Science.gov

Sample records for fs cascaded second-harmonic

  1. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Bache, M.; Bang, O.; Zhou, B. B.; Moses, J.; Wise, F. W.

    2010-12-01

    We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered (β-barium borate) is found for pump wavelengths in the range λ=0.95-1.45μm, and is located in the regime λ=1.5-3.5μm. For shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative dynamics rather than generation of Cherenkov radiation.

  2. Microscopic approach to second harmonic generation in quantum cascade lasers.

    PubMed

    Winge, David O; Lindskog, Martin; Wacker, Andreas

    2014-07-28

    Second harmonic generation is analyzed from a microscopical point of view using a non-equilibrium Green's function formalism. Through this approach the complete on-state of the laser can be modeled and results are compared to experiment with good agreement. In addition, higher order current response is extracted from the calculations and together with waveguide properties, these currents provide the intensity of the second harmonic in the structure considered. This power is compared to experimental results, also with good agreement. Furthermore, our results, which contain all coherences in the system, allow to check the validity of common simplified expressions.

  3. Genetic algorithm applied to the optimization of quantum cascade lasers with second harmonic generation

    SciTech Connect

    Gajić, A.; Radovanović, J. Milanović, V.; Indjin, D.; Ikonić, Z.

    2014-02-07

    A computational model for the optimization of the second order optical nonlinearities in GaInAs/AlInAs quantum cascade laser structures is presented. The set of structure parameters that lead to improved device performance was obtained through the implementation of the Genetic Algorithm. In the following step, the linear and second harmonic generation power were calculated by self-consistently solving the system of rate equations for carriers and photons. This rate equation system included both stimulated and simultaneous double photon absorption processes that occur between the levels relevant for second harmonic generation, and material-dependent effective mass, as well as band nonparabolicity, were taken into account. The developed method is general, in the sense that it can be applied to any higher order effect, which requires the photon density equation to be included. Specifically, we have addressed the optimization of the active region of a double quantum well In{sub 0.53}Ga{sub 0.47}As/Al{sub 0.48}In{sub 0.52}As structure and presented its output characteristics.

  4. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals.

    PubMed

    Hansen, A K; Tawfieq, M; Jensen, O B; Andersen, P E; Sumpf, B; Erbert, G; Petersen, P M

    2015-06-15

    Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M(2)=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M(2)=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

  5. Temporal contrast enhancement for optical parametric chirped-pulse amplifiers by adopting cascaded second harmonic generation pump

    NASA Astrophysics Data System (ADS)

    Deng, Qinghua; Zeng, Xiaoming; Jiang, Dongbin; Xie, Na; Zhou, Kainan; Wang, Xuemin; Li, Weihua; Wu, Weidong; Ding, Lei

    2016-07-01

    We report on a method to enhance the temporal contrast of optical parametric chirped-pulse amplifiers (OPCPAs) by smoothing pump noise. The instantaneous parametric gain in OPCPA couples the temporal modulation on the pump pulses to spectral variations of the intensity of the stretched signal pulses being amplified. In this way, pump noise significantly degrades the temporal contrast of the amplified pulses after recompression. Cascaded second harmonic generation (SHG) is adopted to smooth modulation on the pump pulses in the proposed method. Apparent reduction of modulation on the pump pulses is observed in the experiments. Numerical simulation reproduces the experimental results. Simulation results show that cascaded SHG with stable output 2 ω can enhance the temporal contrast for OPCPAs with four to five orders. It is believed that this new method can be widely adopted to build high-contrast OPCPA systems.

  6. Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation.

    PubMed

    Wang, Hsiang-Chen; Lu, Yen-Cheng; Chen, Cheng-Yen; Chi, Chun-Yung; Chin, Shu-Cheng; Yang, C C

    2005-07-11

    Non-degenerate fs pump-probe experiments in the UV-visible range for ultrafast carrier dynamics study of InGaN with adjustable pump and probe photon energies are implemented with simultaneously multiwavelength second-harmonic generation (SHG) of a 10 fs Ti:sapphire laser. The multi-wavelength SHG is realized with two beta-barium borate crystals of different cutting angles. The full-widths at half-maximum of the SHG pulses are around 150 fs, which are obtained from the cross-correlation measurement with a reverse-biased 280-nm light-emitting diode as the twophoton absorption photo-detector. Such pulses are used to perform nondegenerate pump-probe experiments on an InGaN thin film, in which indium-rich nano-clusters and compositional fluctuations have been identified. Relaxation of carriers from the pump level to the probe one through the scattering-induced local thermalization (<1 ps) and then the carrier-transport-dominating global thermalization (in several ps) processes is observed.

  7. Second harmonic generation in human ovarian neoplasias

    NASA Astrophysics Data System (ADS)

    Lamonier, L.; Bottcher-Luiz, F.; Pietro, L.; Andrade, L. A. L. A.; de Thomaz, A. A.; Machado, C. L.; Cesar, C. L.

    2010-02-01

    Metastasis is the main cause of death in cancer patients; it requires a complex process of tumor cell dissemination, extra cellular matrix (ECM) remodeling, cell invasion and tumor-host interactions. Collagen is the major component of ECM; its fiber polymerization or degradation evolves in parallel with the evolution of the cancerous lesions. This study aimed to identify the collagen content, spatial distribution and fiber organization in biopsies of benign and malignant human ovarian tissues. Biopsies were prepared in slides without dyes and were exposed to 800nm Ti:Sapphire laser (Spectra Physics, 100 fs pulse duration, 800mW average power, 80MHz repetition rate). The obtained images were recorded at triplets, corresponding to clear field, multiphoton and second harmonic generation (SHG) mycroscopy. Data showed considerable anisotropy in malignant tissues, with regions of dense collagen arranged as individual fibers or in combination with immature segmental filaments. Radial fiber alignment or regions with minimal signal were observed in the high clinical grade tumors, suggesting degradation of original fibers or altered polymerization state of them. These findings allow us to assume that the collagen signature will be a reliable and a promising marker for diagnosis and prognosis in human ovarian cancers.

  8. Imaging Collagen Orientation Using Polarization-Modulated Second Harmonic Generation

    SciTech Connect

    Stoller, P; Celliers, P M; Reiser, K M; Rubenchik, A M

    2002-01-10

    We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 {micro}m and a transverse resolution of up to 1 {micro}m. A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.

  9. Surface-Enhanced Second-Harmonic Generation

    SciTech Connect

    Chen, C. K.; de Castro, A. R.B.; Shen, Y. R.

    1981-01-12

    Second harmonic generation at a silver-air interface was enhanced due to surface roughness by a factor of 10⁴. The local field enhancement is believed to be responsible for the effect. An unusually broad luminescence background extending far beyond the antiStokes side of the second harmonic was also observed.

  10. Organometallic Salts Generate Optical Second Harmonics

    NASA Technical Reports Server (NTRS)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  11. Discrete quadratic solitons with competing second-harmonic components

    SciTech Connect

    Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.

    2011-11-15

    We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.

  12. Second harmonic generation of spectrally broadened femtosecond ytterbium laser radiation in a gas-filled capillary

    SciTech Connect

    Didenko, N V; Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2011-09-30

    A 300-fs radiation pulse of an ytterbium laser with a wavelength of 1030 nm and energy of 150 {mu}J were converted to a 15-fs pulse with a wavelength of 515 nm by broadening the emission spectrum in a capillary filled with xenon and by generating the second harmonic in a KDP crystal. The energy efficiency of the conversion was 30 %.

  13. Efficient forward second-harmonic generation from planar archimedean nanospirals

    SciTech Connect

    Davidson, II, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; Avanesyan, Sergey M.; Gong, Yu; Hess, Wayne; Haglund, Jr., Richard F.

    2015-05-01

    Here, the enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength.

  14. Isolated Attosecond Pulses using a Detuned Second-harmonic Field

    SciTech Connect

    Merdji, Hamed; Auguste, Thierry; Boutu, Willem; Caumes, J.-Pascal; Carre, Bertrand; Pfeifer, Thomas; Jullien, Aurelie; Neumark, Daniel M.; Leone, Stephen R.; /UC, Berkeley /LBL, Berkeley

    2007-11-07

    Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at {omega} and the other a strong field detuned from 2{omega}. The slight detuning {delta}{omega} of the second harmonic is used to break the symmetry of the electric field over many optical cycles and provides a coherent control for the formation of an isolated attosecond pulse.

  15. Fast interferometric second harmonic generation microscopy

    PubMed Central

    Bancelin, Stéphane; Couture, Charles-André; Légaré, Katherine; Pinsard, Maxime; Rivard, Maxime; Brown, Cameron; Légaré, François

    2016-01-01

    We report the implementation of fast Interferometric Second Harmonic Generation (I-SHG) microscopy to study the polarity of non-centrosymmetric structures in biological tissues. Using a sample quartz plate, we calibrate the spatially varying phase shift introduced by the laser scanning system. Compensating this phase shift allows us to retrieve the correct phase distribution in periodically poled lithium niobate, used as a model sample. Finally, we used fast interferometric second harmonic generation microscopy to acquire phase images in tendon. Our results show that the method exposed here, using a laser scanning system, allows to recover the polarity of collagen fibrils, similarly to standard I-SHG (using a sample scanning system), but with an imaging time about 40 times shorter. PMID:26977349

  16. Possible second harmonic gyroemission at Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy Instrument on board the Voyager 2 spacecraft observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz. By assuming models of the plasma density for the dayside magnetosphere of Uranus and by using cold plasma theory together with stringent observational constraints, ray-tracing calculations were performed to determine the source location and mode of the n-smooth emission. Ray-tracing calculations suggest that the n-smooth emission with sources near the magnetic equator may be fundamental X mode for certain conditions or second harmonic gyroemission. If the emission is second harmonic gyroemission, the fundamental emission at 30 kHz is expected but apparently not observed. These findings are discussed in the context of the most recent developments in the theory of the cyclotron maser instability.

  17. Efficient Forward Second-Harmonic Generation from Planar Archimedean Nanospirals

    DOE PAGESBeta

    Davidson, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; Avanesyan, Sergey M.; Gong, Yu; Hess, Wayne P.; Haglund, Jr., Richard F.

    2015-05-21

    The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from noncentrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6•10-9, 8•10-9 and 1.3•10-8 for left-handedmore » circular, linear, and right-handed circular polarizations, respectively.« less

  18. Angle-resolved second harmonic light scattering from colloidal suspensions and second harmonic particle microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ningping

    2001-08-01

    We have carried out two nonlinear optical experiments with colloidal particles. Our first nonlinear optical experiment studied Second-Harmonic Generation (SHG) light scattering from colloidal suspension. In particular, we measured the angle-resolved second-harmonic generation light scattering from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering angular profiles differ qualitatively from the linear light scattering angular profiles of the same particles. We have investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optical effect from other bulk nonlinear optical effects in suspension. Our second nonlinear optical experiment studied the Second-Harmonic Generation (SHG) from single micron-size particles. We built a nonlinear optical microscope for this purpose. We report experimental observations of second harmonic generation from single micron-size polystyrene (PS), silica, and PolyMethylMethAcrylate (PMMA) spheres on flat substrates by SHG microscopy. At low input light intensities the SH signals depend quadratically on the intensity of the excitation beam, but at larger input intensities some of the SH signals increase exponentially with increasing input intensity. This exponential enhancement depends on particle size and sphere composition. We describe the experiments, report the observations and provide an approximate analytical framework for understanding our measurements.

  19. Generating Second Harmonics In Nonlinear Resonant Cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. David; Byer, Robert L.

