruit flies will...
7 CFR 301.32-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with § 301.32-10; or (ii) Based on inspection of the premises of origin, the premises are free... interstate movement will not result in the spread of fruit flies because life stages of the fruit flies will...
A Plain English Map of the Chromosomes of the Fruit Fly Drosophila Melanogaster.
ERIC Educational Resources Information Center
Offner, Susan
1996-01-01
Presents a plain English map of the chromosomes of the fruit fly that contains genes from very different kinds of studies. Represents the work of nearly a century by thousands of researchers using a tremendous variety of techniques. (JRH)
Recognition of foreign oviposition-marking pheromone in a multi-trophic context
NASA Astrophysics Data System (ADS)
Stelinski, L. L.; Rodriguez-Saona, C.; Meyer, W. L.
2009-05-01
Both phytophagous and parasitic insects deposit oviposition-marking pheromones (OMPs) following oviposition that function to inform conspecifics of a previously utilized host of reduced suitability. The blueberry maggot fly, Rhagoletis mendax Curran (Diptera: Tephritidae), deposits eggs individually into blueberries and then marks the fruit surface with an OMP which reduces acceptance of fruit for oviposition by conspecifics. Diachasma alloeum (Muesebeck) (Hymenoptera: Braconidae) is a parasitic wasp attacking larval R. mendax which also deposits an OMP, signaling conspecifics of a wasp-occupied host. Behavioral studies were conducted testing the hypothesis that the OMP of the parasitic wasp modifies the oviposition behavior of its host fly. In this study, we show that the OMP of D. alloeum is recognized by R. mendax, and female flies will reject wasp-marked fruit for oviposition. Thus, we present a rare demonstration of pheromonal recognition between animals occupying different taxonomic orders and trophic levels. This chemical eavesdropping may enhance the ability of the fly to avoid fruit unsuitable for larval development.
Li, Baini; Ma, Jun; Hu, Xuenan; Liu, Haijun; Wu, Jiajiao; Chen, Hongjun; Zhang, Runjie
2010-08-01
Exotic fruit flies (Ceratitis spp.) are often serious agricultural pests. Here, we used, pathway analysis and Monte Carlo simulations to assess the risk of introduction of Ceratitis capitata (Wiedemann), Ceratitis cosyra (Walker), and Ceratitis rosa Karsch, into southern China with fruit consignments and incoming travelers. Historical data, expert opinions, relevant literature, and archives were used to set appropriate parameters in the pathway analysis. Based on the ongoing quarantine/ inspection strategies of China, as well as the interception records, we estimated the annual number of each fruit fly species entering Guangdong province undetected with commercially imported fruit, and the associated risk. We also estimated the gross number of pests arriving at Guangdong ports with incoming travelers and the associated risk. Sensitivity analysis also was performed to test the impact of parameter changes and to assess how the risk could be reduced. Results showed that the risk of introduction of the three fruit fly species into southern China with fruit consignments, which are mostly transported by ship, exists but is relatively low. In contrast, the risk of introduction with incoming travelers is high and hence deserves intensive attention. Sensitivity analysis indicated that either ensuring all shipments meet current phytosanitary requirements or increasing the proportion of fruit imports sampled for inspection could substantially reduce the risk associated with commercial imports. Sensitivity analysis also provided justification for banning importation of fresh fruit by international travelers. Thus, inspection and quarantine in conjunction with intensive detection were important mitigation measures to reduce the risk of Ceratitis spp. introduced into China.
Akter, Humayra; Adnan, Saleh; Morelli, Renata; Taylor, Phillip W.
2017-01-01
Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such ‘male replacement’ requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or ‘Qfly’) to raspberry ketone (RK) mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages. PMID:28859132
Host status of blueberry to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Armstrong, John W; Zee, Francis T
2009-10-01
Forced infestation studies were conducted to determine whether northern or southern highbush blueberries, Vaccinium corymbosum L., are hosts for the invasive tephritid fruit flies in Hawaii. Fruit were exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal and adult emergence. The number of puparia, number of puparia per gram, and percentage of adult emergence on 'Bluecrop' blueberry were significantly higher for B. dorsalis and C. capitata than B. cucurbitae; B. dorsalis, C. capitata, and B. cucurbitae produced an average of 1.06, 0.60, and 0.09 pupae per g fruit and had 5.8, 54.1, and 12.7% adult emergence, respectively. 'Berkeley' blueberries produced an average of only 0.06, 0.02, and 0.0 pupae per g fruit for B. dorsalis, C. capitata, and B. cucurbitae, respectively. Similarly, six blueberry cultivars were harvested weekly for 10 wk, exposed to Bactrocera latifrons (Hendel) in cages, and held for pupal and adult emergence on either sand or artificial diet. In total, 2,677 blueberries were exposed to 2681 B. latifons and held on sand, and no pupariation or adult emergence was observed. Small numbers of B. latifrons puparia and adults emerged from the artificial diet treatment in all cultivars. Results from rearing on sand and diet indicate that blueberry is an acceptable oviposition host for B. latifrons but not an adequate developmental host. These data suggest blueberry is potentially a good host for B. dorsalis and C. capitata, and an adequate host for Bactrocera cucurbitae, but that there may be significant variation in resistance among cultivars. Blueberry seems to be a nonhost for B. latifrons.
Landolt, Peter J; Cha, Dong H; Zack, Richard S
2015-10-01
In an initial observation, large numbers of muscoid flies (Diptera) were captured as nontarget insects in traps baited with solutions of acetic acid plus ethanol. In subsequent field experiments, numbers of false stable fly Muscina stabulans (Fallén) and little house fly Fannia canicularis (L.) trapped with the combination of acetic acid plus ethanol were significantly higher than those trapped with either chemical alone, or in unbaited traps. Flies were trapped with acetic acid and ethanol that had been formulated in the water of the drowning solution of the trap, or dispensed from polypropylene vials with holes in the vial lids for diffusion of evaporated chemical. Numbers of both species of fly captured were greater with acetic acid and ethanol in glass McPhail traps, compared to four other similar wet trap designs. This combination of chemicals may be useful as an inexpensive and not unpleasant lure for monitoring or removing these two pest fly species. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.
2008-01-01
The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458
Vector Control During Operation Restore Hope - Somalia
2008-11-16
Restore Hope, focusing primarily on pest battalion provided services including and vector control operations. Much of identification of the preventive...and usable arthropod Identification larval mosquito surveys were conducted, materials (i.e., keys) were nonexistent. but only in areas that were...bait would be mosquitoes. The pesticide used for placed adjacent to but away from troop mosquito control ( malathion - ULV) was areas, attracting flies
Marchiori, C H; Silva, C G; Caldas, E R; Vieira, C I; Almeida, K G; Teixeira, F F
2000-10-01
The first occurrence of the parasitoid Pachycrepoideus vindemiae on pupae of Ophyra aenescens, a fly of medical-sanitary importance, is reported. A swine carcass was used as bait to collect the insects. In the study, 302 pupae of Ophyra aenescens (Wiedemann) (Diptera: Muscidae) were obtained, 6 (1.98%) of them yielded the parasitoid Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae
Treatment of Fragile X Syndrome with a Neuroactive Steroid
2015-08-01
in the fragile X mouse model and the Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down... Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down-regulated. Ganaxolone is a drug that
Sublethal effects in pest management: a surrogate species perspective on fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...
Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.
ERIC Educational Resources Information Center
Guilfoile, Patrick
1997-01-01
Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)
Phylogeography of West Indian fruit fly, Anastrepha obliqua, inferred with mtDNA sequencing
USDA-ARS?s Scientific Manuscript database
Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the West Indian fruit fly, is a frugivorous pest that occasionally finds its way to commercial growing areas outside its native distribution. It inhabits areas in Mexico, Central and South America, and the Caribbean, with occasional infestations...
Yee, Wee L.; Klaus, Michael W.; Cha, Dong H.; Linn, Charles E.; Goughnour, Robert B.
2012-01-01
The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981–2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards. PMID:23451979
Siderhurst, Matthew S.; Jang, Eric B.; Carvalho, Lori A. F. N.; Nagata, Janice T.; Derstine, Nathan T.
2015-01-01
Identification of the Darna pallivitta (Moore) pheromone component n-butyl (E)-7,9-decadienoate (E7,9-10:COOn-Bu) has made it possible to investigate communication disruption to control this lepidopteran pest. Conventional communication disruption trials showed marked decreases in the mean number of male moths captured in E7,9-10:COOnBu-treated fields compared with control fields. For traps baited with E7,9-10:COOnBu, percent disruptions were 94.4% and 92.1% for septa (1 g pheromone/ha, 1-wk trial duration) and spirals (6 g pheromone/ha, 8-wk trial duration) respectively. For traps baited with virgin female moths, percent disruption was 73.3% using septa disruptors (1 g pheromone/ha, 1-wk trial duration). Mobile communication disruption using Bactrocera cucurbitae (Coquillett) as carriers for E7,9-10:COOn-Bu was evaluated in the following three areas: fly survivorship, attraction of male moths to treated flies, and moth disruption in a small-scale field trial. Topical application of E7,9-10:COOnBu showed no significant decrease in survivorship at 50 and 80 µg/fly. However, decreased survivorship was observed at 100 µg/fly and linear regression showed E7,9-10:COOnBu dose was significantly correlated with B. cucurbitae survivorship. Traps containing honey–pheromone-fed flies attracted and caught D. pallivitta over a 1-wk period, demonstrating the attractiveness of the carrier. Releasing E7,9-10:COOnBu-fed B. cucurbitae (∼2 g pheromone/ha, 1-wk trial duration) resulted in significantly reduced trap catches in treatment fields compared with control fields on the first 2 d of the field trial. Percent disruptions were 84.7% (day 1) and 56.0% (day 2). These results suggest that both conventional communication disruption and mobile communication disruption have potential to control D. pallivitta. PMID:26078301
Siderhurst, Matthew S; Jang, Eric B; Carvalho, Lori A F N; Nagata, Janice T; Derstine, Nathan T
2015-01-01
Identification of the Darna pallivitta (Moore) pheromone component n-butyl (E)-7,9-decadienoate (E7,9-10:COOn-Bu) has made it possible to investigate communication disruption to control this lepidopteran pest. Conventional communication disruption trials showed marked decreases in the mean number of male moths captured in E7,9-10:COOnBu-treated fields compared with control fields. For traps baited with E7,9-10:COOnBu, percent disruptions were 94.4% and 92.1% for septa (1 g pheromone/ha, 1-wk trial duration) and spirals (6 g pheromone/ha, 8-wk trial duration) respectively. For traps baited with virgin female moths, percent disruption was 73.3% using septa disruptors (1 g pheromone/ha, 1-wk trial duration). Mobile communication disruption using Bactrocera cucurbitae (Coquillett) as carriers for E7,9-10:COOn-Bu was evaluated in the following three areas: fly survivorship, attraction of male moths to treated flies, and moth disruption in a small-scale field trial. Topical application of E7,9-10:COOnBu showed no significant decrease in survivorship at 50 and 80 µg/fly. However, decreased survivorship was observed at 100 µg/fly and linear regression showed E7,9-10:COOnBu dose was significantly correlated with B. cucurbitae survivorship. Traps containing honey-pheromone-fed flies attracted and caught D. pallivitta over a 1-wk period, demonstrating the attractiveness of the carrier. Releasing E7,9-10:COOnBu-fed B. cucurbitae (∼2 g pheromone/ha, 1-wk trial duration) resulted in significantly reduced trap catches in treatment fields compared with control fields on the first 2 d of the field trial. Percent disruptions were 84.7% (day 1) and 56.0% (day 2). These results suggest that both conventional communication disruption and mobile communication disruption have potential to control D. pallivitta. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.
