Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
Hawkes, Elliot W; Lentink, David
2016-10-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).
Fruit fly scale robots can hover longer with flapping wings than with spinning wings
Lentink, David
2016-01-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. PMID:27707903
Sridhar, Madhu; Kang, Chang-kwon
2015-05-06
Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.
Active and passive stabilization of body pitch in insect flight
Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai
2013-01-01
Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713
Wing attachment position of fruit fly minimizes flight cost
NASA Astrophysics Data System (ADS)
Noest, Robert; Wang, Jane
Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.
Dynamic response of a piezoelectric flapping wing
NASA Astrophysics Data System (ADS)
Kumar, Alok; Khandwekar, Gaurang; Venkatesh, S.; Mahapatra, D. R.; Dutta, S.
2015-03-01
Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-11-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying physiological mechanisms that determine these kinematics is still a challenge. Two of the main difficulties arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics the insect wing-hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here, we model the torques exerted by the wing-hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasi-static aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate flies can accurately control their wing-pitch kinematics on a sub-wing-beat time-scale by modulating all three effective spring parameters on longer time-scales.
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H
2014-06-01
The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds.
Investigating Maneuverability, Stability and Control of Flapping Flight
2014-11-10
TELEPHONE NUMBER Itai Cohen Itai Cohen, Tsevi Beatus 611102 c. THIS PAGE The public reporting burden for this collection of information is estimated to...TOTAL: 11/10/2014 Received Paper 1.00 Tsevi Beatus, John Guckenheimer, Itai Cohen. Roll Control in Fruit Flies, Royal Society Interface Foxus (11 2014...engineering, or technology fields:...... ...... ...... ...... ...... PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: National Academy Member Itai Cohen
A comparative study of the hovering efficiency of flapping and revolving wings.
Zheng, L; Hedrick, T; Mittal, R
2013-09-01
Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100.
Piloted simulation study of two tilt-wing flap control concepts, phase 2
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.
1994-01-01
A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.
Piloted simulation study of two tilt-wing control concepts
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.
1994-01-01
A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.
A Study about the Taboo of Rotation Timing for the Flapping Wing Flight
NASA Astrophysics Data System (ADS)
Wang, An-Bang; Hsueh, Chia-Hsien; Chen, Shih-Shen
2004-11-01
Influence of rotation timing for flapping wing flight on the flying lift has been experimentally investigated in this study. Since the insects cannot extend and shrink their wings like birds, the rotation timing of wings becomes the major influential factor to affect the flying lift of the flapping wing flight. The results reveal that rotation timing has significant influence on the flying lift. The averaged flying lift increases for high rotation wing velocity. Based on the comparisons of flying lift, too late A-rotation (connecting from wing downward motion to upward one) is the most serious taboo for the motion design of the micro air vehicles with flapping wings. Too late B-rotation (connection from upward motion to downward one) should also be avoided.
Gao, Na; Aono, Hikaru; Liu, Hao
2011-02-07
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Size effects on insect hovering aerodynamics: an integrated computational study.
Liu, H; Aono, H
2009-03-01
Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.
NASA Astrophysics Data System (ADS)
Shumway, Nathan; Gabryszuk, Mateusz; Laurence, Stuart
2017-11-01
Experiments were conducted with live dragonflies to determine their wing kinematics during free flight. The motion of one forewing in two different tests, one where the dragonfly is inverted, is described using piecewise functions and simulated using the OVERTURNS Reynolds-averaged Navier-Stokes solver that has been used in previous work to determine trim conditions for a fruit fly model. For the inverted dragonfly the upstrokes were significantly longer than the downstrokes, pitching amplitude is lower than that for the right-side up flight and the flap amplitude is larger. Simulations of dragonfly kinematics of a single forewing are presented to determine how the forces differ for a dragonfly flying inverted and a dragonfly flying right-side up. This work was supported by the United States Army Research Laboratory's Micro Autonomous Systems and Technology Collaborative Technology Alliance Project MCE-16-17 1.2.
Motor neurons in Drosophila flight control: could b1 be the one?
NASA Astrophysics Data System (ADS)
Whitehead, Samuel; Shirangi, Troy; Cohen, Itai
Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics
Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.
2017-01-01
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H
2017-02-06
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster.
Chauhan, Ved; Srikumar, Syian; Aamer, Sarah; Pandareesh, Mirazkar D; Chauhan, Abha
2017-09-24
Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster . Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration-dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Code of Federal Regulations, 2011 CFR
2011-01-01
... fly (fruit flies). The melon fruit fly, Mexican fruit fly, Mediterranean fruit fly, Oriental fruit fly..., Ceratitis capitata (Wiedemann), in any stage of development. Melon fruit fly. The insect known as the melon...
Lehmann, Fritz-Olaf; Skandalis, Dimitri A.; Berthé, Ruben
2013-01-01
Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings’ downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings. PMID:23486171
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist AGENCY: Animal and... Mediterranean fruit fly quarantined areas in the United States with a certificate if the fruit is safeguarded... quarantine regulations to remove trapping requirements for Mediterranean fruit fly for Hass avocados imported...
Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings
2016-08-30
understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing designs with superior aerodynamic...flapping flights have been developed to understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing...been developed to understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing designs with superior
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... Fly or South American Fruit Fly Exist AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Mediterranean fruit fly quarantined areas in the United States with a certificate if the fruit is safeguarded... regulations to remove trapping requirements for Mediterranean fruit fly for Hass avocados imported from the...
Hovering of a jellyfish-like flying machine
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Childress, Stephen
2013-11-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.
Rotational accelerations stabilize leading edge vortices on revolving fly wings.
Lentink, David; Dickinson, Michael H
2009-08-01
The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
NASA Astrophysics Data System (ADS)
Davidovich, Hilla; Ribak, Gal
2016-08-01
Copulation in the blue-tailed damselfly, Ischnura elegans, can last over 5 hours, during which the pair may fly from place to place in the so-called "wheel position". We filmed copulatory free-flight and analyzed the wingbeat kinematics of males and females in order to understand the contribution of the two sexes to this cooperative flight form. Both sexes flapped their wings but at different flapping frequencies resulting in a lack of synchronization between the flapping of the two insects. Despite their unusual body posture, females flapped their wings in a stroke-plane not significantly different to that of the males (repeated-measures ANOVA, F1,7 = 0.154, p = 0.71). However, their flapping amplitudes were smaller by 42 ± 17 %, compared to their male mates ( t test, t 7 = 9.298, p < 0.001). This was mostly due to shortening of the amplitude at the ventral stroke reversal point. Compared to solitary flight, males flying in copula increased flapping frequency by 19 %, while females decreased flapping amplitude by 27 %. These findings suggest that although both sexes contribute to copulatory flight, females reduce their effort, while males increase their aerodynamic output in order to carry both their own weight and some of the female's weight. This increased investment by the male is amplified due to male I. elegans being typically smaller than females. The need by smaller males to fly while carrying some of the weight of their larger mates may pose a constraint on the ability of mating pairs to evade predators or counter interference from competing solitary males.
Davidovich, Hilla; Ribak, Gal
2016-08-01
Copulation in the blue-tailed damselfly, Ischnura elegans, can last over 5 hours, during which the pair may fly from place to place in the so-called "wheel position". We filmed copulatory free-flight and analyzed the wingbeat kinematics of males and females in order to understand the contribution of the two sexes to this cooperative flight form. Both sexes flapped their wings but at different flapping frequencies resulting in a lack of synchronization between the flapping of the two insects. Despite their unusual body posture, females flapped their wings in a stroke-plane not significantly different to that of the males (repeated-measures ANOVA, F1,7 = 0.154, p = 0.71). However, their flapping amplitudes were smaller by 42 ± 17 %, compared to their male mates (t test, t 7 = 9.298, p < 0.001). This was mostly due to shortening of the amplitude at the ventral stroke reversal point. Compared to solitary flight, males flying in copula increased flapping frequency by 19 %, while females decreased flapping amplitude by 27 %. These findings suggest that although both sexes contribute to copulatory flight, females reduce their effort, while males increase their aerodynamic output in order to carry both their own weight and some of the female's weight. This increased investment by the male is amplified due to male I. elegans being typically smaller than females. The need by smaller males to fly while carrying some of the weight of their larger mates may pose a constraint on the ability of mating pairs to evade predators or counter interference from competing solitary males.
USDA-ARS?s Scientific Manuscript database
Forced infestation studies were conducted to determine if fruits of southern highbush blueberries (Vaccinium corymbosum L. hybrids) are hosts for three invasive tephritid fruit flies. Fruits of 17 blueberry cultivars were exposed to gravid female flies of Bactrocera dorsalis (Hendel) (oriental frui...
Caribbean Fruit Fly (Diptera: Tephritidae) and Small Fruit in Florida
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are among the most important pests of fruits and vegetables worldwide. The Caribbean fruit fly, Anastrepha suspensa (Loew), is a tephritid pest that became established in Florida following introduction in 1965. Populations of this fruit fly also occur in Puerto Rico and Cuba, ...
Uncontrolled Stability in Freely Flying Insects
NASA Astrophysics Data System (ADS)
Melfi, James, Jr.; Wang, Z. Jane
2015-11-01
One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.
Flying in a flock comes at a cost in pigeons.
Usherwood, James R; Stavrou, Marinos; Lowe, John C; Roskilly, Kyle; Wilson, Alan M
2011-06-22
Flying birds often form flocks, with social, navigational and anti-predator implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual 'cluster' flock? Here we use data from innovative back-mounted Global Positioning System (GPS) and 6-degrees-of-freedom inertial sensors to show that pigeons (1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; (2) increase flap frequency with increases in all conventional aerodynamic power requirements; and (3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock. Indeed, the increased flap frequency, whether due to direct aerodynamic interactions or requirements for increased stability or control, suggests a considerable energetic cost to flight in a tight cluster flock.
Flying in a flock comes at a cost in pigeons
Usherwood, James R.; Stavrou, Marinos; Lowe, John C.; Roskilly, Kyle; Wilson, Alan M.
2011-01-01
Flying birds often form flocks, with social1, navigational2 and anti-predator3 implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements4, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation5. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual ‘cluster’ 6,7 flock? Here, we use data from innovative back-mounted GPS and 6 degree of freedom inertial sensors to show that pigeons 1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; 2) increase flap frequency with increases in all conventional aerodynamic power requirements; and 3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock; indeed, the increased flap frequency – whether due to direct aerodynamic interactions or requirements for increased stability or control – suggests a considerable energetic cost to flight in a tight cluster flock. PMID:21697946
[Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].
Taneri, S; Azar, D T
2007-02-01
The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser on the undersurface of a LASIK flap are feasible. Thus, the additional risk of iatrogenic keratectasia associated with stromal enhancement ablations is avoided.
Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
Hedrick, Tyson L
2011-12-15
Flying animals exhibit remarkable degrees of both stability and manoeuvrability. Our understanding of these capabilities has recently been improved by the identification of a source of passive damping specific to flapping flight. Examining how this damping effect scales among different species and how it affects active manoeuvres as well as recovery from perturbations provides general insights into the flight of insects, birds and bats. These new damping models offer a means to predict manoeuvrability and stability for a wide variety of flying animals using prior reports of the morphology and flapping motions of these species. Furthermore, the presence of passive damping is likely to have facilitated the evolution of powered flight in animals by providing a stability benefit associated with flapping.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... dorsalis), peach fruit fly (Anastrepha zonata), and sapote fruit fly (Anastrepha serpentina) in the... obliqua, Anastrepha serpentina, and Anastrepha striata (Diptera: Tephritidae) in Mexico. J. Econ. Entomol...
Kinematic compensation for wing loss in flying damselflies.
Kassner, Ziv; Dafni, Eyal; Ribak, Gal
2016-02-01
Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18±15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p=0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improve California trap programs for detection of fruit flies
USDA-ARS?s Scientific Manuscript database
There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. States and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers...
Szyniszewska, A. M.; Leppla, N. C.; Huang, Z.; Tatem, A. J.
2016-01-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January–August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May–August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. PMID:27594703
Dominiak, Bernard C; Mapson, Richard
2017-12-05
Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), commonly called 'Queensland fruit fly' in Australia, and Mediterranean fruit fly (Ceratitis capitata Wiedemann) (Diptera: Tephritidae) are the two most economically important fruit fly in Australia with B. tryoni in the east and Mediterranean fruit fly in the west. The two species coexisted for several decades, but it is believed that B. tryoni displaced Mediterranean fruit fly. In southeastern Australia, this was deemed inadequate for export market access, and a large fruit fly free zone (fruit fly exclusion zone) was developed in 1996 where B. tryoni was eradicated by each state department in their portion of the zone. This zone caused an artificial restricted distribution of B. tryoni. When the fruit fly exclusion zone was withdrawn in Victoria and New South Wales in 2013, B. tryoni became endemic once again in this area and the national distribution of B. tryoni changed. For export markets, B. tryoni is now deemed endemic to all eastern Australian states, except for the Greater Sunraysia Pest-Free Area. All regulatory controls have been removed between eastern states, except for some small zones, subject to domestic market access requirements. The eastern Australian states now form a B. tryoni endemic trading group or block. All Australian states and territories maintain legislation to regulate the movement of potentially infested host fruit into their states. In particular, eastern states remain active and regulate the entry of commodities possibly infested with Mediterranean fruit fly. The combination of regulatory controls limits the chances of Mediterranean fruit fly entering eastern states, and if it did, Mediterranean fruit fly is unlikely to establish in the opposition to a well-established B. tryoni population. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biological Control of Olive Fruit Fly
USDA-ARS?s Scientific Manuscript database
Domestication of olive fruit, Olea europaea L., produced a better host for olive fruit fly, Bactrocera oleae (Gmelin), than wild olives, but fruit domestication reduced natural enemy efficiency. Important factors for selection of natural enemies for control of olive fruit fly include climate matchi...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... amending the list of regulated articles in our domestic fruit fly quarantine regulations. The regulations... commercial packinghouses are not regulated articles for Mediterranean fruit fly. We are amending the... that, under certain conditions, yellow lemons are a host for Mediterranean fruit fly. As a result of...
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.
NASA Technical Reports Server (NTRS)
Anders, John B.
2000-01-01
Biologic flight has undoubtedly intrigued man for thousands of years, yet it has been only the last 100 years or so that any serious challenge has been mounted to the pre-eminence of birds. Although present-day large-scale aircraft are now clearly able to fly higher, faster and farther than any bird or insect, it is obvious that these biological creatures have a mastery of low Reynolds number, unsteady flows that is unrivaled by man-made systems. This paper suggests that biological flight should be examined for mechanisms that may apply to engineered flight systems, especially in the emerging field of small-scale, uninhabited aerial vehicles (UAV). This paper discusses the kinematics and aerodynamics of bird and insect flight, including some aspects of unsteady aerodynamics. The dynamics of flapping wing flight is briefly examined, including gait selection, flapping frequency and amplitude selection, as well as wing planform and angle-of-attack dynamics. Unsteady aerodynamic mechanisms as practiced by small birds and insects are reviewed. Drag reduction morphologies of birds and marine animals are discussed and fruitful areas of research are suggested.
USDA-ARS?s Scientific Manuscript database
There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers of tra...
USDA-ARS?s Scientific Manuscript database
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis}). The goal of this study was to dev...
Ishihara, D; Yamashita, Y; Horie, T; Yoshida, S; Niho, T
2009-12-01
We have studied the passive maintenance of high angle of attack and its lift generation during the crane fly's flapping translation using a dynamically scaled model. Since the wing and the surrounding fluid interact with each other, the dynamic similarity between the model flight and actual insect flight was measured using not only the non-dimensional numbers for the fluid (the Reynolds and Strouhal numbers) but also those for the fluid-structure interaction (the mass and Cauchy numbers). A difference was observed between the mass number of the model and that of the actual insect because of the limitation of available solid materials. However, the dynamic similarity during the flapping translation was not much affected by the mass number since the inertial force during the flapping translation is not dominant because of the small acceleration. In our model flight, a high angle of attack of the wing was maintained passively during the flapping translation and the wing generated sufficient lift force to support the insect weight. The mechanism of the maintenance is the equilibrium between the elastic reaction force resulting from the wing torsion and the fluid dynamic pressure. Our model wing rotated quickly at the stroke reversal in spite of the reduced inertial effect of the wing mass compared with that of the actual insect. This result could be explained by the added mass from the surrounding fluid. Our results suggest that the pitching motion can be passive in the crane fly's flapping flight.
Control-oriented reduced order modeling of dipteran flapping flight
NASA Astrophysics Data System (ADS)
Faruque, Imraan
Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.
Szyniszewska, A M; Leppla, N C; Huang, Z; Tatem, A J
2016-12-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January-August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May-August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elezaj, I. R.; Letaj, K. Rr.; Selimi, Q. I.; Zhushi-Etemi, F.
2003-05-01
The concentration of Pb, Cd, Zn and Cu, δ-aminolevulinic acid dehydratase activity (ALA-D: EC.4.2.1.24) hemoglobin and protein amount have been determined in three different populations of fruit fly (Drosophila melanogaster) caught at two urban sites (Mitrovica town, which is situated close to smelter of “Trepça” don close and Prishtina the capital of Kosova) and in Luki village as uncontaminated area. The results show that in the fruit fly of Mitrovica the concentration of Pb, Cd and Zn was significantly higher (P<0.00l) in comparison with that on the f-Liit fly of Prishtina and Luki. The concentration of Pb of fruit fly from Mitrovica was 3.1 times higher in comparison with that on fruit fly of Prishtina and 4.9 times higher in comparison with uncontaminated group of fruit fly. The ALA-D activity was significantly inhibited in the homogenate of fruit fly from Mitrovica in comparison with Prishtina and Luki localities (P<0.00l). ALA-D activity was also inhibited in the homogenate of Prishtina fruit fly in comparison with Luki group (P<0.00l). The amount of proteins was significantly lower in Mitrovica fruit fly in comparison with that in control and Prishtina group. The hemoglobin value was relatively unchanged.
Massebo, Fekadu; Tefera, Zenebe
2015-01-01
Bactrocera invadens, the Asian fruit fly, was first reported in Kenya in 2003, and it spread fast to most tropical countries in Africa. To our knowledge, there is no detailed data on the fruit damage and status of fruit flies in Arba Minch and elsewhere in Ethiopia. Hence, information on the species composition and pest status of the fruit fly species is urgent to plan management strategies in the area. Fruit flies were captured using male parapheromone-baited traps. Matured mango (Mangifera indica) fruits were collected from randomly selected mango trees and incubated individually in cages (15 by 15 by 15 cm) with sandy soil. B. invadens was the predominant (96%; 952 of 992) captured species and the only fruit fly species emerging from mango fruits incubated in the laboratory. The mean number of adult B. invadens emerging per mango fruit was 35.25, indicating that the species is the most devastating mango fruit fly in the area. The loss due to this species would be serious if no management strategies are implemented. PMID:25612742
Armstrong, J W
2001-02-01
Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.
Yee, Wee L.
2014-01-01
Abstract Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry ( Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) ( Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R . indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. PMID:25527581
Yee, Wee L
2014-01-01
Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. Published by Oxford University Press on behalf of the Entomological Society of America 2014. This work is written by a US Government employee and is in the public domain in the US.
Vargas, Roger I; Piñero, Jaime C; Mau, Ronald F L; Jang, Eric B; Klungness, Lester M; McInnis, Donald O; Harris, Ernest B; McQuate, Grant T; Bautista, Renato C; Wong, Lyle
2010-01-01
The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed.
Vargas, Roger I.; Piñero, Jaime C.; Mau, Ronald F. L.; Jang, Eric B.; Klungness, Lester M.; McInnis, Donald O.; Harris, Ernest B.; McQuate, Grant T.; Bautista, Renato C.; Wong, Lyle
2010-01-01
The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure® traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed. PMID:20883128
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385
Armstrong, John W; Follett, Peter A
2007-08-01
Immersion of litchi fruit in 49 degrees C water for 20 min followed by hydrocooling in ambient (24 +/- 4 degrees C) temperature water for 20 min was tested as a quarantine treatment against potential infestations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); and oriental fruit fly, Bactrocera dorsalis Hendel, eggs or larvae in Hawaiian litchi, Litchi chinensis Sonnerat. The 49 degrees C hot-water immersion of litchi provided probit 9 (99.9968% mortality with >95% confidence) quarantine security against eggs and first instars. There were no survivors from 15,000 each feeding and nonfeeding Mediterranean fruit fly or oriental fruit fly third instars immersed in a computer-controlled water bath that simulated the litchi seed-surface temperature profile during the 49 degrees C hot-water immersion treatment. Litchi served as the model for longan, Dimocarpus longan Lour., a closely related fruit that is smaller and also has commercial potential for Hawaii. Modified fruit infestation and holding techniques used to obtain adequate estimated treated populations from poor host fruit, such as litchi and longan, are described. Data from these experiments were used to obtain approval of a hot-water immersion quarantine treatment against fruit flies for litchi and longan exported from Hawaii to the U.S. mainland.
Schliserman, Pablo; Aluja, Martin; Rull, Juan; Ovruski, Sergio M
2016-10-01
A 4-yr study was done to analyze seasonal patterns underlying host plant-fruit fly-parasitoid interactions in a secondary forest in the Argentinean Yunga and its importance for the implementation of conservation and augmentative biological control. Larval-pupal hymenopteran parasitoids associated with all host plants and fruit fly species were identified and the seasonal occurrence of fruit, infestation levels, parasitism percentage, and relative parasitoid abundance were determined. Three fruit fly species in two genera were found in association with surveyed plants, two of which (Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)) are of major economic importance. Infestation levels were strongly influenced by environmental factors and peak fruit availability. Five fruit fly parasitoid species were recovered from fly pupae, four braconid species, and one figitid. Time windows for fruit fly population growth were pinpointed. Based on results, the present analysis proposes an effective fruit fly biological control strategy tailored for the northwestern Argentinean citrus-producing area. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...
Host status of Vaccinium reticulatum (Ericaceae) to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Zee, Francis T
2011-04-01
Ohelo (Vaccicinium reticulatum Small) (Ericaceae) is a native Hawaiian plant that has commercial potential in Hawaii as a nursery crop to be transplanted for berry production or for sale as a potted ornamental. No-choice infestation studies were conducted to determine whether ohelo fruit are hosts for four invasive tephritid fruit fly species. Ohelo berries were exposed to gravid female flies ofBactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera cucurbitae Coquillet (melon fly),or Bactrocera latifrons (Hendel) in screen cages outdoors for 24 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Only B. dorsalis successfully attacked and developed in ohelo berries. In total, 1570 berries produced 10 puparia, all of which emerged as adults, for a fruit infestation rate of 0.0064% and an average of 0.0053 puparia per gram of fruit. By comparison, papaya fruit used as controls produced an average of 1.44 B. dorsalis puparia per g of fruit. Ohelo berry is a marginal host for B. dorsalis and apparently a nonhost for C. capitata, B. cucurbitae, and B. latifrons. Commercial plantings of ohelo will rarely be attacked by fruit flies in Hawaii.
The calculated effect of trailing-edge flaps on the take-off of flying boats
NASA Technical Reports Server (NTRS)
Parkinson, J E; Bell, J W
1934-01-01
The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low.
Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
Galiński, Cezary; Zbikowski, Rafał
2005-06-22
We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a "figure-of-eight" or a "banana" and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50-100g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves.
Insect-like flapping wing mechanism based on a double spherical Scotch yoke
Galiński, Cezary; Żbikowski, Rafał
2005-01-01
We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves. PMID:16849181
High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles
2012-08-26
we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT -5H bimorph actuator. Several LionFly prototypes were fabricated...in the literature, using PZT thin film actuators directly coupled to a 2.5 mm SiO2/Si3N4/T i-Au wing that produces large flapping angle at resonance...for larger scale mechanisms [17, 9]. For PAVs, linear electromagnetic ac- tuation [21] and bulk PZT bimorph actuators [8], and thin film PZT unimorph
Fruit Flies Help Human Sleep Research
Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough ...
Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae)
Qin, Yujia; Paini, Dean R.; Wang, Cong; Fang, Yan; Li, Zhihong
2015-01-01
The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region. PMID:25588025
A Systems Approach to Mitigate Oriental Fruit Fly Risk in ‘Sharwil’ Avocados Exported From Hawaii
USDA-ARS?s Scientific Manuscript database
Avocados, Persea americana Miller, grown in Hawaii cannot be exported to the United States mainland without quarantine treatment for melon fly, oriental fruit fly, and Mediterranean fruit fly. The most widely grown cultivar of avocado in Hawaii is ‘Sharwil’. ‘Sharwil’, like other avocado varieties, ...
Stable hovering of a jellyfish-like flying machine
Ristroph, Leif; Childress, Stephen
2014-01-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals. PMID:24430122
NASA Technical Reports Server (NTRS)
Olson, R.E.; Allison, J.M.
1939-01-01
Present designs for large flying boats are characterized by high wing loading, high aspect ratio, and low parasite drag. The high wing loading results in the universal use of flaps for reducing the takeoff and landing speeds. These factors have an effect on takeoff performance and influence to a certain extent the design of the hull. An investigation was made of the influence of various factors and design parameters on the takeoff performance of a hypothetical large flying boat by means of takeoff calculations. The parameters varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The takeoff times and distances were calculated to the stalling speeds and the performance above these speeds was studied separately to determine piloting technique for optimum takeoff. The advantage of quick deflection of the flap at high water speeds is shown.
A simplified rotor system mathematical model for piloted flight dynamics simulation
NASA Technical Reports Server (NTRS)
Chen, R. T. N.
1979-01-01
The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.
Flying Qualities Evaluation of a Commuter Aircraft With an Ice Contaminated Tailplane
NASA Technical Reports Server (NTRS)
Ranaudo, Richard J.; Ratvasky, Thomas P.; FossVanZante, Judith
2000-01-01
During the NASA/FAA (Federal Aviation Administration) Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASA Twin Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane. This shape represented ice formed due to a 'Failed Boot' condition, and was generated from tests in the Glenn Icing Research Tunnel on a full-scale tailplane model. Guest pilots performed longitudinal handling tests, similar to those conducted by the NASA pilots, to evaluate the ICT condition. In general, all pilots agreed that longitudinal flying qualities were degraded as flaps were lowered, and further degraded at high thrust settings. Repeat elevator doublets demonstrated reduced pitch damping effects due to ICT, which is a characteristic that results in degraded flying qualities. Pilots identified elevator control force reversals (CFR) in zero-G pushovers at a 20 deg flap setting, a characteristic that fails the FAR 25 no CFR certification requirement. However, when the same pilots used the Cooper-Harper rating scale to perform a simulated approach and go-around task at the 20 deg flap setting, they rated the airplane as having Level I and Level II flying qualities respectively. By comparison, the same task conducted at the 30 deg flap setting, resulted in Level II flying qualities for the approach portion, and Level III for the go-around portion.The results of this program indicate that safe and acceptable flying qualities with an ICT condition, can be effectively assessed by task-oriented pilot maneuvers. In addition, other maneuvers such as repeat elevator doublets provide good qualitative and quantitative assessments of pitch damping and elevator effectiveness, which are characteristics that correlate well with pilot task ratings. The results of this testing indicate that the FAR 25 zero-G pushover maneuver, which requires no CFR during its execution, may be an overly conservative pass/fail criteria for aircraft certification.
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
USDA-ARS?s Scientific Manuscript database
SPLAT-MAT Spinosad ME(aka STATIC Spinosad ME),an "attract and kill" sprayable biopesticide, was evaluated as an area wide suppression treatment against Bactrocera carambolae(Drew & Hancock),carambola fruit fly, in Brazil and Bactrocera dorsalis(Hendel),oriental fruit fly, in Hawaii. In Brazil, a sin...
USDA-ARS?s Scientific Manuscript database
Early research during the 1930’s focused on attractants for the Mexican fruit fly indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were ca...
Daniel, Claudia; Grunder, Jürg
2012-10-16
The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities.
Daniel, Claudia; Grunder, Jürg
2012-01-01
The European cherry fruit fly, Rhagoletis cerasi (L.) (Diptera: Tephritidae), is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU). Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities. PMID:26466721
Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli
Chan, R. WM.; Gabbiani, F.
2013-01-01
SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572
Testing for Mutagens Using Fruit Flies.
ERIC Educational Resources Information Center
Liebl, Eric C.
1998-01-01
Describes a laboratory employed in undergraduate teaching that uses fruit flies to test student-selected compounds for their ability to cause mutations. Requires no prior experience with fruit flies, incorporates a student design component, and employs both rigorous controls and statistical analyses. (DDR)
USDA-ARS?s Scientific Manuscript database
Temperate fruit flies in the genus Rhagoletis (Diptera: Tephritidae) have narrow host ranges relative to those of tropical fruit flies, suggesting they will not attack or are incapable of developing in most novel fruit. Here we tested the hypothesis that apple maggot fly, Rhagoletis pomonella (Wals...
Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).
Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David
2011-02-01
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.
Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2012-03-01
The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.
Field infestation of rambutan fruits by internal-feeding pests in Hawaii.
McQuate, G T; Follett, P A; Yoshimoto, J M
2000-06-01
More than 47,000 mature fruits of nine different varieties of rambutan (Nephelium lappaceum L.) were harvested from orchards in Hawaii to assess natural levels of infestation by tephritid fruit flies and other internal feeding pests. Additionally, harvested, mature fruits of seven different rambutan varieties were artificially infested with eggs or first-instars of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) to assess host suitability. When all varieties were combined over two field seasons of sampling, fruit infestation rates were 0.021% for oriental fruit fly, 0.097% for Cryptophlebia spp. (Lepidoptera: Tortricidae), and 0.85% for pyralids (Lepidoptera). Species of Cryptophlebia included both C. illepida (Butler), the native Hawaiian species, and C. ombrodelta (Lower), an introduced species from Australia. Cryptophlebia spp. had not previously been known to attack rambutan. The pyralid infestation was mainly attributable to Cryptoblabes gnidiella (Milliere), a species also not previously recorded on rambutan in Hawaii. Overall infestation rate for other moths in the families Blastobasidae, Gracillariidae, Tineidae, and Tortricidae was 0.061%. In artificially infested fruits, both species of fruit fly showed moderately high survivorship for all varieties tested. Because rambutan has such low rates of infestation by oriental fruit fly and Cryptophlebia spp., the two primary internal-feeding regulatory pests of rambutan in Hawaii, it may be amenable to the alternative treatment efficacy approach to postharvest quarantine treatment.
Biomechanics and biomimetics in insect-inspired flight systems
Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto
2016-01-01
Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780
Arévalo-Galarza, Lourdes; Follett, Peter A
2011-02-01
Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.
Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil
Garcia, Flávio R. M.; Ricalde, Marcelo P.
2012-01-01
The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus) was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA) to evaluate the parasitoid’s potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets. PMID:26466795
USDA-ARS?s Scientific Manuscript database
Oriental fruit fly, Bactrocera dorsalis(Hendel)(aka B.invadens Drew, Tsuruta, and White) was first reported in Africa in 2003 and has since spread to over 27 countries. It has become a serious tree fruit pest, particularly in mango (Mangifera indica L.). Because of uncertainty as to the exact status...
ERIC Educational Resources Information Center
Christensen, Timothy J.; Labov, Jay B.
1997-01-01
Details the construction of a viewing chamber for fruit flies that connects to a dissecting microscope and features a design that enables students to easily move fruit flies in and out of the chamber. (DDR)
A wing-assisted running robot and implications for avian flight evolution.
Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S
2011-12-01
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.
McQuate, Grant T.; Vargas, Roger I.
2007-01-01
The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian pepper tree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), ti plant, Cordyline terminate (L.) Chev.(Liliales: Liliaceae), guava and several Citrus spp. were identified as preferred roosting hosts for oriental fruit fly. Guava had not previously been identified as a preferred roosting host for melon fly. Other than for the use of panax as a roosting host, there has previously been little attention to roosting hosts for oriental fruit fly. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. Further research is needed to assess the use of vegetation bordering other host crops as roosting hosts, especially for oriental fruit fly. PMID:20334596
Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven
2013-10-01
We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.
ERIC Educational Resources Information Center
Bierema, Andrea; Schwartz, Renee
2016-01-01
The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…
Host Plants of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann), version 3.5
USDA-ARS?s Scientific Manuscript database
Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), commonly known as the Mediterranean fruit fly, is a tephritid fruit fly species native to Africa but now found in every country surrounding the Mediterranean Sea, in Central and South America, in Australia, in Hawaii and in other oceanic islands...
Recent progress in a classical biological control program for olive fruit fly in California
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...
Jenkins, Cheryl; Chapman, Toni A.; Micallef, Jessica L.; Reynolds, Olivia L.
2012-01-01
Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management. PMID:26466628
McQuate, Grant T; Sylva, Charmaine D; Liquido, Nicanor J
2017-01-01
Mango, Mangifera indica (Anacardiaceae), is a crop cultivated pantropically. There are, however, many other Mangifera spp ("mango relatives") which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa . Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported.
McQuate, Grant T; Sylva, Charmaine D; Liquido, Nicanor J
2017-01-01
Mango, Mangifera indica (Anacardiaceae), is a crop cultivated pantropically. There are, however, many other Mangifera spp (“mango relatives”) which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa. Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported. PMID:28890657
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Max Sanchezviewing Drosophila (fruit fly) inside insect containers used during flight.
Trapping related to phytosanitary status and trade
USDA-ARS?s Scientific Manuscript database
Detection of incipient fruit fly populations can occur through a number of means such as visual surveys, fruit cutting (to reveal the presence of immatures), collection and holding of fruits to determine if fruit flies emerge from the collected fruits and perhaps the most commonly used method, trapp...
USDA-ARS?s Scientific Manuscript database
We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aq...
Honeydew and insecticide-bait as competing food resources for a fruit fly and common parasitoids
USDA-ARS?s Scientific Manuscript database
Honeydew from phloem-feeding insects and fruit fly insecticidal baits may both serve as adult food resources for some insect species. In California olive orchards the black scale, Saissetia oleae (Olivier), is a common honeydew-producer, while spinosad-based fruit fly bait (GF-120) is used to contro...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly larvae at the USDA-APHIS-PPQ, Petapa Quarantine Laboratory in Guatemala and shipped to the USDA-ARS, Parlier for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in California. Improved ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
...] Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries... blueberries for Mediterranean fruit fly and South American fruit fly. We have prepared a treatment evaluation... at neutralizing these fruit flies. We are making the treatment evaluation document available to the...
USDA-ARS?s Scientific Manuscript database
Mass trapping and attract-and-kill bait stations are two attractant based systems that are being used or are under development as pesticide alternatives for control of a number of pest tephritid fruit flies. Results of field trials for suppression of Caribbean fruit flies in guava orchards in Florid...
USDA-ARS?s Scientific Manuscript database
The combination of putrescine with ammonium acetate into one unit had no significant effect on the attractance of Caribbean fruit fly to trap(s) when compared with the individual BioLure dispseners. Additionally, there were no significant differences in attractancy to the Mediterranean fruit fly wh...
USDA-ARS?s Scientific Manuscript database
The larval parasitoid, Psyttalia cf. concolor (Szépligeti), reared on Mediterranean fruit fly, Ceratitis capitata (Weidemann), by the USDA-APHIS, PPQ, Guatemala City, Guatemala, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europae...
Biomechanics and biomimetics in insect-inspired flight systems.
Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto
2016-09-26
Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).
Alcohol consumption as self-medication against blood-borne parasites in the fruit fly.
Milan, Neil F; Kacsoh, Balint Z; Schlenke, Todd A
2012-03-20
Plants and fungi often produce toxic secondary metabolites that limit their consumption, but herbivores and fungivores that evolve resistance gain access to these resources and can also gain protection against nonresistant predators and parasites. Given that Drosophila melanogaster fruit fly larvae consume yeasts growing on rotting fruit and have evolved resistance to fermentation products, we decided to test whether alcohol protects flies from one of their common natural parasites, endoparasitoid wasps. Here, we show that exposure to ethanol reduces wasp oviposition into fruit fly larvae. Furthermore, if infected, ethanol consumption by fruit fly larvae causes increased death of wasp larvae growing in the hemocoel and increased fly survival without need of the stereotypical antiwasp immune response. This multifaceted protection afforded to fly larvae by ethanol is significantly more effective against a generalist wasp than a wasp that specializes on D. melanogaster. Finally, fly larvae seek out ethanol-containing food when infected, indicating that they use alcohol as an antiwasp medicine. Although the high resistance of D. melanogaster may make it uniquely suited to exploit curative properties of alcohol, it is possible that alcohol consumption may have similar protective effects in other organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Matt Lera doing sample preparation for post light analysis of Drosophila melanogaster (fruit fly) larva
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Computer screen showing green fluorescent protein used to visualize blood cells in Drosophila (fruit fly).
Strawberry Accessions with Reduced Drosophila suzukii Emergence From Fruits
Gong, Xiaoyun; Bräcker, Lasse; Bölke, Nadine; Plata, Camila; Zeitlmayr, Sarah; Metzler, Dirk; Olbricht, Klaus; Gompel, Nicolas; Parniske, Martin
2016-01-01
Drosophila suzukii is threatening soft fruit production worldwide due to the females’ ability to pierce through the intact skin of ripe fruits and lay eggs inside. Larval consumption and the associated microbial infection cause rapid fruit degradation, thus drastic yield and economic loss. Cultivars that limit the proliferation of flies may be ideal to counter this pest; however, they have not yet been developed or identified. To search for potential breeding material, we investigated the rate of adult D. suzukii emergence from individual fruits (fly emergence) of 107 accessions of Fragaria species that had been exposed to egg-laying D. suzukii females. We found significant variation in fly emergence across strawberries, which correlated with accession and fruit diameter, and to a lesser extent with the strawberry species background. We identified accessions with significantly reduced fly emergence, not explained by their fruit diameter. These accessions constitute valuable breeding material for strawberry cultivars that limit D. suzukii spread. PMID:28066452
NASA Astrophysics Data System (ADS)
Bluman, James Edward
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
USDA-ARS?s Scientific Manuscript database
A potential fruit fly steilizing diet was evaluated on fertility, mating, survival, and protein anaylsis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron(LFN) for an initial 7d after emergence and then switched to a control diet to simulate the actual field ...
USDA-ARS?s Scientific Manuscript database
The determination of mated status in wild female fruit fly detections provides information to program managers that is useful in two respects. Firstly, the mated (or unmated) status, is a factor in triggering quarantine restrictions at the detection location. Invasive female fruit flies that have ma...
An Inquiry-Based Investigation of Modes of Inheritance Using "Flightless" Fruit Flies
ERIC Educational Resources Information Center
Chinnici, Joseph P.; Farland, Andrew M.
2005-01-01
The various strains of flightless fruit flies that were developed at the Virginia Commonwealth University (VCU) and an exercise that helps students in determining the inheritance pattern in the fruit fly mutant trait are described. The study and the resulting exercise helped the students in scientifically determining the two important aspects of…
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R
2014-01-16
Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.
Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development
Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory
2018-01-01
ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576
Yokoyama, Victoria Y; Rendón, Pedro A; Sivinski, John
2008-06-01
The larval parasitoid, Psyttalia cf. concolor (Szépligeti), reared on Mediterranean fruit fly, Ceratitis capitata (Weidemann), by the USDA-APHIS-PPQ, Guatemala City, Guatemala, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. Mean percentage parasitism of olive fruit fly third instars infesting fruit in field cages ranged from 7.0 in Grapevine to 59.7 in Santa Barbara and in free releases ranged from 0 in Grapevine to 10.6 in Santa Barbara after 4- to 6-d exposures. In the laboratory, more parasitoids developed to adults in olive fruit fly larvae that were 11-13 d old than in larvae 8-10 d old. Adult parasitoids lived significantly longer when provided with water than adults without water in environmental chambers at 5 degrees C, 85% RH; 15 degrees C, 65% RH; 25 degrees C, 25% RH; and 35 degrees C, 25% RH. Adult parasitoids lived for 48 d with honey for food and water and 32 d with food and sugar solution at 15 degrees C and 65% RH. Survival of adult parasitoids without food and water in greenhouse tests was approximately 4 d in a simulated coastal climate and 1 d in a simulated inland valley climate and was significantly increased by providing food and water. The parasitoid did not develop in the beneficial seedhead fly, Chaetorellia succinea (Costa), in yellow star thistle. The rate of parasitism of walnut husk fly, Rhagoletis completa Cresson, larvae in green walnut husks was 28.4% in laboratory no-choice tests. In choice tests, the rate of parasitism of walnut husk fly versus olive fruit fly larvae in olives was 11.5 and 24.2%, respectively.
Ovruski, Sergio M.; Schliserman, Pablo
2012-01-01
In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina’s various fruit growing regions. PMID:26466633
Dube, Zakheleni P; Mashela, Phatu W; Mathabatha, Raesibe V
2016-08-01
Claims abound that the Transvaal red milkwood, Mimusops zeyheri, indigenous to areas with tropical and subtropical commercial fruit trees and fruiting vegetables in South Africa, is relatively pest free owing to its copious concentrations of latex in the above-ground organs. On account of observed fruit fly damage symptoms, a study was conducted to determine whether M. zeyheri was a host to the notorious quarantined Mediterranean fruit fly (Ceratitis capitata). Fruit samples were kept for 16-21 days in plastic pots containing moist steam-pasteurised growing medium with tops covered with a mesh sheath capable of retaining emerging flies. Microscopic diagnosis of the trapped flies suggested that the morphological characteristics were congruent with those of C. capitata, which was confirmed through cytochrome c oxidase I (COI) gene sequence alignment with a 100% bootstrap value and 99% confidence probability when compared with those from the National Centre for Biotechnology Information database. This study demonstrated that M. zeyheri is a host of C. capitata. Therefore, C. capitata from infestation reservoirs of M. zeyheri fruit trees could be a major threat to the tropical and subtropical fruit industries in South Africa owing to the fruit-bearing nature of the new host. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).
Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H
2013-04-01
Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.
Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets
USDA-ARS?s Scientific Manuscript database
Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly larvae at the USDA-APHIS-PPQ, Petapa Quarantine Laboratory in Guatemala and shipped to the USDA-ARS, Parlier, for wide-spread release and biological control of olive fruit fly in California. As many as 3...
Yee, Wee L; Chapman, Peter S
2008-10-01
Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.
7 CFR 305.6 - Methyl bromide fumigation treatment schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., fumigation with methyl bromide for sapote fruit fly. Regulated citrus fruits originating inside an area quarantined for sapote fruit fly that are to be moved outside the quarantined area may be treated with methyl...
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Here we have sample preparation for post flight analysis of Drosophila (fruit fly) larva with Oana Marcu and Laura Higgins
Feeding and attraction of non-target flies to spinosad-based fruit fly bait.
Wang, Xin-Geng; Messing, Russell H
2006-10-01
A spinosad-based fruit fly bait, GF-120, has recently become a primary tool for area-wide suppression or eradication of pest tephritid fruit flies. The present study assessed the attraction and feeding of five non-target fly species to GF-120 in Hawaii. These non-target flies include three beneficial tephritid species [Eutreta xanthochaeta (Aldrich), Tetreuaresta obscuriventris (Loew), Ensina sonchi (L.)] introduced for weed biological control, an endemic Hawaiian tephritid [Trupanea dubautiae (Bryan)] (all Diptera: Tephritidae) and the cosmopolitan Drosophila melanogaster Meigen (Diptera: Drosophilidae). All five non-target fly species were susceptible to GF-120, as was the target pest Mediterranean fruit fly Ceratitis capitata (Wiedemann). Feeding on, or even brief tasting of, GF-120 killed all fly species within 2 h. When individual flies were provided with a choice of GF-120 or honey solution, there was no difference in the frequency of first food encounter by E. xanthochaeta, D. melanogaster or C. capitata. The other three non-target species approached honey more often than GF-120 in their first food encounter. Feeding times on GF-120 and honey were not significantly different for D. melanogaster and C. capitata, while the other four non-target species fed longer on honey than on GF-120. There was no significant difference in feeding time on honey versus GF-120 between males and females of each species. These results suggest that area-wide treatment using GF-120 for the purpose of eradication of pest fruit flies has potential negative impacts on these and other non-target fly species in Hawaii.
Neuronal encoding of sound, gravity, and wind in the fruit fly.
Matsuo, Eriko; Kamikouchi, Azusa
2013-04-01
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.
Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model
NASA Astrophysics Data System (ADS)
Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore
FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.
Symbiotic bacteria enable olive fly larvae to overcome host defences
Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz
2015-01-01
Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275
Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B
2016-05-19
The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.
Rearing two fruit flies pests on artificial diet with variable pH.
Dias, N P; Nava, D E; Smaniotto, G; Garcia, M S; Valgas, R A
2018-04-23
Fruit flies (Diptera: Tephritidae) are considered the main fruit pests worldwide. In Brazil, two species are predominant: the South American fruit fly, Anastrepha fraterculus and the Mediterranean fruit fly, Ceratitis capitata. In this study, we evaluated the effect of artificial diets with variable pH in their larval development and adult performance. The experiments were carried out in the laboratory at 25 ± 2 °C, 70 ± 10% RH and 12:12h (L:D) photoperiod. Semisolid diets with pH values of 6.0, 5.0, 4.0, 3.0, 2.0, 1.5, and 1.0, adjusted by adding hydrochloric acid were tested. Results indicated that the diet with pH 6.0 did not support larval development of both species of fruit fly. Diets with greater acidic pH values did not allow egg, larvae or pupae development and adult reproduction of A. fraterculus. For C. capitata , the pH of artificial diet exerts greater influence compared to A. fraterculus on the duration and viability of the larval stage, number of pupae, sex ratio and longevity of males.
Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi
2007-06-01
Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.
Unahawutti, Udorn; Intarakumheng, Rachada; Oonthonglang, Pitawat; Phankum, Salukjit; Follett, Peter A
2014-08-01
Postharvest quarantine treatments (irradiation or vapor heat) are used to control fruit flies and other pests in mangosteen (Garcinia mangostana L) exported to the United States and Japan from Thailand. No-choice tests were conducted in the laboratory to determine whether Thai mangosteen is a host for Bactrocera dorsalis (Hendel) (oriental fruit fly) and Bactrocera carambolae Drew & Hancock (carambola fruit fly). Ripe commercial quality fruit (1 wk after harvest) that were either undamaged or damaged by puncturing or peeling the pericarp were exposed to a high density of gravid flies in screen cages and then held for 10 d and dissected to inspect for immature life stages. Undamaged mangosteen fruit were not infested by B. dorsalis and B. carambolae. Partially damaged fruit with shallow punctures in the pericarp that did not extend to the aril also were not infested. Both fruit flies could infest damaged fruit if the pericarp damage allowed oviposition in the aril. Results suggest that natural infestation of mangosteen by B. dorsalis and B. carambolae can only occur if fruit exhibit physical cracks or mechanical injury. Resistance appears to be due to the pericarp hardness and thickness as well as latex secretion. Nonhost status could be used without additional quarantine measures to achieve quarantine security against B. dorsalis and B. carambolae in mangosteen exported from Thailand.
Nojima, Satoshi; Linn, Charles; Roelofs, Wendell
2003-10-01
Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.
Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations.