    1990-01-01

    Single-axial-mode lasers pump very-low-loss doubling crystals. Important advance in making resonant generation of second harmonics possible for diode-laser-pumped solid-state lasers is recent development of monolithic nonplanar ring geometries in neodymium:yttrium aluminum garnet (Nd:YAG) lasers that produce frequency-stable single-mode outputs. Other advance is development of high-quality MgO:LiNbO3 as electro-optically nonlinear material. Series of experiments devised to improve doubling efficiency of low-power lasers, and particularly of diode-laser-pumped continuous-wave Nd:YAG lasers.

  20. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    PubMed

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment. PMID:27415660

  1. The IPNS second harmonic RF upgrade.

    SciTech Connect

    Middendorf, M. E.; Brumwell, F. R.; Dooling, J. C.; Horan, D.; Kustom, R. L.; Lien, M. K.; McMichael, G. E.; Moser, M. R.; Nassiri, A.; Wang, S.; Accelerator Systems Division

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of {approx}21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to {approx}11 kV, or at the second harmonic of the revolution frequency for the first {approx}4 ms of the acceleration cycle, providing an additional peak voltage of up to {approx}11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  2. Second-harmonic generation with Bessel beams

    NASA Astrophysics Data System (ADS)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  3. Miniaturized Blue Laser using Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yasuo; Yokoyama, Toshifumi; Mizuuchi, Kiminori; Yamamoto, Kazuhisa

    2000-06-01

    We demonstrate a miniaturized blue laser (5× 12× 1.5 mm3) using second harmonic generation (SHG), which consists of a quasi-phase-matched (QPM)-SHG waveguide device on an x-cut Mg-doped LiNbO3 substrate and a tunable distributed-Bragg-reflector (DBR) laser diode. By using the QPM-SHG waveguide device on an x-cut substrate, efficient optical coupling was realized without a half-wave plate, and the maximum coupling efficiency of 75% was achieved. The blue light power of 2 mW was generated for the fundamental coupling power of 20 mW, which agreed with a conversion efficiency of 10%. The mechanical stability of the planar-type butt-coupled SHG blue laser was examined, where the coupling efficiency was maintained constantly under the change of module temperature and the temperature cycle test from 10 to 60°C. We succeeded in downsizing the SHG blue laser to 0.1 cm3, which is sufficiently small for its application to optical disk systems.

  4. Second harmonic generation from the 'centrosymmetric' crystals.

    PubMed

    Nalla, Venkatram; Medishetty, Raghavender; Wang, Yue; Bai, Zhaozhi; Sun, Handong; Wei, Ji; Vittal, Jagadese J

    2015-05-01

    Second harmonic generation (SHG) is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II) complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP), and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals.

  5. Second harmonic generation polarization properties of myofilaments

    NASA Astrophysics Data System (ADS)

    Samim, Masood; Prent, Nicole; Dicenzo, Daniel; Stewart, Bryan; Barzda, Virginijus

    2014-05-01

    Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins. The increase in the ratio is assigned to the change in the deflection angle of the myosin S2 domain and possible contribution of myosin heads. The nonlinear susceptibility component ratio is a sensitive indicator of the myosin structure, and therefore, it can be used for conformational studies of myosin nanomotors. The measured ratio values can also be used as the reference for ab initio calculations of nonlinear optical properties of different parts of myosins.

  6. Origin of second-harmonic generation from individual silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wiecha, Peter R.; Arbouet, Arnaud; Girard, Christian; Baron, Thierry; Paillard, Vincent

    2016-03-01

    We investigate second harmonic generation from individual silicon nanowires and study the influence of resonant optical modes on the far field nonlinear emission. We find that the polarization of the second harmonic has a size-dependent behavior and explain this phenomenon by considering different surface and bulk nonlinear susceptibility contributions. We show that the second harmonic generation has an entirely different origin, depending on the nanowire diameter and on whether the incident illumination is polarized parallel or perpendicular to the nanowire axis. The results open perspectives for further geometry-based studies on the origin and control of second harmonic generation in nanostructures of high-refractive index centrosymmetric dielectrics.

  7. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  8. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  9. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A.

    2011-10-15

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  10. 34 GHz second-harmonic peniotron oscillator

    NASA Astrophysics Data System (ADS)

    Dressman, Lawrence Jude

    Harmonic operation of gyro-devices has been proposed as a way to lower the magnetic field required to a level feasible with normal (i.e., non-superconducting) magnets. The problem is, however, that gyrotron efficiency drops dramatically at harmonics greater than two, making development of such a device of limited utility. A promising solution to this quandary is the development of a related device, the peniotron, which is believed capable of achieving both high efficiency and harmonic operation resulting in a reduction of the required axial magnetic field. Although the physics of the peniotron interaction, including its high electronic conversion efficiency, has been understood and experimentally verified, demonstration of characteristics consistent with a practical device has been more elusive. This is the goal of this effort---specifically, to demonstrate high device efficiency (defined as the actual power output as a fraction of the electron beam power) with an electron beam generated by a compact cusp electron gun consistent in size and performance with other microwave vacuum electron devices. The cavity design process revealed that the pi/2 mode couples easily to the output circular waveguide. In fact, the transition to circular waveguide produced such a low reflection coefficient that an iris was needed at the cavity output to achieve the desired Q. Integral couplers were also designed to couple directly into the slotted cavity for diagnostic purposes for simplicity in this proof-of-principle physics experiment. This eliminated the need for a high-power circular vacuum window and allowed the diagnostic coupling to be made in standard WR-28 rectangular waveguide. Although mode competition did prevent the second-harmonic peniotron mode from being tuned over its entire range of magnetic field, the peniotron mode was stable over a range sufficient to allow useful experimental data to be obtained. However, another unexpected problem which occurred during execution

  11. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    NASA Astrophysics Data System (ADS)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  12. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  13. Detection of Molecular Monolayers by Optical Second-Harmonic Generation

    SciTech Connect

    Chen, C. K.; Heinz, T. F.; Ricard, D.; Shen, Y. R.

    1980-12-22

    Second harmonic generation is shown to be sensitive enough to detect molecular monolayers adsorbed on a silver surface. Adsorption of AgCl and pyridine on silver during and after an electrolytic cycle can be easily observed,

  14. Squeezed light from second-harmonic generation: experiment versus theory.

    PubMed

    Ralph, T C; Taubman, M S; White, A G; McClelland, D E; Bachor, H A

    1995-06-01

    We report excellent quantitative agreement between theoretical predictions and experimental observation of squeezing from a singly resonant second-harmonic-generating crystal. Limitations in the noise suppression imposed by the pump laser are explicitly modeled and confirmed by our measurements.

  15. Spatiotemporal toroidal waves from the transverse second-harmonic generation.

    PubMed

    Saltiel, Solomon M; Neshev, Dragomir N; Fischer, Robert; Krolikowski, Wieslaw; Arie, Ady; Kivshar, Yuri S

    2008-03-01

    We study the second-harmonic generation via transversely matched interaction of two counterpropagating ultrashort pulses in chi(2) photonic structures. We show that the emitted second-harmonic wave attains the form of spatially expanding toroid with the initial thickness given by the cross correlation of the pulses. We demonstrate the formation of such toroidal waves in crystals with random ferroelectric domains as well as in annularly poled nonlinear photonic structures.

  16. Corrected formula for the polarization of second harmonic plasma emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.; Gary, D. E.

    1980-01-01

    Corrections for the theory of polarization of second harmonic plasma emission are proposed. The nontransversality of the magnetoionic waves was not taken into account correctly and is here corrected. The corrected and uncorrected results are compared for two simple cases of parallel and isotropic distributions of Langmuir waves. It is found that whereas with the uncorrected formula plausible values of the coronal magnetic fields were obtained from the observed polarization of the second harmonic, the present results imply fields which are stronger by a factor of three to four.

  17. Classical theory for second-harmonic generation from metallic nanoparticles

    SciTech Connect

    Zeng Yong; Liu Jinjie; Moloney, Jerome V.; Hoyer, Walter; Koch, Stephan W.

    2009-06-15

    In this paper, we develop a classical electrodynamic theory to study the optical nonlinearities of metallic nanoparticles. The quasi free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the plasma equations. This theory is further tailored to study second-harmonic generation. Through detailed experiment-theory comparisons, we validate this classical theory as well as the associated numerical algorithm. It is demonstrated that our theory not only provides qualitative agreement with experiments but it also reproduces the overall strength of the experimentally observed second-harmonic signals.

  18. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    SciTech Connect

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  19. Effect of Structural Modification on Second Harmonic Generation in Collagen

    SciTech Connect

    Stoller, P C; Reiser, K M; Celliers, P M; Rubenchik, A M

    2003-04-04

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  20. A microchip laser with intracavity second-harmonic generation

    SciTech Connect

    Derzhavin, S I; Mashkovskii, D A; Timoshkin, V N

    2008-12-31

    A short-pulse 'green' 532-nm Nd{sup 3+}:YVO{sub 4} and KTiOPO{sub 4} microchip laser with intracavity second-harmonic generation, which is pumped by a 809-nm semiconductor laser diode, is developed. (lasers. amplifiers)

  1. Transmit beamforming for optimal second-harmonic generation.

    PubMed

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  2. Spin-Squeezing Entanglement of Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Shu, Jian

    2016-10-01

    An experimentally feasible scheme for generating spin-squeezing entanglement via second-harmonic generation was presented. Its shown that spin-squeezing entanglement can be generated rapidly in the dynamical process by adjusting coupling constant, detuning, the total number of particles and the evolution time.

  3. Theory of anomalous backscattering in second harmonic X-mode ECRH experiments

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Popov, A. Yu.

    2016-08-01

    A quantitative model explaining generation of the anomalous backscattering signal in the second harmonic X-mode electron cyclotron resonance heating (ECRH) experiments at TEXTOR tokamak as a secondary nonlinear process which accompanies a primary low-threshold parametric decay instability (PDI) leading to excitation of two—upper hybrid (UH)—plasmons trapped in plasma is developed. The primary absolute PDI enhancing the UH wave fluctuations from the thermal noise level is supposed to be saturated due to a cascade of secondary low-threshold decays of the daughter UH wave leading to excitation of the secondary UH waves down-shifted in frequency and the ion Bernstein wave. A set of equations describing the cascade is derived and solved numerically. The results of numerical modelling are shown to be in agreement with the analytical estimations of the growth rate of the initial and secondary parametric decays and the saturation level. The generation of backscattering signal is explained by coupling of the daughter UH waves. The fine details of the frequency spectrum of the anomalously reflected extraordinary wave and the absolute value of the observed backscattering signal in the second harmonic X-mode ECRH experiments at TEXTOR are reproduced.

  4. Second harmonic generation and enhancement in microfibers and loop resonators

    NASA Astrophysics Data System (ADS)

    Gouveia, Marcelo A.; Lee, Timothy; Ismaeel, Rand; Ding, Ming; Broderick, Neil G. R.; Cordeiro, Cristiano M. B.; Brambilla, Gilberto

    2013-05-01

    We model and experimentally investigate second harmonic generation in silica microfibers and loop resonators, in which the second order nonlinearity arises from the glass-air surface dipole and bulk multipole contributions. In the loop resonator, the recirculation of the pump light on resonance is used to increase the conversion. The effect of the loop parameters, such as coupling and loss, is theoretically studied to determine their influence on the resonance enhancement. Experimentally, microfibers were fabricated with diameters around 0.7 μm to generate the intermodally phase matched second harmonic with an efficiency up to 4.2 × 10-8 when pumped with 5 ns 1.55 μm pulses with a peak power of 90 W. After reconfiguring the microfiber into a 1 mm diameter loop, the efficiency was resonantly enhanced by 5.7 times.

  5. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Wall, James J.; Qu, Jianmin; Jacobs, Laurence J.