2012-01-01
This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni. PMID:26466726
Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria
Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao
2015-01-01
Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769
Marine fungi from Mira river salt marsh in Portugal.
Barata, Margarida
2006-09-01
The occurrence of fungi in the Mira salt marsh, Portugal was investigated for 12 months. Baits of Spartina maritima stems were exposed to permanent or temporary submersion at the upper and lower limits of the intertidal zone. The baits were observed for fruit bodies and spores directly and after incubation in moist chambers. Twenty six marine species were identified (17 Ascomycota, two Basidiomycota and seven mitosporic fungi). Twenty four are new records for Portugal. Nia globospora Barata and Basílio was published as a new species. Species were characterized with respect to frequency of occurrence, colonization capability and substrate succession. The diversity and similarity indexes of the fungi under different conditions were determined.
USDA-ARS?s Scientific Manuscript database
Studies were conducted in Honduras to determine sampling range for female-targeted food-based synthetic attractants for pest tephritid fruit flies. Field studies were conducted in shaded coffee and adults of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), were captured. Traps (38 traps ...
The fruit flies (Tephritidae) of Ontario
USDA-ARS?s Scientific Manuscript database
Thirteen species of Tephritidae are newly recorded from Ontario, and alternative format keys are provided to the 31 genera and 72 species of fruit fly now known from, or likely to occur, in the province. Standard dichotomous keys to genera, and simplified field keys to genera and species are provide...
USDA-ARS?s Scientific Manuscript database
The Mexican fruit fly, Anastrepha ludens, is a highly significant agricultural pest species that has been genetically transformed with a piggyBac¬-based transposon vector system using independent vector and transposase helper plasmids. Estimated germ-line transformation frequencies were approximate...
Compendium of fruit fly host information (CoFFHI), edition 3.0
USDA-ARS?s Scientific Manuscript database
The Compendium of Fruit Fly Host Information (CoFFHI), edition 3.0 (available at: https://coffhi.cphst.org/), developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS, and the Center for Integrated Pest Management (CIPM) of North Carolina State University (NCSU), provides centra...
Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua
USDA-ARS?s Scientific Manuscript database
The West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), is an economically important pest that inhabits areas of South and Central America, Mexico and the Caribbean with occasional infestations in the southern United States. We examine intra-specific variation within Anastre...
USDA-ARS?s Scientific Manuscript database
With the aim of finding new, sugar-based volatile attractants for economically important tephritid fruit fly species, we used electroantennography (EAG) to quantify olfactory responses of female Caribbean fruit fly, Anastrepha suspensa (Loew), to volatiles of six different sugars (refined white and ...
USDA-ARS?s Scientific Manuscript database
A liquid larval diet as an artificial rearing medium was successfully tested for the Philippines fruit fly Bactrocera philippinensis Drew & Hancock. The biological parameters studied were pupal weight, adult emergence and fliers, sex ratio, fecundity and fertility. The insects performed most satisfa...
Compendium of fruit fly host information (CoFFHI), edition 2.0
USDA-ARS?s Scientific Manuscript database
The Compendium of Fruit Fly Host Information (CoFFHI), edition 2.0, developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS, and the Center for Integrated Pest Management (CIPM) of North Carolina State University (NCSU), provides centralized online documentation of what is know...
USDA-ARS?s Scientific Manuscript database
Limited information exists on the molecular genetics of the Wolbachia endosymbionts that infect the parasitoids of tephritid fruit flies. A better understanding of the bacteria could allow sex ratio manipulations that would improve the mass-rearing of natural enemies. Scientists at the Center for Me...
Resveratrol modifies tephritid fruit fly response to nutritional and radiation stress
USDA-ARS?s Scientific Manuscript database
Resveratrol is a recently discovered compound. Three concentrations (50, 100, 200 µM) of resveratrol were evaluated against Bactrocera dorsalis and B. cucurbitae by incorporating resveratrol into fruit fly liquid larval diet under the following conditions: 1) with or without wheat germ oil (WGO) in ...
USDA-ARS?s Scientific Manuscript database
Third instar larvae were exposed to X-ray treatment of the Oriental fruit fly, Bactrocera dorsalis. Irradiated pupae were collected daily. Biological performance parameters of pupae and adults of larvae treated with X-ray irradiation were evaluated. Standard proteomics procedures such as densitometr...
A potential field suppression system for Bactrocera dorsalis Hendel
USDA-ARS?s Scientific Manuscript database
We first observed attraction by oriental fruit flies to a basil plant in a yard and confirmed the attractiveness to basil oil (BO) in the laboratory. We subsequently identified the insecticidal compounds from BO that could kill three species of tephritid fruit flies in the laboratory, and discovered...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most serious pest of cultivated olives worldwide. Its recent invasion into North America, specifically California, has initiated renewed interest in management strategies for this pest. Research into classical biological control ha...
75 FR 22207 - Importation of Papayas From Colombia and Ecuador
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
... Colombia and Ecuador include requirements for field sanitation, hot water treatment, and fruit fly trapping... that fruit fly trapping, field sanitation, and hot water treatment be employed to remove pests of... before harvest, we proposed to, among other things, require the treatment of papayas with a hot water dip...
Vision-Mediated exploitation of a novel host plant by a tephritid fruit fly
USDA-ARS?s Scientific Manuscript database
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female ...
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock, were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species' distribution in peninsular Thailand and other parts of the world. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil
Marchioro, Cesar A.
2016-01-01
The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%). This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world. PMID:27832144
Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil.
Marchioro, Cesar A
2016-01-01
The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%). This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.
USDA-ARS?s Scientific Manuscript database
Drosophila suzukii is one of the most serious invasive pests of berries and cherries worldwide. Several adult monitoring systems are available to time foliar application of insecticides with the expectation of detecting the presence of D.suzukii before they infest susceptible crops. We tested this b...
Jelvez Serra, N S; Goulart, H F; Triana, M F; Dos Santos Tavares, S; Almeida, C I M; DA Costa, J G; Santana, A E G; Zhu, J J
2017-12-01
The stable fly, Stomoxys calcitrans (Diptera: Muscidae), is a worldwide pest of livestock. Recent outbreaks of stable flies in sugarcane fields in Brazil have become a serious problem for livestock producers. Larvae and pupae found inside sugarcane stems after harvesting may indicate that stable flies use these stems as potential oviposition or larval development sites. Field observations suggest that outbreaks of stable flies are associated with the vinasse and filter cake derived from biomass distillation in sugarcane ethanol production that are used as fertilizers in sugarcane fields. Adult stable flies are attracted to vinasse, which appears to present an ideal larval development site. The primary goal of the present study is to demonstrate the role of vinasse in influencing the sensory physiological and behavioural responses of stable flies, and to identify its associated volatile attractant compounds. Both laboratory and field studies showed that vinasse is extremely attractive to adult stable flies. Chemical analyses of volatiles collected revealed a wide range of carboxylic acids, alcohols, phenols and aldehydes as potential attractant compounds. These newly identified attractants could be used to develop a tool for the attractant-baited mass trapping of stable flies in order to reduce infestations. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Genetics of immune recognition and response in Drosophila host defense.
Ligoxygakis, Petros
2013-01-01
Due to the evolutionary conservation of innate immune mechanisms, Drosophila has been extensively used as a model for the dissection in genetic terms of innate host immunity to infection. Genetic screening in fruit flies has set the stage for the pathways and systems required for responding to immune challenge and the dynamics of the progression of bacterial and fungal infection. In addition, fruit flies have been used as infection models to dissect host-pathogen interactions from both sides of this equation. This chapter describes our current understanding of the genetics of the fruit fly immune response and summarizes the most important findings in this area during the past decade. © 2013 Elsevier Inc. All rights reserved.
Aluja, Martin; Díaz-Fleischer, Francisco
2006-02-01
Following oviposition, females of many Tephritid flies deposit host marking pheromones (HMPs) to indicate that the host fruit has been occupied. We describe the foraging behavior of these three economically important species (Anastrepha ludens and A. obliqua from the fraterculus species group and A. serpentina from the serpentina species group) when they encounter an artificial fruit (green agar spheres wrapped in Parafilm) marked with intra- and interspecific feces extracts that contain, among other substances, host marking pheromone. When flies encountered fruit treated with either 1 or 100 mg/ml feces extract, there were drastic and statistically significant reductions in tree residence time, mean time spent on fruit, and in the number of oviposition attempts or actual ovipositions when compared to the control treatment (clean fruit). These responses were almost identical irrespective of extract origin (i.e., fly species), indicating complete interspecific HMP cross-recognition by all three Anastrepha species tested. We discuss the ecological and practical implications of our findings.
Sperm depletion in singly mated females of the Mexican Fruit Fly (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
Female Mexican fruit flies, or mexflies, have the capacity to produce more than a thousand eggs over their lifetime but fertility of the eggs will depend on the female’s capacity to store semen and/or to replenish semen through remating. The two parameters are interrelated in that sexual receptivity...
USDA-ARS?s Scientific Manuscript database
The aroma of various plant essential oils has been shown to enhance the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Laboratory observations revealed that male medflies show strong short-range attraction to tea tree oil (TTO hereafter) deri...
USDA-ARS?s Scientific Manuscript database
Solid Trimedlure[TML] dispensers and novel solid triple lure dispensers[TMR] without insecticides were tested as “attract and kill” devices alone and in combination with Biolure mass trapping to evaluate suppression of Mediterranean fruit fly, Ceratitis capitata(Wiedemann) in a large coffee plantati...
USDA-ARS?s Scientific Manuscript database
The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...
76 FR 56730 - Determination of Pest-Free Areas in Australia; Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Health Inspection Service [Docket No. APHIS-2011-0088] Determination of Pest-Free Areas in Australia... additional areas as pest- free areas for Mediterranean fruit fly (Ceratitis capitata) or Queensland fruit fly... in our regulations for recognition as pest-free areas. We are making that determination, as well as...
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of sweet cherry (Prunus avium (L.) L.) that is managed using insecticides, including spinosad, an organic compound that can be applied in low spray volumes. Identifying factors that can increase the...
USDA-ARS?s Scientific Manuscript database
Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...
USDA-ARS?s Scientific Manuscript database
Field experiments and long range bioassays were used to understand the difference in attractiveness among various natural essential oils for the Mediterranean Fruit Fly, Ceratitis capitata. Using electroantennography, we have selected various antennally active chemicals and tested their role in the ...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia humilis (Silvestri) was reared on Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae irradiated at different doses from 0-70 Gy at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier,...
USDA-ARS?s Scientific Manuscript database
An algorithm has been developed to identify spots generated in hyperspectral images of mangoes infested with fruit fly larvae. The algorithm incorporates background removal, application of a Gaussian blur, thresholding, and particle count analysis to identify locations of infestations. Each of the f...
USDA-ARS?s Scientific Manuscript database
Background: Oriental fruit flies are important agricultural pests worldwide and their larval parasitoid, Diachasmimorph longicaudata is one of their most effective biological control agents. How a parasitoid interacts with its host as an endo-parasitoid is very important while it is rarely studied a...
Proteomics/qPCR approach on estimating physical ages of wild male oriental fruit flies
USDA-ARS?s Scientific Manuscript database
Male fruit flies reared in the laboratory in DKI-PBARC rearing facility in Hilo, Hawaii, were collected and whole insects were run through standard proteomic analysis. An odorant binding protein 99b (OBP) (Bdor0907381) located at molecular weight between 9226 dalton and PI 4.56 was identified throug...
