Sample records for fruit shape traits

  1. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum.

    PubMed

    Naegele, Rachel P; Mitchell, Jenna; Hausbeck, Mary K

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation.

  2. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum

    PubMed Central

    Naegele, Rachel P.; Mitchell, Jenna; Hausbeck, Mary K.

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  3. Genetic diversity analysis of fruit characteristics of hawthorn germplasm.

    PubMed

    Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X

    2015-12-07

    One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.

  4. Mandarin fruit quality: a review.

    PubMed

    Goldenberg, Livnat; Yaniv, Yossi; Porat, Ron; Carmi, Nir

    2018-01-01

    During the last decade, there has been a continuous rise in consumption and global marketing of fresh, easy-to-peel mandarins, with current annual production of nearly 29 million tons. Nevertheless, most of the existing knowledge on quality traits of citrus fruit comes from research conducted on oranges and grapefruit, which are the main products for the citrus juice manufacturing industry; relatively little is yet known regarding the unique fruit quality traits of mandarins, nor about the great diversity in these traits among the various natural sub-groups and varieties of mandarins. In the present review we discuss the physiological, biochemical, and molecular factors governing key fruit quality attributes of mandarins, including fruit colour, size and shape, ease of peeling, seedlessness, flavour, and nutritional quality. Fruit colour, size, and shape contribute to external appearance; peelability and seedlessness to ease of consumption; and flavour and nutritional quality to internal quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Genetic diversity, population structure, and heritability of fruit traits in Capsicum annuum

    USDA-ARS?s Scientific Manuscript database

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungenc...

  6. Characterization of Mineral Nutrients in National Plant Germplasm System (NPGS) Tomato Varieties

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is...

  7. Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest.

    PubMed

    Ramos-Robles, Michelle; Dáttilo, Wesley; Díaz-Castelazo, Cecilia; Andresen, Ellen

    2018-04-02

    Interactions between fleshy fruited plants and frugivores are crucial for the structuring and functioning of biotic communities, particularly in tropical forests where both groups are diverse and play different roles in network organization. However, it remains poorly understood how different groups of frugivore species and fruit traits contribute to network structure. We recorded interactions among 28 plant species and three groups of frugivores (birds, bats, and non-flying mammals) in a seasonal forest in Mexico to determine which species contribute more to network structure and evaluate the importance of each species. We also determined whether fruit abundance, water content, morphology traits, and fruiting phenology are related to network parameters: the number of interactions, species contribution to nestedness, and species strength. We found that plants did not depend on a single group of frugivores, but rather on one species of each group: the bird Pitangus sulphuratus, the bat Sturnira parvidens, and the non-flying mammal Procyon lotor. The abundance, size, and water content of the fruits were significantly related to the contribution to nestedness, number of interactions, and species strength index of plant species. Tree species and birds contributed mainly to the nested structure of the network. We show that the structure of plant-frugivore networks in this seasonal forest is non-random and that fruit traits (i.e., abundance, phenology, size, and water content) are important factors shaping plant-frugivore networks. Identification of the key species and their traits that maintain the complex structure of species interactions is therefore fundamental for the integral conservation of tropical forests.

  8. Genetic difference in macro-element mineral concentrations among 52 historically important tomato varieties

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is n...

  9. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    PubMed

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach.

    PubMed

    López-Girona, Elena; Zhang, Yu; Eduardo, Iban; Mora, José Ramón Hernández; Alexiou, Konstantinos G; Arús, Pere; Aranzana, María José

    2017-07-27

    In peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRR-RLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach.

  11. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  12. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types

    PubMed Central

    Baldina, Svetlana; Picarella, Maurizio E.; Troise, Antonio D.; Pucci, Anna; Ruggieri, Valentino; Ferracane, Rosalia; Barone, Amalia; Fogliano, Vincenzo; Mazzucato, Andrea

    2016-01-01

    Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate). Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids, and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs) among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm as an experimental population, paving the way for investigating their genetic/molecular basis, and facilitating breeding for quality-related compounds in tomato fruits. PMID:27242865

  13. Evaluation of fruit quality, bioactive compounds and total antioxidant activity of flat peach cultivars.

    PubMed

    Di Vaio, Claudio; Marallo, Nadia; Graziani, Giulia; Ritieni, Alberto; Di Matteo, Antonio

    2015-08-15

    Fruit quality traits (fresh weight, dry weight, soluble solids content, titratable acidity and firmness) as well as the content of bioactive compounds (phenolic compounds) and total antioxidant activity were evaluated in four commercial cultivars of peach (Greta, Ufo 4, Rome Star and Ufo 6) and four of nectarine (Neve, Planet 1, Maria Carla and Mesembrina) differing in fruit shape (standard or flat) and flesh colour (white or yellow), important cultivars of the Italian and foreign market. The higher fruit organoleptic quality and nutritional profile of flat peach and nectarine cultivars make them candidates for exploiting new market opportunities and the chance to improve profits of farmers. The results showed that assayed quality parameters differed greatly among cultivars. In particular, flesh color and fruit shape accounted for most of the variation in traits underlying organoleptic and nutritional quality. Overall data suggested that the flat white-fleshed nectarine Planet 1, the yellow-fleshed nectarine Mesembrina and the yellow-fleshed peach Ufo 6, because of their profiles in terms of soluble solids content, titratable acidity and bioactive compounds, have the greatest potential to meet current consumer requirements. © 2014 Society of Chemical Industry.

  14. Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium

    PubMed Central

    Barrantes, Walter; López-Casado, Gloria; García-Martínez, Santiago; Alonso, Aranzazu; Rubio, Fernando; Ruiz, Juan J.; Fernández-Muñoz, Rafael; Granell, Antonio; Monforte, Antonio J.

    2016-01-01

    We have studied a genomic library of introgression lines from the Solanum pimpinellifolium accession TO-937 into the genetic background of the “Moneymaker” cultivar in order to evaluate the accession’s breeding potential. Overall, no deleterious phenotypes were observed, and the plants and fruits were phenotypically very similar to those of “Moneymaker,” which confirms the feasibility of translating the current results into elite breeding programs. We identified chromosomal regions associated with traits that were both vegetative (plant vigor, trichome density) and fruit-related (morphology, organoleptic quality, color). A trichome-density locus was mapped on chromosome 10 that had not previously been associated with insect resistance, which indicates that the increment of trichomes by itself does not confer resistance. A large number of quantitative trait loci (QTLs) have been identified for fruit weight. Interestingly, fruit weight QTLs on chromosomes 1 and 10 showed a magnitude effect similar to that of QTLs previously defined as important in domestication and diversification. Low variability was observed for fruit-shape-related traits. We were, however, able to identify a QTL for shoulder height, although the effects were quite low, thus demonstrating the suitability of the current population for QTL detection. Regarding organoleptic traits, consistent QTLs were detected for soluble solid content (SSC). Interestingly, QTLs on chromosomes 2 and 9 increased SSC but did not affect fruit weight, making them quite promising for introduction in modern cultivars. Three ILs with introgressions on chromosomes 1, 2, and 10 increased the internal fruit color, making them candidates for increasing the color of modern cultivars. Comparing the QTL detection between this IL population and a recombinant inbred line population from the same cross, we found that QTL stability across generations depended on the trait, as it was very high for fruit weight but low for organoleptic traits. This difference in QTL stability may be due to a predominant additive gene action for QTLs involved in fruit weight, whereas epistatic and genetic background interactions are most likely important for the other traits. PMID:27582742

  15. Variation in resource limitation of plant reproduction influences natural selection on floral traits of Asclepias syriaca.

    PubMed

    Caruso, Christina M; Remington, Davin L D; Ostergren, Kate E

    2005-11-01

    The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators' access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.

  16. Classification of Strawberry Fruit Shape by Machine Learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.

    2018-05-01

    Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.

  17. Seed size selection by olive baboons.

    PubMed

    Kunz, Britta Kerstin; Linsenmair, Karl Eduard

    2008-10-01

    Seed size is an important plant fitness trait that can influence several steps between fruiting and the establishment of a plant's offspring. Seed size varies considerably within many plant species, yet the relevance of the trait for intra-specific fruit choice by primates has received little attention. Primates may select certain seed sizes within a species for a number of reasons, e.g. to decrease indigestible seed load or increase pulp intake per fruit. Olive baboons (Papio anubis, Cercopithecidae) are known to select seed size in unripe and mature pods of Parkia biglobosa (Mimosaceae) differentially, so that pods with small seeds, and an intermediate seed number, contribute most to dispersal by baboons. We tested whether olive baboons likewise select for smaller ripe seeds within each of nine additional fruit species whose fruit pulp baboons commonly consume, and for larger seeds in one species in which baboons feed on the seeds. Species differed in fruit type and seed number per fruit. For five of these species, baboons dispersed seeds that were significantly smaller than seeds extracted manually from randomly collected fresh fruits. In contrast, for three species, baboons swallowed seeds that were significantly longer and/or wider than seeds from fresh fruits. In two species, sizes of ingested seeds and seeds from fresh fruits did not differ significantly. Baboons frequently spat out seeds of Drypetes floribunda (Euphorbiaceae) but not those of other plant species having seeds of equal size. Oral processing of D. floribunda seeds depended on seed size: seeds that were spat out were significantly larger and swallowed seeds smaller, than seeds from randomly collected fresh fruits. We argue that seed size selection in baboons is influenced, among other traits, by the amount of pulp rewarded per fruit relative to seed load, which is likely to vary with fruit and seed shape.

  18. Genetic Map of Mango: A Tool for Mango Breeding

    PubMed Central

    Kuhn, David N.; Bally, Ian S. E.; Dillon, Natalie L.; Innes, David; Groh, Amy M.; Rahaman, Jordon; Ophir, Ron; Cohen, Yuval; Sherman, Amir

    2017-01-01

    Mango (Mangifera indica) is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP) markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color. PMID:28473837

  19. Perspectives on the Genetic Architecture of Divergence in Body Shape in Sticklebacks

    PubMed Central

    Reid, Duncan T.; Peichel, Catherine L.

    2010-01-01

    The body shape of fishes encompasses a number of morphological traits that are intrinsically linked to functional systems and affect various measures of performance, including swimming, feeding, and avoiding predators. Changes in shape can allow a species to exploit a new ecological niche and can lead to ecological speciation. Body shape results from the integration of morphological, behavioral and physiological traits. It has been well established that functional interdependency among traits plays a large role in constraining the evolution of shape, affecting both the speed and the repeated evolution of particular body shapes. However, it is less clear what role genetic or developmental constraints might play in biasing the rate or direction of the evolution of body shape. Here, we suggest that the threespine stickleback (Gasterosteus aculeatus) is a powerful model system in which to address the extent to which genetic or developmental constraints play a role in the evolution of body shape in fishes. We review the existing data that begins to address these issues in sticklebacks and provide suggestions for future areas of research that will be particularly fruitful for illuminating the mechanisms that contribute to the evolution of body shape in fishes. PMID:21082067

  20. Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.).

    PubMed

    García-Arias, Francy L; Osorio-Guarín, Jaime A; Núñez Zarantes, Victor M

    2018-01-01

    Association mapping has been proposed as an efficient approach to assist plant breeding programs to investigate the genetic basis of agronomic traits. In this study, we evaluated 18 traits related to yield, (FWP, NF, FWI, and FWII), fruit size-shape (FP, FA, MW, WMH, MH, HMW, DI, FSI, FSII, OVO, OBO), and fruit quality (FIR, CF, and SST), in a diverse collection of 100 accessions of Physalis peruviana including wild, landraces, and anther culture derived lines. We identified seven accessions with suitable traits: fruit weight per plant (FWP) > 7,000 g/plant and cracked fruits (CF) < 4%, to be used as parents in cape gooseberry breeding program. In addition, the accessions were also characterized using Genotyping By Sequencing (GBS). We discovered 27,982 and 36,142 informative SNP markers based on the alignment against the two cape gooseberry references transcriptomes. Besides, 30,344 SNPs were identified based on alignment to the tomato reference genome. Genetic structure analysis showed that the population could be divided into two or three sub-groups, corresponding to landraces-anther culture and wild accessions for K = 2 and wild, landraces, and anther culture plants for K = 3. Association analysis was carried out using a Mixed Linear Model (MLM) and 34 SNP markers were significantly associated. These results reveal the basis of the genetic control of important agronomic traits and may facilitate marker-based breeding in P. peruviana .

  1. Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.)

    PubMed Central

    García-Arias, Francy L.; Osorio-Guarín, Jaime A.; Núñez Zarantes, Victor M.

    2018-01-01

    Association mapping has been proposed as an efficient approach to assist plant breeding programs to investigate the genetic basis of agronomic traits. In this study, we evaluated 18 traits related to yield, (FWP, NF, FWI, and FWII), fruit size-shape (FP, FA, MW, WMH, MH, HMW, DI, FSI, FSII, OVO, OBO), and fruit quality (FIR, CF, and SST), in a diverse collection of 100 accessions of Physalis peruviana including wild, landraces, and anther culture derived lines. We identified seven accessions with suitable traits: fruit weight per plant (FWP) > 7,000 g/plant and cracked fruits (CF) < 4%, to be used as parents in cape gooseberry breeding program. In addition, the accessions were also characterized using Genotyping By Sequencing (GBS). We discovered 27,982 and 36,142 informative SNP markers based on the alignment against the two cape gooseberry references transcriptomes. Besides, 30,344 SNPs were identified based on alignment to the tomato reference genome. Genetic structure analysis showed that the population could be divided into two or three sub-groups, corresponding to landraces-anther culture and wild accessions for K = 2 and wild, landraces, and anther culture plants for K = 3. Association analysis was carried out using a Mixed Linear Model (MLM) and 34 SNP markers were significantly associated. These results reveal the basis of the genetic control of important agronomic traits and may facilitate marker-based breeding in P. peruviana. PMID:29616069

  2. Genotyping by Sequencing for SNP-Based Linkage Analysis and Identification of QTLs Linked to Fruit Quality Traits in Japanese Plum (Prunus salicina Lindl.).

    PubMed

    Salazar, Juan A; Pacheco, Igor; Shinya, Paulina; Zapata, Patricio; Silva, Claudia; Aradhya, Mallikarjuna; Velasco, Dianne; Ruiz, David; Martínez-Gómez, Pedro; Infante, Rodrigo

    2017-01-01

    Marker-assisted selection (MAS) in stone fruit ( Prunus species) breeding is currently difficult to achieve due to the polygenic nature of the most relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from a reference genome. In this study, GBS was used to genotype 272 seedlings of three F1 Japanese plum ( Prunus salicina Lindl) progenies derived from crossing "98-99" (as a common female parent) with "Angeleno," "September King," and "September Queen" as male parents. Raw sequences were aligned to the Peach genome v1, and 42,909 filtered SNPs were obtained after sequence alignment. In addition, 153 seedlings from the "98-99" × "Angeleno" cross were used to develop a genetic map for each parent. A total of 981 SNPs were mapped (479 for "98-99" and 502 for "Angeleno"), covering a genetic distance of 688.8 and 647.03 cM, respectively. Fifty five seedlings from this progeny were phenotyped for different fruit quality traits including ripening time, fruit weight, fruit shape, chlorophyll index, skin color, flesh color, over color, firmness, and soluble solids content in the years 2015 and 2016. Linkage-based QTL analysis allowed the identification of genomic regions significantly associated with ripening time (LG4 of both parents and both phenotyping years), fruit skin color (LG3 and LG4 of both parents and both years), chlorophyll degradation index (LG3 of both parents in 2015) and fruit weight (LG7 of both parents in 2016). These results represent a promising situation for GBS in the identification of SNP variants associated to fruit quality traits, potentially applicable in breeding programs through MAS, in a highly heterozygous crop species such as Japanese plum.

  3. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘piel de sapo’ melon (cucumis melo l.) [corrected].

    PubMed

    Díaz, Aurora; Zarouri, Belkacem; Fergany, Mohamed; Eduardo, Iban; Alvarez, José M; Picó, Belén; Monforte, Antonio J

    2014-01-01

    A mapping F2 population from the cross 'Piel de Sapo' × PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R2 = 34%), fdqs12.1 (LOD = 3.47, R2 = 11%) and fsqs8.1 (LOD = 14.85, R2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in 'Piel de Sapo' background which yields round melons.

  4. Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.)

    PubMed Central

    Díaz, Aurora; Zarouri, Belkacem; Fergany, Mohamed; Eduardo, Iban; Álvarez, José M.; Picó, Belén; Monforte, Antonio J.

    2014-01-01

    A mapping F2 population from the cross ‘Piel de Sapo’ × PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R2 = 34%), fdqs12.1 (LOD = 3.47, R2 = 11%) and fsqs8.1 (LOD = 14.85, R2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in ‘Piel de Sapo’ background which yields round melons. PMID:25126852

  5. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    There are thousands of pomegranate accessions and more than 500 known pomegranate cultivars with around 50 available commercially, exhibiting different growing characteristics and quality attributes; such as fruit size, color, shape, seed hardness, taste and flavor traits which are sometimes not wel...

  6. Environmental predictors of dispersal traits across a species' geographic range.

    PubMed

    LaRue, Elizabeth A; Holland, Jeffrey D; Emery, Nancy C

    2018-05-30

    Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden analysis recovered latitudinal patterns for the dispersal traits associated with fruits, but not those associated with maternal architecture. Thus, the geographic patterns of dispersal trait variation that we observed likely reflect responses to past selection by the distribution, abundance, and quality of habitat, strong plasticity in dispersal traits, and the effects dispersal itself has in shaping local adaptation by driving gene flow among populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    PubMed

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  8. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus)

    PubMed Central

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647

  9. Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Alaparthi, Suresh B.; Almeida, Aldo; Davenport, Brittany; Nadimi, Marjan; Davidson, Joshua; Tonapi, Krittika; Yadav, Lav; Malkaram, Sridhar; Vajja, Gopinath; Hankins, Gerald; Harris, Robert; Park, Minkyu; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes. PMID:27901114

  10. Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Alaparthi, Suresh B; Almeida, Aldo; Davenport, Brittany; Nadimi, Marjan; Davidson, Joshua; Tonapi, Krittika; Yadav, Lav; Malkaram, Sridhar; Vajja, Gopinath; Hankins, Gerald; Harris, Robert; Park, Minkyu; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-11-30

    Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes.

  11. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    PubMed

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (<0.75 similarity level) or fruit traits, clustering based on the AFLP markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P < 0.05), three AFLP markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P < 0.01). This is the first report on the association of molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  12. An evaluation of U.S. strawberry producers trait prioritization—evidence from audience clicker surveys

    USDA-ARS?s Scientific Manuscript database

    Studies evaluating the relative importance of strawberry traits to U.S. strawberry producers are limited. The strawberry traits included in this study were fruit skin color, fruit size, fruit flavor, fruit firmness, shelf life at retail, open plant canopy, productivity, extended harvest season, roo...

  13. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period.

    PubMed

    Borejsza-Wysocka, Ewa; Norelli, John L; Aldwinckle, Herb S; Malnoy, Mickael

    2010-06-03

    Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.

  14. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping

    PubMed Central

    Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan

    2016-01-01

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables. PMID:27529547

  15. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping.

    PubMed

    Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan

    2016-01-01

    Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables.

  16. Multigenerational effects of inbreeding in Cucurbita pepo ssp. texana (Cucurbitaceae).

    PubMed

    Hayes, C Nelson; Winsor, James A; Stephenson, Andrew G

    2005-02-01

    The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.

  17. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  18. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2014-11-01

    Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. The Relationship between Diaspore Characteristics with Phylogeny, Life History Traits, and Their Ecological Adaptation of 150 Species from the Cold Desert of Northwest China

    PubMed Central

    Liu, Hui-Liang; Zhang, Dao-Yuan; Duan, Shi-Min; Wang, Xi-Yong; Song, Ming-Fang

    2014-01-01

    Diaspore characteristics of 22 families, including 102 genera and 150 species (55 represented by seeds and 95 by fruits) from the Gurbantunggut Desert were analyzed for diaspore biological characteristics (mass, shape, color, and appendage type). The diaspore mass and shape were significantly different in phylogeny group (APG) and dispersal syndromes; vegetative periods significantly affected diaspore mass, but not diaspore shape; and ecotypes did not significantly affect diaspore mass and shape, but xerophyte species had larger diaspore mass than mesophyte species. Unique stepwise ANOVA results showed that variance in diaspore mass and shape among these 150 species was largely dependent upon phylogeny and dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrained diaspore mass and shape. Diaspores of 85 species (56.67%) had appendages, including 26 with wings/bracts, 18 with pappus/hair, 14 with hooks/spines, 10 with awns, and 17 with other types of appendages. Different traits (mass, shape, color, appendage, and dispersal syndromes) of diaspore decided plants forming different adapted strategies in the desert. In summary, the diaspore characteristics were closely related with phylogeny, vegetative periods, dispersal syndromes, and ecotype, and these characteristics allowed the plants to adapt to extreme desert environments. PMID:24605054

  20. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits.

    PubMed

    Causse, M; Saliba-Colombani, V; Lecomte, L; Duffé, P; Rousselle, P; Buret, M

    2002-10-01

    The organoleptic quality of tomato fruit involves a set of attributes (flavour, aroma, texture) that can be evaluated either by sensory analyses or by instrumental measures. In order to study the genetic control of this characteristic, a recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with medium flavour but bigger fruits. A total of 38 traits involved in organoleptic quality were evaluated. Physical traits included fruit weight, diameter, colour, firmness, and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene, and 12 aroma volatiles. A panel of trained assessors quantified sensory attributes: flavour (sweetness and sourness), aroma (overall aroma intensity, together with candy, lemon, citrus fruit, and pharmaceutical aromas) and texture (firmness, meltiness, mealiness, juiciness, and skin difficult to swallow). RILs showed a large range of variation. Molecular markers were used to map a total of 130 quantitative trait loci (QTL) for the 38 traits. They were mainly distributed in a few chromosome regions. Major QTLs (R(2) >30%) were detected for fruit weight, diameter, colour, firmness, meltiness, and for six aroma volatiles. The relationships between instrumental measures and sensory traits were analysed with regard to the QTL map. A special insight was provided about the few regions where QTLs are related to multiple traits. A few examples are shown to illustrate how the simultaneous analysis of QTL segregation for related traits may aid in understanding the genetic control of quality traits and pave the way towards QTL characterization.

  1. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers.

    PubMed

    Xanthopoulou, Aliki; Ganopoulos, Ioannis; Psomopoulos, Fotis; Manioudaki, Maria; Moysiadis, Theodoros; Kapazoglou, Aliki; Osathanunkul, Maslin; Michailidou, Sofia; Kalivas, Apostolos; Tsaftaris, Athanasios; Nianiou-Obeidat, Irini; Madesis, Panagiotis

    2017-07-30

    The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits. Copyright © 2017. Published by Elsevier B.V.

  2. Approaches for vegetable and fruit quality trait improvement

    USDA-ARS?s Scientific Manuscript database

    Improving food quality traits has become a major goal of fruit and vegetable breeding due to the increasing public awareness of nutraceutical compounds to human nutrition and health. During domestication and breeding of modern varieties, many traits were left behind in the wild and in the primitive ...

  3. Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1997-01-01

    Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)

  4. Yield and fruit quality traits of atemoya hybrids grown in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    As consumers seek healthy and more diverse food products the demand for tropical fruits has increased significantly during the past 15 years. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) hybrids. Six a...

  5. Fruit Self-Thinning: A Trait to Consider for Genetic Improvement of Apple Tree

    PubMed Central

    Celton, Jean-Marc; Kelner, Jean-Jacques; Martinez, Sébastien; Bechti, Abdel; Khelifi Touhami, Amina; James, Marie José; Durel, Charles-Eric; Laurens, François; Costes, Evelyne

    2014-01-01

    In apple (Malus×domestica Borkh), as in many fruiting crops, fruit maintenance vs abscission is a major criteria for production profitability. Growers routinely make use of chemical thinning agents to control total fruit load. However, serious threats for the environment lead to the demand for new apple cultivars with self-thinning properties. In this project, we studied the genetic determinism of this trait using a F1 progeny derived from the cross between the hybrid INRA X3263, assumed to possess the self-thinning trait, and the cultivar ‘Belrène’. Both counting and percentage variables were considered to capture the fruiting behaviour on different shoot types and over three consecutive years. Besides low to moderate but significant genetic effects, mixed models showed considerable effects of the year and the shoot type, as well as an interaction effect. Year effect resulted mainly from biennial fruiting. Eight Quantitative Trait Locus (QTL) were detected on several linkage groups (LG), either independent or specific of the year of observation or the shoot type. The QTL with highest LOD value was located on the top third of LG10. The screening of three QTL zones for candidate genes revealed a list of transcription factors and genes involved in fruit nutrition, xylem differentiation, plant responses to starvation and organ abscission that open new avenues for further molecular investigations. The detailed phenotyping performed revealed the dependency between the self-thinning trait and the fruiting status of the trees. Despite a moderate genetic control of the self-thinning trait, QTL and candidate genes were identified which will need further analyses involving other progenies and molecular investigations. PMID:24625529

  6. Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning.

    PubMed

    Plazas, Mariola; López-Gresa, María P; Vilanova, Santiago; Torres, Cristina; Hurtado, Maria; Gramazio, Pietro; Andújar, Isabel; Herráiz, Francisco J; Bellés, José M; Prohens, Jaime

    2013-09-18

    Eggplant (Solanum melongena) varieties with increased levels of phenolics in the fruit present enhanced functional quality, but may display greater fruit flesh browning. We evaluated 18 eggplant accessions for fruit total phenolics content, chlorogenic acid content, DPPH scavenging activity, polyphenol oxidase (PPO) activity, liquid extract browning, and fruit flesh browning. For all the traits we found a high diversity, with differences among accessions of up to 3.36-fold for fruit flesh browning. Variation in total content in phenolics and in chlorogenic acid content accounted only for 18.9% and 6.0% in the variation in fruit flesh browning, and PPO activity was not significantly correlated with fruit flesh browning. Liquid extract browning was highly correlated with chlorogenic acid content (r = 0.852). Principal components analysis (PCA) identified four groups of accessions with different profiles for the traits studied. Results suggest that it is possible to develop new eggplant varieties with improved functional and apparent quality.

  7. Yield and Fruit Quality Traits of Atemoya Cultivars Grown in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The demand for tropical fruits has increased more than 33% during the last decade as consumers seek healthy and more diverse food products. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) cultivars. Six a...

  8. QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits.

    PubMed

    Capel, Carmen; Yuste-Lisbona, Fernando J; López-Casado, Gloria; Angosto, Trinidad; Heredia, Antonio; Cuartero, Jesús; Fernández-Muñoz, Rafael; Lozano, Rafael; Capel, Juan

    2017-05-01

    Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.

  9. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.)

    USDA-ARS?s Scientific Manuscript database

    Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of themost relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for finemapp...

  10. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and non-invasive heterocarpic Atriplex congeners

    PubMed Central

    Doudová, Jana; Douda, Jan; Mandák, Bohumil

    2017-01-01

    Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514

  11. Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato

    PubMed Central

    Diouf, Isidore A.; Derivot, Laurent; Bitton, Frédérique; Pascual, Laura; Causse, Mathilde

    2018-01-01

    Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population—derived from eight parental lines covering a large diversity in cultivated tomato—were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33–86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines. PMID:29559986

  12. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests

    PubMed Central

    Wright, Ian J.; Ackerly, David D.; Bongers, Frans; Harms, Kyle E.; Ibarra-Manriquez, Guillermo; Martinez-Ramos, Miguel; Mazer, Susan J.; Muller-Landau, Helene C.; Paz, Horacio; Pitman, Nigel C. A.; Poorter, Lourens; Silman, Miles R.; Vriesendorp, Corine F.; Webb, Cam O.; Westoby, Mark; Wright, S. Joseph

    2007-01-01

    Background and Aims When ecologically important plant traits are correlated they may be said to constitute an ecological ‘strategy’ dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. Methods Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. ‘Phylogenetic’ analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. Key Results The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. Conclusions The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD–leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics. PMID:16595553

  13. Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding

    PubMed Central

    Kaushik, Prashant; Prohens, Jaime; Vilanova, Santiago; Gramazio, Pietro; Plazas, Mariola

    2016-01-01

    Eggplant (Solanum melongena) is related to a large number of wild species that are a source of variation for breeding programmes, in particular for traits related to adaptation to climate change. However, wild species remain largely unexploited for eggplant breeding. Detailed phenotypic characterization of wild species and their hybrids with eggplant may allow identifying promising wild species and information on the genetic control and heterosis of relevant traits. We characterizated six eggplant accessions, 21 accessions of 12 wild species (the only primary genepool species S. insanum and 11 secondary genepool species) and 45 interspecific hybrids of eggplant with wild species (18 with S. insanum and 27 with secondary genepool species) using 27 conventional morphological descriptors and 20 fruit morphometric descriptors obtained with the phenomics tool Tomato Analyzer. Significant differences were observed among cultivated, wild and interspecific hybrid groups for 18 conventional and 18 Tomato Analyzer descriptors, with hybrids generally having intermediate values. Wild species were generally more variable than cultivated accessions and interspecific hybrids displayed intermediate ranges of variation and coefficient of variation (CV) values, except for fruit shape traits in which the latter were the most variable. The multivariate principal components analysis (PCA) reveals a clear separation of wild species and cultivated accessions. Interspecific hybrids with S. insanum plotted closer to cultivated eggplant, while hybrids with secondary genepool species generally clustered together with wild species. Many differences were observed among wild species for traits of agronomic interest, which allowed identifying species of greatest potential interest for eggplant breeding. Heterosis values were positive for most vigor-related traits, while for fruit size values were close to zero for hybrids with S. incanum and highly negative for hybrids with secondary genepool species. Our results allowed the identification of potentially interesting wild species and interspecific hybrids for introgression breeding in eggplant. This is an important step for broadening the genetic base of eggplant and for breeding for adaptation to climate change in this crop. PMID:27242876

  14. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.

    PubMed

    Zhang, H X; Blumwald, E

    2001-08-01

    Transgenic tomato plants overexpressing a vacuolar Na+/H+ antiport were able to grow, flower, and produce fruit in the presence of 200 mM sodium chloride. Although the leaves accumulated high sodium concentrations, the tomato fruit displayed very low sodium content. Contrary to the notion that multiple traits introduced by breeding into crop plants are needed to obtain salt-tolerant plants, the modification of a single trait significantly improved the salinity tolerance of this crop plant. These results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. The accumulation of sodium in the leaves and not in the fruit demonstrates the utility of such a modification in preserving the quality of the fruit.

  15. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    PubMed

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  16. Utility of Metabolomics toward Assessing the Metabolic Basis of Quality Traits in Apple Fruit with an Emphasis on Antioxidants

    PubMed Central

    Cuthbertson, Daniel; Andrews, Preston K.; Reganold, John P.; Davies, Neal M.; Lange, B. Markus

    2012-01-01

    A gas chromatography–mass spectrometry approach was employed to evaluate the use of metabolite patterns to differentiate fruit from six commercially grown apple cultivars harvested in 2008. Principal component analysis (PCA) of apple fruit peel and flesh data indicated that individual cultivar replicates clustered together and were separated from all other cultivar samples. An independent metabolomics investigation with fruit harvested in 2003 confirmed the separate clustering of fruit from different cultivars. Further evidence for cultivar separation was obtained using a hierarchical clustering analysis. An evaluation of PCA component loadings revealed specific metabolite classes that contributed the most to each principal component, whereas a correlation analysis demonstrated that specific metabolites correlate directly with quality traits such as antioxidant activity, total phenolics, and total anthocyanins, which are important parameters in the selection of breeding germplasm. These data sets lay the foundation for elucidating the metabolic basis of commercially important fruit quality traits. PMID:22881116

  17. Patterns of fruit traits in a tropical rainforest in Xishuangbanna, SW China

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Fleming, Theodore H.; Zhang, Ling; Wang, Hong; Liu, Yong

    2004-10-01

    As a basis for determining how vertebrate frugivores influence the evolution of tropical fruits, we investigated distribution patterns of different fruit traits that are known to influence frugivore food choice, drawing on data gathered from 626 plant species in a primary tropical rainforest at Xishuangbanna, SW China. Species with fleshy fruits are common (66%) in the forest; the proportion of fleshy fruits differed among different growth forms: canopy trees (63%), subcanopy trees (83%), shrubs (74%), lianas (67%), herbs (65%) and epiphytes (49%). Dry fruits had a higher frequency of small-seeded species (length of seed <2 mm) compared to fleshy fruit (34% vs. 14%, respectively), and a lower proportion of species with few seeds (1-3 seeds per fruit) (52% vs. 77%). In fleshy fruits, small fruits (<20 mm in length) were predominant (69%) while medium-sized fruits (20-50 mm) were produced by 105 species (26%), and 20 species (5%) produced large fruit (>50 mm). As a whole, black fruits were most common (40% of 389 species), followed by fruits with red, brown, yellow and bicolored (19%, 13%, 13% and 8%, respectively); green, white, and blue fruits were relatively rare (4%, 2% and 1%, respectively). Characteristics of small fleshy fruits included thin husks, red, white, or black colors and a few medium-sized seeds (2-10 mm). Many medium-sized fruits had large, well-protected seeds. The distribution of plant species among various fruit and seed categories is non-random in this forest. Nested ANOVA revealed a significant phylogenetic component in the variances of most fruit traits while fruit size and color showed 39.7-48.1% of within-genus variances from non-phylogenetic factors.

  18. Associations of children's appetitive traits with weight and dietary behaviours in the context of general parenting.

    PubMed

    Rodenburg, Gerda; Kremers, Stef P J; Oenema, Anke; van de Mheen, Dike

    2012-01-01

    Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. To examine associations of children's appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Data were used from 1275 children participating in the INPACT study in 2009-2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children's appetitive traits, children's dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children.

  19. Associations of Children’s Appetitive Traits with Weight and Dietary Behaviours in the Context of General Parenting

    PubMed Central

    Rodenburg, Gerda; Kremers, Stef P. J.; Oenema, Anke; van de Mheen, Dike

    2012-01-01

    Background Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. Objectives To examine associations of children’s appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Methods Data were used from 1275 children participating in the INPACT study in 2009–2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children’s appetitive traits, children’s dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Results Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Conclusions Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children. PMID:23227194

  20. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  1. Phenotypic selection varies with pollination intensity across populations of Sabatia angularis.

    PubMed

    Emel, Sarah L; Franks, Steven J; Spigler, Rachel B

    2017-07-01

    Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars

    PubMed Central

    Wada, Takuya; Oku, Koichiro; Nagano, Soichiro; Isobe, Sachiko; Suzuki, Hideyuki; Mori, Miyuki; Takata, Kinuko; Hirata, Chiharu; Shimomura, Katsumi; Tsubone, Masao; Katayama, Takao; Hirashima, Keita; Uchimura, Yosuke; Ikegami, Hidetoshi; Sueyoshi, Takayuki; Obu, Ko-ichi; Hayashida, Tatsuya; Shibato, Yasushi

    2017-01-01

    A strawberry Multi-parent Advanced Generation Intercrosses (MAGIC) population, derived from crosses using six strawberry cultivars was successfully developed. The population was composed of 338 individuals; genome conformation was evaluated by expressed sequence tag-derived simple short repeat (EST-SSR) markers. Cluster analysis and principal component analysis (PCA) based on EST-SSR marker polymorphisms revealed that the MAGIC population was a mosaic of the six founder cultivars and covered the genomic regions of the six founders evenly. Fruit quality related traits, including days to flowering (DTF), fruit weight (FW), fruit firmness (FF), fruit color (FC), soluble solid content (SC), and titratable acidity (TA), of the MAGIC population were evaluated over two years. All traits showed normal transgressive segregation beyond the founder cultivars and most traits, except for DTF, distributed normally. FC exhibited the highest correlation coefficient overall and was distributed normally regardless of differences in DTF, FW, FF, SC, and TA. These facts were supported by PCA using fruit quality related values as explanatory variables, suggesting that major genetic factors, which are not influenced by fluctuations in other fruit traits, could control the distribution of FC. This MAGIC population is a promising resource for genome-wide association studies and genomic selection for efficient strawberry breeding. PMID:29085247

  3. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits

    PubMed Central

    Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde

    2016-01-01

    Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. PMID:27856709

  4. Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch].

    PubMed

    Martínez-García, Pedro J; Fresnedo-Ramírez, Jonathan; Parfitt, Dan E; Gradziel, Thomas M; Crisosto, Carlos H

    2013-01-01

    Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.

  5. Genomic Selection in Commercial Perennial Crops: Applicability and Improvement in Oil Palm (Elaeis guineensis Jacq.).

    PubMed

    Kwong, Qi Bin; Ong, Ai Ling; Teh, Chee Keng; Chew, Fook Tim; Tammi, Martti; Mayes, Sean; Kulaveerasingam, Harikrishna; Yeoh, Suat Hui; Harikrishna, Jennifer Ann; Appleton, David Ross

    2017-06-06

    Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection.