    2015-03-01

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  6. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    SciTech Connect

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin

    2015-03-31

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  7. Electric field induced second harmonic generation with and without fringes

    NASA Astrophysics Data System (ADS)

    Meshulam, G.; Berkovic, G.; Kotler, Z.; Sa'ar, A.

    2000-09-01

    Electric field induced second harmonic generation (EFISH) is a well-known technique to measure the first hyperpolarizability (β) of organic molecules in solution. The characteristic experimental output is observation of oscillatory fringes of second harmonic radiation as the solution path length is changed and evaluation of β from the fringe amplitude. We present two different cases where even in the absence of these characteristic fringes β may still be evaluated: first, when using absorbing materials, and second, when using broadband laser sources. The ability to determine β by EFISH under these conditions greatly enhances the ability of this technique to measure β values over a wide range of laser frequencies. Measurements of the same molecule's β values at different frequencies are reported, verifying the two-level model for the dispersion of β.

  8. Monolithic AlGaAs second-harmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Gili, V. F.; Carletti, L.; Locatelli, A.; Rocco, D.; Finazzi, M.; Ghirardini, L.; Favero, I.; Gomez, C.; Lemaître, A.; Celebrano, M.; De Angelis, C.; Leo, G.

    2016-07-01

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.

  9. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  10. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  11. Time-resolved electric-field-induced second harmonic

    NASA Astrophysics Data System (ADS)

    Meshulam, Guilia; Berkovic, Garry; Kotler, Zvi

    2001-12-01

    One limitation of using electric field induced second harmonic (EFISH) to determine the molecular first hyperpolarizability (beta) of nonlinear optical molecules lies in the fact that part of the second harmonic signal comes from the second hyperpolarizability (gamma) produced by mixing two optical fields with the DC field. In analyzing EFISH results, the second hyperpolarizability contribution of the studied molecules is generally neglected. We present a modified time resolved EFISH technique that allows us, in a single experiment, to determine separately the beta and the gamma contributions. We study para-nitro aniline dissolved in Glycerol, a highly viscous solvent, and apply the DC field via a high voltage pulse with a fast rise time of approximately 40 nsec. As a result, the orientation of the molecules under the applied electric field is slow relative to the build-up of the field, enabling us to directly measure only the DC induced second harmonic (gamma contribution), at the beginning of the HV pulse. The pure beta contribution is determined from the difference between this signal and the conventional EFISH signal at the plateau of the HV pulse. Our result confirm that the gamma contribution is indeed less than 10% of the total.

  12. Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus

    2006-09-01

    The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.

  13. Dynamics of Flat Bunches with Second Harmonic RF

    SciTech Connect

    Sen, Tanaji; Bhat, Chandra; Kim, Hyung Jin; Ostiguy, Jean-Francois; /Fermilab

    2010-05-01

    We investigate the dynamics of longitudinally flat bunches created with a second harmonic cavity in a high energy collider. We study Landau damping in a second harmonic cavity with analytical and numerical methods. The latter include particle tracking and evolution of the phase space density. The results are interpreted in the context of possible application to the LHC. A possible path to a luminosity upgrade at the LHC is through the creation of longitudinally flat bunches. They can increase the luminosity roughly by 40% when the beam intensities are at the beam-beam limit. Lower momentum spread which can reduce backgrounds and make collimation easier as well lower peak fields which can mitigate electron cloud effects are other advantages. Use of a second harmonic rf system is a frequently studied method to create such flat bunches. Here we consider some aspects of longitudinal dynamics of these bunches in the LHC at top energy. First we consider intensity limits set by the loss of Landau damping against rigid dipole oscillations. Next we describe numerical simulations using both particle tracking and evolution of the phase space density. These simulations address the consequences of driving a bunch at a frequency that corresponds to the maximum of the synchrotron frequency.

  14. High power operation of first and second harmonic gyrotwystrons

    SciTech Connect

    Lawson, W.; Latham, P.E.; Calame, J.P.; Cheng, J.; Hogan, B.; Nusinovich, G.S.; Irwin, V.; Granatstein, V.L.; Reiser, M.

    1995-07-01

    We report the first experimental operation of overmoded first and second harmonic gyrotwystron amplifier configurations. Both devices utilize a single cavity which is driven near 9.87 GHz in the TE{sub 011} mode, heavily attenuated drift tubes, and long tapered output waveguide sections. A magnetron injection gun produces a 460 kV, 245 A beam with a maximum average perpendicular-to-parallel velocity ratio approximately equal to one. The axial magnetic field profile is sharply tapered in the output section. Peak powers above 21 MW are achieved in 1 {mu}s pulses with an efficiency exceeding 22% and a large signal gain near 24 dB in the first harmonic tube. The second harmonic tube achieves nearly 12 MW of the peak power with an efficiency of 11% and a gain above 21 dB. First harmonic amplifier performance is limited principally by competition from a fundamental mode output waveguide interaction; the second harmonic tube is limited by both travelling wave output modes and by a down-taper oscillation. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Efficient second-harmonic generation in poled polymer waveguides using copropagating geometries

    NASA Astrophysics Data System (ADS)

    Jager, Matthias Lothar

    1997-12-01

    The field of efficient second-harmonic generation (SHG) is recently getting renewed attention due to the emerging field of cascading of second-order nonlinearities. Cascading allows all-optical switching, spatial solitary waves, etc., which can be used for all-optical information routing and processing. These applications require operation at the telecommunication wavelengths in the near infrared, where organic materials, such as poled polymers, are promising candidates due to their superior nonlinear optical coefficients. Polymers are also cheap, can be easily processed, and allow integration with semiconductor technology. This dissertation includes the linear and nonlinear optical material characterization of the polymeric materials, the fabrication of various polymeric SHG devices and the study of the device performance. In particular, the two nonlinear optical (NLO) side-chain polymers based on the chromophores 4-dimethylamino- 4'-nitrostilbene (DANS) and Disperse Red 1 are studied. Cascading as well as SHG applications require high conversion efficiencies that are preferentially achieved in optical waveguides, where the fundamental and second- harmonic waves travel in the same direction (copropagating geometry). These guided-wave devices allow a tight optical confinement, a long interaction length, and access to the diagonal elements of the nonlinear susceptibility tensor chi(2) simultaneously. This dissertation investigates the two most promising phase matching techniques, quasi-phase matching (QPM) and modal dispersion phase matching (MDPM). It was found that QPM is technologically challenging for poled polymers and typically introduces an excess propagation loss. MDPM is more compatible with polymer fabrication and was successfully demonstrated over a phase matching distance of up to 7 mm. Multilayer spincoating and inverse poling of polymers have also allowed the optimization of the overlap integral. SHG figures of merit comparable to those of

  16. Controlling attosecond angular streaking with second harmonic radiation.

    PubMed

    Hammond, T J; Kim, Kyung Taec; Zhang, Chunmei; Villeneuve, D M; Corkum, P B

    2015-04-15

    High harmonic generation, which produces a coherent burst of radiation every half cycle of the driving field, has been combined with ultrafast wavefront rotation to create a series of spatially separated attosecond pulses, called the attosecond lighthouse. By adding a coherent second harmonic beam with polarization parallel to the fundamental, we decrease the generating frequency from twice per optical cycle to once. The increased temporal separation increases the pulse contrast. By scanning the carrier envelope phase, we see that the signal is 2π periodic. PMID:25872069

  17. Coherent and incoherent second harmonic generation in liquids

    NASA Astrophysics Data System (ADS)

    Maurice, A.; Benichou, E.; Brevet, P. F.

    2015-08-01

    In this paper, the Second Harmonic light intensity scattered off a liquid solution upon illumination by an incident fundamental frequency beam is written within a general framework in order to describe its coherent and incoherent contributions. It is shown that this formulation requires the introduction of a correlation function in time, position and orientation. We discuss this framework in light of recent experiments where the interface and the bulk of liquid solutions can be investigated simultaneously. We apply here this analysis to a neat water solution to compare the bulk volume and the interface correlation functions.

  18. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  19. Second harmonic generation from multilayers of oriented metal bisphosphonates

    SciTech Connect

    Neff, G.A.; Mahon, T.M.; Abshere, T.A.; Page, C.J.

    1996-12-31

    Second order nonlinear optical properties (NLO) require the presence of a polarizable moiety situated in an anharmonic potential. The approach to incorporating such properties into self-assembled multilayers involves use of asymmetric {alpha},{omega} bisphosphonates which meet this requirement by virtue of their chemical structure and binding properties. The authors have developed and optimized protection and deprotection schemes to allow for oriented layering of these molecules. Characterization by optical ellipsometry and grazing angle X-ray diffraction provides insight on average layer thicknesses and bulk film densities. Second harmonic generation (SHG) intensity from the bulk film is measured to verify NLO activity.

  20. Second harmonic generation and crystal growth of substituted thienyl chalcone

    NASA Astrophysics Data System (ADS)

    Goto, Yoshitaka; Hayashi, Akio; Kimura, Yasuhiro; Nakayama, Masaharu

    1991-02-01

    The second harmonic generation (SHG) of 29 kinds of thienyl chalcone derivatives with a thiophene ring were examined. A series of 1-{2-(5-bromothienyl)}-3-(4'-halophenyl)propene-3-one showed high SHG activity. Especially 1-(2-thienyl)-3-(4-methylphenyl)propene-1-one had SHG activity 15 times as large as urea and also high blue light region transparency with a cutoff wavelength of 390 nm. A large high quality single crystal of 60x15x10mm of this compound could be obtained from acetone solution. Analysis of the crystal structure identified it as a monoclinical system of space group P2 1.

  1. Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives.

    PubMed

    Fittinghoff, D N; Squier, J A; Barty, C P; Sweetser, J N; Trebino, R; Müller, M

    1998-07-01

    Ultrashort-pulse lasers are now commonly used for multiphoton microscopy, and optimizing the performance of such systems requires careful characterization of the pulses at the tight focus of the microscope objective. We solve this problem by use of a collinear geometry in frequency-resolved optical gating that uses type II second-harmonic generation and that allows the full N.A. of the microscope objective to be used. We then demonstrate the technique by measuring the intensity and the phase of a 22-fs pulse focused by a 20x, 0.4-N.A. air objective.

  2. Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy.

    PubMed

    Prent, Nicole; Green, Chantal; Greenhalgh, Catherine; Cisek, Richard; Major, Arkady; Stewart, Bryan; Barzda, Virginijus

    2008-01-01

    Drosophila melanogaster larva myocytes are imaged with second harmonic generation (SHG) microscopy undergoing forced stretching and rhythmic contractions to determine the nature of the SHG signal. During stretching, double peaked SHG profiles of the anisotropic (A-) bands evolve into single peaks with a higher SHG intensity. The dip in the intensity profile at the center of the A-band is attributed to destructive interference from out-of-phase second harmonic radiating myosin molecules that, in the central region of myofilaments, are arranged antiparallel. An intensity increase at the center of the A-band appears during forced stretching due to a small, less than 100 nm, intermyofilament separation of the antiparallel myosin molecules leading to constructive interference of the SHG radiation. In addition, the same phenomenon occurs during periodic contractions of the myocyte, where an SHG intensity increase with the lengthening of sarcomeres is observed. The SHG intensity dependence on sarcomere length can be used for imaging myocyte contractions with low resolution microscopy, and can be applied for the development of diagnostic tools where monitoring of muscle contraction dynamics is required.