USDA-ARS?s Scientific Manuscript database
Rhagoletis zephyria Snow and R. pomonella (Walsh) (Diptera: Tephritidae) are morphologically similar flies that attack white-colored snowberry fruit (Symphoricarpos spp.) and yellow/red or dark-colored apple/hawthorn fruit (Malus/Crataegus spp.), respectively. The two flies are caught together on t...
USDA-ARS?s Scientific Manuscript database
The physiological basis for host antibiosis or nonpreference to a quarantine pest is often not understood. Studies are needed on the mechanisms that impart resistance in order to better understand how resistance might fail. Experiments were conducted to examine the infestability of ‘Sharwil’ avocado...
Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong
2011-01-01
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers. PMID:21984907
Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong
2011-01-01
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.
Evaluation of Food-Based Attractants for Drosophila suzukii (Diptera: Drosophilidae).
Huang, Juan; Gut, Larry; Grieshop, Matthew
2017-08-01
The Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a highly invasive species attacking a wide range of ripening soft-skinned fruits. A series of laboratory choice tests were conducted to determine whether different levels of rice vinegar affected attraction of Merlot wine to D. suzukii, as well as to compare attractiveness of two common fermentation food baits: wine-vinegar and yeast-sugar water mixtures. The relative attraction of various combinations was used to develop a bait whose effectiveness was tested in the field. In laboratory choice experiments, wine-vinegar (80:20, v:v, hereafter referred to as wine) was more preferred over a yeast-sugar water mixture (hereafter referred to as yeast) by D. suzukii. Combination baits, either a mixture of wine and yeast or a mixture of wine and a supernatant from the yeast (comboS), were significantly more attractive than each product alone. The two combination baits were equally attractive to D. suzukii, so were the yeast and its supernatant, suggesting that yeast supernatant could be used as a replacement for the yeast-sugar mixture currently used for trapping D. suzukii. The additive effect between wine and yeast supernatant in the field was not as profound as observed in the laboratory. In the field trial, numerically more male and female D. suzukii were captured in traps baited with comboS than those baited with the wine or yeast alone; however, significant differences were only found between the comboS and wine or between the comboS and yeast in some weeks over the period of the experiment. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Teseo, Serafino; Veerus, Liisa; Moreno, Céline; Mery, Frédéric
2016-01-01
Across animals, sexual harassment induces fitness costs for females and males. However, little is known about the cognitive costs involved, i.e. whether it constrains learning processes, which could ultimately affect an individual's fitness. Here we evaluate the acquisition of environmental information in groups of fruit flies challenged with various levels of male sexual harassment. We show that, although high sexual harassment induces a temporary fitness cost for females, all fly groups of both sexes exhibit similar levels of learning. This suggests that, in fruit flies, the fitness benefits of acquiring environmental information are not affected by the fitness costs of sexual harassment, and that selection may favour cognition even in unfavourable social contexts. Our study provides novel insights into the relationship between sexual conflicts and cognition and the evolution of female counterstrategies against male sexual harassment. © 2016 The Author(s).
More than apples and oranges - Detecting cancer with a fruit fly's antenna
NASA Astrophysics Data System (ADS)
Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado
2014-01-01
Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.
Sánchez, José E; Jiménez-Pérez, Gabriela; Liedo, Pablo
2015-12-01
The variability of antioxidant capacity of 14 strains of the edible oyster mushroom Pleurotus spp. was determined, and the effect of selected mushroom supplements on the longevity of the Mexican fruit fly, Anastrepha ludens, was evaluated. The antioxidant capacity of the fruiting bodies was determined by three different methods, measuring the free radical scavenging activity of methanolic extracts, the OH radical scavenging capacity, and the total phenol content. The inhibition percentage of the DPPH radical varied between 32.6 and 85.7% and total phenols varied between 30.6 and 143.3 mg/g. The strains with the highest (Pleurotus djamor ECS-0142) and lowest (Pleurotus ostreatus ECS-1123) antioxidant capacity were selected to study their effect on the survival, life expectancy, and mortality of the Mexican fruit fly A. ludens. The results demonstrated differing responses between male and female flies. High concentrations of mushrooms (5 and 20%) in the diet resulted in a decrease in life expectancy. However, flies on the diet with 1% P. djamor ECS-0142 showed slightly but significantly greater survival than those on the control diet. The possible adverse effect of protein content in mushroom extracts is discussed.
Renkema, Justin M.; Wright, Derek; Buitenhuis, Rose; Hallett, Rebecca H.
2016-01-01
Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essential oils deterred D. suzukii flies from cotton wicks containing attractive raspberry juice. Peppermint oil was particularly effective, preventing almost all flies from contacting treated wicks and remaining 100% repellent for 6 d post-application. Thyme oil was unique because it caused high male mortality and reduced the number of responding flies compared to other oils. KMS was not found to be repellent to D. suzukii, but may have fumigant properties, particularly at high concentrations. Peppermint oil appears to be the best candidate for field testing to determine the effectiveness and feasibility of using essential oils as part of a push-pull management strategy against D. suzukii. This is the first time that essential oils have been evaluated and proven effective in preventing fruit-infesting flies from contacting attractive stimuli. PMID:26893197
Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.
Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek
2016-10-01
Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai
2010-03-16
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.
Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2011-09-01
The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula blends, an agonist compound for eastern mayhaw-origin flies, but a behavioral antagonist for western flies. The results discount the possibility that the apple fly was "pre-assembled" and originated via a recent introduction of southern mayhaw flies predisposed to accepting apple. Instead, the findings are consistent with the possibility of southern mayhaw-infesting fly host races. However, mayhaw fruits do emit several volatiles found in apple. It is, therefore, possible that the ability of the fly to evolve a preference for apple volatiles, although not the entire blend, stemmed, in part, from standing variation related to the presence of these compounds in southern mayhaw fruit.
Piñero, Jaime; Aluja, Martín; Vázquez, Alejandro; Equihua, Miguel; Varón, Jorge
2003-04-01
We evaluated human urine and chicken feces, two naturally occurring, inexpensive, and readily available substances, as baits for the capture of Anostrepha spp. (Diptera: Tephritidae) by using glass McPhail traps. Two studies were performed simultaneously in a commercial mango orchard in Veracruz, México. In the first study, we compared a 50% water dilution of human urine against hydrolyzed protein, both compounds at the fresh and 5-d-old stages, and water alone (control treatment). In the second study, we tested fresh chicken feces mixed with water, a torula yeast/borax solution at three different ages (1-4, 5-9, and 10-15 d), and water (control treatment). Both human urine and chicken feces were attractive to Anastrepha adults compared with water alone, but attracted two and three times fewer adults than hydrolyzed protein and torula yeast/borax, respectively. However, unlike torula yeast/borax, aging of human urine did not decrease its attractiveness. Five-day old human urine attracted numerically more A. serpentina females than males, similar numbers of A. obliqua males and females, and significantly more sexually immature A. obliqua females than mature ones. Chicken feces proved to be as attractive as the aged torula yeast/borax treatments for A. obliqua and A. serpentina. We argue that because both human urine and chicken feces are cost-free and can be easily obtained, they are viable, low-technology alternatives to costly commercial attractants, particularly for low-income growers or backyard farmers in Mexico and other Latin American countries.
Taste and pheromone perception in the fruit fly Drosophila melanogaster.
Ebbs, Michelle L; Amrein, Hubert
2007-08-01
Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) dorsalis (Hendel)(Diptera: Tephritidae), commonly known as the Oriental fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Presented herein is a compre...
USDA-ARS?s Scientific Manuscript database
The western cherry fruit fly, Rhagoletis indifferens (Curran) (Diptera: Tephritidae), is a serious pest of cherries (Prunus spp.) in the Pacific Northwest of the U.S.A. Previous research suggests that R. indifferens is unlikely to establish in commercial cherry production areas in California and in ...
Inquiry-Based Environmental Science Investigations with the Fantastic Fruit Fly
ERIC Educational Resources Information Center
Beals, Ashlie M.; Krall, Rebecca M.
2010-01-01
The use of inquiry in life science can be particularly daunting because of the additional management and care living systems require. However, there are some low-maintenance organisms that work well in the classroom. One of these is the common fruit fly, "Drosophila melanogaster." Its small size, low cost, easy availability and maintenance, and…
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae) is an important pest of olives which is worldwide distributed and responsible for economic losses of approximately US$800 million per year. Since the 2000s both economical and environmental concerns have raised interested in clas...
ERIC Educational Resources Information Center
Johnson, Ronald; Kennon, Tillman
2009-01-01
Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…
USDA-ARS?s Scientific Manuscript database
Adult Psytallia cf. concolor (Szépligeti) (230,908) were produced from sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA-APHIS-PPQ, San Miguel Petapa, Guatemala and shipped from September 2008 to January 2009 to the USDA-ARS, SJVASC, Parlier for biological control ...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia humilis = P. cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier, for biological ...
USDA-ARS?s Scientific Manuscript database
The invasive olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) likely originated in sub-Saharan Africa, where the wild olive Olea europaea cuspidata L. (Wall. ex G. Don) is found and from which the domesticated olive O. europaea europaea L. was derived. Following the path of olive cult...
USDA-ARS?s Scientific Manuscript database
Oriental fruit fly, Bactrocera dorsalis (Hendel), was discovered on Tahiti Island, French Polynesia, in 1996. Two other economically important Bactrocera species were previously established: B. kirki (Froggatt) in 1928, and B. tryoni (Froggatt), Queensland fruit fly, in 1970. This situation provi...
USDA-ARS?s Scientific Manuscript database
An algorithm using a Bayesian classifier was developed to automatically detect olive fruit fly infestations in x-ray images of olives. The data set consisted of 249 olives with various degrees of infestation and 161 non-infested olives. Each olive was x-rayed on film and digital images were acquired...
Adult fruit fly attraction to larvae biases experience and mediates social learning.
Durisko, Zachary; Anderson, Blake; Dukas, Reuven
2014-04-01
We investigated whether adult fruit flies (Drosophila melanogaster) use cues of larvae as social information in their food patch choice decisions. Adult male and female fruit flies showed attraction to odours emanating from foraging larvae, and females preferred to lay eggs on food patches occupied by larvae over similar unoccupied patches. Females learned and subsequently preferred to lay eggs at patches with novel flavours previously associated with feeding larvae over patches with novel flavours previously associated with no larvae. However, when we controlled for the duration of exposure to each flavoured patch, females no longer preferred the flavour previously associated with feeding larvae. This suggests that social learning in this context is indirect, as a result of strong social attraction biasing experience.
Aharon, Yael; Pasternak, Zohar; Ben Yosef, Michael; Behar, Adi; Lauzon, Carol; Yuval, Boaz
2013-01-01
The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping “core” diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers. PMID:23104413
Janisiewicz, W. J.; Conway, W. S.; Brown, M. W.; Sapers, G. M.; Fratamico, P.; Buchanan, R. L.