  6. Effects of foliar potassium fertilization on muskmelon fruit quality and yield

    USDA-ARS?s Scientific Manuscript database

    Consumer preference of many fruits and vegetables such as muskmelon [Cucumis melo L. (Reticulatus Group)] is determined by a few key quality traits such as sugar content, aroma and texture. These quality traits are directly related to adequate potassium (K) content in plant tissues. However, soil-...

  7. Nectar alkaloids decrease pollination and female reproduction in a native plant.

    PubMed

    Adler, Lynn S; Irwin, Rebecca E

    2012-04-01

    The evolution of floral traits may be shaped by a community of floral visitors that affect plant fitness, including pollinators and floral antagonists. The role of nectar in attracting pollinators has been extensively studied, but its effects on floral antagonists are less understood. Furthermore, the composition of non-sugar nectar components, such as secondary compounds, may affect plant reproduction via changes in both pollinator and floral antagonist behavior. We manipulated the nectar alkaloid gelsemine in wild plants of the native perennial vine Gelsemium sempervirens. We crossed nectar gelsemine manipulations with a hand-pollination treatment, allowing us to determine the effect of both the trait and the interaction on plant female reproduction. We measured pollen deposition, pollen removal, and nectar robbing to assess whether gelsemine altered the behavior of mutualists and antagonists. High nectar gelsemine reduced conspecific pollen receipt by nearly half and also reduced the proportion of conspecific pollen grains received, but had no effect on nectar robbing. Although high nectar gelsemine reduced pollen removal, an estimate of male reproduction, by one-third, this effect was not statistically significant. Fruit set was limited by pollen receipt. However, this effect varied across sites such that the sites that were most pollen-limited were also the sites where nectar alkaloids had the least effect on pollen receipt, resulting in no significant effect of nectar alkaloids on fruit set. Finally, high nectar gelsemine significantly reduced seed weight; however, this effect was mediated by a mechanism other than pollen limitation. Taken together, our work suggests that nectar alkaloids are more costly than beneficial in our system, and that relatively small-scale spatial variation in trait effects and interactions could determine the selective impacts of traits such as nectar composition.

  8. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits.

    PubMed

    Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde

    2016-12-01

    Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    PubMed Central

    Xiao, Han; Radovich, Cheryll; Welty, Nicholas; Hsu, Jason; Li, Dongmei; Meulia, Tea; van der Knaap, Esther

    2009-01-01

    Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at the sun locus, higher or lower transcript levels for many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit were found between developmental time points. PMID:19422692

  10. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit.

    PubMed

    Brand, Arnon; Borovsky, Yelena; Hill, Theresa; Rahman, Khalis Afnan Abdul; Bellalou, Aharon; Van Deynze, Allen; Paran, Ilan

    2014-10-01

    We provide multiple evidences that CaGLK2 underlies a quantitative trait locus controlling natural variation in chlorophyll content and immature fruit color of pepper via modulating chloroplast compartment size. Pepper fruit quality is attributed to a variety of traits, affecting visual appearance, flavor, chemical composition and nutritional value. Among the quality traits, fruit color is of primary importance because the pigments that confer color are associated with nutrition, health and flavor. Although gene models have been proposed for qualitative aspects of fruit color, large natural variation in quantitative pigment content and fruit color exists in pepper. However, its genetic basis is largely unknown which hampers its utilization for plant improvement. We studied the role of GLK2, a GOLDEN2-like transcription factor that regulates chloroplast development in controlling natural variation for chlorophyll content and immature fruit color of pepper. The role of GLK2 in regulating fruit development has been studied previously in tomato using ectopic expression and the uniform ripening mutant analyses. However, pepper provides a unique opportunity to further study the function of this gene because of the wide natural variation of fruit colors in this species. Segregation, sequencing and expression analyses indicated that pepper GLK2 (CaGLK2) corresponds to the recently reported pc10 QTL that controls chloroplast development and chlorophyll content in pepper. CaGLK2 exerts its effect on chloroplast compartment size predominantly during immature fruit development. We show that the genetic background, sequence variation and expression pattern confer a complex and multi-level regulation of CaGLK2 and fruit color in Capsicum. The positive effect on fruit quality predominantly at the green stage conferred by CaGLK2 can be utilized to breed green pepper varieties with improved nutritional values and taste.

  11. The Role of Personality Traits in Young Adult Fruit and Vegetable Consumption.

    PubMed

    Conner, Tamlin S; Thompson, Laura M; Knight, Rachel L; Flett, Jayde A M; Richardson, Aimee C; Brookie, Kate L

    2017-01-01

    This project investigated how individual differences in the big-five personality traits (neuroticism, extraversion, openness to experience, conscientiousness, and agreeableness) predicted plant-food consumption in young adults. A total of 1073 participants from two samples of young adults aged 17-25 reported their daily servings of fruits, vegetables, and two unhealthy foods for comparison purposes using an Internet daily diary for 21 or 13 days (micro-longitudinal, correlational design). Participants also completed the Neuroticism, Extraversion, Openness Five Factor Inventory (NEO-FFI) measure of personality, and demographic covariates including gender, age, ethnicity, and body mass index (BMI). Analyses used hierarchical regression to predict average daily fruit and vegetable consumption as separate dependent variables from the demographic covariates (step 1) and the five personality traits (step 2). Results showed that young adults higher in openness and extraversion, and to some extent conscientiousness, ate more fruits and vegetables than their less open, less extraverted, and less conscientious peers. Neuroticism and agreeableness were unrelated to fruit and vegetable consumption. These associations were unique to eating fruit and vegetables and mostly did not extend to unhealthy foods tested. Young adult women also ate more fruit and vegetables than young adult men. Results suggest that traits associated with greater intellect, curiosity, and social engagement (openness and extraversion), and to a lesser extent, discipline (conscientiousness) are associated with greater plant-food consumption in this population. Findings reinforce the importance of personality in establishing healthy dietary habits in young adulthood that could translate into better health outcomes later in life.

  12. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).

    PubMed

    Willis, C G; Hall, J C; Rubio de Casas, R; Wang, T Y; Donohue, K

    2014-12-01

    Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit traits, and how the evolution of these traits is correlated with shifts in geographic range size, habitat and diversification rates in the tribe Brassiceae (Brassicaceae). The phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates. It was found that the evolution of traits associated with limited dispersal evolved only in association with compensatory traits that increase dispersal ability. The evolution of increased dispersal ability occurred in multiple ways through the correlated evolution of different combinations of fruit traits. The evolution of traits that increase dispersal ability was in turn associated with larger seed size, increased geographic range size and higher diversification rates. This study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Complementary roles of two resilient neotropical mammalian seed dispersers

    NASA Astrophysics Data System (ADS)

    de Almeida, Adriana; Morris, Rebecca J.; Lewis, Owen T.; Mikich, Sandra B.

    2018-04-01

    Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit-frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.

  14. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement.

    PubMed

    Duan, Naibin; Bai, Yang; Sun, Honghe; Wang, Nan; Ma, Yumin; Li, Mingjun; Wang, Xin; Jiao, Chen; Legall, Noah; Mao, Linyong; Wan, Sibao; Wang, Kun; He, Tianming; Feng, Shouqian; Zhang, Zongying; Mao, Zhiquan; Shen, Xiang; Chen, Xiaoliu; Jiang, Yuanmao; Wu, Shujing; Yin, Chengmiao; Ge, Shunfeng; Yang, Long; Jiang, Shenghui; Xu, Haifeng; Liu, Jingxuan; Wang, Deyun; Qu, Changzhi; Wang, Yicheng; Zuo, Weifang; Xiang, Li; Liu, Chang; Zhang, Daoyuan; Gao, Yuan; Xu, Yimin; Xu, Kenong; Chao, Thomas; Fazio, Gennaro; Shu, Huairui; Zhong, Gan-Yuan; Cheng, Lailiang; Fei, Zhangjun; Chen, Xuesen

    2017-08-15

    Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an "ancient" isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.

  15. Intentions and Trait Self-Control Predict Fruit and Vegetable Consumption during the Transition to First-Year University

    ERIC Educational Resources Information Center

    Tomasone, Jennifer R.; Meikle, Natasha; Bray, Steven R.

    2015-01-01

    Objective: To examine the independent and combined effects of Theory of Planned Behavior (TPB) variables and trait self-control (TSC) in the prediction of fruit and vegetable consumption (FVC) among first-year university students. Participants: Seventy-six first-year undergraduate university students. Methods: In their first week of class…

  16. Yield, fruit quality traits and leaf nutrient concentration of sapodilla cv ‘Prolific’ grafted onto 16 rootstocks in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Research on sapodilla has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition and scion/rootstock compatibility of cultivar ‘Prolific’ grafted onto 16 sapodilla rootstocks. For this purpose cultivars ‘Adelaide’, ‘Arcilago’...

  17. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (capsicum)

    USDA-ARS?s Scientific Manuscript database

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of post-harvest fruit quality during commercial marketing. We’ve examined the fruit cuticles from 50 diverse pepper genotypes from a world c...

  18. Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses.

    PubMed

    Carvalho-Sobrinho, Jefferson G; Alverson, William S; Alcantara, Suzana; Queiroz, Luciano P; Mota, Aline C; Baum, David A

    2016-08-01

    Bombacoideae (Malvaceae) is a clade of deciduous trees with a marked dominance in many forests, especially in the Neotropics. The historical lack of a well-resolved phylogenetic framework for Bombacoideae hinders studies in this ecologically important group. We reexamined phylogenetic relationships in this clade based on a matrix of 6465 nuclear (ETS, ITS) and plastid (matK, trnL-trnF, trnS-trnG) DNA characters. We used maximum parsimony, maximum likelihood, and Bayesian inference to infer relationships among 108 species (∼70% of the total number of known species). We analyzed the evolution of selected morphological traits: trunk or branch prickles, calyx shape, endocarp type, seed shape, and seed number per fruit, using ML reconstructions of their ancestral states to identify possible synapomorphies for major clades. Novel phylogenetic relationships emerged from our analyses, including three major lineages marked by fruit or seed traits: the winged-seed clade (Bernoullia, Gyranthera, and Huberodendron), the spongy endocarp clade (Adansonia, Aguiaria, Catostemma, Cavanillesia, and Scleronema), and the Kapok clade (Bombax, Ceiba, Eriotheca, Neobuchia, Pachira, Pseudobombax, Rhodognaphalon, and Spirotheca). The Kapok clade, the most diverse lineage of the subfamily, includes sister relationships (i) between Pseudobombax and "Pochota fendleri" a historically incertae sedis taxon, and (ii) between the Paleotropical genera Bombax and Rhodognaphalon, implying just two bombacoid dispersals to the Old World, the other one involving Adansonia. This new phylogenetic framework offers new insights and a promising avenue for further evolutionary studies. In view of this information, we present a new tribal classification of the subfamily, accompanied by an identification key. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin

    PubMed Central

    Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael

    2016-01-01

    Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, ‘Sweet REBA’, and an oilseed pumpkin, ‘Lady Godiva’. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality. PMID:27688889

  20. Genetic variability in Brazilian Capsicum baccatum germplasm collection assessed by morphological fruit traits and AFLP markers

    PubMed Central

    Giacomin, Renata M.; Ruas, Paulo M.; Ruas, Eduardo A.; Barbieri, Rosa L.; Rodrigues, Rosana

    2018-01-01

    Capsicum baccatum is one of the main pepper species grown and consumed in South America. In Brazil, it is commonly cultivated by family farmers, using mostly the genotypes bishop's hat genotypes (locally cambuci) and red chili pepper (dedo-de-moça). This study had the objective of characterizing 116 C. baccatum accessions from different regions of Brazil, based on morphological fruit descriptors and AFLP (Amplified Fragment Length Polymorphisms) markers. Broad phenotypic variability among the C. baccatum accessions was detected when using morphological fruit descriptors. The Ward modified location model (Ward-MLM) discriminated five groups, based mainly on fruit shape. Six combinations of AFLP primers detected polymorphism in 97.93% of the 2466 identified bands, indicating the high genetic variability in the accessions. The UPGMA coincided with the Bayesian clustering analysis and three large groups were formed, separating the wild variety C. baccatum var. praetermissum from the other accessions. There was no relation between genetic distance and geographical origin of the accessions, probably due to the intense exchange of fruits and seeds between farmers. Morphological descriptors used together with AFLP markers proved efficient in detecting the levels of genetic variability among the accessions maintained in the germplasm collections. These results can be used as an additional source of helpful information to be exploited in C. baccatum breeding programs. PMID:29758023

  1. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae).

    PubMed

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.

  2. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias).

    PubMed

    La Rosa, Raffica J; Conner, Jeffrey K

    2017-01-01

    Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition. © 2017 Botanical Society of America.

  3. The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe?

    PubMed Central

    Poyet, Mathilde; Le Roux, Vincent; Gibert, Patricia; Meirland, Antoine; Prévost, Geneviève; Eslin, Patrice; Chabrerie, Olivier

    2015-01-01

    The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas) of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology) potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these “trap plants” may attract and lure D. suzukii, therefore contributing to the control of the invasive fly. PMID:26581101

  4. Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria ×ananassa) breeding populations using pedigree-based QTL analysis

    USDA-ARS?s Scientific Manuscript database

    Strawberry (Fragaria ×ananassa) is consumed worldwide for its flavor and nutritional health benefits. Several quantitative trait loci (QTL) were detected in the last two decades for fruit quality and flowering traits using low-density genetic maps. Recent discoveries in allo-octoploid strawberry gen...

  5. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    PubMed Central

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear. PMID:23641189

  6. The invasiveness of Hypochaeris glabra (Asteraceae): Responses in morphological and reproductive traits for exotic populations.

    PubMed

    Martín-Forés, Irene; Acosta-Gallo, Belén; Castro, Isabel; de Miguel, José M; Del Pozo, Alejandro; Casado, Miguel A

    2018-01-01

    Scientists have been interested in many topics driven by biological invasions, such as shifts in the area of distribution of plant species and rapid evolution. Invasiveness of exotic plant species depends on variations on morphological and reproductive traits potentially associated with reproductive fitness and dispersal ability, which are expected to undergo changes during the invasion process. Numerous Asteraceae are invasive and display dimorphic fruits, resulting in a bet-hedging dispersal strategy -wind-dispersed fruits versus animal-dispersed fruits-. We explored phenotypic differentiation in seed morphology and reproductive traits of exotic (Chilean) and native (Spanish) populations of Hypochaeris glabra. We collected flower heads from five Spanish and five Chilean populations along rainfall gradients in both countries. We planted seeds from the ten populations in a common garden trial within the exotic range to explore their performance depending on the country of origin (native or exotic) and the environmental conditions at population origin (precipitation and nutrient availability). We scored plant biomass, reproductive traits and fruit dimorphism patterns. We observed a combination of bet-hedging strategy together with phenotypic differentiation. Native populations relied more on bet-hedging while exotic populations always displayed greater proportion of wind-dispersed fruits than native ones. This pattern may reflect a strategy that might entail a more efficient long distance dispersal of H. glabra seeds in the exotic range, which in turn can enhance the invasiveness of this species.

  7. Yield and fruit quality traits of dragon fruit lines and cultivars grown in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Dragon fruit or pitahaya (Hylocereus undatus and Selenicereus megalanthus) is a member of the Cactaceae family and native to the tropical forest regions of Mexico, Central, and South America. The fruit was practically unknown 15 years ago but it occupies a growing niche in Europe’s exotic fruit mar...

  8. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop

    PubMed Central

    Kunihisa, Miyuki; Moriya, Shigeki; Abe, Kazuyuki; Okada, Kazuma; Haji, Takashi; Hayashi, Takeshi; Kim, Hoytaek; Nishitani, Chikako; Terakami, Shingo; Yamamoto, Toshiya

    2014-01-01

    Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose. PMID:25320559

  9. Uncovering co-expression gene network regulating fruit acidity in diverse apples

    USDA-ARS?s Scientific Manuscript database

    Acidity is a major contributor to fruit quality. Several organic acids are present in apple fruit, but malic acid is predominant and determines fruit acidity. The trait is largely controlled by the Malic acid (Ma) locus, underpinning which Ma1 that encodes an Aluminum-activated Malate Transporter1 (...

  10. Register of new fruit and nut cultivars list 48. Banana, cacao, plantain

    USDA-ARS?s Scientific Manuscript database

    The Register of New Fruit and Nut Varieties 48 is a compilation of descriptions of new fruit and nut cultivars from around the world. In this edition, newly released banana, plantain, and cacao cultivars are described in terms of their origins, important fruit traits and yield. ...

  11. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber

    USDA-ARS?s Scientific Manuscript database

    The epidermal features on the fruits, such as the number and size of trichomes or spines are important fruit quality traits for cucumber production. Little is known about the molecular mechanisms underlying fruit spine formation in cucumber. Here, we reported cloning and functional characterization ...

  12. Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life.

    PubMed

    Yogendra, K N; Ramanjini Gowda, P H

    2013-02-27

    Breeding for better quality fruits is a major focus for tomatoes, which are continuously subjected to post-harvest losses. Several methods have been used to improve the fruit shelf life of tomatoes, including the use of ripening gene mutants of Solanum lycopersicum. We developed extended shelf-life tomato hybrids with better quality fruits using ripening mutants. Nine tomato crosses were developed using 3 fruit ripening gene mutants of S. lycopersicum [alcobaca (alc), non-ripening, and ripening inhibitor] and 3 agronomically superior Indian cultivars ('Sankranti', 'Vaibhav', and 'Pusaruby') with short shelf life. The hybrid progenies developed from alc x 'Vaibhav' had the highest extended shelf life (up to 40 days) compared with that of other varieties and hybrids. Further, the F(2) progenies of alc x 'Vaibhav' were evaluated for fruit quality traits and yield parameters. A wide range of genetic variability was observed in shelf life (5-106 days) and fruit firmness (0.55-10.65 lbs/cm(2)). The potential polymorphic simple sequence repeat markers underlying shelf life traits were identified in an F(2) mapping population. The marker association with fruit quality traits and yield was confirmed with single-marker analysis and composite interval mapping. The genetic parameters analyzed in the parents and F(1) and F(2) populations indicated that the cross between the cultivar 'Vaibhav' and ripening gene mutant alc yielded fruit with long shelf life and good quality.

  13. Choices and consequences of oviposition by a pollinating seed predator, Hadena ectypa (Noctuidae), on its host plant, Silene stellata (Caryophyllaceae).

    PubMed

    Kula, Abigail A R; Dudash, Michele R; Fenster, Charles B

    2013-06-01

    Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.

  14. Evaluation of Antioxidant Compounds and Total Sugar Content in a Nectarine [Prunus persica (L.) Batsch] Progeny

    PubMed Central

    Abidi, Walid; Jiménez, Sergio; Moreno, María Ángeles; Gogorcena, Yolanda

    2011-01-01

    Epidemiological studies suggest that consumption of fruit rich in phenolic compounds is associated with health-protective effects due to their antioxidant properties. For these reasons quality evaluation has become an important issue in fruit industry and in breeding programs. Phytochemical traits such as total phenolics, flavonoids, anthocyanins, L-ascorbic acid, sugar content and relative antioxidant capacity (RAC) were analyzed over four years in flesh fruit of an F1 population “Venus” × “Big Top” nectarines. Other traits such as harvesting date, yield, fruit weight, firmness, soluble solids concentration (SSC), pH, titratable acidity (TA) and ripening index (RI) were also determined in the progeny. Results showed high variability among genotypes for all analyzed traits. Total phenolics and flavonoids showed significant positive correlations with RAC implying that both are important antioxidant bioactive compounds in peaches. We found genotypes with enhanced antioxidant capacity and a better performance than progenitors, and in consequence the best marketability. PMID:22072927

  15. The Potential of the MAGIC TOM Parental Accessions to Explore the Genetic Variability in Tomato Acclimation to Repeated Cycles of Water Deficit and Recovery

    PubMed Central

    Ripoll, Julie; Urban, Laurent; Bertin, Nadia

    2016-01-01

    Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant “memory effect” which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (–38, –45, and –55% of water supply) followed by three periods of recovery (“WD treatments”), were applied to the eight parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits [contents in sugars, acids, carotenoids, and ascorbic acid (AsA)] were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J0RE1/JABS). The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of physiological traits and the variability of genotypic effects, represent a true challenge for upcoming studies aiming at taking advantage of, not just dealing with WD. PMID:26779213

  16. Register of New Fruit and Nut Cultivars List 46. Rambutan.

    USDA-ARS?s Scientific Manuscript database

    The Register of New Fruit and Nut Varieties 46 is a compilation of descriptions of new fruit and nut cultivars from around the world. In this edition, 8 newly released rambutan cultivars are described in terms of their origins, important fruit traits and yield. Of the eight described cultivars, one ...

  17. Effects of peach tree root system morphology and transpiration on leaf nitrogen and phosphorus

    USDA-ARS?s Scientific Manuscript database

    Adequate mineral nutrition is critical for high fruit quality and sustained yield of fruit trees. It is likely that nutritional competence of a fruit tree depends on several physiological and morphological traits that affect nutrient uptake. Fruit trees with improved root systems (own-rooted or as ...

  18. Register of New Fruit and Nut Cultivars List 45. Banana, cacao, Spanish lime, plantain

    USDA-ARS?s Scientific Manuscript database

    The Register of New Fruit and Nut Varieties 45 is a compilation of descriptions of new fruit and nut cultivars from around the world. In this edition, newly released cacao, banana, plantain, and genip cultivars are described in terms of their origins, important fruit traits and yield....

  19. Classification and phylogenetic analysis of Chinese hawthorn assessed by plant and pollen morphology.

    PubMed

    Ma, S L Y; Lu, Y M

    2016-09-19

    The Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.) is uniquely originated in northern China. The ecological and horticultural importance of Chinese hawthorn is considerable and some varieties are valued for their fruit or medicine extracts. Its taxonomy and phylogeny remain poorly understood. Apart from general plant morphological traits, pollen is an important trait for the classification of plants and their evolutionary origin. However, few studies have investigated the pollen of Chinese hawthorn. Here, an analysis of plant and pollen morphological characteristics was conducted in 57 cultivars from the Shenyang region. Thirty plant morphological characters and nine pollen grain characters were investigated. The plant morphological analysis revealed that the coefficient of variation for 13 traits was >20%, which indicates a high degree of variability. We also found that the pollen grains varied greatly in size, shape (from prolate to perprolate), and exine pattern (striate-perforate predominantly). The number of apertures was typically three. Based on these findings, we suggest that pollen morphology associated with plant morphological traits can be used for classification and phylogenetic analysis of Chinese hawthorn cultivars. In sum, our results provide new insights and constitute a scientific basis for future studies on the classification and evolution of Chinese hawthorn.

  20. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae)

    PubMed Central

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself. PMID:27555851

  1. Genomic resources in fruit plants: an assessment of current status.

    PubMed

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.

  2. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary.

    PubMed

    Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi

    2014-06-01

    Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.

  3. Grafting influences phenolic profile and carpometric traits of fruits of greenhouse-grown eggplant (Solanum melongena L.).

    PubMed

    Kacjan Maršić, Nina; Mikulič-Petkovšek, Maja; Stampar, Franci

    2014-10-29

    The influence of eggplant grafting on tomato rootstock was evaluated during the two growing seasons. Yield, quality traits, and individual phenolics in fruits were assessed. Three commercial varieties and one landrace were used as scions. Grafting significantly increased eggplant yield and decreased the presence of calyx prickles. The effect of grafting on the accumulation of major phenolic constituents in eggplant fruit was inconsistent: in the year with less solar radiation and lower mean daily air temperatures, grafting decreased phenolic content in commercial variety/rootstock fruit and increased the content in landrace/rootstock fruit. An opposite effect in the latter combination was observed in the year with improved conditions for eggplant cultivation. The browning potential of fruit pulp was highly dependent on variety/landrace and partly also on grafting combination. Differences in correlations between phenolic constituents and browning potential (positive for varieties and negative for landrace) could also be ascribed to the importance of other antioxidants for diminished eggplant pulp browning.

  4. Square bananas, blue horses: the relative weight of shape and color in concept recognition and representation

    PubMed Central

    Scorolli, Claudia; Borghi, Anna M.

    2015-01-01

    The present study investigates the role that shape and color play in the representation of animate (i.e., animals) and inanimate manipulable entities (i.e., fruits), and how the importance of these features is modulated by different tasks. Across three experiments participants were shown either images of entities (e.g., a sheep or a pineapple) or images of the same entities modified in color (e.g., a blue pineapple) or in shape (e.g., an elongated pineapple). In Experiment 1 we asked participants to categorize the entities as fruit or animal. Results showed that with animals color does not matter, while shape modifications determined a deterioration of the performance – stronger for fruit than for animals. To better understand our findings, in Experiments 2 we asked participants to judge if entities were graspable (manipulation evaluation task). Participants were faster with manipulable entities (fruit) than with animals; moreover alterations in shape affected the response latencies more for animals than for fruit. In Experiment 3 (motion evaluation task), we replicated the disadvantage for shape-altered animals, while with fruits shape and color modifications produced no effect. By contrasting shape- and color- alterations the present findings provide information on shape/color relative weight, suggesting that the action based property of shape is more crucial than color for fruit categorization, while with animals it is critical for both manipulation and motion tasks. This contextual dependency is further revealed by explicit judgments on similarity – between the altered entities and the prototypical ones – provided after the different tasks. These results extend current literature on affordances and biofunctionally embodied understanding, revealing the relative robustness of biofunctional activity compared to intellectual one. PMID:26500593

  5. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the Tumbesian dry forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.

  6. Sexual regeneration traits linked to black cherry ( Prunus serotina Ehrh.) invasiveness

    NASA Astrophysics Data System (ADS)

    Pairon, Marie; Chabrerie, Olivier; Casado, Carolina Mainer; Jacquemart, Anne-Laure

    2006-09-01

    In order to better understand the invasive capacity of black cherry ( Prunus serotina Ehrh.), the regeneration dynamics of the species was studied during two consecutive years in a Belgian Pine plantation. Flower and fruit production, seed rain, dispersal and viability as well as the survival of seedlings of different ages were assessed. Despite the low fruit/flower ratio, fruit production was high (up to 8940 fruits per tree) as trees produced huge quantities of flowers. Both flower and fruit productions were highly variable between years and among individuals. The production variability between individuals was not correlated with plant size variables. Fruits were ripe in early September and a majority fell in the vicinity of the parent tree. A wide range of bird species dispersed 18% of the fruits at the end of October. Sixty-two percent of the fruits were viable and mean densities of 611 fruits m -2 were recorded on the forest floor. High mortality among young seedlings was observed and 95.3% of the fruits failed to give 4-year-old saplings. Nevertheless, the few saplings older than 4 years (1.32 m -2) presented a high survival rate (86%). All these regeneration traits are discussed in order to determine the main factors explaining the black cherry invasive success in Europe.

  7. Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper.

    PubMed

    Arancibia, Ramón A; Motsenbocker, Carl E

    2006-03-01

    Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.

  8. A case study in evolutionary contingency.

    PubMed

    Blount, Zachary D

    2016-08-01

    Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparative evolution of flower and fruit morphology

    PubMed Central

    Whitney, Kenneth D.

    2009-01-01

    Angiosperm diversification has resulted in a vast array of plant morphologies. Only recently has it been appreciated that diversification might have proceeded quite differently for the two key diagnostic structures of this clade, flowers and fruits. These structures are hypothesized to have experienced different selective pressures via their interactions with animals in dispersal mutualisms, resulting in a greater amount of morphological diversification in animal-pollinated flowers than in animal-dispersed fruits. I tested this idea using size and colour traits for the flowers and fruits of 472 species occurring in three floras (St John, Hawaii and the Great Plains). Phylogenetically controlled analyses of nearest-neighbour distances in multidimensional trait space matched the predicted pattern: in each of the three floras, flowers were more divergent from one another than were fruits. In addition, the spacing of species clusters differed for flowers versus fruits in the flora of St John, with clusters in flower space more divergent than those in fruit space. The results are consistent with the idea that a major driver of angiosperm diversification has been stronger selection for divergent floral morphology than for divergent fruit morphology, although genetic, physiological and ecological constraints may also play a role. PMID:19474045

  10. Sexual selection and the evolution of genital shape and complexity in water striders.

    PubMed

    Rowe, Locke; Arnqvist, Göran

    2012-01-01

    Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  11. Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil.

    PubMed

    de Oliveira, Carlos Antonio Lopes; Ribeiro, Ricardo Pereira; Yoshida, Grazyella Massako; Kunita, Natali Miwa; Rizzato, Gabriel Soriani; de Oliveira, Sheila Nogueira; Dos Santos, Alexandra Inês; Nguyen, Nguyen Hong

    2016-11-01

    Body shape is a commercial trait of great interest as it impacts profit and productivity of aquaculture enterprises. In the present study, we examined correlated changes in two measures of body shape (depth to length ratio, DL-R and ellipticity of mid sagittal plane, EL-H) from a selection program for high daily weight gain in a Nile tilapia population reared in freshwater cages in Brazil. Genetic parameters for body shape and its genetic association with growth traits (body weight and daily gain) were also estimated from 8,725 individuals with growth performance recorded over five generations from 2008 to 2013. Mixed model analysis showed that the selection program resulted in substantial improvement in growth performance (about 4 % genetic gain per generation or per year) and also brought about trivial changes in body shape. The heritabilities ranged from 0.470 to 0.564 for growth traits and 0.180 to 0.289 for body shape. The common family effects were low for all traits studied, accounting for only 3-11 % of total phenotypic variance. The genetic correlations between body shape and growth traits were weak, i.e., -0.385 between EL-H and growth traits and 0.28 between DL-R and body weight or daily gain. Strong and negative genetic association was found between the two body shape traits (rg = --0.955). Harvest body weight and daily gain are essentially the same traits, as indicated by the close to one genetic correlations between the two characters. Our results demonstrated that the selection process to increase growth rate had small, but slowly constant effect in body shape traits; and in the long term, the fish would have become rotund.

  12. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape

    PubMed Central

    Gascuel, Quentin; Diretto, Gianfranco; Monforte, Antonio J.; Fortes, Ana M.; Granell, Antonio

    2017-01-01

    Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices. PMID:28553296

  13. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

    PubMed Central

    Pascual, Laura; Xu, Jiaxin; Causse, Mathilde

    2013-01-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and orange-red). The contents of metabolites varied among the genetic backgrounds, while enzyme profiles were less variable, particularly at the cell expansion stage. Frequent genotype by stage interactions suggested that the trends observed for one accession at a physiological level may change in another accession. In agreement with this, the inheritance modes varied between crosses and stages. Although additivity was predominant, 40% of the traits were non-additively inherited. Relationships among traits revealed associations between different levels of expression and provided information on several key proteins. Notably, the role of frucktokinase, invertase, and cysteine synthase in the variation of metabolites was highlighted. Several stress-related proteins also appeared related to fruit weight differences. These key proteins might be targets for improving metabolite contents of the fruit. This systems biology approach provides better understanding of networks controlling the genetic variation of tomato fruit composition. In addition, the wide data sets generated provide an ideal framework to develop innovative integrated hypothesis and will be highly valuable for the research community. PMID:24151307

  14. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra-annual fruiting affects plant traits and herbivory?

    PubMed

    da Costa, Fernanda Vieira; de Queiroz, Antônio César Medeiros; Maia, Maria Luiza Bicalho; Júnior, Ronaldo Reis; Fagundes, Marcilio

    2016-06-01

    Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution.

  15. The effect of social desirability trait on self-reported dietary measures among multi-ethnic female health center employees.

    PubMed

    Hébert, J R; Peterson, K E; Hurley, T G; Stoddard, A M; Cohen, N; Field, A E; Sorensen, G

    2001-08-01

    To evaluate the effect of social desirability trait, the tendency to respond in a manner consistent with societal expectations, on self-reported fruit, vegetable, and macronutrient intake. A 61-item food frequency questionnaire (FFQ), 7-item fruit and vegetable screener, and a single question on combined fruit and vegetable intake were completed by 132 female employees at five health centers in eastern Massachusetts. Intake of fruit and vegetables derived from all three methods and macronutrients from the FFQ were fit as dependent variables in multiple linear regression models (overall and by race/ethnicity and education); independent variables included 3-day mean intakes derived from 24-hour recalls (24HR) and score on the 33-point Marlowe-Crowne Social Desirability scale (the regression coefficient for which reflects its effect on estimates of dietary intake based on the comparison method relative to 24HR). Results are based on the 93 women with complete data and FFQ-derived caloric intake between 450 and 4500 kcal/day. In women with college education, FFQ-derived estimates of total caloric were associated with under-reporting by social desirability trait (e.g., the regression coefficient for total caloric intake was -23.6 kcal/day/point in that group versus 36.1 kcal/day/point in women with education less than college) (difference = 59.7 kcal/day/point, 95% confidence interval (CI) = 13.2, 106.2). Except for the single question on which women with college education tended to under-report (difference =.103 servings/day/point, 95% CI = 0.003, 0.203), there was no association of social desirability trait with self-reported fruit and vegetable intake. The effect of social desirability trait on FFQ reports of macronutrient intake appeared to differ by education, but not by ethnicity or race. The results of this study may have important implications for epidemiologic studies of diet and health in women.

  16. Comprehensive analysis of NAC transcription factors and their expression during cucumber fruit spine development

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes ir spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but there is evidence of the involvement of the plant-specific NAC family of tra...

  17. Photosynthetic Traits of Plants and the Biochemical Profile of Tomato Fruits Are Influenced by Grafting, Salinity Stress, and Growing Season.

    PubMed

    Marsic, Nina Kacjan; Vodnik, Dominik; Mikulic-Petkovsek, Maja; Veberic, Robert; Sircelj, Helena

    2018-06-06

    Changes in the photosynthetic traits of plants and metabolic composition of fruits of two tomato cultivars, grafted onto two rootstocks, grown in three salinity levels were studied in two growing periods during the season. Increased salinity stress conditions lowered water potential, stomatal conductance, and transpiration rate of grafted tomato plants, in both growing periods. Water deficit induced stomatal closure, which resulted in stomatal limitation of photosynthesis. The proline content in tomato leaves increased and was closely correlated with salinity. Some of the quality parameters of tomato fruits were affected by rootstock. The sugar/acid ratio was the highest in fruits of 'Belle'/'Maxifort' grafts. With increasing salt stress conditions from 40 to 60 mM NaCl, the lycopene content increased and ascorbic acid content decreased in fruits of 'Gardel'/'Maxifort' grafts, indicating the ability of this scion/rootstock combination to mitigate the toxicity effect of salinity stress. A higher phenolics concentration in fruits from the first growing period may be an additional indicator of stress, caused by higher temperatures and solar radiation, compared with the later period.

  18. QTL mapping for fruit quality in Citrus using DArTseq markers.

    PubMed

    Curtolo, Maiara; Cristofani-Yaly, Mariângela; Gazaffi, Rodrigo; Takita, Marco Aurélio; Figueira, Antonio; Machado, Marcos Antonio

    2017-04-12

    Citrus breeding programs have many limitations associated with the species biology and physiology, requiring the incorporation of new biotechnological tools to provide new breeding possibilities. Diversity Arrays Technology (DArT) markers, combined with next-generation sequencing, have wide applicability in the construction of high-resolution genetic maps and in quantitative trait locus (QTL) mapping. This study aimed to construct an integrated genetic map using full-sib progeny derived from Murcott tangor and Pera sweet orange and DArTseq™ molecular markers and to perform QTL mapping of twelve fruit quality traits. A controlled Murcott x Pera crossing was conducted at the Citrus Germplasm Repository at the Sylvio Moreira Citrus Centre of the Agronomic Institute (IAC) located in Cordeirópolis, SP, in 1997. In 2012, 278 F 1 individuals out of a family of 312 confirmed hybrid individuals were analyzed for fruit traits and genotyped using the DArTseq markers. Using OneMap software to obtain the integrated genetic map, we considered only the DArT loci that showed no segregation deviation. The likelihood ratio and the genomic information from the available Citrus sinensis L. Osbeck genome were used to determine the linkage groups (LGs). The resulting integrated map contained 661 markers in 13 LGs, with a genomic coverage of 2,774 cM and a mean density of 0.23 markers/cM. The groups were assigned to the nine Citrus haploid chromosomes; however, some of the chromosomes were represented by two LGs due the lack of information for a single integration, as in cases where markers segregated in a 3:1 fashion. A total of 19 QTLs were identified through composite interval mapping (CIM) of the 12 analyzed fruit characteristics: fruit diameter (cm), height (cm), height/diameter ratio, weight (g), rind thickness (cm), segments per fruit, total soluble solids (TSS, %), total titratable acidity (TTA, %), juice content (%), number of seeds, TSS/TTA ratio and number of fruits per box. The genomic sequence (pseudochromosomes) of C. sinensis was compared to the genetic map, and synteny was clearly identified. Further analysis of the map regions with the highest LOD scores enabled the identification of putative genes that could be associated with the fruit quality characteristics. An integrated linkage map of Murcott tangor and Pera sweet orange using DArTseq™ molecular markers was established and it was useful to perform QTL mapping of twelve fruit quality traits. The next generation sequences data allowed the comparison between the linkage map and the genomic sequence (pseudochromosomes) of C. sinensis and the identification of genes that may be responsible for phenotypic traits in Citrus. The obtained linkage map was used to assign sequences that had not been previously assigned to a position in the reference genome.