Iriarte-Díaz, José; Riskin, Daniel K; Willis, David J; Breuer, Kenneth S; Swartz, Sharon M
2011-05-01
The center of mass (COM) of a flying animal accelerates through space because of aerodynamic and gravitational forces. For vertebrates, changes in the position of a landmark on the body have been widely used to estimate net aerodynamic forces. The flapping of relatively massive wings, however, might induce inertial forces that cause markers on the body to move independently of the COM, thus making them unreliable indicators of aerodynamic force. We used high-speed three-dimensional kinematics from wind tunnel flights of four lesser dog-faced fruit bats, Cynopterus brachyotis, at speeds ranging from 2.4 to 7.8 m s(-1) to construct a time-varying model of the mass distribution of the bats and to estimate changes in the position of their COM through time. We compared accelerations calculated by markers on the trunk with accelerations calculated from the estimated COM and we found significant inertial effects on both horizontal and vertical accelerations. We discuss the effect of these inertial accelerations on the long-held idea that, during slow flights, bats accelerate their COM forward during 'tip-reversal upstrokes', whereby the distal portion of the wing moves upward and backward with respect to still air. This idea has been supported by the observation that markers placed on the body accelerate forward during tip-reversal upstrokes. As in previously published studies, we observed that markers on the trunk accelerated forward during the tip-reversal upstrokes. When removing inertial effects, however, we found that the COM accelerated forward primarily during the downstroke. These results highlight the crucial importance of the incorporation of inertial effects of wing motion in the analysis of flapping flight.
77 FR 40320 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... irradiation treatment of imported fruits and vegetables including a minimum generic dose for the fruit fly family, the minimum dose of irradiation for some specific fruit fly species, and provides for the use of irradiation as a treatment for cut flowers and foliage. Need and Use of the Information: Certain fruits and...
Renkema, Justin M; Cutler, G Christopher; Gaul, Sonia O
2014-11-01
Blueberry maggot, Rhagoletis mendax Curran (Diptera: Tephritidae), is the most important pest of blueberries in eastern North America. Insecticide use in fruit-bearing lowbush blueberry fields could be reduced with management strategies focused on vegetative fields. Fly distribution and fruit infestation levels were assessed where fruit-bearing and vegetative fields adjoin and along forested edges of vegetative fields. Along adjoining edges, immature female flies were captured in fruiting fields and mature females in vegetative fields throughout the season. Male fly captures and fruit infestation levels were greater at 5 m than at 30 m from the edge. Along forested edges, fly captures were best predicted by densities of ripe lowbush blueberries and large coniferous trees. Maggot infestation level in lowbush blueberries was best predicted by blueberry density and small deciduous trees. Bunchberry, Cornus canadensis L., was the only non-crop host in which blueberry maggot was found. We have shown that relatively high numbers of flies occur in vegetative fields and at edges of fruiting fields. Ripe blueberries and certain vegetation in forested edges affect fly distribution and probably maintain populations. These results may help to predict where controls for blueberry maggot should be targeted and suggest that management strategies focused on vegetative fields and field edges may be worthwhile. © 2013 Society of Chemical Industry.
Shariff, S.; Ibrahim, N. J.; Md-Zain, B. M.; Idris, A. B.; Suhana, Y.; Roff, M. N.; Yaakop, S.
2014-01-01
Abstract Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b . Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs. PMID:25373154
Zou, Yingxin; Liu, Yuxiang; Ruan, Minghua; Feng, Xu; Wang, Jiachun; Chu, Zhiyong; Zhang, Zesheng
2015-10-01
This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process.
ZOU, YINGXIN; LIU, YUXIANG; RUAN, MINGHUA; FENG, XU; WANG, JIACHUN; CHU, ZHIYONG; ZHANG, ZESHENG
2015-01-01
This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process. PMID:26239097
Optimal propulsive flapping in Stokes flows.
Was, Loïc; Lauga, Eric
2014-03-01
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.
Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C
2010-01-01
Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.
Bombykol receptors in the silkworm moth and the fruit fly
Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.
2010-01-01
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang
2016-01-01
A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228
Predicting fruit fly's sensing rate with insect flight simulations.
Chang, Song; Wang, Z Jane
2014-08-05
Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia
2016-01-01
Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107
USDA-ARS?s Scientific Manuscript database
The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran, is a major pest of cherry, Prunus avium (L.) L., in the Pacific Northwest of the U.S. Spinosad bait is applied weekly to kill flies before they develop eggs, but its effects on oviposition by flies that are reproductively mature are unknown. ...
Piñero, Jaime C.; Mau, Ronald F. L.; Vargas, Roger I.
2010-01-01
Bait stations represent an environmentally friendly attract-and-kill approach to fruit fly population suppression. Recently a novel, visually attractive, rain-fast bait station was developed in Hawaii for potential use against multiple species of pestiferous fruit flies. Here, we compared the efficacy of GF-120 NF Naturalyte Fruit Fly Bait applied either as foliar sprays or onto bait stations in reducing female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), population density and level of fruit infestation in commercial papaya orchards in Hawaii. Trapping and infestation data were used as indicators of the effectiveness of the two bait application methods. For the first 10 weeks of the study, captures of female B. dorsalis in monitoring traps were significantly greater in control plots than in plots treated with foliar sprays or bait stations. Six weeks after the first bait spray, incidence of infestation (i.e. number of fruit with one or more B. dorsalis larvae) of quarter to half-ripe papaya fruit was reduced by 71.4% and 63.1% for plots with bait stations and foliar sprays, respectively, as compared to control plots. Twelve weeks after first spray, incidence of infestation was reduced by only 54.5% and 45.4% for plots with bait stations and foliar sprays, respectively, as compared to control plots. About 42% less GF-120 was used in orchard plots with bait stations compared to those subject to foliar sprays. The impact of field sanitation on the outcome is also discussed. The results indicate that bait stations can provide a simple, efficient, and economical method of applying insecticidal baits to control fruit flies and a safer alternative to foliar sprays. PMID:21067423
Manrakhan, Aruna; Addison, Pia
2014-04-01
Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch are important fruit fly pests of deciduous fruit in the Western Cape Province, South Africa. The main techniques used for fruit fly control in the Western Cape are the sterile insect technique (SIT) targeting C. capitata and the bait application technique (BAT). We determined the relative success of SIT by comparing adult fly-trap catches and fruit infestation in commercial orchards between three regions under SIT and two regions under BAT in the Western Cape, from 2006 to 2008. Ceratitis capitata was predominant in all regions. In commercial orchards, C. capitata catches peaked towards the end of the fruiting season (March to May) and were low between July and January. During the late season, C. capitata catches were significantly higher in two of the regions under SIT. The sterile to wild male ratio in those regions was found to be mostly <1. SIT is not being properly applied in some regions. SIT should be implemented when the pest population is low. The sterile to wild fly ratios should be increased. Alternatively, BAT should be used to lower the pest population before SIT application. Control methods should be more integrated and applied area-wide. © 2013 Society of Chemical Industry.
Physics-Based Design of Micro Air Vehicles
2012-04-01
7 Figure 5. Comparison of an insect wing and a manufactured wing for a flapping MAV. .............. 8...topologies for a flapping-wing compliant actuation mechanism. Hatched areas are clamped. Cases 1-3 have fixed supports; cases 4 and 5 have variable...world by flying insects , birds, and mammals. However, an inadequate understanding of the complex, nonlinear, and multidisciplinary physics that
Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.
Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas
2018-03-20
Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. IMPORTANCE Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii , also known as Spotted wing drosophila. Our study results demonstrate that the abundance and structure of microbiota in D. suzukii are strongly affected by the environment, where microbes have variable roles depending on the nutritional situation. For instance, we found that the presence of microbes is deleterious for flies growing on a protein-rich diet and yet is beneficial for flies growing on a diet of protein-poor fruits. Additionally, germ-free flies must feed on microbes to obtain the necessary protein for larval development on strawberries and blueberries. Our report validates the complexity seen in host-microbe interactions and may provide information useful for D. suzukii pest control. Copyright © 2018 Bing et al.
Unsteady bio-fluid dynamics in flying and swimming
NASA Astrophysics Data System (ADS)
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Van Mele, Paul; Vayssières, Jean-François; Van Tellingen, Esther; Vrolijks, Jan
2007-06-01
Six mango, Mangifera indica L., plantations around Parakou, northern Benin, were sampled at 2-wk intervals for fruit fly damage from early April to late May in 2005. Mean damage ranged from 1 to 24% with a weaver ant, Oecophylla longinoda (Latreille), being either abundant or absent. The fruit fly complex is made up of Ceratitis spp. and Bactrocera invadens Drew et al., a new invasive species in West Africa. In 2006, Ceratitis spp. peaked twice in the late dry season in early April and early May, whereas B. invadens populations quickly increased at the onset of the rains, from mid-May onward. Exclusion experiments conducted in 2006 with 'Eldon', 'Kent', and 'Gouverneur' confirmed that at high ant abundance levels, Oecophylla significantly reduced fruit fly infestation. Although fruit fly control methods are still at an experimental stage in this part of the world, farmers who tolerated weaver ants in their orchard were rewarded by significantly better fruit quality. Conservation biological control with predatory ants such as Oecophylla in high-value tree crops has great potential for African and Asian farmers. Implications for international research for development at the Consultative Group on International Agricultural Research level are discussed.
Tephritid fruit fly transgenesis and applications
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are among the most serious agricultural pests in the world, owing in large part to those species having broad host ranges including hundreds of fruits and vegetables. They are the largest group of insects subject to population control by a biologically-based systems, most notab...
Evaluation of imported parasitoid fitness for biocontrol of olive fruit fly in California olives
USDA-ARS?s Scientific Manuscript database
A parasitoid, Psyttalia humilis (Silvestri), was reared on irradiated Mediterranean fruit fly (Medfly), Ceratitis capitata (Weidemann), at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala, and imported into California for biological control of olive fruit ...
USDA-ARS?s Scientific Manuscript database
The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...
Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate
Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.
2012-01-01
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093
Mechanical performance of aquatic rowing and flying.
Walker, J A; Westneat, M W
2000-09-22
Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.
NASA Astrophysics Data System (ADS)
Izraelevitz, Jacob; Triantafyllou, Michael
2016-11-01
Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), causes direct damage to fruits and vegetables through oviposition and larval feeding. Rigorous quarantine procedures are currently enforced to prevent domestic and transnational spread of Medfly. Accessible and reliable informatio...
USDA-ARS?s Scientific Manuscript database
Host plant chemicals can influence sex pheromone communication of tephritid fruit flies, and affect strategies optimizing mating and reproduction. Previous studies suggest that females of the South American fruit fly, Anastrepha fraterculus, prefer to mate with laboratory males previously exposed to...
USDA-ARS?s Scientific Manuscript database
Irradiation and vapor–heating treatments are commonly used to disinfest the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:Tephritidae), and other pests on mango fruits before export from Thailand to foreign markets. Modified atmosphere packaging (MAP) used during export of mangoes create...
Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical
USDA-ARS?s Scientific Manuscript database
Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from over-exploiting these sites for egg-laying. Previous studies have identified and used HMPs to manage certain fruit fly species. However, few examples are known for African indigenous fruit flie...
Bait formulations of attractants and phagostimulants for targeted, area-wide fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies attack hundreds of species of fruits and vegetables and are responsible for trade restrictions wherever they occur. Traps and “bait and kill stations” are important means of monitoring and control and Bob Heath made important contributions to these technologies....
Campolo, Orlando; Medina, Raul F.; Palmeri, Vincenzo
2018-01-01
Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas. PMID:29518170
The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management
Dhillon, M.K.; Singh, Ram; Naresh, J.S.; Sharma, H.C.
2005-01-01
The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is distributed widely in temperate, tropical, and sub-tropical regions of the world. It has been reported to damage 81 host plants and is a major pest of cucurbitaceous vegetables, particularly the bitter gourd (Momordica charantia), muskmelon (Cucumis melo), snap melon (C. melo var. momordica), and snake gourd (Trichosanthes anguina). The extent of losses vary between 30 to 100%, depending on the cucurbit species and the season. Its abundance increases when the temperatures fall below 32° C, and the relative humidity ranges between 60 to 70%. It prefers to infest young, green, soft-skinned fruits. It inserts the eggs 2 to 4 mm deep in the fruit tissues, and the maggots feed inside the fruit. Pupation occurs in the soil at 0.5 to 15 cm below the soil surface. Keeping in view the importance of the pest and crop, melon fruit fly management could be done using local area management and wide area management. The melon fruit fly can successfully be managed over a local area by bagging fruits, field sanitation, protein baits, cue-lure traps, growing fruit fly-resistant genotypes, augmentation of biocontrol agents, and soft insecticides. The wide area management program involves the coordination of different characteristics of an insect eradication program (including local area options) over an entire area within a defensible perimeter, and subsequently protected against reinvasion by quarantine controls. Although, the sterile insect technique has been successfully used in wide area approaches, this approach needs to use more sophisticated and powerful technologies in eradication programs such as insect transgenesis and geographical information systems, which could be deployed over a wide area. Various other options for the management of fruit fly are also discussed in relation to their bio-efficacy and economics for effective management of this pest. PMID:17119622
Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.
Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A
2012-05-15
The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.
Managing the Fruit Fly Experiment.
ERIC Educational Resources Information Center
Jeszenszky, Arleen W.
1997-01-01
Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)
Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S
2011-09-01
We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.
Dambroski, Hattie R; Linn, Charles; Berlocher, Stewart H; Forbes, Andrew A; Roelofs, Wendell; Feder, Jeffrey L
2005-09-01
Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation.
Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang
2017-07-01
Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Field trials were conducted in south Florida to compare capture of wild Caribbean fruit flies, Anastrepha suspensa (Loew), and sterile male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), in Multilure traps, which are McPhail-type traps that use an aqueous solution to retain attracted fli...
USDA-ARS?s Scientific Manuscript database
Attraction of tephritid fruit flies to light and its role in fly biology and management has received little attention. Here, the objective was to show that western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is attracted to white light in the presence and absence of ammo...
Biological Control of Olive Fruit Fly in California with a Parasitoid Imported from Guatemala
USDA-ARS?s Scientific Manuscript database
The parasitoid, Psyttalia cf. concolor (Szépligeti), was imported into California from the USDA-APHIS-PPQ, Moscamed, San Miguel Petapa, Guatemala for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. The parasitoid did not develop in the seedhead fly, Cha...
Poyet, Mathilde; Le Roux, Vincent; Gibert, Patricia; Meirland, Antoine; Prévost, Geneviève; Eslin, Patrice; Chabrerie, Olivier
2015-01-01
The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas) of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology) potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these “trap plants” may attract and lure D. suzukii, therefore contributing to the control of the invasive fly. PMID:26581101
Shariff, S; Ibrahim, N J; Md-Zain, B M; Idris, A B; Suhana, Y; Roff, M N; Yaakop, S
2014-01-23
Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b. Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
USDA-ARS?s Scientific Manuscript database
The West Indian fruit fly, Anastrepha obliqua (Macquart), infests numerous fruit species, particularly Anacardiaceae and most importantly mango (Mangifera indica L.). Widespread in the Neotropics, it was first reported in Hispaniola nearly 70 years ago. Continental populations are attacked by the op...
USDA-ARS?s Scientific Manuscript database
Gas chromatography coupled with electroantennogram detection (GC-EAD) was used to identify volatiles from the fruit of Snowberry, Symphoricarpos albus laevigatus, as key attractants for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), ...
USDA-ARS?s Scientific Manuscript database
Geographic strains of the African endoparasitoids Psyttalia lounsburyi and Psyttalia humilis (Hymenoptera: Braconidae) were released to suppress the olive fruit fly, Bactrocera oleae, in California from 2006 – 2016. Both parasitoid species were recovered post-release within the same fruit season; ho...
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Avocados cannot be exported from Hawaii without a quarantine treatment to prevent the spread of fruit flies. Research on the maturity and infestability of ‘Sharwil’ avocados was conducted to support development of a systems approach for quarantine security of exported fruit. Th...
Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Giam, Xingli; Forget, Pierre-Michel; Campos-Arceiz, Ahimsa
2017-01-01
As tropical landscapes become increasingly human-dominated, conflicts between people and wildlife threaten ecological processes. Old World fruit bats such as flying foxes are especially susceptible to extinction risk because there is low interest in their conservation, particularly when they are considered pests. In order to arrest fruit bat declines, there is an urgent need to understand human-bat conflict and its implications. On a tropical island in Peninsular Malaysia, we conducted a questionnaire survey to investigate coexistence between people and the island flying fox ( Pteropus hypomelanus ). Among 119 respondents, knowledge of ecosystem services provided by flying foxes was extremely low. Most respondents held negative attitudes towards the bats, and older male locals were more likely to support killing them. This was also true for older owners of fruit trees who derived income from selling fruit, and experienced flying fox raids. Our results can be used to design appropriate interventions to support conservation efforts, and has important implications for managing conflicts between humans and synanthropic wildlife.
Social attraction mediated by fruit flies' microbiome.
Venu, Isvarya; Durisko, Zachary; Xu, Jianping; Dukas, Reuven
2014-04-15
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L.
2012-01-01
In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar (13C6-glucose) for 12 h – either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate – possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism. PMID:23185587
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Tephritidae), discovered in 1998 in California, is a direct pest of olives that has invaded the Mediterranean Region and California (Rice et al. 2003; Zalom et al. 2009). The fly is believed to have originated from Africa (Hoelmer et al. 2011), and Psyttalia lo...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe economic damage in California. Control of this fly is currently limited to pesticides. The USDA-ARS European Biological Control Laboratory in Montpellier, France established a classical biological control program nearly 15 y...
Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae)
Mascarenhas, Rodrigo O; Prezotto, Leandro F; Perondini, André Luiz P; Marino, Celso Luiz; Selivon, Denise
2016-01-01
Abstract The endosymbiont Wolbachia is efficiently transmitted from females to their progenies, but horizontal transmission between different taxa is also known to occur. Aiming to determine if horizontal transmission might have occurred between Anastrepha fruit flies and associated braconid wasps, infection by Wolbachia was screened by amplification of a fragment of the wsp gene. Eight species of the genus Anastrepha were analyzed, from which six species of associated parasitoid wasps were recovered. The endosymbiont was found in seven Anastrepha species and in five species of braconids. The WSP Typing methodology detected eight wsp alleles belonging to Wolbachia supergroup A. Three were already known and five were new ones, among which four were found to be putative recombinant haplotypes. Two samples of Anastrepha obliqua and one sample of Doryctobracon brasiliensis showed multiple infection. Single infection by Wolbachia was found in the majority of samples. The distribution of Wolbachia harboring distinct alleles differed significantly between fruit flies and wasps. However, in nine samples of fruit flies and associated wasps, Wolbachia harbored the same wsp allele. These congruences suggest that horizontal transfer of Wolbachia might have occurred in the communities of fruit flies and their braconid parasitoids. PMID:27648768
AFTI/F-111 MAW flight control system and redundancy management description
NASA Technical Reports Server (NTRS)
Larson, Richard R.
1987-01-01
The wing on the NASA F-111 transonic aircraft technology (TACT) airplane was modified to provide flexible leading and trailing edge flaps; this modified wing is known as the mission adaptive wing (MAW). A dual digital primary fly-by-wire flight control system was developed with analog backup reversion for redundancy. This report discusses the functions, design, and redundancy management of the flight control system for these flaps.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and e...
77 FR 22510 - Importation of Fresh Bananas From the Philippines Into the Continental United States
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... consider 2 years' worth of data on how fruit flies affect a commodity to be sufficient to make... importation of fruits and vegetables to allow the importation of fresh bananas from the Philippines into the... fruit flies to establish low- prevalence places of production, harvesting only of hard green bananas...
USDA-ARS?s Scientific Manuscript database
The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is native to bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ~100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of ad...
Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.
Lou, Xin Yuan; Sun, Lin Fu
2017-01-01
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096
Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc
2012-01-01
The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran, is a pest of sweet cherry, Prunus avium (L.) L., in western North America that is found in relatively moist and dry habitats. In this study, fly pupae from Kennewick and Roslyn in Washington state, U.S.A., were used to test the hypotheses tha...
Reconstructing the behavior of walking fruit flies
NASA Astrophysics Data System (ADS)
Berman, Gordon; Bialek, William; Shaevitz, Joshua
2010-03-01
Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.
How wing compliance drives the efficiency of self-propelled flapping flyers.
Thiria, Benjamin; Godoy-Diana, Ramiro
2010-07-01
Wing flexibility governs the flying performance of flapping-wing flyers. Here, we use a self-propelled flapping-wing model mounted on a "merry go round" to investigate the effect of wing compliance on the propulsive efficiency of the system. Our measurements show that the elastic nature of the wings can lead not only to a substantial reduction in the consumed power, but also to an increment of the propulsive force. A scaling analysis using a flexible plate model for the wings points out that, for flapping flyers in air, the time-dependent shape of the elastic bending wing is governed by the wing inertia. Based on this prediction, we define the ratio of the inertial forces deforming the wing to the elastic restoring force that limits the deformation as the elastoinertial number N(ei). Our measurements with the self-propelled model confirm that it is the appropriate structural parameter to describe flapping flyers with flexible wings.
USDA-ARS?s Scientific Manuscript database
Brown sugar or hot water methods have been developed to detect larvae of tephritid fruit flies in post-harvest fruit in order to maintain quarantine security. It would be useful to determine if variations of these methods can yield better results and if less expensive alternatives exist. This stud...
USDA-ARS?s Scientific Manuscript database
Background The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family ...
The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid
NASA Astrophysics Data System (ADS)
Shinde, Sachin; Arakeri, Jaywant
2010-11-01
Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Shyy, Wei; Kang, Chang-Kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao
2016-02-01
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.
Aerodynamics, sensing and control of insect-scale flapping-wing flight
Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao
2016-01-01
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
Daniel, Claudia; Baker, Brian
2013-03-12
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards.
Daniel, Claudia; Baker, Brian
2013-01-01
Demand for organic cherries offers producers a premium price to improve their commercial viability. Organic standards require that producers find alternatives to pesticides. Soil treatments to control the European cherry fruit fly Rhagoletis cerasi (L.) (Diptera: Tephrididae) appear to be an attractive option. However, soil treatments can only be effective if the migration of flies is low, because mature flies may migrate from near-by trees for oviposition. To examine the general potential of soil treatments and to understand the dispersal and flight behaviour of R. cerasi within orchards, experiments using netting to cover the soil were conducted in two orchards with different pest pressure during two years. The netting reduced flight activity by 77% and fruit infestation by 91%. The data showed that the flies have a dispersal of less than 5 m within orchards, which is very low. The low thresholds for tolerance for infested fruit in the fresh market creates a strong economic incentive for control, therefore, soil covering is a promising strategy for controlling R. cerasi in commercial orchards. PMID:26466801
Cancino, Jorge; Ruíz, Lía; Viscarret, Mariana; Sivinski, John; Hendrichs, Jorge
2012-01-01
The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures. PMID:26466729
Chromosomal duplications in bacteria, fruit flies, and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupski, J.R.; Weinstock, G.M.; Roth, J.R.
1996-01-01
Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.
DNA barcode variability and host plant usage of fruit flies (Diptera: Tephritidae) in Thailand.
Kunprom, Chonticha; Pramual, Pairot
2016-10-01
The objectives of this study were to examine the genetic variation in fruit flies (Diptera: Tephritidae) in Thailand and to test the efficiency of the mitochondrial cytochrome c oxidase subunit I (COI) barcoding region for species-level identification. Twelve fruit fly species were collected from 24 host plant species of 13 families. The number of host plant species for each fruit fly species ranged between 1 and 11, with Bactrocera correcta found in the most diverse host plants. A total of 123 COI sequences were obtained from these fruit fly species. Sequences from the NCBI database were also included, for a total of 17 species analyzed. DNA barcoding identification analysis based on the best close match method revealed a good performance, with 94.4% of specimens correctly identified. However, many specimens (3.6%) had ambiguous identification, mostly due to intra- and interspecific overlap between members of the B. dorsalis complex. A phylogenetic tree based on the mitochondrial barcode sequences indicated that all species, except for the members of the B. dorsalis complex, were monophyletic with strong support. Our work supports recent calls for synonymization of these species. Divergent lineages were observed within B. correcta and B. tuberculata, and this suggested that these species need further taxonomic reexamination.
Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
Schuster, Stefan; Strauss, Roland; Götz, Karl G
2002-09-17
Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...
USDA-ARS?s Scientific Manuscript database
Three strains (standard lab, DTWP pupal color sexing strain and wild strain) of adult oriental fruit flies, which were reared as larvae on a liquid diet, mill feed diet (Tanaka’s diet), or natural host fruit diet, were evaluated for mating competitiveness in both indoor and outdoor Boller’s mating c...
Zheng, Chunyan; Yang, Dongyu; Li, Zhiqiang; Xu, Yijuan
2018-04-11
The objective of this study was to evaluate the toxicity of flavor enhancers to the oriental fruit fly Bactrocera dorsalis (Hendel). The flavor enhancers glycine, disodium guanylate, succinic acid disodium salt, monosodium glutamate (MSG), disodium inosinate, and L-alanine significantly increased the mortality of B. dorsalis flies. The mortality of flies that fed on glycine, disodium guanylate, succinic acid disodium salt, and MSG was greater than 90%. Additionally, fruit fly mortality increased with increases in both time and concentration. Glycine not only reduced the climbing ability of B. dorsalis but also affected the duration and frequency of its behavioral patterns (flight, walking, grooming and inactivity). Compared with adult flies in the control group, adult B. dorsalis flies that fed on glycine exhibited a significantly increased duration and frequency of inactivity and a decreased duration and frequency of both flight and walking. However, the effect of glycine on grooming activity was not significant. These findings demonstrate the toxic effects of flavor enhancers on B. dorsalis. Glycine also affected the behavior of adult flies at a low dose. Therefore, glycine has potentially toxic to insects and also likely to have a negative impact at sublethal concentrations.
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
Kang, Chang-kwon; Shyy, Wei
2013-01-01
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Abstract Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock , were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species’ distribution in peninsular Thailand and other parts of the world. PMID:25368070
Effect of Surround WP on behavior and mortality of apple maggot (Diptera: Tephritidae).
Leskey, Tracy C; Wright, Starker E; Glenn, D Michael; Puterka, Gary J
2010-04-01
Apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a key pest in apple (Malus spp.) production areas located in the northeastern and midwestern United States and the eastern provinces of Canada. The development of Surround WP has offered a new approach for controlling apple maggot and other tephritid species, because this material is considered to be compatible with advanced integrated pest management and organic production systems. We conducted studies aimed at identifying the behavioral and biological effects of this material on apple maggots. Specifically, we examined the effect of Surround WP on the visual ecology of adult flies under field conditions, on tactile responses of flies in semifield trials, and on fly mortality in laboratory-based-bioassays. We demonstrated that an even coating of white particles over a fruit-mimicking sphere surface reduced visual attractiveness. We also found that spotty-coated fruit-mimicking spheres (meant to mimic ripe fruit bearing an uneven coating of Surround WP) were perceived by flies as not having the ideal round silhouette shape stimulus. Surround WP served as a tactile deterrent; the residence time of females introduced on to treated fruit was much shorter compared with untreated fruit. Surround WP also had a toxic effect on both adult apple maggot and Rhagoletis suavis (Loew); flies exposed to and forced to stand on Surround-treated surfaces died in <2 d in all trials. The combined effectiveness of Surround WP is based on a reduction in the attractiveness of fruit-based visual cues, an increase in the likelihood of flies leaving treated surfaces due to tactile deterrence, and a potential for increased mortality due to exposure to Surround WP particles.
McQuate, Grant T.; Follett, Peter A.; Liquido, Nicanor J.; Sylva, Charmaine D.
2015-01-01
Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484
Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo
2013-04-01
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.
Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep.
Hendricks, Joan C; Sehgal, Amita
2004-03-15
Among simple model systems, Drosophila has specific advantages for neurobehavioral investigations. It has been particularly useful for understanding the molecular basis of circadian rhythms. In addition, the genetics of fruit-fly sleep are beginning to develop. This review summarizes the current state of understanding of circadian rhythms and sleep in the fruit fly for the readers of Sleep. We note where information is available in mammals, for comparison with findings in fruit flies, to provide an evolutionary perspective, and we focus on recent findings and new questions. We propose that sleep-specific neural activity may alter cellular function and thus accomplish the restorative function or functions of sleep. In conclusion, we sound some cautionary notes about some of the complexities of working with this "simple" organism.
NASA Astrophysics Data System (ADS)
Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.
2013-11-01
Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.
De Villiers, Marelize; Manrakhan, Aruna; Addison, Pia; Hattingh, Vaughan
2013-10-01
Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) are fruit fly species (Diptera: Tephritidae) of economic importance in South Africa. These pests cause direct damage to a number of commercially produced fruit and are of phytosanitary concern. A study was conducted to determine the distribution, relative abundance, and seasonal occurrence of the three species in different climatic regions of South Africa. The relative abundance and seasonal phenology of C. capitata and C. rosa were also compared between production areas and home gardens in Stellenbosch, Western Cape. Yellow bucket traps baited with Biolure were used to trap the flies over a 2-yr period in the different sampling areas. Different fruit types were sampled in Stellenbosch to determine fruit fly infestation. C. capitata was found to have a widespread distribution in South Africa, whereas C. rosa were absent from or only present in low numbers in the drier regions. C. cosyra was restricted to the North East and East coast, following a similar pattern to the distribution of marula, Sclerocarrya birrea, an important wild host. Fruit in home gardens provided a breeding ground for C. capitata and C. rosa and a source for infestation of orchards when fruit started to mature, highlighting the need for an area-wide strategy for the control of fruit flies.
7 CFR 301.32-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with § 301.32-10; or (ii) Based on inspection of the premises of origin, the premises are free... interstate movement will not result in the spread of fruit flies because life stages of the fruit flies will...
7 CFR 301.32-5 - Issuance and cancellation of certificates and limited permits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with § 301.32-10; or (ii) Based on inspection of the premises of origin, the premises are free... interstate movement will not result in the spread of fruit flies because life stages of the fruit flies will...
A Plain English Map of the Chromosomes of the Fruit Fly Drosophila Melanogaster.
ERIC Educational Resources Information Center
Offner, Susan
1996-01-01
Presents a plain English map of the chromosomes of the fruit fly that contains genes from very different kinds of studies. Represents the work of nearly a century by thousands of researchers using a tremendous variety of techniques. (JRH)
Recognition of foreign oviposition-marking pheromone in a multi-trophic context
NASA Astrophysics Data System (ADS)
Stelinski, L. L.; Rodriguez-Saona, C.; Meyer, W. L.
2009-05-01
Both phytophagous and parasitic insects deposit oviposition-marking pheromones (OMPs) following oviposition that function to inform conspecifics of a previously utilized host of reduced suitability. The blueberry maggot fly, Rhagoletis mendax Curran (Diptera: Tephritidae), deposits eggs individually into blueberries and then marks the fruit surface with an OMP which reduces acceptance of fruit for oviposition by conspecifics. Diachasma alloeum (Muesebeck) (Hymenoptera: Braconidae) is a parasitic wasp attacking larval R. mendax which also deposits an OMP, signaling conspecifics of a wasp-occupied host. Behavioral studies were conducted testing the hypothesis that the OMP of the parasitic wasp modifies the oviposition behavior of its host fly. In this study, we show that the OMP of D. alloeum is recognized by R. mendax, and female flies will reject wasp-marked fruit for oviposition. Thus, we present a rare demonstration of pheromonal recognition between animals occupying different taxonomic orders and trophic levels. This chemical eavesdropping may enhance the ability of the fly to avoid fruit unsuitable for larval development.
Li, Baini; Ma, Jun; Hu, Xuenan; Liu, Haijun; Wu, Jiajiao; Chen, Hongjun; Zhang, Runjie
2010-08-01
Exotic fruit flies (Ceratitis spp.) are often serious agricultural pests. Here, we used, pathway analysis and Monte Carlo simulations to assess the risk of introduction of Ceratitis capitata (Wiedemann), Ceratitis cosyra (Walker), and Ceratitis rosa Karsch, into southern China with fruit consignments and incoming travelers. Historical data, expert opinions, relevant literature, and archives were used to set appropriate parameters in the pathway analysis. Based on the ongoing quarantine/ inspection strategies of China, as well as the interception records, we estimated the annual number of each fruit fly species entering Guangdong province undetected with commercially imported fruit, and the associated risk. We also estimated the gross number of pests arriving at Guangdong ports with incoming travelers and the associated risk. Sensitivity analysis also was performed to test the impact of parameter changes and to assess how the risk could be reduced. Results showed that the risk of introduction of the three fruit fly species into southern China with fruit consignments, which are mostly transported by ship, exists but is relatively low. In contrast, the risk of introduction with incoming travelers is high and hence deserves intensive attention. Sensitivity analysis indicated that either ensuring all shipments meet current phytosanitary requirements or increasing the proportion of fruit imports sampled for inspection could substantially reduce the risk associated with commercial imports. Sensitivity analysis also provided justification for banning importation of fresh fruit by international travelers. Thus, inspection and quarantine in conjunction with intensive detection were important mitigation measures to reduce the risk of Ceratitis spp. introduced into China.
Akter, Humayra; Adnan, Saleh; Morelli, Renata; Taylor, Phillip W.
2017-01-01
Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such ‘male replacement’ requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or ‘Qfly’) to raspberry ketone (RK) mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages. PMID:28859132
Host status of blueberry to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Armstrong, John W; Zee, Francis T
2009-10-01
Forced infestation studies were conducted to determine whether northern or southern highbush blueberries, Vaccinium corymbosum L., are hosts for the invasive tephritid fruit flies in Hawaii. Fruit were exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal and adult emergence. The number of puparia, number of puparia per gram, and percentage of adult emergence on 'Bluecrop' blueberry were significantly higher for B. dorsalis and C. capitata than B. cucurbitae; B. dorsalis, C. capitata, and B. cucurbitae produced an average of 1.06, 0.60, and 0.09 pupae per g fruit and had 5.8, 54.1, and 12.7% adult emergence, respectively. 'Berkeley' blueberries produced an average of only 0.06, 0.02, and 0.0 pupae per g fruit for B. dorsalis, C. capitata, and B. cucurbitae, respectively. Similarly, six blueberry cultivars were harvested weekly for 10 wk, exposed to Bactrocera latifrons (Hendel) in cages, and held for pupal and adult emergence on either sand or artificial diet. In total, 2,677 blueberries were exposed to 2681 B. latifons and held on sand, and no pupariation or adult emergence was observed. Small numbers of B. latifrons puparia and adults emerged from the artificial diet treatment in all cultivars. Results from rearing on sand and diet indicate that blueberry is an acceptable oviposition host for B. latifrons but not an adequate developmental host. These data suggest blueberry is potentially a good host for B. dorsalis and C. capitata, and an adequate host for Bactrocera cucurbitae, but that there may be significant variation in resistance among cultivars. Blueberry seems to be a nonhost for B. latifrons.
Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.
2008-01-01
The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458
CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Rege, Alok Ashok
The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better aerodynamic data. The second part of research involves preliminary work required to generate new aerodynamic data for the nonlinear model. First, a computational mesh is created over a 2-D wing section of the MAV model. A finite volume based computational flow solver is used to test different flapping trajectories of the wing section. Finally, a parametric study of the results obtained from the tests is performed.
Treatment of Fragile X Syndrome with a Neuroactive Steroid
2015-08-01
in the fragile X mouse model and the Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down... Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down-regulated. Ganaxolone is a drug that
Sublethal effects in pest management: a surrogate species perspective on fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...
Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.
ERIC Educational Resources Information Center
Guilfoile, Patrick
1997-01-01
Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)
Phylogeography of West Indian fruit fly, Anastrepha obliqua, inferred with mtDNA sequencing
USDA-ARS?s Scientific Manuscript database
Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the West Indian fruit fly, is a frugivorous pest that occasionally finds its way to commercial growing areas outside its native distribution. It inhabits areas in Mexico, Central and South America, and the Caribbean, with occasional infestations...
Yee, Wee L.; Klaus, Michael W.; Cha, Dong H.; Linn, Charles E.; Goughnour, Robert B.
2012-01-01
The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981–2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards. PMID:23451979
NASA Technical Reports Server (NTRS)
Larson, R. R.
1986-01-01
The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.
Usherwood, James R
2009-03-01
Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.
Understanding the unsteady aerodynamics of a revolving wing with pitching-flapping perturbations
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Eslam Panah, Azar; Cheng, Bo
2017-11-01
Revolving wings become less efficient for lift generation at low Reynolds numbers. Unlike flying insects using reciprocating revolving wings to exploit unsteady mechanisms for lift enhancement, an alternative that introduces unsteadiness through vertical flapping perturbation, is studied via experiments and simulations. Substantial drag reduction, linearly dependent on Strouhal number, is observed for a flapping-perturbed revolving wing at zero angle of attack (AoA), which can be explained by changes in the effective angle of attack and formation of reverse Karman vortex streets. When the AoA increases, flapping perturbations improve the maximum lift coefficient attainable by the revolving wing, with minor increases of drag or even minor drag reductions depending on Strouhal number and normalized flapping amplitude. When the pitching perturbations are further introduced, more substantial drag reduction and lift enhancement can be achieved in zero and positive AoAs, respectively. As the flapping-perturbed wings are less efficient compared with revolving wings in terms of power loading, the pitching-flapping perturbations can achieve a higher power loading at 20°AoA and thus have potential applications in micro air vehicle designs. This research was supported by NSF, DURIP, NSFC and Penn State Multi-Campus SEED Grant.
Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.
2012-01-01
This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni. PMID:26466726
Hengjan, Yupadee; Iida, Keisuke; Doysabas, Karla Cristine C; Phichitrasilp, Thanmaporn; Ohmori, Yasushige; Hondo, Eiichi
2017-10-07
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8-17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior.
HENGJAN, Yupadee; IIDA, Keisuke; DOYSABAS, Karla Cristine C.; PHICHITRASILP, Thanmaporn; OHMORI, Yasushige; HONDO, Eiichi
2017-01-01
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8–17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior. PMID:28804092
The importance of being top-heavy: Intrinsic stability of flapping flight
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Liu, Bin; Zhang, Jun
2011-11-01
We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.
Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria
Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao
2015-01-01
Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769
USDA-ARS?s Scientific Manuscript database
Studies were conducted in Honduras to determine sampling range for female-targeted food-based synthetic attractants for pest tephritid fruit flies. Field studies were conducted in shaded coffee and adults of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), were captured. Traps (38 traps ...
The fruit flies (Tephritidae) of Ontario
USDA-ARS?s Scientific Manuscript database
Thirteen species of Tephritidae are newly recorded from Ontario, and alternative format keys are provided to the 31 genera and 72 species of fruit fly now known from, or likely to occur, in the province. Standard dichotomous keys to genera, and simplified field keys to genera and species are provide...
USDA-ARS?s Scientific Manuscript database
The Mexican fruit fly, Anastrepha ludens, is a highly significant agricultural pest species that has been genetically transformed with a piggyBac¬-based transposon vector system using independent vector and transposase helper plasmids. Estimated germ-line transformation frequencies were approximate...
Compendium of fruit fly host information (CoFFHI), edition 3.0
USDA-ARS?s Scientific Manuscript database
The Compendium of Fruit Fly Host Information (CoFFHI), edition 3.0 (available at: https://coffhi.cphst.org/), developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS, and the Center for Integrated Pest Management (CIPM) of North Carolina State University (NCSU), provides centra...
Resolution of inter and intra-species relationships of the West Indian fruit fly Anastrepha obliqua
USDA-ARS?s Scientific Manuscript database
The West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), is an economically important pest that inhabits areas of South and Central America, Mexico and the Caribbean with occasional infestations in the southern United States. We examine intra-specific variation within Anastre...
USDA-ARS?s Scientific Manuscript database
With the aim of finding new, sugar-based volatile attractants for economically important tephritid fruit fly species, we used electroantennography (EAG) to quantify olfactory responses of female Caribbean fruit fly, Anastrepha suspensa (Loew), to volatiles of six different sugars (refined white and ...
USDA-ARS?s Scientific Manuscript database
With the aim of finding new, sugar-based volatile attractants for economically important tephritid fruit fly species, we used electroantennography (EAG) to quantify olfactory responses of female Caribbean fruit fly, Anastrepha suspensa (Loew), to volatiles of six different sugars (refined white and ...
USDA-ARS?s Scientific Manuscript database
A liquid larval diet as an artificial rearing medium was successfully tested for the Philippines fruit fly Bactrocera philippinensis Drew & Hancock. The biological parameters studied were pupal weight, adult emergence and fliers, sex ratio, fecundity and fertility. The insects performed most satisfa...
Compendium of fruit fly host information (CoFFHI), edition 2.0
USDA-ARS?s Scientific Manuscript database
The Compendium of Fruit Fly Host Information (CoFFHI), edition 2.0, developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS, and the Center for Integrated Pest Management (CIPM) of North Carolina State University (NCSU), provides centralized online documentation of what is know...
USDA-ARS?s Scientific Manuscript database
Limited information exists on the molecular genetics of the Wolbachia endosymbionts that infect the parasitoids of tephritid fruit flies. A better understanding of the bacteria could allow sex ratio manipulations that would improve the mass-rearing of natural enemies. Scientists at the Center for Me...
Resveratrol modifies tephritid fruit fly response to nutritional and radiation stress
USDA-ARS?s Scientific Manuscript database
Resveratrol is a recently discovered compound. Three concentrations (50, 100, 200 µM) of resveratrol were evaluated against Bactrocera dorsalis and B. cucurbitae by incorporating resveratrol into fruit fly liquid larval diet under the following conditions: 1) with or without wheat germ oil (WGO) in ...
USDA-ARS?s Scientific Manuscript database
Third instar larvae were exposed to X-ray treatment of the Oriental fruit fly, Bactrocera dorsalis. Irradiated pupae were collected daily. Biological performance parameters of pupae and adults of larvae treated with X-ray irradiation were evaluated. Standard proteomics procedures such as densitometr...
A potential field suppression system for Bactrocera dorsalis Hendel
USDA-ARS?s Scientific Manuscript database
We first observed attraction by oriental fruit flies to a basil plant in a yard and confirmed the attractiveness to basil oil (BO) in the laboratory. We subsequently identified the insecticidal compounds from BO that could kill three species of tephritid fruit flies in the laboratory, and discovered...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most serious pest of cultivated olives worldwide. Its recent invasion into North America, specifically California, has initiated renewed interest in management strategies for this pest. Research into classical biological control ha...
75 FR 22207 - Importation of Papayas From Colombia and Ecuador
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
... Colombia and Ecuador include requirements for field sanitation, hot water treatment, and fruit fly trapping... that fruit fly trapping, field sanitation, and hot water treatment be employed to remove pests of... before harvest, we proposed to, among other things, require the treatment of papayas with a hot water dip...
Vision-Mediated exploitation of a novel host plant by a tephritid fruit fly
USDA-ARS?s Scientific Manuscript database
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female ...
Ground and Flight Testing for Aircraft Guidance and Control,
1984-12-01
almost rigid structure (Figure 3). It is equipped with control surfa- - S ces (inner flaps, outer flaps, elevator) which are driven by fast acting...extremely fast -response actuators com- bined with a full fly-by-wire/light system is envisaged. The technology for doing this is not yet available today...6.6 late S Standard deviation 23.7 (77.8) 6.5 12.0 *Maximum error 51.5 (169) high 12.9 fast 29.0 late *The values of these errors were judged by the
The role of passive avian head stabilization in flapping flight
Pete, Ashley E.; Kress, Daniel; Dimitrov, Marina A.; Lentink, David
2015-01-01
Birds improve vision by stabilizing head position relative to their surroundings, while their body is forced up and down during flapping flight. Stabilization is facilitated by compensatory motion of the sophisticated avian head–neck system. While relative head motion has been studied in stationary and walking birds, little is known about how birds accomplish head stabilization during flapping flight. To unravel this, we approximate the avian neck with a linear mass–spring–damper system for vertical displacements, analogous to proven head stabilization models for walking humans. We corroborate the model's dimensionless natural frequency and damping ratios from high-speed video recordings of whooper swans (Cygnus cygnus) flying over a lake. The data show that flap-induced body oscillations can be passively attenuated through the neck. We find that the passive model robustly attenuates large body oscillations, even in response to head mass and gust perturbations. Our proof of principle shows that bird-inspired drones with flapping wings could record better images with a swan-inspired passive camera suspension. PMID:26311316
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock, were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species' distribution in peninsular Thailand and other parts of the world. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
How Cheap Is Soaring Flight in Raptors? A Preliminary Investigation in Freely-Flying Vultures
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L.; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food. PMID:24454760
How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80-100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.
Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil
Marchioro, Cesar A.
2016-01-01
The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%). This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world. PMID:27832144
Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil.
Marchioro, Cesar A
2016-01-01
The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%). This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.
Genetics of immune recognition and response in Drosophila host defense.
Ligoxygakis, Petros
2013-01-01
Due to the evolutionary conservation of innate immune mechanisms, Drosophila has been extensively used as a model for the dissection in genetic terms of innate host immunity to infection. Genetic screening in fruit flies has set the stage for the pathways and systems required for responding to immune challenge and the dynamics of the progression of bacterial and fungal infection. In addition, fruit flies have been used as infection models to dissect host-pathogen interactions from both sides of this equation. This chapter describes our current understanding of the genetics of the fruit fly immune response and summarizes the most important findings in this area during the past decade. © 2013 Elsevier Inc. All rights reserved.
Phan, Hoang Vu; Park, Hoon Cheol
2018-04-18
Studies on wing kinematics indicate that flapping insect wings operate at higher angles of attack (AoAs) than conventional rotary wings. Thus, effectively flying an insect-like flapping-wing micro air vehicle (FW-MAV) requires appropriate wing design for achieving low power consumption and high force generation. Even though theoretical studies can be performed to identify appropriate geometric AoAs for a wing for achieving efficient hovering flight, designing an actual wing by implementing these angles into a real flying robot is challenging. In this work, we investigated the wing morphology of an insect-like tailless FW-MAV, which was named KUBeetle, for obtaining high vertical force/power ratio or power loading. Several deformable wing configurations with various vein structures were designed, and their characteristics of vertical force generation and power requirement were theoretically and experimentally investigated. The results of the theoretical study based on the unsteady blade element theory (UBET) were validated with reference data to prove the accuracy of power estimation. A good agreement between estimated and measured results indicated that the proposed UBET model can be used to effectively estimate the power requirement and force generation of an FW-MAV. Among the investigated wing configurations operating at flapping frequencies of 23 Hz to 29 Hz, estimated results showed that the wing with a suitable vein placed outboard exhibited an increase of approximately 23.7% ± 0.5% in vertical force and approximately 10.2% ± 1.0% in force/power ratio. The estimation was supported by experimental results, which showed that the suggested wing enhanced vertical force by approximately 21.8% ± 3.6% and force/power ratio by 6.8% ± 1.6%. In addition, wing kinematics during flapping motion was analyzed to determine the reason for the observed improvement.