1999-01-01
Pathogenic Escherichia coli O157:H7, as well as nonpathogenic strains ATCC 11775 and ATCC 23716, grew exponentially in wounds on Golden Delicious apple fruit. The exponential growth occurred over a longer time period on fruit inoculated with a lower concentration of the bacterium than on fruit inoculated with a higher concentration. The bacterium reached the maximum population supported in the wounds regardless of the initial inoculum concentrations. Populations of E. coli O157:H7 in various concentrations of sterilized apple juice and unsterilized cider declined over time and declined more quickly in diluted juice and cider. The decline was greater in the unsterilized cider than in juice, which may have resulted from the interaction of E. coli O157:H7 with natural populations of yeasts that increased with time. Experiments on the transmission of E. coli by fruit flies, collected from a compost pile of decaying apples and peaches, were conducted with strain F-11775, a fluorescent transformant of nonpathogenic E. coli ATCC 11775. Fruit flies were easily contaminated externally and internally with E. coli F-11775 after contact with the bacterium source. The flies transmitted this bacterium to uncontaminated apple wounds, resulting in a high incidence of contaminated wounds. Populations of the bacterium in apple wounds increased significantly during the first 48 h after transmission. Further studies under commercial conditions are necessary to confirm these findings. PMID:9872751
Rodríguez-Pérez, Mario A; Garza-Hernández, Javier A; Salinas-Carmona, Mario C; Fernández-Salas, Ildefonso; Reyes-Villanueva, Filiberto; Real-Najarro, Olga; Cupp, Eddie W; Unnasch, Thomas R
2017-07-01
The Esperanza Window Trap (EWT) baited with CO2 and human sweat compounds is attractive to Simulium ochraceum s.l., the primary vector of Onchocerca volvulus in the historically largest endemic foci in México and Guatemala. The ability of the EWT to locally reduce numbers of questing S. ochraceum s.l. was evaluated in two formerly onchocerciasis endemic communities in Southern México. At each community, two EWTs were placed in or near a school or household and flies were collected sequentially for a total of 10 days. Black fly collections were then carried out for an additional 10 days in the absence of the EWTs. Flies were also collected outside the dwellings to control for variations in the local fly populations. When the EWTs were present, there was a significant reduction in the human biting rate at both the household and school locations at collection sites, with a greater effect observed in the schools. These results indicate that the EWTs not only have potential as a black fly monitoring tool but may be used for reducing personal exposure to fly bites in Mesoamerica.
Mass rearing of Lucilia sericata Meigen (Diptera: Calliphoridae)
Firoozfar, F; Moosa-Kazemi, H; Baniardalani, M; Abolhassani, M; Khoobdel, M; Rafinejd, J
2011-01-01
Objective To carry out an experimental study with the main objective of mass rearing of sheep flies (Lucilia sericata). Methods Hand collection and beef- or cattle liver-baited net traps were used for field fly sampling from April, 2010 to November, 2010. The samples collected from different places were placed in properly labeled tubes and sent to the Entomology Laboratory. Since maggot identification is important in inducing mortality, they were kept under insectary condition to develop to adult stage and identified using systematic keys. Results A total of 218 flies were collected in three rounds of sampling from the field of Tehran and Karaj Counties. In the first generation, 433 flies including 135 (31.17%) male, and 298 (68.82%) female were yielded. The female/male of parent ratio was calculated as 1.72 in Tehran and in Karaj areas, whereas it was 2.20% and 1.81%, respectively in F1 and F2 generations, respectively. Conclusions During this study, the mass rearing of sheep blow fly has been established at the School of Public Health, Tehran University of Medical Sciences and can be used for producing flies for maggot therapy. PMID:23569725
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) frauenfeldi (Schiner, 1868), commonly known as the mango fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Although, to date, the USDA PestID has no i...
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) albistrigata (de Meijere, 1911), commonly known as the white striped fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). While considered an obscure min...
USDA-ARS?s Scientific Manuscript database
MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...
USDA-ARS?s Scientific Manuscript database
Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies, but is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum®, Force®, Admire®, Regent®, and Warrior® was estimated after applica...
USDA-ARS?s Scientific Manuscript database
We report the stable genetic transformation of the Queensland fruit fly Bactrocera tryoni using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP.A transformation frequency of 5–10% was obtained.Inheritance of the transgenes has remained stable over eight generations despite...
USDA-ARS?s Scientific Manuscript database
The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...
USDA-ARS?s Scientific Manuscript database
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alp...
2017-05-25
Scientists study how astronauts are affected by microgravity, but with a relatively small number of human subjects available to them, they often turn to model organisms for research. Model organisms are living organisms that have a genetic makeup that is relatively well-documented and understood, and is similar to human systems. Fruit flies are reliable model organisms because their systems closely resemble that of larger organisms. They have the benefit of being small in size, well understood, and reproduce quickly so many generations can be studied in a short amount of time. Some of the things we can study using fruit flies are how microgravity affects the immune system. Will the muscle cells of the heart lose strength in microgravity? Are reproduction, lifespan and the aging process affected by microgravity? Do changes in gravity affect the basic metabolic rate and metabolism of living systems? Fruit flies offer a manageable way to study living systems in microgravity. Learn more about other model organisms and how they are being used for microgravity research, and keep up with all the science being conducted aboard your orbiting laboratory by visiting ISS Research Overview on nasa.gov http://www.twitter.com/ISS_Research
Montoya, Pablo; Pérez-Lachaud, Gabriela; Liedo, Pablo
2012-01-01
Superparasitism, a strategy in which a female lays eggs in/on a previously parasitized host, was attributed in the past to the inability of females to discriminate between parasitized and non-parasitized hosts. However, superparasitism is now accepted as an adaptive strategy under specific conditions. In fruit fly parasitoids, superparasitism has mainly been studied as concerns the new association between Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) and the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae), wherein this phenomenon is a common occurrence in both mass rearing and field conditions. Studies of this species have shown that moderate levels of superparasitism result in a female-biased sex ratio and that both massreared and wild females superparasitize their hosts without detrimental effects on offspring demographic parameters, including longevity and fecundity. These studies suggest that superparasitism in this species is advantageous. In this paper, we review superparasitism in D. longicaudata, discuss these findings in the context of mass rearing and field releases and address the possible implications of superparasitism in programs employing augmentative releases of parasitoids for the control of fruit fly pests. PMID:26466718
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Platform used by astronauts to change out old food trays with new food trays in space to facilitate culturing new flies.
Linn, Charles E; Yee, Wee L; Sim, Sheina B; Cha, Dong H; Powell, Thomas H Q; Goughnour, Robert B; Feder, Jeffrey L
2012-11-01
The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind-directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles
Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai
2010-01-01
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789
Barreto, M; Burbano, M E; Barreto, P
2000-01-01
A total of 4,840 phlebotomine sand flies from 54 localities in Putumayo department (=state), in the Colombian Amazon region, were collected in Shannon traps, CDC light traps, resting places and from human baits. At least 42 Lutzomyia species were registered for the first time to the department. Psychodopygus and Nyssomyia were the subgenera with the greatest number of taxa, the most common species being L. (N.) yuilli and L. (N.) pajoti. They were sympatric in a wide zone of Putumayo, indicating that they should be treated as full species (new status). Among the anthropophilic sand flies, L. gomezi and L. yuilli were found in intradomiciliar, peridomestic, urban or forest habitats. L. richardwardi, L. claustrei, L. nocticola and L. micropyga are reported for the first time in the Colombian Amazon basin. L. pajoti, L. sipani and L. yucumensis are new records for Colombia.
USDA-ARS?s Scientific Manuscript database
Drosophila suzukii has become a major pest of fruit crops, including cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in ...
USDA-ARS?s Scientific Manuscript database
We found that captures of the invasive brown marmorated stink bug, Halyomorpha halys (Stal), were significantly greater in pyramid traps baited with the known attractant, methyl (2E,4E,6Z)-decatrienoate, compared with unbaited traps. A dose-dependent response by adults to lures formulated with incr...
USDA-ARS?s Scientific Manuscript database
In a sampling of untreated embryos of Mexican fruit fly, Anastrepha ludens, the cumulative hatch percentage was 84.77±7.8% of which ~70% of the larvae eclosed through the posterior pole of the egg. This is due to an unusual and seemingly energy demanding act of flipping of the fully developed pre-ha...
Chang, Chiou Ling
2017-08-01
Sterile insect technique (SIT) is one of the most effective fruit fly control technologies. Irradiation has been used to sterilize male fruit flies before release to the field to compete with the wild males for females. Imagine an environmental and cost effective method using a rearing diet that can make insects sterile indefinitely, by feeding for 7days before release. This could replace costly irradiation process. A potential birth control diet was evaluated on fertility, mating, survival, and protein analysis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron (LFN) for 7d after emergence and then switched to a control diet to simulate the actual field condition. The influence on egg hatch was dose dependent. With dose of 2-4mg/g in the diet, egg hatch from LFN-fed was almost 100% suppressed for 24 experimental days if adults of Ceratitia capitate (Widemann), Bactrocera dorsalis (Hendel), and B. latifrons (Hendel) continued to feed on LFN diet. B. cucurbitae (Coquillett) was not affected by LFN. However, egg hatch from LFN fed B. latifrons and B. dorsalis were suppressed for at least 2weeks after switching to the control diet at 7d. Egg hatch did not recover >4% up to 24d. Proteome analysis revealed that ABD-4 protein was under expressed by 70-83% on LFN fed females and males of B. latifrons and B. dorsalis while Pbprp2 protein was significantly over expressed by 6-12 fold on LFN fed males only. These two proteins were not expressed in C. capitata and B. cucurbitae. Therefore, this report focused more on B. latifrons and B. dorsalis. This finding suggested a great potential for one alternative to sterilize fruit flies for SIT without irradiation. Published by Elsevier Inc.
Rombauts, Stephane; Chrisargiris, Antonis; Van Leeuwen, Thomas; Vontas, John
2013-01-01
The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology. PMID:23824998
Replication and characterization of the compound eye of a fruit fly for imaging purpose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hefu; University of Chinese Academy of Sciences, Beijing 10039; Gong, Xianwei
In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicatedmore » polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.« less
At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango
Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas
2017-01-01
Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561
Nocturnal colonization behavior of blowflies (Diptera: Calliphoridae) in southeastern Australia.
George, Kelly A; Archer, Melanie S; Toop, Tes
2013-01-01
Worldwide research into nocturnal colonization by blowflies has produced many contradictory findings, prompting investigation specific to southeastern Australia. Initial experiments showed that blowfly colonization begins shortly after sunrise and continues until sunset; nocturnal colonization never occurred. Colonization peaks occurred at mid-morning, midday, and in the hours preceding sunset. In an additional experiment, wild blowflies were captured and placed in cages with colonization medium supplied nocturnally. Colonization occurred on four of five nights, and Calliphora augur (Fabricius) (Diptera: Calliphoridae) was the main species colonizing baits nocturnally. Results suggest that colonization is most likely to occur during warm weather and when flies are able to walk or crawl to bait. In particular, blowflies trapped within a confined space (such as a room or car) with warmer-than-ambient temperature may be stimulated to colonize nearby remains. Entomologists should consider these findings when estimating minimum postmortem interval under these environmental conditions. © 2012 American Academy of Forensic Sciences.
Mulieri, P R; Olea, M S; Patitucci, L D; Battán-Horenstein, M
2018-06-07
Abundance of sarcosaprophagous Calyptratae species was monitored by using baited traps and active captures with hand net. Analysis of field data collected in three protected areas in the Valdivian temperate forest of South America (Lanín National Park, Lago Puelo National Park, and Los Alerces National Park) indicated that bottle traps baited with putrescine is a reliable method to estimate local abundance of sarcosaprophagous species by comparison to the active capture method. Also, we describe and compare general patterns of sex bias for four dominant species: Sarconesia magellanica (Le Guillou), Calliphora vicina Robineau-Desvoidy, Microcerella spinigena (Rondani), and Oxysarcodexia varia (Walker). From these analyses, it can be concluded that abundance fluctuations of flies showed significant relationship between the sampling methods. This study showed that besides the expected interspecific differences in trapping efficiency, there are acute intraspecific differences of sex ratios between sampling methods.