  19. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    PubMed

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.

  20. Distinguishing native (Celastrus scandens L.) and invasive (C. orbiculatus Thunb.) bittersweet species using morphological characteristics

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Grundel, R.; Frohnapple, K.J.

    2007-01-01

    Celastrus orbiculatus is an invasive liana in the Eastern United States. Its native congener, C. scandens, is less common and declining in the Northeast. The correct identification of these two species is often difficult because of their similar vegetative characteristics. Using morphological characteristics of both species growing naturally along a sand dune/forest ecotone, we built models for use in discriminating between the species, given a suite of leaf and fruit traits. We confirmed that the two species can be discriminated effectively using fruit characters, notably fruit volume and seed number. Several leaf traits, such as length-to-width ratio and leaf apex length can also discriminate between the species, but without the same predictive reliability of fruit traits. In addition, we determined that at leaf out in the spring the leaves of the two species were folded differently in the bud allowing them to be successfully discriminated in the early spring. Land managers could use this information to differentiate between the two species in the field and thereby control for the invasiveC. orbiculatus, while preserving remaining populations of C. scandens.

  1. Genomic basis of the differences between cider and dessert apple varieties

    PubMed Central

    Leforestier, Diane; Ravon, Elisa; Muranty, Hélène; Cornille, Amandine; Lemaire, Christophe; Giraud, Tatiana; Durel, Charles-Eric; Branca, Antoine

    2015-01-01

    Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds. PMID:26240603

  2. A fruit quality gene map of Prunus

    PubMed Central

    2009-01-01

    Background Prunus fruit development, growth, ripening, and senescence includes major biochemical and sensory changes in texture, color, and flavor. The genetic dissection of these complex processes has important applications in crop improvement, to facilitate maximizing and maintaining stone fruit quality from production and processing through to marketing and consumption. Here we present an integrated fruit quality gene map of Prunus containing 133 genes putatively involved in the determination of fruit texture, pigmentation, flavor, and chilling injury resistance. Results A genetic linkage map of 211 markers was constructed for an intraspecific peach (Prunus persica) progeny population, Pop-DG, derived from a canning peach cultivar 'Dr. Davis' and a fresh market cultivar 'Georgia Belle'. The Pop-DG map covered 818 cM of the peach genome and included three morphological markers, 11 ripening candidate genes, 13 cold-responsive genes, 21 novel EST-SSRs from the ChillPeach database, 58 previously reported SSRs, 40 RAFs, 23 SRAPs, 14 IMAs, and 28 accessory markers from candidate gene amplification. The Pop-DG map was co-linear with the Prunus reference T × E map, with 39 SSR markers in common to align the maps. A further 158 markers were bin-mapped to the reference map: 59 ripening candidate genes, 50 cold-responsive genes, and 50 novel EST-SSRs from ChillPeach, with deduced locations in Pop-DG via comparative mapping. Several candidate genes and EST-SSRs co-located with previously reported major trait loci and quantitative trait loci for chilling injury symptoms in Pop-DG. Conclusion The candidate gene approach combined with bin-mapping and availability of a community-recognized reference genetic map provides an efficient means of locating genes of interest in a target genome. We highlight the co-localization of fruit quality candidate genes with previously reported fruit quality QTLs. The fruit quality gene map developed here is a valuable tool for dissecting the genetic architecture of fruit quality traits in Prunus crops. PMID:19995417

  3. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor

    USDA-ARS?s Scientific Manuscript database

    The spine and skin colors on fruits are two important fruit quality traits in cucumber for variety improvement. In this study, we investigated the inheritance of spine and mature fruit colors with segregation populations developed from the cross between two inbred lines WI7200 (black spine and orang...

  4. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits

    PubMed Central

    Chakrabarti, Manohar; Liu, Xiaoxi; Wang, Yanping; Ramos, Alexis

    2017-01-01

    Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato’s market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors. PMID:28817560

  5. Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria×ananassa) breeding populations using pedigree-based QTL analysis

    PubMed Central

    Verma, Sujeet; Zurn, Jason D; Salinas, Natalia; Mathey, Megan M; Denoyes, Beatrice; Hancock, James F; Finn, Chad E; Bassil, Nahla V; Whitaker, Vance M

    2017-01-01

    The cultivated strawberry (Fragaria×ananassa) is consumed worldwide for its flavor and nutritional benefits. Genetic analysis of commercially important traits in strawberry are important for the development of breeding methods and tools for this species. Although several quantitative trait loci (QTL) have been previously detected for fruit quality and flowering traits using low-density genetic maps, clarity on the sub-genomic locations of these QTLs was missing. Recent discoveries in allo-octoploid strawberry genomics led to the development of the IStraw90 single-nucleotide polymorphism (SNP) array, enabling high-density genetic maps and finer resolution QTL analysis. In this study, breeder-specified traits were evaluated in the Eastern (Michigan) and Western (Oregon) United States for a common set of breeding populations during 2 years. Several QTLs were validated for soluble solids content (SSC), fruit weight (FWT), pH and titratable acidity (TA) using a pedigree-based QTL analysis approach. For fruit quality, a QTL for SSC on linkage group (LG) 6A, a QTL for FWT on LG 2BII, a QTL for pH on LG 4CII and two QTLs for TA on LGs 2A and 5B were detected. In addition, a large-effect QTL for flowering was detected at the distal end of LG 4A, coinciding with the FaPFRU locus. Marker haplotype analysis in the FaPFRU region indicated that the homozygous recessive genotype was highly predictive of seasonal flowering. SNP probes in the FaPFRU region may help facilitate marker-assisted selection for this trait. PMID:29138689

  6. Analysis of the MdMYB1 gene sequence and development of new molecular markers related to apple skin color and fruit-bearing traits.

    PubMed

    Yuan, Kejun; Wang, Changjun; Wang, Jianghui; Xin, Li; Zhou, Guangfang; Li, Linguang; Shen, Guangning

    2014-12-01

    MdMYB1, a key transcription factor determining apple skin color, coordinately regulates genes in the anthocyanin pathway. In this study, we analyzed the MdMYB1 gene and its relationship to apple skin color and fruit-bearing traits to better understand this gene and its application to apple breeding. A previously reported MdMYB1 dCAPS marker failed to identify alleles of the MdMYB1 gene in 'Fuji', a very important apple cultivar. In this study, we revealed that the polymorphic site related to the MdMYB1 dCAPS marker is heterozygous in 'Fuji'. In addition, two new polymorphic sites related to apple skin color were identified in the MdMYB1 gene, with two new molecular markers accordingly developed. Testing of these markers in 'Fuji' and its progeny revealed that they could predict apple skin color and identify alleles of the MdMYB1 gene in this cultivar. Most interestingly, the allele MdMYB1-2 in 'Gala' apple and its hybrid plants was found to be related to the fruit-bearing trait, and the molecular marker Mb2 was able to identify the MdMYB1-2 allele. Our study is apparently the first to report a relationship between the MdMYB1 allele and the fruit-bearing trait in apple. More work is needed to determine whether and how the MdMYB1 gene or a gene linked to the MdMYB1-2 allele influences the flowering trait in perennial apple trees, and whether flowering in other plants is influenced by related genes.

  7. Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria×ananassa) breeding populations using pedigree-based QTL analysis.

    PubMed

    Verma, Sujeet; Zurn, Jason D; Salinas, Natalia; Mathey, Megan M; Denoyes, Beatrice; Hancock, James F; Finn, Chad E; Bassil, Nahla V; Whitaker, Vance M

    2017-01-01

    The cultivated strawberry ( Fragaria × ananassa ) is consumed worldwide for its flavor and nutritional benefits. Genetic analysis of commercially important traits in strawberry are important for the development of breeding methods and tools for this species. Although several quantitative trait loci (QTL) have been previously detected for fruit quality and flowering traits using low-density genetic maps, clarity on the sub-genomic locations of these QTLs was missing. Recent discoveries in allo-octoploid strawberry genomics led to the development of the IStraw90 single-nucleotide polymorphism (SNP) array, enabling high-density genetic maps and finer resolution QTL analysis. In this study, breeder-specified traits were evaluated in the Eastern (Michigan) and Western (Oregon) United States for a common set of breeding populations during 2 years. Several QTLs were validated for soluble solids content (SSC), fruit weight (FWT), pH and titratable acidity (TA) using a pedigree-based QTL analysis approach. For fruit quality, a QTL for SSC on linkage group (LG) 6A, a QTL for FWT on LG 2BII, a QTL for pH on LG 4CII and two QTLs for TA on LGs 2A and 5B were detected. In addition, a large-effect QTL for flowering was detected at the distal end of LG 4A, coinciding with the FaPFRU locus. Marker haplotype analysis in the FaPFRU region indicated that the homozygous recessive genotype was highly predictive of seasonal flowering. SNP probes in the FaPFRU region may help facilitate marker-assisted selection for this trait.

  8. Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.).

    PubMed

    Kumar, Satish; Chagné, David; Bink, Marco C A M; Volz, Richard K; Whitworth, Claire; Carlisle, Charmaine

    2012-01-01

    The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2) = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.

  9. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.

    PubMed

    Kakioka, Ryo; Kokita, Tomoyuki; Kumada, Hiroki; Watanabe, Katsutoshi; Okuda, Noboru

    2015-08-01

    Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system. © 2015 John Wiley & Sons Ltd.

  10. An Inquiry-Based Investigation of Modes of Inheritance Using "Flightless" Fruit Flies

    ERIC Educational Resources Information Center

    Chinnici, Joseph P.; Farland, Andrew M.

    2005-01-01

    The various strains of flightless fruit flies that were developed at the Virginia Commonwealth University (VCU) and an exercise that helps students in determining the inheritance pattern in the fruit fly mutant trait are described. The study and the resulting exercise helped the students in scientifically determining the two important aspects of…

  11. Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits

    PubMed Central

    Camarasa, Carole; Sanchez, Isabelle; Brial, Pascale; Bigey, Frédéric; Dequin, Sylvie

    2011-01-01

    The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from “poor-sugar” environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae. PMID:21949874

  12. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Genome wide association mapping for grain shape traits in indica rice.

    PubMed

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  14. Baseline study of morphometric traits of wild Capsicum annuum growing near two biosphere reserves in the Peninsula of Baja California for future conservation management.

    PubMed

    Murillo-Amador, Bernardo; Rueda-Puente, Edgar Omar; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel Víctor; Hernández-Montiel, Luis Guillermo; Nieto-Garibay, Alejandra

    2015-05-10

    Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.

  15. Genetic introgression of ethylene-suppressed, long shelf-life transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on metabolome

    USDA-ARS?s Scientific Manuscript database

    Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated bi...

  16. [Study on sequence characterized amplified region (SCAR) markers of Cornus officinalis].

    PubMed

    Chen, Suiqing; Lu, Xiaolei; Wang, Lili

    2011-05-01

    To establish sequence characterized amplified region markers of Cornus officinalis and provide a scientific basis for molecular identification of C. officinalis. The random primer was screened through RAPD to obtain specific RAPD marker bands. The RAPD marker bands were separated, extracted, cloned and sequenced. Both ends of the sequence of RAPD marker bands were determined. A pair of specific primers was designed for conventional PCR reaction, and SCAR marker was acquired. Four pairs of primers were designed based on the sequence of RAPD marker bands. The DNA of the seven varieties of C. officinalis was amplified by using YST38 and YST43 primer. The results showed that seven varieties of C. officinalis were able to produce a single PCR product. It was an effective way to identify C. officinalis. The varieties with cylindrical and long-pear shape fruits amplified by YST38 showed a specific band, which could be used as the evidence of variety identification. Seven varieties of C. oficinalis were amplified by using primer YST39. But the size of band of the variety with spindly shape fruit (35,0400 bp) was about 300 bp, which was shorter than those of the variety with the other shape fruits of C. officinalis (650-700 bp). The variety with the spindly shape fruit could be identified through this difference. The primer YST92 could produce a fragment from 600-700 bp in the varieties with cylindrical and long-pear shape fruits, a fragment from 200-300 bp in the varieties with oval and short-cylindrical shape fruits and had no fragment in the varieties with long cylindrical, elliptic and short-pear shape fruits, which could be used to select the different shapes of C. officinalis. SCAR mark is established and can be used as the basis for breeding and distinguishing the verieties of C. officinalis.

  17. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  18. A cytochrome P450 regulates a domestication trait in cultivated tomato

    PubMed Central

    Chakrabarti, Manohar; Zhang, Na; Sauvage, Christopher; Muños, Stéphane; Blanca, Jose; Cañizares, Joaquin; Diez, Maria Jose; Schneider, Rhiannon; Mazourek, Michael; McClead, Jammi; Causse, Mathilde; van der Knaap, Esther

    2013-01-01

    Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops. PMID:24082112

  19. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    PubMed

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  20. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    PubMed Central

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241

  1. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions.

    PubMed

    Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2015-09-01

    Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.

  2. Complex implications around a simple trait: ecological context determines the fecundity effects of corolla marcescence.

    PubMed

    Herrera, Carlos M

    2011-05-01

    Post-anthesis functionality of persistent perianth parts has rarely been investigated, but available evidence suggests that perianth persistence may not always have an adaptive value. Given the high occurrence of the trait, that it may sometimes be maladaptive is an intriguing possibility and deserves exploration. This paper tests the hypothesis that the fitness value of corolla persistence after anthesis depends on ecological context, specifically the abundance of fruit predators and pollinators. The study was conducted on Narcissus longispathus, a species in which corolla marcescence is apparently maladaptive because withered corollas provide a shelter for fruit-predatory lepidopteran larvae. By experimentally manipulating corolla persistence, presence of fruit predators, and pollination, I tested whether variation in ecological scenario led to concomitant variation in the sign and magnitude of the effects of corolla marcescence on fecundity. Persistent corollas were detrimental to fecundity when plants were exposed to larvae, but not when larvae were excluded. Pollination and herbivory had nonadditive effects on the fecundity consequences of corolla marcescence, the strongest detrimental effects of corolla persistence occurring for the "exposed to larvae + supplementary pollination" treatment combination. The hypothesis that ecological context is a major determinant of the fitness value of corolla marcescence was supported. In N. longispathus, corolla marcescence will be a maladaptive trait in situations in which pollinators and fruit predators are simultaneously abundant, but will be a neutral character in the absence of fruit predators, irrespective of pollinator service.

  3. Children and eating. Personality and gender are associated with obesogenic food consumption and overweight in 6- to 12-year-olds.

    PubMed

    Vollrath, Margarete E; Hampson, Sarah E; Júlíusson, Pétur B

    2012-06-01

    The role of children's personality traits in the consumption of potentially obesogenic foods was investigated in a sample of Norwegian children aged 6-12 years (N=327, 170 boys, 157 girls). Mothers rated their child's personality on the traits of the Five Factor Model (i.e., extraversion, benevolence, conscientiousness, neuroticism, and imagination). Mothers also completed a food frequency questionnaire assessing their child's consumption of sweet drinks, sweet foods, and fruit and vegetables, and reported their child's height and weight. Controlling for age and mothers' education, boys and girls who were less benevolent consumed more sweet drinks, and girls who were less conscientious and more neurotic consumed more sweet drinks. Boys and girls who were more benevolent and imaginative consumed more fruits and vegetables, and boys who were more extraverted, more conscientious, and less neurotic consumed more fruits and vegetables. Controlling for maternal education, boys and girls who were less extraverted, and girls who were less benevolent, less conscientious, and more neurotic were more likely to be overweight or obese. These findings suggest that children's personality traits play an important yet understudied role in their diet. Further investigation of mechanisms that relate child traits to obesogenic eating and overweight would be valuable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The table grape 'Victoria' with a long shaped berry: a potential mutation with attractive characteristics for consumers.

    PubMed

    Ferrara, Giuseppe; Gallotta, Alessandra; Pacucci, Carmela; Matarrese, Angela Maria Stella; Mazzeo, Andrea; Giancaspro, Angelica; Gadaleta, Agata; Piazzolla, Francesca; Colelli, Giancarlo

    2017-12-01

    Puglia is the most important region in Italy for table grape production. Since consumers look for new products, the number of table grape varieties has greatly increased in recent years. In a survey in the Puglia region, we identified several years ago a potential mutation of the cv. Victoria. We described this accession in comparison with the standard Victoria for some amphelographic traits. All the characteristics were very similar to the standard Victoria except for the berry shape, which was significantly more elongated. Moreover, the berry of the mutated Victoria showed higher firmness, lightness and chroma than the standard one, with a more intense yellow colour of the skin (appreciated by consumers). The molecular characterisation with 25 SSR markers showed that normal and mutant Victoria were genetically identical at all the analysed loci, thus suggesting that the two accessions could be considered as clones with the difference in berry shape probably due to a somatic mutation. This mutation of the cv. Victoria may have interesting perspective for the market since consumers are always attracted by different shape and colour of the fruits (consumers buy with eyes). This accession can be an alternative clone of the already known standard Victoria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus.

    PubMed

    Chapman, Natalie H; Bonnet, Julien; Grivet, Laurent; Lynn, James; Graham, Neil; Smith, Rebecca; Sun, Guiping; Walley, Peter G; Poole, Mervin; Causse, Mathilde; King, Graham J; Baxter, Charles; Seymour, Graham B

    2012-08-01

    Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Solanum pennellii interspecific introgression lines (ILs) and fine-mapped in a population consisting of 7,500 F2 and F3 lines from IL 2-3 and IL 2-4. This firmness QTL contained five distinct subpeaks, Fir(s.p.)QTL2.1 to Fir(s.p.)QTL2.5, and an effect on a distal region of IL 2-4 that was nonoverlapping with IL 2-3. All these effects were located within an 8.6-Mb region. Using genetic markers, each subpeak within this combinatorial locus was mapped to a physical location within the genome, and an ethylene response factor (ERF) underlying Fir(s.p.)QTL2.2 and a region containing three pectin methylesterase (PME) genes underlying Fir(s.p.)QTL2.5 were nominated as QTL candidate genes. Statistical models used to explain the observed variability between lines indicated that these candidates and the nonoverlapping portion of IL 2-4 were sufficient to account for the majority of the fruit firmness effects. Quantitative reverse transcription-polymerase chain reaction was used to quantify the expression of each candidate gene. ERF showed increased expression associated with soft fruit texture in the mapping population. In contrast, PME expression was tightly linked with firm fruit texture. Analysis of a range of recombinant lines revealed evidence for an epistatic interaction that was associated with this combinatorial locus.

  6. Dynamic changes in the date palm fruit proteome during development and ripening

    PubMed Central

    Marondedze, Claudius; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    Date palm (Phoenix dactylifera) is an economically important fruit tree in the Middle East and North Africa and is characterized by large cultivar diversity, making it a good model for studies on fruit development and other important traits. Here in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0.05). The identified proteins were classified into 14 functional categories. The categories with the most proteins were ‘disease and defense’ (16.5%) and ‘metabolism’ (15.4%). Twenty-nine proteins have not previously been identified in other fleshy fruits and 64 showed contrasting expression patterns in other fruits. Abundance of most proteins with a role in abiotic stress responses increased during ripening with the exception of heat shock proteins. Proteins with a role in anthocyanin biosynthesis, glycolysis, tricarboxylic acid cycle and cell wall degradation were upregulated particularly from the onset of ripening and during ripening. In contrast, expression of pentose phosphate- and photosynthesis-related proteins decreased during fruit maturation. Although date palm is considered a climacteric species, the analysis revealed downregulation of two enzymes involved in ethylene biosynthesis, suggesting an ethylene-independent ripening of ‘Barhi’ fruits. In summary, this proteomics study provides insights into physiological processes during date fruit development and ripening at the systems level and offers a reference proteome for the study of regulatory mechanisms that can inform molecular and biotechnological approaches to further improvements of horticultural traits including fruit quality and yield. PMID:26504545

  7. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    PubMed

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  8. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    PubMed Central

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  9. A novel 3D imaging system for strawberry phenotyping.

    PubMed

    He, Joe Q; Harrison, Richard J; Li, Bo

    2017-01-01

    Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.

  10. Critical thickness ratio for buckled and wrinkled fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Dai, Hui-Hui; Liu, Yang

    2014-11-01

    This work aims at establishing the geometrical constraint for buckled and wrinkled shapes by modeling a fruit/vegetable with exocarp and sarcocarp as a hyperelastic layer-substrate structure subjected to uniaxial compression. A careful analysis on the derived bifurcation condition leads to the finding of a critical thickness ratio which separates the buckling and wrinkling modes, and remarkably, which is independent of the material stiffnesses. More specifically, it is found that if the thickness ratio is smaller than this critical value a fruit/vegetable should be in a buckled shape (under a sufficient stress); if a fruit/vegetable is in a wrinkled shape the thickness ratio is always larger than this critical value. To verify the theoretical prediction, we consider four types of buckled fruits/vegetables and four types of wrinkled fruits/vegetables with three samples in each type. The geometrical parameters for the 24 samples are measured and it is found that indeed all the data fall into the theoretically predicted buckling or wrinkling domains.

  11. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    PubMed Central

    Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822

  12. Carotenoid metabolism and regulation in horticultural crops

    USDA-ARS?s Scientific Manuscript database

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  13. Trait-specific processes of convergence and conservatism shape ecomorphological evolution in ground-dwelling squirrels.

    PubMed

    McLean, Bryan S; Helgen, Kristofer M; Goodwin, H Thomas; Cook, Joseph A

    2018-03-01

    Our understanding of mechanisms operating over deep timescales to shape phenotypic diversity often hinges on linking variation in one or few trait(s) to specific evolutionary processes. When distinct processes are capable of similar phenotypic signatures, however, identifying these drivers is difficult. We explored ecomorphological evolution across a radiation of ground-dwelling squirrels whose history includes convergence and constraint, two processes that can yield similar signatures of standing phenotypic diversity. Using four ecologically relevant trait datasets (body size, cranial, mandibular, and molariform tooth shape), we compared and contrasted variation, covariation, and disparity patterns in a new phylogenetic framework. Strong correlations existed between body size and two skull traits (allometry) and among skull traits themselves (integration). Inferred evolutionary modes were also concordant across traits (Ornstein-Uhlenbeck with two adaptive regimes). However, despite these broad similarities, we found divergent dynamics on the macroevolutionary landscape, with phenotypic disparity being differentially shaped by convergence and conservatism. Such among-trait heterogeneity in process (but not always pattern) reiterates the mosaic nature of morphological evolution, and suggests ground squirrel evolution is poorly captured by single process descriptors. Our results also highlight how use of single traits can bias macroevolutionary inference, affirming the importance of broader trait-bases in understanding phenotypic evolutionary dynamics. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior alleles in breeding programs. In addition, this study presents novel candidates that might control enzymatic tissue discoloration and tuber bruising. Their validation and characterization will increase the knowledge about the underlying biological processes. PMID:21208436

  15. Yield Performance of six lychee cultivars grown at two locations in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The globalization of the economy, increased ethnic diversity, and a greater demand for healthy and more diverse food production have increased the demand for tropical fruits. There is a lack of formal experimentation to determine yield performance and fruit quality traits of lychee (Litchi chinensi...

  16. Fruit quality traits of ten California-grown pomegranate cultivars harvested over three months

    USDA-ARS?s Scientific Manuscript database

    Pomegranate (Punica granatum L.) is a deciduous tree crop. Its fruit are known to have relatively high concentrations of polyphenolic compounds and antioxidant properties. The USDA-ARS pomegranate germplasm collection maintains over 250 cultivars, but most have not been evaluated for optimal harvest...

  17. Association mapping of fruit, seed and disease resistance traits in Theobroma cacao L

    USDA-ARS?s Scientific Manuscript database

    An association mapping approach was employed to find markers for color, size, girth and mass of fruits; seed number and butterfat content; and resistance to black pod and witches’ broom diseases in cacao (Theobroma cacao L.). Ninety-five microsatellites (SSRs) and 775 single nucleotide polymorphisms...

  18. Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L

    USDA-ARS?s Scientific Manuscript database

    Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of domesticated and wild C. annuum to generate 66,960 SNPs using genotyping by sequencing. Principal component analysis and identity by state...

  19. Genotype by environment interactions and combining ability for strawberry families grown in diverse environments

    USDA-ARS?s Scientific Manuscript database

    Ten seedlings from 36 crosses representing eastern and western North American short day and remontant genotypes were evaluated in 2011 and 2012 in California, Michigan, New Hampshire and Oregon, for phenology, flower related traits, plant characteristics, fruit characteristics and fruit chemistry tr...

  20. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon

    USDA-ARS?s Scientific Manuscript database

    The wide phenotypic diversity, in melon fruits, is the result of consumer preferences combined with genotype fitness to the different agro-climatic zones. There is no sufficient information with respect to the extent of genetic divergence, population structure and linkage disequilibrium (LD) in mel...

  1. Improving fruit quality and phytochemical content through better nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  2. Magnitude of genotype x environment interactions affecting tomato fruit quality

    USDA-ARS?s Scientific Manuscript database

    There is a growing interest by consumers to purchase fresh tomato with improved quality traits including lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content. Therefore, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitabl...

  3. Development, identification and validation of CAPS marker for SHELL trait which governs dura, pisifera and tenera fruit forms in oil palm (Elaeis guineensis Jacq.)

    PubMed Central

    Babu, B. Kalyana; Mathur, R. K.; Kumar, P. Naveen; Ramajayam, D.; Ravichandran, G.; Venu, M. V. B.; Babu, S. Sparjan

    2017-01-01

    The oil palm fruit forms (dura, pisifera and tenera) governed by the shell thickness gene (Sh) plays a major role in identification of fruit type and also influences palm oil yield. Identification of desired fruit type is a major asset to the breeders and oil palm workers for applications in breeding, seed certification and to reduce time, space and money spent on identification of fruit form. In the present study, we developed Sh gene specific primer pairs and bulk segregant analysis was done using 300 genomic and 8 genic SSR markers. We identified one cleaved amplified polymorphic site (CAPS) marker for differentiation of oil palm fruit type which produced two alleles (280 and 250bp) in dura genotypes, three alleles in tenera genotypes (550, 280, and 250bp) and one allele in pisifera genotypes (550bp). The shell allele sequencing results showed that two SNPs were present, of which SNP2 contributed for variation of fruit forms. The nucleotide ‘A’ was present in only dura genotypes, where as ‘T’ was present only in pisifera genotypes, which in turn led to the change of amino acid lysine to aspargine. The identified CAPS marker was validated on 300 dura, 25 pisifera and 80 tenera genotypes, 80 dura/ pisifera cross progenies and 60 lines of tenera/ tenera cross progeny. Association mapping of marker data with phenotypic data of eight oil yield related traits resulted in identification of seven significant QTLs by GLM approach, four by MLM approach at a significant threshold (P) level of 0.001. Significant QTLs were identified for fruit to bunch and oil to bunch traits, which explained R2 of 12.9% and 11.5% respectively. The CAPS marker used in the present study facilitate selection and timely distribution of desirable high yielding tenera sprouts to the farmers instead of waiting for 4–5 years. This saves a lot of land, time and money which will be a major breakthrough to the oil palm community. PMID:28192462

  4. Control of pome and stone fruit virus diseases.

    PubMed

    Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella

    2015-01-01

    Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed. © 2015 Elsevier Inc. All rights reserved.

  5. Microbial terroir for wine grapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, J. A.; van der Lelie, D.; Zarraonaindia, I.

    2013-12-05

    The viticulture industry has been selectively growing vine cultivars with different traits (grape size, shape, color, flavor, yield of fruit, and so forth) for millennia, and small variations in soil composition, water management, climate, and the aspect of vineyards have long been associated with shifts in these traits. As such, many different clonal varieties of vines exist, even within given grape varieties, such as merlot, pinot noir, and chardonnay. The commensal microbial flora that coexists with the plant may be one of the key factors that influence these traits. To date, the role of microbes has been largely ignored, outsidemore » of microbial pathogens, mainly because the technologies did not exist to allow us to look in any real depth or breadth at the community structure of the multitudes of bacterial and fungal species associated with each plant. In PNAS, Bokulich et al. (1) used next-generation sequencing of 16S rRNA and internal transcribed spacer ribosomal sequence to determine the relative abundances of bacteria and fungi, respectively, from grape must (freshly pressed grape juice, containing the skins and seeds) from plants in eight vineyards representing four of the major wine growing regions in California. The authors show that the microbiomes (bacterial and fungal taxonomic structure) associated with this early fermentation stage show defined biogeography, illustrating that different wine-growing regions maintain different microbial communities, with some influences from the grape variety and the year of production.« less

  6. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. QTLs detected for individual sugars and soluble solids content in apple

    USDA-ARS?s Scientific Manuscript database

    Sweetness is one of the most important fruit quality traits in breeding programs, determining the overall quality and flavor-perception of apples. Selecting for this trait using conventional breeding methods is challenging due to the complexity of its genetic control. In order to improve the efficie...

  8. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  9. Sugars in peach fruit: a breeding perspective

    PubMed Central

    Cirilli, Marco; Bassi, Daniele; Ciacciulli, Angelo

    2016-01-01

    The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in ‘omics’ sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders. PMID:26816618

  10. Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids.

    PubMed

    Huda, Mohammed K; Wilcock, Christopher C

    2008-01-01

    We investigated the relationship between habit, population size, floral traits and natural fruit set levels of 23 tropical orchid species of south-east Bangladesh. We showed that epiphytic orchids had lower fruit set levels than terrestrial species and that habit explained much of the variation in floral traits among the orchids. We compared our results with data from 76 other species occurring in the study area and hypothesize that a suite of floral and population characteristics present in tropical orchids combine in epiphytes to reduce their reproductive success. Characteristics which, in addition to their habit, are associated with low reproductive success are small population size, small inflorescences, non-sectile pollinia and self-incompatibility. Several of these characteristics were phylogenetically conserved and we predict that epiphytes might therefore generally have lower fruit set levels than recorded in terrestrial species. Nectar rewards are uncommon in tropical orchids and nectarless species have displays of larger flowers, which may represent an adaptation to increase pollinator attraction, although other rewards such as oils, waxes and pseudo pollen may replace nectar. We suggest that, like many temperate orchids, a high proportion of tropical orchids may lack floral rewards and be pollinated by deceit.

  11. Genetic Diversity, Population Structure, and Resistance to Phytophthora capsici of a Worldwide Collection of Eggplant Germplasm

    PubMed Central

    Naegele, Rachel P.; Boyle, Samantha; Quesada-Ocampo, Lina M.; Hausbeck, Mary K.

    2014-01-01

    Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance. PMID:24819601

  12. Anthropogenic fire drives the evolution of seed traits

    PubMed Central

    Gómez-González, Susana; Torres-Díaz, Cristian; Bustos-Schindler, Carlos; Gianoli, Ernesto

    2011-01-01

    Fire is a major disturbance affecting ecosystems worldwide. Phylogenetic studies have shown that the evolution of seed persistence (fire resistance) is associated with fire frequency or severity. However, the existence of specific seed traits resulting from natural selection mediated by fire remains a key question in plant evolution. We evaluated the role of fire in the evolution of seed traits from a microevolutionary perspective, using as a study system a native forb from the Chilean matorral, where fire is a novel, anthropogenic disturbance. We show that anthropogenic fires are shaping the evolution of seed traits such as pubescence and shape. Among-population variation in seed pubescence, shape, and pericarp thickness was strongly associated with fire frequency, and within a population, fire selected those plants with more pubescent seeds, thicker pericarps, and less rounded seeds. Seed pubescence and shape were shown to be heritable traits. Our findings provide insights into the understanding of the evolution of seed traits in fire-prone environments and demonstrate that human-made fires can be driving evolutionary changes in plant species from ecosystems where fires do not occur naturally. PMID:22065739

  13. Anthropogenic fire drives the evolution of seed traits.

    PubMed

    Gómez-González, Susana; Torres-Díaz, Cristian; Bustos-Schindler, Carlos; Gianoli, Ernesto

    2011-11-15

    Fire is a major disturbance affecting ecosystems worldwide. Phylogenetic studies have shown that the evolution of seed persistence (fire resistance) is associated with fire frequency or severity. However, the existence of specific seed traits resulting from natural selection mediated by fire remains a key question in plant evolution. We evaluated the role of fire in the evolution of seed traits from a microevolutionary perspective, using as a study system a native forb from the Chilean matorral, where fire is a novel, anthropogenic disturbance. We show that anthropogenic fires are shaping the evolution of seed traits such as pubescence and shape. Among-population variation in seed pubescence, shape, and pericarp thickness was strongly associated with fire frequency, and within a population, fire selected those plants with more pubescent seeds, thicker pericarps, and less rounded seeds. Seed pubescence and shape were shown to be heritable traits. Our findings provide insights into the understanding of the evolution of seed traits in fire-prone environments and demonstrate that human-made fires can be driving evolutionary changes in plant species from ecosystems where fires do not occur naturally.

  14. Trait-fitness relationships determine how trade-off shapes affect species coexistence.

    PubMed

    Ehrlich, Elias; Becks, Lutz; Gaedke, Ursula

    2017-12-01

    Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness relationships. © 2017 by the Ecological Society of America.

  15. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development

    PubMed Central

    Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong

    2015-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides novel insights into watermelon fruit quality and ripening biology. Furthermore, the comparative expression profile data we developed provides a valuable resource to accelerate functional studies in watermelon and facilitate watermelon crop improvement. PMID:26079257

  16. Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina).

    PubMed

    Liu, Tian-Jia; Li, Yong-Ping; Zhou, Jing-Jing; Hu, Chun-Gen; Zhang, Jin-Zhi

    2018-03-01

    The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing. Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene-phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.

  17. The effects of planting methods and head pruning on seed yield and yield components of medicinal pumpkin (Cucurbita pepo subsp. Pepo convar. Pepo var. styriaca) at low temperature areas.

    PubMed

    Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D

    2009-03-15

    This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.

  18. California avocados in Florida? Finding the perfect avocado for production in East-Central Florida

    USDA-ARS?s Scientific Manuscript database

    Avocado (Persea americana Mill.) is a high-value fruit where most U.S. consumption is supplied using imported product. Cultivars with good fruit quality and horticultural traits may provide a useful alternative crop in east-central Florida and possibly in other locations throughout the state. A port...

  19. Novel and recently evolved miRNA clusters regulate expansive F-box gene networks through phasiRNAs in wild diploid strawberry

    USDA-ARS?s Scientific Manuscript database

    The wild strawberry, Fragaria vesca, has recently emerged as an excellent model for investigating flower and fruit traits in economically important fruit crops. Its history of physiological studies combined with sequenced genome and a full complement of molecular genetic tools facilitate investigat...

  20. Selection of trait combinations through bee and fly visitation to flowers of Polemonium foliosissimum.

    PubMed

    Campbell, D R; Forster, M; Bischoff, M

    2014-02-01

    Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator-mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  1. Seed size, fecundity and postfire regeneration strategy are interdependent in Hakea.

    PubMed

    El-ahmir, Sh-hoob Mohamed; Lim, Sim Lin; Lamont, Byron B; He, Tianhua

    2015-01-01

    Seed size is a key functional trait that affects plant fitness at the seedling stage and may vary greatly with species fruit size, growth form and fecundity. Using structural equation modelling (SEM) and correlated trait evolution analysis, we investigated the interaction network between seed size and fecundity, postfire regeneration strategy, fruit size, plant height and serotiny (on-plant seed storage) among 82 species of the woody shrub genus, Hakea, with a wide spectrum of seed sizes (2-500 mg). Seed size is negatively correlated with fecundity, while fire-killed species (nonsprouters) produce more seeds than resprouters though they are of similar size. Seed size is unrelated to plant height and level of serotiny while it scales allometrically with fruit size. A strong phylogenetic signal in seed size revealed phylogenetic constraints on seed size variation in Hakea. Our analyses suggest a causal relationship between seed size, fecundity and postfire regeneration strategy in Hakea. These results demonstrate that fruit size, fecundity and evolutionary history have had most control over seed size variation among Hakea species.

  2. Seed Size, Fecundity and Postfire Regeneration Strategy Are Interdependent in Hakea

    PubMed Central

    El-ahmir, Sh-hoob Mohamed; Lim, Sim Lin; Lamont, Byron B.; He, Tianhua

    2015-01-01

    Seed size is a key functional trait that affects plant fitness at the seedling stage and may vary greatly with species fruit size, growth form and fecundity. Using structural equation modelling (SEM) and correlated trait evolution analysis, we investigated the interaction network between seed size and fecundity, postfire regeneration strategy, fruit size, plant height and serotiny (on-plant seed storage) among 82 species of the woody shrub genus, Hakea, with a wide spectrum of seed sizes (2–500 mg). Seed size is negatively correlated with fecundity, while fire-killed species (nonsprouters) produce more seeds than resprouters though they are of similar size. Seed size is unrelated to plant height and level of serotiny while it scales allometrically with fruit size. A strong phylogenetic signal in seed size revealed phylogenetic constraints on seed size variation in Hakea. Our analyses suggest a causal relationship between seed size, fecundity and postfire regeneration strategy in Hakea. These results demonstrate that fruit size, fecundity and evolutionary history have had most control over seed size variation among Hakea species. PMID:26035821

  3. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  4. Definition of architectural ideotypes for good yield capacity in Coffea canephora.