  3. Cyclotron resonance maser experiments in first and second harmonics

    NASA Astrophysics Data System (ADS)

    Shahadi, Avi; Drori, Rami; Jerby, Eli

    1995-09-01

    Cyclotron-resonance maser (CRM) oscillator experiments in a nondispersive (TEM-mode) waveguide are reported in this paper. The table-top CRM oscillator constructed in our laboratory operates with a low-energy (< 5 keV), low-current (< 1 A) electron beam. The electron beam is rotating in the cyclotron frequency due to an axial magnetic field produced by an external solenoid. The large electron transverse velocity, needed to obtain amplification in a TEM-CRM, is achieved by a strong kicker coil. The coplanar waveguide used in this experiment supports odd and even TEM-modes, and enables cyclotron interactions with both first and second harmonics. Microwave output power at the first cycoltron harmonic is observed in the range of 3-6 GHz, where the frequency is tuned by the axial magnetic field in this range. A considerable second harmonic emission is observed around 7 GHz frequency. This experiment may lead to the developement of a new compact high-power microwave source.

  4. Characterization of Second Harmonic Afterburner Radiation at the LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2010-09-14

    During commissioning of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Laboratory it was shown that saturation lengths much shorter than the installed length of the undulator line can routinely be achieved. This frees undulator segments that can be used to provide enhanced spectral properties and at the same time, test the concept of FEL Afterburners. In December 2009 a project was initiated to convert undulator segments at the down-beam end of the undulator line into Second Harmonic Afterburners (SHAB) to enhance LCLS radiation levels in the 10-20 keV energy range. This is being accomplished by replacement of gap-shims increasing the fixed gaps from 6.8 mm to 9.9 mm, which reduces their K values from 3.50 to 2.25 and makes the segments resonant at the second harmonic of the upstream unmodified undulators. This paper reports experimental results of the commissioning of the SHAB extension to LCLS.

  5. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    SciTech Connect

    Stoller, P C

    2002-09-30

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin

  6. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated. PMID:16985536

  7. Second Harmonic Generation of Nanoscale Phonon Wave Packets

    NASA Astrophysics Data System (ADS)

    Bojahr, A.; Gohlke, M.; Leitenberger, W.; Pudell, J.; Reinhardt, M.; von Reppert, A.; Roessle, M.; Sander, M.; Gaal, P.; Bargheer, M.

    2015-11-01

    Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.

  8. Second harmonic plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  9. Second-harmonic generation in zinc tris(thiourea) sulfate

    SciTech Connect

    Marcy, H.O.; Warren, L.F. ); Webb, M.S.; Ebbers, C.A.; Velsko, S.P. ); Kennedy, G.C.; Catella, G.C. )

    1992-08-20

    The linear and second-order nonlinear optical properties of single-crystal zinc tris(thiourea) sulfate, or ZTS, are determined. The deduced nonlinear coefficients are {vert bar} {ital d}{sub 31} {vert bar}=0.31, {vert bar} {ital d}{sub 32} {vert bar}=0.35, and {vert bar} {ital d}{sub 33} {vert bar}=0.23 pm/V compared with a {vert bar} {ital d}{sub 14} {vert bar} value of 0.39 pm/V for potassium dihydrogen phosphate. Because it exhibits a low angular sensitivity ({delta}{Delta}{ital k}/{delta}{theta}), ZTS may prove useful for type-II second-harmonic generation from 1.06 to 1.027 {mu}m. We present the phase-matching measurement data for ZTS and compare the calculated frequency conversion efficiency for ZTS with that of several other well-characterized materials.

  10. Time-resolved phase-sensitive second harmonic generation spectroscopy.

    PubMed

    Nowakowski, Paweł J; Woods, David A; Bain, Colin D; Verlet, Jan R R

    2015-02-28

    A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times. PMID:25725724

  11. Time-resolved phase-sensitive second harmonic generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowakowski, Paweł J.; Woods, David A.; Bain, Colin D.; Verlet, Jan R. R.

    2015-02-01

    A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times.

  12. On probing conformation of microtubules by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Sharoukhov, Denis; Lim, Hyungsik

    2016-01-01

    Microtubule (MT) is a component of cytoskeleton playing an important role in a variety of cellular processes. Altering the structure of MT is a crucial mechanism of modulating the function, but it is difficult to measure the in vivo conformation. We present here the use of second-harmonic generation (SHG) for acquiring information about the architecture of MTs in living tissue. Axonal MTs were imaged by polarization-resolved SHG and anisotropy in the molecular structure was determined by means of the second-order tensor analysis. The feasibility of the second-order tensor analysis was tested for measuring the conformational changes induced by MT-stabilizing drug. It demonstrates that the new optical contrast may be useful for investigating the dynamics of MT cytoskeleton in vivo.

  13. Interpreting Second-Harmonic Generation Images of Collagen I Fibrils

    PubMed Central

    Williams, Rebecca M.; Zipfel, Warren R.; Webb, Watt W.

    2005-01-01

    Fibrillar collagen, being highly noncentrosymmetric, possesses a tremendous nonlinear susceptibility. As a result, second-harmonic generation (SHG) microscopy of collagen produces extremely bright and robust signals, providing an invaluable tool for imaging tissue structure with submicron resolution. Here we discuss fundamental principles governing SHG phase matching with the tightly focusing optics used in microscopy. Their application to collagen imaging yields several biophysical features characteristic of native collagen structure: SHG radiates from the shell of a collagen fibril, rather than from its bulk. This SHG shell may correspond to the supporting element of the fibril. Physiologically relevant changes in solution ionic strength alter the ratio of forward-to-backward propagating SHG, implying a resulting change in the SHG shell thickness. Fibrillogenesis can be resolved in immature tissue by directly imaging backward-propagating SHG. Such findings are crucial to the design and development of forthcoming diagnostic and research tools. PMID:15533922

  14. Second Harmonic Generation in a Graphe Armchair Nanoribbon

    NASA Astrophysics Data System (ADS)

    Gumbs, Godfrey; Abranyos, Yonatan

    2013-03-01

    The second order nonlinear optical susceptibility χ (2) for second harmonic generation is calculated for the 11H transition of a graded double quantum well (DQW) structure of undoped- GaAs / Alx Ga1 - x As . These results are compared with the single quantum well (QW). Our results show that the values of χ (2) have optimal magnitudes dependent on the width, depth and separation between the QWs in a DQW structure. When the electric field increases, the dipole moment increases due to the increasing separation between the electron and hole wave functions. On the other hand, the oscillator strength of the 11H transition is reduced as a result of the decrease in the overlap of the electron and hole envelope functions. These two competing factors give rise to optimal conditions for the enhancement of the second order nonlinear susceptibility χ (2). It is demonstrated that χ (2) for the DQW structure is more enhanced than for the biased single QW.

  15. Second harmonic chalcone crystal: Synthesis, growth and characterization

    NASA Astrophysics Data System (ADS)

    D'silva, E. D.; Narayan Rao, D.; Philip, Reji; Butcher, Ray J.; Rajnikant; Dharmaprakash, S. M.

    2011-05-01

    The novel nonlinear optical chalcone derivative (2 E)-3-[4-(methylsulfanyl)phenyl]-1-(3-bromophenyl)prop-2-en-1-one (3Br4MSP) crystals have been grown by slow evaporation technique at ambient temperature. The crystal was subjected to different types of characterization method in order to study its possible application in nonlinear optics. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. The morphology of the crystal is studied. The crystal was subjected to thermal analysis to find its thermal stability. The grown crystals were characterized for their optical transmission and mechanical hardness. The second harmonic generation (SHG) efficiency of the crystal is obtained by classical powdered technique. The laser damage threshold for 3Br4MSP crystal was determined using Q-switched Nd:YAG laser.

  16. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  17. Second harmonic generation from an individual amorphous selenium nanosphere

    NASA Astrophysics Data System (ADS)

    Ma, C. R.; Yan, J. H.; Wei, Y. M.; Yang, G. W.

    2016-10-01

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10-8. We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine.

  18. Second harmonic generation from an individual amorphous selenium nanosphere.

    PubMed

    Ma, C R; Yan, J H; Wei, Y M; Yang, G W

    2016-10-21

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10(-8). We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine. PMID:27632529

  19. Second harmonic generation from an individual amorphous selenium nanosphere.

    PubMed

    Ma, C R; Yan, J H; Wei, Y M; Yang, G W

    2016-10-21

    Among the numerous nonlinear optics effects, second harmonic generation (SHG) is always a hotspot and it is extensively used for optical frequency conversion, biomedical imaging, etc. However, SHG is forbidden in a medium with inversion symmetry under the electric-dipole approximation. Here, we demonstrated SHG from a single amorphous selenium (a-Se) nanosphere under near-infrared femtosecond pulse excitation. It was found that SH spectra are tunable with the size of a-Se nanospheres and the SHG efficiency of a single a-Se sphere with a diameter over 300 nm is estimated at 10(-8). We also established two physical mechanisms of SHG from the amorphous nanospheres. There is an electric-dipole contribution to the second-order nonlinearity in view of the inevitable structural discontinuity at the surface. The discontinuity of the normal component of the electric field strength leads to the quadrupole-type contributions arising from the large electric field gradient. The SHG process can be enhanced by resonance near the fundamental wavelength, giving rise to the detectable second harmonic (SH) spectra of a single a-Se nanosphere (d > 300 nm) or two small a-Se nanospheres (d = 200 nm) aggregated into a dimer, while the single nanosphere with smaller size (d > 300 nm) is undetectable. As an essential trace element for animals, a-Se features unique biological compatibility and has specific properties of optical nonlinearity within the optical window in biological tissue. This discovery makes a-Se nanospheres promising both in nonlinear optics and biomedicine.

  20. Electromagnetic study of second harmonic generation by a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Neviere, Michel; Popov, E.; Reinisch, Raymond

    1995-09-01

    When an incident plane wave with circular frequency (omega) falls on a grating coated by a layer of nonlinear material, it generates a nonlinear polarization PNL(2(omega) ) which acts as a source term and produces a second harmonic (SH) field called signal. The excitation of an electromagnetic resonance like surface plasmon or a guided wave increases the local field and thus the signal. The problem is to be able to compute and optimize the latter. We have developed a new theory which uses a coordinate transformation mapping the grating profile onto a plane. This simplifies the boundary conditions but complicates the propagation equation. Taking advantage of the psuedoperiodicity of the problem, the Fourier harmonics of the field are solution of a set of first order differential equations with constant coefficients. The resolution of this system via eigenvalue and eigenvector technique avoid numerical instabilities and lead to accurate results which agree perfectly with those found via the Rayleigh method or by the Differential method, when they work. A phenomenological approach is then developed to explain the unusual shape of the resonance lines at 2(omega) , which is based on the poles and zeros of the scattering operator S at (omega) and 2(omega) . It is shown that S(2(omega) ) presents 3 complex poles with 3 associated complex zeros. Their knowledge, plus the nonlinear reflectivity of the plane device allows predicting all the possible shapes of the 2(omega) signal as a function of angle of incidence. The phenomenological study explains an experimental result, found a few years ago, that if 2(omega) lies inside the absorption band of the guiding material instead of the transparent region, the enhanced second harmonic generation (SHG) is changed into a reduced one. It means that in the case phase matching can lead to a minimum instead of maximum. An algorithm is then proposed to maximize the signal intensity; with polyurethane as a guiding material a conversion

  1. Symmetry superposition studied by surface second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Lüpke, G.; Marowsky, G.; Steinhoff, R.; Friedrich, A.; Pettinger, B.; Kolb, D. M.