Automated Surveillance of Fruit Flies
Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros
2017-01-01
Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346
Rehman, Junaid Ur; Wang, Xin-Geng; Johnson, Marshall W; Daane, Kent M; Jilani, Ghulam; Khan, Mir A; Zalom, Frank G
2009-12-01
Peganum harmala L. (Zygophyllaceae) is an herb native to arid and semiarid regions of Central Asian deserts. This study investigated the effects of ethanol extracts of P. harmala seeds on the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), i.e., adult repellency, reproductive activity, and larval growth, as well as parasitism levels by Psyttalia concolor (Szépligeti). Olive fruit treated with 2% extract reduced B. oleae oviposition. In choice tests, female B. oleae spent >99% of their time foraging on untreated fruit rather than P. harmala-treated fruit. These changes in ovipositional behavior resulted in a nearly 30-fold decrease in oviposition marks on treated fruit compared with untreated fruit during a 48 h exposure period. When female B. oleae were fed liquid diet containing 0.2% P. harmala extract, there was no effect on the number of ovipositional marks on exposed fruit, but up to 21.4% of the deposited eggs were deformed. SDS-polyacrylamide gel electrophoresis analyses of deformed eggs revealed that some protein bands were missing. Consequently, the number of offspring produced by treated females was lower than by untreated females. Neither the sex ratio nor body size of the fly's offspring were affected by adults fed diet containing 0.2% P. harmala extract. However, there was a slightly prolonged developmental time from egg to adult. Parasitism of larval B. oleae by P. concolor was not affected by infested fruit treatment with 2% P. harmala extract. P. harmala extracts as a potential control for insect pest species are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Irradiation treatment of regulated fruit to be moved... PHYTOSANITARY TREATMENTS Irradiation Treatments § 305.32 Irradiation treatment of regulated fruit to be moved interstate from areas quarantined for fruit flies. Irradiation, carried out in accordance with the provisions...
The Hungry Fly: Hydrodynamics of feeding in the common house fly
NASA Astrophysics Data System (ADS)
Prakash, Manu; Steele, Miles
2010-11-01
A large number of insect species feed primarily on a fluid diet. To do so, they must overcome the numerous challenges that arise in the design of high-efficiency, miniature pumps. Although the morphology of insect feeding structures has been described for decades, their dynamics remain largely unknown even in the most well studied species (e.g. fruit fly). Here, we use invivo imaging and microsurgery to elucidate the design principles of feeding structures of the common house fly. Using high-resolution X-ray microscopy, we record invivo flow of sucrose solutions through the body over many hours during fly feeding. Borrowing from microsurgery techniques common in neurophysiology, we are able to perturb the pump to a stall position and thus evaluate function under load conditions. Furthermore, fluid viscosity-dependent feedback is observed for optimal pump performance. As the gut of the fly starts to fill up, feedback from the stretch receptors in the cuticle dictates the effective flow rate. Finally, via comparative analysis between the house fly, blow fly, fruit fly and bumble bees, we highlight the common design principles and the role of interfacial phenomena in feeding.
Green, T A; Prokopy, R J; Hosmer, D W
1994-09-01
Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree.
Robie, Alice A.; Straw, Andrew D.; Dickinson, Michael H.
2010-01-01
Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects. PMID:20581279
Toyama, Masatoshi; Kishimoto, Hidenari; Mishiro, Koji; Nakano, Ryo; Ihara, Fumio
2015-10-01
The brown-winged green bug, Plautia stali Scott, mainly reproduces on Japanese cedar or cypress cones in Japanese plantation forests during summer and autumn. It often depletes its food sources in forest habitats and moves to cultivated crops in large numbers. To establish an easy method for assessing the risk of fruit orchard infestation by P. stali, we conducted a 3-yr field survey that monitored the attraction of bugs to the synthetic P. stali aggregation pheromone using a sticky trap. We used a morphological indicator, variable body size depending on food intake, to estimate the nutritional status in nymphs, which showed that nymphs attracted to the synthetic pheromone were starving. Comparisons between increasing changes in the number of stylet sheaths left on the cones by P. stali and the number of trapped nymphs show that monitoring nymphs with the pheromone-baited sticky trap is useful for inferring conditions regarding food resources in forest habitats. The trend toward trapping second instars can provide a timely overview of resource competition for cones. Trapping middle-to-late (third-fifth) instars is a warning that the cones are finally depleted and that there is a high probability that adults will leave the forests and invade the orchards. In addition, trends in trapping adults suggest that there is a potential risk of orchard infestation by the pest and predict the intensity and period of the invasion. The pheromone-baited sticky trap is an easy but useful survey tool for predicting P. stali orchard infestations. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C
2017-04-01
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.
Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique.
Hernández, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo
2010-01-01
We evaluated three packing systems (PARC boxes, "GT" screen towers and "MX" screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fly densities (1, 1.2 and 1.3 fly/cm²) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb® and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb® and SPCP food types, and for females with Mb® powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fly sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fly species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs.
Sharififard, M; Mossadegh, MS; Vazirianzadeh, B; Zarei-Mahmoudabadi, A
2011-01-01
Background: Metarhizium anisopliae strain IRAN 437C is one of the most virulent fungal isolates against house fly, Musca domestica. The objective of this study was to determine the interaction of this isolate with sublethal doses of spinosad against housefly. Methods: In adult bioassay, conidia of entomopathogenic fungus were applied as inoculated bait at 105 and 107 spore per gram and spinosad at 0.5, 1 and 1.5 μg (A.I.) per gram bait. In larval bioassay, conidia were applied as combination of spore with larval bedding at 106 and 108 spore per gram and spinosad at sublethals of 0.002, 0.004 and 0.006 μg (AI) per gram medium. Results: Adult mortality was 48% and 72% for fungus alone but ranged from 66–87% and 89–95% in combination treatments of 105 and 107 spore/g with sublethal doses of spinosad respectively. The interaction between 105 spore/g with sublethals exhibited synergistic effect, but in combination of 107 spore in spite of higher mortality, the interaction was additive. There was significant difference in LT50 among various treatments. LT50 values in all combination treatments were smaller than LT50 values in alone ones. Larval mortality was 36% and 69% for fungus alone but ranged from 58%–78% and 81%–100% in combination treatments of 106 and 108 spore/g medium with sublethals of spinosad respectively. The interaction was synergistic in all combination treatments of larvae. Conclusion: The interaction between M. anispliae and spinosad indicated a synergetic effect that increased the house fly mortality as well as reduced the lethal time. PMID:22808408
Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David
2015-01-01
Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332
Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Méndez-Villarreal, Agustín; Guzmán, Miguel; Vandame, Rémy; Sánchez, Daniel
2018-06-02
Despite their relevant contribution to the conservation of tropical ecosystems and crop productivity through pollination, the stingless bees (Apidae: Meliponini) can be considered a group of neglected species in the assessment of pesticides upon nontarget organisms. In this article, we evaluated the effect of aerial sprays of the spinosad-based fruit fly toxic bait GF-120 upon colonies of the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera: Apidae), an economically important and abundant species in some landscapes of Mexico, located in mango orchards. Colonies of the honey bee Apis mellifera L. (Hymenoptera: Apidae) were used for comparison. Eight colonies (four of A. mellifera and four of S. mexicana) were moved into each of two mango orchards, one was used as a control, with no insecticide application, and other received five weekly aerial sprays of GF-120. Foraging activity and strength of colonies of both species were measured nine times over the fruiting season, previous, during and after insecticide application. We did not find a significant difference in foraging activity and strength between exposed and control colonies of A. mellifera during the observation period. However, colonies of S. mexicana seemed to be affected by the exposure, as revealed by a reduction in colony strength. However, 1 yr later, with no insecticide applications, the colonies of both species were evaluated and found to be in good conditions. Our results showed that weekly aerial sprays of GF-120 are unlikely to generate acute poisoning in both species, even if in acute toxicity tests this product has been found to be highly active.
USDA-ARS?s Scientific Manuscript database
The brown marmorated stink bug, Halyomorpha halys, is an invasive insect in the United States that is capable of inflicting significant yield losses for fruit, vegetable, and soybean growers. Recently, a male-produced aggregation pheromone of H. halys was identified as a 3.5:1 mixture of (3S,6S,7R,...
USDA-ARS?s Scientific Manuscript database
Four commercial orchards in the mid-Atlantic region of the United States were surveyed weekly in 2010 and 2011 for the presence of brown marmorated stink bug and the injury caused to both apple and peaches. Among tested sampling techniques, baited pyramid traps yielded the most brown marmorated sti...
Jansen, R. L. M.; Brogan, B.; Whitworth, A. J.; Okello, E. J.
2015-01-01
Current conventional treatments for Parkinson’s disease (PD) are aimed at symptom management, as there is currently no known cure or treatment that can slow down its progression. Ayurveda, the ancient medical system of India, uses a combination of herbs to combat the disease. Herbs commonly used for this purpose are Zandopa (containing Mucuna pruriens), Withania somnifera, Centella asiatica, Sida cordifolia and Bacopa monnieri. In this study, these herbs were tested for their potential ability to improve climbing ability of a fruit fly (Drosophila melanogaster) PD model based on loss of function of phosphatase and tensin-induced putative kinase 1 (PINK1). Fruit flies were cultured on food containing individual herbs or herbal formulations, a combination of all five herbs, levodopa (positive control) or no treatment (negative control). Tests were performed in both PINK1 mutant flies and healthy wild-type (WT) flies. A significant improvement in climbing ability was observed in flies treated with B. monnieri compared with untreated PINK1 mutant flies. However, a significant decrease in climbing ability was observed in WT flies for the same herb. Centella asiatica also significantly decreased climbing ability in WT flies. No significant effects were observed with any of the other herbs in either PINK1 or WT flies compared with untreated flies. PMID:25091506
Wee, S L; Abdul Munir, M Z; Hee, A K W
2018-02-01
The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.
Packing of Fruit Fly Parasitoids for Augmentative Releases
Montoya, Pablo; Cancino, Jorge; Ruiz, Lía
2012-01-01
The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634
2008-06-01
pyriproxyfen, the most powerful insect growth regulator (IGR), against dengue vector mosquitoes. In the Peruvian Amazon community at Iquitos, Stancil42 (Naval...Medical Research Center Detachment, Peru ) received a grant to optimize strategies for preventing the breeding of Aedes aegypti mosquitoes in...effort to prevent sand flies breeding in rodent burrows, the Genesis Company (Wellington, Colorado) won an award for producing insecticidal baits that
78 FR 79634 - Importation of Fresh Blueberry Fruit From Morocco Into the Continental United States
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...: Ceratitis capitata, the Mediterranean fruit fly, and the fungus Monilinia fructigena Honey ex Whetzel. (a...-0016] RIN 0579-AD81 Importation of Fresh Blueberry Fruit From Morocco Into the Continental United... proposing to amend the regulations concerning the importation of fruits and vegetables to allow the...
USDA-ARS?s Scientific Manuscript database
Cultivated olive fruit are greatly enlarged as a result of domestication. In this study, we examined the effects of fruit size within a cultivar (Sevillano) and across four different-sized cultivars (in order of decreasing size: Sevillano, Ascolano, Manzanillo, and Mission) grown in California on th...