    PubMed

    Cilas, Christian; Bar-Hen, Avner; Montagnon, Christophe; Godin, Christophe

    2006-03-01

    Yield capacity is a target trait for selection of agronomically desirable lines; it is preferred to simple yields recorded over different harvests. Yield capacity is derived using certain architectural parameters used to measure the components of yield capacity. Observation protocols for describing architecture and yield capacity were applied to six clones of coffee trees (Coffea canephora) in a comparative trial. The observations were used to establish architectural databases, which were explored using AMAPmod, a software dedicated to the analyses of plant architecture data. The traits extracted from the database were used to identify architectural parameters for predicting the yield of the plant material studied. Architectural traits are highly heritable and some display strong genetic correlations with cumulated yield. In particular, the proportion of fruiting nodes at plagiotropic level 15 counting from the top of the tree proved to be a good predictor of yield over two fruiting cycles.

  5. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis1[OPEN

    PubMed Central

    Petit, Johann; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Fich, Eric A.; Joubès, Jérôme; Rothan, Christophe

    2016-01-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. PMID:27208295

  6. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture.

    PubMed

    Farneti, Brian; Di Guardo, Mario; Khomenko, Iuliia; Cappellin, Luca; Biasioli, Franco; Velasco, Riccardo; Costa, Fabrizio

    2017-03-01

    Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Social selection is a powerful explanation for prosociality.

    PubMed

    Nesse, Randolph M

    2016-01-01

    Cultural group selection helps explain human cooperation, but social selection offers a complementary, more powerful explanation. Just as sexual selection shapes extreme traits that increase matings, social selection shapes extreme traits that make individuals preferred social partners. Self-interested partner choices create strong and possibly runaway selection for prosocial traits, without requiring group selection, kin selection, or reciprocity.

  9. Small and remarkable

    PubMed Central

    Campos, Marcelo Lattarulo; Carvalho, Rogério Falleiros; Benedito, Vagner Augusto

    2010-01-01

    Hormones are molecules involved in virtually every step of plant development and studies in this field have been shaping plant physiology for more than a century. The model plant Arabidopsis thaliana, long used as a tool to study plant hormones, lacks significant important developmental traits, such as fleshy climacteric fruit, compound leaf and multicellular trichomes, suggesting the necessity for alternative plant models. An attractive option often used is tomato, a species also of major economic importance, being ideal to bring together basic and applied plant sciences. The tomato Micro-Tom (MT) cultivar makes it possible to combine the direct benefits of studying a crop species with the fast life cycle and small size required for a suitable biological model. However, few obscure questions are constantly addressed to MT, creating a process herein called “MT mystification”. In this work we present evidence clarifying these questions and show the potential of MT, aiming to demystify it. To corroborate our ideas we showed that, by making use of MT, our laboratory demonstrated straightforwardly new hormonal functions and also characterized a novel antagonistic hormonal interaction between jasmonates and brassinosteroids in the formation of anti-herbivory traits in tomato. PMID:20037476

  10. On the Ethnic Origins of African Development: Chiefs and Precolonial Political Centralization

    PubMed Central

    Michalopoulos, Stelios; Papaioannou, Elias

    2015-01-01

    We report on recent findings of a fruitful research agenda that explores the importance of ethnic-specific traits in shaping African development. First, using recent surveys from Sub-Saharan African countries, we document that individuals identify with their ethnic group as often as with the nation pointing to the salience of ethnicity. Second, we focus on the various historical and contemporary functions of tribal leaders (chiefs) and illustrate their influence on various aspects of the economy and the polity. Third, we elaborate on a prominent dimension of ethnicity, that of the degree of complexity of pre-colonial political organization. Building on insights from the African historiography, we review recent works showing a strong association between pre-colonial centralization and contemporary comparative development both across and within countries. We also document that the link between pre-colonial political centralization and regional development -as captured by satellite images of light density at night-is particularly strong in areas outside the vicinity of the capitals, where due to population mixing and the salience of national institutions ethnic traits play a lesser role. Overall, our evidence is supportive to theories and narratives on the presence of a “dual” economic and institutional environment in Africa. PMID:27011760

  11. Genotype and environmental interaction for fruit quality traits in vintage tomato varieties

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum L.) is the second most commonly consumed vegetable after in the world, after potato. There is a growing demand for quality tomato in the market place. Traits such as lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content contribute to the overal...

  12. Assessment of long-term peach evaluation data reveals fruit trait distribution and selection tendencies

    USDA-ARS?s Scientific Manuscript database

    Conventional plant breeding has a long history of success. Although it is often a daunting job, it is still the most common approach used in today’s variety improvement programs. Efficient production of hybrids with potential for release as new varieties with desired traits relies on optimal selecti...

  13. Kin selection and the evolution of plant reproductive traits.

    PubMed

    Bawa, Kamaljit S

    2016-11-16

    Competition among developing seeds and sibling rivalry within multiovulated ovaries can be deleterious for both the maternal parent and the siblings. Increased genetic relatedness of seeds within the ovary may foster kin selection and reduce the deleterious consequences of sibling competition. The pollen parent may also be selected for siring all progeny within a fruit. I propose a series of hypotheses to explain the evolution of a number of reproductive traits in angiosperms in the context of kin selection and sibling rivalry within the ovaries of angiosperms. I present evidence to show that a single-pollen parent, indeed, often sires seeds within multiovulated ovaries. Various types of pollen aggregations and transfer of such pollen masses to the stigmas of flowers by specialized pollinators make this increased genetic relatedness possible. An alternative mode to reduce sibling rivalry may be the reduction of ovule number to one, an evolutionary trend that has independently occurred many times in flowering plants. Finally, I build on previously established correlations to predict two sets of correlations among reproductive traits. In the first case, large showy flowers, transfer of pollen en masse by specialized pollinators, and multiovulated ovaries and multisided fruits seem to be correlated. In the second case, the previously established correlations among small and inconspicuous flowers, pollination by wind, water or generalist insects, flowers and fruits with few or single ovules and seeds, respectively, may also include monoecy or dioecy. Although correlations among many of these traits have been established in the past, I invoke kin selection and sibling competition to explain the evolution of correlated traits as two distinct evolutionary pathways in angiosperms. © 2016 The Authors.

  14. Kin selection and the evolution of plant reproductive traits

    PubMed Central

    Bawa, Kamaljit S.

    2016-01-01

    Competition among developing seeds and sibling rivalry within multiovulated ovaries can be deleterious for both the maternal parent and the siblings. Increased genetic relatedness of seeds within the ovary may foster kin selection and reduce the deleterious consequences of sibling competition. The pollen parent may also be selected for siring all progeny within a fruit. I propose a series of hypotheses to explain the evolution of a number of reproductive traits in angiosperms in the context of kin selection and sibling rivalry within the ovaries of angiosperms. I present evidence to show that a single-pollen parent, indeed, often sires seeds within multiovulated ovaries. Various types of pollen aggregations and transfer of such pollen masses to the stigmas of flowers by specialized pollinators make this increased genetic relatedness possible. An alternative mode to reduce sibling rivalry may be the reduction of ovule number to one, an evolutionary trend that has independently occurred many times in flowering plants. Finally, I build on previously established correlations to predict two sets of correlations among reproductive traits. In the first case, large showy flowers, transfer of pollen en masse by specialized pollinators, and multiovulated ovaries and multisided fruits seem to be correlated. In the second case, the previously established correlations among small and inconspicuous flowers, pollination by wind, water or generalist insects, flowers and fruits with few or single ovules and seeds, respectively, may also include monoecy or dioecy. Although correlations among many of these traits have been established in the past, I invoke kin selection and sibling competition to explain the evolution of correlated traits as two distinct evolutionary pathways in angiosperms. PMID:27852800

  15. A test of phenotypic selection on petal form in the wild carnation, Dianthus inoxianus.

    PubMed

    Herrera, J; Balao, F

    2015-11-01

    Floral phenotypes are considered a product of pollinator-mediated selection, which also has the side effect of decreasing floral variation within species. Correlates of flower visibility and function were studied in a carnation species (Dianthus inoxianus), which has crepuscular anthesis and scent-based pollination by the hawkmoth Hyles livornica. We also assessed constancy of flower form in nature and in cultivation and, using fruit set as an estimate of plant relative fitness, tested whether the main pollinator exerted phenotypic selection on floral traits. Petal claw, which is roughly equivalent to the average depth at which an insect's proboscis must be inserted to reach nectar, was remarkably constant among wild plants (coefficient of variation 8%). In contrast, the area of the visible part of the petal, and the intensity of a coloured dot pattern on the petal was very variable (respectively CV = 34% and 102%). Cultivation in a common environment revealed significant variation among genotypes as regards petal area, degree of laciniation and extension of the dot pattern, but not petal claw length, which remained steady. Petal area, shape and colour did not affect relative fitness during the year of study, but plants with intermediate petal claws (i.e. floral tubes) set significantly more fruit. Results are compatible with low response of the main pollinator to variation in visual traits (petal area, laciniation, colour) and high responsiveness to variation in other aspects (tube length). Inconsistent phenotypic selection by pollinators may add to other causes of floral variation in the genus Dianthus, the causes of which are discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently discovered pollination mutualism

    PubMed Central

    Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang

    2016-01-01

    A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228

  17. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties.

    PubMed

    Saladié, Montserrat; Cañizares, Joaquin; Phillips, Michael A; Rodriguez-Concepcion, Manuel; Larrigaudière, Christian; Gibon, Yves; Stitt, Mark; Lunn, John Edward; Garcia-Mas, Jordi

    2015-06-09

    In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour.

  18. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect

    PubMed Central

    Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David

    2015-01-01

    Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332

  19. 78 FR 43758 - Kiwifruit Grown in California and Imported Kiwifruit; Relaxation of Minimum Grade Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... shape. Such fruit, if it is wider than it is tall, is considered to be badly misshapen. Identification... the current parameters for misshapen fruit; from ``fruit that is not wider than tall'' to fruit that is a certain percentage wider than it is tall. This alternative would allow for flatter/wider fruit...

  20. Yield and fruit quality traits of rambutan cultivars grafted onto a common rootstock and grown at two locations in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The globalization of the economy, increased ethnic diversity and a greater demand for healthy and more diverse food products have opened a window of opportunity for the commercial production and marketing of tropical fruit, including rambutan (Nephelium lappaceum). There is a lack of formal experim...

  1. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  2. 'HoneySweet' - a transgenic plum pox virus resistant plum - from laboratory and experimental field plots to regulatory approval

    USDA-ARS?s Scientific Manuscript database

    Genetic engineering (GE) has the potential to revolutionize fruit tree breeding. It is an approach that can target specific genetic improvements and allow for the development of novel, useful traits. While GE does not provide a panacea for all of the difficulties associated with fruit tree breedin...

  3. Nutritional, Medicinal and Toxicological Attributes of Star-Fruits (Averrhoa carambola L.): A Review

    PubMed Central

    Muthu, Narmataa; Lee, Su Yin; Phua, Kia Kien; Bhore, Subhash Janardhan

    2016-01-01

    Plants are very complex organisms that produce medicinally important natural products. The Star-fruit producing plant (Averrhoa carambola L.) is a species of woody plant in the family Oxalidaceae native to the Philippines, Indonesia, Malaysia, Vietnam, India, Bangladesh and Sri Lanka; but, cultivated in many parts of the world. Star-fruits are popular tropical fruits and used commonly in Ayurvedic and Traditional Chinese Medicines (TCM) in India, China, and Brazil to relieve ailments such as chronic headache, fever, cough, gastro-enteritis, diarrhoea, ringworm infections, and skin inflammations. However, this fruit contains high amount of oxalate, which is hazardous for uremic patients, and caramboxin (CBX), which is neurotoxic. The aim of this review is to highlight the nutritional, medicinal and toxicological traits of the star-fruits. PMID:28405126

  4. Nutritional, Medicinal and Toxicological Attributes of Star-Fruits (Averrhoa carambola L.): A Review.

    PubMed

    Muthu, Narmataa; Lee, Su Yin; Phua, Kia Kien; Bhore, Subhash Janardhan

    2016-01-01

    Plants are very complex organisms that produce medicinally important natural products. The Star-fruit producing plant (Averrhoa carambola L.) is a species of woody plant in the family Oxalidaceae native to the Philippines, Indonesia, Malaysia, Vietnam, India, Bangladesh and Sri Lanka; but, cultivated in many parts of the world. Star-fruits are popular tropical fruits and used commonly in Ayurvedic and Traditional Chinese Medicines (TCM) in India, China, and Brazil to relieve ailments such as chronic headache, fever, cough, gastro-enteritis, diarrhoea, ringworm infections, and skin inflammations. However, this fruit contains high amount of oxalate, which is hazardous for uremic patients, and caramboxin (CBX), which is neurotoxic. The aim of this review is to highlight the nutritional, medicinal and toxicological traits of the star-fruits.

  5. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.

    PubMed

    Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul

    2017-04-15

    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. GENETIC DIVERSITY OF SOME IRANIAN SWEET CHERRY (PRUNUS AVIUM) CULTIVARS USING MICROSATELLITE MARKERS AND MORPHOLOGICAL TRAITS.

    PubMed

    Farsad, A; Esna-Ashari, M

    2016-01-01

    The aim of this study was to characterize 23 important Iranian sweet cherry (Prunus avium) cultivars collected from different provinces of Iran and 1 foreign cultivar, which was used as control, considered for breeding programs by using 21 microsatellite markers and 27 morphological traits. In sweet cherry (Prunus avium) accessions, leaf, fruit, and stone morphological characters were evaluated during two consecutive years. The study revealed a high variability in the set of evaluated sweet cherry accessions. The majority of important correlations were determined among variables representing fruit and leaf size and variables related to color. Cluster analysis distinguished sweet cherry accessions into two distinct groups. Principal component analysis (PCA) of qualitative and quantitative morphological parameters explained over 86.59% of total variability in the first seven axes. In PCA, leaf traits such as leaf length and width, and fruit traits such as length, width, and weight, and fruit flesh and juice color were predominant in the first two components, indicating that they were useful for the assessment of sweet cherry germplasm characterization. Out of 21 SSR markers, 16 were polymorphic, producing 177 alleles that varied from 4 to 16 alleles (9.35 on average) with a mean heterozygosity value of 0.82 that produced successful amplifications and revealed DNA polymorphisms. Allele size varied from 95 to 290 bp. Cluster analyses showed that the studied sweet cherry genotypes were classified intofive main groups based mainly on their species characteristics and SSR data. In general, our results did not show a clear structuring of genetic variability within the Iranian diffusion area of sweet cherry, so it was not possible to draw any indications on regions of provenance delimitation. The results of this study contribute to a better understanding of sweet cherry genetic variations in Iran, thus making for more efficient programs aimed at preserving biodiversity and more rational planning of the management of reproductive material.

  7. Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits.

    PubMed

    Tranchida-Lombardo, Valentina; Aiese Cigliano, Riccardo; Anzar, Irantzu; Landi, Simone; Palombieri, Samuela; Colantuono, Chiara; Bostan, Hamed; Termolino, Pasquale; Aversano, Riccardo; Batelli, Giorgia; Cammareri, Maria; Carputo, Domenico; Chiusano, Maria Luisa; Conicella, Clara; Consiglio, Federica; D'Agostino, Nunzio; De Palma, Monica; Di Matteo, Antonio; Grandillo, Silvana; Sanseverino, Walter; Tucci, Marina; Grillo, Stefania

    2017-11-14

    Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock

    USDA-ARS?s Scientific Manuscript database

    Background: Citrus has an extended juvenile phase and trees can take 2-20 years to transition to the adult reproductive phase and produce fruit. For citrus variety development this substantially prolongs the time before adult traits, such as fruit yield and quality, can be evaluated. Methods to...

  9. Phenotypic diversity among peach and nectarine (Prunus persica L.) fruit in the national prunus collection at the USDA-ARS, National Clonal Germplasm Repository (NCGR)

    USDA-ARS?s Scientific Manuscript database

    The diversity and relationships of fruit quality traits peach and nectarine (Prunus persica L.) in the National Prunus collection were studied using comprehensive phenotyping methods. The collection was re-propagated in 2013 and planted in 2014 providing a unique opportunity to evaluate an even-aged...

  10. Eggplant fruit composition as affected by the cultivation environment and genetic constitution.

    PubMed

    San José, Raquel; Sánchez-Mata, María-Cortes; Cámara, Montaña; Prohens, Jaime

    2014-10-01

    No comprehensive reports exist on the combined effects of season, cultivation environment and genotype on eggplant (Solanum melongena) composition. We studied proximate composition, carbohydrates, total phenolics and vitamin C of eggplant fruits of three Spanish landraces, three commercial hybrids and three hybrids between landraces cultivated across two environmental conditions (open field, OF; and, greenhouse, GH) for up to four seasons. Season (S) had a larger effect than the genotype (G) for composition traits, except for total phenolics. G × S interaction was generally of low relative magnitude. Orthogonal decomposition of the season effect showed that differences within OF or GH environments were in many instances greater than those between OF and GH. Spanish landraces presented, on average, lower contents of total carbohydrates and starch and higher contents of total vitamin C, ascorbic acid, and total phenolics than commercial hybrids. Hybrids among landraces presented variable levels of heterosis for composition traits. Genotypes grown in the same season cluster together on the graph of multivariate principal components analysis. The cultivation environment has a major role in determining the composition of eggplant fruits. Environmental and genotypic differences can be exploited to obtain high quality eggplant fruits.

  11. Low oxygen treatment prior to cold storage decreases the incidence of bitter pit in 'Golden Reinders' apples.

    PubMed

    Val, Jesús; Fernández, Victoria; López, Paola; Peiró, Jose María; Blanco, Alvaro

    2010-02-01

    The effect of subjecting 'Golden Reinders' apples to a low O(2) pre-treatment (LOT; 1-2% O(2)) was evaluated as a strategy to decrease the rate of bitter pit (BP) incidence after standard cold storage (ST). Immediately after harvest, apples were stored for 10 days at 20 degrees C under low O(2). Thereafter, apples were cold-stored (0-4 degrees C) for 4 months and changes were monitored in terms of BP incidence, fruit quality traits and mineral element concentrations. After 4 months cold storage, LOT apples presented a 2.6-fold decrease in the rate of BP incidence (14%) versus the values obtained for standard cold-stored fruits (37% BP incidence). LOT increased flesh firmness, total soluble solids and titratable acidity as compared to the quality traits determined for cold-stored fruits. Lower cortex Ca and Mg concentrations as compared to ST apples were determined in association with LOT, 2 months after cold storage. Application of a LOT prior to cold storage may be a promising strategy to reduce the incidence of BP and preserve fruit quality, which should be further investigated.

  12. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition.

    PubMed

    Urrutia, María; Rambla, José L; Alexiou, Konstantinos G; Granell, Antonio; Monfort, Amparo

    2017-12-01

    The volatile composition of wild strawberry (Fragaria vesca) fruit differs from that of the cultivated strawberry, having more intense and fruity aromas. Over the last few years, the diploid F. vesca has been recognized as a model species for genetic studies of cultivated strawberry (F. x ananassa), and here a previously developed F. vesca/F. bucharica Near Isogenic Line collection (NIL) was used to explore genetic variability of fruit quality traits. Analysis of fruit volatiles by GC-MS in our NIL collection revealed a complex and highly variable profile. One hundred compounds were unequivocally identified, including esters, aldehydes, ketones, alcohols, terpenoids, furans and lactones. Those in a subset, named key volatile compounds (KVCs), are likely contributors to the special aroma/flavour of wild strawberry. Genetic analysis revealed 50 major quantitative trait loci (QTL) including 14 QTL for KVCs, and one segregating as a dominant monogenetic trait for nerolidol. The most determinant regions affecting QTLs for KVCs, were mapped on LG5 and LG7. New candidate genes for the volatile QTL are proposed, based on differences in gene expression between NILs containing specific fragments of F. bucharica and the F. vesca recurrent genome. A high percentage of these candidate genes/alleles were colocalized within the boundaries of introgressed regions that contain QTLs, appearing to affect volatile metabolite accumulation acting in cis. A NIL collection is a good tool for the genetic dissection of volatile accumulation in wild strawberry fruit and a source of information for genes and alleles which may enhance aroma in cultivated strawberry. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  13. Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea.

    PubMed

    Gijbels, Pieter; Ceulemans, Tobias; Van den Ende, Wim; Honnay, Olivier

    2015-11-01

    Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.

  14. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd (Momordica charantia)

    PubMed Central

    Cui, Junjie; Luo, Shaobo; Niu, Yu; Huang, Rukui; Wen, Qingfang; Su, Jianwen; Miao, Nansheng; He, Weiming; Dong, Zhensheng; Cheng, Jiaowen; Hu, Kailin

    2018-01-01

    Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia) is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD)-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line ‘K44’ and the monoecious line ‘Dali-11.’ This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48%) of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future. PMID:29706980

  15. Genetic Control of Fruit Vitamin C Contents1

    PubMed Central

    Davey, Mark W.; Kenis, Katrien; Keulemans, Johan

    2006-01-01

    An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. PMID:16844833

  16. The effects of achene type and germination time on plant performance in the heterocarpic Anacyclus clavatus (Asteraceae).

    PubMed

    Afonso, Ana; Castro, Sílvia; Loureiro, João; Mota, Lucie; Cerca de Oliveira, José; Torices, Rubén

    2014-05-01

    • In heterocarpy, fruits with different morphologies have been associated with alternative strategies of dispersal, germination, dormancy, and seedling competitive ability. In heterocarpic species, it is common to find fruits with competitive or dispersal syndromes. The competitive advantage of nondispersing fruits has been frequently attributed to their larger size, but recent studies have suggested that this could also be mediated by germination time. The main objective of our study was to investigate which factor, fruit type or germination time, most affects plant performance and, consequently, competitive ability, using the heterocarpic species Anacyclus clavatus• To explore the effects of achene type and germination time on plant performance, we followed an innovative experimental approach including two experiments: one allowing for differences in germination time, and the other evaluating the effect of achene type alone by synchronizing germination time.• A significant effect of germination time on several postdispersal life-history traits was observed: Achenes that germinated earlier produced plants with higher biomass and reproductive effort. When germination time was controlled, no significant differences were observed in any of the traits.• The competitive advantage of achenes with different morphologies was mainly mediated by germination time and not by differences in size or other intrinsic traits. The consequences of these results are discussed in light of the dispersal-competition trade-off. Our experimental approach (i.e., the synchronization of germination time) revealed the importance of manipulative experiments for testing the effects of germination time on plant survival and performance. © 2014 Botanical Society of America, Inc.

  17. An integrated approach for increasing breeding efficiency in apple and peach in Europe.

    PubMed

    Laurens, Francois; Aranzana, Maria José; Arus, Pere; Bassi, Daniele; Bink, Marco; Bonany, Joan; Caprera, Andrea; Corelli-Grappadelli, Luca; Costes, Evelyne; Durel, Charles-Eric; Mauroux, Jehan-Baptiste; Muranty, Hélène; Nazzicari, Nelson; Pascal, Thierry; Patocchi, Andrea; Peil, Andreas; Quilot-Turion, Bénédicte; Rossini, Laura; Stella, Alessandra; Troggio, Michela; Velasco, Riccardo; van de Weg, Eric

    2018-01-01

    Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.

  18. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  19. A novel fruit shape classification method based on multi-scale analysis

    NASA Astrophysics Data System (ADS)

    Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin

    2005-11-01

    Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.

  20. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    NASA Astrophysics Data System (ADS)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  1. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  2. Surface facial modelling and allometry in relation to sexual dimorphism.

    PubMed

    Velemínská, J; Bigoni, L; Krajíček, V; Borský, J; Šmahelová, D; Cagáňová, V; Peterka, M

    2012-04-01

    Sexual dimorphism is responsible for a substantial part of human facial variability, the study of which is essential for many scientific fields ranging from evolution to special biomedical topics. Our aim was to analyse the relationship between size variability and shape facial variability of sexual traits in the young adult Central European population and to construct average surface models of adult males and females. The method of geometric morphometrics allowed not only the identification of dimorphic traits, but also the evaluation of static allometry and the visualisation of sexual facial differences. Facial variability in the studied sample was characterised by a strong relationship between facial size and shape of sexual dimorphic traits. Large size of face was associated with facial elongation and vice versa. Regarding shape sexual dimorphic traits, a wide, vaulted and high forehead in combination with a narrow and gracile lower face were typical for females. Variability in shape dimorphic traits was smaller in females compared to males. For female classification, shape sexual dimorphic traits are more important, while for males the stronger association is with face size. Males generally had a closer inter-orbital distance and a deeper position of the eyes in relation to the facial plane, a larger and wider straight nose and nostrils, and more massive lower face. Using pseudo-colour maps to provide a detailed schematic representation of the geometrical differences between the sexes, we attempted to clarify the reasons underlying the development of such differences. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae.

    PubMed

    Wang, Xing-Chen; Li, Ai-Hua; Dizy, Marta; Ullah, Niamat; Sun, Wei-Xuan; Tao, Yong-Sheng

    2017-08-01

    To improve the aroma profile of Ecolly dry white wine, the simultaneous and sequential inoculations of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae were performed in wine making of this work. The two yeasts were mixed in various ratios for making the mixed inoculum. The amount of volatiles and aroma characteristics were determined the following year. Mixed fermentation improved both the varietal and fermentative aroma compound composition, especially that of (Z)-3-hexene-1-ol, nerol oxide, certain acetates and ethyls group compounds. Citrus, sweet fruit, acid fruit, berry, and floral aroma traits were enhanced by mixed fermentation; however, an animal note was introduced upon using higher amounts of R. mucilaginosa. Aroma traits were regressed with volatiles as observed by the partial least-square regression method. Analysis of correlation coefficients revealed that the aroma traits were the multiple interactions of volatile compounds, with the fermentative volatiles having more impact on aroma than varietal compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multiple Quantitative Trait Loci Influence the Shape of a Male-Specific Genital Structure in Drosophila melanogaster

    PubMed Central

    McNeil, Casey L.; Bain, Clint L.; Macdonald, Stuart J.

    2011-01-01

    The observation that male genitalia diverge more rapidly than other morphological traits during evolution is taxonomically widespread and likely due to some form of sexual selection. One way to elucidate the evolutionary forces acting on these traits is to detail the genetic architecture of variation both within and between species, a program of research that is considerably more tractable in a model system. Drosophila melanogaster and its sibling species, D. simulans, D. mauritiana, and D. sechellia, are morphologically distinguishable only by the shape of the posterior lobe, a male-specific elaboration of the genital arch. We extend earlier studies identifying quantitative trait loci (QTL) responsible for lobe divergence across species and report the first genetic dissection of lobe shape variation within a species. Using an advanced intercross mapping design, we identify three autosomal QTL contributing to the difference in lobe shape between a pair of D. melanogaster inbred lines. The QTL each contribute 4.6–10.7% to shape variation, and two show a significant epistatic interaction. Interestingly, these intraspecific QTL map to the same locations as interspecific lobe QTL, implying some shared genetic control of the trait within and between species. As a first step toward a mechanistic understanding of natural lobe shape variation, we find an association between our QTL data and a set of genes that show sex-biased expression in the developing genital imaginal disc (the precursor of the adult genitalia). These genes are good candidates to harbor naturally segregating polymorphisms contributing to posterior lobe shape. PMID:22384345

  5. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments

    PubMed Central

    Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito

    2016-01-01

    Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557

  6. Shaping the shoot: the relative contribution of cell number and cell shape to variations in internode length between parent and hybrid apple trees.

    PubMed

    Ripetti, V; Escoute, J; Verdeil, J L; Costes, E

    2008-01-01

    Genetic control of plant size and shape is a promising perspective, particularly in fruit trees, in order to select desirable genotypes. A recent study on architectural traits in an apple progeny showed that internode length was a highly heritable character. However, few studies have been devoted to internode cellular patterning in dicotyledonous stems, and the interplay between the two elementary cell processes that contribute to their length, i.e. cell division and elongation, is not fully understood. The present study aimed at unravelling their contributions in the genetic variation of internode length in a selection of F(1) and parent genotypes of apple tree, by exploring the number of cells and cell shape within mature internodes belonging to the main axes. The results highlighted that both the variables were homogeneous in samples collected either along a sagital line or along the pith width, and suggest that cell lengthening was homogeneous during internode development. They allowed the total number of cells to be estimated on the internode scale and opened up new perspectives for simplifying tissue sampling procedures for further investigations. Differences in internode length were observed between the genotypes, in particular between the parents, and partly resulted from a compensation between cell number and cell length. However, genetic variations in internode length primarily involved the number of cells, while cell length was more secondary. These results argue for an interplay between cellular and organismal control of internode shape that may involve the rib meristem.

  7. The genome of black raspberry (Rubus occidentalis).

    PubMed

    VanBuren, Robert; Bryant, Doug; Bushakra, Jill M; Vining, Kelly J; Edger, Patrick P; Rowley, Erik R; Priest, Henry D; Michael, Todd P; Lyons, Eric; Filichkin, Sergei A; Dossett, Michael; Finn, Chad E; Bassil, Nahla V; Mockler, Todd C

    2016-09-01

    Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Identifying haplotypes for flowering and QTLs for fruit quality in the RosBREED Michigan and Oregon strawberry (Fragaria ×ananassa) breeding sets using pedigree-based analysis [abstract

    USDA-ARS?s Scientific Manuscript database

    Strawberry (Fragaria ×ananassa) is consumed for its flavor and health benefits. Over the last two decades, several quantitative trait loci (QTL) analysis studies for consumer traits were conducted using low-density genetic maps. The previous studies utilized low-throughput genotyping methodologies. ...

  9. A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    In cucumber (Cucumis sativus L.), sex determination is controlled primarily by the F (female) and M (monoecy) loci. Homozygous recessive mm plants bear bisexual (perfect) flowers and the fruits are often round shaped. CsACS2 encoding the 1-aminocyclopropane-1-carboxylic acid synthase has been shown ...

  10. Allelic Variation in Paralogs of GDP-l-Galactose Phosphorylase Is a Major Determinant of Vitamin C Concentrations in Apple Fruit1[C][W][OA

    PubMed Central

    Mellidou, Ifigeneia; Chagné, David; Laing, William A.; Keulemans, Johan; Davey, Mark W.

    2012-01-01

    To identify the genetic factors underlying the regulation of fruit vitamin C (l-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-l-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning. PMID:23001142

  11. Differences in Fruit and Vegetable Intake by Race/Ethnicity and by Hispanic Origin and Nativity Among Women in the Special Supplemental Nutrition Program for Women, Infants, and Children, 2015.

    PubMed

    Di Noia, Jennifer; Monica, Dorothy; Cullen, Karen Weber; Pérez-Escamilla, Rafael; Gray, Heewon Lee; Sikorskii, Alla

    2016-08-25

    The objective of this exploratory study was to determine whether fruit and vegetable consumption differed by race/ethnicity, by origin and nativity among Hispanics, and by language preference (as an indicator of acculturation) among foreign-born Hispanics. We recruited 723 women enrolled in the Special Supplemental Nutrition Program for Women, Infants and Children (WIC) and orally administered a questionnaire containing demographic items, validated measures of food security status and social desirability trait, and the Behavioral Risk Factor Surveillance System fruit and vegetable module. Differences in intakes of 100% fruit juice, fruit, cooked or canned beans, and dark green, orange-colored, and other vegetables were assessed by using analysis of covariance with Bonferroni post hoc tests. Analyses were controlled for age, pregnancy status, breastfeeding status, food security status, educational attainment, and social desirability trait. The frequency of vegetable intake differed by race/ethnicity (cooked or canned beans were consumed more often among Hispanic than non-Hispanic black and non-Hispanic white or other participants, orange-colored vegetables were consumed more often among Hispanics than non-Hispanic black participants, and other vegetables were consumed more often among non-Hispanic white or other than among non-Hispanic black and Hispanic participants), origin (other vegetables were consumed more often among Columbian and other Hispanics than Dominican participants) and nativity (orange-colored vegetables were consumed more often among foreign-born than US-born Hispanics). Fruit and vegetable intake did not differ by language preference among foreign-born Hispanics. Differences in fruit and vegetable consumption among WIC participants by race/ethnicity and by Hispanic origin and nativity may have implications for WIC nutrition policies and nutrition education efforts.

  12. Differences in Fruit and Vegetable Intake by Race/Ethnicity and by Hispanic Origin and Nativity Among Women in the Special Supplemental Nutrition Program for Women, Infants, and Children, 2015

    PubMed Central

    Monica, Dorothy; Cullen, Karen Weber; Pérez-Escamilla, Rafael; Gray, Heewon Lee; Sikorskii, Alla

    2016-01-01

    Introduction The objective of this exploratory study was to determine whether fruit and vegetable consumption differed by race/ethnicity, by origin and nativity among Hispanics, and by language preference (as an indicator of acculturation) among foreign-born Hispanics. Methods We recruited 723 women enrolled in the Special Supplemental Nutrition Program for Women, Infants and Children (WIC) and orally administered a questionnaire containing demographic items, validated measures of food security status and social desirability trait, and the Behavioral Risk Factor Surveillance System fruit and vegetable module. Differences in intakes of 100% fruit juice, fruit, cooked or canned beans, and dark green, orange-colored, and other vegetables were assessed by using analysis of covariance with Bonferroni post hoc tests. Analyses were controlled for age, pregnancy status, breastfeeding status, food security status, educational attainment, and social desirability trait. Results The frequency of vegetable intake differed by race/ethnicity (cooked or canned beans were consumed more often among Hispanic than non-Hispanic black and non-Hispanic white or other participants, orange-colored vegetables were consumed more often among Hispanics than non-Hispanic black participants, and other vegetables were consumed more often among non-Hispanic white or other than among non-Hispanic black and Hispanic participants), origin (other vegetables were consumed more often among Columbian and other Hispanics than Dominican participants) and nativity (orange-colored vegetables were consumed more often among foreign-born than US-born Hispanics). Fruit and vegetable intake did not differ by language preference among foreign-born Hispanics. Conclusion Differences in fruit and vegetable consumption among WIC participants by race/ethnicity and by Hispanic origin and nativity may have implications for WIC nutrition policies and nutrition education efforts. PMID:27560723

  13. On plant detection of intact tomato fruits using image analysis and machine learning methods.

    PubMed

    Yamamoto, Kyosuke; Guo, Wei; Yoshioka, Yosuke; Ninomiya, Seishi

    2014-07-09

    Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although optimal thresholds tend to vary with images. Furthermore, most of these techniques have attempted to detect only mature and immature fruits, although the number of young fruits is more important for the prediction of long-term fluctuations in yield. In this study, we aimed to develop a method to accurately detect individual intact tomato fruits including mature, immature and young fruits on a plant using a conventional RGB digital camera in conjunction with machine learning approaches. The developed method did not require an adjustment of threshold values for fruit detection from each image because image segmentation was conducted based on classification models generated in accordance with the color, shape, texture and size of the images. The results of fruit detection in the test images showed that the developed method achieved a recall of 0.80, while the precision was 0.88. The recall values of mature, immature and young fruits were 1.00, 0.80 and 0.78, respectively.

  14. Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids.

    PubMed

    Costa, M P S D; do Rêgo, M M; da Silva, A P G; do Rêgo, E R; Barroso, P A

    2016-05-06

    Pepper species exhibit broad genetic diversity, which enables their use in breeding programs. The objective of this study was to characterize the diversity between the parents of different species and their interspecific hybrids using morphological and molecular markers. The parents of Capsicum annuum (UFPB-01 and -137), C. baccatum (UFPB-72), and C. chinense (UFPB-128) and their interspecific hybrids (01x128, 72x128, and 137x128) were used for morphological and molecular characterization. Fruit length and seed yield per fruit (SYF) traits showed the highest variability, and three groups were formed based on these data. CVg/CVe ratio values (>1.0) were calculated for leaf length (1.67) and SYF (5.34). The trait that most contributed to divergence was the largest fruit diameter (26.42%), and the trait that least contributed was pericarp thickness (0.33%), which was subject to being discarded. The 17 primers produced 58 polymorphic bands that enabled the estimation of genetic diversity between parents and hybrids, and these results confirmed the results of the morphological data analyses. The principal component analysis results also corroborated the morphological and random-amplified polymorphic DNA data, and three groups that contained the same individuals were identified. These results confirmed reports in the literature regarding the phylogenetic relationships of the species used as parents, which demonstrated that C. annuum was closer to C. chinense as compared to C. baccatum.

  15. Snap, crack and pop of explosive fruit.

    PubMed

    Galstyan, Anahit; Hay, Angela

    2018-05-09

    There is an increasing appreciation for the role of physical forces in plant development. Mechanics are fundamental to how explosive fruit eject their seeds, and recent studies have successfully combined mechanics with developmental genetics to help explain how these dispersal traits are produced and how they evolved. Computational modeling is used more and more to address developmental questions, and explosive fruit are particularly good systems for combining biology and modeling approaches. Finite element models have been recently used to explore questions such as: Why do touch-me-not species with similar fruits, differ so much in how efficiently they transfer stored energy to eject seeds? And how do popping cress fruits use the expansive force of turgor pressure for tissue contraction? Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Yeoh, Suat Hui; Appleton, David Ross; Harikrishna, Jennifer Ann

    2017-12-11

    Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.