    1990-04-01

    The components of a third-rank χ(2) tensor have been split into contributions due to 1-fold, 2-fold, 3-fold, and ∞-fold or isotropic rotation axes for a surface of Cs symmetry. Theoretical analysis of the rotation patterns obtained by the surface second-harmonic (SH) generation indicates that a complete symmetry analysis cannot be performed without knowledge of the relevant distribution functions. Rotation axes of lower symmetry create via ``overtones'' or ``harmonics'' contributions apparent in the analysis of the rotation axes of higher symmetry. An experimental example is the observation of structural changes of Au(111) surfaces in an aqueous electrolytic environment. Potential-dependent buildup and removal of a Au(111)-(1×23) surface could be monitored in situ and in real time. Symmetry analysis of the SH rotation patterns reveals both contributions due to a 3-fold axis due to the regular (1×1) structure and simultaneously a 1-fold and a 2-fold axis due to the (1×23) reconstruction.

  2. Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers

    PubMed Central

    Janisch, Corey; Wang, Yuanxi; Ma, Ding; Mehta, Nikhil; Elías, Ana Laura; Perea-López, Néstor; Terrones, Mauricio; Crespi, Vincent; Liu, Zhiwen

    2014-01-01

    We investigate Second Harmonic Generation (SHG) in monolayer WS2 both deposited on a SiO2/Si substrate or suspended using transmission electron microscopy grids. We find unusually large second order nonlinear susceptibility, with an estimated value of deff ~ 4.5 nm/V nearly three orders of magnitude larger than other common nonlinear crystals. In order to quantitatively characterize the nonlinear susceptibility of two-dimensional (2D) materials, we have developed a formalism to model SHG based on the Green's function with a 2D nonlinear sheet source. In addition, polarized SHG is demonstrated as a useful method to probe the structural symmetry and crystal orientation of 2D materials. To understand the large second order nonlinear susceptibility of monolayer WS2, density functional theory based calculation is performed. Our analysis suggests the origin of the large nonlinear susceptibility in resonance enhancement and a large joint density of states, and yields an estimate of the nonlinear susceptibility value deff = 0.77 nm/V for monolayer WS2, which shows good order-of-magnitude agreement with the experimental result. PMID:24984953

  3. Imaging articular cartilage using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.

    2006-02-01

    Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3μm diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.

  4. Second harmonic generation from the ‘centrosymmetric’ crystals

    PubMed Central

    Nalla, Venkatram; Medishetty, Raghavender; Wang, Yue; Bai, Zhaozhi; Sun, Handong; Wei, Ji.; Vittal, Jagadese J.

    2015-01-01

    Second harmonic generation (SHG) is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II) complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP), and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals. PMID:25995840

  5. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  6. Titanosilicates with Strong Phase-Matched Second Harmonic Generation Responses.

    PubMed

    Chao, Tzu-Ling; Chang, Wen-Jung; Wen, Shu-Han; Lin, Yu-Qing; Chang, Bor-Chen; Lii, Kwang-Hwa

    2016-07-27

    The search for new and efficient nonlinear optical (NLO) materials has been an active research because of their technological importance in laser applications. Although a large number of frequency-doubling oxides, phosphates, borates, and fluoride-containing borates were found, no transition-metal silicate with useful NLO properties has been reported. We have now synthesized and grown crystals of two new titanosilicates, Li2K4[(TiO)Si4O12] and Li2Rb4[(TiO)Si4O12], by using a flux and supercritical hydrothermal method. Their unique 3D framework structures contain highly compressed TiO5 square pyramids which are arranged one over the other to form infinite ···Ti-O···Ti-O straight chains with alternating short and long Ti-O distances. These two materials meet the requirements for efficient second harmonic generation including lack of center of inversion symmetry, large susceptibility, phase matching, transmitting at wavelengths of interest, resistant to laser damage, and thermally stable. These attributes make them very attractive for frequency-doubling materials. PMID:27416357

  7. Second harmonic generation of chiral-modified silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Yue; Aldea-Nunzi, Gabriela; Rao Bobbara, Sanyasi; Nunzi, Jean-Michel

    2013-10-01

    Various approaches for the optical detection of chiral compounds have been developed due to their natural optical activity. Since the advantages of second harmonic generation (SHG) on noble-metal nanoparticles (NPs) have been observed, it would be interesting to study the nonlinear phenomena from chiral compounds attached Ag NPs. In the present work, we fabricated chiral-modified Ag NPs based on the self-assembly process of cysteine and Ag, and carried out the investigation on SHG on modified and unmodified Ag NPs. For modified Ag NPs, either L-Cysteine (L-C) or D-Cysteine (D-C), as a pair of enantiomers, was applied on top of the Ag NPs. The resulting chiral-modified monolayers of L-C/Ag NPs and D-C/Ag NPs exhibit a reversed optical rotation difference (ORD) at linearly +/-45° polarization of SH, where no such difference exists for Ag NPs alone. SHG efficiently probes and discriminates L-C from D-C monolayers on the modified Ag NPs, which constitutes a simple and sensitive optical diagnostic of chiral molecules.

  8. Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass

    SciTech Connect

    Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; Jesse, Stephen; Noh, Tae Won; Kalinin, Sergei V.

    2014-11-14

    The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonic ESM response are discussed.

  9. Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma

    SciTech Connect

    Kaur, Sukhdeep; Sharma, A. K.; Salih, Hyder A.

    2009-04-15

    Second harmonic generation of a right circularly polarized Gaussian electromagnetic beam in a magnetized plasma is investigated. The beam causes Ohmic heating of electrons and subsequent redistribution of the plasma, leading to self-defocusing. The radial density gradient, in conjunction with the oscillatory electron velocity, produces density oscillation at the wave frequency. The density oscillation beats with the oscillatory velocity to produce second harmonic current density, giving rise to resonant second harmonic radiation when the wave frequency is one-third of electron cyclotron frequency. The second harmonic field has azimuthal dependence as exp(i{theta}). The self-defocusing causes a reduction in the efficiency of harmonic generation.

  10. Plasmonic nano-comb structures for efficient large-area second harmonic generation.

    PubMed

    Sim, Hongchul; Lim, Hee-Jin; Song, Jung-Hwan; Kim, Myung-Ki; Lee, Yong-Hee

    2014-07-14

    We propose and demonstrate plasmonic nano-comb (PNC) structures for efficient large-area second-harmonic generation (SHG). The PNCs are made of 250 nm-thick gold film and have equally-spaced 30 nm-slits filled with ployvinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)). The PNC with 1.0 μm-spacing couples resonantly with 1.56 μm 100-fs laser beams. For the 1.0 μm-spacing PNCs under the fixed-pump-power condition, the nonlinear SHG power remains almost independent of the pump diameter ranging from 2 μm to 6 μm. The SHG power from the resonant PNC is measured to be 8 times larger than that of the single-nano-gap metallic structure, when the pump beam is tightly-focused to 2 μm in diameter in both cases. This relative enhancement of the total nonlinear SHG signal power reaches up to >200 when the pump beam diameter is increased to 6 μm. We attribute this unusual phenomenon to the resonant coupling of the finite-size pump wave with the finite-size one-dimensional plasmonic mode.

  11. Studies of interfaces and vapors with Optical Second Harmonic Generation

    SciTech Connect

    Mullin, C. S.

    1993-12-01

    Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and compare their predictions to new observations we have made using a few-picosecond laser pulse. The two-lobed output beam profile shows that it is the vapor-plus-beam combination whose symmetry is important. The dependence on vapor pressure demonstrates the coherent nature of the radiation, while the dependence on buffer gas pressure hints at a change of the symmetry in time. The time-dependence is measured directly with a preliminary pump-probe measurement. The magnitude and intensity dependence of the signal are also measured. All but one of the models are eliminated by this comparison.

  12. Second harmonic generation imaging microscopy of cellular structure and function

    NASA Astrophysics Data System (ADS)

    Millard, Andrew C.; Jin, Lei; Loew, Leslie M.

    2005-03-01

    Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, with many advantages over existing one- or two-photon fluorescence techniques. A non-linear phenomenon employing mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry. Many important structural proteins such as collagen and cellulose show intrinsic SHG, thus providing access to sub-resolution information on symmetry. However, we are particularly interested here in "resonance-enhanced" SHG from styryl dyes. In general SHG is a combination of a true second-order process and a third-order process dependent on a static electric field, such that SHG from membrane-bound dyes depends on a cell's trans-membrane potential. With simultaneous patch-clamping and non-linear imaging of cells, we have found that SHG is a sensitive probe of trans-membrane potential with sensitivities that are up to four times better than those obtained under optimal conditions using one-photon fluorescence imaging. With the sensitivity of SHG to local electric fields from other sources such as the membrane dipole potential as well as the quadratic dependence of SHG on concentration, we have found that SHG imaging of styryl dyes is also a powerful technique for the investigation of lipid phases and rafts and for the visualization of the dynamics of membrane-vesicle fusion following fertilization of an ovum.

  13. Optical Second Harmonic Generation Studies of Electrochemical Interfaces

    NASA Astrophysics Data System (ADS)

    Nagy, Gabor

    Optical second harmonic generation (SHG) is an intrinsically surface sensitive tool that can be used to probe a wide variety of surface processes. In this work, SHG is employed to study the surface behavior of three polycrystalline electrodes, Cu, Ni, and brass, in an electrochemical environment. For the Cu electrode, SHG is used to examine the surface during oxidation and reduction in halide and non -halide electrolytes. The optical data indicate the probable formation of previously undetected small, resonant Cu clusters which are stabilized by Cu-halide crystallites on the electrode surface. The surface charge dependence of SHG is explored at a polycrystalline Ni electrode in the absence of faradaic reactions. The resulting correlation between surface charge and SHG indicates that in an electrochemical environment, the DC field activated contribution to the second order susceptibility plays the dominant role in SHG from Ni. Also with the polycrystalline Ni electrode, the behavior of the SH signal during the electrodeposition of Ag on the Ni surface is examined. The analysis of the optical data in conjunction with a diffusion limited Ag island growth model indicates that the SH signal experiences an electromagnetic enhancement on the Ni surface as a result of the Ag islands. The charge dependence of the SH signal is examined on a polycrystalline alpha-brass electrode in the absence of faradaic reactions, with two incident wavelengths. The experiments show that, as is the case with Cu, SHG from brass may (depending on the incident wavelength) also involve an interband transition and can be affected by a charge dependent Stark shift of the interband transition threshold. The brass electrode is also examined with SHG in a potential region where the selective dissolution of the surface Zn sites is known to occur. By using a layer-by-layer reordering model of the dissolving surface, the electrochemical data is correlated with simultaneously obtained optical SHG data to

  14. Studies of surfaces using optical second-harmonic generation

    SciTech Connect

    Tom, H.W.K.

    1984-04-01

    The experiments reported in this thesis demonstrate the use of second-harmonic generation (SHG) and sum-frequency generation (SFG) in reflection from surfaces to study various surface properties. The experiments firmly establish SHG as a viable new surface probe that complements existing surface probes in ultrahigh vacuum environments and is in many ways unique for studying interfaces between dense media. Surface structural symmetry can be revealed through the anisotropy in the SH signal from the surface as the sample is rotated about its normal. The form of this anisotropy is derived in theory and verified with an experiment on the Si(100) and (111) surfaces. The SHG and SFG signals from molecules adsorbed on noninteracting substrates have a direct relationship to the number, average orientation, and spectroscopic properties of the molecules. The SH intensity was used to measure the isotherm for adsorption of p-nitrobenzoic acid from ethanolic solution to fused silica. Experiments performed on a strongly-interacting well-characterized Rh(111) surface in ultrahigh vacuum establish the sensitivity of the SH probe in corroboration with other surface probes. For the first time, the SH coverage-dependence was fit by theory in a quantitative way for the case of O-atom adsorption. The sensitivity of SH to adsorption at different sites was established for CO on top- and bridge-sites. SHG was shown to be surface specific in that the SHG from alkali metal surfaces originates from the first two monolayers. SH sensitivity to the adsorption of catalytically-important hydrocarbons and to chemical processes such as benzene dehydrogenation was also demonstrated. 122 references, 27 figures, 2 tables.