Aluja, Martin; Díaz-Fleischer, Francisco
2006-02-01
Following oviposition, females of many Tephritid flies deposit host marking pheromones (HMPs) to indicate that the host fruit has been occupied. We describe the foraging behavior of these three economically important species (Anastrepha ludens and A. obliqua from the fraterculus species group and A. serpentina from the serpentina species group) when they encounter an artificial fruit (green agar spheres wrapped in Parafilm) marked with intra- and interspecific feces extracts that contain, among other substances, host marking pheromone. When flies encountered fruit treated with either 1 or 100 mg/ml feces extract, there were drastic and statistically significant reductions in tree residence time, mean time spent on fruit, and in the number of oviposition attempts or actual ovipositions when compared to the control treatment (clean fruit). These responses were almost identical irrespective of extract origin (i.e., fly species), indicating complete interspecific HMP cross-recognition by all three Anastrepha species tested. We discuss the ecological and practical implications of our findings.
Piñero, Jaime C; Mau, Ronald F L; Vargas, Roger I
2009-06-01
The efficacy of GF-120 NF Naturalyte Fruit Fly Bait in combination with field sanitation was assessed as a control for female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in papaya (Carica papaya L.) orchards in Hawaii. Three different bait spray regimes were evaluated: every row (high use of the bait), every fifth row (moderate use), and every 10th row (low use). Orchard plots in which no bait was applied served as controls. For five of the seven biweekly periods that followed the first bait spray, trapping data revealed significantly fewer female B. dorsalis captured in plots subject to high and moderate bait use than in control plots. Differences in incidence of infestation among treatments were detected only by the third (12 wk after first spray) fruit sampling with significantly fewer infested one-fourth to one-half ripe papaya fruit in plots subject to high and moderate bait use than in control plots. Parasitism rates by Fopius arisanus (Sonan) (Hymenoptera: Braconidae) were not negatively affected by bait application. Results indicate that foliar applications of GF-120 NF Naturalyte Fruit Fly Bait either to all rows (every other tree), or to every fifth row (every tree) in combination with good sanitation can effectively reduce infestation by B. dorsalis in papaya orchards in Hawaii.
An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing
NASA Astrophysics Data System (ADS)
Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi
2011-08-01
An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.
Sperm depletion in singly mated females of the Mexican Fruit Fly (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
Female Mexican fruit flies, or mexflies, have the capacity to produce more than a thousand eggs over their lifetime but fertility of the eggs will depend on the female’s capacity to store semen and/or to replenish semen through remating. The two parameters are interrelated in that sexual receptivity...
USDA-ARS?s Scientific Manuscript database
The aroma of various plant essential oils has been shown to enhance the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Laboratory observations revealed that male medflies show strong short-range attraction to tea tree oil (TTO hereafter) deri...
USDA-ARS?s Scientific Manuscript database
Solid Trimedlure[TML] dispensers and novel solid triple lure dispensers[TMR] without insecticides were tested as “attract and kill” devices alone and in combination with Biolure mass trapping to evaluate suppression of Mediterranean fruit fly, Ceratitis capitata(Wiedemann) in a large coffee plantati...
USDA-ARS?s Scientific Manuscript database
The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...
76 FR 56730 - Determination of Pest-Free Areas in Australia; Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Health Inspection Service [Docket No. APHIS-2011-0088] Determination of Pest-Free Areas in Australia... additional areas as pest- free areas for Mediterranean fruit fly (Ceratitis capitata) or Queensland fruit fly... in our regulations for recognition as pest-free areas. We are making that determination, as well as...
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of sweet cherry (Prunus avium (L.) L.) that is managed using insecticides, including spinosad, an organic compound that can be applied in low spray volumes. Identifying factors that can increase the...
USDA-ARS?s Scientific Manuscript database
Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...
USDA-ARS?s Scientific Manuscript database
Efforts to monitor and detect tephritid fruit flies in the genus Anastrepha currently involve MultiLure traps baited with two food-based synthetic attractants; ammonium acetate and putrescine (1,4-diaminobutane). These baits are used in Central America, Florida, Texas, and the Caribbean, each region...
USDA-ARS?s Scientific Manuscript database
Field experiments and long range bioassays were used to understand the difference in attractiveness among various natural essential oils for the Mediterranean Fruit Fly, Ceratitis capitata. Using electroantennography, we have selected various antennally active chemicals and tested their role in the ...
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia humilis (Silvestri) was reared on Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae irradiated at different doses from 0-70 Gy at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier,...
USDA-ARS?s Scientific Manuscript database
An algorithm has been developed to identify spots generated in hyperspectral images of mangoes infested with fruit fly larvae. The algorithm incorporates background removal, application of a Gaussian blur, thresholding, and particle count analysis to identify locations of infestations. Each of the f...
USDA-ARS?s Scientific Manuscript database
Background: Oriental fruit flies are important agricultural pests worldwide and their larval parasitoid, Diachasmimorph longicaudata is one of their most effective biological control agents. How a parasitoid interacts with its host as an endo-parasitoid is very important while it is rarely studied a...
Proteomics/qPCR approach on estimating physical ages of wild male oriental fruit flies
USDA-ARS?s Scientific Manuscript database
Male fruit flies reared in the laboratory in DKI-PBARC rearing facility in Hilo, Hawaii, were collected and whole insects were run through standard proteomic analysis. An odorant binding protein 99b (OBP) (Bdor0907381) located at molecular weight between 9226 dalton and PI 4.56 was identified throug...
USDA-ARS?s Scientific Manuscript database
Rhagoletis zephyria Snow and R. pomonella (Walsh) (Diptera: Tephritidae) are morphologically similar flies that attack white-colored snowberry fruit (Symphoricarpos spp.) and yellow/red or dark-colored apple/hawthorn fruit (Malus/Crataegus spp.), respectively. The two flies are caught together on t...
USDA-ARS?s Scientific Manuscript database
The presence of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta was recorded in Bangladesh for the first time. B.nigrofemoralis was captured in traps baited with sweet orange oil and cue-lure at the Atomic Energy Research Establishment campus, Ganak bari, Savar, Dhaka, Banglades...
USDA-ARS?s Scientific Manuscript database
The physiological basis for host antibiosis or nonpreference to a quarantine pest is often not understood. Studies are needed on the mechanisms that impart resistance in order to better understand how resistance might fail. Experiments were conducted to examine the infestability of ‘Sharwil’ avocado...
Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong
2011-01-01
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers. PMID:21984907
Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong
2011-01-01
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.
Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight
NASA Astrophysics Data System (ADS)
Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael
2017-11-01
Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.
Teseo, Serafino; Veerus, Liisa; Moreno, Céline; Mery, Frédéric
2016-01-01
Across animals, sexual harassment induces fitness costs for females and males. However, little is known about the cognitive costs involved, i.e. whether it constrains learning processes, which could ultimately affect an individual's fitness. Here we evaluate the acquisition of environmental information in groups of fruit flies challenged with various levels of male sexual harassment. We show that, although high sexual harassment induces a temporary fitness cost for females, all fly groups of both sexes exhibit similar levels of learning. This suggests that, in fruit flies, the fitness benefits of acquiring environmental information are not affected by the fitness costs of sexual harassment, and that selection may favour cognition even in unfavourable social contexts. Our study provides novel insights into the relationship between sexual conflicts and cognition and the evolution of female counterstrategies against male sexual harassment. © 2016 The Author(s).
More than apples and oranges - Detecting cancer with a fruit fly's antenna
NASA Astrophysics Data System (ADS)
Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado
2014-01-01
Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.
Sánchez, José E; Jiménez-Pérez, Gabriela; Liedo, Pablo
2015-12-01
The variability of antioxidant capacity of 14 strains of the edible oyster mushroom Pleurotus spp. was determined, and the effect of selected mushroom supplements on the longevity of the Mexican fruit fly, Anastrepha ludens, was evaluated. The antioxidant capacity of the fruiting bodies was determined by three different methods, measuring the free radical scavenging activity of methanolic extracts, the OH radical scavenging capacity, and the total phenol content. The inhibition percentage of the DPPH radical varied between 32.6 and 85.7% and total phenols varied between 30.6 and 143.3 mg/g. The strains with the highest (Pleurotus djamor ECS-0142) and lowest (Pleurotus ostreatus ECS-1123) antioxidant capacity were selected to study their effect on the survival, life expectancy, and mortality of the Mexican fruit fly A. ludens. The results demonstrated differing responses between male and female flies. High concentrations of mushrooms (5 and 20%) in the diet resulted in a decrease in life expectancy. However, flies on the diet with 1% P. djamor ECS-0142 showed slightly but significantly greater survival than those on the control diet. The possible adverse effect of protein content in mushroom extracts is discussed.
Renkema, Justin M.; Wright, Derek; Buitenhuis, Rose; Hallett, Rebecca H.
2016-01-01
Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essential oils deterred D. suzukii flies from cotton wicks containing attractive raspberry juice. Peppermint oil was particularly effective, preventing almost all flies from contacting treated wicks and remaining 100% repellent for 6 d post-application. Thyme oil was unique because it caused high male mortality and reduced the number of responding flies compared to other oils. KMS was not found to be repellent to D. suzukii, but may have fumigant properties, particularly at high concentrations. Peppermint oil appears to be the best candidate for field testing to determine the effectiveness and feasibility of using essential oils as part of a push-pull management strategy against D. suzukii. This is the first time that essential oils have been evaluated and proven effective in preventing fruit-infesting flies from contacting attractive stimuli. PMID:26893197
Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.
Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek
2016-10-01
Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.
von Busse, Rhea; Swartz, Sharon M; Voigt, Christian C
2013-06-01
Aerodynamic theory predicts that flight for fixed-wing aircraft requires more energy at low and high speeds compared with intermediate speeds, and this theory has often been extended to predict speed-dependent metabolic rates and optimal flight speeds for flying animals. However, the theoretical U-shaped flight power curve has not been robustly tested for Chiroptera, the only mammals capable of flapping flight. We examined the metabolic rate of seven Seba's short-tailed fruit bats (Carollia perspicillata) during unrestrained flight in a wind tunnel at air speeds from 1 to 7 m s(-1). Following intra-peritoneal administration of (13)C-labeled Na-bicarbonate, we measured the enrichment in (13)C of exhaled breath before and after flight. We converted fractional turnover of (13)C into metabolic rate and power, based on the assumption that bats oxidized glycogen during short flights. Power requirements of flight varied with air speed in a U-shaped manner in five out of seven individuals, whereas energy turnover was not related to air speed in two individuals. Power requirements of flight were close to values predicted by Pennycuick's aerodynamic model for minimum power speed, but differed for maximum range speed. The results of our experiment support the theoretical expectation of a U-shaped power curve for flight metabolism in a bat.
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai
2010-03-16
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.
Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2011-09-01
The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula blends, an agonist compound for eastern mayhaw-origin flies, but a behavioral antagonist for western flies. The results discount the possibility that the apple fly was "pre-assembled" and originated via a recent introduction of southern mayhaw flies predisposed to accepting apple. Instead, the findings are consistent with the possibility of southern mayhaw-infesting fly host races. However, mayhaw fruits do emit several volatiles found in apple. It is, therefore, possible that the ability of the fly to evolve a preference for apple volatiles, although not the entire blend, stemmed, in part, from standing variation related to the presence of these compounds in southern mayhaw fruit.
Taste and pheromone perception in the fruit fly Drosophila melanogaster.
Ebbs, Michelle L; Amrein, Hubert
2007-08-01
Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.
NASA Technical Reports Server (NTRS)
Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.
1992-01-01
Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) dorsalis (Hendel)(Diptera: Tephritidae), commonly known as the Oriental fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Presented herein is a compre...
USDA-ARS?s Scientific Manuscript database
The western cherry fruit fly, Rhagoletis indifferens (Curran) (Diptera: Tephritidae), is a serious pest of cherries (Prunus spp.) in the Pacific Northwest of the U.S.A. Previous research suggests that R. indifferens is unlikely to establish in commercial cherry production areas in California and in ...
Inquiry-Based Environmental Science Investigations with the Fantastic Fruit Fly
ERIC Educational Resources Information Center
Beals, Ashlie M.; Krall, Rebecca M.
2010-01-01
The use of inquiry in life science can be particularly daunting because of the additional management and care living systems require. However, there are some low-maintenance organisms that work well in the classroom. One of these is the common fruit fly, "Drosophila melanogaster." Its small size, low cost, easy availability and maintenance, and…
USDA-ARS?s Scientific Manuscript database
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae) is an important pest of olives which is worldwide distributed and responsible for economic losses of approximately US$800 million per year. Since the 2000s both economical and environmental concerns have raised interested in clas...
ERIC Educational Resources Information Center
Johnson, Ronald; Kennon, Tillman
2009-01-01
Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…
USDA-ARS?s Scientific Manuscript database
Adult Psytallia cf. concolor (Szépligeti) (230,908) were produced from sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA-APHIS-PPQ, San Miguel Petapa, Guatemala and shipped from September 2008 to January 2009 to the USDA-ARS, SJVASC, Parlier for biological control ...
USDA-ARS?s Scientific Manuscript database
The parasitoid Psytallia humilis = P. cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier, for biological ...
USDA-ARS?s Scientific Manuscript database
The invasive olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) likely originated in sub-Saharan Africa, where the wild olive Olea europaea cuspidata L. (Wall. ex G. Don) is found and from which the domesticated olive O. europaea europaea L. was derived. Following the path of olive cult...
USDA-ARS?s Scientific Manuscript database
Oriental fruit fly, Bactrocera dorsalis (Hendel), was discovered on Tahiti Island, French Polynesia, in 1996. Two other economically important Bactrocera species were previously established: B. kirki (Froggatt) in 1928, and B. tryoni (Froggatt), Queensland fruit fly, in 1970. This situation provi...
USDA-ARS?s Scientific Manuscript database
An algorithm using a Bayesian classifier was developed to automatically detect olive fruit fly infestations in x-ray images of olives. The data set consisted of 249 olives with various degrees of infestation and 161 non-infested olives. Each olive was x-rayed on film and digital images were acquired...
Adult fruit fly attraction to larvae biases experience and mediates social learning.
Durisko, Zachary; Anderson, Blake; Dukas, Reuven
2014-04-01
We investigated whether adult fruit flies (Drosophila melanogaster) use cues of larvae as social information in their food patch choice decisions. Adult male and female fruit flies showed attraction to odours emanating from foraging larvae, and females preferred to lay eggs on food patches occupied by larvae over similar unoccupied patches. Females learned and subsequently preferred to lay eggs at patches with novel flavours previously associated with feeding larvae over patches with novel flavours previously associated with no larvae. However, when we controlled for the duration of exposure to each flavoured patch, females no longer preferred the flavour previously associated with feeding larvae. This suggests that social learning in this context is indirect, as a result of strong social attraction biasing experience.
Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
Bergou, Attila J; Swartz, Sharon M; Vejdani, Hamid; Riskin, Daniel K; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S
2015-01-01
The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.
Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia
Bergou, Attila J.; Swartz, Sharon M.; Vejdani, Hamid; Riskin, Daniel K.; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S.
2015-01-01
The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles. PMID:26569116
Aharon, Yael; Pasternak, Zohar; Ben Yosef, Michael; Behar, Adi; Lauzon, Carol; Yuval, Boaz
2013-01-01
The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping “core” diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers. PMID:23104413
Janisiewicz, W. J.; Conway, W. S.; Brown, M. W.; Sapers, G. M.; Fratamico, P.; Buchanan, R. L.
1999-01-01
Pathogenic Escherichia coli O157:H7, as well as nonpathogenic strains ATCC 11775 and ATCC 23716, grew exponentially in wounds on Golden Delicious apple fruit. The exponential growth occurred over a longer time period on fruit inoculated with a lower concentration of the bacterium than on fruit inoculated with a higher concentration. The bacterium reached the maximum population supported in the wounds regardless of the initial inoculum concentrations. Populations of E. coli O157:H7 in various concentrations of sterilized apple juice and unsterilized cider declined over time and declined more quickly in diluted juice and cider. The decline was greater in the unsterilized cider than in juice, which may have resulted from the interaction of E. coli O157:H7 with natural populations of yeasts that increased with time. Experiments on the transmission of E. coli by fruit flies, collected from a compost pile of decaying apples and peaches, were conducted with strain F-11775, a fluorescent transformant of nonpathogenic E. coli ATCC 11775. Fruit flies were easily contaminated externally and internally with E. coli F-11775 after contact with the bacterium source. The flies transmitted this bacterium to uncontaminated apple wounds, resulting in a high incidence of contaminated wounds. Populations of the bacterium in apple wounds increased significantly during the first 48 h after transmission. Further studies under commercial conditions are necessary to confirm these findings. PMID:9872751
A preliminary account of the fruit fly fauna of Timor-Leste (Diptera: Tephritidae: Dacinae).
Bellis, Glenn A; Brito, Americo A; Jesus, Hipolito DE; Quintao, Valente; Sarmento, Joaquim C; Bere, Apolinario; Rodrigues, João; Hancock, David L
2017-12-05
Opportunistic monitoring using baited fruit fly traps throughout Timor-Leste revealed the presence of 16 species of Bactrocera and one species of Dacus, all of which are previously reported from the region. Sampling of a range of commercial fruit species detected an additional species, B. latifrons, and revealed that nine species are attacking commercial fruits and vegetables. A key for separating these species is provided. New host records were found for B. minuscula, B. floresiae and B. bellisi. Variation in the morphology of B. minuscula, B. floresiae and an undescribed species and within B. albistrigata confounded attempts at accurate identification of some specimens.
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) frauenfeldi (Schiner, 1868), commonly known as the mango fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Although, to date, the USDA PestID has no i...
USDA-ARS?s Scientific Manuscript database
Bactrocera (Bactrocera) albistrigata (de Meijere, 1911), commonly known as the white striped fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). While considered an obscure min...
USDA-ARS?s Scientific Manuscript database
MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...
USDA-ARS?s Scientific Manuscript database
Diazinon has been used extensively in the past as part of California eradication programs for tephritid fruit flies, but is being phased out for this purpose in the United States. Therefore, in this study, the toxicity of Platinum®, Force®, Admire®, Regent®, and Warrior® was estimated after applica...
USDA-ARS?s Scientific Manuscript database
We report the stable genetic transformation of the Queensland fruit fly Bactrocera tryoni using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP.A transformation frequency of 5–10% was obtained.Inheritance of the transgenes has remained stable over eight generations despite...
USDA-ARS?s Scientific Manuscript database
The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...
USDA-ARS?s Scientific Manuscript database
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alp...
2017-05-25
Scientists study how astronauts are affected by microgravity, but with a relatively small number of human subjects available to them, they often turn to model organisms for research. Model organisms are living organisms that have a genetic makeup that is relatively well-documented and understood, and is similar to human systems. Fruit flies are reliable model organisms because their systems closely resemble that of larger organisms. They have the benefit of being small in size, well understood, and reproduce quickly so many generations can be studied in a short amount of time. Some of the things we can study using fruit flies are how microgravity affects the immune system. Will the muscle cells of the heart lose strength in microgravity? Are reproduction, lifespan and the aging process affected by microgravity? Do changes in gravity affect the basic metabolic rate and metabolism of living systems? Fruit flies offer a manageable way to study living systems in microgravity. Learn more about other model organisms and how they are being used for microgravity research, and keep up with all the science being conducted aboard your orbiting laboratory by visiting ISS Research Overview on nasa.gov http://www.twitter.com/ISS_Research
Montoya, Pablo; Pérez-Lachaud, Gabriela; Liedo, Pablo
2012-01-01
Superparasitism, a strategy in which a female lays eggs in/on a previously parasitized host, was attributed in the past to the inability of females to discriminate between parasitized and non-parasitized hosts. However, superparasitism is now accepted as an adaptive strategy under specific conditions. In fruit fly parasitoids, superparasitism has mainly been studied as concerns the new association between Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) and the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae), wherein this phenomenon is a common occurrence in both mass rearing and field conditions. Studies of this species have shown that moderate levels of superparasitism result in a female-biased sex ratio and that both massreared and wild females superparasitize their hosts without detrimental effects on offspring demographic parameters, including longevity and fecundity. These studies suggest that superparasitism in this species is advantageous. In this paper, we review superparasitism in D. longicaudata, discuss these findings in the context of mass rearing and field releases and address the possible implications of superparasitism in programs employing augmentative releases of parasitoids for the control of fruit fly pests. PMID:26466718
Squid rocket science: How squid launch into air
NASA Astrophysics Data System (ADS)
O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney
2013-10-01
Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.
2006-06-05
Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Platform used by astronauts to change out old food trays with new food trays in space to facilitate culturing new flies.
Force production of a hovering hummingbird
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Song, Jialei; Hedrick, Tyson
2013-11-01
A three-dimensional numerical study is performed for a hovering Ruby-throated hummingbird (Archilochus colubris) based on an immersed-boundary method. To accurately model the unsteady aerodynamics, realistic 3D wing kinematics is reconstructed from high-speed images of the wing motion filmed at 1000 frames per second, resulting in 25 frames per flapping cycle. A high-resolution grid is employed to resolve the vortices shed from the wing. The results are validated by comparing the spanwise vorticity and circulation with the previous PIV data and also by calculating the average lift. The force production shows significant asymmetry with the downstroke producing lift 2.6 times as high as the upstroke, despite a nearly horizontal stroke plane. The total power consumption is around 55 W/kg, which is twice of previous estimate. In this presentation, we will discuss several mechanisms that lead to the force asymmetry, including the drag-based lift and the leading-edge vortex behavior. We will also address the role of wing-wake interaction, which appears to be different for the hummingbird than some of the insects such as fruit flies. Supported by NSF (No. CBET-0954381).
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn
2018-02-01
High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.
Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol
2017-04-04
An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.
Linn, Charles E; Yee, Wee L; Sim, Sheina B; Cha, Dong H; Powell, Thomas H Q; Goughnour, Robert B; Feder, Jeffrey L
2012-11-01
The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind-directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles
Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai
2010-01-01
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789
NASA Technical Reports Server (NTRS)
Garrison, Charlie C.; Hacskaylo, Andrew
1947-01-01
Tests of a PB2Y-3 flying boat were made at the U.S> Naval Air Station, Patuxent River, Md., to determine its hydrodynamic trim limits of stability. Corresponding tests were also made of a 1/8-size powered dynamic model of the same flying boat in Langley tank no. 1. During the tank tests, the full-size testing procedure was reproduced as closely as possible in order to obtain data for a direct correlation of the results. As a nominal gross load of 66,000 pounds, the lower trim limits of the full-size and model were in good agreement above a speed of 80 feet per second. As the speed decreased below 80 feet per second, the difference between the model trim limits and full-scale trim limits gradually became larger. The upper trim limit of the model with flaps deflected 0 deg was higher than that of the full-size, but the difference was small over the speed range compared. At flap deflections greater than 0 deg, it was not possible to trim either the model of the airplane to the upper limit with the center of gravity at 28 percent of the mean aerodynamic chord. The decrease in the lower trim limits with increase in flap deflection showed good agreement for the airplane and model. The lower trim limits obtained at different gross loads for the full-size airplane were reduced to approximately a single curve by plotting trim against the square root of C(sub delta (sub o)) divided by C(sub V).