  17. Physical properties of wild mango fruit and nut

    NASA Astrophysics Data System (ADS)

    Ehiem, J.; Simonyan, K.

    2012-02-01

    Physical properties of two wild mango varieties were studied at 81.9 and 24.5% moisture (w.b.) for the fruits and nuts, respectively. The shape and size of the fruit are the same while that of nuts differs at P = 0.05. The mass, density and bulk density of the fruits are statistically different at P = 0.05 but the volume is the same. The shape and size, volume and bulk density of the nuts are statistically the same at P = 0.05. The nuts of both varieties are also the same at P = 0.05 in terms of mass and density. The packing factor for both fruits and nut of the two varieties are the same at 0.95. The relevant data obtained for the two varieties would be useful for design and development of machines and equipment for processing and handling operations.

  18. The evolutionary stability of cross-sex, cross-trait genetic covariances.

    PubMed

    Gosden, Thomas P; Chenoweth, Stephen F

    2014-06-01

    Although knowledge of the selective agents behind the evolution of sexual dimorphism has advanced considerably in recent years, we still lack a clear understanding of the evolutionary durability of cross-sex genetic covariances that often constrain its evolution. We tested the relative stability of cross-sex genetic covariances for a suite of homologous contact pheromones of the fruit fly Drosophila serrata, along a latitudinal gradient where these traits have diverged in mean. Using a Bayesian framework, which allowed us to account for uncertainty in all parameter estimates, we compared divergence in the total amount and orientation of genetic variance across populations, finding divergence in orientation but not total variance. We then statistically compared orientation divergence of within-sex (G) to cross-sex (B) covariance matrices. In line with a previous theoretical prediction, we find that the cross-sex covariance matrix, B, is more variable than either within-sex G matrix. Decomposition of B matrices into their symmetrical and nonsymmetrical components revealed that instability is linked to the degree of asymmetry. We also find that the degree of asymmetry correlates with latitude suggesting a role for spatially varying natural selection in shaping genetic constraints on the evolution of sexual dimorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  19. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    PubMed

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  20. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics

    PubMed Central

    Lin, Yuling; Min, Jiumeng; Lai, Ruilian; Wu, Zhangyan; Chen, Yukun; Yu, Lili; Cheng, Chunzhen; Jin, Yuanchun; Tian, Qilin; Liu, Qingfeng; Liu, Weihua; Zhang, Chengguang; Lin, Lixia; Hu, Yan; Zhang, Dongmin; Thu, Minkyaw; Zhang, Zihao; Liu, Shengcai; Zhong, Chunshui; Fang, Xiaodong; Wang, Jian; Yang, Huanming

    2017-01-01

    Abstract Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, “Honghezi,” was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics. PMID:28368449

  1. Bayesian QTL mapping using genome-wide SSR markers and segregating population derived from a cross of two commercial F1 hybrids of tomato.

    PubMed

    Ohyama, Akio; Shirasawa, Kenta; Matsunaga, Hiroshi; Negoro, Satomi; Miyatake, Koji; Yamaguchi, Hirotaka; Nunome, Tsukasa; Iwata, Hiroyoshi; Fukuoka, Hiroyuki; Hayashi, Takeshi

    2017-08-01

    Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato. So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F 2 population derived from a cross between two commercial F 1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F 1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F 2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.

  2. Carotenoid metabolism and regulation in horticultural crops

    PubMed Central

    Yuan, Hui; Zhang, Junxiang; Nageswaran, Divyashree; Li, Li

    2015-01-01

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers. PMID:26504578

  3. Omics studies of citrus, grape and rosaceae fruit trees

    PubMed Central

    Shiratake, Katsuhiro; Suzuki, Mami

    2016-01-01

    Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted. PMID:27069397

  4. Omics studies of citrus, grape and rosaceae fruit trees.

    PubMed

    Shiratake, Katsuhiro; Suzuki, Mami

    2016-01-01

    Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.

  5. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study.

    PubMed

    Bauchet, Guillaume; Grenier, Stéphane; Samson, Nicolas; Bonnet, Julien; Grivet, Laurent; Causse, Mathilde

    2017-05-01

    A panel of 300 tomato accessions including breeding materials was built and characterized with >11,000 SNP. A population structure in six subgroups was identified. Strong heterogeneity in linkage disequilibrium and recombination landscape among groups and chromosomes was shown. GWAS identified several associations for fruit weight, earliness and plant growth. Genome-wide association studies (GWAS) have become a method of choice in quantitative trait dissection. First limited to highly polymorphic and outcrossing species, it is now applied in horticultural crops, notably in tomato. Until now GWAS in tomato has been performed on panels of heirloom and wild accessions. Using modern breeding materials would be of direct interest for breeding purpose. To implement GWAS on a large panel of 300 tomato accessions including 168 breeding lines, this study assessed the genetic diversity and linkage disequilibrium decay and revealed the population structure and performed GWA experiment. Genetic diversity and population structure analyses were based on molecular markers (>11,000 SNP) covering the whole genome. Six genetic subgroups were revealed and associated to traits of agronomical interest, such as fruit weight and disease resistance. Estimates of linkage disequilibrium highlighted the heterogeneity of its decay among genetic subgroups. Haplotype definition allowed a fine characterization of the groups and their recombination landscape revealing the patterns of admixture along the genome. Selection footprints showed results in congruence with introgressions. Taken together, all these elements refined our knowledge of the genetic material included in this panel and allowed the identification of several associations for fruit weight, plant growth and earliness, deciphering the genetic architecture of these complex traits and identifying several new loci useful for tomato breeding.

  6. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment.

    PubMed

    Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D

    2018-05-25

    Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.

  7. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    PubMed

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  8. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment

    PubMed Central

    van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan

    2018-01-01

    Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429

  9. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq

    PubMed Central

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2018-01-01

    Flax (Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits. PMID:29375606

  10. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    PubMed

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  11. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes

    PubMed Central

    Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella

    2008-01-01

    Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation. PMID:18419811

  12. Microbes Persist: Using a Systems Biology Approach to Reveal How the Soil Microbiome Shapes Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.

    2017-12-01

    Soils store more carbon than the atmosphere and terrestrial vegetation combined, yet the factors that control its persistence remain elusive. Recent insights have overturned the long-held assumption that carbon stability depends mostly on chemical `recalcitrance' of soil organic matter (SOM). Instead, an emerging paradigm emphasizes how environmental drivers like temperature and moisture, soil minerals, and microbial ecology interact to control SOM formation, stabilization, and turnover. Detailed spectroscopic and isotopic (14C) analyses of mineral-associated SOM show that the oldest carbon in soil may be easily broken down and respired in the laboratory, and that it biochemically resembles microbial cells and metabolites far more than plant material. This places microbial ecophysiology at the center of the soil carbon persistence question. Microbial cells likely interact with mineral surfaces as part of an ecological strategy to condition their environment (e.g. biofilm formation or extracellular enzyme production), and their diverse cellular components likely associate with minerals after cells die. Collectively, these microbial characteristics - metabolic activities, population growth strategies, and cellular biochemistry - can be thought of as `soil ecophysiological traits'. This presentation will explore potential traits that may be fruitful targets for studies evaluating the persistence and importance of microbial products as SOM precursors, and will highlight results showing that soil mineral type influences the microbial communities that colonize mineral surfaces, as well as the quantity and type of mineral-associated carbon that accumulates. I will propose a series of integrated approaches that used together can examine how genomic capacity and activities of soil microbiomes are shaped by edaphic conditions (moisture, temperature, redox regimes) and fundamentally affect the terrestrial soil C pool.

  13. Appearance traits in fish farming: progress from classical genetics to genomics, providing insight into current and potential genetic improvement

    PubMed Central

    Colihueque, Nelson; Araneda, Cristian

    2014-01-01

    Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years. PMID:25140172

  14. 7 CFR 51.1528 - Well formed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States... the fruit has the shape characteristic of the variety. Doubles shall not be considered well formed. ...

  15. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    PubMed

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  16. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude

    PubMed Central

    Karagiannis, Evangelos; Tanou, Georgia; Samiotaki, Martina; Michailidis, Michail; Diamantidis, Grigorios; Minas, Ioannis S.; Molassiotis, Athanassios

    2016-01-01

    The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude. PMID:27891143

  17. Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx).

    PubMed

    Dong, Dong; Lei, Ming; Liu, Yang; Zhang, Shuyi

    2013-12-23

    Bats have aroused great interests of researchers for the sake of their advanced echolocation system. However, this highly specialized trait is not characteristic of Old World fruit bats. To comprehensively explore the underlying molecular basis between echolocating and non-echolocating bats, we employed a sequence-based approach to compare the inner ear expression difference between the Rickett's big-footed bat (Myotis ricketti, echolocating bat) and the Greater short-nosed fruit bat (Cynopterus sphinx, non-echolocating bat). De novo sequence assemblies were developed for both species. The results showed that the biological implications of up-regulated genes in M. ricketti were significantly over-represented in biological process categories such as 'cochlea morphogenesis', 'inner ear morphogenesis' and 'sensory perception of sound', which are consistent with the inner ear morphological and physiological differentiation between the two bat species. Moreover, the expression of TMC1 gene confirmed its important function in echolocating bats. Our work presents the first transcriptome comparison between echolocating and non-echolocating bats, and provides information about the genetic basis of their distinct hearing traits.

  18. Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective

    PubMed Central

    Farinati, Silvia; Rasori, Angela; Varotto, Serena; Bonghi, Claudio

    2017-01-01

    Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding. PMID:28769956

  19. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  20. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features

    PubMed Central

    McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469

  1. 7 CFR 51.775 - Slightly misshapen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States... that the fruit has fairly good shape characteristic of the variety and is not more than slightly...

  2. Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats

    Treesearch

    Robert J. Warren; Jeffrey K. Lake

    2012-01-01

    Aims: The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying...

  3. 7 CFR 51.697 - Well formed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States... § 51.697 Well formed. Well formed means that the fruit has the shape characteristic of the variety. ...

  4. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes

    PubMed Central

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown. PMID:27069398

  5. Monitoring Oriental Fruit Moth (Lepidoptera: Tortricidae) and Peach Twig Borer (Lepidoptera: Gelechiidae) with Clear Delta-shaped Traps

    USDA-ARS?s Scientific Manuscript database

    Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...

  6. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield.

    PubMed

    Xia, Zhiqiang; Zhang, Shengkui; Wen, Mingfu; Lu, Cheng; Sun, Yufang; Zou, Meiling; Wang, Wenquan

    2018-01-01

    As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF - 1 , qNF - 2a , qNF - 2b , qNF - 2c , qNF - 3 , qNF - 4 , qNF - 6 , qNF - 7a , qNF - 7b and qNF - 8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF - 1 , qTWF - 2 and qTWF - 3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha .

  7. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree.

    PubMed

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.

  8. 7 CFR 51.1168 - Slightly misshapen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND... misshapen. Slightly misshapen means that the fruit is not of the shape characteristic of the variety but is...

  9. 7 CFR 51.1007 - Fairly well formed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND.... Fairly well formed means that the fruit shows normal characteristic shape for the Persian variety and is...

  10. 7 CFR 51.635 - Well formed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States...) Definitions § 51.635 Well formed. Well formed means that the fruit has the shape characteristic of the variety. ...

  11. Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Defays, Raquel; Bertoli, Carlos Ignacio

    2012-12-01

    Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Exploring the Estimation of Examinee Locations Using Multidimensional Latent Trait Models under Different Distributional Assumptions

    ERIC Educational Resources Information Center

    Jang, Hyesuk

    2014-01-01

    This study aims to evaluate a multidimensional latent trait model to determine how well the model works in various empirical contexts. Contrary to the assumption of these latent trait models that the traits are normally distributed, situations in which the latent trait is not shaped with a normal distribution may occur (Sass et al, 2008; Woods…

  13. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation.

    PubMed

    Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J

    2018-05-21

    Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.

  14. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest

    Treesearch

    Teresa N. Hollingsworth; Jill F. Johnstone; Emily L. Bernhardt; F. Stuart Chapin

    2013-01-01

    Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how...

  15. 7 CFR 51.1832 - Fairly well formed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND.... Fairly well formed means that the fruit may not have the shape characteristic of the variety but that it...

  16. The relationship between appetite and food preferences in British and Australian children.

    PubMed

    Fildes, Alison; Mallan, Kimberley M; Cooke, Lucy; van Jaarsveld, Cornelia H M; Llewellyn, Clare H; Fisher, Abigail; Daniels, Lynne

    2015-09-17

    Appetitive traits and food preferences are key determinants of children's eating patterns but it is unclear how these behaviours relate to one another. This study explores relationships between appetitive traits and preferences for fruits and vegetables, and energy dense, nutrient poor (noncore) foods in two distinct samples of Australian and British preschool children. This study reports secondary analyses of data from families participating in the British GEMINI cohort study (n = 1044) and the control arm of the Australian NOURISH RCT (n = 167). Food preferences were assessed by parent-completed questionnaire when children were aged 3-4 years and grouped into three categories; vegetables, fruits and noncore foods. Appetitive traits; enjoyment of food, food responsiveness, satiety responsiveness, slowness in eating, and food fussiness were measured using the Children's Eating Behaviour Questionnaire when children were 16 months (GEMINI) or 3-4 years (NOURISH). Relationships between appetitive traits and food preferences were explored using adjusted linear regression analyses that controlled for demographic and anthropometric covariates. Vegetable liking was positively associated with enjoyment of food (GEMINI; β = 0.20 ± 0.03, p < 0.001, NOURISH; β = 0.43 ± 0.07, p < 0.001) and negatively related to satiety responsiveness (GEMINI; β = -0.19 ± 0.03, p < 0.001, NOURISH; β = -0.34 ± 0.08, p < 0.001), slowness in eating (GEMINI; β = -0.10 ± 0.03, p = 0.002, NOURISH; β = -0.30 ± 0.08, p < 0.001) and food fussiness (GEMINI; β = -0.30 ± 0.03, p < 0.001, NOURISH; β = -0.60 ± 0.06, p < 0.001). Fruit liking was positively associated with enjoyment of food (GEMINI; β = 0.18 ± 0.03, p < 0.001, NOURISH; β = 0.36 ± 0.08, p < 0.001), and negatively associated with satiety responsiveness (GEMINI; β = -0.13 ± 0.03, p < 0.001, NOURISH; β = -0.24 ± 0.08, p = 0.003), food fussiness (GEMINI; β = -0.26 ± 0.03, p < 0.001, NOURISH; β = -0.51 ± 0.07, p < 0.001) and slowness in eating (GEMINI only; β = -0.09 ± 0.03, p = 0.005). Food responsiveness was unrelated to liking for fruits or vegetables in either sample but was positively associated with noncore food preference (GEMINI; β = 0.10 ± 0.03, p = 0.001, NOURISH; β = 0.21 ± 0.08, p = 0.010). Appetitive traits linked with lower obesity risk were related to lower liking for fruits and vegetables, while food responsiveness, a trait linked with greater risk of overweight, was uniquely associated with higher liking for noncore foods.

  17. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    PubMed

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency.

  18. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species

    PubMed Central

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K.; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency. PMID:27936081

  19. Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper.

    PubMed

    Lee, Sang Gyu; Kim, Sung Kyeom; Lee, Hee Ju; Lee, Hee Su; Lee, Jin Hyoung

    2018-01-01

    Horticultural crop production and changes in physiological aspects during the growing season may be affected by climate change factors (CC), which include increased temperature and the associated doubling or tripling of atmospheric CO 2 concentrations. However, the potential effects are complex and many parameters might impact on the observed effects. To evaluate the effects of CC, the growth, yield, fruit characteristics, photosynthetic traits, and morphological characteristics of hot peppers were investigated. The hot peppers were grown under two CC scenarios, with the Representative Concentration Pathway (RCP) of 4.5 (Temp.; +3.4°C, CO 2 conc.; 540 μmol/mol, Precipitation +17.3%) and RCP 8.5 (Temp.; +6.0°C and CO 2 conc.; 940 μmol/mol, Precipitation +20.3%), respectively, using extreme weather simulators. This was compared with existing weather conditions occurring in Jeonju, South Korea in terms of air temperature, relative humidity, radiation, and precipitation. Overall, the plant height showed the highest under moderate CC conditions (RCP 4.5) among all the treatments tested. The number of leaves in the RCP 8.5 condition showed 7,739/plants, which was 2.2 times higher than that of the control. In addition, fruit shape was shortened and percentage dry matter was also the highest. The yield of hot pepper in the CC RCP 4.5 and 8.5 conditions were decreased by 21.5% and 89.2% when compared with that of the control, respectively. The days to harvest in the condition of CC scenarios were shortened from 5 to 13 compared with that of control, predominantly due to the increased air temperature. The results indicated that the severe RCP CC scenarios made reduction in the yields and negative affection on the fruit qualities. Overall, hot pepper was tolerant of mild CC scenarios of temperature × CO 2 but was significantly affected by more extreme CC interacting parameter concentrations (or similar).

  20. The Origin and Evolutionary Consequences of Skeletal Traits Shaped by Embryonic Muscular Activity, from Basal Theropods to Modern Birds.

    PubMed

    Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente

    2017-12-01

    Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    PubMed Central

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  3. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    PubMed

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. 7 CFR 51.1536 - Serious damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fruit surface; (c) Growth cracks: (1) When not healed and more than one-eighth inch in length or depth... shape to the extent that the fruit is badly misshapen; (e) Scab or bacterial spot, when the aggregate...

  5. 7 CFR 51.1536 - Serious damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fruit surface; (c) Growth cracks: (1) When not healed and more than one-eighth inch in length or depth... shape to the extent that the fruit is badly misshapen; (e) Scab or bacterial spot, when the aggregate...

  6. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    USDA-ARS?s Scientific Manuscript database

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  7. Seeing Coloured Fruits: Utilisation of the Theory of Adaptive Memory in Teaching Botany

    ERIC Educational Resources Information Center

    Prokop, Pavol; Fancovicová, Jana

    2014-01-01

    Plants are characterised by a great diversity of easily observed features such as colours or shape, but children show low interest in learning about them. Here, we integrated modern theory of adaptive memory and evolutionary views of the function of fruit colouration on children's retention of information. Survival-relevant (fruit toxicity) and…

  8. Fleshy fruit characteristics in a temperate deciduous forest of Japan: how unique are they?

    PubMed

    Masaki, Takashi; Takahashi, Kazuaki; Sawa, Ayako; Kado, Tomoyuki; Naoe, Shoji; Koike, Shinsuke; Shibata, Mitsue

    2012-01-01

    This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.

  9. Natural variation of fecundity components in a widespread plant with dimorphic seeds

    NASA Astrophysics Data System (ADS)

    Braza, Rita; Arroyo, J.; García, M. B.

    2010-09-01

    The number and size of seeds are the basis of the quantity and quality components of female reproductive fitness in plants, playing a central role in the evolutionary ecology of life history diversification. In this study we show and analyze the natural variability of several fecundity variables (fruit set, seed production per fruit, seed size, total seed production per plant, and proportion of small seeds) in Plantago coronopus, a widespread, short-lived herb with dimorphic seeds. The structure of such variability was examined at the individual, population (eight locations with different environments within the same region), and life history levels (annual vs perennial), and correlated to soil fertility. There was no divergence associated to the life history for any of the variables studied. Total seed production (the quantity component of female fitness) was correlated with maternal resources, while the size of the large mucilaginous, basal seeds, and the proportion of the small apical seeds (quality component) were more associated to environmental resources. Thus, internal and external resources shape different fitness components, maximizing seed production, and fitting the size and proportion of different kind of seeds to local conditions irrespective of life history. P. coronopus illustrates the versatility of short-lived widespread plants to combine fecundity traits in a flexible manner, in order to increase fitness at each of the many possible habitats they occupy over heterogeneous environments.

  10. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area.

    PubMed

    Gentile, C; Reig, C; Corona, O; Todaro, A; Mazzaglia, A; Perrone, A; Gianguzzi, G; Agusti, M; Farina, V

    2016-09-01

    In this paper the diversity of fruit quality within nine loquat cultivars, including five international affirmed cultivars (Algerie, Golden Nugget, Peluche, Bueno, El Buenet) and four local cultivars (Sanfilippara, Nespolone di Trabia, BRT20 and Claudia), were investigated in order to discriminate the variation in pomological characteristics, sensory profile, and antioxidant properties. Finally, to evaluate potential bioactivity, antiproliferative activity of hydrophilic extracts from loquat fruits was assessed, at dietary relevant concentrations, against three human epithelial cell lines. Even though the international cultivars confirmed an appropriate level of commercial qualities in association to high levels in antioxidant compounds, the local cultivars revealed the best performances in a wide range of chemical-physical and sensory characteristics. Concerning bioactivity, our results indicate that hydrophilic extracts from all tested cultivars showed concentration-dependent antiproliferative activity with a significant variability of effects between different cell lines and between different cultivars. HeLa cells, the most sensitive and hydrophilic extracts from Peluche, showed the highest inhibitory effect followed by Nespolone di Trabia and Claudia. The results of this trial provide useful information on the pomological traits and the not yet known specific nutritional and functional properties of loquat fruits. Our data, besides helping to promote specific local cultivars, could serve to establish a database that will permit to improve the utilization of specific genetic resources in breeding programs.

  11. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico

    PubMed Central

    Martínez-Adriano, Cristian Adrian; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants. PMID:27231656

  12. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  13. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  14. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae): a perennial herb with a mixed pollination system?

    PubMed Central

    Salas-Arcos, Lucía; Ornelas, Juan Francisco

    2017-01-01

    Background In many plant species, pollination syndromes predict the most effective pollinator. However, other floral visitors may also offer effective pollination services and promote mixed pollination systems. Several species of the species-rich Penstemon (Plantaginaceae) exhibit a suite of floral traits that suggest adaptation for pollination by both hymenopterans and hummingbirds. Transitions from the ancestral hymenopteran pollination syndrome to more derived hummingbird pollination syndrome may be promoted if the quantity or quality of visits by hummingbirds is increased and if the ancestral pollinator group performs less efficiently. The quantification of such shifts in pollination systems in the group is still limited. We aimed to investigate floral traits linked to this pollination syndrome in Penstemon gentianoides with flowers visited by bumblebees and hummingbirds. Methods We investigated the floral biology, pollinator assemblages, breeding system and nectar production patterns ofP. gentianoides inhabiting a temperate montane forest in central Mexico. Pollination experiments were also conducted to assess the pollinator effectiveness of bumblebees and hummingbirds. Results P. gentianoides flowers are protandrous, with 8-d male phase (staminate) flowers, followed by the ∼1–7 d female phase (pistillate phase). Flowers display traits associated with hymenopteran pollination, including purple flowers abruptly ampliate-ventricose to a broad throat with anthers and stigmas included, and long lifespans. However, the nectar available in the morning hours was abundant and dilute, traits linked to flowers with a hummingbird pollination syndrome. Two hummingbird species made most of the visits to flowers, Selasphorus platycercus (30.3% of all visits), followed by Archilochus colubris (11.3%). Bumblebees (Bombus ephippiatus, B. huntii and B. weisi) accounted for 51.8% of all recorded visits, but their foraging activity was restricted to the warmer hours. Hummingbirds made more foraging bouts and visited more flowers than hymenopteran species. Flowers experimentally pollinated by B. ephippiatus produced significantly more fruits than those pollinated by S. platycercus. However, there was no statistical difference in the number of seeds produced per fruit when a bumblebee or a hummingbird was the pollinator. Conclusions We have shown that bumblebees and hummingbirds visit and pollinate P. gentianoides flowers. Despite floral traits resembling the hymenoptera pollination syndrome, flowers of P. gentianoides offer characteristic nectar rewards to flowers with a hummingbird pollination syndrome. Although pollination efficiency is higher among flowers visited by hymenoptera, the noteworthy percentage of fruit production and number of seeds per fruit derived from hummingbird pollination highlights the importance of hummingbirds as a functional group of pollinators that might have potential evolutionary consequences to the plants. PMID:28828248

  15. Metabolic Interaction between Anthocyanin and Lignin Biosynthesis Is Associated with Peroxidase FaPRX27 in Strawberry Fruit1[W

    PubMed Central

    Ring, Ludwig; Yeh, Su-Ying; Hücherig, Stephanie; Hoffmann, Thomas; Blanco-Portales, Rosario; Fouche, Mathieu; Villatoro, Carmen; Denoyes, Béatrice; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Gershenson, Jonathan; Schwab, Wilfried

    2013-01-01

    Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm. PMID:23835409

  16. Grape Berry Acclimation to Excessive Solar Irradiance Leads to Repartitioning between Major Flavonoid Groups.

    PubMed

    Reshef, N; Agam, N; Fait, A

    2018-04-11

    Warm viticulture regions are associated with inferior wines, resulting from the interaction between microclimate and fruit biochemistry. Solar irradiance triggers biosynthetic processes in the fruit and dominates its thermal balance. Therefore, deciphering its impact on fruit metabolism is pivotal to develop strategies for fruit protection and ameliorate its quality traits. Here, we modified light quality and intensity in the fruit-zone and integrated micrometeorology with grape and wine metabolomics, allowing a complete assessment, from field to bottle. We analyzed the dynamics of fruit's adaptation to altered conditions during ripening and constructed temporal-based metabolic networks. Micrometeorological modifications shifted the balance between the major flavonoids, associating increased solar exposure with lower levels of anthocyanins and flavan-3-ols, and higher flavonols. Differences were fixed from 2 weeks postveraison until harvest, suggesting a controlled acclimation response rather than external modulation. Differences in grape composition manifested in the wine and resulted in higher color intensity and improved wine hue under partial shading.

  17. Changes in sexual signals are greater than changes in ecological traits in a dichromatic group of fishes.

    PubMed

    Martin, Michael D; Mendelson, Tamra C

    2014-12-01

    Understanding the mechanisms by which phenotypic divergence occurs is central to speciation research. These mechanisms can be revealed by measuring differences in traits that are subject to different selection pressures; greater influence of different types of selection can be inferred from greater divergence in associated traits. Here, we address the potential roles of natural and sexual selection in promoting phenotypic divergence between species of snubnose darters by comparing differences in body shape, an ecologically relevant trait, and male color, a sexual signal. Body shape was measured using geometric morphometrics, and male color was measured using digital photography and visual system-dependent color values. Differences in male color are larger than differences in body shape across eight allopatric, phylogenetically independent species pairs. While this does not exclude the action of divergent natural selection, our results suggest a relatively more important role for sexual selection in promoting recent divergence in darters. Variation in the relative differences between male color and body shape across species pairs reflects the continuous nature of speciation mechanisms, ranging from ecological speciation to speciation by sexual selection alone. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Frequency and variability of dental morphology in deciduous and permanent dentition of a Nasa indigenous group in the municipality of Morales, Cauca, Colombia.

    PubMed

    Díaz, Eider; García, Lorena; Hernández, Michelle; Palacio, Lesly; Ruiz, Diana; Velandia, Nataly; Villavicencio, Judy; Moreno, Freddy

    2014-01-01

    To determine the frequency, variability, sexual dimorphism and bilateral symmetry of fourteen dental crown traits in the deciduous and permanent dentition of 60 dental models (35 women and 25 men) obtained from a native, indigenous group of Nasa school children of the Musse Ukue group in the municipality of Morales, Department of Cauca, Colombia. This is a quantitative, descriptive, cross-sectional study that characterizes dental morphology by means of the systems for temporary dentition from Dahlberg (winging), and ASUDAS (crowding, reduction of hypocone, metaconule and cusp 6), Hanihara (central and lateral incisors in shovel-shape and cusp 7), Sciulli (double bit, layered fold protostylid, cusp pattern and cusp number) and Grine (Carabelli trait); and in permanent dentition from ASUDAS (Winging, crowding, central and lateral incisors in shovel-shape and double shovel-shape, Carabelli trait, hypocone reduction, metaconule, cusp pattern, cusp number, layered fold protostylid, cusp 6 and cusp 7). The most frequent dental crown features were the shovel-shaped form, grooved and fossa forms of the Carabelli trait, metaconule, cusp pattern Y6, layered fold, protostylid (point P) and cusp 6. Sexual dimorphism was not observed and there was bilateral symmetry in the expression of these features. The sample studied presented a great affinity with ethnic groups belonging to the Mongoloid Dental Complex due to the frequency (expression) and variability (gradation) of the tooth crown traits, upper incisors, the Carabelli trait, the protostylid, cusp 6 and cusp 7. The influence of the Caucasoide Dental Complex associated with ethno-historical processes cannot be ruled out.

  19. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    NASA Astrophysics Data System (ADS)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  20. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  1. Stability of agronomic and yield related traits of Jatropha curcas accessions raised from cuttings

    NASA Astrophysics Data System (ADS)

    Mat, Nurul Hidayah Che; Yaakob, Zahira; Ratnam, Wickneswari

    2016-11-01

    Monitoring stability of agronomic and yield related traits is important for prediction of crop yields. This study was a latter study for the evaluation of 295 J. curcas individuals representing 21 accessions from eight countries at Biodiesel Research Station of Universiti Kebangsaan Malaysia, Kuala Pilah planted in December 2012. In this study, 183 J. curcas individuals were selected randomly from the population and their growth performance evaluated from December 2013 to December 2014. All the individual plants were raised from cuttings. The yield related data were recorded periodically and performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Five traits which were number of fruits per plant (NFPP), number of fruits per inflorescence (NFPI), hundred seed weight (g) (HSW), number of seeds per plant (NSPP) and yield per plant (g) (YPP) showed significant differences among the accessions after two years of planting. Maximum values for each trait were 208 cm for plant height (PH), 31 for number of branches per plant (BPP), 115 for number of inflorescence per plant (NIPP), 582 for NFPP, 7 for NFPI, 307 for number of flowers per inflorescence (NFI), 17 for number of female flowers per inflorescence (NFFPI), 91.6 g for HSW, 1647.1 for NSPP and 927.6 g for YPP. Most of the plants which had performed well in the first year were among the best performers in the second year.

  2. Multiple filters affect tree species assembly in mid-latitude forest communities.

    PubMed

    Kubota, Y; Kusumoto, B; Shiono, T; Ulrich, W

    2018-05-01

    Species assembly patterns of local communities are shaped by the balance between multiple abiotic/biotic filters and dispersal that both select individuals from species pools at the regional scale. Knowledge regarding functional assembly can provide insight into the relative importance of the deterministic and stochastic processes that shape species assembly. We evaluated the hierarchical roles of the α niche and β niches by analyzing the influence of environmental filtering relative to functional traits on geographical patterns of tree species assembly in mid-latitude forests. Using forest plot datasets, we examined the α niche traits (leaf and wood traits) and β niche properties (cold/drought tolerance) of tree species, and tested non-randomness (clustering/over-dispersion) of trait assembly based on null models that assumed two types of species pools related to biogeographical regions. For most plots, species assembly patterns fell within the range of random expectation. However, particularly for cold/drought tolerance-related β niche properties, deviation from randomness was frequently found; non-random clustering was predominant in higher latitudes with harsh climates. Our findings demonstrate that both randomness and non-randomness in trait assembly emerged as a result of the α and β niches, although we suggest the potential role of dispersal processes and/or species equalization through trait similarities in generating the prevalence of randomness. Clustering of β niche traits along latitudinal climatic gradients provides clear evidence of species sorting by filtering particular traits. Our results reveal that multiple filters through functional niches and stochastic processes jointly shape geographical patterns of species assembly across mid-latitude forests.

  3. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores.

    PubMed

    Eriksson, Ove

    2016-02-01

    The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm-frugivore evolution. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  4. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  5. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    PubMed

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  6. Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit

    PubMed Central

    Thompson, Jacqueline A.; Penchev, Emil A.; Nielen, Stephan

    2017-01-01

    Vitamin and mineral deficiencies are prevalent in human populations throughout the world. Vitamin A deficiency affects hundreds of millions of pre-school age children in low income countries. Fruits of pepper (Capsicum annuum L.) can be a major dietary source of precursors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs have introduced the orange-fruited (of) trait of the mutant variety Oranzheva kapiya, which is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus, sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype developed by transferring the orange-fruited mutation (of) into Albena. It was observed that fruit from M38 plants had greater β-carotene concentration at both commercial and botanical maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and 30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentrations in pepper fruits had no detrimental effect on the concentrations of mineral elements required for human nutrition. PMID:28207797

  7. Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit.

    PubMed

    Tomlekova, Nasya B; White, Philip J; Thompson, Jacqueline A; Penchev, Emil A; Nielen, Stephan

    2017-01-01

    Vitamin and mineral deficiencies are prevalent in human populations throughout the world. Vitamin A deficiency affects hundreds of millions of pre-school age children in low income countries. Fruits of pepper (Capsicum annuum L.) can be a major dietary source of precursors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs have introduced the orange-fruited (of) trait of the mutant variety Oranzheva kapiya, which is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus, sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype developed by transferring the orange-fruited mutation (of) into Albena. It was observed that fruit from M38 plants had greater β-carotene concentration at both commercial and botanical maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and 30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentrations in pepper fruits had no detrimental effect on the concentrations of mineral elements required for human nutrition.

  8. Evolution of Gene Duplication in Plants1[OPEN

    PubMed Central

    2016-01-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  9. Evolution of Gene Duplication in Plants.

    PubMed

    Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han

    2016-08-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Monitoring oriental fruit moth (Lepidoptera:Tortricidae) with the ajar bait trap in pome and stone fruit orchards under mating disruption

    USDA-ARS?s Scientific Manuscript database

    Studies in Oregon, California, Pennsylvania, and Italy evaluated the relative performance of the Ajar trap for Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta-shaped trap with a screened jar filled with a t...

  11. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    PubMed

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Early anther ablation triggers parthenocarpic fruit development in tomato.

    PubMed

    Medina, Mónica; Roque, Edelín; Pineda, Benito; Cañas, Luis; Rodriguez-Concepción, Manuel; Beltrán, José Pío; Gómez-Mena, Concepción

    2013-08-01

    Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male-sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro-Tom and Moneymaker). We generated male-sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. The role of trait and ability emotional intelligence in bulimic symptoms.

    PubMed

    Gardner, Kathryn Jane; Quinton, Stephanie; Qualter, Pamela

    2014-04-01

    Bulimia is characterized by poor affect regulation, yet the role of emotional intelligence (EI) is little understood. This study examined associations between EI and bulimic symptoms using 235 women from community and student populations. They completed measures of trait and ability EI, and the Eating Disorders Diagnostic Scale. Results showed that deficiencies in different aspects of trait EI and/or ability EI are a function of symptom type: binge eating, compensatory behaviours or weight and shape concerns. Consistent with affect regulation models, self-regulatory aspects of trait EI were related to two bulimic symptoms: binge eating and weight and shape concerns. Ability-based self-emotion management was not important, and explanatory power of lower-level EI facets (traits or abilities) was not superior to more broadly defined EI factors. Results support the conclusion that trait and ability EI may maintain subclinical levels of bulimic symptoms but have different paths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Global genetic differentiation of complex traits shaped by natural selection in humans.

    PubMed

    Guo, Jing; Wu, Yang; Zhu, Zhihong; Zheng, Zhili; Trzaskowski, Maciej; Zeng, Jian; Robinson, Matthew R; Visscher, Peter M; Yang, Jian

    2018-05-14

    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.

  15. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-04-16

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.

  16. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  17. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  18. Animal and human innovation: novel problems and novel solutions.

    PubMed

    Reader, Simon M; Morand-Ferron, Julie; Flynn, Emma

    2016-03-19

    This theme issue explores how and why behavioural innovation occurs, and the consequences of innovation for individuals, groups and populations. A vast literature on human innovation exists, from the development of problem-solving in children, to the evolution of technology, to the cultural systems supporting innovation. A more recent development is a growing literature on animal innovation, which has demonstrated links between innovation and personality traits, cognitive traits, neural measures, changing conditions, and the current state of the social and physical environment. Here, we introduce these fields, define key terms and discuss the potential for fruitful exchange between the diverse fields researching innovation. Comparisons of innovation between human and non-human animals provide opportunities, but also pitfalls. We also summarize some key findings specifying the circumstances in which innovation occurs, discussing factors such as the intrinsic nature of innovative individuals and the environmental and socio-ecological conditions that promote innovation, such as necessity, opportunity and free resources. We also highlight key controversies, including the relationship between innovation and intelligence, and the notion of innovativeness as an individual-level trait. Finally, we discuss current research methods and suggest some novel approaches that could fruitfully be deployed. © 2016 The Authors.