  15. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones.

    PubMed

    Zhang, Zhenggang; Liu, Dan; Deng, Mingxi; Ta, Dean; Wang, Weiqi

    2014-07-01

    The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.

  16. Contribution of longitudinal electric field of a gaussian beam to second harmonic generation

    NASA Astrophysics Data System (ADS)

    Mishra, S. R.; Rustagi, K. C.

    1990-01-01

    A laser beam with a nonuniform transverse intensity profile necessarily has a longitudinal component of the electric field. We show that a detectable second harmonic can be generated due to coupling of this longitudinal component with the transverse field of a gaussian beam in a configuration in which second harmonic generation is forbidden for plane wave interaction.

  17. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

    NASA Astrophysics Data System (ADS)

    Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.

    2016-05-01

    Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

  18. Characterization of muscle contraction with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  19. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation.

    PubMed

    Kumar, S Chaitanya; Samanta, G K; Devi, Kavita; Ebrahim-Zadeh, M

    2011-06-01

    We describe the critical design parameters and present detailed experimental and theoretical studies for efficient, continuous-wave (cw), single-pass second harmonic generation (SHG) based on novel cascaded multicrystal scheme, providing >55% conversion efficiency and multiwatt output powers at 532 nm for a wide range of input fundamental powers at 1064 nm. Systematic characterization of the technique in single-crystal, double-crystal and multicrystal schemes has been performed and the results are compared. Optimization of vital parameters including focusing and phase-matching temperature at the output of each stage is investigated and strategies to achieve optimum SHG efficiency and power are discussed. Relevant theoretical calculations to estimate the effect of dispersion between the fundamental and the SH beam in air are also presented. The contributions of thermal effects on SHG efficiency roll-off have been studied from quasi-cw measurements. Using this multicrystal scheme, stable SH power with a peak-to-peak fluctuation better than 6.5% over more than 2 hours is achieved in high spatial beam quality with M2<1.6.

  20. Revealing the second harmonic generation in a femtosecond laser-driven cluster-based plasma by analyzing shapes of Ar XVII spectral lines.

    PubMed

    Oks, Eugene; Dalimier, Elisabeth; Faenov, Anatoly; Pikuz, Tatiana; Fukuda, Yuji; Andreev, Alexander; Koga, James; Sakaki, Hironao; Kotaki, Hideyuki; Pirozhkov, Alexander; Hayashi, Yukio; Skobelev, Igor; Pikuz, Sergei; Kawachi, Tetsuya; Kando, Masaki; Kondo, Kiminori; Zhidkov, Alexei; Kodama, Ryosuke

    2015-12-14

    We present experiments dealing with a femtosecond laser-driven cluster-based plasma, where by analyzing the nonlinear phenomenon of satellites of spectral lines of Ar XVII, we revealed the nonlinear phenomenon of the generation of the second harmonic of the laser frequency. For performing this analysis we developed new results in the theory of satellites of spectral lines. From such lineshape analysis we found, in particular, that the efficiency of converting the short (40 fs) intense (3x10¹⁸ W/cm²) incident laser light into the second harmonic was 2%. This result is in the excellent agreement with the 2-Dimensional Particle-In-Cell (2D PIC) simulation that we also performed. There is also an order of magnitude agreement between the thresholds for the SHG found from the line shape analysis and from the 2D PIC simulations.

  1. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass.

    PubMed

    Zolotovskaya, S A; Tyrk, M A; Stalmashonak, A; Gillespie, W A; Abdolvand, A

    2016-10-28

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios. PMID:27658641

  2. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass

    NASA Astrophysics Data System (ADS)

    Zolotovskaya, S. A.; Tyrk, M. A.; Stalmashonak, A.; Gillespie, W. A.; Abdolvand, A.

    2016-10-01

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs’ surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

  3. Transverse single-shot cross-correlation scheme for laser pulse temporal measurement via planar second harmonic generation.

    PubMed

    Wang, B; Cojocaru, C; Krolikowski, W; Sheng, Y; Trull, J

    2016-09-19

    We present a novel single-shot cross-correlation technique based on the analysis of the transversally emitted second harmonic generation in crystals with random distribution and size of anti-parallel nonlinear domains. We implement it to the measurement of ultrashort laser pulses with unknown temporal duration and shape. We optimize the error of the pulse measurement by controlling the incident angle and beam width. As novelty and unlike the other well-known cross correlation schemes, this technique can be implemented for the temporal characterization of pulses over a very wide dynamic range (30 fs-1ps) and wavelengths (800-2200 nm), using the same crystal and without critical angular or temperature alignment. PMID:27661955

  4. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass.

    PubMed

    Zolotovskaya, S A; Tyrk, M A; Stalmashonak, A; Gillespie, W A; Abdolvand, A

    2016-10-28

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

  5. Surface plasma wave assisted second harmonic generation of laser over a metal film

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-01-15

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.

  6. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light.

    PubMed

    Aouani, Heykel; Navarro-Cia, Miguel; Rahmani, Mohsen; Sidiropoulos, Themistoklis P H; Hong, Minghui; Oulton, Rupert F; Maier, Stefan A

    2012-09-12

    We report the experimental realization of efficient tunable nanosources of second harmonic light with individual multiresonant log-periodic optical antennas. By designing the nanoantenna with a bandwidth of several octaves, simultaneous enhancement of fundamental and harmonic fields is observed over a broad range of frequencies, leading to a high second harmonic conversion efficiency, together with an effective second order susceptibility within the range of values provided by widespread inorganic crystals. Moreover, the geometrical configuration of the nanoantenna makes the generated second harmonic signal independent from the polarization of the fundamental excitation. These results open new possibilities for the development of efficient integrated nonlinear nanodevices with high frequency tunability.

  7. Preparation and second-harmonic generation in Pb-doped oxide glasses

    NASA Astrophysics Data System (ADS)

    Liu, Qiming; Wang, Mingliang; Zhao, Xiujian

    2008-12-01

    PbO-B2O3 glasses were prepared by traditional melting method. XRD and optical spectra measurements were done to check properties. Second-harmonic generation was observed in the glasses induced by thermal treatment and thermally poling process, respectively. But second-harmonic generation intensity was normally larger for the later, and it increased with increasing PbO content, poling voltage, temperature and time. The mechanism of second-harmonic generation in the PbO-B2O3 glasses was also discussed. A promising material for all-optical switching devices is expected.

  8. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Zhang, B. P.; Binh, N. T.; Segawa, Y.

    2004-07-01

    Second harmonic generation (SHG) from ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique was carried out. By comparing the second harmonic signal generated in a series of ZnO films with different deposition temperatures, we conclude that a significant part of second harmonic signal is generated at the film deposited with appropriate temperature. The second-order susceptibility tensor χ(2)zzz=9.2 pm/V was deduced for a film deposited at 250 °C.

  9. Role of surface plasmon in second harmonic generation from gold nanorods

    SciTech Connect

    Hubert, C.; Billot, L.; Adam, P.-M.; Bachelot, R.; Royer, P.; Grand, J.; Gindre, D.; Dorkenoo, K. D.; Fort, A.

    2007-04-30

    The role of surface plasmon in second harmonic generation from arrays of gold nanorod particles excited by femtosecond laser pulses is investigated as a function of incident light polarization and irradiation wavelength. In addition to photoluminescence, a peak of second harmonic is observed and is found to depend on the polarization and wavelength of the fundamental frequency laser beam. In particular, the authors found similarities between extinction spectra of the nanoparticles and spectra of emmitted second harmonic. This behavior can be explained by resonant excitation of localized surface plasmon resonances.

  10. Negative electron energy loss and second-harmonic emission of nonlinear nanoparticles.

    PubMed

    Xu, Jinying; Zhang, Xiangdong

    2011-11-01

    A fast and general technique to investigation the interaction between a fast electron and nonlinear materials consisting of centrosymmetric spheres is presented by means of multiple scattering of electromagnetic multipole fields. Two kinds of new effect, the negative electron energy loss caused by the second-harmonic field and the second-harmonic Smith-Purcell radiation using finite chain of nonlinear spheres, are predicted for the first time. It is shown that these new effects can be probed by the electron energy loss spectrum, suggesting their possible applications in tunable light sources for the second-harmonic generation. PMID:22109179

  11. Relativistic second-harmonic generation of a laser from underdense plasmas

    SciTech Connect

    Singh, K.P.; Gupta, D.N.; Yadav, Sushila; Tripathi, V.K.

    2005-01-01

    A high intensity laser obliquely incident on a vacuum-plasma interface produces second-harmonic radiation in the reflected component. The efficiency of second-harmonic generation increases with the angle of incidence, up to critical angle of incidence (our model is not valid beyond critical angle of incidence). The efficiency also depends on electron density, showing a maximum at {omega}{sub p}{sup 2}/{omega}{sup 2} congruent with 0.7, where {omega}{sub p} and {omega} are relativistic plasma frequency and laser frequency, respectively. The efficiency of second-harmonic generation increases sharply with laser intensity in the nonrelativistic regime and saturates at higher intensities. The intensity of the second harmonic is proportional to square of the laser intensity at low pump laser intensities and tends to proportional to laser intensity in the strong relativistic regime.

  12. Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Lancis, Jesús; Garcia-Sucerquia, Jorge

    2016-03-01

    Multispectral digital lensless holographic microscopy (MDLHM) operating with second-harmonic illumination is shown. Added to the improvement of the spatial resolution of the previously reported MDLHM operating with near-infrared illumination, this second-harmonic MDLHM shows promise as a tool to study the behavior of biological samples under a broad spectral illumination. This illumination is generated by focusing a highly spatially coherent ultrashort pulsed radiation into an uncoated Type 1 β-BaB2O4 (BBO) nonlinear crystal. The second-harmonic MDLHM allows achieving multispectral images of biological samples with enhanced micrometer spatial resolution. The illumination wavelength of the second-harmonic MDLHM can be tuned by displacing a focusing optics with respect to a pinhole; spatially resolved information at different wavelengths of the sample can then be retrieved.

  13. Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation.

    PubMed

    Centini, Marco; Benedetti, Alessio; Sibilia, Concita; Bertolotti, Mario

    2011-04-25

    We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.

  14. Growth and characterization of crystals for IR detectors and second harmonic gereration devices

    NASA Technical Reports Server (NTRS)

    Lal, Ravi B.; Batra, Ashok K.; Rao, Sistla M.; Bhatia, S. S.; Chunduru, Kunar P.; Paulson, Ron; Moorkherji, Tripty K.

    1989-01-01

    Two types of materials, L-arginine phosphate (LAP) and doped triglycine sulfate (TGS), are examined for their growth characteristics and relevant properties for second harmonic generation and IR detector applications, respectively.

  15. Second-harmonic generation with pulses in a coupled-resonator optical waveguide.

    PubMed

    Mookherjea, Shayan; Yariv, Amnon

    2002-02-01

    We describe the generation and propagation of pulses in a coupled-resonator optical waveguide driven by a nonlinear polarization using a method closely related to the coupled-mode theory. The specific example we consider is that of second-harmonic generation. This formalism explicitly accounts for temporal dependencies in the waveguide field distributions and in their representations in terms of slowly modulated Bloch wave functions, in contrast with the equations obtained previously for cw second-harmonic generation.

  16. Attachment of second harmonic-active moiety to molecules for detection of molecules at interfaces

    DOEpatents

    Salafsky, Joshua S.; Eisenthal, Kenneth B.