Vargas, Roger I; Long, Jay; Miller, Neil W; Delate, Kathleen; Jackson, Charles G; Uchida, Grant K; Bautista, Renato C; Harris, Ernie J
2004-10-01
Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii.
García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio
2015-01-01
We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596
McQuate, Grant T.; Teruya, Tadashi
2015-01-01
Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae). PMID:26816487
NECTARINE PROMOTES LONGEVITY IN DROSOPHILA MELANOGASTER
Boyd, Olga; Weng, Peter; Sun, Xiaoping; Alberico, Thomas; Laslo, Mara; Obenland, David M.; Kern, Bradley; Zou, Sige
2011-01-01
Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and healthspan. However, few fruits are known to improve the survival and healthspan in animals, let alone the underlying mechanisms. Here we investigate the effect of nectarine, a globally consumed fruit, on lifespan and healthspan in Drosophila melanogaster. Wild-type flies were fed the standard, dietary restriction (DR) or high fat diets supplemented with 0–4% nectarine extract. We measured lifespan, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-Hydroxynonenal-protein adduct in these flies. We also measured lifespan, locomotor activity and oxidative damage of sod1 mutant flies on the standard diet supplemented with 0–4% nectarine. Supplementation of 4% nectarine extended lifespan, increased fecundity and decreased expression of some metabolic genes, including a key gluconeogenesis gene PEPCK, and oxidative stress response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR or high fat diet. Nectarine reduced oxidative damage in wild-type females fed the high fat diet. Moreover, nectarine improved the survival and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and healthspan partly through modulating glucose metabolism and reducing oxidative damage. PMID:21406223
Development of diet-induced insulin resistance in adult Drosophila melanogaster
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.
2013-01-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511
Can ménage-a-trois be used for controlling insects?
Suckling, D M; Jang, E B; Carvalho, L A; Nagata, J T; Schneider, E L; El-Sayed, A M
2007-08-01
We propose a new cross-species disruption approach that might be capable of interrupting mating of one species that uses another insect species as the mercenary agent. We argue that insects treated with a sufficiently powerful attractant for a second species might interfere with mating of one or both species, for example, by leading males astray in pursuit of the false trails created by suitably dosing individuals of the first species. Our reciprocal test systems used (1) methyl eugenol, an attractant for male oriental fruit flies (Bactrocera dorsalis), applied to melon flies (B. cucurbitae) and (2) cuelure, a lure for male melon flies, applied to B. dorsalis. There was no mortality 1 week after either attractant was applied to individual flies at doses up to 100 ng, which was effective in attracting insects in a field cage and in the field. In wind tunnel choice tests, 100 ng of either lure topically applied to tethered flies attracted fruit fly males of the second species, which exhibited prolonged bouts of physically disruptive behaviors including chasing and bumping. In small cages, treatment of males did not reduce mating of either species, with one group of three (ménage) per cage. However, in large field cages with multiple pairs of both species present, there was a significant reduction in the mating of melon flies resulting from methyl eugenol applied to males compared to untreated controls. The treatment of oriental fruit flies with cuelure also reduced their mating to a lesser extent. These results do not yet provide the practical proof of this new concept for pest management, but other model systems may be more appropriate. This work is novel in presenting attractants on a moving target, in this case, another insect species.
Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy
NASA Astrophysics Data System (ADS)
Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan
2008-02-01
The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.
Long-Term Functional Side-Effects of Stimulants and Sedatives in Drosophila melanogaster
Matsagas, Kennedy; Lim, David B.; Horwitz, Marc; Rizza, Cristina L.; Mueller, Laurence D.; Villeponteau, Bryant; Rose, Michael R.
2009-01-01
Background Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs. Methodology/Principal Findings Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers. Conclusions Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply to human subjects, and we thus do not recommend the use of any one substance over any other. PMID:19668379
The miniature parachute of the dandelion fruit
NASA Astrophysics Data System (ADS)
Cummins, Cathal; Viola, Ignazio Maria; Seale, Madeleine; Mastropaolo, Enrico; Nakayama, Naomi
2017-11-01
At the low Reynolds number at which small plant fruit (the seed-bearing structure in flowering plants) fly, there are a variety of modes of flight available: from parachuting to gliding and autorotation. Here we will explore the aerodynamics of small plumed fruit (dandelions) that utilise the parachuting mode of flight. If a parachute-type fruit is picked up by the breeze, it can be carried over formidable distances. Incredibly, these parachutes are mostly empty space, yet they are effectively impervious to the airflow as they descend. In addition, the fruit can become more or less streamlined depending on the environmental conditions. In this talk, we will present results from our numerical and physical modelling that clarify how these tiny parachutes achieve such impermeability despite their high porosity. We reveal that the dandelion's parachute tunes its permeability to achieve the aerodynamic stability as it flies, which helps confer the fruit's incredible flight capacity. This work was supported by the Leverhulme Trust [RPG-2015-255].
Code of Federal Regulations, 2012 CFR
2012-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Wee, Suk-Ling; Peek, Thelma; Clarke, Anthony R
2018-06-08
The males of different species of Bactrocera and Zeugodacus fruit flies are commonly attracted to plant-derived phenylpropanoids (e.g. methyl eugenol (ME)) or phenylbutanoids (e.g. raspberry ketone (RK)) but almost never to both. However, one particular plant-derived phenylbutanoid, zingerone (ZN), which possesses an intermediate chemical structure between ME and RK, weakly attracts both ME- and RK-responding fruit fly species. Bactrocera jarvisi, an Australian fruit fly species, is weakly attracted to cue lure (an analogue of RK) but strongly attracted to ZN. Here, we investigated the minimum olfactory threshold and optimum sensitivity of B. jarvisi males to ZN and RK as a function of dose, time and sexual maturation. Our results show that B. jarvisi males had a marked preferential response to ZN, with a much lower olfactory threshold and faster response time to ZN than RK. Probit analysis demonstrated that ZN was at least >1600× more potent than RK as a male attractant to B. jarvisi. Although fruit fly male attraction to the phytochemicals is generally associated with sexual maturity, in B. jarvisi immature males were also attracted to ZN. Our results suggest that B. jarvisi males have a fine-tuned olfactory response to ZN, which appears to play a central role in the chemical ecology of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Líznarová, Eva; Pekár, Stano
2016-10-01
Trophic specialists are expected to possess adaptations that increase the efficiency of handling preferred prey. Such adaptations may constrain the ability to utilise alternative prey. Here we tested whether the ant-eating spider Euryopis episinoides possesses metabolic specialisations with increased efficiency in utilising preferred prey and decreased efficiency in utilising alternative prey. In addition, we investigated the contribution of genetic variation via maternal effects. We reared E. episinoides spiders from the first instar on two different diets, either ants (preferred prey) or fruit flies (alternative prey). Spider survival rate and increases in body mass were significantly higher on the ant diet. The total development time did not differ between diet groups, nor did the number of egg sacs per female or the incubation period. However, the number of eggs per egg sac and hatching success were higher on the ant diet. There was a genetic variation in several offspring traits. Our data support the hypothesis that stenophagous ant-eating E. episinoides have a metabolic specialisation on ant utilisation indicated by higher efficiency in utilising ants than fruit flies. While most individuals of E. episinoides were able to capture fruit flies, only very few spiders were able to develop and reproduce on a pure fruit fly diet, suggesting the existence of within-species genetic variation regarding the tolerance to alternative prey. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.
Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A
2017-02-01
Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The ecological role of ants in two Mexican agroecosystems.
Risch, Stephen J; Carroll, C Ronald
1982-10-01
The development of the ant communities and their foraging dynamics were studied in two annual agroecosystems of the Mexican tropical lowlands: a "forest milpa" of corn, beans, and squash made by cutting and buring 40-year-old forest, and a "field milpa" of corn, beans, and squash made by plowing 1-year-old second growth. The ant community was sampled using tuna fish baits 26, 52, 110 and 353 days after planting. Although immediately after planting the same number of ant species occurred in each milpa type, thereafter the ant faunas diverged. The field milpa became completely dominated by the native fire ant, Solenopsis geminata, while the number of ant species in the forest milpa gradually increased over time, reaching eight species 110 days after planting and 14 species by 353 days. Initially S. geminata dominated the ant fauna in the forest milpa (occurring on 90% of the baits), but by 353 days planting it was found on only 26% of the occupied baits. Ant foraging efficiency, as measured by proportion of tuna baits occupied and the removal rates of dead Drosophila fly baits, was much higher (by a factor of 2 to 3) in the field than the forest milpa. This was caused by the extremely high density of S. geminata colonies in the field milpa. The simple Solenopsis-dominated community of the field milpa may be much more effective in biological control than the more diverse community of the forest milpa. Although S. geminata has potential negative impacts in annual agroecosystems (it stings, eats corn seeds, and guards homopterams), its overall impact appears to be beneficial. As forested areas of the lowland wet tropics are increasingly cut and converted to annual agriculture, the primary ant inhabitant of these highly disturbed environments, S. geminata, will necessarily play a much more significant ecological role in agroecosystems.
Deutscher, Ania T; Burke, Catherine M; Darling, Aaron E; Riegler, Markus; Reynolds, Olivia L; Chapman, Toni A
2018-05-05
Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.
Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J
2018-05-21
Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.
Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills.
Israely, Nimrod; Ritte, Uzi; Oman, Samuel D
2004-02-01
The overwintering potential of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in cold winter areas within its northern distribution is a key element in understanding its ecology. Recent studies have suggested that although originating in tropical Africa, the fly has become adapted to the cold weather that prevails within its northernmost areas of distribution. We address the question of whether the Mediterranean fruit fly has expanded its overwintering range to include the mountains of central Israel. Doing so would imply that the fly has developed either a behavioral or a physiological mechanism to cope with low temperature and/or damp conditions in combination with cold. We monitored adult populations year round, sampling fruit, calculating expected emergence days for overwintering flies, and studying adults captured within dense and sparse apple orchards. We also performed several manipulative experiments to study preimago ability to survive the winter under natural or seminatural conditions. The study was conducted in the central mountains of Israel at 700-m altitude from 1994 to 2003. Comparison experiments also were conducted at 400 m and at sea level. Our results show 1) no adults captured during the winter and spring, 2) an absence of new infestations during the winter and spring, and 3) inability of preimago stages to overwinter in the central mountains of Israel. Thus, we conclude that the fly does not overwinter in the central mountains of Israel. We discuss the ecological and applied significance of our findings.
Sinakevitch, Irina T.; Smith, Adrian N.; Locatelli, Fernando; Huerta, Ramon; Bazhenov, Maxim; Smith, Brian H.
2013-01-01
Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. PMID:24187534
Factors affecting the efficacy of a vinegar trap for Drosophila suzukii (Diptera: Drosophilidae)
USDA-ARS?s Scientific Manuscript database
Studies were conducted to develop an optimized, economical trap for monitoring the spotted wing fruit fly, Drosophila suzukii Matsumura. Flies were attracted to dark colors ranging from red to black compared with low attraction to white, yellow, and light blue. Similarly, fly catches in 237 ml plast...
Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila
Bartussek, Jan; Mutlu, A. Kadir; Zapotocky, Martin; Fry, Steven N.
2013-01-01
In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's ‘gyroscopic’ organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator. PMID:23282849
Sivankalyani, Velu; Feygenberg, Oleg; Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam
2015-01-01
Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars 'Hass' and 'Ettinger' for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect 'Hass' and 'Ettinger' avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine.
Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam
2015-01-01
Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars ‘Hass’ and ‘Ettinger’ for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect ‘Hass’ and ‘Ettinger’ avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine. PMID:26501421
Villagrán, M Elvira; Willink, Eduardo; Vera, M Teresa; Follett, Peter
2012-08-01
Argentina has to meet quarantine restrictions because of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), to export 'Hass' avocados, Persea americana Miller, to certain countries. Hass avocado at the hard, mature green stage is potentially a conditional nonhost for C. capitata and could open export markets without the need for a quarantine treatment. Trapping data from 1998 to 2006 showed that C. capitata was present in avocado orchards, particularly early in the harvest season. The host status of hard, mature green Hass avocado to C. capitata was evaluated using laboratory and field cage tests under no-choice conditions and by assessing natural levels of infestation in commercially harvested fruit from the main avocado production area. In total, 2,250 hard, mature green avocado fruit were exposed to 11,250 gravid females for 24 or 48 h after harvest in laboratory or field cages, and no infestations were found. During 11 seasons, 5,949 fruit in total were sampled from the trees and 992 fruit were collected from the ground, and in none of them were any live or dead fruit fly larvae found. Inspection of >198,000 commercial fruit at the packinghouse from 1998 to 2011 showed no symptoms of fruit fly infestation. These data exceed the published standards for determination of nonhost status, as well as the Probit 9 standard for development of quarantine treatments. Hass avocado harvested at the hard, mature green stage was not infested by C. capitata and seems to pose a negligible quarantine risk. As a consequence, no postharvest treatment or other quarantine actions should be required by importing countries.
2006-06-05
Sharmila Bhattacharya is the principal investigator for the STS-121 space shuttle flight experiment, Fly Immunity and Tumors (FIT). She is shown here viewing Drosophila (fruit fly) inside inscet containers used during flight. Living quarters for insects.
2006-06-05
Sharmila Bhattacharya is the principal investigator for the STS-121 space shuttle flight experiment, Fly Immunity and Tumors (FIT). She is shown here viewing Drosophila (fruit fly) inside inscet containers used during flight. Living quarters for insects.
Phytosanitary cold treatment for oranges infested with Bactrocera zonata (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
The peach fruit fly, Bactrocera zonata (Saunders), attacks a wide range of tree fruits in countries from Egypt to Vietnam and is occasionally trapped in the US. Phytosanitary treatments are required to export fruit hosts of this insect from infested countries to non-infested countries where it might...
Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.
Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas
2013-11-01
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.
Development of diet-induced insulin resistance in adult Drosophila melanogaster.
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H
2012-08-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.
Travi, B L; Montoya, J; Gallego, J; Jaramillo, C; Llano, R; Velez, I D
1996-05-01
The feeding behavior, seasonality, and natural infection rate of Lutzomyia evansi (Nuñez-Tovar) with Leishmania chagasi (Cuna & Chagas) was studied during a 12-mo period at 2 hamlets, El Contento and Vidales. Sand fly abundance in extra-, peri-, and intradomestic habitats was evaluated with sticky traps and CDC light traps, whereas human bait and Shannon trap collections were made only in peridomestic habitats. All trapping methods showed a clear predominance of L. evansi throughout the year. Sand flies were present during most of the year, with the exception of the driest months (February and March). Although the total number of sand flies was higher in El Contento than in Vidales, a larger proportion of L. evansi was found in intradomestic habitat than in the peri- and extradomestic habitats at Vidales. Also, sand flies from Vidales had a higher infection rate with L. chagasi than did those from El Contento. Although 2 of 9 promastigote infections detected in L. evansi were identified as L. chagasi, the difficulty of isolating and propagating leishmania strains from this visceral leishmaniasis focus precluded characterization of most parasite samples. Parous and infected sand flies were most abundant toward the end of the rainy season (October-December). For this reason, control strategies based on reducing sand fly populations or avoiding human-vector contact should be concentrated during the October-December period.
Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A
2015-12-01
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.
Vargas, Roger I; Mau, Ronald F L; Stark, John D; Piñero, Jaime C; Leblanc, Luc; Souder, Steven K
2010-04-01
Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In low-density areas, standard Jackson traps or Hawaii Fruit Fly Areawide Pest Management (AWPM) traps with FT Mallet ME wafers impregnated with dimethyl dichloro-vinyl phosphate (DDVP) or AWPM traps with Scentry ME cones and vapor tape performed equally as well as standard Jackson traps with liquid ME/C-L and naled. Standard Jackson traps or AWPM traps with FT Mallet C-L wafers impregnated with DDVP or AWPM traps with Scentry C-L plugs with vapor tape performed equally as well as standard Jackson traps with a lure-naled solution. In high density areas, captures with traps containing FT Mallet wafers (ME and C-L) outperformed AWPM traps with Scentry cones and plugs (ME and C-L) with DDVP insecticidal strips over a 6-mo period. Captures of B. dorsalis and B. cucurbitae with wafers containing both ME and raspberry ketone (FT Mallet MC) were equivalent to those containing separate lures. From a worker safety and convenience standpoint, FT Mallet ME and C-L wafers with DDVP or Scentry plugs, with or without DDVP vapor tape, are more convenient and safer to handle than standard liquid insecticide formulations used for monitoring and male annihilation programs in Hawaii, and for detections traps used on the U.S. mainland. Furthermore, the FT Mallet MC wafer might be used in a single trap in place of two separate traps for detection of both ME and C-L responding fruit flies.
Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da
2017-01-01
The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Flight control of fruit flies: dynamic response to optic flow and headwind.
Lawson, Kiaran K K; Srinivasan, Mandyam V
2017-06-01
Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.
Nnko, Happiness J; Ngonyoka, Anibariki; Salekwa, Linda; Estes, Anna B; Hudson, Peter J; Gwakisa, Paul S; Cattadori, Isabella M
2017-06-01
Tsetse flies, the vectors of trypanosomiasis, represent a threat to public health and economy in sub-Saharan Africa. Despite these concerns, information on temporal and spatial dynamics of tsetse and trypanosomes remain limited and may be a reason that control strategies are less effective. The current study assessed the temporal variation of the relative abundance of tsetse fly species and trypanosome prevalence in relation to climate in the Maasai Steppe of Tanzania in 2014-2015. Tsetse flies were captured using odor-baited Epsilon traps deployed in ten sites selected through random subsampling of the major vegetation types in the area. Fly species were identified morphologically and trypanosome species classified using PCR. The climate dataset was acquired from the African Flood and Drought Monitor repository. Three species of tsetse flies were identified: G. swynnertoni (70.8%), G. m. morsitans (23.4%), and G.pallidipes (5.8%). All species showed monthly changes in abundance with most of the flies collected in July. The relative abundance of G. m. morsitans and G. swynnertoni was negatively correlated with maximum and minimum temperature, respectively. Three trypanosome species were recorded: T. vivax (82.1%), T. brucei (8.93%), and T. congolense (3.57%). The peak of trypanosome infections in the flies was found in October and was three months after the tsetse abundance peak; prevalence was negatively correlated with tsetse abundance. A strong positive relationship was found between trypanosome prevalence and temperature. In conclusion, we find that trypanosome prevalence is dependent on fly availability, and temperature drives both tsetse fly relative abundance and trypanosome prevalence. © 2017 The Society for Vector Ecology.
Neural Circuits Underlying Fly Larval Locomotion
Kohsaka, Hiroshi; Guertin, Pierre A.; Nose, Akinao
2017-01-01
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system. PMID:27928962
Odour intensity learning in fruit flies
Yarali, Ayse; Ehser, Sabrina; Hapil, Fatma Zehra; Huang, Ju; Gerber, Bertram
2009-01-01
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level. PMID:19586944
Making Research Fly in Schools: "Drosophila" as a Powerful Modern Tool for Teaching Biology
ERIC Educational Resources Information Center
Harbottle, Jennifer; Strangward, Patrick; Alnuamaani, Catherine; Lawes, Surita; Patel, Sanjai; Prokop, Andreas
2016-01-01
The "droso4schools" project aims to introduce the fruit fly "Drosophila" as a powerful modern teaching tool to convey curriculum-relevant specifications in biology lessons. Flies are easy and cheap to breed and have been at the forefront of biology research for a century, providing unique conceptual understanding of biology and…
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J.; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae. PMID:28797083
Geib, Scott M.; Liang, Guang Hong; Murphy, Terence D.; Sim, Sheina B.
2017-01-01
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group. PMID:28584080
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
Wang, Ming; Cribb, Bronwen; Clarke, Anthony R.; Hanan, Jim
2016-01-01
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments. PMID:26999285
Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars.
Amitai, O; Holtze, S; Barkan, S; Amichai, E; Korine, C; Pinshow, B; Voigt, C C
2010-08-01
Previous studies reported that fed bats and birds mostly use recently acquired exogenous nutrients as fuel for flight, rather than endogenous fuels, such as lipids or glycogen. However, this pattern of fuel use may be a simple size-related phenomenon because, to date, only small birds and bats have been studied with respect to the origin of metabolized fuel, and because small animals carry relatively small energy reserves, considering their high mass-specific metabolic rate. We hypothesized that approximately 150 g Egyptian fruit bats (Rousettus aegyptiacus Pteropodidae), which are more than an order of magnitude heavier than previously studied bats, also catabolize dietary sugars directly and exclusively to fuel both rest and flight metabolism. We based our expectation on the observation that these animals rapidly transport ingested dietary sugars, which are absorbed via passive paracellular pathways in the intestine, to organs of high energy demand. We used the stable carbon isotope ratio in exhaled CO(2) (delta(13)C(breath)) to assess the origin of metabolized substrates in 16 Egyptian fruit bats that were maintained on a diet of C3 plants before experiments. First, we predicted that in resting bats delta(13)C(breath) remains constant when bats ingest C3 sucrose, but increases and converges on the dietary isotopic signature when C4 sucrose and C4 glucose are ingested. Second, if flying fruit bats use exogenous nutrients exclusively to fuel flight, we predicted that delta(13)C(breath) of flying bats would converge on the isotopic signature of the C4 sucrose they were fed. Both resting and flying Egyptian fruit bats, indeed, directly fuelled their metabolism with freshly ingested exogenous substrates. The rate at which the fruit bats oxidized dietary sugars was as fast as in 10 g nectar-feeding bats and 5 g hummingbirds. Our results support the notion that flying bats, irrespective of their size, catabolize dietary sugars directly, and possibly exclusively, to fuel flight.
Piñero, Jaime C; Agnello, Arthur M; Tuttle, Arthur; Leskey, Tracy C; Faubert, Heather; Koehler, Glen; Los, Lorraine; Morin, Glenn; Leahy, Kathleen; Cooley, Daniel R; Prokopy, Ronald J
2011-10-01
The plum curculio, Conotrachelus nenuphar (Herbst), is a key pest of pome and stone fruit in eastern and central North America. For effective management of this insect pest in commercial apple (Malus spp.) orchards in the northeastern United States and Canada, one of the greatest challenges has been to determine the need for and timing of insecticide applications that will protect apple fruit from injury by adults. In a 2004-2005 study, we assessed the efficacy and economic viability of a reduced-risk integrated pest management strategy involving an odor-baited trap tree approach to determine need for and timing of insecticide use against plum curculio based on appearance of fresh egg-laying scars. Evaluations took place in commercial apple orchards in seven northeastern U.S. states. More specifically, we compared the trap-tree approach with three calendar-driven whole-block sprays and with heat-unit accumulation models that predict how long insecticide should be applied to orchard trees to prevent injury by plum curculio late in the season. Trap tree plots received a whole-plot insecticide spray by the time of petal fall, and succeeding sprays (if needed) were applied to peripheral-row trees only, depending on a threshold of one fresh plum curculio egg-laying scar out of 25 fruit sampled from a single trap tree. In both years, level of plum curculio injury to fruit sampled from perimeter-row, the most interior-row trees and whole-plot injury in trap tree plots did not differ significantly from that recorded in plots subject to conventional management or in plots managed using the heat-unit accumulation approach. The amount of insecticide used in trap tree plots was reduced at least by 43% compared with plots managed with the conventional approach. Advantages and potential pitfalls of the bio-based trap tree approach to plum curculio monitoring in apple orchards are discussed.