  19. Animal and human innovation: novel problems and novel solutions

    PubMed Central

    2016-01-01

    This theme issue explores how and why behavioural innovation occurs, and the consequences of innovation for individuals, groups and populations. A vast literature on human innovation exists, from the development of problem-solving in children, to the evolution of technology, to the cultural systems supporting innovation. A more recent development is a growing literature on animal innovation, which has demonstrated links between innovation and personality traits, cognitive traits, neural measures, changing conditions, and the current state of the social and physical environment. Here, we introduce these fields, define key terms and discuss the potential for fruitful exchange between the diverse fields researching innovation. Comparisons of innovation between human and non-human animals provide opportunities, but also pitfalls. We also summarize some key findings specifying the circumstances in which innovation occurs, discussing factors such as the intrinsic nature of innovative individuals and the environmental and socio-ecological conditions that promote innovation, such as necessity, opportunity and free resources. We also highlight key controversies, including the relationship between innovation and intelligence, and the notion of innovativeness as an individual-level trait. Finally, we discuss current research methods and suggest some novel approaches that could fruitfully be deployed. PMID:26926273

  20. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit.

    PubMed

    Acosta-Quezada, Pablo G; Raigón, María D; Riofrío-Cuenca, Tania; García-Martínez, María D; Plazas, Mariola; Burneo, Juan I; Figueroa, Jorge G; Vilanova, Santiago; Prohens, Jaime

    2015-02-15

    We evaluated 23 tree tomato (Solanum betaceum) accessions from five cultivar groups and one wild relative (Solanum cajanumense) for 26 composition traits. For all traits we found highly significant differences (P<0.001) among the materials studied. The high diversity found within S. betaceum for composition traits was matched by a high diversity within each of the cultivar groups. We found that sucrose and citric acid were the most important soluble sugar and organic acid, respectively, in tree tomato. Fruit in the anthocyanin pigmented (purple) group had a carotenoid content similar to that in the yellow-orange cultivar groups. Total phenolic content was significantly correlated (r=0.8607) with antioxidant activity. Analyses of mineral content showed that tree tomato is a good source of K, Mg, and Cu. Multivariate principal components analysis (PCA) confirmed that an important diversity exists within each cultivar group. The results we have obtained indicate that the high diversity found within the tree tomato could be exploited for selection and breeding for developing the tree tomato as a commercial crop. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mixed-ethnicity face shape and attractiveness in humans.

    PubMed

    Little, Anthony C; Hockings, Kimberley J; Apicella, Coren L; Sousa, Claudia

    2012-01-01

    Many studies show agreement within and between populations and cultures for general judgments of facial attractiveness. Studies that have examined the attractiveness of specific traits have also highlighted cross-cultural differences for factors such as symmetry, averageness, and masculinity. One trait that should be preferred across cultures is heterozygosity. Indeed, several studies suggest that mixed ethnicity, in terms of appearing to possess a mixture of traits from different human population groups, may be found attractive, which could reflect preferences for heterozygosity. We examined preferences for manipulated face shape associated with different populations in both Europeans (Britain) and Africans (Guinea-Bissau). We found that mixed-ethnicity face shapes were more attractive than enhanced single-ethnicity face shape across both populations. These results are consistent with evolutionary theories suggesting individuals should prefer heterozygosity in partners because facial cues to mixed-ethnicity are likely to indicate diverse genes compared to cues that indicate a face belongs to a single particular culture or population.

  2. Shape, size, and maturity trajectories of the human ilium.

    PubMed

    Wilson, Laura A B; Ives, Rachel; Cardoso, Hugo F V; Humphrey, Louise T

    2015-01-01

    Morphological traits of the ilium have consistently been more successful for juvenile sex determination than have techniques applied to other skeletal elements, however relatively little is known about the ontogeny and maturation of size and shape dimorphism in the ilium. We use a geometric morphometric approach to quantitatively separate the ontogeny of size and shape of the ilium, and analyze interpopulation differences in the onset, rate and patterning of sexual dimorphism. We captured the shape of three traits for a total of 191 ilia from Lisbon (Portugal) and London (UK) samples of known age and sex (0-17 years). Our results indicate that a) there is a clear dissociation between the ontogeny of size and shape in males and females, b) the ontogeny of size and shape are each defined by non-linear trajectories that differ between the sexes, c) there are interpopulation differences in ontogenetic shape trajectories, which point to population-specific patterning in the attainment of sexual dimorphism, and d) the rate of shape maturation and size maturation is typically higher for females than males. Male and female shape differences in the ilium are brought about by trajectory divergence. Differences in size and shape maturation between the sexes suggest that maturity may confound our ability to discriminate between the sexes by introducing variation not accounted for in age-based groupings. The accuracy of sex determination methods using the ilium may be improved by the use of different traits for particular age groups, to capture the ontogenetic development of shape in both sexes. © 2014 Wiley Periodicals, Inc.

  3. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    PubMed

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Characterization of a pepper collection (Capsicum frutescens L.) from Brazil.

    PubMed

    Lima, M F; Carvalho, S I C; Ragassi, C F; Bianchetti, L B; Faleiro, F G; Reifschneider, F J B

    2017-08-31

    Germplasm banks are essential as sources of genetic variability for plant breeding programs. To characterize a Brazilian Capsicum frutescens collection, 21 malagueta and 5 Tabasco hot pepper accessions were evaluated under field and greenhouse conditions regarding morphological and molecular traits, as well as resistance to viruses. Morphological characterization was performed using 53 IPGRI (International Plant Genetic Resources Institute) descriptors, 15 vegetative, 13 inflorescence, 22 fruit, and 3 seed. Molecular characterization was carried out with 60 polymorphic markers from 29 RAPD primers. The incidence of major viruses infecting Capsicum spp, Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV), Potato virus Y (PVY), Pepper yellow mosaic virus (PepYMV), Pepper mild mottle virus (PMMoV), and Cucumber mosaic virus (CMV) was evaluated by ELISA. Based on the average genetic distance among genotypes, six groups were defined for the 53 IPGRI descriptors. When considering only 11 quantitative traits (five vegetative and six fruit), six groups were also determined, and the traits plant canopy width (56.05%) and days to fruiting (25.07%) most explained the genetic diversity among genotypes. Molecular analysis defined five groups of accessions with partial correspondence to the morphological characterization data. The incidence of viruses in field-grown plants varied among genotypes and according to virus species, from 5.6% (GRSV; CNPH 3286) to 100% (PMMoV; CNPH2871), and indicated some accessions as potential sources of virus resistance. These results demonstrate the genetic variability within the group of 26 hot pepper accessions, as well as virus-resistant genotypes that can be used in breeding programs.

  5. Exploring tomato Solanum pennellii introgression lines for residual biomass and enzymatic digestibility traits.

    PubMed

    Caruso, G; Gomez, L D; Ferriello, F; Andolfi, A; Borgonuovo, C; Evidente, A; Simister, R; McQueen-Mason, S J; Carputo, D; Frusciante, L; Ercolano, M R

    2016-04-05

    Residual biomass production for fuel conversion represents a unique opportunity to avoid concerns about compromising food supply by using dedicated feedstock crops. Developing tomato varieties suitable for both food consumption and fuel conversion requires the establishment of new selection methods. A tomato Solanum pennellii introgression population was assessed for fruit yield, biomass phenotypic diversity, and for saccharification potential. Introgression lines 2-5, 2-6, 6-3, 7-2, 10-2 and 12-4 showed the best combination of fruit and residual biomass production. Lignin, cellulose, hemicellulose content and saccharification rate showed a wide variation in the tested lines. Within hemicellulose, xylose value was high in IL 6-3, IL 7-2 and IL 6-2, whereas arabinose showed a low content in IL 10-2, IL 6-3 and IL 2-6. The latter line showed also the highest ethanol potential production. Alkali pre-treatment resulted in the highest values of saccharification in most of lines tested, suggesting that chemical pretreatment is an important factor for improving biomass processability. Interestingly, extreme genotypes for more than one single trait were found, allowing the identification of better genotypes. Cell wall related genes mapping in genomic regions involved into tomato biomass production and digestibility variation highlighted potential candidate genes. Molecular expression profile of few of them provided useful information about challenged pathways. The screening of S. pennellii introgression population resulted very useful for delving into complex traits such as biomass production and digestibility. The extreme genotypes identified could be fruitfully employed for both genetic studies and breeding.

  6. Frequency and variability of dental morphology in deciduous and permanent dentition of a Nasa indigenous group in the municipality of Morales, Cauca, Colombia

    PubMed Central

    Díaz, Eider; García, Lorena; Hernández, Michelle; Palacio, Lesly; Ruiz, Diana; Velandia, Nataly; Villavicencio, Judy

    2014-01-01

    Objectives: To determine the frequency, variability, sexual dimorphism and bilateral symmetry of fourteen dental crown traits in the deciduous and permanent dentition of 60 dental models (35 women and 25 men) obtained from a native, indigenous group of Nasa school children of the Musse Ukue group in the municipality of Morales, Department of Cauca, Colombia. Methods: This is a quantitative, descriptive, cross-sectional study that characterizes dental morphology by means of the systems for temporary dentition from Dahlberg (winging), and ASUDAS (crowding, reduction of hypocone, metaconule and cusp 6), Hanihara (central and lateral incisors in shovel-shape and cusp 7), Sciulli (double bit, layered fold protostylid, cusp pattern and cusp number) and Grine (Carabelli trait); and in permanent dentition from ASUDAS (Winging, crowding, central and lateral incisors in shovel-shape and double shovel-shape, Carabelli trait, hypocone reduction, metaconule, cusp pattern, cusp number, layered fold protostylid, cusp 6 and cusp 7). Results: The most frequent dental crown features were the shovel-shaped form, grooved and fossa forms of the Carabelli trait, metaconule, cusp pattern Y6, layered fold, protostylid (point P) and cusp 6. Sexual dimorphism was not observed and there was bilateral symmetry in the expression of these features. Conclusions: The sample studied presented a great affinity with ethnic groups belonging to the Mongoloid Dental Complex due to the frequency (expression) and variability (gradation) of the tooth crown traits, upper incisors, the Carabelli trait, the protostylid, cusp 6 and cusp 7. The influence of the Caucasoide Dental Complex associated with ethno-historical processes cannot be ruled out. PMID:24970955

  7. Assessment of trophic ecomorphology in non-alligatoroid crocodylians and its adaptive and taxonomic implications.

    PubMed

    Iijima, Masaya

    2017-08-01

    Although the establishment of trophic ecomorphology in living crocodylians can contribute to estimating feeding habits of extinct large aquatic reptiles, assessment of ecomorphological traits other than the snout shape has scarcely been conducted in crocodylians. Here, I tested the validity of the proposed trophic ecomorphological traits in crocodylians by examining the correlation between those traits and the snout shape (an established trophic ecomorphology), using 10 non-alligatoroid crocodylian species with a wide range of snout shape. I then compared the ontogenetic scaling of trophic ecomorphology to discuss its adaptive and taxonomic significance. The results demonstrated that degree of heterodonty, tooth spacing, size of supratemporal fenestra (STF), ventral extension of pterygoid flange and length of lower jaw symphysis are significantly correlated with snout shape by both non-phylogenetic and phylogenetic regression analyses. Gavialis gangeticus falls outside of 95% prediction intervals for the relationships of some traits and the snout shape, suggesting that piscivorous specialization involves the deviation from the typical transformation axis of skull characters. The comparative snout shape ontogeny revealed a universal trend of snout widening through growth in the sampled crocodylians, implying the existence of a shared size-dependent biomechanical constraint in non-alligatoroid crocodylians. Growth patterns of other traits indicated that G. gangeticus shows atypical trends for degree of heterodonty, size of STF, and symphysis length, whereas the same trends are shared for tooth spacing and ventral extension of pterygoid flange among non-alligatoroid crocodylians. These suggest that some characters are ontogenetically labile in response to prey preference shifts through growth, but other characters are in keeping with the conserved biomechanics among non-alligatoroid crocodylians. Some important taxonomic characters such as the occlusal pattern are likely correlated with ontogeny and trophic ecomorphology rather than are constrained by phylogenetic relationships, and careful reassessment of such characters might be necessary for better reconstructing the morphological phylogeny of crocodylians. © 2017 Anatomical Society.

  8. Domestication Syndrome in Caimito (Chrysophyllum cainito L.): Fruit and Seed Characteristics

    PubMed Central

    López, Isis; Petersen, Jennifer J.; Anaya, Natalia; Cubilla-Rios, Luis; Potter, Daniel

    2010-01-01

    Domestication Syndrome in Caimito (Chrysophyllum cainitoL.): Fruit and Seed Characteristics: The process of domestication is understudied and poorly known for many tropical fruit tree crops. The star apple or caimito tree (Chrysophyllum cainito L., Sapotaceae) is cultivated throughout the New World tropics for its edible fruits. We studied this species in central Panama, where it grows wild in tropical moist forests and is also commonly cultivated in backyard gardens. Using fruits collected over two harvest seasons, we tested the hypothesis that cultivated individuals of C. cainito show distinctive fruit and seed characteristics associated with domestication relative to wild types. We found that cultivated fruits were significantly and substantially larger and allocated more to pulp and less to exocarp than wild fruits. The pulp of cultivated fruits was less acidic; also, the pulp had lower concentrations of phenolics and higher concentrations of sugar. The seeds were larger and more numerous and were less defended with phenolics in cultivated than in wild fruits. Discriminant Analysis showed that, among the many significant differences, fruit size and sugar concentration drove the great majority of the variance distinguishing wild from cultivated classes. Variance of pulp phenolics among individuals was significantly higher among wild trees than among cultivated trees, while variance of fruit mass and seed number was significantly higher among cultivated trees. Most traits showed strong correlations between years. Overall, we found a clear signature of a domestication syndrome in the fruits of cultivated caimito in Panama. PMID:20543881

  9. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation.

    PubMed

    Manoharan, Ranjith Kumar; Jung, Hee-Jeong; Hwang, Indeok; Jeong, Namhee; Kho, Kang Hee; Chung, Mi-Young; Nou, Ill-Sup

    2017-01-01

    Tomatoes provide a significant dietary source of the carotenoids, lycopene and β-carotene. During ripening, carotenoid accumulation determines the fruit colors while chlorophyll degradation. These traits have been, and continue to be, a significant focus for plant breeding efforts. Previous work has found strong evidence for a relationship between CYC-B gene expression and the orange color of fleshy fruit. Other work has identified a point mutation in SGR that impedes chlorophyll degradation and causes brown flesh color to be retained in some tomato varieties. We crossed two inbred lines, KNY2 (orange) and KNB1 (brown) and evaluated the relationship between these genes for their effect on fruit color. Phenotypes of F2 generation plants were analyzed and a novel 'orange-brown' fruit color was identified. We confirm two SNPs, one in CYC-B and another in SGR gene sequence, associated with segregation of 'orange-brown' fruit color in F2 generation. The carotenoid and chlorophyll content of a fleshy fruit was assessed across the different phenotypes and showed a strong correlation with expression pattern of carotenoid biosynthesis genes and SGR function. The orange-brown fruit has high β-carotene and chlorophyll. Our results provide valuable information for breeders to develop tomato fruit of a novel color using molecular markers.

  10. The U-shaped association of body mass index with mortality: Influence of the traits height, intelligence, and education.

    PubMed

    Jørgensen, Terese Sara Høj; Osler, Merete; Ängquist, Lars Henrik; Zimmermann, Esther; Christensen, Gunhild Tidemann; Sørensen, Thorkild I A

    2016-10-01

    The U-shaped association between body mass index (BMI) and mortality may depend on other traits with permanent health effects. Whether the association between BMI and mortality depends on levels of health-related traits known to be inversely associated with mortality throughout adult life such as height, intelligence, and education was investigated. The study was based on a cohort of young men with data on weight, height, intelligence test score, and education from the Danish Conscription Database. In total, 346,500 men born 1939 to 1959 were followed until December 2013. The association between BMI and mortality was analyzed using Cox-regression models including interactions between BMI and height, intelligence, and education, respectively. BMI and mortality showed the U-shaped association from the start of the follow-up period, and it persisted through the subsequent 56 years. As expected, the mortality was inversely associated with height, intelligence, and education, but the U shape of the association between BMI and mortality was unaffected by the levels of these traits except at higher BMI values, where the slopes were steeper for men with higher levels of height, intelligence, and education. High and low BMI was associated with higher mortality throughout life regardless of the levels of height, intelligence, and education. © 2016 The Obesity Society.

  11. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  12. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage.

    PubMed

    Li, Li; Luo, Zisheng; Huang, Xinhong; Zhang, Lu; Zhao, Pengyu; Ma, Hongyuan; Li, Xihong; Ban, Zhaojun; Liu, Xia

    2015-04-29

    To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest physiological quality traits including firmness, total soluble solids, total acidity, ascorbic acid and volatile production were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis. The proteins spanned a range of functions in various metabolic pathways and networks involved in carbohydrate and energy metabolism, volatile biosynthesis, phenylpropanoid activity, stress response and protein synthesis, degradation and folding. After CA and LT storage, 16 (13) and 11 (17) proteins, respectively, were significantly increased (decreased) in abundance, while expression profile of 12 proteins was significantly changed by both CA and LT. To summarize, the differential variability of abundance in strawberry proteome, working in a cooperative manner, provided an overview of the biological processes that occurred during CA and LT storage. Controlled atmosphere storage at an optimal temperature is regarded to be an effective postharvest technology to delay fruit senescence and maintain fruit quality during shelf life. Nonetheless, little information on fruit proteomic changes under controlled atmosphere and/or low temperature storage is available. The significance of this paper is that it is the first study employing a label-free approach in the investigation of strawberry fruit response to controlled atmosphere and cold storage. Changes in postharvest physiological quality traits including volatile production, firmness, ascorbic acid, soluble solids and total acidity were also characterized. Significant biological changes associated with senescence were revealed and differentially abundant proteins under various storage conditions were identified. Proteomic profiles were linked to physiological aspects of strawberry fruit senescence in order to provide new insights into possible regulation mechanisms. Findings from this study not only provide proteomic information on fruit regulation, but also pave the way for further quantitative studies at the transcriptomic and metabolomic levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    PubMed

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  15. Genetic control of biennial bearing in apple

    PubMed Central

    Guitton, Baptiste; Kelner, Jean-Jacques; Velasco, Riccardo; Gardiner, Susan E.; Chagné, David; Costes, Evelyne

    2012-01-01

    Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting, leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F1 population of 122 genotypes, from a ‘Starkrimson’ (strong biennial bearer)בGranny Smith’ (regular bearer) cross. The number of inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26 variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained 50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes were retrieved from the whole-genome assembly of ‘Golden Delicious’ and their position was compared with QTLs. Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and candidate gene co-locations and suggest the involvement of different physiological processes such as the regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also discussed. PMID:21963613

  16. Watermelon quality traits as affected by ploidy

    USDA-ARS?s Scientific Manuscript database

    Growers offering high quality watermelons [Citrullus lanatus (Thumb.), Matsum & Nakai] that are also high in phytonutrients will have stronger market opportunities. In order to offer highly nutritious fruit, the industry must understand the nature of phytonutrient accumulation as it is affected by ...

  17. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree

    PubMed Central

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767

  18. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    PubMed

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation.

  19. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation. PMID:26901339

  20. Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-01-01

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks. PMID:24531726

  1. Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora.

    PubMed

    Munguía-Rosas, Miguel A; Abdala-Roberts, Luis; Parra-Tabla, Víctor

    2013-11-01

    Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant-seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive.

  2. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    PubMed

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  3. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics.

    PubMed

    Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A

    2017-02-15

    Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development

    PubMed Central

    Alagna, Fiammetta; D'Agostino, Nunzio; Torchia, Laura; Servili, Maurizio; Rao, Rosa; Pietrella, Marco; Giuliano, Giovanni; Chiusano, Maria Luisa; Baldoni, Luciana; Perrotta, Gaetano

    2009-01-01

    Background Despite its primary economic importance, genomic information on olive tree is still lacking. 454 pyrosequencing was used to enrich the very few sequence data currently available for the Olea europaea species and to identify genes involved in expression of fruit quality traits. Results Fruits of Coratina, a widely cultivated variety characterized by a very high phenolic content, and Tendellone, an oleuropein-lacking natural variant, were used as starting material for monitoring the transcriptome. Four different cDNA libraries were sequenced, respectively at the beginning and at the end of drupe development. A total of 261,485 reads were obtained, for an output of about 58 Mb. Raw sequence data were processed using a four step pipeline procedure and data were stored in a relational database with a web interface. Conclusion Massively parallel sequencing of different fruit cDNA collections has provided large scale information about the structure and putative function of gene transcripts accumulated during fruit development. Comparative transcript profiling allowed the identification of differentially expressed genes with potential relevance in regulating the fruit metabolism and phenolic content during ripening. PMID:19709400

  5. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  6. Classification of Kiwifruit Grades Based on Fruit Shape Using a Single Camera

    PubMed Central

    Fu, Longsheng; Sun, Shipeng; Li, Rui; Wang, Shaojin

    2016-01-01

    This study aims to demonstrate the feasibility for classifying kiwifruit into shape grades by adding a single camera to current Chinese sorting lines equipped with weight sensors. Image processing methods are employed to calculate fruit length, maximum diameter of the equatorial section, and projected area. A stepwise multiple linear regression method is applied to select significant variables for predicting minimum diameter of the equatorial section and volume and to establish corresponding estimation models. Results show that length, maximum diameter of the equatorial section and weight are selected to predict the minimum diameter of the equatorial section, with the coefficient of determination of only 0.82 when compared to manual measurements. Weight and length are then selected to estimate the volume, which is in good agreement with the measured one with the coefficient of determination of 0.98. Fruit classification based on the estimated minimum diameter of the equatorial section achieves a low success rate of 84.6%, which is significantly improved using a linear combination of the length/maximum diameter of the equatorial section and projected area/length ratios, reaching 98.3%. Thus, it is possible for Chinese kiwifruit sorting lines to reach international standards of grading kiwifruit on fruit shape classification by adding a single camera. PMID:27376292

  7. Accumulation of anthocyanins in tomato skin extends shelf life.

    PubMed

    Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie

    2013-11-01

    Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.).

    PubMed

    Rosati, Adolfo; Cafiero, Caterina; Paoletti, Andrea; Alfei, Barbara; Caporali, Silvia; Casciani, Lorena; Valentini, Massimiliano

    2014-09-15

    We examined whether some agronomical practices (i.e. organic vs. conventional) affect olive fruit and oil composition, and oil sensory properties. Fruit characteristics (i.e. fresh and dry weight of pulp and pit, oil content on a fresh and dry weight basis) did not differ. Oil chemical traits did not differ except for increased content of polyphenols in the organic treatments, and some changes in the acidic composition. Sensory analysis revealed increased bitterness (both cultivars) and pungency (Frantoio) and decreased sweetness (Frantoio) in the organic treatment. Fruit metabolomic analysis with HRMAS-NMR indicated significant changes in some compounds including glycocholate, fatty acids, NADPH, NADP+, some amino acids, thymidine, trigonelline, nicotinic acid, 5,6-dihydrouracil, hesanal, cis-olefin, β-D-glucose, propanal and some unassigned species. The results suggest that agronomical practices may have effects on fruit composition that may be difficult to detect unless a broad-spectrum analysis is used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Relationship between the Morphology and Structure and the Quality of Fruits of Two Pear Cultivars (Pyrus communis L.) during Their Development and Maturation

    PubMed Central

    2013-01-01

    The flavour and nutritional values of pears are appreciated by consumers worldwide, who, however, demand specific fruit quality, that is, attractive appearance, firmness and flavour, and health safety as well as long-term shelf life and storability. Pear cultivars differ in terms of the above-mentioned traits; therefore, we undertook investigations to demonstrate the differences in structure of fruits of two pear cultivars that determine fruit quality in its broadest sense. The micromorphology, anatomy, and ultrastructure of “Clapp's Favourite” and “Conference” fruits in the fruit set stage and in the harvest maturity stage were investigated under light microscope and scanning and transmission electron microscopes. The fruits of “Clapp's Favourite” and “Conference” in the fruit set stage exhibited distinct differences in the values of anatomical parameters only. Substantial differences in fruit structure were observed in the harvest maturity stage. The analyses indicate that firmness and durability of pear fruits are largely influenced by the presence of russeting, the proportion of closed lenticels and number of stone cells, and the content of starch grains and tannin compounds. The thickness of the cuticle and presence of epicuticular waxes as well as the number of lenticels and the number and depth of microcracks play a minor role. PMID:24327806

  10. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage

    PubMed Central

    Yun, Ze; Jin, Shuai; Ding, Yuduan; Wang, Zhuang; Gao, Huijun; Pan, Zhiyong; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2012-01-01

    Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)–CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses. PMID:22323274

  11. Solid ground in the wetlands of personality: a reply to Block.

    PubMed

    Costa, P T; McCrae, R R

    1995-03-01

    The five-factor model (FFM) of personality offers a structural organization of personality traits in terms of 5 broad factors. J. Block's (1995) critique of the FFM failed to recognize the utility of a trait taxonomy and the intent of research designed to test the 5-factor hypothesis. In a number of instances he omitted reference to empirical evidence that addresses concerns he raised; this evidence shows strong support for the FFM beyond the lexical and questionnaire traditions he reviews. Many of his suggestions for improving the quality of personality research are valuable, but are likely to be more fruitful when used in conjunction with established knowledge about the structure of personality traits: the FFM.

  12. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS).

    PubMed

    Steingass, Christof B; Grauwet, Tara; Carle, Reinhold

    2014-05-01

    Profiling of volatiles from pineapple fruits was performed at four ripening stages using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS). In total, 142 volatiles were detected, of which 132 were identified. Multivariate data analysis was carried out to assess the effect of post-harvest storage on volatiles composition of green-ripe sea-freighted pineapple in comparison to air-freighted fruits harvested at full maturity. The latter fruits were characterised by volatiles described as potent odorants in pineapples, such as δ-octalactone, γ-lactones, 1-(E,Z)-3,5-undecatriene and 1,3,5,8-undecatetraene, as well as various methyl esters. In contrast, post-harvest storage of green-ripe sea-freighted fruits resulted in an increased formation of ethyl esters, acetates, acetoxy esters and alcohols, thus allowing the authentication of sea- and air-freighted pineapples, respectively. Particularly, compounds presumably derived from methyl-branched amino acid catabolism were identified in the fruits at later post-harvest stages. In addition, physicochemical traits were determined to characterise the fruit maturity stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. An experimental validation of genomic selection in octoploid strawberry

    PubMed Central

    Gezan, Salvador A; Osorio, Luis F; Verma, Sujeet; Whitaker, Vance M

    2017-01-01

    The primary goal of genomic selection is to increase genetic gains for complex traits by predicting performance of individuals for which phenotypic data are not available. The objective of this study was to experimentally evaluate the potential of genomic selection in strawberry breeding and to define a strategy for its implementation. Four clonally replicated field trials, two in each of 2 years comprised of a total of 1628 individuals, were established in 2013–2014 and 2014–2015. Five complex yield and fruit quality traits with moderate to low heritability were assessed in each trial. High-density genotyping was performed with the Affymetrix Axiom IStraw90 single-nucleotide polymorphism array, and 17 479 polymorphic markers were chosen for analysis. Several methods were compared, including Genomic BLUP, Bayes B, Bayes C, Bayesian LASSO Regression, Bayesian Ridge Regression and Reproducing Kernel Hilbert Spaces. Cross-validation within training populations resulted in higher values than for true validations across trials. For true validations, Bayes B gave the highest predictive abilities on average and also the highest selection efficiencies, particularly for yield traits that were the lowest heritability traits. Selection efficiencies using Bayes B for parent selection ranged from 74% for average fruit weight to 34% for early marketable yield. A breeding strategy is proposed in which advanced selection trials are utilized as training populations and in which genomic selection can reduce the breeding cycle from 3 to 2 years for a subset of untested parents based on their predicted genomic breeding values. PMID:28090334

  14. To What Extent Can the Big Five and Learning Styles Predict Academic Achievement

    ERIC Educational Resources Information Center

    Köseoglu, Yaman

    2016-01-01

    Personality traits and learning styles play defining roles in shaping academic achievement. 202 university students completed the Big Five personality traits questionnaire and the Inventory of Learning Processes Scale and self-reported their grade point averages. Conscientiousness and agreeableness, two of the Big Five personality traits, related…

  15. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.

    PubMed

    Iriondo, J M; Milla, R; Volis, S; Rubio de Casas, R

    2018-01-01

    Changes in reproductive traits associated with domestication critically determine the evolutionary divergence between crops and their wild relatives, as well as the potential of crop plants to become feral. In this review, we examine the genetic mechanisms of plant domestication and the different types of selection involved, and describe the particularities of domestication of Mediterranean field crops with regard to their reproductive traits, showing illustrative examples. We also explore gene flow patterns between Mediterranean field crops and their wild relatives, along with their ecological, evolutionary and economic implications. Domestication entails multiple selective processes, including direct selection, environmental adaptation and developmental constraints. In contrast to clonal propagation in perennials, sexual reproduction and seed propagation in annuals and biennials have led to a distinct pathway of evolution of reproductive traits. Thus, the initial domestication and further breeding of Mediterranean field crops has brought about changes in reproductive traits, such as higher mean values and variance of seed and fruit sizes, reduced fruit and seed toxicity, non-shattering seeds and loss of seed dormancy. Evolution under domestication is not a linear process, and bi-directional gene flow between wild and crop taxa is a frequent phenomenon. Thus, hybridisation and introgression have played a very important role in determining the genetics of current cultivars. In turn, gene flow from crops to wild relatives can lead to introgression of crop genes into wild populations and potentially alter the characteristics of natural communities. In conclusion, plant evolution under domestication has not only changed the reproductive biology of cultivated taxa, its effects are multifaceted and have implications beyond agriculture. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. The tale of the shrinking weapon: seasonal changes in nutrition affect weapon size and sexual dimorphism, but not contemporary evolution.

    PubMed

    Miller, C W; McDonald, G C; Moore, A J

    2016-11-01

    Sexually selected traits are often highly variable in size within populations due to their close link with the physical condition of individuals. Nutrition has a large impact on physical condition, and thus, any seasonal changes in nutritional quality are predicted to alter the average size of sexually selected traits as well as the degree of sexual dimorphism in populations. However, although traits affected by mate choice are well studied, we have a surprising lack of knowledge of how natural variation in nutrition affects the expression of sexually selected weapons and sexual dimorphism. Further, few studies explicitly test for differences in the heritability and mean-scaled evolvability of sexually selected traits across conditions. We studied Narnia femorata (Hemiptera: Coreidae), an insect where males use their hind legs as weapons and the femurs are enlarged, to understand the extent to which weapon expression, sexual dimorphism and evolvability change across the actual range of nutrition available in the wild. We found that insects raised on a poor diet (cactus without fruit) are nearly monomorphic, whereas those raised on a high-quality diet (cactus with ripe fruit) are distinctly sexually dimorphic via the expression of large hind leg weapons in males. Contrary to our expectations, we found little evidence of a potential for evolutionary change for any trait measured. Thus, although we show weapons are highly condition dependent, and changes in weapon expression and dimorphism could alter evolutionary dynamics, our populations are unlikely to experience further evolutionary changes under current conditions. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  17. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.

    PubMed

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A

    2016-08-09

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.

  18. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    PubMed Central

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.

    2016-01-01

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774

  19. Counselor Effectiveness: A Changing Emphasis

    ERIC Educational Resources Information Center

    Doyle, W. L.; Conklin, R. C.

    1970-01-01

    It is suggested that emphasis be changed from trait factor personality studies such as tolerance for ambiguity, nurturance, and abasement, to researching the area of cognitive style, flexibility, perception and psychological openness as perhaps being more fruitful in advancing knowledge of the criterion variable. (Author)

  20. Functionally specialised birds respond flexibly to seasonal changes in fruit availability.

    PubMed

    Bender, Irene M A; Kissling, W Daniel; Böhning-Gaese, Katrin; Hensen, Isabell; Kühn, Ingolf; Wiegand, Thorsten; Dehling, D Matthias; Schleuning, Matthias

    2017-07-01

    Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are most flexible in switching to other fruit resources across seasons. The high flexibility of functionally specialised bird species to switch seasonally to other resources challenges the view that consumer species rely on functionally similar resources throughout the year. This flexibility of consumer species may be an important, but widely neglected mechanism that could potentially stabilise consumer-resource networks in response to human disturbance and environmental change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  1. Different Reactive Oxygen Species Scavenging Properties of Flavonoids Determine Their Abilities to Extend the Shelf Life of Tomato.

    PubMed

    Zhang, Yang; De Stefano, Rosalba; Robine, Marie; Butelli, Eugenio; Bulling, Katharina; Hill, Lionel; Rejzek, Martin; Martin, Cathie; Schoonbeek, Henk-jan

    2015-11-01

    The shelf life of tomato (Solanum lycopersicum) fruit is determined by the processes of overripening and susceptibility to pathogens. Postharvest shelf life is one of the most important traits for commercially grown tomatoes. We compared the shelf life of tomato fruit that accumulate different flavonoids and found that delayed overripening is associated with increased total antioxidant capacity caused by the accumulation of flavonoids in the fruit. However, reduced susceptibility to Botrytis cinerea, a major postharvest fungal pathogen of tomato, is conferred by specific flavonoids only. We demonstrate an association between flavonoid structure, selective scavenging ability for different free radicals, and reduced susceptibility to B. cinerea. Our study provides mechanistic insight into how flavonoids influence the shelf life, information that could be used to improve the shelf life of tomato and, potentially, other soft fruit. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Different Reactive Oxygen Species Scavenging Properties of Flavonoids Determine Their Abilities to Extend the Shelf Life of Tomato1[OPEN

    PubMed Central

    Zhang, Yang; De Stefano, Rosalba; Robine, Marie; Butelli, Eugenio; Bulling, Katharina; Hill, Lionel; Rejzek, Martin; Martin, Cathie; Schoonbeek, Henk-jan

    2015-01-01

    The shelf life of tomato (Solanum lycopersicum) fruit is determined by the processes of overripening and susceptibility to pathogens. Postharvest shelf life is one of the most important traits for commercially grown tomatoes. We compared the shelf life of tomato fruit that accumulate different flavonoids and found that delayed overripening is associated with increased total antioxidant capacity caused by the accumulation of flavonoids in the fruit. However, reduced susceptibility to Botrytis cinerea, a major postharvest fungal pathogen of tomato, is conferred by specific flavonoids only. We demonstrate an association between flavonoid structure, selective scavenging ability for different free radicals, and reduced susceptibility to B. cinerea. Our study provides mechanistic insight into how flavonoids influence the shelf life, information that could be used to improve the shelf life of tomato and, potentially, other soft fruit. PMID:26082399

  3. Can personality close the intention-behavior gap for healthy eating? An examination with the HEXACO personality traits.

    PubMed

    Monds, Lauren A; MacCann, Carolyn; Mullan, Barbara A; Wong, Cara; Todd, Jemma; Roberts, Richard D

    2016-10-01

    The aim of this study was to investigate the predictive and moderating effects of HEXACO personality factors, in addition to theory of planned behavior (TPB) variables, on fruit and vegetable consumption. American college students (N = 1036) from 24 institutions were administered the TPB, HEXACO and a self-reported fruit and vegetable consumption measure. The TPB predicted 11-17% of variance in fruit and vegetable consumption, with greater variance accounted for in healthy weight compared to overweight individuals. Personality did not significantly improve the prediction of behavior above TPB constructs; however, conscientiousness was a significant incremental predictor of intention in both healthy weight and overweight/obese groups. While support was found for the TPB as an important predictor of fruit and vegetable consumption in students, little support was found for personality factors. Such findings have implications for interventions designed to target students at risk of chronic disease.

  4. Genetic determinism of anatomical and hydraulic traits within an apple progeny.

    PubMed

    Lauri, Pierre-Éric; Gorza, Olivier; Cochard, Hervé; Martinez, Sébastien; Celton, Jean-Marc; Ripetti, Véronique; Lartaud, Marc; Bry, Xavier; Trottier, Catherine; Costes, Evelyne

    2011-08-01

    The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production. © 2011 Blackwell Publishing Ltd.

  5. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data.

    PubMed

    Adams, Dean C

    2014-09-01

    Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Genetic transformation of mature citrus plants.

    PubMed

    Cervera, Magdalena; Juárez, José; Navarro, Luis; Peña, Leandro

    2005-01-01

    Most woody fruit species have long juvenile periods that drastically prolong the time required to analyze mature traits. Evaluation of characteristics related to fruits is a requisite to release any new variety into the market. Because of a decline in regenerative and transformation potential, genetic transformation procedures usually employ juvenile material as the source of plant tissue, therefore resulting in the production of juvenile plants. Direct transformation of mature material could ensure the production of adult transgenic plants, bypassing in this way the juvenile phase. Invigoration of the source adult material, establishment of adequate transformation and regeneration conditions, and acceleration of plant development through grafting allowed us to produce transgenic mature sweet orange trees flowering and bearing fruits in a short time period.