    2005-10-11

    This invention provides methods of detecting molecules at an interface, which comprise labeling the molecules with a second harmonic-active moiety and detecting the labeled molecules at the interface using a surface selective technique. The invention also provides methods for detecting a molecule in a medium and for determining the orientation of a molecular species within a planar surface using a second harmonic-active moiety and a surface selective technique.

  17. Using the self-filtering property of a femtosecond filament to improve second harmonic generation.

    PubMed

    Shwa, David; Eisenmann, Shmuel; Marcus, Gilad; Zigler, Arie

    2009-04-13

    In this paper we demonstrate the use of NIR femtosecond filament for improving the generation of second harmonic using a type I BBO crystal. Using this method the beam propagation factor (M(2)) of the second harmonic was improved significantly; which led to enhancement of the attainable SH intensity by up to two orders of magnitude. This method can be beneficial for applications demanding high intensities, small spot size or long interaction lengths.

  18. Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses

    SciTech Connect

    Liu, Liwei Wang, Yue; Hu, Siyi; Ren, Yu; Huang, Chen

    2014-02-21

    We report on nonlinear optical experiments performed on Cu{sub 2}S quantum dots (QDs) pumped by femtosecond laser pulses. We conduct a theoretical simulation and experiments to determine their second harmonic generation characteristics. Furthermore, we demonstrate that the QDs have a second harmonic generation conversion efficiency of up to 76%. Our studies suggest that these Cu{sub 2}S QDs can be used for solar cells, bioimaging, biosensing, and electric detection.

  19. Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media

    NASA Astrophysics Data System (ADS)

    Gusachenko, Ivan; Schanne-Klein, Marie-Claire

    2013-11-01

    Polarization-resolved second-harmonic microscopy has recently emerged as a valuable technique for in situ imaging of collagen structure in tissues. Nevertheless, collagen-rich tissues such as tendon, ligament, skin dermis, bone, cornea, or artery exhibit a heterogeneous and anisotropic architecture that results in complex optical properties. While experimental evidence of polarization distortions has been reported in various tissues, the physics of second-harmonic imaging within such tissues is not fully understood yet. In this work, we performed numerical simulations of polarization-resolved second-harmonic generation in a strongly focused regime within a birefringent tissue. We show that vectorial components due to strong focusing have a rather small effect on the measurement of the second-harmonic tensorial response, while birefringence and optical dispersion may affect these measurements dramatically. We show indeed that a difference in the focal field distribution for ordinary and extraordinary waves results in different phase-matching conditions, which strongly affects the relative efficacy of second-harmonic generation for different polarizations. These results are of great interest for extracting reliable quantitative parameters from second-harmonic images.

  20. In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition.

    PubMed

    Umemura, S; Kawabata, K; Sasaki, K

    1997-01-01

    Acoustic cavitation, the primary mechanism of sonochemical effects, is known to be induced more easily by standing waves than by progressive waves. It has been found that acoustic cavitation can be an order of magnitude enhanced by superimposing the second harmonic on the fundamental. Significant synergistic effects between the fundamental and the second harmonic were observed in both in vitro and in vivo experiments employing a progressive wave field. Second-harmonic superimposition induces in vitro sonochemical reaction as well as fractional harmonic emission at a relatively low ultrasonic intensity even in a progressive wave field. The effect of second-harmonic superimposition was also investigated using exteriorized mouse livers suspended in degassed saline. The intensity threshold for the production of focal tissue damage, paired with fractional harmonic emission was significantly lowered by second-harmonic superimposition especially when a sonodynamically active agent had been administered to the mouse. Insonation with second-harmonic superimposition in combination with such administration may have potential use for selective tumor treatment.

  1. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  2. Generation of sub-20-fs multicolor laser pulses using cascaded four-wave mixing with chirped incident pulses.

    PubMed

    Liu, Jun; Kobayashi, Takayoshi

    2009-08-15

    Negatively chirped or nearly transform-limited output pulses can be obtained in a four-wave mixing process when one of the pump beams is negatively chirped and the other is positively chirped. Nearly transform-limited 16 fs multicolor laser pulses are obtained in a fused-silica glass plate using this method. The resulting frequency shifts and compressed multicolor sidebands are continuously tunable in wavelength by varying the crossing angle between the two input beams. Sub-10-fs multicolor pulses should be possible obtained using this method in the future.

  3. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates.

    PubMed

    Müller, Martin F; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2010-04-01

    This paper investigates the characteristics of the second harmonic generation of Lamb waves in a plate with quadratic nonlinearity. Analytical asymptotic solutions to Lamb waves are first obtained through the use of a perturbation method. Then, based on a careful analysis of these asymptotic solutions, it is shown that the cross-modal generation of a symmetric second harmonic mode by an antisymmetric primary mode is possible. These solutions also demonstrate that modes showing internal resonance-nonzero power flux to the second harmonic mode, plus phase velocity matching-are most useful for measurements. In addition, when using finite wave packets, which is the case in most experimental measurements, group velocity matching is required for a cumulative increase in the second harmonic amplitude with propagation distance. Finally, five mode types (which are independent of material properties) that satisfy all three requirements for this cumulative increase in second harmonic amplitude-nonzero power flux, plus phase and group velocity matching-are identified. These results are important for the development of an experimental procedure to measure material nonlinearity with Lamb waves.

  4. Kolakoski sequence as an element to radiate giant forward and backward second harmonic signals

    SciTech Connect

    Parvini, T. S.; Tehranchi, M. M. E-mail: teranchi@sbu.ac.ir; Hamidi, S. M. E-mail: teranchi@sbu.ac.ir; Sarkarati, S.

    2015-11-14

    We propose a novel type of aperiodic one-dimensional photonic crystal structures which can be used for generating giant forward and backward second harmonic signals. The studied structure is formed by stacking together the air and nonlinear layers according to the Kolakoski self-generation scheme in which each nonlinear layer contains a pair of antiparallel 180° poled LiNbO{sub 3} crystal layers. For different generation stages of the structure, conversion efficiencies of forward and backward second harmonic waves have been calculated by nonlinear transfer matrix method. Numerical simulations show that conversion efficiencies in the Kolakoski-based multilayer are larger than the perfect ones for at least one order of magnitude. Especially for 33rd and 39th generation stages, forward second harmonic wave are 42 and 19 times larger, respectively. In this paper, we validate the strong fundamental field enhancement and localization within Kolakoski-based multilayer due to periodicity breaking which consequently leads to very strong radiation of backward and forward second harmonic signals. Following the applications of analogous aperiodic structures, we expect that Kolakosi-based multilayer can play a role in optical parametric devices such as multicolor second harmonic generators with high efficiency.

  5. Study of the conformational structure and cluster formation in a Langmuir-Blodgett film using second harmonic generation, second harmonic microscopy, and FTIR spectroscopy

    SciTech Connect

    Johal, M.S.; Parikh, A.N.; Lee, Y.; Casson, J.L.; Foster, L.; Swanson, B.I.; McBranch, D.W.; Li, D.Q.; Robinson, J.M.

    1999-02-16

    Nonlinear second harmonic generation (SHG), second harmonic microscopy (SHM), and infrared spectroscopy are used to determine the structural and optical properties of the Langmuir-Blodgett (LB) monolayer assemblies of NLO-active, 4-eicosyloxo-(E)-stilbazolium iodide (4-EOSI) on a glass substrate. The packing characteristics of the pretransferred interfacial films are determined using {pi}-A isotherm measurements. The molecular coverage of the transferred films is determined by ellipsometry. The films formed on both sides of the glass substrate show substantial second harmonic (SH) conversion from p-polarized 1064 nm fundamental excitation. The SHG and FTIR measurements imply that the single LB layer on glass is composed of oriented clusters of 4-EOSI molecules that are laterally discontinuous. Ordered clusters up to 40 {micro}m in diameter are directly observed using SHM. Subsequent LB transfers using the same 4-EOSI molecule or an amphiphile of comparable chain-length (eicosanoic acid) fill in the unoccupied vacancies in the first layer. The magnitude of the dominant element of the nonlinear susceptibility and the average molecular orientation angle of the chromophore are determined by modeling the characteristic SHG Maker fringes.

  6. Efficient broadband 400  nm noncollinear second-harmonic generation of chirped femtosecond laser pulses in BBO and LBO.

    PubMed

    Gobert, O; Mennerat, G; Maksimenka, R; Fedorov, N; Perdrix, M; Guillaumet, D; Ramond, C; Habib, J; Prigent, C; Vernhet, D; Oksenhendler, T; Comte, M

    2014-04-20

    We report on 400 nm broadband type I frequency doubling in a noncollinear geometry with pulse-front-tilted and chirped femtosecond pulses (λ =800  nm; Fourier transform limited pulse duration, 45 fs). With moderate power densities (2 to 10  GW/cm2) thus avoiding higher-order nonlinear phenomena, the energy conversion efficiency was up to 65%. Second-harmonic pulses of Fourier transform limited pulse duration shorter than the fundamental wave were generated, exhibiting good beam quality and no pulse-front tilt. High energy (20 mJ/pulse) was produced in a 40 mm diameter and 6 mm thick LBO crystal. To the best of our knowledge, this is the first demonstration of this optical configuration with sub-100-fs pulses. Good agreement between experimental results and simulations is obtained.

  7. Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass

    DOE PAGESBeta

    Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; Jesse, Stephen; Noh, Tae Won; Kalinin, Sergei V.

    2014-11-14

    The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonicmore » ESM response are discussed.« less

  8. Silencing and enhancement of second-harmonic generation in optical gap antennas.

    PubMed

    Berthelot, Johann; Bachelier, Guillaume; Song, Mingxia; Rai, Padmnabh; Colas des Francs, Gérard; Dereux, Alain; Bouhelier, Alexandre

    2012-05-01

    Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.

  9. Enhanced second-harmonic-generation detection of collagen by means of optical wavefront shaping

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2016-03-01

    Second-harmonic generation (SHG) has proven to be an effective method to both image and detect structural variations in fibrillar collagen. The ability to detect these differences is especially useful in studying diseases like cancer and fibrosis.1 SHG techniques have historically been limited by their ability to penetrate and image through strongly scattering tissues. Recently, optical wavefront shaping has enabled light to be focused through highly scattering media such as biological tissue.2-4 This technology also enables us to examine the dependence of second harmonic generation on the spatial phase of the pump laser. Here, we demonstrate that wavefront shaping can be used to enhance the generation of second harmonic light from collagen fibrils even when scattering is low or non-existent.

  10. Sensitivity of Second Harmonic Generation from Styryl Dyes to Transmembrane Potential

    PubMed Central

    Millard, Andrew C.; Jin, Lei; Wei, Mei-de; Wuskell, Joseph P.; Lewis, Aaron; Loew, Leslie M.

    2004-01-01

    In this article we present results from the simultaneous nonlinear (second harmonic generation and two-photon excitation fluorescence) imaging and voltage clamping of living cells. Specifically, we determine the sensitivity to transmembrane potential of second harmonic generation by ANEP-chromophore styryl dyes as a function of excitation wavelength and dye structure. We have measured second harmonic sensitivities of up to 43% per 100 mV, more than a factor of four better than the nominal voltage sensitivity of the dyes under “one-photon” fluorescence. We find a dependence of voltage sensitivity on excitation wavelength that is consistent with a two-photon resonance, and there is a significant dependence of voltage sensitivity on the structure of the nonchromophore portion of the dyes. PMID:14747351

  11. Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers.

    PubMed

    Ren, Yingying; Jia, Yuechen; Dong, Ningning; Pang, Lilong; Wang, Zhiguang; Lu, Qingming; Chen, Feng

    2012-01-15

    We report on guided-wave second-harmonic generations in nonlinear Nd:YCa4O(BO3)3 (Nd:YCOB) optical waveguides that are produced by the low-fluence swift Ar8+ ion irradiation. The guided-wave second harmonics are realized through the frequency doubling and the self-frequency-doubling of the waveguides under the optical pumps at wavelengths of 1064 and 810 nm, respectively. By virtue of the self-frequency-conversion configuration, the Nd:YCOB waveguides are promising candidates as novel, compact, miniature green laser sources.