Ware, A B; du Toit, C L N
2017-06-01
The avocado industry is important in South Africa, but access to certain markets is impeded by the presence of phytosanitary pests. One of the ways of securing entry to these markets is to demonstrate that a mitigating treatment will result in there being a negligible chance of accidental importation. In cold treatment comparative studies at 0 °C and 2 °C of immature stages of Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) in "Hass" avocado, the third instar of C. cosyra was shown to be the most cold tolerant. This larval life stage was used in a large-scale trial to test treatment efficacy at 2 °C, a temperature known to be the better for fruit quality. There were no survivors from the 49,795 individual fruit fly larvae subjected to the cold treatment at 2 °C for 20 d. It is argued that, although this level of assessment falls short of the Probit 9 level normally required for fruit fly, they are rarely found in avocado fruit and that the level of disinfestation obtained is more than sufficient to achieve quarantine security. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determi...
Light, heat, action: neural control of fruit fly behaviour.
Owald, David; Lin, Suewei; Waddell, Scott
2015-09-19
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.
jsc2018m000314_Spinning_Science_Multi-use_Variable-g_Platform_Arrives_at_the_Space_Station-MP4
2018-05-09
Spinning Science: Multi-use Variable-g Platform Arrives at the Space Station --- The Multi-use Variable-gravity Platform (MVP) Validation mission will install and test the MVP, a new hardware platform developed and owned by Techshot Inc., on the International Space Station (ISS). Though the MVP is designed for research with many different kinds of organisms and cell types, this validation mission will focus on Drosophila melanogaster, more commonly known as the fruit fly. This platform will be especially important for fruit fly research, as it will allow researchers to study larger sample sizes of Drosophila melanogaster than in other previous hardware utilizing centrifuges and it will be able to support fly colonies for multiple generations.
Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis
Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.; Lee, Lena W. Y.
1979-01-01
Male oriental fruit flies (Dacus dorsalis) from colonies in Taiwan and Hawaii were evaluated for limit of response to various analogues of methyl eugenol. The results are interpreted in terms of the geometry and allosteric requirements of the antennal receptor that triggers the characteristic methyl eugenol reflex. This receptor has evolved for complementarity to all portions of the methyl eugenol molecule and responds only to ortho-substituted benzenes with adjacent oxygen atoms or isoelectronic equivalents. Substantial differences in responses of Taiwan and Hawaiian D. dorsalis suggest that perceptible evolution of the receptor protein has occurred during the past 50 years. A plausible scheme for the coevolution of dacini flies with plants containing phenylpropionoid essential oils is outlined. Images PMID:16592640
Precision and recall estimates for two-hybrid screens
Huang, Hailiang; Bader, Joel S.
2009-01-01
Motivation: Yeast two-hybrid screens are an important method to map pairwise protein interactions. This method can generate spurious interactions (false discoveries), and true interactions can be missed (false negatives). Previously, we reported a capture–recapture estimator for bait-specific precision and recall. Here, we present an improved method that better accounts for heterogeneity in bait-specific error rates. Result: For yeast, worm and fly screens, we estimate the overall false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific FDRs and the estimated protein degrees are then used to identify protein categories that yield more (or fewer) false positive interactions and more (or fewer) interaction partners. While membrane proteins have been suggested to have elevated FDRs, the current analysis suggests that intrinsic membrane proteins may actually have reduced FDRs. Hydrophobicity is positively correlated with decreased error rates and fewer interaction partners. These methods will be useful for future two-hybrid screens, which could use ultra-high-throughput sequencing for deeper sampling of interacting bait–prey pairs. Availability: All software (C source) and datasets are available as supplemental files and at http://www.baderzone.org under the Lesser GPL v. 3 license. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19091773
Follett, P A; Sanxter, S S
2001-10-01
We determined whether immersion in 49 degrees C water for 20 min, a quarantine treatment developed for disinfestation of fruit flies in lychee, Litchi chinensis Sonn., and longan, Dimocarpus longan (Lourd.) Steud., exported from Hawaii, would also disinfest fruit of two species of Cryptophlebia. The pattern of tolerance to heat in Cryptophlebia illepida (Butler) was generally eggs < neonates < early instars = late instars < pupae. No C. illepida survived immersion for 16 or 20 min. Late fourth and fifth instars were determined to be the most tolerant stage that occurs in harvested fruit. Late instars of Cryptophlebia ombrodelta (Lower) were more tolerant of hot-water immersion than those of C. illepida, but no C. ombrodelta late instars survived immersion for 16 or 20 min. The hot water immersion quarantine treatment for fruit flies should effectively disinfest lychees and longans of any Cryptophlebia.
Pascacio-Villafán, C.; Williams, T.; Sivinski, J.; Birke, A.; Aluja, M.
2015-01-01
Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. PMID:26470103
An Experimental Investigation Into the Colonization of Concealed Cadavers by Necrophagous Blowflies
Charabidze, D.; Hedouin, V.; Gosset, D.
2015-01-01
We used seven baited boxes with different combinations of access holes and odor diffusion surfaces to study the arrival of necrophagous flies. During laboratory experiments, 30 gravid Lucilia sericata females were kept in a chamber with one of the boxes. The box with the largest odor diffusion surface (99 cm2) combined with the lowest accessibility (one 1 cm2 entrance hole) was entered least (5 ± 3.7 flies per run). In contrast, the most frequently entered box (one 9 cm2 entrance hole with no additional odor diffusion surface) caught a mean of 24.6 ± 3.4 flies per run. These results indicate that 1) L. sericata entered nearly inaccessible places and 2) both odor diffusion and accessibility impacted the number of flies caught. During field experiments, the seven boxes were placed together outdoors. The box with the most entrances (ten 9-cm2 holes) caught the most flies (55.6–99.4% of the total). Only a few flies entered the other boxes. Access to the less accessible boxes (poor odor diffusion and small entrances) was also delayed. The major conclusions of the field experiments are that 1) boxes with low accessibility took longer to be accessed; 2) larger odor diffusion surfaces were more attractive to flies; and 3) flies accessed boxes more readily through larger holes than through an equivalent surface area made up of smaller holes. With these conclusions in mind, attempts to quantify the preappearance interval or to interpret the number of flies observed in indoor forensic entomology cases should be approached with caution. PMID:26496788
Liu, Tao; Li, Li; Li, Baishu; Zhan, Guoping; Wang, Yuejin
2018-05-28
Oriental fruit fly, Bactrocera dorsalis (Hendel; Diptera: Tephritidae), is recognized as a quarantine pest and a threat to Chinese loquat (Eriobotrya japonica Lindl.) fruit exports. Since loquat fruit is very sensitive to methyl bromide (MB) fumigation and cold treatment, in this study, low-temperature phosphine (PH3) fumigation was investigated to develop an alternative phytosanitary treatment method. Tolerance tests showed that the third instar was the most tolerant of all life stages of B dorsalis to PH3 gas at 8°C. Toxicity assay with 500-3000 ppm PH3 and subsequent probit analysis showed that 2000 ppm PH3 was optimal for fumigation and 152.75 h of treatment duration were required to achieve 99.9968% mortality. In the verification test, 144 and 168 h of treatment duration with 2000 ppm PH3 completely killed 35,277 and 35,134 B. dorsalis third instars, respectively. However, 13 live larvae were found after 120 h of treatment. Furthermore, these treatments reduced fruit respiration rates while causing no adverse effects on other fruit quality parameters, including firmness, soluble solid content, and titratable acidity over 192 h storage at 8°C. The results strongly suggest that low-temperature PH3 fumigation could be used for the postharvest control of B. dorsalis in loquat fruit.
Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight
NASA Astrophysics Data System (ADS)
Miller, Mark S.; Keller, Tony S.
2008-05-01
The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.
Harwood, James F.; Chen, Kehui; Müller, Hans-Georg; Wang, Jane-Ling; Vargas, Roger I.; Carey, James R.
2013-01-01
The reproductive ability of female tephritids can be limited and prevented by denying access to host plants and restricting the dietary precursors of vitellogenesis. The mechanisms underlying the delayed egg production in each case are initiated by different physiological processes that are anticipated to have dissimilar effects on lifespan and reproductive ability later in life. The egg laying abilities of laboratory reared females of the Mediterranean fruit fly (Ceratitis capitata Wiedmann) and melon fly (Bactrocera cucurbitae Coquillett) from Hawaii are delayed or suppressed by limiting access to host fruits and dietary protein. In each case, this is expected to prevent the loss of lifespan associated with reproduction until protein or hosts are introduced. Two trends are observed in each species: Firstly, access to protein at eclosion leads to a greater probability of survival and higher reproductive ability than if it is delayed, and secondly, that delayed host access reduces lifetime reproductive ability without improving life expectancy. When host access and protein availability are delayed, the rate of reproductive senescence is reduced in the medfly, whereas the rate of reproductive senescence is generally increased in the melon fly. Overall, delaying reproduction lowers the fitness of females by constraining their fecundity for the remainder of the lifespan without extending the lifespan. PMID:23483775
Dietary glucose regulates yeast consumption in adult Drosophila males
Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.
2014-01-01
The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097
Dietary glucose regulates yeast consumption in adult Drosophila males.
Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G
2014-01-01
The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.
USDA-ARS?s Scientific Manuscript database
Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive and economically damaging pest in Europe and North America, because the females have a serrated ovipositor enabling them to infest ripening almost all small fruits before harvest. Also flies are strongly attracted to fresh fruits rath...
The ecology of the Drosophila-yeast mutualism in wineries
2018-01-01
The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432
The ecology of the Drosophila-yeast mutualism in wineries.
Quan, Allison S; Eisen, Michael B
2018-01-01
The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.
2012-09-01
of Leishmania, Phleboto- mus papatasi Scopoli and P. longicuspis Nitzu- lescu are reportedly the proven and primary vectors for leishmaniasis in North ... Africa , respec- tively (Killick-Kendrick 1987). Cutaneous and visceral leishmaniases are a considerable human health threat for much of coastal and...almond trees, with many sheep and goat barns. Al Fateh (32u01.4809N, 15u02.3279E to 32u01.6029N, 15u02.2019E) is a region of cultivated onion and
[Parasitoids of Chrysomya megacephala (Fabricius) collected in Itumbiara, Goias, Brazil].
Marchiori, Carlos H
2004-04-01
This study determined the species of parasitoids associated with Chrysomya megacephala, collected on bovine kidney baits, in Itumbiara, State of Goias, Brazil. The pupae were obtained by flotation. They were individually placed in gelatin capsules until the emergence of the adult flies or their parasitoids. The overall prevalence of parasitism was 18.6%. Brachymeria podagrica, Nasonia vitripennis and Pachycrepoideus vindemiae presented frequencies of 8.6%, 8.6% and 1.4%, respectively. This work reports for the first time the occurrence of Brachymeria podagrica in pupae of Chrysomya megacephala.