  7. ESTs from Seeds to Assist the Selective Breeding of Jatropha curcas L. for Oil and Active Compounds

    PubMed Central

    Gomes, Kleber A; Almeida, Tiago C; Gesteira, Abelmon S; Lôbo, Ivon P; Guimarães, Ana Carolina R; de Miranda, Antonio B; Van Sluys, Marie-Anne; da Cruz, Rosenira S; Cascardo, Júlio CM; Carels, Nicolas

    2010-01-01

    We report here on the characterization of a cDNA library from seeds of Jatropha curcas L. at three stages of fruit maturation before yellowing. We sequenced a total of 2200 clones and obtained a set of 931 non-redundant sequences (unigenes) after trimming and quality control, ie, 140 contigs and 791 singlets with PHRED quality ≥10. We found low levels of sequence redundancy and extensive metabolic coverage by homology comparison to GO. After comparison of 5841 non-redundant ESTs from a total of 13193 reads from GenBank with KEGG, we identified tags with nucleotide variations among J. curcas accessions for genes of fatty acid, terpene, alkaloid, quinone and hormone pathways of biosynthesis. More specifically, the expression level of four genes (palmitoyl-acyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B, lysophosphatidic acid acyltransferase and geranyl pyrophosphate synthase) measured by real-time PCR proved to be significantly different between leaves and fruits. Since the nucleotide polymorphism of these tags is associated to higher level of gene expression in fruits compared to leaves, we propose this approach to speed up the search for quantitative traits in selective breeding of J. curcas. We also discuss its potential utility for the selective breeding of economically important traits in J. curcas. PMID:26217103

  8. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries

    PubMed Central

    Considine, Michael J.; Foyer, Christine H.

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the “ambient” environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months. PMID:25750643

  9. From seed production to seedling establishment: Important steps in an invasive process

    NASA Astrophysics Data System (ADS)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  10. Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content1[C][W][OA

    PubMed Central

    Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J.; Sánchez-Sevilla, José F.; Valpuesta, Victoriano; Botella, Miguel A.; Granell, Antonio; Amaya, Iraida

    2012-01-01

    Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype ‘1392’, selected for its superior flavor, and ‘232’ was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line ‘1392’ displayed higher volatile levels than ‘232’, and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening. PMID:22474217

  11. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection). PMID:21797998

  12. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

    PubMed

    Diaz, Aurora; Fergany, Mohamed; Formisano, Gelsomina; Ziarsolo, Peio; Blanca, José; Fei, Zhanjun; Staub, Jack E; Zalapa, Juan E; Cuevas, Hugo E; Dace, Gayle; Oliver, Marc; Boissot, Nathalie; Dogimont, Catherine; Pitrat, Michel; Hofstede, René; van Koert, Paul; Harel-Beja, Rotem; Tzuri, Galil; Portnoy, Vitaly; Cohen, Shahar; Schaffer, Arthur; Katzir, Nurit; Xu, Yong; Zhang, Haiying; Fukino, Nobuko; Matsumoto, Satoru; Garcia-Mas, Jordi; Monforte, Antonio J

    2011-07-28

    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).

  13. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China.

    PubMed

    Ding, Ning; Yang, Weifang; Zhou, Yunlei; González-Bergonzoni, Ivan; Zhang, Jie; Chen, Kai; Vidal, Nicolas; Jeppesen, Erik; Liu, Zhengwen; Wang, Beixin

    2017-01-01

    Functional traits and diversity indices have provided new insights into community responses to stressors. Most traits of aquatic organisms have frequently been tested for predictability and geographical stability in response to environmental variables, but such tests of functional diversity indices are rare. We sampled macroinvertebrates at 18 reference sites (RS) and 35 disturbed sites (DS) from headwater streams in the upper Mekong River Basin, Xishuangbanna (XSBN), China. We selected 29 qualitative categories of eight traits and then calculated five functional diversity indices, namely functional richness (FRic), functional evenness (FEve), functional dispersion (FDis), functional divergence (FDiv) and Rao's Quadratic Entropy (RaoQ), and two trait diversity indices, namely trait richness (TR) and trait diversity (TD). We used combination of RLQ and fourth-corner to examine the response of traits and functional diversity to the disturbance and environmental variables. We used variance partitioning to explore the relative role of environmental variables and spatial factors in constraining trait composition and functional diversity. We found that the relative frequency of ten trait categories, and the values of TD, TR, FRic and FDis in RS were significantly different (p<0.05) from DS. In addition, the seven traits (except for "habit") demonstrated a predictable response of trait patterns along the integrative environmental gradients. Environmental variables significantly contributed to most of the traits, functional diversity and trait diversity. However, spatial variables were mainly significant in shaping ecological traits, FRic and FEve. Our results confirm the dominant role of environmental variables in the determination of community trait composition and functional diversity, and substantiate the contribution of spatial vectors in explaining the variance of functional traits and diversity. We conclude that the traits "Refuge", "External protection", "Respiration" and "Body shape", and diversity indices FDis, TD, and TR are promising indicators of stream conditions at XSBN. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit

    PubMed Central

    Xin, Rui; Liu, Xiaohong; Wei, Chunyan; Yang, Chong; Liu, Hongru; Cao, Xiangmei; Wu, Di; Chen, Kunsong

    2018-01-01

    First purchases of fruit are mainly dependent on aspects of appearance such as color. However, repeat buys of fruit are determined by internal quality traits such as flavor-related volatiles. Differences in volatile profiles in white- and red-fleshed peach fruit are not well understood. In the present study, peach cultivars with white- and red-fleshed fruit were subjected to sensory analysis using electronic nose (e-nose) to evaluate overview volatile profiles. Approximately 97.3% of the total variation in peach color-volatiles was explained by the first principle component 1 (PC1) and PC2. After analyzing sensory differences between peach fruit samples, 50 volatile compounds were characterized based on GC-MS. Multivariate analysis such as partial least squares discriminant analysis (PLS-DA) was applied to identify volatile compounds that contribute to difference in white- and red-fleshed peach fruit cultivars. A total of 18 volatiles that could separate peach fruit cultivars with different colors in flesh during ripening were identified based on variable importance in projection (VIP) score. Fruity note latone γ-hexalactone had higher contents in red-fleshed cultivars, while grassy note C6 compounds such as hexanal, 2-hexenal, (E)-2-hexenal, 1-hexanol, and (Z)-2-hexen-1-ol showed great accumulation in white-fleshed peach fruit. PMID:29498705

  15. Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies.

    PubMed

    Nojima, Satoshi; Linn, Charles; Roelofs, Wendell

    2003-10-01

    Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.

  16. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck).

    PubMed

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.

  17. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck)

    PubMed Central

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control. PMID:27092171

  18. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanism controlling accumulation of soluble sugars in watermelon (Citrullus lanatus) fruit, a trait associated with sweet-dessert watermelon domestication, is still unknown. We re-sequenced 96 recombinant inbred lines, derived from a cross between sweet and unsweet watermelon accessi...

  19. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    PubMed

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling.

  20. Three-dimensional reconstruction of fruit trees by a shape from silhouette method

    USDA-ARS?s Scientific Manuscript database

    In order to robotically prune a dormant fruit tree, the branches must be identified in a three-dimensional space. Furthermore, the branches need to be measured in order to determine which branches should be pruned. Both the identification and measurement of branches can be accomplished by generati...

  1. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  2. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene.

  3. Fruit Size Determines the Role of Three Scatter-Hoarding Rodents as Dispersers or Seed Predators of a Fleshy-Fruited Atacama Desert Shrub

    PubMed Central

    Loayza, Andrea P.; Squeo, Francisco A.

    2016-01-01

    Scatter-hoarding rodents can act as both predators and dispersers for many large-seeded plants because they cache seeds for future use, but occasionally forget them in sites with high survival and establishment probabilities. The most important fruit or seed trait influencing rodent foraging behavior is seed size; rodents prefer large seeds because they have higher nutritional content, but this preference can be counterbalanced by the higher costs of handling larger seeds. We designed a cafeteria experiment to assess whether fruit and seed size of Myrcianthes coquimbensis, an endangered desert shrub, influence the decision-making process during foraging by three species of scatter-hoarding rodents differing in body size: Abrothrix olivaceus, Phyllotis darwini and Octodon degus. We found that the size of fruits and seeds influenced foraging behavior in the three rodent species; the probability of a fruit being harvested and hoarded was higher for larger fruits than for smaller ones. Patterns of fruit size preference were not affected by rodent size; all species were able to hoard fruits within the entire range of sizes offered. Finally, fruit and seed size had no effect on the probability of seed predation, rodents typically ate only the fleshy pulp of the fruits offered and discarded whole, intact seeds. In conclusion, our results reveal that larger M. coquimbensis fruits have higher probabilities of being harvested, and ultimately of its seeds being hoarded and dispersed by scatter-hoarding rodents. As this plant has no other dispersers, rodents play an important role in its recruitment dynamics. PMID:27861550

  4. Mapping, Complementation, and Targets of the Cysteine Protease Actinidin in Kiwifruit1[C][W][OA

    PubMed Central

    Nieuwenhuizen, Niels J.; Maddumage, Ratnasiri; Tsang, Gianna K.; Fraser, Lena G.; Cooney, Janine M.; De Silva, H. Nihal; Green, Sol; Richardson, Kim A.; Atkinson, Ross G.

    2012-01-01

    Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin. PMID:22039217

  5. Individual differences in personality predict how people look at faces.

    PubMed

    Perlman, Susan B; Morris, James P; Vander Wyk, Brent C; Green, Steven R; Doyle, Jaime L; Pelphrey, Kevin A

    2009-06-22

    Determining the ways in which personality traits interact with contextual determinants to shape social behavior remains an important area of empirical investigation. The specific personality trait of neuroticism has been related to characteristic negative emotionality and associated with heightened attention to negative, emotionally arousing environmental signals. However, the mechanisms by which this personality trait may shape social behavior remain largely unspecified. We employed eye tracking to investigate the relationship between characteristics of visual scanpaths in response to emotional facial expressions and individual differences in personality. We discovered that the amount of time spent looking at the eyes of fearful faces was positively related to neuroticism. This finding is discussed in relation to previous behavioral research relating personality to selective attention for trait-congruent emotional information, neuroimaging studies relating differences in personality to amygdala reactivity to socially relevant stimuli, and genetic studies suggesting linkages between the serotonin transporter gene and neuroticism. We conclude that personality may be related to interpersonal interaction by shaping aspects of social cognition as basic as eye contact. In this way, eye gaze represents a possible behavioral link in a complex relationship between genes, brain function, and personality.

  6. The WD-Repeat Protein CsTTG1 Regulates Fruit Wart Formation through Interaction with the Homeodomain-Leucine Zipper I Protein Mict1

    PubMed Central

    Yin, Shuai; Liu, Xingwang; Liu, Bin; Yang, Sen; Xue, Shudan; Cai, Yanling; Liu, Huiling; Dong, Mingming; Zhang, Yaqi; Zhao, Binyu

    2016-01-01

    The cucumber (Cucumis sativus) fruit is covered with bloom trichomes and warts (composed of spines and tubercules), which have an important impact on the commercial value of the crop. However, little is known about the regulatory mechanism underlying their formation. Here, we reported that the cucumber WD-repeat homolog CsTTG1, which is localized in the nucleus and cytomembrane, plays an important role in the formation of cucumber fruit bloom trichomes and warts. Functional characterization of CsTTG1 revealed that it is mainly expressed in the epidermis of cucumber ovary and that its overexpression in cucumber alters the density of fruit bloom trichomes and spines, thereby promoting the warty fruit trait. Conversely, silencing CsTTG1 expression inhibits the initiation of fruit spines. Molecular and genetic analyses showed that CsTTG1 acts in parallel to Mict/CsGL1, a key trichome formation factor, to regulate the initiation of fruit trichomes, including fruit bloom trichomes and spines, and that the further differentiation of fruit spines and formation of tubercules regulated by CsTTG1 is dependent on Mict. Using yeast two-hybrid assay and bimolecular fluorescence complementation assay, we determined that CsTTG1 directly interacts with Mict. Collectively, our results indicate that CsTTG1 is an important component of the molecular network that regulates fruit bloom trichome and wart formation in cucumber. PMID:27208299

  7. [Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii].

    PubMed

    Huang, Jie; Tu, Dong-ping; Ma, Xiao-jun; Mo, Chang-ming; Pan, Li-mei; Bai, Long-hua; Feng, Shi-xin

    2015-09-01

    To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination.

  8. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys.

    PubMed

    Marroig, G; Cheverud, J M

    2001-12-01

    Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.

  9. Comparative transcriptomics of wild North American Vitis species

    USDA-ARS?s Scientific Manuscript database

    The cultivated grapevine (Vitis vinifera) is one of the world’s most important fruit crops. While grapes are now cultivated across the world, biotic and abiotic stresses often limit the production of grapes. Compared with the cultivated grape, wild grapevine species possess adaptive traits for str...

  10. Phenotypic and molecular variation in 44 vintage tomato varieties

    USDA-ARS?s Scientific Manuscript database

    An important goal of tomato breeding is to create varieties that will provide high quality product for fresh consumption. Traits such as lycopene, total soluble solids (TSS), vitamin C and titratable acidity (TA) are major components of fruit flavor and quality. Although several-thousand genotypes a...

  11. Marine extinction risk shaped by trait-environment interactions over 500 million years.

    PubMed

    Orzechowski, Emily A; Lockwood, Rowan; Byrnes, Jarrett E K; Anderson, Sean C; Finnegan, Seth; Finkel, Zoe V; Harnik, Paul G; Lindberg, David R; Liow, Lee Hsiang; Lotze, Heike K; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P

    2015-10-01

    Perhaps the most pressing issue in predicting biotic responses to present and future global change is understanding how environmental factors shape the relationship between ecological traits and extinction risk. The fossil record provides millions of years of insight into how extinction selectivity (i.e., differential extinction risk) is shaped by interactions between ecological traits and environmental conditions. Numerous paleontological studies have examined trait-based extinction selectivity; however, the extent to which these patterns are shaped by environmental conditions is poorly understood due to a lack of quantitative synthesis across studies. We conducted a meta-analysis of published studies on fossil marine bivalves and gastropods that span 458 million years to uncover how global environmental and geochemical changes covary with trait-based extinction selectivity. We focused on geographic range size and life habit (i.e., infaunal vs. epifaunal), two of the most important and commonly examined predictors of extinction selectivity. We used geochemical proxies related to global climate, as well as indicators of ocean acidification, to infer average global environmental conditions. Life-habit selectivity is weakly dependent on environmental conditions, with infaunal species relatively buffered from extinction during warmer climate states. In contrast, the odds of taxa with broad geographic ranges surviving an extinction (>2500 km for genera, >500 km for species) are on average three times greater than narrow-ranging taxa (estimate of odds ratio: 2.8, 95% confidence interval = 2.3-3.5), regardless of the prevailing global environmental conditions. The environmental independence of geographic range size extinction selectivity emphasizes the critical role of geographic range size in setting conservation priorities. © 2015 John Wiley & Sons Ltd.

  12. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2015-11-01

    Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist. © 2015 John Wiley & Sons Ltd.

  13. NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit[W][OPEN

    PubMed Central

    Tikunov, Yury M.; Molthoff, Jos; de Vos, Ric C.H.; Beekwilder, Jules; van Houwelingen, Adele; van der Hooft, Justin J.J.; Nijenhuis-de Vries, Mariska; Labrie, Caroline W.; Verkerke, Wouter; van de Geest, Henri; Viquez Zamora, Marcela; Presa, Silvia; Rambla, Jose Luis; Granell, Antonio; Hall, Robert D.; Bovy, Arnaud G.

    2013-01-01

    Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed “smoky.” Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. Using a combinatorial omics approach, we identified the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes. PMID:23956261

  14. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments

    NASA Astrophysics Data System (ADS)

    Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.

    2015-04-01

    Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different environmental gradients prevailing in the study areas. Biological trait analysis, with the addition of newly introduced trait categories, and functional diversity outcomes provided greater explanatory power of ecosystem functioning than species richness and taxonomic diversity.

  15. Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition.

    PubMed

    León, Lorenzo; de la Rosa, Raúl; Velasco, Leonardo; Belaj, Angjelina

    2018-01-01

    A wide genetic diversity has been reported for wild olives, which could be particularly interesting for the introgression of some agronomic traits and resistance to biotic and abiotic stresses in breeding programs. However, the introgression of some beneficial wild traits may be paralleled by negative effects on some other important agronomic and quality traits. From the quality point of view, virgin olive oil (VOO) from olive cultivars is highly appreciated for its fatty acid composition (high monounsaturated oleic acid content) and the presence of several minor components. However, the composition of VOO from wild origin and its comparison with VOO from olive cultivars has been scarcely studied. In this work, the variability for fruit characters (fruit weight and oil content, OC), fatty acid composition, and minor quality components (squalene, sterols and tocopherols content and composition) was studied in a set of plant materials involving three different origins: wild genotypes ( n = 32), cultivars ( n = 62) and genotypes belonging to cultivar × wild progenies ( n = 62). As expected, values for fruit size and OC in wild olives were lower than those obtained in cultivated materials, with intermediate values for cultivar × wild progenies. Wild olives showed a remarkably higher C16:0 percentage and tocopherol content in comparison to the cultivars. Contrarily, lower C18:1 percentage, squalene and sterol content were found in the wild genotypes, while no clear differences were found among the different plant materials regarding composition of the tocopherol and phytosterol fractions. Some common highly significant correlations among components of the same chemical family were found in all groups of plant materials. However, some other correlations were specific for one of the groups. The results of the study suggested that the use of wild germplasm in olive breeding programs will not have a negative impact on fatty acid composition, tocopherol content, and tocopherol and phytosterol profiles provided that selection for these compounds is conducted from early generations. Important traits such as tocopherol content could be even improved by using wild parents.

  16. Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety.

    PubMed

    Powell, Ann L T; Kalamaki, Mary S; Kurien, Philip A; Gurrieri, Sergio; Bennett, Alan B

    2003-12-03

    Tomatoes are grown for fresh consumption or for processing of the fruit. Some ripening-associated processes of the fruit can either contribute to or degrade attributes associated with both fresh and processing quality. For example, cell wall disassembly is associated with loss of fresh fruit firmness as well as with loss of processed tomato product viscosity. Several enzymes contribute to cell wall polysaccharide disassembly. Polygalacturonase (PG, poly[1,4-alpha-d-galactouronide] glucanohydrolase, EC 3.2.1.15) is among the most abundant polysaccharide hydrolases in ripening tomato fruit and is the major contributor to pectin depolymerization. Expansin (LeExp1) is also abundant in ripening fruit and is proposed to contribute to cell wall disassembly by nonhydrolytic activity, possibly by increasing substrate accessibility to other enzymes. Suppression of either LePG or LeExp1 expression alone results in altered softening and/or shelf life characteristics. To test whether simultaneous suppression of both LePG and LeExp1 expression influences fruit texture in additive or synergistic ways, transgenic Lycopersicon esculentum var. Ailsa Craig lines with reduced expression of either LePG or LeExp1 were crossed. Fruits from the third generation of progeny, homozygous for both transgenic constructs, were analyzed for firmness and other quality traits during ripening on or off the vine. In field-grown transgenic tomato fruit, suppression of LeExp1 or LePG alone did not significantly increase fruit firmness. However, fruits suppressed for both LePG and LeExp1 expression were significantly firmer throughout ripening and were less susceptible to deterioration during long-term storage. Juice prepared from the transgenic tomato fruit with reduced LePG and LeExp1 expression was more viscous than juice prepared from control fruit.

  17. Mapping morphological shape as a high-dimensional functional curve

    PubMed Central

    Fu, Guifang; Huang, Mian; Bo, Wenhao; Hao, Han; Wu, Rongling

    2018-01-01

    Abstract Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000–4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of ‘function’ instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do. PMID:28062411

  18. Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis.

    PubMed

    Martín-Forés, Irene; Avilés, Marta; Acosta-Gallo, Belén; Breed, Martin F; Del Pozo, Alejandro; de Miguel, José M; Sánchez-Jardón, Laura; Castro, Isabel; Ovalle, Carlos; Casado, Miguel A

    2017-05-08

    Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.

  19. Genomics of pear and other Rosaceae fruit trees

    PubMed Central

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399

  20. Genomics of pear and other Rosaceae fruit trees.

    PubMed

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry.

  1. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).

    PubMed

    Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A

    2013-10-01

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper. © 2013 Scandinavian Plant Physiology Society.

  2. An MSH4 homolog, stpp1, from Pleurotus pulmonarius is a "silver bullet" for resolving problems caused by spores in cultivated mushrooms.

    PubMed

    Okuda, Yasuhito; Murakami, Shigeyuki; Honda, Yoichi; Matsumoto, Teruyuki

    2013-08-01

    The enormous number of spores produced by fruiting bodies during cultivation of mushrooms can lead to allergic reactions of workers, reduction of commercial value, spread of mushroom disease, pollution of facilities, and depletion of genetic diversity in natural populations. A cultivar harboring a sporulation-deficient (sporeless) mutation would be very useful for preventing these problems, but sporeless commercial cultivars are very limited in usefulness because sporeless traits are often linked with traits that are unfavorable for commercial cultivation. Thus, identifying a causal gene of a sporeless phenotype not linked to the adverse traits in breeding and cultivation is crucial for the establishment of sporeless breeding using a strategy employing targeting induced local lesions in genomes (TILLING) in cultivated mushrooms. We used a Pleurotus pulmonarius (Fr.) Quél. sporeless strain to identify and characterize the single recessive gene controlling the mutation. The 3,853-bp stpp1 gene encodes a protein of 854 amino acids and belongs to the MutS homolog (MSH) family associated with mismatch repair in DNA synthesis or recombination in meiosis. Gene expression analysis of the fruiting body showed that this gene is strongly expressed in the gills. Phenotypic analysis of disruptants formed by gene targeting suggested a reproducible sporeless phenotype. Mutants deficient in a functional copy of this gene have no unfavorable traits for sporeless cultivar breeding, so this gene will be an extremely useful target for efficient and versatile sporeless breeding in P. pulmonarius and various other cultivated mushrooms.

  3. Seed source, seed traits, and frugivore habits: Implications for dispersal quality of two sympatric primates.

    PubMed

    Benítez-Malvido, Julieta; González-Di Pierro, Ana Ma; Lombera, Rafael; Guillén, Susana; Estrada, Alejandro

    2014-06-01

    • Premise of the study: Frugivore selection of fruits and treatment of seeds together with seed deposition site are crucial for the population dynamics of vertebrate-dispersed plants. However, frugivore species may influence dispersal quality differently even when feeding on the same fruit species and, while animals disperse some seeds, others simply fall beneath the parent plant.• Methods: In southern Mexico, we investigated to see if within-species seed traits (i.e., length, width, weight, and volume) and germination success differed according to seed source. For five tropical tree species we obtained ingested seeds from two sources, howler monkey (Alouatta pigra) and spider monkey (Ateles geoffroyi) feces; and noningested seeds from two sources, the ground and tree crowns (with predispersed seeds used as control).• Key results: A principal components' analysis showed that traits of seeds ingested by howler monkeys differed from other sources while seeds ingested by spider monkeys were similar to noningested seeds. Howlers consumed on average the larger seeds in Ampelocera hottlei, Brosimum lactescens, and Dialium guianense. Both primate species consumed the smaller seeds in Spondias mombin, while no seed trait differences among seed sources were found in Spondias radlkoferi. For all five tree species, germination rate was greatest for seeds ingested by howler monkeys.• Conclusions: For the studied plant species, seed ingestion by howler monkeys confers higher dispersal quality than ingestion by spider monkeys or nondispersal. Dispersal services of both primate species, however, are not redundant and may contribute to germination heterogeneity within plant populations in tropical forests. © 2014 Botanical Society of America, Inc.

  4. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution.

    PubMed

    Lu-Irving, Patricia; Marx, Hannah E; Dlugosch, Katrina M

    2018-05-10

    Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Transformation of fruit trees. Useful breeding tool or continued future prospect?

    PubMed

    Petri, César; Burgos, Lorenzo

    2005-02-01

    Regeneration and transformation systems using mature plant material of woody fruit species have to be achieved as a necessary requirement for the introduction of useful genes into specific cultivars and the rapid evaluation of resulting horticultural traits. Although the commercial production of transgenic annual crops is a reality, commercial genetically-engineered fruit trees are still far from common. In most woody fruit species, transformation and regeneration of commercial cultivars are not routine, generally being limited to a few genotypes or to seedlings. The future of genetic transformation as a tool for the breeding of fruit trees requires the development of genotype-independent procedures, based on the transformation of meristematic cells with high regeneration potential and/or the use of regeneration-promoting genes. The public concern with the introduction of antibiotic resistance into food and the restrictions due to new European laws that do not allow deliberate release of plants transformed with antibiotic-resistance genes highlight the development of methods that avoid the use of antibiotic-dependent selection or allow elimination of marker genesfrom the transformed plant as a research priority in coming years.

  6. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development.

    PubMed

    Desnoues, Elsa; Baldazzi, Valentina; Génard, Michel; Mauroux, Jehan-Baptiste; Lambert, Patrick; Confolent, Carole; Quilot-Turion, Bénédicte

    2016-05-01

    Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  8. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    PubMed Central

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  9. Peach cultivar releases and fruit trait distribution in the USDA-ARS Byron program

    USDA-ARS?s Scientific Manuscript database

    Conventional plant breeding is often daunting and costly, but it has a long history of success and remains predominant in today’s crop improvement programs. Success depends on optimal combination of parents to produce sufficient hybrids, and comprehensive evaluation of the hybrids to select potentia...

  10. Identification of QTLs controlling aroma volatiles using a 'Fortune' x 'Murcott' (Citrus reticulata) population

    USDA-ARS?s Scientific Manuscript database

    Flavor is an important attribute of mandarin (Citrus reticulata Blanco) and flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly rel...

  11. Molecular Characterization and Genetic Structure in Avocado (Persea americana Mill.) Using Simple Sequence Repeat (SSR) Markers

    USDA-ARS?s Scientific Manuscript database

    Avocado (Persea americana Mill.) is an economically important tropical fruit native to Mesoamerica. It belongs to the Lauraceae family and is subdivided in three horticultural races (Guatemalan, Mexican, and West Indian) based primarily on ecological adaptation, botanical and physiological traits. T...

  12. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental populations are typically unrepli...

  13. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicat...

  14. Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu

    2014-01-01

    A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.

  15. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    PubMed Central

    Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285

  16. Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis.

    PubMed

    Rosas, Antonio; Ferrando, Anabel; Bastir, Markus; García-Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; García-Martínez, Daniel; Pastor, Juan Francisco; de la Rasilla, Marco

    2017-10-01

    The El Sidrón tali sample is assessed in an evolutionary framework. We aim to explore the relationship between Neandertal talus morphology and body size/shape. We test the hypothesis 1: talar Neandertal traits are influenced by body size, and the hypothesis 2: shape variables independent of body size correspond to inherited primitive features. We quantify 35 landmarks through 3D geometric morphometrics techniques to describe H. neanderthalensis-H. sapiens shape variation, by Mean Shape Comparisons, Principal Component, Phenetic Clusters, Minimum spanning tree analyses and partial least square and regression of talus shape on body variables. Shape variation correlated to body size is compared to Neandertals-Modern Humans (MH) evolutionary shape variation. The Neandertal sample is compared to early hominins. Neandertal talus presents trochlear hypertrophy, a larger equality of trochlear rims, a shorter neck, a more expanded head, curvature and an anterior location of the medial malleolar facet, an expanded and projected lateral malleolar facet and laterally expanded posterior calcaneal facet compared to MH. The Neandertal talocrural joint morphology is influenced by body size. The other Neandertal talus traits do not co-vary with it or not follow the same co-variation pattern as MH. Besides, the trochlear hypertrophy, the trochlear rims equality and the short neck could be inherited primitive features; the medial malleolar facet morphology could be an inherited primitive feature or a secondarily primitive trait; and the calcaneal posterior facet would be an autapomorphic feature of the Neandertal lineage. © 2017 Wiley Periodicals, Inc.

  17. Expression Patterns of Genes Involved in Sugar Metabolism and Accumulation during Apple Fruit Development

    PubMed Central

    Cheng, Lailiang

    2012-01-01

    Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983

  18. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Age and violent-content labels make video games forbidden fruits for youth.

    PubMed

    Bijvank, Marije Nije; Konijn, Elly A; Bushman, Brad J; Roelofsma, Peter H M P

    2009-03-01

    To protect minors from exposure to video games with objectionable content (eg, violence and sex), the Pan European Game Information developed a classification system for video games (eg, 18+). We tested the hypothesis that this classification system may actually increase the attractiveness of games for children younger than the age rating. Participants were 310 Dutch youth. The design was a 3 (age group: 7-8, 12-13, and 16-17 years) x 2 (participant gender) x 7 (label: 7+, 12+, 16+, 18+, violence, no violence, or no label control) x 2 (game description: violent or nonviolent) mixed factorial. The first 2 factors were between subjects, whereas the last 2 factors were within subjects. Three personality traits (ie, reactance, trait aggressiveness, and sensation seeking) were also included in the analyses. Participants read fictitious video game descriptions and rated how much they wanted to play each game. Results revealed that restrictive age labels and violent-content labels increased the attractiveness of video games for all of the age groups (even 7- to 8-year-olds and girls). Although the Pan European Game Information system was developed to protect youth from objectionable content, this system actually makes such games forbidden fruits. Pediatricians should be aware of this forbidden-fruit effect, because video games with objectionable content can have harmful effects on children and adolescents.

  20. Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm.

    PubMed

    Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David

    2017-06-08

    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.

  1. Effects of Site and Cultivar on Consumer Acceptance of Pomegranate.

    PubMed

    Chater, John M; Merhaut, Donald J; Jia, Zhenyu; Arpaia, Mary Lu; Mauk, Peggy A; Preece, John E

    2018-05-01

    Pomegranate (Punica granatum L.) is an important fruit in many cultures. The fruit and juice have risen in popularity as it was discovered that pomegranate has relatively high antioxidant activity compared to most other fruits. In this study, six cultivars were utilized to determine consumer acceptance compared to the industry standard, 'Wonderful,' which comprises 90% to 95% of commercial production in the United States. Fruit were sourced from 2 cultivar field trials, one in inland Riverside, California, and one in coastal Ventura County, California. Cultivars selected for the study included 'Eversweet,' 'Green Globe,' 'Haku Botan,' 'Loffani,' 'Phoenicia,' 'Wonderful,' and 'cv. 857,' an heirloom cultivar from Ventura County, CA, U.S.A. Pomegranate arils were subject to sensory evaluation by 87 untrained consumer panelists in late 2016. Panelists were given pomegranate arils and asked to score the samples using a 9-point Hedonic scale for the following fruit quality traits: aril color, sweetness, tartness, seed hardness, bitterness, and overall desirability. There were significant differences among cultivars for all traits assessed by the sensory panelists. There were differences in acceptance among consumers for 'Wonderful' depending on if it was grown on the coast versus inland, and consumers preferred inland- versus coastal-grown 'Wonderful.' 'Wonderful' pomegranate was associated with cultivars that consumers scored low on desirability for bitterness. Cultivars that scored well in overall desirability compared with 'Wonderful' were 'cv. 857,' 'Eversweet,' 'Green Globe,' and 'Phoenicia.' Consumer sensory panels are important to determine scientifically which cultivars are desired by the public. These panels allowed for the determination of which pomegranate cultivars are liked or disliked by consumers and why. If the pomegranate growers know the most desirable cultivars for consumers, they are more likely to adopt and plant them, thus potentially increasing the diversity in the marketplace, as has been with apples, peaches, plums, pears, mangoes, strawberries, raspberries, blueberries, and citrus. © 2018 Institute of Food Technologists®.

  2. Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples.

    PubMed

    Würdig, Juliane; Flachowsky, Henryk; Höfer, Monika; Peil, Andreas; Eldin Ali, Mohammed Ali Mohammed Saad; Hanke, Magda-Viola

    2014-07-10

    Red fruit flesh is a desirable trait in apple breeding, because red-fleshed apples are a novelty and therefore considered to be more attractive to consumers and contain more health beneficial compounds. The red fruit flesh coloration is based on an increased level of cyanidin 3-galactoside, an anthocyanin whose biosynthesis is regulated by the MYB-type transcription factors MdMYB10 or MdMYB110a, respectively. A repeated segment in the MdMYB10 promoter allele R6 results in a gain-of-function mutation visible as red pigmentation of fruit skin and flesh and all vegetative tissues. Red-fleshed apple genotypes containing this R6 allele belong to the type 1 red-fleshed apple, which is known to be linked to some negative traits like astringent taste and internal flesh browning disorder. In type 2 red-fleshed apples the fruit flesh coloration is not inevitably linked with skin and leaf color. This red-fleshed apple phenotype, which is a result of increased expression of MdMYB110a, seems to be more useful for breeding, but it can be found rather seldom. In the present study 357 Malus accessions of the German Malus Germplasm Collection were evaluated for red fruit flesh coloration and the presence of the MdMYB10 R1 (not mutated) and R6 promoter alleles. Among them a total of 40 accessions were identified which contain the R6 allele. 37 accessions showed a red coloration of the fruit flesh. All these accessions belong to type 1 red-fleshed apple. No type 2 red-fleshed apple could be found. Three accessions with R6 allele had non-red-fleshed apples. 312 other non-red-fleshed accessions contained only the R1 allele. Five non-red-fleshed accessions contained a new promoter allele with an unexpected size of ~1 kbp. Sequencing of this allele detected the insertion of a non-autonomous apple transposon. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Auxin Synthesis-Encoding Transgene Enhances Grape Fecundity1[OA

    PubMed Central

    Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno

    2007-01-01

    Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528

  4. Elucidating the Mechanisms of the Tomato ovate Mutation in Regulating Fruit Quality Using Proteomics Analysis.

    PubMed

    Liu, Juhua; Zhang, Jing; Miao, Hongxia; Jia, Caihong; Wang, Jingyi; Xu, Biyu; Jin, Zhiqiang

    2017-11-22

    The ovate mutation has frequently been used to study changes in fruit shape but not fruit quality. A deterioration in fruit quality associated with the ovate mutation was discovered in this study. To elucidate how ovate influences the quality of fruit, we performed a proteomics analysis of the fruits of the ovate mutant (LA3543) and wild-type ("Ailsa Craig", LA2838A) using tandem mass tag analysis. The results indicated that the ovate mutation significantly influences fruit quality in a number of ways, including by reducing the expression of 1-aminocyclopropane-1-carboxylic acid oxidase 3 (ACO3) in ethylene biosynthesis, improving firmness by reducing the amount of pectinesterase and polygalacturonase, reducing sugar accumulation by downregulating the abundance of mannan endo-1,4-β-mannosidase 4, β-galactosidase, and β-amylase, and reducing the malic acid content by downregulating the accumulation of malic enzymes and malate synthase. These findings could inform future improvements in fruit quality.

  5. Synthesis of gold nanostructures using fruit extract of Garcinia Indica

    NASA Astrophysics Data System (ADS)

    Krishnaprabha, M.; Pattabi, Manjunatha

    2016-05-01

    Gold nanoparticles having different shapes are synthesized using extract of fresh fruit rinds of Garcinia Indica. The onset of growth and formation of gold nanostructures is confirmed from UV-Vis spectroscopy. Morphological studies are done using FESEM. Size dependent catalytic activity is evaluated with the model reduction reaction of 4-nitrophenol to 4-aminophenol.

  6. Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance

    NASA Astrophysics Data System (ADS)

    Govindan, Balaji; Johnson, Anil John; Nair, Sadasivan Nair Ajikumaran; Gopakumar, Bhaskaran; Mallampalli, Karuna Sri Lakshmi; Venkataraman, Ramaswamy; Koshy, Konnath Chacko; Baby, Sabulal

    2016-05-01

    Melocanna baccifera is a unique bamboo which produces the largest fruits in the grass family. Its gregarious flowering once in 45-50 years in north east India and adjacent regions is a botanical enigma, resulting in a glut of fruits. Proper utilization of M. baccifera fruits is not extant, and huge quantities of fruits are left underexploited due to lack of scientific information on their chemical composition and nutritional potential. Here we report the nutritional properties of M. baccifera fruits, and the ecological significance of its fruiting. This pear-shaped, fleshy bamboo fruit is rich in amino acids (lysine, glutamic acid), sugars (sucrose, glucose, fructose) and phenolics (ferulic acid). Protein content (free, bound) in M. baccifera fruits is very low. Fruits are rich in saturated fatty acids (palmitic acid), minerals (potassium), and only B series vitamins (B3) are detected in them. Rat feeding experiments showed that M. baccifera fruit alone is not a complete food, but with other protein supplements, it is a valuable food additive. This study could lead to better utilization of M. baccifera fruits during future flowering/fruiting events. These results could also help in the successful management of rodent outbreaks and other ecological problems associated with M. baccifera fruiting.