Díaz-Fleischer, Francisco; Arredondo, José; Flores, Salvador; Montoya, Pablo; Aluja, Martín
2009-02-01
Field-cage experiments were performed to determine the effectiveness of MultiLure traps (Better World MFG Inc., Fresno, CA) baited with NuLure (Miller Chemical and Fertilizer Corp., Hanover, PA) or BioLure (Suterra LLC, Inc., Bend, OR) in capturing individually marked Mexican fruit fly, Anastrepha ludens (Loew), and West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), of both sexes. Experimental treatments involved wild and laboratory-reared flies of varying ages (2-4 and 15-18 d) and dietary histories (sugar only, open fruit, open fruit plus chicken feces, and hydrolyzed protein mixed with sugar). Data were divided into two parts: total captures over a 24-h period and trap visits/landings, entrances into interior of trap ,and effective captures (i.e., drowning in liquid bait or water) over a 5-h detailed observation period (0600-1100 hours). The response to the two baits varied by fly species, gender, physiological state, age, and strain. Importantly, there were several highly significant interactions among these factors, underlining the complex nature of the response. The two baits differed in attractiveness for A. obliqua but not A. ludens. The effect of strain (wild versus laboratory flies) was significant for A. ludens but not A. obliqua. For effect of dietary history, adults of both species, irrespective of sex, were significantly less responsive to both baits when fed on a mixture of protein and sugar when compared with adults fed the other diets. Finally, we confirmed previous observations indicating that McPhail-type traps are quite inefficient. Considering the total 24-h fly tenure in the cage, and independent of bait treatment and fly type (i.e., strain, adult diet, gender and age), of a total of 2,880 A. obliqua and 2,880 A. ludens adults released into the field cages over the entire study (15 replicates), only 564 (19.6%) and 174 (6%) individuals, respectively, were effectively caught. When only considering the 5-h detailed observation period and independent of bait treatment and fly type, of a total of 785 marked flies that landed on traps (519 females and 266 males, respectively), only 10.3% (144 females and 59 males) and 20.8% (25 females and 18 males) A. obliqua and A. ludens individuals, respectively, ended up being effectively captured. We discuss the practical implications of these findings with respect to developing new baits and designing new traps and to the interpretation of capture results in the field.
USDA-ARS?s Scientific Manuscript database
Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examine...
USDA-ARS?s Scientific Manuscript database
In a sampling of untreated embryos of Mexican fruit fly, Anastrepha ludens, the cumulative hatch percentage was 84.77±7.8% of which ~70% of the larvae eclosed through the posterior pole of the egg. This is due to an unusual and seemingly energy demanding act of flipping of the fully developed pre-ha...
Chang, Chiou Ling
2017-08-01
Sterile insect technique (SIT) is one of the most effective fruit fly control technologies. Irradiation has been used to sterilize male fruit flies before release to the field to compete with the wild males for females. Imagine an environmental and cost effective method using a rearing diet that can make insects sterile indefinitely, by feeding for 7days before release. This could replace costly irradiation process. A potential birth control diet was evaluated on fertility, mating, survival, and protein analysis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron (LFN) for 7d after emergence and then switched to a control diet to simulate the actual field condition. The influence on egg hatch was dose dependent. With dose of 2-4mg/g in the diet, egg hatch from LFN-fed was almost 100% suppressed for 24 experimental days if adults of Ceratitia capitate (Widemann), Bactrocera dorsalis (Hendel), and B. latifrons (Hendel) continued to feed on LFN diet. B. cucurbitae (Coquillett) was not affected by LFN. However, egg hatch from LFN fed B. latifrons and B. dorsalis were suppressed for at least 2weeks after switching to the control diet at 7d. Egg hatch did not recover >4% up to 24d. Proteome analysis revealed that ABD-4 protein was under expressed by 70-83% on LFN fed females and males of B. latifrons and B. dorsalis while Pbprp2 protein was significantly over expressed by 6-12 fold on LFN fed males only. These two proteins were not expressed in C. capitata and B. cucurbitae. Therefore, this report focused more on B. latifrons and B. dorsalis. This finding suggested a great potential for one alternative to sterilize fruit flies for SIT without irradiation. Published by Elsevier Inc.
Rombauts, Stephane; Chrisargiris, Antonis; Van Leeuwen, Thomas; Vontas, John
2013-01-01
The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology. PMID:23824998
Replication and characterization of the compound eye of a fruit fly for imaging purpose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hefu; University of Chinese Academy of Sciences, Beijing 10039; Gong, Xianwei
In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicatedmore » polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.« less
At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango
Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas
2017-01-01
Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561
Hernández-Pliego, Jesús; Rodríguez, Carlos; Bustamante, Javier
2015-01-01
Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season. PMID:26689780
Fundamentals of Zoological Scaling.
ERIC Educational Resources Information Center
Lin, Herbert
1982-01-01
The following animal characteristics are considered to determine how properties and characteristics of various systems change with system size (scaling): skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing-flapping, and maximum sizes of flying and hovering…
Estimated Flying Qualities of the Martin Model 202 Airplane
NASA Technical Reports Server (NTRS)
Weil, Joseph; Spear, Margaret
1947-01-01
The flying qualities of the Martin model 202 airplane have been estimated chiefly from the results of tests of an 0.0875-scale complete model with power made in the Wright Brothers tunnel at the Massachusetts Institute of Technology and from partial span wing and isolated vertical tail tests made in the Georgia Tech Nine-Foot Tunnel. These estimated handling qualities have been compared with existing Army-Navy and CAA requirements for stability and control. The results of the analysis indicate that the Martin model 202 airplane will possess satisfactory handling qualities in all respects except possibly in the following: The amount of elevator control available for landing or maneuvering in the landing condition is either marginal or insufficient when using the adjustable stabilizer linked to the flaps . Moreover, indications are that the longitudinal trim changes will be neither large nor appreciably worse with a fixed stabilizer than with the contemplated arrangement utilizing the adjustable stabilizer in an attempt to reduce the magnitude of the trim changes caused by flap deflection.
Straight-line climbing flight aerodynamics of a fruit bat
NASA Astrophysics Data System (ADS)
Viswanath, K.; Nagendra, K.; Cotter, J.; Frauenthal, M.; Tafti, D. K.
2014-02-01
From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.
Automated Surveillance of Fruit Flies
Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros
2017-01-01
Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346
Rehman, Junaid Ur; Wang, Xin-Geng; Johnson, Marshall W; Daane, Kent M; Jilani, Ghulam; Khan, Mir A; Zalom, Frank G
2009-12-01
Peganum harmala L. (Zygophyllaceae) is an herb native to arid and semiarid regions of Central Asian deserts. This study investigated the effects of ethanol extracts of P. harmala seeds on the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), i.e., adult repellency, reproductive activity, and larval growth, as well as parasitism levels by Psyttalia concolor (Szépligeti). Olive fruit treated with 2% extract reduced B. oleae oviposition. In choice tests, female B. oleae spent >99% of their time foraging on untreated fruit rather than P. harmala-treated fruit. These changes in ovipositional behavior resulted in a nearly 30-fold decrease in oviposition marks on treated fruit compared with untreated fruit during a 48 h exposure period. When female B. oleae were fed liquid diet containing 0.2% P. harmala extract, there was no effect on the number of ovipositional marks on exposed fruit, but up to 21.4% of the deposited eggs were deformed. SDS-polyacrylamide gel electrophoresis analyses of deformed eggs revealed that some protein bands were missing. Consequently, the number of offspring produced by treated females was lower than by untreated females. Neither the sex ratio nor body size of the fly's offspring were affected by adults fed diet containing 0.2% P. harmala extract. However, there was a slightly prolonged developmental time from egg to adult. Parasitism of larval B. oleae by P. concolor was not affected by infested fruit treatment with 2% P. harmala extract. P. harmala extracts as a potential control for insect pest species are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Irradiation treatment of regulated fruit to be moved... PHYTOSANITARY TREATMENTS Irradiation Treatments § 305.32 Irradiation treatment of regulated fruit to be moved interstate from areas quarantined for fruit flies. Irradiation, carried out in accordance with the provisions...
The Hungry Fly: Hydrodynamics of feeding in the common house fly
NASA Astrophysics Data System (ADS)
Prakash, Manu; Steele, Miles
2010-11-01
A large number of insect species feed primarily on a fluid diet. To do so, they must overcome the numerous challenges that arise in the design of high-efficiency, miniature pumps. Although the morphology of insect feeding structures has been described for decades, their dynamics remain largely unknown even in the most well studied species (e.g. fruit fly). Here, we use invivo imaging and microsurgery to elucidate the design principles of feeding structures of the common house fly. Using high-resolution X-ray microscopy, we record invivo flow of sucrose solutions through the body over many hours during fly feeding. Borrowing from microsurgery techniques common in neurophysiology, we are able to perturb the pump to a stall position and thus evaluate function under load conditions. Furthermore, fluid viscosity-dependent feedback is observed for optimal pump performance. As the gut of the fly starts to fill up, feedback from the stretch receptors in the cuticle dictates the effective flow rate. Finally, via comparative analysis between the house fly, blow fly, fruit fly and bumble bees, we highlight the common design principles and the role of interfacial phenomena in feeding.
Green, T A; Prokopy, R J; Hosmer, D W
1994-09-01
Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree.
Robie, Alice A.; Straw, Andrew D.; Dickinson, Michael H.
2010-01-01
Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects. PMID:20581279
Yee, Wee L; Nash, Meralee J; Goughnour, Robert B; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L
2014-08-01
The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington State.
Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C
2017-04-01
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.
McQuate, Grant T; Royer, Jane E; Sylva, Charmaine D
2018-05-01
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alpha-ionol + cade oil is a moderately effective male B. latifrons attractant, but is not as attractive as cuelure or methyl eugenol are to other fruit fly species. An improved attractant is therefore desired. With the recent success in finding other non-responsive fruit fly species attracted to isoeugenol, methyl-isoeugenol, or dihydroeugenol in Australia and other countries, we wanted to assess whether B. latifrons might also respond to these “eugenol analogs.” Working with wild B. latifrons populations in Hawaii, we assessed the relative catch of B. latifrons in traps baited with the eugenol analogs with catch in traps baited with alpha-ionol, alpha-ionol + cade oil, or alpha-ionol + eugenol. Catch was significantly higher in traps baited with alpha-ionol + cade oil relative to traps with any of the other baits. There was, though, some male B. latifrons catch in traps baited with dihydroeugenol or isoeugenol but none in traps baited with methyl-isoeugenol.
Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique.
Hernández, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo
2010-01-01
We evaluated three packing systems (PARC boxes, "GT" screen towers and "MX" screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fly densities (1, 1.2 and 1.3 fly/cm²) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb® and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb® and SPCP food types, and for females with Mb® powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fly sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fly species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs.
Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David
2015-01-01
Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Revis, Hannah C; Miller, Neil W; Vargas, Roger I
2004-10-01
Attractiveness and toxicity of GF-120 Fruit Fly Bait (Dow AgroScience Indianapolis, IN) to melon flies, Bactrocera cucurbitae Coquillett, were examined to assess the effects of concentration and aging. We tested dilutions of 20, 40, and 80 ppm (AI) (spinosad) against water controls. The 80 and 40 ppm treatments were significantly more attractive than the 20 ppm and control treatments. Attraction was compared between baits aged for 2 and 24 h, fresh bait and water controls. Age had significant effects on both attractiveness and toxicity of GF-120. Baits aged for 2 h were 11 times less attractive to female melon flies than fresh bait. Mortality rates were reduced by 50% when GF-120 was subjected to rain. Our results suggest the need for frequent applications of GF-120 to obtain maximum benefits, particularly in wet tropical climates.
Matsuya, Tokuzo; Iida, Seiji; Kogo, Mikihiko
2003-08-01
To correct the nasal deformity in cleft lip patients, a new procedure of open rhinoplasty using a "flying-bird" incision in the nostril tip with a vestibule "tornado"-shaped incision in the cleft side is presented. The newly designed vestibular incision produces effective vestibular advancement with the freed lower lateral cartilage. The flying-bird incision makes it possible to produce a suitable nostril tip appearance with symmetrical external nostril vestibules. If the vestibular defect after flap advancement is wide, a full-thickness skin graft is used to give priority for making a good external nostril shape. This procedure is useful for most cleft lip noses, particularly in cases of moderate to severe deformity.
Forward flight of swallowtail butterfly with simple flapping motion.
Tanaka, Hiroto; Shimoyama, Isao
2010-06-01
Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.
Jansen, R. L. M.; Brogan, B.; Whitworth, A. J.; Okello, E. J.
2015-01-01
Current conventional treatments for Parkinson’s disease (PD) are aimed at symptom management, as there is currently no known cure or treatment that can slow down its progression. Ayurveda, the ancient medical system of India, uses a combination of herbs to combat the disease. Herbs commonly used for this purpose are Zandopa (containing Mucuna pruriens), Withania somnifera, Centella asiatica, Sida cordifolia and Bacopa monnieri. In this study, these herbs were tested for their potential ability to improve climbing ability of a fruit fly (Drosophila melanogaster) PD model based on loss of function of phosphatase and tensin-induced putative kinase 1 (PINK1). Fruit flies were cultured on food containing individual herbs or herbal formulations, a combination of all five herbs, levodopa (positive control) or no treatment (negative control). Tests were performed in both PINK1 mutant flies and healthy wild-type (WT) flies. A significant improvement in climbing ability was observed in flies treated with B. monnieri compared with untreated PINK1 mutant flies. However, a significant decrease in climbing ability was observed in WT flies for the same herb. Centella asiatica also significantly decreased climbing ability in WT flies. No significant effects were observed with any of the other herbs in either PINK1 or WT flies compared with untreated flies. PMID:25091506
Wee, S L; Abdul Munir, M Z; Hee, A K W
2018-02-01
The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.
Packing of Fruit Fly Parasitoids for Augmentative Releases
Montoya, Pablo; Cancino, Jorge; Ruiz, Lía
2012-01-01
The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634
Tearing as a test for mechanical characterization of thin adhesive films
NASA Astrophysics Data System (ADS)
Hamm, Eugenio; Reis, Pedro; Leblanc, Michael; Roman, Benoit; Cerda, Enrique
2008-05-01
Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.
Tearing as a test for mechanical characterization of thin adhesive films.
Hamm, Eugenio; Reis, Pedro; LeBlanc, Michael; Roman, Benoit; Cerda, Enrique
2008-05-01
Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.
78 FR 79634 - Importation of Fresh Blueberry Fruit From Morocco Into the Continental United States
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...: Ceratitis capitata, the Mediterranean fruit fly, and the fungus Monilinia fructigena Honey ex Whetzel. (a...-0016] RIN 0579-AD81 Importation of Fresh Blueberry Fruit From Morocco Into the Continental United... proposing to amend the regulations concerning the importation of fruits and vegetables to allow the...
USDA-ARS?s Scientific Manuscript database
Cultivated olive fruit are greatly enlarged as a result of domestication. In this study, we examined the effects of fruit size within a cultivar (Sevillano) and across four different-sized cultivars (in order of decreasing size: Sevillano, Ascolano, Manzanillo, and Mission) grown in California on th...
Vargas, Roger I; Long, Jay; Miller, Neil W; Delate, Kathleen; Jackson, Charles G; Uchida, Grant K; Bautista, Renato C; Harris, Ernie J
2004-10-01
Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii.
García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio
2015-01-01
We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596
McQuate, Grant T.; Teruya, Tadashi
2015-01-01
Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae). PMID:26816487
NECTARINE PROMOTES LONGEVITY IN DROSOPHILA MELANOGASTER
Boyd, Olga; Weng, Peter; Sun, Xiaoping; Alberico, Thomas; Laslo, Mara; Obenland, David M.; Kern, Bradley; Zou, Sige
2011-01-01
Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and healthspan. However, few fruits are known to improve the survival and healthspan in animals, let alone the underlying mechanisms. Here we investigate the effect of nectarine, a globally consumed fruit, on lifespan and healthspan in Drosophila melanogaster. Wild-type flies were fed the standard, dietary restriction (DR) or high fat diets supplemented with 0–4% nectarine extract. We measured lifespan, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-Hydroxynonenal-protein adduct in these flies. We also measured lifespan, locomotor activity and oxidative damage of sod1 mutant flies on the standard diet supplemented with 0–4% nectarine. Supplementation of 4% nectarine extended lifespan, increased fecundity and decreased expression of some metabolic genes, including a key gluconeogenesis gene PEPCK, and oxidative stress response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR or high fat diet. Nectarine reduced oxidative damage in wild-type females fed the high fat diet. Moreover, nectarine improved the survival and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and healthspan partly through modulating glucose metabolism and reducing oxidative damage. PMID:21406223
Efficiency of lift production in flapping and gliding flight of swifts.
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260
Development of diet-induced insulin resistance in adult Drosophila melanogaster
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.
2013-01-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511
Can ménage-a-trois be used for controlling insects?
Suckling, D M; Jang, E B; Carvalho, L A; Nagata, J T; Schneider, E L; El-Sayed, A M
2007-08-01
We propose a new cross-species disruption approach that might be capable of interrupting mating of one species that uses another insect species as the mercenary agent. We argue that insects treated with a sufficiently powerful attractant for a second species might interfere with mating of one or both species, for example, by leading males astray in pursuit of the false trails created by suitably dosing individuals of the first species. Our reciprocal test systems used (1) methyl eugenol, an attractant for male oriental fruit flies (Bactrocera dorsalis), applied to melon flies (B. cucurbitae) and (2) cuelure, a lure for male melon flies, applied to B. dorsalis. There was no mortality 1 week after either attractant was applied to individual flies at doses up to 100 ng, which was effective in attracting insects in a field cage and in the field. In wind tunnel choice tests, 100 ng of either lure topically applied to tethered flies attracted fruit fly males of the second species, which exhibited prolonged bouts of physically disruptive behaviors including chasing and bumping. In small cages, treatment of males did not reduce mating of either species, with one group of three (ménage) per cage. However, in large field cages with multiple pairs of both species present, there was a significant reduction in the mating of melon flies resulting from methyl eugenol applied to males compared to untreated controls. The treatment of oriental fruit flies with cuelure also reduced their mating to a lesser extent. These results do not yet provide the practical proof of this new concept for pest management, but other model systems may be more appropriate. This work is novel in presenting attractants on a moving target, in this case, another insect species.
Airplane tracking documents the fastest flight speeds recorded for bats.
McCracken, Gary F; Safi, Kamran; Kunz, Thomas H; Dechmann, Dina K N; Swartz, Sharon M; Wikelski, Martin
2016-11-01
The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats ( Tadarida brasiliensis ) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.
Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy
NASA Astrophysics Data System (ADS)
Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan
2008-02-01
The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.
Long-Term Functional Side-Effects of Stimulants and Sedatives in Drosophila melanogaster
Matsagas, Kennedy; Lim, David B.; Horwitz, Marc; Rizza, Cristina L.; Mueller, Laurence D.; Villeponteau, Bryant; Rose, Michael R.
2009-01-01
Background Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs. Methodology/Principal Findings Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers. Conclusions Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply to human subjects, and we thus do not recommend the use of any one substance over any other. PMID:19668379
Robacker, David C; Thomas, Donald B
2007-08-01
Feral Mexican fruit flies, Anastrepha ludens (Loew) (Diptera: Tephritidae), were trapped in a citrus orchard in Mexico by using two types of synthetic food-odor lures, the AFF lure (Anastrepha fruit fly lure, APTIV, Inc., Portland, OR) and the BioLure (two-component MFF lure, Suterra LLC, Inc., Bend, OR). In Multilure traps (Better World Manufacturing, Inc., Miami, FL) containing water, BioLures captured about the same numbers of flies as AFF lures. In Multilure traps containing antifreeze solution, BioLures captured 2 and 5 times more flies than AFF lures in two experiments. BioLures, and AFF lures did not differ in attractiveness when used on sticky traps (Intercept trap, APTIV, Inc.; and sticky cylinder trap). Multilure traps captured >4 times as many flies as sticky traps with the exception that captures of females did not differ between Multilure and sticky traps baited with AFF lures. The percentage of females captured in Multilure traps was greater when traps were baited with BioLures compared with AFF lures, but the reverse was true for sticky traps. Sticky cylinder traps captured a higher percentage of females than Multilure traps. The most effective trap/lure combination was the Multilure trap baited with BioLure and antifreeze. In comparison with tests of these two lures in Texas, results were similar for Multilure traps, but they differed for sticky cylinder traps in that AFF lures were consistently more attractive than BioLures in Texas, but not in Mexico.
The miniature parachute of the dandelion fruit
NASA Astrophysics Data System (ADS)
Cummins, Cathal; Viola, Ignazio Maria; Seale, Madeleine; Mastropaolo, Enrico; Nakayama, Naomi
2017-11-01
At the low Reynolds number at which small plant fruit (the seed-bearing structure in flowering plants) fly, there are a variety of modes of flight available: from parachuting to gliding and autorotation. Here we will explore the aerodynamics of small plumed fruit (dandelions) that utilise the parachuting mode of flight. If a parachute-type fruit is picked up by the breeze, it can be carried over formidable distances. Incredibly, these parachutes are mostly empty space, yet they are effectively impervious to the airflow as they descend. In addition, the fruit can become more or less streamlined depending on the environmental conditions. In this talk, we will present results from our numerical and physical modelling that clarify how these tiny parachutes achieve such impermeability despite their high porosity. We reveal that the dandelion's parachute tunes its permeability to achieve the aerodynamic stability as it flies, which helps confer the fruit's incredible flight capacity. This work was supported by the Leverhulme Trust [RPG-2015-255].
Code of Federal Regulations, 2012 CFR
2012-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... and jackfruit from Hawaii must be treated with irradiation in accordance with part 305 of this chapter... before undergoing irradiation treatment in Hawaii at a dose approved to neutralize fruit flies. Fruit.... Post-treatment inspection in Hawaii is not required if the fruit undergoes irradiation treatment at a...
Wee, Suk-Ling; Peek, Thelma; Clarke, Anthony R
2018-06-08
The males of different species of Bactrocera and Zeugodacus fruit flies are commonly attracted to plant-derived phenylpropanoids (e.g. methyl eugenol (ME)) or phenylbutanoids (e.g. raspberry ketone (RK)) but almost never to both. However, one particular plant-derived phenylbutanoid, zingerone (ZN), which possesses an intermediate chemical structure between ME and RK, weakly attracts both ME- and RK-responding fruit fly species. Bactrocera jarvisi, an Australian fruit fly species, is weakly attracted to cue lure (an analogue of RK) but strongly attracted to ZN. Here, we investigated the minimum olfactory threshold and optimum sensitivity of B. jarvisi males to ZN and RK as a function of dose, time and sexual maturation. Our results show that B. jarvisi males had a marked preferential response to ZN, with a much lower olfactory threshold and faster response time to ZN than RK. Probit analysis demonstrated that ZN was at least >1600× more potent than RK as a male attractant to B. jarvisi. Although fruit fly male attraction to the phytochemicals is generally associated with sexual maturity, in B. jarvisi immature males were also attracted to ZN. Our results suggest that B. jarvisi males have a fine-tuned olfactory response to ZN, which appears to play a central role in the chemical ecology of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Líznarová, Eva; Pekár, Stano
2016-10-01
Trophic specialists are expected to possess adaptations that increase the efficiency of handling preferred prey. Such adaptations may constrain the ability to utilise alternative prey. Here we tested whether the ant-eating spider Euryopis episinoides possesses metabolic specialisations with increased efficiency in utilising preferred prey and decreased efficiency in utilising alternative prey. In addition, we investigated the contribution of genetic variation via maternal effects. We reared E. episinoides spiders from the first instar on two different diets, either ants (preferred prey) or fruit flies (alternative prey). Spider survival rate and increases in body mass were significantly higher on the ant diet. The total development time did not differ between diet groups, nor did the number of egg sacs per female or the incubation period. However, the number of eggs per egg sac and hatching success were higher on the ant diet. There was a genetic variation in several offspring traits. Our data support the hypothesis that stenophagous ant-eating E. episinoides have a metabolic specialisation on ant utilisation indicated by higher efficiency in utilising ants than fruit flies. While most individuals of E. episinoides were able to capture fruit flies, only very few spiders were able to develop and reproduce on a pure fruit fly diet, suggesting the existence of within-species genetic variation regarding the tolerance to alternative prey. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.
Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A
2017-02-01
Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of structural flexibility of wings in flapping flight of butterfly.
Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto
2012-06-01
The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.
Deutscher, Ania T; Burke, Catherine M; Darling, Aaron E; Riegler, Markus; Reynolds, Olivia L; Chapman, Toni A
2018-05-05
Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.
Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J
2018-05-21
Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.
Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills.
Israely, Nimrod; Ritte, Uzi; Oman, Samuel D
2004-02-01
The overwintering potential of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in cold winter areas within its northern distribution is a key element in understanding its ecology. Recent studies have suggested that although originating in tropical Africa, the fly has become adapted to the cold weather that prevails within its northernmost areas of distribution. We address the question of whether the Mediterranean fruit fly has expanded its overwintering range to include the mountains of central Israel. Doing so would imply that the fly has developed either a behavioral or a physiological mechanism to cope with low temperature and/or damp conditions in combination with cold. We monitored adult populations year round, sampling fruit, calculating expected emergence days for overwintering flies, and studying adults captured within dense and sparse apple orchards. We also performed several manipulative experiments to study preimago ability to survive the winter under natural or seminatural conditions. The study was conducted in the central mountains of Israel at 700-m altitude from 1994 to 2003. Comparison experiments also were conducted at 400 m and at sea level. Our results show 1) no adults captured during the winter and spring, 2) an absence of new infestations during the winter and spring, and 3) inability of preimago stages to overwinter in the central mountains of Israel. Thus, we conclude that the fly does not overwinter in the central mountains of Israel. We discuss the ecological and applied significance of our findings.
Sinakevitch, Irina T.; Smith, Adrian N.; Locatelli, Fernando; Huerta, Ramon; Bazhenov, Maxim; Smith, Brian H.
2013-01-01
Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. PMID:24187534
Factors affecting the efficacy of a vinegar trap for Drosophila suzukii (Diptera: Drosophilidae)
USDA-ARS?s Scientific Manuscript database
Studies were conducted to develop an optimized, economical trap for monitoring the spotted wing fruit fly, Drosophila suzukii Matsumura. Flies were attracted to dark colors ranging from red to black compared with low attraction to white, yellow, and light blue. Similarly, fly catches in 237 ml plast...
Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila
Bartussek, Jan; Mutlu, A. Kadir; Zapotocky, Martin; Fry, Steven N.
2013-01-01
In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's ‘gyroscopic’ organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator. PMID:23282849
Sivankalyani, Velu; Feygenberg, Oleg; Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam
2015-01-01
Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars 'Hass' and 'Ettinger' for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect 'Hass' and 'Ettinger' avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine.
Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam
2015-01-01
Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars ‘Hass’ and ‘Ettinger’ for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect ‘Hass’ and ‘Ettinger’ avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine. PMID:26501421
Micro-Scale Flapping Wings for the Advancement of Flying MEMS
2009-03-01
section. As air strikes the airfoil, it is divided over and under the wing. The airfoil is curved in a manner such that the air passing over the wing moves...This table briefly describes the L-edit layout of Figure A.1. MUMPS Run 82 Micromirrors Mirrors fabricated to EENG 636 specifications Thermal
Villagrán, M Elvira; Willink, Eduardo; Vera, M Teresa; Follett, Peter
2012-08-01
Argentina has to meet quarantine restrictions because of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), to export 'Hass' avocados, Persea americana Miller, to certain countries. Hass avocado at the hard, mature green stage is potentially a conditional nonhost for C. capitata and could open export markets without the need for a quarantine treatment. Trapping data from 1998 to 2006 showed that C. capitata was present in avocado orchards, particularly early in the harvest season. The host status of hard, mature green Hass avocado to C. capitata was evaluated using laboratory and field cage tests under no-choice conditions and by assessing natural levels of infestation in commercially harvested fruit from the main avocado production area. In total, 2,250 hard, mature green avocado fruit were exposed to 11,250 gravid females for 24 or 48 h after harvest in laboratory or field cages, and no infestations were found. During 11 seasons, 5,949 fruit in total were sampled from the trees and 992 fruit were collected from the ground, and in none of them were any live or dead fruit fly larvae found. Inspection of >198,000 commercial fruit at the packinghouse from 1998 to 2011 showed no symptoms of fruit fly infestation. These data exceed the published standards for determination of nonhost status, as well as the Probit 9 standard for development of quarantine treatments. Hass avocado harvested at the hard, mature green stage was not infested by C. capitata and seems to pose a negligible quarantine risk. As a consequence, no postharvest treatment or other quarantine actions should be required by importing countries.
2006-06-05
Sharmila Bhattacharya is the principal investigator for the STS-121 space shuttle flight experiment, Fly Immunity and Tumors (FIT). She is shown here viewing Drosophila (fruit fly) inside inscet containers used during flight. Living quarters for insects.
2006-06-05
Sharmila Bhattacharya is the principal investigator for the STS-121 space shuttle flight experiment, Fly Immunity and Tumors (FIT). She is shown here viewing Drosophila (fruit fly) inside inscet containers used during flight. Living quarters for insects.
Phytosanitary cold treatment for oranges infested with Bactrocera zonata (Diptera: Tephritidae)
USDA-ARS?s Scientific Manuscript database
The peach fruit fly, Bactrocera zonata (Saunders), attacks a wide range of tree fruits in countries from Egypt to Vietnam and is occasionally trapped in the US. Phytosanitary treatments are required to export fruit hosts of this insect from infested countries to non-infested countries where it might...
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-06
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.
Dynamics of the vortex wakes of flying and swimming vertebrates.
Rayner, J M
1995-01-01
The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.
Schunk, Cosima; Swartz, Sharon M; Breuer, Kenneth S
2017-02-06
Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5-4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude.
The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing
Swartz, Sharon M.; Breuer, Kenneth S.
2017-01-01
Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5–4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude. PMID:28163875
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Doggett, R. V., Jr.
1978-01-01
Some experimental results are presented from wind tunnel studies of a dynamic model equipped with an aeromechanical gust alleviation system for reducing the normal acceleration response of light airplanes. The gust alleviation system consists of two auxiliary aerodynamic surfaces that deflect the wing flaps through mechanical linkages when a gust is encountered to maintain nearly constant airplane lift. The gust alleviation system was implemented on a 1/6-scale, rod mounted, free flying model that is geometrically and dynamically representative of small, four place, high wing, single engine, light airplanes. The effects of flaps with different spans, two size of auxiliary aerodynamic surfaces, plain and double hinged flaps, and a flap elevator interconnection were studied. The model test results are presented in terms of predicted root mean square response of the full scale airplane to atmospheric turbulence. The results show that the gust alleviation system reduces the root mean square normal acceleration response by 30 percent in comparison with the response in the flaps locked condition. Small reductions in pitch-rate response were also obtained. It is believed that substantially larger reductions in normal acceleration can be achieved by reducing the rather high levels of mechanical friction which were extant in the alleviation system of the present model.
Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.
Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas
2013-11-01
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.
Development of diet-induced insulin resistance in adult Drosophila melanogaster.
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H
2012-08-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.
7 CFR 319.56-49 - Eggplant from Israel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-49 Eggplant...-exclusionary structures. APHIS-approved fruit fly traps with an approved protein bait must be placed inside the...
Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A
2015-12-01
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.
Vargas, Roger I; Mau, Ronald F L; Stark, John D; Piñero, Jaime C; Leblanc, Luc; Souder, Steven K
2010-04-01
Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In low-density areas, standard Jackson traps or Hawaii Fruit Fly Areawide Pest Management (AWPM) traps with FT Mallet ME wafers impregnated with dimethyl dichloro-vinyl phosphate (DDVP) or AWPM traps with Scentry ME cones and vapor tape performed equally as well as standard Jackson traps with liquid ME/C-L and naled. Standard Jackson traps or AWPM traps with FT Mallet C-L wafers impregnated with DDVP or AWPM traps with Scentry C-L plugs with vapor tape performed equally as well as standard Jackson traps with a lure-naled solution. In high density areas, captures with traps containing FT Mallet wafers (ME and C-L) outperformed AWPM traps with Scentry cones and plugs (ME and C-L) with DDVP insecticidal strips over a 6-mo period. Captures of B. dorsalis and B. cucurbitae with wafers containing both ME and raspberry ketone (FT Mallet MC) were equivalent to those containing separate lures. From a worker safety and convenience standpoint, FT Mallet ME and C-L wafers with DDVP or Scentry plugs, with or without DDVP vapor tape, are more convenient and safer to handle than standard liquid insecticide formulations used for monitoring and male annihilation programs in Hawaii, and for detections traps used on the U.S. mainland. Furthermore, the FT Mallet MC wafer might be used in a single trap in place of two separate traps for detection of both ME and C-L responding fruit flies.
Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da
2017-01-01
The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Flight control of fruit flies: dynamic response to optic flow and headwind.
Lawson, Kiaran K K; Srinivasan, Mandyam V
2017-06-01
Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Olson, R E; Allison, J M
1940-01-01
Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off.
Neural Circuits Underlying Fly Larval Locomotion
Kohsaka, Hiroshi; Guertin, Pierre A.; Nose, Akinao
2017-01-01
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system. PMID:27928962
Odour intensity learning in fruit flies
Yarali, Ayse; Ehser, Sabrina; Hapil, Fatma Zehra; Huang, Ju; Gerber, Bertram
2009-01-01
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level. PMID:19586944
Making Research Fly in Schools: "Drosophila" as a Powerful Modern Tool for Teaching Biology
ERIC Educational Resources Information Center
Harbottle, Jennifer; Strangward, Patrick; Alnuamaani, Catherine; Lawes, Surita; Patel, Sanjai; Prokop, Andreas
2016-01-01
The "droso4schools" project aims to introduce the fruit fly "Drosophila" as a powerful modern teaching tool to convey curriculum-relevant specifications in biology lessons. Flies are easy and cheap to breed and have been at the forefront of biology research for a century, providing unique conceptual understanding of biology and…
Piñero, Jaime C; Souder, Steven K; Smith, Trevor R; Fox, Abbie J; Vargas, Roger I
2015-04-01
Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait's effectiveness for fruit fly monitoring and suppression. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J.; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae. PMID:28797083
Geib, Scott M.; Liang, Guang Hong; Murphy, Terence D.; Sim, Sheina B.
2017-01-01
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group. PMID:28584080
Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico
2017-01-01
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
Wang, Ming; Cribb, Bronwen; Clarke, Anthony R.; Hanan, Jim
2016-01-01
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments. PMID:26999285
Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars.
Amitai, O; Holtze, S; Barkan, S; Amichai, E; Korine, C; Pinshow, B; Voigt, C C
2010-08-01
Previous studies reported that fed bats and birds mostly use recently acquired exogenous nutrients as fuel for flight, rather than endogenous fuels, such as lipids or glycogen. However, this pattern of fuel use may be a simple size-related phenomenon because, to date, only small birds and bats have been studied with respect to the origin of metabolized fuel, and because small animals carry relatively small energy reserves, considering their high mass-specific metabolic rate. We hypothesized that approximately 150 g Egyptian fruit bats (Rousettus aegyptiacus Pteropodidae), which are more than an order of magnitude heavier than previously studied bats, also catabolize dietary sugars directly and exclusively to fuel both rest and flight metabolism. We based our expectation on the observation that these animals rapidly transport ingested dietary sugars, which are absorbed via passive paracellular pathways in the intestine, to organs of high energy demand. We used the stable carbon isotope ratio in exhaled CO(2) (delta(13)C(breath)) to assess the origin of metabolized substrates in 16 Egyptian fruit bats that were maintained on a diet of C3 plants before experiments. First, we predicted that in resting bats delta(13)C(breath) remains constant when bats ingest C3 sucrose, but increases and converges on the dietary isotopic signature when C4 sucrose and C4 glucose are ingested. Second, if flying fruit bats use exogenous nutrients exclusively to fuel flight, we predicted that delta(13)C(breath) of flying bats would converge on the isotopic signature of the C4 sucrose they were fed. Both resting and flying Egyptian fruit bats, indeed, directly fuelled their metabolism with freshly ingested exogenous substrates. The rate at which the fruit bats oxidized dietary sugars was as fast as in 10 g nectar-feeding bats and 5 g hummingbirds. Our results support the notion that flying bats, irrespective of their size, catabolize dietary sugars directly, and possibly exclusively, to fuel flight.
Emsen, Ilteris Murat
2005-01-01
Hippophae rhamnoides L. (sea buckthorn) is a member of the Elaeagnaceae family, and is a temperate bush native to Europe and Asia. The antioxidant activity of H rhamnoides L. has been shown in vitro cell culture and animal studies. Different fractions of H rhamnoides L. fruits inhibit 2,2-azobis-(2,4 dimethylvaleronitrile) and ascorbate iron-induced lipid peroxidations in vitro. H rhamnoides L., as well as vitamin E, decrease the malondialdehyde content in hyperlipidemic rabbit serum-cultured smooth muscle cells. The aim of the present study was to investigate, in a rat model, the potential effect of H rhamnoides L. on survival of random pattern skin flaps. For this purpose, 30 Wistar Albino rats were used, and a McFarlane-type caudally based skin flap was created on the dorsum of the rat (2.5 cm × 8 cm). Rats were divided into three groups: one control (group A) and two treatment groups (groups B and C). H rhamnoides L. was administered orally to the experimental groups: group B received a single 15 mg/kg dose per day and group C received 15 mg/kg twice per day. The areas and lengths of flap necrosis were measured in each group. The extent of necrotic flap areas were evaluated as length and area of total flap area, and differences were studied by Student’s t tests. The areas and lengths of necrosis of skin flaps decreased depending on H rhamnoides L., but viability of the flaps treated with 15 mg/kg/day was not significantly different from the control group. The rats receiving H rhamnoides L. 15 mg/kg twice per day had the highest flap survival rate (P<0.001). In conclusion, H rhamnoides L. may have a dose-dependent effect to increase flap survival in random skin flaps. PMID:24227931
Ware, A B; du Toit, C L N
2017-06-01
The avocado industry is important in South Africa, but access to certain markets is impeded by the presence of phytosanitary pests. One of the ways of securing entry to these markets is to demonstrate that a mitigating treatment will result in there being a negligible chance of accidental importation. In cold treatment comparative studies at 0 °C and 2 °C of immature stages of Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) in "Hass" avocado, the third instar of C. cosyra was shown to be the most cold tolerant. This larval life stage was used in a large-scale trial to test treatment efficacy at 2 °C, a temperature known to be the better for fruit quality. There were no survivors from the 49,795 individual fruit fly larvae subjected to the cold treatment at 2 °C for 20 d. It is argued that, although this level of assessment falls short of the Probit 9 level normally required for fruit fly, they are rarely found in avocado fruit and that the level of disinfestation obtained is more than sufficient to achieve quarantine security. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...
USDA-ARS?s Scientific Manuscript database
Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determi...
Light, heat, action: neural control of fruit fly behaviour.
Owald, David; Lin, Suewei; Waddell, Scott
2015-09-19
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.
jsc2018m000314_Spinning_Science_Multi-use_Variable-g_Platform_Arrives_at_the_Space_Station-MP4
2018-05-09
Spinning Science: Multi-use Variable-g Platform Arrives at the Space Station --- The Multi-use Variable-gravity Platform (MVP) Validation mission will install and test the MVP, a new hardware platform developed and owned by Techshot Inc., on the International Space Station (ISS). Though the MVP is designed for research with many different kinds of organisms and cell types, this validation mission will focus on Drosophila melanogaster, more commonly known as the fruit fly. This platform will be especially important for fruit fly research, as it will allow researchers to study larger sample sizes of Drosophila melanogaster than in other previous hardware utilizing centrifuges and it will be able to support fly colonies for multiple generations.
Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis
Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.; Lee, Lena W. Y.
1979-01-01
Male oriental fruit flies (Dacus dorsalis) from colonies in Taiwan and Hawaii were evaluated for limit of response to various analogues of methyl eugenol. The results are interpreted in terms of the geometry and allosteric requirements of the antennal receptor that triggers the characteristic methyl eugenol reflex. This receptor has evolved for complementarity to all portions of the methyl eugenol molecule and responds only to ortho-substituted benzenes with adjacent oxygen atoms or isoelectronic equivalents. Substantial differences in responses of Taiwan and Hawaiian D. dorsalis suggest that perceptible evolution of the receptor protein has occurred during the past 50 years. A plausible scheme for the coevolution of dacini flies with plants containing phenylpropionoid essential oils is outlined. Images PMID:16592640
Flight Performance of a Functionally Gradient Material, TUFI, on Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Leister, Daniel B.; Stewart, David A.; DiFiore, Robert; Tipton, Bradford; Gordon, Michael P.; Arnold, Jim (Technical Monitor)
2001-01-01
TUFI (Toughened Uni-Piece Fibrous Insulation), a functionally gradient material has been successfully flying on the Shuttle Orbiters in several locations on two insulation substrates over the past few years. TUFI is composed of insulation and a gradated surface treatment. The locations it has flown include the base heat shield where damage had been observed after every flight before its application. It was also applied to the body flap, the bottom of the body flap and around selected windows and doors where damage had been observed in the past. A description of the types of processing used including substrates will be presented and its overall performance will be reviewed.
A lifting surface theory for thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilaqua, P. M.
1977-01-01
The circulation theory of airfoil lift has been applied to calculate the performance of thrust augmenting ejectors. The ejector shroud is considered to be 'flying' in the secondary velocity field induced by the entrainment of the primary jet, so that the augmenting thrust is viewed as analogous to the lift on an airfoil. Vortex lattice methods are utilized to compute the thrust augmentation from the force on the flaps. The augmentation is shown to be a function of the length and shape of the flaps, as well as their position and orientation. Predictions of this new theory are compared with the results of classical methods of calculating the augmentation by integration of the stream thrust.
Design, aerodynamics and autonomy of the DelFly.
de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W
2012-06-01
One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.
Controlled flight of a biologically inspired, insect-scale robot.
Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J
2013-05-03
Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.
Follett, P A; Sanxter, S S
2001-10-01
We determined whether immersion in 49 degrees C water for 20 min, a quarantine treatment developed for disinfestation of fruit flies in lychee, Litchi chinensis Sonn., and longan, Dimocarpus longan (Lourd.) Steud., exported from Hawaii, would also disinfest fruit of two species of Cryptophlebia. The pattern of tolerance to heat in Cryptophlebia illepida (Butler) was generally eggs < neonates < early instars = late instars < pupae. No C. illepida survived immersion for 16 or 20 min. Late fourth and fifth instars were determined to be the most tolerant stage that occurs in harvested fruit. Late instars of Cryptophlebia ombrodelta (Lower) were more tolerant of hot-water immersion than those of C. illepida, but no C. ombrodelta late instars survived immersion for 16 or 20 min. The hot water immersion quarantine treatment for fruit flies should effectively disinfest lychees and longans of any Cryptophlebia.
USDA-ARS?s Scientific Manuscript database
Control of western cherry fruit fly (Rhagoletis indifferens Curran) using thiamethoxam in sucrose bait and spinosad bait in cherry orchards under external fly pressure and its relation to rapidity of kill and residual bait activity were studied in Washington and Utah in 2010 and 2011. Thiamethoxam ...
Pascacio-Villafán, C.; Williams, T.; Sivinski, J.; Birke, A.; Aluja, M.
2015-01-01
Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. PMID:26470103
Liu, Tao; Li, Li; Li, Baishu; Zhan, Guoping; Wang, Yuejin
2018-05-28
Oriental fruit fly, Bactrocera dorsalis (Hendel; Diptera: Tephritidae), is recognized as a quarantine pest and a threat to Chinese loquat (Eriobotrya japonica Lindl.) fruit exports. Since loquat fruit is very sensitive to methyl bromide (MB) fumigation and cold treatment, in this study, low-temperature phosphine (PH3) fumigation was investigated to develop an alternative phytosanitary treatment method. Tolerance tests showed that the third instar was the most tolerant of all life stages of B dorsalis to PH3 gas at 8°C. Toxicity assay with 500-3000 ppm PH3 and subsequent probit analysis showed that 2000 ppm PH3 was optimal for fumigation and 152.75 h of treatment duration were required to achieve 99.9968% mortality. In the verification test, 144 and 168 h of treatment duration with 2000 ppm PH3 completely killed 35,277 and 35,134 B. dorsalis third instars, respectively. However, 13 live larvae were found after 120 h of treatment. Furthermore, these treatments reduced fruit respiration rates while causing no adverse effects on other fruit quality parameters, including firmness, soluble solid content, and titratable acidity over 192 h storage at 8°C. The results strongly suggest that low-temperature PH3 fumigation could be used for the postharvest control of B. dorsalis in loquat fruit.
Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight
NASA Astrophysics Data System (ADS)
Miller, Mark S.; Keller, Tony S.
2008-05-01
The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.
Harwood, James F.; Chen, Kehui; Müller, Hans-Georg; Wang, Jane-Ling; Vargas, Roger I.; Carey, James R.
2013-01-01
The reproductive ability of female tephritids can be limited and prevented by denying access to host plants and restricting the dietary precursors of vitellogenesis. The mechanisms underlying the delayed egg production in each case are initiated by different physiological processes that are anticipated to have dissimilar effects on lifespan and reproductive ability later in life. The egg laying abilities of laboratory reared females of the Mediterranean fruit fly (Ceratitis capitata Wiedmann) and melon fly (Bactrocera cucurbitae Coquillett) from Hawaii are delayed or suppressed by limiting access to host fruits and dietary protein. In each case, this is expected to prevent the loss of lifespan associated with reproduction until protein or hosts are introduced. Two trends are observed in each species: Firstly, access to protein at eclosion leads to a greater probability of survival and higher reproductive ability than if it is delayed, and secondly, that delayed host access reduces lifetime reproductive ability without improving life expectancy. When host access and protein availability are delayed, the rate of reproductive senescence is reduced in the medfly, whereas the rate of reproductive senescence is generally increased in the melon fly. Overall, delaying reproduction lowers the fitness of females by constraining their fecundity for the remainder of the lifespan without extending the lifespan. PMID:23483775
Dietary glucose regulates yeast consumption in adult Drosophila males
Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.
2014-01-01
The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097
Dietary glucose regulates yeast consumption in adult Drosophila males.
Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G
2014-01-01
The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.
USDA-ARS?s Scientific Manuscript database
Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive and economically damaging pest in Europe and North America, because the females have a serrated ovipositor enabling them to infest ripening almost all small fruits before harvest. Also flies are strongly attracted to fresh fruits rath...
The ecology of the Drosophila-yeast mutualism in wineries
2018-01-01
The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432
The ecology of the Drosophila-yeast mutualism in wineries.
Quan, Allison S; Eisen, Michael B
2018-01-01
The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo
2018-05-01
Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.
Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham
2015-01-01
The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of ‘natural plant defenses’ by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis. PMID:26422203
NASA Technical Reports Server (NTRS)
Grgurich, J.; Bradbury, P.
1976-01-01
The STOLAND system includes air data, navigation, guidance, flight director (including a throttle flight director on the Augmentor Wing), 3-axis autopilot and autothrottle functions. The 3-axis autopilot and autothrottle control through parallel electric servos on both aircraft and on the augmentor wing, the system also interfaces with three electrohydraulic series actuators which drive the roll control surfaces, elevator and rudder. The system incorporates automatic configuration control of the flaps and nozzles on the augmentor wing and of the flaps on the Twin Otter. Interfaces are also provided to control the wing flap chokes on the Augmentor Wing and the spoilers on the Twin Otter. The STOLAND system has all the capabilities of a conventional integrated avionics system. Aircraft stabilization is provided in pitch, roll and yaw including control wheel steering in pitch and roll. The basic modes include altitude hold and select, indicated airspeed hold and select, flight path angle hold and select, and heading hold and select. The system can couple to TACAN and VOR/DME navaids for conventional radial flying.
Effects of Inertial Power and Inertial Force on Bat Wings.