  7. Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance

    PubMed Central

    Govindan, Balaji; Johnson, Anil John; Nair, Sadasivan Nair Ajikumaran; Gopakumar, Bhaskaran; Mallampalli, Karuna Sri Lakshmi; Venkataraman, Ramaswamy; Koshy, Konnath Chacko; Baby, Sabulal

    2016-01-01

    Melocanna baccifera is a unique bamboo which produces the largest fruits in the grass family. Its gregarious flowering once in 45–50 years in north east India and adjacent regions is a botanical enigma, resulting in a glut of fruits. Proper utilization of M. baccifera fruits is not extant, and huge quantities of fruits are left underexploited due to lack of scientific information on their chemical composition and nutritional potential. Here we report the nutritional properties of M. baccifera fruits, and the ecological significance of its fruiting. This pear-shaped, fleshy bamboo fruit is rich in amino acids (lysine, glutamic acid), sugars (sucrose, glucose, fructose) and phenolics (ferulic acid). Protein content (free, bound) in M. baccifera fruits is very low. Fruits are rich in saturated fatty acids (palmitic acid), minerals (potassium), and only B series vitamins (B3) are detected in them. Rat feeding experiments showed that M. baccifera fruit alone is not a complete food, but with other protein supplements, it is a valuable food additive. This study could lead to better utilization of M. baccifera fruits during future flowering/fruiting events. These results could also help in the successful management of rodent outbreaks and other ecological problems associated with M. baccifera fruiting. PMID:27194218

  8. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. The role of impulsivity traits and delayed reward discounting in dysregulated eating and drinking among heavy drinkers

    PubMed Central

    Stojek, Monika M.; Fischer, Sarah; Murphy, Cara M.; MacKillop, James

    2016-01-01

    Impulsivity is a multifaceted construct that has been linked to dysregulated eating and problematic alcohol use. The UPPS model identifies five personality-based impulsivity traits that have unique predictive utility: Negative Urgency, Perseverance, Premeditation, Sensation Seeking, and Positive Urgency. Delayed reward discounting (DRD) is an index of impulsive decision making characterized by preference for smaller immediate gains at the cost of larger delayed gains. In the current study, we sought to refine the influence of impulsive personality traits and DRD on disordered eating patterns and problematic drinking. One hundred and eight treatment-seeking heavy drinkers were assessed for UPPS impulsivity traits, DRD, disordered eating, alcohol use, and demographic information. With regard to disordered eating patterns, DRD predicted higher levels of Dietary Restraint and Weight and Shape Concerns. Negative Urgency predicted binge eating and Weight and Shape Concerns. Positive Urgency predicted Eating Concerns. Female sex predicted Eating, Weight, and Shape Concerns. When considering problematic alcohol use, only Negative Urgency and Sensation Seeking were predictive. This is the first study to examine both personality-based impulsivity and DRD in relation to pathological eating and drinking behavior. The results suggest the importance of disentangling the contributions of various impulsivity constructs on dysregulated eating. PMID:24816318

  10. The role of impulsivity traits and delayed reward discounting in dysregulated eating and drinking among heavy drinkers.

    PubMed

    Stojek, Monika M; Fischer, Sarah; Murphy, Cara M; MacKillop, James

    2014-09-01

    Impulsivity is a multifaceted construct that has been linked to dysregulated eating and problematic alcohol use. The UPPS model identifies five personality-based impulsivity traits that have unique predictive utility: Negative Urgency, Perseverance, Premeditation, Sensation Seeking, and Positive Urgency. Delayed reward discounting (DRD) is an index of impulsive decision making characterized by preference for smaller immediate gains at the cost of larger delayed gains. In the current study, we sought to refine the influence of impulsive personality traits and DRD on disordered eating patterns and problematic drinking. One hundred and eight treatment-seeking heavy drinkers were assessed for UPPS impulsivity traits, DRD, disordered eating, alcohol use, and demographic information. With regard to disordered eating patterns, DRD predicted higher levels of Dietary Restraint and Weight and Shape Concerns. Negative Urgency predicted binge eating and Weight and Shape Concerns. Positive Urgency predicted Eating Concerns. Female sex predicted Eating, Weight, and Shape Concerns. When considering problematic alcohol use, only Negative Urgency and Sensation Seeking were predictive. This is the first study to examine both personality-based impulsivity and DRD in relation to pathological eating and drinking behavior. The results suggest the importance of disentangling the contributions of various impulsivity constructs on dysregulated eating. Copyright © 2014. Published by Elsevier Ltd.

  11. Genetics of canid skeletal variation: Size and shape of the pelvis

    PubMed Central

    Carrier, David R.; Chase, Kevin; Lark, Karl G.

    2005-01-01

    The mammalian skeleton presents an ideal system in which to study the genetic architecture of a set of related polygenic traits and the skeleton of the domestic dog (Canis familiaris) is arguably the best system in which to address the relationship between genes and anatomy. We have analyzed the genetic basis for skeletal variation in a population of >450 Portuguese Water Dogs. At this stage of this ongoing project, we have identified >40 putative quantitative trait loci (QTLs) for heritable skeletal phenotypes located on 22 different chromosomes, including the “X.” A striking aspect of these is the regulation of suites of traits representing bones located in different parts of the skeleton but related by function. Here we illustrate this by describing genetic variation in postcranial morphology. Two suites of traits are involved. One regulates the size of the pelvis relative to dimensions of the limb bones. The other regulates the shape of the pelvis. Both are examples of trade-offs that may be prototypical of different breeds. For the size of the pelvis relative to limb bones, we describe four QTLs located on autosome CFA 12, 30, 31, and X. For pelvic shape we describe QTLs on autosome CFA 2, 3, 22, and 36. The relation of these polygenic systems to musculoskeletal function is discussed. PMID:16339381

  12. Genetics of canid skeletal variation: size and shape of the pelvis.

    PubMed

    Carrier, David R; Chase, Kevin; Lark, Karl G

    2005-12-01

    The mammalian skeleton presents an ideal system in which to study the genetic architecture of a set of related polygenic traits and the skeleton of the domestic dog (Canis familiaris) is arguably the best system in which to address the relationship between genes and anatomy. We have analyzed the genetic basis for skeletal variation in a population of >450 Portuguese Water Dogs. At this stage of this ongoing project, we have identified >40 putative quantitative trait loci (QTLs) for heritable skeletal phenotypes located on 22 different chromosomes, including the "X." A striking aspect of these is the regulation of suites of traits representing bones located in different parts of the skeleton but related by function. Here we illustrate this by describing genetic variation in postcranial morphology. Two suites of traits are involved. One regulates the size of the pelvis relative to dimensions of the limb bones. The other regulates the shape of the pelvis. Both are examples of trade-offs that may be prototypical of different breeds. For the size of the pelvis relative to limb bones, we describe four QTLs located on autosome CFA 12, 30, 31, and X. For pelvic shape we describe QTLs on autosome CFA 2, 3, 22, and 36. The relation of these polygenic systems to musculoskeletal function is discussed.

  13. A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.

    PubMed

    Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph

    2015-12-01

    Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus.

    PubMed

    Guo, Chunli; Yang, Xuqin; Wang, Yunli; Nie, Jingtao; Yang, Yi; Sun, Jingxian; Du, Hui; Zhu, Wenying; Pan, Jian; Chen, Yue; Lv, Duo; He, Huanle; Lian, Hongli; Pan, Junsong; Cai, Run

    2018-01-01

    Using map-based cloning of ts gene, we identified a new sort of gene involved in the initiation of multicellular tender spine in cucumber. The cucumber (Cucumis sativus L.) fruit contains spines on the surface, which is an extremely valuable quality trait affecting the selection of customers. In this study, we elaborated cucumber line NC072 with wild type (WT) hard fruit spines and its spontaneous mutant NC073, possessing tender and soft spines on fruits. The mutant trait was named as tender spines (ts), which is controlled by a single recessive nuclear gene. We identified the gene ts by map-based cloning with an F 2 segregating population of 721 individuals generated from NC073 and WT line SA419-2. It was located between two markers Indel6239679 and Indel6349344, 109.7 kb physical distance on chromosome 1 containing fifteen putative genes. With sequencing and quantitative reverse transcription-polymerase chain reaction analysis, the Csa1G056960 gene was considered as the most possible candidate gene of ts. In the mutant, Csa1G056960 has a nucleotide change in the 5' splicing site of the second intron, which causes different splicing to delete the second exon, resulting in a N-terminal deletion in the predicted amino acid sequence. The gene encodes a C-type lectin receptor-like tyrosine-protein kinase which would play an important role in the formation of cucumber fruit. This is firstly reported of a receptor kinase gene regulating the development of multicellular spines/trichomes in plants. The ts allele could accelerate the molecular breeding of cucumber soft spines.

  15. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size

    PubMed Central

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size. PMID:28496449

  16. Impact of two specialist insect herbivores on reproduction of horse nettle, Solanum carolinense.

    PubMed

    Wise, Michael J; Sacchi, Christopher F

    1996-10-01

    The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.

  17. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size.

    PubMed

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.

  18. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Genetic Diversity Analysis of Selected Capsicum annuum Genotypes based on Morpho-Physiological, Yield Characteristics and their Biochemical Properties.

    PubMed

    Ridzuan, Raihana; Yusop, Mohd Rafii; Mohammad Yusof, Martini; Ismail, Siti Izera; Miah, Gous; Magaji, Usman

    2018-05-31

    The assessment of the different desirable characters among the chili genotypes expanded the effective selection for crop improvement. Identification of genetically superior parents is important in assortment of the best parents to develop new chili hybrid. This study was done to assess the hereditary assorted variety of selected genotypes of Capsicum annuum based on their morpho-physiological and yield traits in two planting seasons. Further, their biochemical properties; capsaicinoids content (capsaicin and dihydrocapsaicin), add up to the content of phenolic and antioxidant action determination of unripe and ripe chili pepper fruits were carried out at dry fruits. AVPP9813 and Kulai 907 were observed to have high fruit yield with 541.39 g/plant and 502.64 g/plant, respectively. The most increased genotypic coefficient variation (GCV) and phenotypic coefficient of variation (PCV) were shown by the fruit number per plant (49.71% and 66.04%, respectively). High heritability was observed in yield characters viz-a-viz fruit weight, length and girth and indicated high genetic advance. Eight groups were obtained from the cluster analysis. For the biochemical analysis, the capsaicinoids content and total phenolic content were high in Chili Bangi 3 at unripe and ripe fruit stage while for antioxidant activity SDP203 was the highest in ripe dry fruit. Higher GCV and PCV combined with moderate to high heritability and high hereditary progress were seen in number of fruit per plant, fruit yield per plant and fruit weight per fruit. These findings are beneficial for chili pepper breeders to select desirable quantitative characters in C. annuum in their breeding program. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Common genetic architecture underlying young children's food fussiness and liking for vegetables and fruit.

    PubMed

    Fildes, Alison; van Jaarsveld, Cornelia H M; Cooke, Lucy; Wardle, Jane; Llewellyn, Clare H

    2016-04-01

    Food fussiness (FF) is common in early childhood and is often associated with the rejection of nutrient-dense foods such as vegetables and fruit. FF and liking for vegetables and fruit are likely all heritable phenotypes; the genetic influence underlying FF may explain the observed genetic influence on liking for vegetables and fruit. Twin analyses make it possible to get a broad-based estimate of the extent of the shared genetic influence that underlies these traits. We quantified the extent of the shared genetic influence that underlies FF and liking for vegetables and fruit in early childhood with the use of a twin design. Data were from the Gemini cohort, which is a population-based sample of twins born in England and Wales in 2007. Parents of 3-y-old twins (n= 1330 pairs) completed questionnaire measures of their children's food preferences (liking for vegetables and fruit) and the FF scale from the Children's Eating Behavior Questionnaire. Multivariate quantitative genetic modeling was used to estimate common genetic influences that underlie FF and liking for vegetables and fruit. Genetic correlations were significant and moderate to large in size between FF and liking for both vegetables (-0.65) and fruit (-0.43), which indicated that a substantial proportion of the genes that influence FF also influence liking. Common genes that underlie FF and liking for vegetables and fruit largely explained the observed phenotypic correlations between them (68-70%). FF and liking for fruit and vegetables in young children share a large proportion of common genetic factors. The genetic influence on FF may determine why fussy children typically reject fruit and vegetables.

  1. Birth Order Positions and Personality Traits.

    ERIC Educational Resources Information Center

    Tharbe, Ida Hartini Ahmad; Harun, Lily Mastura Hj.

    The growing concern for the development of teenagers has brought up issues regarding the role of the family system in shaping the personality traits of children. Alfred Adler (1870-1937), an Austrian psychiatrist who introduced the psychological/therapeutic model, "Individual Psychology," highlighted the importance of birth order…

  2. Delta 13C predicts water deficit sensitivity in Malus sieversii (Ledeb.) M. Roem. from a xerophytic site in Kazakhstan

    USDA-ARS?s Scientific Manuscript database

    Modern apples [Malus x domestica (Borkh.)] are thought to have originated in western China from the progenitor species, Malus sieversii (Ledeb.) M. Roem. Due to many generations of selection for traits associated with high fruit quality, our current breeding germplasm has become dangerously narrow....

  3. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop.

    PubMed

    Hazzouri, Khaled M; Flowers, Jonathan M; Visser, Hendrik J; Khierallah, Hussam S M; Rosas, Ulises; Pham, Gina M; Meyer, Rachel S; Johansen, Caryn K; Fresquez, Zoë A; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A; Thirkhill, Deborah; Markhand, Ghulam S; Krueger, Robert R; Zaid, Abdelouahhab; Purugganan, Michael D

    2015-11-09

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop.

  4. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop

    PubMed Central

    Hazzouri, Khaled M.; Flowers, Jonathan M.; Visser, Hendrik J.; Khierallah, Hussam S. M.; Rosas, Ulises; Pham, Gina M.; Meyer, Rachel S.; Johansen, Caryn K.; Fresquez, Zoë A.; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A.; Thirkhill, Deborah; Markhand, Ghulam S.; Krueger, Robert R.; Zaid, Abdelouahhab; Purugganan, Michael D.

    2015-01-01

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop. PMID:26549859

  5. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    PubMed Central

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-01-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening. PMID:28425468

  6. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes.

    PubMed

    Tafolla-Arellano, Julio C; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K C; Tiznado-Hernández, Martín E

    2017-04-20

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  7. Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes

    NASA Astrophysics Data System (ADS)

    Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.

    2017-04-01

    Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.

  8. One-Seeded Fruits in the Core Caryophyllales: Their Origin and Structural Diversity

    PubMed Central

    Sukhorukov, Alexander P.; Mavrodiev, Evgeny V.; Struwig, Madeleen; Nilova, Maya V.; Dzhalilova, Khalima Kh.; Balandin, Sergey A.; Erst, Andrey; Krinitsyna, Anastasiya A.

    2015-01-01

    The core Caryophyllales consist of approximately 30 families (12 000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the ‘Earlier Diverging’ clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted. PMID:25710481

  9. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models

    USDA-ARS?s Scientific Manuscript database

    Leaf shape traits have long been a focus of many disciplines, but searching for complex genetic and environmental interactive mechanisms regulating leaf shape variation has not yet been well developed. The question of the respective roles of gene and environment and how they interplay to modulate l...

  10. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity maintenance that results in firmer ripe fruit. PMID:23873994

  11. Dry matter partitioning models for the simulation of individual fruit growth in greenhouse cucumber canopies

    PubMed Central

    Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2011-01-01

    Background and Aims Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits. Methods Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy. Key Results The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced. Conclusions Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning. PMID:21715366

  12. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    PubMed

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.

  13. Influence of the variation of geometrical and topological traits on light interception efficiency of apple trees: sensitivity analysis and metamodelling for ideotype definition

    PubMed Central

    Da Silva, David; Han, Liqi; Faivre, Robert; Costes, Evelyne

    2014-01-01

    Background and Aims The impact of a fruit tree's architecture on its performance is still under debate, especially with regard to the definition of varietal ideotypes and the selection of architectural traits in breeding programmes. This study aimed at providing proof that a modelling approach can contribute to this debate, by using in silico exploration of different combinations of traits and their consequences on light interception, here considered as one of the key parameters to optimize fruit tree production. Methods The variability of organ geometrical traits, previously described in a bi-parental population, was used to simulate 1- to 5-year-old apple trees (Malus × domestica). Branching sequences along trunks observed during the first year of growth of the same hybrid trees were used to initiate the simulations, and hidden semi-Markov chains previously parameterized were used in subsequent years. Tree total leaf area (TLA) and silhouette to total area ratio (STAR) values were estimated, and a sensitivity analysis was performed, based on a metamodelling approach and a generalized additive model (GAM), to analyse the relative impact of organ geometry and lateral shoot types on STAR. Key Results A larger increase over years in TLA mean and variance was generated by varying branching along trunks than by varying organ geometry, whereas the inverse was observed for STAR, where mean values stabilized from year 3 to year 5. The internode length and leaf area had the highest impact on STAR, whereas long sylleptic shoots had a more significant effect than proleptic shoots. Although the GAM did not account for interactions, the additive effects of the geometrical factors explained >90% of STAR variation, but much less in the case of branching factors. Conclusions This study demonstrates that the proposed modelling approach could contribute to screening architectural traits and their relative impact on tree performance, here viewed through light interception. Even though trait combinations and antagonism will need further investigation, the approach opens up new perspectives for breeding and genetic selection to be assisted by varietal ideotype definition. PMID:24723446

  14. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage

    PubMed Central

    Petriccione, Milena; Mastrobuoni, Francesco; Pasquariello, Maria Silvia; Zampella, Luigi; Nobis, Elvira; Capriolo, Giuseppe; Scortichini, Marco

    2015-01-01

    The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity) and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity) properties along with the enzymatic activity (catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), guaiacol peroxidase (GPX) and lipoxygenase (LOX)) were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars. PMID:28231220

  15. The sweet side of life: nectar sugar type and concentration preference in Wahlberg's epauletted fruit bat.

    PubMed

    Coleman, J C; Downs, C T

    2012-08-01

    Whether nectarivores or frugivores place selective pressure on the plants they feed on, in terms of nectar or fruit traits, is much debated. Globally sugar preferences, concentration preference and digestive ability of avian nectarivores have been extensively researched. In contrast, relatively little is known about mammalian nectarivores or frugivores in terms of these, particularly Old World species. Consequently effect of sugar type and concentration on food preference in Wahlberg's epauletted fruit bat Epomophorus wahlbergi was investigated. Pair-wise choice tests were conducted using equicaloric hexose and sucrose solutions at five different concentrations (5%-25%). It was expected that they would prefer hexose sugars as these are dominant in available indigenous fruits. However, bats preferred hexoses only when offered dilute (5%) concentrations. From 10% to 25% they showed a decrease in volume intake. Their body mass was generally higher and similar after feeding during the night with the exception of 5% concentration where the mean body mass decreased. When E. wahlbergi were offered a range of sucrose or hexose solutions (10%-25%) respectively, they showed no concentration preference in terms of total volume consumed, nor energy intake. These findings suggest that these fruit bats do not appear to act as a selective pressure on sugar composition in Old World fruit. In fruit bats with high energy requirements, dietary flexibility may be an advantage when faced with seasonal and unpredictable fruit availability. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association

    PubMed Central

    Di Guardo, Mario; Bink, Marco C.A.M.; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G.F.; van de Weg, Eric

    2017-01-01

    Abstract Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer’s appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. PMID:28338805

  17. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  18. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  19. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association.

    PubMed

    Di Guardo, Mario; Bink, Marco C A M; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G F; van de Weg, Eric; Costa, Fabrizio

    2017-03-01

    Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Life history traits influence the strength of distance- and density-dependence at different life stages of two Amazonian palms.

    PubMed

    Choo, Juanita; Carasco, Cecilia; Alvarez-Loayza, Patricia; Simpson, Beryl B; Economo, Evan P

    2017-07-01

    Natural enemies are known to be important in regulating plant populations and contributing to species coexistence (Janzen-Connell effects). The strength of Janzen-Connell effects (both distance- and density-effects) varies across species, but the life history traits that may mediate such a variation are not well understood. This study examined Janzen-Connell effects across the life stages (seed through adult stages) of two sympatric palm species with distinct phenologies and shade tolerances, two traits that may mediate the strength and timing of Janzen-Connell effects. Populations of two common palm species, Attalea phalerata and Astrocaryum murumuru , were studied in Manu National Park, Peru. Seed predation experiments were conducted to assess Janzen-Connell effects at the seed stage. In the post-seed stages, spatial point pattern analyses of the distributions of individuals and biomass were used to infer the strength of distance- and density-effects. Seed predation was both negative distance- and density-dependent consistent with the Janzen-Connell effects. However, only seedling recruitment for asynchronously fruiting Attalea phalerata was depressed near adults while recruitment remained high for synchronously fruiting Astrocaryum murumuru , consistent with weak distance-effects. Negative density-effects were strong in the early stages for shade-intolerant Attalea phalerata but weak or absent in shade-tolerant Astrocaryum murumuru. Distance- and density-effects varied among the life stages of the two palm species in a manner that corresponded to their contrasting phenology and shade tolerance. Generalizing such connections across many species would provide a route to understanding how trait-mediated Janzen-Connell effects scale up to whole communities of species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Are There Inherited Behavioral Traits that Predispose to Substance Abuse?

    ERIC Educational Resources Information Center

    Tarter, Ralph E.

    1988-01-01

    Research suggests predisposition toward alcoholism and drug abuse by inherited behavioral propensities or temperaments which, through interaction with the physical and social environments, shape the development of the personality. Certain personality characteristics, specifically antisocial and neurotic traits, are also linked with the risk for…

  2. Personality Theories for the 21st Century

    ERIC Educational Resources Information Center

    McCrae, Robert R.

    2011-01-01

    Classic personality theories, although intriguing, are outdated. The five-factor model of personality traits reinvigorated personality research, and the resulting findings spurred a new generation of personality theories. These theories assign a central place to traits and acknowledge the crucial role of evolved biology in shaping human…

  3. A robotic vision system to measure tree traits

    USDA-ARS?s Scientific Manuscript database

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  4. Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with sticky traps baited with terpinyl acetate and sex pheromone

    USDA-ARS?s Scientific Manuscript database

    Studies in Argentina and Chile during 2010-11 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta-shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom center of the trap. The screened lid of ...

  5. A genome-wide survey of date palm cultivars supports two independent domestication events in Phoenix dactylifera

    USDA-ARS?s Scientific Manuscript database

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is a key fruit crop in many arid regions of the world. There are hundreds of commercial cultivars with distinct fruit shapes, colors and sizes growing mainly from the west of North Africa to India. However, the origin o...

  6. Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.

    PubMed

    Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T

    2015-11-01

    Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.

  7. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster.

    PubMed

    Palanca, Loida; Gaskett, Anne C; Günther, Catrin S; Newcomb, Richard D; Goddard, Matthew R

    2013-01-01

    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent.

  8. Proteome regulation during Olea europaea fruit development.

    PubMed

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  9. Pervasive genetic integration directs the evolution of human skull shape.

    PubMed

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  10. Functional Responses and Resilience of Boreal Forest Ecosystem after Reduction of Deer Density

    PubMed Central

    Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D.; Poulin, Monique

    2014-01-01

    The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years. PMID:24587362

  11. Asymmetrical nature of the Trollius-Chiastocheta interaction: insights into the evolution of nursery pollination systems.

    PubMed

    Suchan, Tomasz; Beauverd, Mélanie; Trim, Naïké; Alvarez, Nadir

    2015-11-01

    The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system - the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T. europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T. europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T. europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T. europaeus flowers. We propose that the interaction could have evolved through maximization of by-product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.

  12. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly

    PubMed Central

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S.; Laffan, Shawn W.

    2015-01-01

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. PMID:26645199

  13. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    PubMed

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-07

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. © 2015 The Author(s).

  14. Tearing as a test for mechanical characterization of thin adhesive films

    NASA Astrophysics Data System (ADS)

    Hamm, Eugenio; Reis, Pedro; Leblanc, Michael; Roman, Benoit; Cerda, Enrique

    2008-05-01

    Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.

  15. Tearing as a test for mechanical characterization of thin adhesive films.

    PubMed

    Hamm, Eugenio; Reis, Pedro; LeBlanc, Michael; Roman, Benoit; Cerda, Enrique

    2008-05-01

    Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.

  16. Pre-anthesis CPPU low dosage application increases 'Hayward' kiwifruit weight without affecting the other qualitative and nutritional characteristics.

    PubMed

    Cruz-Castillo, J G; Baldicchi, A; Frioni, T; Marocchi, F; Moscatello, S; Proietti, S; Battistelli, A; Famiani, F

    2014-09-01

    In 2008, in Central Italy, a low dosage of CPPU solution, 4 μL L(-1) (6 hL/ha), was sprayed on the canopy of vines of 'Hayward' kiwifruit, at the "break of sepals", about one week before anthesis, to study its effects on fruit weight/size and on qualitative and nutritional characteristics. At harvest, CPPU, with respect to control, significantly increased the fresh weight by about 12% (+12.6 g fruit(-1)) and consequently the yield per vine, without affecting fruit shape, firmness, dry matter (%), total soluble solids, glucose, fructose, sucrose, starch, citrate, malate, vitamin C and soluble and insoluble oxalic acid. After 3 months of storage, CPPU-treated kiwifruits and the control fruit showed no difference in dry matter content, fruit firmness and total soluble solids. The results indicate that a low dosage of CPPU applied in pre-anthesis can improve fruit weight/size without any negative effect on fruit qualitative and nutritional characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    PubMed

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  18. Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach

    PubMed Central

    Lévêque, Sylvie; Alsadon, Abdullah A.; Aldoss, Abdullah A.; Dogimont, Catherine; Bendahmane, Abdelhafid

    2010-01-01

    Background Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. Methodology/Principal Findings To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. Conclusions/Significance We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community. PMID:21209891

  19. Engineering melon plants with improved fruit shelf life using the TILLING approach.

    PubMed

    Dahmani-Mardas, Fatima; Troadec, Christelle; Boualem, Adnane; Lévêque, Sylvie; Alsadon, Abdullah A; Aldoss, Abdullah A; Dogimont, Catherine; Bendahmane, Abdelhafid

    2010-12-30

    Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.

  20. PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.)

    PubMed Central

    Qi, Xiliang; Liu, Congli; Song, Lulu; Li, Yuhong; Li, Ming

    2017-01-01

    Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium. PMID:29259616

  1. Firmness at Harvest Impacts Postharvest Fruit Softening and Internal Browning Development in Mechanically Damaged and Non-damaged Highbush Blueberries (Vaccinium corymbosum L.)

    PubMed Central

    Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A.

    2017-01-01

    Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars “Duke” and “Brigitta” to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61–1.80 N), and firm (1.81–2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85–88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. “Duke” exhibited high softening rates, as well as high and significant r2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. “Brigitta,” having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately. PMID:28443123

  2. Firmness at Harvest Impacts Postharvest Fruit Softening and Internal Browning Development in Mechanically Damaged and Non-damaged Highbush Blueberries (Vaccinium corymbosum L.).

    PubMed

    Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A

    2017-01-01

    Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars "Duke" and "Brigitta" to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61-1.80 N), and firm (1.81-2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85-88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. "Duke" exhibited high softening rates, as well as high and significant r 2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. "Brigitta," having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately.

  3. Personality Traits and Foreign Policy Attitudes in German Public Opinion

    ERIC Educational Resources Information Center

    Schoen, Harald

    2007-01-01

    This article examines the effects of personality traits on attitudes toward foreign policy issues among the German public. Building on previous research, it argues that personality characteristics shape an individual's motivation, goals, and values, thereby providing criteria to evaluate external stimuli and affecting foreign policy opinions. An…

  4. Climate tolerances and trait choices shape continental patterns of urban tree biodiversity

    Treesearch

    G. Darrel Jenerette; Lorraine W. Clarke; Meghan L. Avolio; Diane E. Pataki; Thomas W. Gillespie; Stephanie Pincetl; Dave J. Nowak; Lucy R. Hutyra; Melissa McHale; Joseph P. McFadden; Michael Alonzo

    2016-01-01

    Aim. We propose and test a climate tolerance and trait choice hypothesis of urban macroecological variation in which strong filtering associated with low winter temperatures restricts urban biodiversity while weak filtering associated with warmer temperatures and irrigation allows dispersal of species from a global source pool, thereby...

  5. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    PubMed

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  6. A life history approach to delineating how harsh environments and hawk temperament traits differentially shape children's problem-solving skills.

    PubMed

    Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante

    2017-08-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.

  7. Virus-Induced Gene Silencing of the Eggplant Chalcone Synthase Gene during Fruit Ripening Modifies Epidermal Cells and Gravitropism.

    PubMed

    Wang, Cuicui; Fu, Daqi

    2018-03-21

    Eggplant ( Solanum melongena L.) fruits accumulate flavonoids in their cuticle and epidermal cells during ripening. Although many mutants available in model plant species, such as Arabidopsis thaliana and Medicago truncatula, are enabling the intricacies of flavonoid-related physiology to be deduced, the mechanisms whereby flavonoids influence eggplant fruit physiology are unknown. Virus-induced gene silencing (VIGS) is a reliable tool for the study of flavonoid function in fruit, and in this study, we successfully applied this technique to downregulate S. melongena chalcone synthase gene ( SmCHS) expression during eggplant fruit ripening. In addition to the expected change in fruit color attributable to a lack of anthocyanins, several other modifications, including differences in epidermal cell size and shape, were observed in the different sectors. We also found that silencing of CHS gene expression was associated with a negative gravitropic response in eggplant fruits. These observations indicate that epidermal cell expansion during ripening is dependent upon CHS expression and that there may be a relationship between CHS expression and gravitropism during eggplant fruit ripening.

  8. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata)

    PubMed Central

    Papanastasiou, Stella A.; Bali, Eleftheria-Maria D.; Ioannou, Charalampos S.; Papachristos, Dimitrios P.; Zarpas, Kostas D.

    2017-01-01

    Plant essential oils (EOs) and a wide range of their individual components are involved in a variety of biological interactions with insect pests including stimulatory, deterrent, toxic and even hormetic effects. Both the beneficial and toxic properties of citrus EOs on the Mediterranean fruit fly (medfly) have been experimentally evidenced over the last years. However, no information is available regarding the toxic or beneficial effects of the major components of citrus EOs via contact with the adults of the Mediterranean fruit fly. In the present study, we explored the toxicity of limonene, linalool and α-pinene (3 of the main compounds of citrus EOs) against adult medflies and identified the effects of sub-lethal doses of limonene on fitness traits in a relaxed [full diet (yeast and sugar)] and in a stressful (sugar only) feeding environment. Our results demonstrate that all three compounds inferred high toxicity to adult medflies regardless of the diet, with males being more sensitive than females. Sub-lethal doses of limonene (LD20) enhanced the lifespan of adult medflies when they were deprived of protein. Fecundity was positively affected when females were exposed to limonene sub-lethal doses. Therefore, limonene, a major constituent of citrus EOs, induces high mortality at increased doses and positive effects on life history traits of medfly adults through contact at low sub-lethal doses. A hormetic-like effect of limonene to adult medflies and its possible underlying mechanisms are discussed. PMID:28520791

  9. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation of their down regulation or target may be essential. Additionally, if more sex determination genes controlled by plant hormones are identified, it may possible to reveal a crosstalk of sex determination genes with hormones and environment factors.

  10. Postharvest and sensory evaluation of selected ‘Hass’-‘Bacon’ avocado hybrids grown in East-Central Florida

    USDA-ARS?s Scientific Manuscript database

    Avocado (Persea americana Mill.) is a high-value fruit that continues to increase in consumer demand. A population of ‘Hass’-‘Bacon’ hybrids was planted at USDA-ARS, Fort Pierce as part of a study to find selections with good horticultural and postharvest quality traits for Florida. Extensive pheno...

  11. Cybrids between Dancy tangerine (Citrus reticulata Blanca) and Ruby Red grapefruit (C. paradisi Mafc.) for improvement of citrus fruit traits [abstract

    USDA-ARS?s Scientific Manuscript database

    In cybridization, new combinations of nuclear and cytoplasmic genes result in a unique genotype that may bring cellular, physical, physiological and biochemical changes to the plant. This has been demonstrated in cybrids generated from the fusion of citrus protoplasts in two independent experiments....

  12. Correlation between sensory and instrumental measurements of standard and crisp-texture southern highbush blueberries(Vaccinium corymbosum L. interspecific hybrids)

    USDA-ARS?s Scientific Manuscript database

    The University of Florida blueberry breeding program has been developing Southern highbush blueberry cultivars for over 50 years. During this period, fruit firmness has been a primary selection trait. A novel texture, most often described as “crisp” was identified, but the anatomical and physiologic...

  13. Anomalies as a Catalyst for Middle School Students' Knowledge Construction and Scientific Reasoning during Science Inquiry.

    ERIC Educational Resources Information Center

    Echevarria, Marissa

    2003-01-01

    Knowledge construction and scientific reasoning were examined during a unit in genetics, in which anomalies were used as a catalyst for student learning. Students used genetics simulation software to develop hypotheses and run tests of fruit fly crosses to develop mental models of simple dominance trait transmission. Instruction was intended to…

  14. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods

    USDA-ARS?s Scientific Manuscript database

    Tomatoes (Solanum lycopersicum L.) are an important source of nutrients in contemporary diets due to readily available fresh fruit and processed products, their popularity, and the sheer volume consumed. This study is part of a larger project undertaken by the Agricultural Research Service (ARS) to...

  15. Are litter decomposition and fire linked through plant species traits?

    PubMed

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?

    PubMed Central

    Eberle, Jonas; Myburgh, Renier; Ahrens, Dirk

    2014-01-01

    Body shape reflects species' evolution and mediates its role in the environment as it integrates gene expression, life style, and structural morphology. Its comparative analysis may reveal insight on what shapes shape, being a useful approach when other evidence is lacking. Here we investigated evolutionary patterns of body shape in the highly diverse phytophagous chafers (Scarabaeidae: Pleurosticti), a polyphagous group utilizing different parts of angiosperms. Because the reasons of their successful diversification are largely unknown, we used a phylogenetic tree and multivariate analysis on twenty linear measurements of body morphology including all major Pleurosticti lineages to infer patterns of morphospace covariation and divergence. The chafer's different feeding types resulted to be not distinguishable in the described morphospace which was largely attributed to large occupancy of the morphospace of some feeding types and to multiple convergences of feeding behavior (particularly of anthophagy). Low correlation between molecular and morphological rates of evolution, including significant rate shifts for some lineages, indicated directed selection within feeding types. This is supported by morphospace divergence within feeding types and convergent evolution in Australian Melolonthinae. Traits driving morphospace divergence were extremities and traits linked with locomotion behavior, but also body size. Being highly adaptive for burrowing and locomotion these traits showed major changes in the evolution of pleurostict scarabs. These activities also affected another trait, the metacoxal length, which is highly influenced by key innovations of the metacoxa (extended mesal process, secondary closure) particularly in one lineage, the Sericini. Significant shape divergence between major lineages and a lack of strong differentiation among closely related lineages indicated that the question about the presence or absence of competition-derived directed selection needs to be addressed for different time scales. Striking divergence between some sister lineages at their origin revealed strong driven selection towards morphospace divergence, possibly linked with resource partitioning. PMID:24875856

  17. Body Shape Preferences: Associations with Rater Body Shape and Sociosexuality

    PubMed Central

    Price, Michael E.; Pound, Nicholas; Dunn, James; Hopkins, Sian; Kang, Jinsheng

    2013-01-01

    There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters’ body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes) and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low) VHI and attractive (low) WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low) WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for attractive opposite-sex body shapes, and that rater body traits –with the exception of VHI in female raters– may not be good predictors of these preferences in either sex. PMID:23300976

  18. Gene introgression into Coffea arabica by way of triploid hybrids (C. arabica x C. canephora).

    PubMed

    Herrera, J C; Combes, M C; Cortina, H; Alvarado, G; Lashermes, P

    2002-12-01

    Interspecific triploid hybrid plants between the tetraploid species Coffea arabica L. and the diploid species C. canephora P. were backcrossed to C. arabica. Although characterised by a low production and an important fruit dropping, all attempted crosses (ie, 6) generated BC(1) progenies. Flow cytometric analysis of the nuclear DNA content revealed that most of the BC1 individuals were nearly tetraploid. Among the male gametes produced by the interspecific triploid hybrids, those presenting a high number of chromosomes appeared strongly favoured. Only pollen mother cells having nearly 22 chromosomes were effective, the others leading to deficient endosperm and fruit dropping. Molecular markers (ie, microsatellite and AFLP) combined with evaluations of morphological characteristics and resistance to leaf rust were applied to verify the occurrence of gene transfer from C. canephora into C. arabica, and to estimate the amount of introgression present in BC(1) individuals. The results reveal a strong deficiency in the C. canephroa alleles indicating a severe counter-selection against the introgression of genetic material from C. canephora into C. arabica by way of triploid hybrids. However, introgressants displaying desirable traits such as a high resistance to leaf rust were obtained. The low level of introgression could be an advantage by facilitating the recovery of the recurrent parent and possibly reducing the number of required backcrosses. On the other hand, this could be a limitation when attempting the transfer of a complex trait or several simply inherited traits.

  19. From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment

    ERIC Educational Resources Information Center

    Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki

    2010-01-01

    This paper is concerned with highlighting young children's ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs' ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning…

  20. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control.

    PubMed

    Devoghalaere, Fanny; Doucen, Thomas; Guitton, Baptiste; Keeling, Jeannette; Payne, Wendy; Ling, Toby John; Ross, John James; Hallett, Ian Charles; Gunaseelan, Kularajathevan; Dayatilake, G A; Diak, Robert; Breen, Ken C; Tustin, D Stuart; Costes, Evelyne; Chagné, David; Schaffer, Robert James; David, Karine Myriam

    2012-01-13

    Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

Top