Yin, Dongfu; Zhang, Zhisheng; Dai, Min
2016-06-01
The inertial power and inertial force of wings are important factors in evaluating the flight performance of native bats. Based on measurement data of wing size and motions of Eptesicus fuscus, we present a new computational bat wing model with divided fragments of skeletons and membrane. The motions of the model were verified by comparing the joint and tip trajectories with native bats. The influences of flap, sweep, elbow, wrist and digits motions, the effects of different bones and membrane of bat wing, the components on vertical, spanwise and fore-aft directions of the inertial power and force were analyzed. Our results indicate that the flap, sweep, and elbow motions contribute the main inertial power and force; the membrane occupies an important proportion of the inertial power and force; inertial power on flap direction was larger, while variations of inertial forces on different directions were not evident. These methods and results offer insights into flight dynamics in other flying animals and may contribute to the design of future robotic bats.
Sensory Coordination of Insect Flight
2009-12-29
begun to study how fruit flies pinpoint the location of an odor source ( banana mash placed within a black pole, a strong visual landmark against a...hover feeding, flower tracking, odor tracking etc. Figure 4: Extracting wing and body kinematics from freely flying Drosophila melanogaster. (A
Batra, Srishti; Ramaswamy, Sree Subha; Feder, Jeffrey L.
2016-01-01
Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis. PMID:28003447
Light, heat, action: neural control of fruit fly behaviour
Owald, David; Lin, Suewei; Waddell, Scott
2015-01-01
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory. PMID:26240426
Surgical intervention in central toxic keratopathy.
Tu, Kyaw L; Aslanides, Ioannis M
2012-05-03
Purpose. To report management and outcome of 3 cases of bilateral central toxic keratopathy (CTK). Methods. A retrospective chart review on 3 laser-assisted in situ keratomileusis patients who developed CTK within a short time of one another. Results. Patient A had flap lifts and irrigation (FL+I) twice in the right eye (OD) on postoperative day 1 at diffuse lamellar keratitis (DLK) stage 3 and once each on days 1 (at DLK stage 3) and 5 (at CTK) for the left eye (OS). She attained 20/20 unaided visual acuity (UVA) OD at 1 month. Her UVA OS remained at 20/32 but best-corrected visual acuity (BCVA) gradually improved to 20/25 at 8 months. Patient B had right FL+I on day 3 and left FL+I on day 5 (both for CTK). His OS achieved full visual potential (20/25 UVA) by 1 month but UVA OD was reduced to 20/25 (preoperative BCVA 20/20) at 8 months. Patient C had medical management only. Her preoperative BCVA OD of 20/33 fell to 20/50 postoperative UCVA/BCVA; OS regained full visual potential of 20/40 between 2 and 8 months. Patient A's OD did not develop a full-blown CTK; instead an arrested CTK resulted. All except that one eye had initial hyperopic/astigmatic errors that gradually lessened. Artemis II imaging confirmed early stromal loss posterior to the flap with stroma regaining some thickness over the following months. Conclusions. Surgical intervention in cases of CTK may improve clinical outcomes.
Flight experience with a fail-operational digital fly-by-wire control system
NASA Technical Reports Server (NTRS)
Brown, S. R.; Szalai, K. J.
1977-01-01
The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.
Sensory Coordination of Insect Flight
2010-10-22
sources in the fruit fly, Drosophila melanogaster. 3) Wing-haltere coordination in the soldier fly, Hermetia illucens. 4) Landing behavior in the housefly ...modular behaviors (e.g. a territorial chase between houseflies is composed of a take-off followed by many sharp turns). In pursuing this goal, we have...coordination in the soldier fly, Hermetia illucens. 4) Landing behavior in the housefly , Musca domestica. We have also recently established an
Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar
2015-02-01
Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.
Fei, Yueh-Han John; Yang, Jing-Tang
2015-09-01
A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.
NASA Astrophysics Data System (ADS)
Fei, Yueh-Han John; Yang, Jing-Tang
2015-09-01
A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.
7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vegetables manuals for those States. These manuals are available on the Internet at http://www.aphis.usda.gov... other products that have not been processed sufficiently as to be incapable of harboring fruit flies are...
Wallingford, Anna K; Cha, Dong H; Linn, Charles E; Wolfin, Michael S; Loeb, Gregory M
2017-10-01
In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. Here we attempt to identify potential hallmarks of repellent stimuli that are robust enough for practical use in the field. We explore the literature for success stories using repellents in IPM and we investigate the mechanisms of repellency for two chemical oviposition deterrents for controlling Drosophila suzukii Matsumura, a serious pest of small fruit crops. Drosophila suzukii causes injury by laying her eggs in ripening fruit and resulting larvae make fruit unmarketable. In caged choice tests, reduced oviposition was observed in red raspberry fruit treated with volatile 1-octen-3-ol and geosmin at two initial concentrations (10% and 1%) compared to untreated controls. We used video monitoring to observe fly behavior in these caged choice tests and investigate the mode of action for deterrence through the entire behavioral repertoire leading to oviposition. We observed fewer visitors and more time elapsed before flies first landed on 1-octen-3-ol-treated fruits than control fruits and concluded that this odor primarily inhibits behaviors that occur before D. suzukii comes in contact with a potential oviposition substrate (precontact). We observed some qualitative differences in precontact behavior of flies around geosmin-treated fruits; however, we concluded that this odor primarily inhibits behaviors that occur after D. suzukii comes in contact with treated fruits (postcontact). Field trials found reduced oviposition in red raspberry treated with 1-octen-3-ol and a combination of 1-octen-3-ol and geosmin, but no effect of geosmin alone. Recommendations for further study of repellents for practical use in the field are discussed. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neem derivatives are not effective as toxic bait for tephritid fruit flies.
Silva, M A; Bezerra-Silva, G C D; Vendramim, J D; Mastrangelo, T; Forim, M R
2013-08-01
Neem derivatives have been widely touted as replacements for pesticides. A feasible replacement of synthetic insecticides in the management of fruit flies could be to use neem products in baits. This study evaluated the bioactivity of neem (Azadirachta indica A. Juss) derivatives in bait for adults of Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann). The estimated LCs50 values for A. fraterculus and C. capitata were 7,522 ppm (18.40 ppm of azadirachtin) and 1,368 ppm (3.35 ppm of azadirachtin), respectively, using an aqueous extract of neem seeds in bait after 10 d of experimentation. No significant differences in the mortality of A. fraterculus and C. capitata adults exposed to baits made from different extracts and neem oil were observed after 3 h or 2 or 6 d; differences among the treatments were observed only on the 10th day of the evaluation. We conclude that neem derivatives applied as a bait spray over citrus plants did not demonstrate a toxic effect on A. fraterculus and C. capitata. The reasons for the low efficacy of the neem bait on Tephritid fruit flies are discussed.
Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc
2015-01-01
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186
NASA Technical Reports Server (NTRS)
Kussner, H G
1937-01-01
The present report deals with a number of the main problems requiring solution in the development of helicopters and concerning the lift, flying performance, stability, and drive. A complete solution is given for the stability of the helicopter with rigid blades and control surfaces. With a view to making a direct-lift propeller sufficient without the addition of auxiliary propellers, the "flapping drive" is assessed and its efficiency calculated.
Design of a hydraulically-driven bionic folding wing.
Zhang, Zhijun; Sun, Xuwei; Du, Pengyu; Sun, Jiyu; Wu, Yongfeng
2018-06-01
Membranous hind wings of the beetles can be folded under the elytra when they are at rest, and rotate and lift the elytra up only when they need to fly. This characteristic provides excellent flying capability and good environment adaptability. Inspired by the beetles, the new type of the bionic folding wing for the flapping wing Micro Air Vehicle (MAV) was designed. This flapping wing can be unfolded to get a sufficient lift in flight, and can be folded off flight to reduce the wing area and risk of the wing damage. The relationship between the internal pressures of the hydraulic system for the bionic wing folding varies and temperature was analyzed, the results show that the pressure within the system tends to increase with temperature, which proves the feasibility of the schematic design in theory. Stress analysis of the bionic wing was conducted, it was shown that stress distributions and deformation of the bionic wing under the positive and negative side loading are basically the same, which demonstrates that the strength of the bionic folding wing meets the requirements and further proves the feasibility of the schematic design. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Design and Fabrication of Flying Saucer Utilizing Coanda Effect
NASA Astrophysics Data System (ADS)
Aabid, Abdul; Khan, S. A.
2018-05-01
Coanda effect is used in several engineering applications with distinctive designs and structures. It is also applied in aircrafts flying at low speeds for a comfortable ride. In this paper, we have designed and modelled Coanda effect in terms of a flying saucer. The fabrication was done by means of structural and electronic components. Electrical motor was used as a propeller to take off and land vertically (VTOL) along with hovering capability. The rotor disc diameter is smaller than the bulbous body unlike a helicopter which makes to fly very stable. Control flaps were used to regulate the path by altering the flow over the streamlined body. The model was then tested with a remote control. Numerical Simulation of the tesla turbine was done using ANSYS 14.5 software and displacements were obtained by applying different forces on designed model. CATIA V5 was used to analyse the shaft of the model to get minimum value of torque at which the shaft starts to deform.
Small fruit flies sacrifice temporal acuity to maintain contrast sensitivity.
Currea, John P; Smith, Joshua L; Theobald, Jamie C
2018-06-05
Holometabolous insects, like fruit flies, grow primarily during larval development. Scarce larval feeding is common in nature and generates smaller adults. Despite the importance of vision to flies, eye size scales proportionately with body size, and smaller eyes confer poorer vision due to smaller optics. Variable larval feeding, therefore, causes within-species differences in visual processing, which have gone largely unnoticed due to ad libitum feeding in the lab that results in generally large adults. Do smaller eyes have smaller ommatidial lenses, reducing sensitivity, or broader inter-ommatidial angles, reducing acuity? And to what extent might neural processes adapt to these optical challenges with temporal and spatial summation? To understand this in the fruit fly, we generated a distribution of body lengths (1.67-2.34 mm; n = 24) and eye lengths (0.33-0.44 mm; n = 24), resembling the distribution of wild-caught flies, by removing larvae from food during their third instar. We find smaller eyes (0.19 vs.0.07 mm 2 ) have substantially fewer (978 vs. 540, n = 45) and smaller ommatidia (222 vs. 121 μm 2 ;n = 45) separated by slightly wider inter-ommatidial angles (4.5 vs.5.5°; n = 34). This corresponds to a greater loss in contrast sensitivity (<50%) than spatial acuity (<20%). Using a flight arena and psychophysics paradigm, we find that smaller flies lose little spatial acuity (0.126 vs. 0.118CPD; n = 45), and recover contrast sensitivity (2.22 for both; n = 65) by sacrificing temporal acuity (26.3 vs. 10.8Hz; n = 112) at the neural level. Therefore, smaller flies sacrifice contrast sensitivity to maintain spatial acuity optically, but recover contrast sensitivity, almost completely, by sacrificing temporal acuity neurally. Copyright © 2018. Published by Elsevier Ltd.
Hussein, Karam T
2005-08-01
The volatile oil of Calendula micrtantha plant was extracted and the components were identified by Gc/Ms. Adulticidal efficiency of the volatile oil and gibberelic acid "plant growth promoting hormone" as well as their mixture was assessed against the Mediterranean fruit fly Ceratitis capitata. The result showed that the two compounds capable have characteristic resembling to insect juvenile hormones and have suppressive effect on reproductive potential. They induced the significant disturbances in the ovarian protein fraction and the amino acids patterns.
Bellen, Hugo J; Tong, Chao; Tsuda, Hiroshi
2010-07-01
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
Bellen, Hugo J; Tong, Chao; Tsuda, Hiroshi
2014-01-01
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience. PMID:20383202
Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele
2016-01-01
The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336
Lopez, Terry E.; Pham, Hoang M.; Nguyen, Benjamin V.; Tahmasian, Yerazik; Ramsden, Shannon; Coskun, Volkan; Schriner, Samuel E.; Jafari, Mahtab
2016-01-01
Green tea has been found to increase the lifespan of various experimental animal models including the fruit fly, Drosophila melanogaster. High in polyphenolic content, green tea has been shown to reduce oxidative stress in part by its ability to bind free iron, a micronutrient that is both essential for and toxic to all living organisms. Due to green tea’s iron-binding properties, we questioned whether green tea acts to increase the lifespan of the fruit fly by modulating iron regulators, specifically, mitoferrin, a mitochondrial iron transporter, and transferrin, found in the hemolymph of flies. Publicly available hypomorph mutants for these iron-regulators were utilized to investigate the effect of green tea on lifespan and fertility. We identified that green tea could not increase the lifespan of mitoferrin mutants but did rescue the reduced male fertility phenotype. The effect of green tea on transferrin mutant lifespan and fertility were comparable to w1118 flies, as observed in our previous studies, in which green tea increased male fly lifespan and reduced male fertility. Expression levels in both w1118 flies and mutant flies, supplemented with green tea, showed an up-regulation of mitoferrin but not transferrin. Total body and mitochondrial iron levels were significantly reduced by green tea supplementation in w1118 and mitoferrin mutants but not transferrin mutant flies. Our results demonstrate that green tea may act to increase the lifespan of Drosophila in part by the regulation of mitoferrin and reduction of mitochondrial iron. PMID:27696504
USDA-ARS?s Scientific Manuscript database
The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonel...
ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?
Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...
HPLC-MS analysis of pheromone glucoconjugates in oral secretions of male Anastrepha Fruit Flies
USDA-ARS?s Scientific Manuscript database
Using high performance liquid chromatography combined with ESi, APCI, and PBEI mass spectroscopy, novel terpenoid glycoconjugates were identified in oral secretions of several Anastrepha fly species; these findings suggest that non-volatile pheromone signals are used in their lek mating strategies. ...
Pascacio-Villafán, C; Williams, T; Sivinski, J; Birke, A; Aluja, M
2015-02-01
Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified. The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets. A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response variable differed significantly among the three diets tested. This suggests that a high content of nutrients and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessarily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be modified to reduce their cost without compromising the performance of artificially reared flies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
Maldonado-Morales, Génesis; Bayman, Paul
2017-01-01
Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354
Cladera, Jorge L; Vilardi, Juan C; Juri, Marianela; Paulin, Laura E; Giardini, M Cecilia; Gómez Cendra, Paula V; Segura, Diego F; Lanzavecchia, Silvia B
2014-01-01
Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.
2014-01-01
Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication. PMID:25471175
Ben Ami, Eyal; Yuval, Boaz; Jurkevitch, Edouard
2010-01-01
The sterile insect technique (SIT) is a method of biological control whereby millions of factory reared sterile male insects are released into the field. This technique is commonly used to combat the Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae). Sterile medfly males are less competent in attracting and mating with wild females, a property commonly linked to the irradiation process responsible for the sterilization. As bacteria are important partners in the fly's life cycle, we used molecular analytical methods to study the community structure of the gut microbiota in irradiated male medflies. We find that the sterilizing irradiation procedure affects the gut bacterial community structure of the Mediterranean fruit fly. Although the Enterobacteriaceae family remains the dominant bacterial group present in the gut, the levels of Klebsiella species decreases significantly in the days after sterilization. In addition, we detected substantial differences in some bacterial species between the mass rearing strain Vienna 8 and the wild strain. Most notable among these are the increased levels of the potentially pathogenic species Pseudomonas in the industrial strain. Testing the hypothesis that regenerating the original microbiota community could result in enhanced competitiveness of the sterile flies, we found that the addition of the bacterial species Klebsiella oxytoca to the postirradiation diet enables colonization of these bacteria in the gut while resulting in decreased levels of the Pseudomonas sp. Feeding on diets containing bacteria significantly improved sterile male performance in copulatory tests. Further studies will determine the feasibility of bacterial amelioration in SIT operations.
Liedo, Pablo; Carey, James R.; Ingram, Donald K.; Zou, Sige
2012-01-01
Macronutrient balance is a critical contributor in modulating lifespan and health. Consumption of diets rich in fruits and vegetables provides numerous health benefits. The interactions among macronutrients and botanicals and how they influence aging and health remain elusive. Here we employed a nutritional geometry approach to investigate the interplay among dietary fat, sugar, protein and antioxidant- and polyphenolic-rich freeze-dried açai pulp in modulating lifespan and reproductive output in the Mexican fruit fly, Anastrepha ludens (Loew). Individual flies were cultured on one of the 24 diets made from a combination of 1) sugar and yeast extract (SY) at four ratios, 2) palmitic acid, a saturated fat, at two concentrations and 3) freeze-dried açai pulp at three concentrations. Fat addition decreased lifespan in females on the sugar only diet and the diet with a low SY ratio, while decreasing lifetime reproductive output in flies on the diet with the low SY ratio when compared to SY ratio-matched low fat controls. Açai supplementation promoted survival, while decreasing lifetime reproductive output, in flies on diets with high fat and high sugar but not other diets when compared to diet-matched non-supplemented controls. These findings reveal that the impact of fat and açai on lifespan and reproductive output depends on the dietary content of other macronutrients. Our results reveal the intricate interplay among macronutrients and nutraceuticals, and underscore the importance of taking macronutrient balance into consideration in designing dietary interventions for aging and health. PMID:22580089
Renkema, Justin M; Iglesias, Lindsy E; Bonneau, Phanie; Liburd, Oscar E
2018-03-08
Drosophila suzukii (Matsumura) is a major fruit pest in temperate regions worldwide, but in subtropical Florida, winter-grown strawberries have not been severely affected. Zaprionus indianus Gupta is another invasive drosophilid species and a pest of some tropical fruits. To improve monitoring, trapping systems for D. suzukii and Z. indianus were tested. Morphology, ovarian status and the suitability and availability of non-crop hosts as possible D. suzukii population-limiting factors were assessed. Traps with commercial attractants captured more D. suzukii but fewer Z. indianus than those with a homemade mixture. In central and northern Florida, < 10% and 30-80% of D. suzukii, respectively, exhibited darker, winter morph coloration, and 55-75% of females from central Florida were carrying mature and/or immature eggs. Adult D. suzukii were reared from fruits of two of 28 potential hosts: elderberry (Sambucus nigra) and nightshade (Solanum americanum). Nightshade, but not elderberry, was common on field perimeters (21 and six of 36 fields, respectively). Traps placed in wooded or partially wooded field edges yielded the most D. suzukii. Florida strawberry is at risk of D. suzukii infestation, as flies were captured throughout the growing season. However, fly captures remained relatively low, peaking at 1.5 flies per trap per day. In central Florida, the low availability and suitability of non-crop hosts likely limit population growth. The finding of few flies in northern Florida may additionally be attributable to a greater proportion of flies displaying winter morph coloration than in central Florida. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
1996-01-01
beetles, ants, wasps, flies, and caterpillars. Vegetable items include small fruits such as currants, grapes, elderberries, and mistletoe . [m Bluebirds...small fruits such as currants, grapes, elderberries, and mistletoe . Bluebirds maintain a territory used for mating, nesting, and feeding. Territories
USDA-ARS?s Scientific Manuscript database
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of cherries (Prunus spp.) in western North America that is managed using insecticides. Different insecticides could vary in efficacy and ability to control flies depending on environmental factors. ...
Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia
USDA-ARS?s Scientific Manuscript database
For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infes...
Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia
USDA-ARS?s Scientific Manuscript database
For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infe...
Host status of grapefruit and Valencia oranges for Anastrepha serpentina and Anastrepha ludens
USDA-ARS?s Scientific Manuscript database
Anastrepha serpentina, known as the zapote fly or serpentine fruit fly, is occasionally captured in the Rio Grande Valley of Texas. Lists of host plants for this species include several species of citrus, such as oranges and grapefruit. Current regulatory procedures require quarantines and treatme...
USDA-ARS?s Scientific Manuscript database
Classical biological control programs rely on mass-production of high quality beneficial insects for subsequent releases into the field. Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) is a koinobiont larval-pupal endoparasitoid of tephritid flies that is being reared to support a classic...
USDA-ARS?s Scientific Manuscript database
Seven sticky rectangle traps of various yellow colours and fluorescence made of cardboard were field tested against western cherry fruit fly, Rhagoletis indifferens Curran, in paired trap preference experiments in Washington state, USA. Alpha Scents (proprietary paint), Fluorescent Yellow (aerosol ...
Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moshonas, M.G.; Shaw, P.E.
1982-05-01
Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found inmore » peel oil from fruit treated with phosphine.« less
Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components.
Mangan, Robert L; Moreno, Aleena Tarshis
2009-08-01
Field tests were carried out to evaluate the repellency of the Dow AgroSciences fruit fly toxic bait GF-120 (NF Naturalyte) to domestic honey bees (Apis mellifera L.). GF-120 is an organically registered attractive bait for tephritid fruit flies composed of spinosad, hydrolyzed protein (Solulys), high-fructose corn syrup (ADM CornSweet 42 high-fructose corn syrup, referred to as invertose sugar or invertose here), vegetable oils, adjuvants, humectants, and attractants. Tests were carried out with non-Africanized honey bees in February and March 2005 and 2007 during periods of maximum hunger for these bees. In all tests, bees were first trained to forage from plates of 30% honey-water (2005) or 30% invertose (2007). In 2005 bees were offered choices between honey-water and various bait components, including the complete toxic bait. In 2007, similar tests were performed except bees were attracted with 30% invertose then offered the bait components or complete bait as no-choice tests. Initially, the 2005 tests used all the components of GF-120 except the spinosad as the test bait. After we were convinced that bees would not collect or be contaminated by the bait, we tested the complete GF-120. Behavior of the bees indicated that during initial attraction and after switching the baits, the bait components and the complete bait were repellent to honey bees, but the honey-water remained attractive. Invertose was shown to be less attractive to bees, addition of Solulys eliminated almost all bee activity, and addition of ammonium acetate completely eliminated feeding in both choice and no-choice tests. These results confirm previous tests showing that bees do not feed on GF-120 and also show that honey bees are repelled by the fruit fly attractant components of the bait in field tests.
Nagalingam, Kumaran; Lorenc, Michał T; Manoli, Sahana; Cameron, Stephen L; Clarke, Anthony R; Dudley, Kevin J
2018-01-01
Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein interactions and has been successfully used in various cell types for over three decades. More recently, by combining ChIP with genomic screening technologies and Next Generation Sequencing (e.g. ChIP-seq), it has become possible to profile DNA-protein interactions (including covalent histone modifications) across entire genomes. However, the applicability of ChIP-chip and ChIP-seq has rarely been extended to non-model species because of a number of technical challenges. Here we report a method that can be used to identify genome wide covalent histone modifications in a group of non-model fruit fly species (Diptera: Tephritidae). The method was developed by testing and refining protocols that have been used in model organisms, including Drosophila melanogaster. We demonstrate that this method is suitable for a group of economically important pest fruit fly species, viz., Bactrocera dorsalis, Ceratitis capitata, Zeugodacus cucurbitae and Bactrocera tryoni. We also report an example ChIP-seq dataset for B. tryoni, providing evidence for histone modifications in the genome of a tephritid fruit fly for the first time. Since tephritids are major agricultural pests globally, this methodology will be a valuable resource to study taxa-specific evolutionary questions and to assist with pest management. It also provides a basis for researchers working with other non-model species to undertake genome wide DNA-protein interaction studies.
Jiang, F; Jin, Q; Liang, L; Zhang, A B; Li, Z H
2014-11-01
Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree-based [neighbour-joining (NJ)]; distance-based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character-based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00-25.16%), whereas within a species this was 0.81% (0.00-9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set - BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%). © 2014 John Wiley & Sons Ltd.
2007-03-01
63 Figure 45: Proposed energy harvesting and storage system which will be made of polymer solar cells and lithium polymer batteries [35...University of California, Berkeley used four piezoelectric actuators and fiber-reinforced composites in an attempt to achieve lift [9]. The device...Entomopter. The RCM powers the wing flapping motion while the exhaust gasses act as gas bearings between all movable surfaces. The exhaust gasses can