  12. Three-dimensional nanostructures as highly efficient generators of second harmonic light.

    PubMed

    Zhang, Yu; Grady, Nathaniel K; Ayala-Orozco, Ciceron; Halas, Naomi J

    2011-12-14

    Plasmonic nanostructures enable the generation of large electromagnetic fields confined to small volumes, potentially providing a route for the development of nanoengineered nonlinear optical media. A metal-capped hemispherical nanoparticle, also known as a nanocup, generates second harmonic light with increasing intensity as the angle between the incident fundamental beam and the nanocup symmetry axis is increased. Nanoparticle orientation also modifies the emission direction of the second harmonic light. With conversion efficiencies similar to those of inorganic SHG crystals, these structures provide a promising approach for the design and fabrication of stable, synthetic second-order nonlinear optical materials tailored for specific wavelengths.

  13. Quasi-phase-matched backward second-harmonic generation by complementary media in nonlinear metamaterials.

    PubMed

    Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2012-10-01

    High efficiency of the second-harmonic and sum-frequency generation can be obtained in optical superlattice by using the conventional quasi-phase-matched (QPM) method. Although this trick can be played on the acoustic wave, the media with negative nonlinear parameters are not common in acoustics. Furthermore, the QPM method used in acoustic metamaterials has been less studied. In this work, a protocol is provided to realize the QPM method by using nonlinear complementary media in acoustic metamaterials in order to obtain large backward second-harmonic generation. Compared with the conventional method, the method gains a broader bandwidth and can be used in both acoustic and electromagnetic waves.

  14. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    SciTech Connect

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  15. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.; Boucaud, P.

    2015-02-01

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χzxx (2 ), χzyy (2 ) and the electric fields of the fundamental cavity mode.

  16. Radially polarized annular beam generated through a second-harmonic-generation process.

    PubMed

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius.

  17. Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks

    PubMed Central

    Roland, I.; Gromovyi, M.; Zeng, Y.; El Kurdi, M.; Sauvage, S.; Brimont, C.; Guillet, T.; Gayral, B.; Semond, F.; Duboz, J. Y.; de Micheli, M.; Checoury, X.; Boucaud, P.

    2016-01-01

    We demonstrate phase-matched second harmonic generation in gallium nitride on silicon microdisks. The microdisks are integrated with side-coupling bus waveguides in a two-dimensional photonic circuit. The second harmonic generation is excited with a continuous wave laser in the telecom band. By fabricating a series of microdisks with diameters varying by steps of 8 nm, we obtain a tuning of the whispering gallery mode resonances for the fundamental and harmonic waves. Phase matching is obtained when both resonances are matched with modes satisfying the conservation of orbital momentum, which leads to a pronounced enhancement of frequency conversion. PMID:27687007

  18. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-01

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  19. Analysis of second-harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate.

    PubMed

    Deng, Mingxi; Xiang, Yanxun

    2015-08-01

    The effect of second-harmonic generation (SHG) by primary ultrasonic guided wave propagation is analyzed, where the nonlinear elastic, piezoelectric, and dielectric properties of the piezoelectric plate material are considered simultaneously. The formal solution of the corresponding second-harmonic displacement field is presented. Theoretical and numerical investigations clearly show that the SHG effect of primary guided wave propagation is highly sensitive to the electrical boundary conditions of the piezoelectric plate. The results obtained may provide a means through which the SHG efficiency of ultrasonic guided wave propagation can effectively be regulated by changing the electrical boundary conditions of the piezoelectric plate.

  20. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    SciTech Connect

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  1. Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy

    PubMed Central

    Rivard, Maxime; Couture, Charles-André; Miri, Amir K.; Laliberté, Mathieu; Bertrand-Grenier, Antony; Mongeau, Luc; Légaré, François

    2013-01-01

    We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure. PMID:24156065

  2. Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-Shape for Suppression of Second Harmonic

    NASA Astrophysics Data System (ADS)

    Lalbakhsh, Ali; Lotfi Neyestanak, Abbas Ali; Naser-Moghaddasi, Mohammad

    In this paper, a novel microstrip hairpin-line bandpass filter which employs a modified Minkowski fractal shape is proposed. Although conventional hairpin-line filters are popular for RF front ends, they suffer from undesired spurious responses located at the second harmonic, which causes asymmetry in the upper skirt band. By proper design, the second harmonic of fractal filters can be significantly suppressed through the use of fractal shape. To validate this novel geometry, the proposed filters are fabricated and measured. Simulated results are in good agreement with measured results.

  3. Influence of Josephson current second harmonic on stability of magnetic flux in long junctions

    NASA Astrophysics Data System (ADS)

    Atanasova, P. K. H.; Boyadjiev, T. L.; Shukrinov, Y. U. M.; Zemlyanaya, E. V.; Seidel, P.

    2010-11-01

    We study the long Josephson junction (LJJ) model which takes into account the second harmonic of the Fourier expansion of Josephson current. The dependence of the static magnetic flux distributions on parameters of the model are investigated numerically. Stability of the static solutions is checked by the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. New solutions which do not exist in the traditional model, have been found. Investigation of the influence of second harmonic on the stability of magnetic flux distributions for main solutions is performed.

  4. Huge enhancement of backward second-harmonic generation with slow light in photonic crystals

    SciTech Connect

    Iliew, Rumen; Etrich, Christoph; Pertsch, Thomas; Kivshar, Yuri S.

    2010-02-15

    We study theoretically forward and backward second-harmonic generation in a two-dimensional photonic crystal structure made of lithium niobate. The aim of this article is twofold: First, we propose a reliable modal algorithm for describing the light propagation taking into account the vectorial character of the interacting fields as well as the tensorial character of the nonlinearity and verify it by means of the nonlinear finite-difference time-domain method. Second, we propose a photonic crystal where we obtain a giant efficiency increase for backward second-harmonic generation with slow light.

  5. Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs

    SciTech Connect

    Buckley, Sonia Radulaski, Marina; Vučković, Jelena; Biermann, Klaus

    2013-11-18

    We demonstrate second harmonic generation at telecommunications wavelengths in photonic crystal cavities in (111)-oriented GaAs. We fabricate 30 photonic crystal structures in both (111)- and (100)-oriented GaAs and observe an increase in generated second harmonic power in the (111) orientation, with the mean power increased by a factor of 3, although there is a large scatter in the measured values. We discuss possible reasons for this increase, in particular, the reduced two photon absorption for transverse electric modes in (111) orientation, as well as a potential increase due to improved mode overlap.

  6. Analysis of second-harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate.

    PubMed

    Deng, Mingxi; Xiang, Yanxun

    2015-08-01

    The effect of second-harmonic generation (SHG) by primary ultrasonic guided wave propagation is analyzed, where the nonlinear elastic, piezoelectric, and dielectric properties of the piezoelectric plate material are considered simultaneously. The formal solution of the corresponding second-harmonic displacement field is presented. Theoretical and numerical investigations clearly show that the SHG effect of primary guided wave propagation is highly sensitive to the electrical boundary conditions of the piezoelectric plate. The results obtained may provide a means through which the SHG efficiency of ultrasonic guided wave propagation can effectively be regulated by changing the electrical boundary conditions of the piezoelectric plate. PMID:25911148

  7. Planar second-harmonic generation with noncollinear pumps in disordered media.

    PubMed

    Roppo, Vito; Dumay, David; Trull, Jose; Cojocaru, Crina; Saltiel, Solomon M; Staliunas, Kestutis; Vilaseca, Ramon; Neshev, Dragomir N; Krolikowski, Wieslaw; Kivshar, Yuri S

    2008-09-01

    We study experimentally the process of the second harmonic generation by two noncollinear beams in quadratic nonlinear crystals with a disordered structure of ferroelectric domains. We show that the second-harmonic radiation is emitted in the form of two cones as well as in a plane representing the cross-correlation of the two fundamental pulses. We demonstrate the implementation of this parametric process for characterisation of femtosecond pulses, enabling the estimation of pulse width, chirp, and front tilt. This is achieved through monitoring the evolution of the autocorrelation trace inside the nonlinear crystal.

  8. Structural light focusing phenomenon and enhanced second harmonic generation in NaNO2-infiltrated opal photonic crystal

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Katyba, Gleb M.; Yakovlev, Egor V.; Aliev, Ismail N.; Khorokhorov, Alexey M.; Yurchenko, Stanislav O.

    2015-01-01

    We report new experimental results on enhanced second harmonic generation using a structural light focusing phenomenon in photonic crystals (PCs). We use opal-based PC, infiltrated with NaNO2 and pumped with femtosecond laser pulses at various incidence angles, in order to examine the dependence of second harmonic generation efficiency on the pumping wavelength location toward the PC band-gap. We demonstrate one order enhancement of second harmonic generation in case of PC band-gap pumping in comparison to non-band- gap pumping. Second harmonic generation is performed in reflection mode with the maximum of generation in the direction of mirror reflection. We demonstrate that the spectrum of second harmonic does not narrow with the quasi-phase matching condition in case of band-gap generation, and second harmonic spectrum corresponding to non-band-gap generation undergoes 1.5 times narrowing due to the quasi-phase matching.

  9. Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation.

    PubMed

    Trassin, Morgan; Luca, Gabriele De; Manz, Sebastian; Fiebig, Manfred

    2015-09-01

    An optical probe of the ferroelectric domain distribution and manipulation in BiFeO3 thin films is reported using optical second harmonic generation. A unique relation between the domain distribution and its integral symmetry is established. The ferroelectric signature is even resolved when the film is covered by a top electrode. The effect of voltage-induced ferroelectric switching is imaged.

  10. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.

    PubMed

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; De Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ∼5 × 10(-10) W(-1), enabling a second harmonic photon yield higher than 3 × 10(6) photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing. PMID:25895003

  11. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    SciTech Connect

    Olsen, M.K.

    2004-09-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.

  12. Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells

    SciTech Connect

    Campione, Salvatore; Benz, Alexander; Brener, Igal; Sinclair, Michael B.; Capolino, Filippo

    2014-03-31

    We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at ∼30 THz and an orthogonally polarized resonance at the second harmonic frequency (∼60 THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be ∼1.3 × 10{sup −2} W/W{sup 2}—a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10 μm). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs.

  13. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays.

    PubMed

    Walsh, Gary F; Dal Negro, Luca

    2013-07-10

    In this communication, we systematically investigate the effects of Fano-type coupling between long-range photonic resonances and localized surface plasmons on the second harmonic generation from periodic arrays of Au nanoparticles arranged in monomer and dimer geometries. Specifically, by scanning the wavelength of an ultrafast tunable pump laser over a large range, we measure the second harmonic excitation spectra of these arrays and demonstrate their tunability with particle size and separation. Moreover, through a comparison with linear optical transmission spectra, which feature asymmetric Fano-type lineshapes, we demonstrate that the second harmonic generation is enhanced when coupled photonic-plasmonic resonances of the arrays are excited at the fundamental pump wavelength, thus boosting the intensity of the electromagnetic near-fields. Our experimental results, which are supported by numerical simulations of linear optical transmission and near-field enhancement spectra based on the Finite Difference Time Domain method, demonstrate a direct correlation between the onset of Fano-type coupling and the enhancement of second harmonic generation in arrays of Au nanoparticles. Our findings enable the engineering of the nonlinear optical response of Fano-type coupled nanoparticle arrays that are relevant to a number of device applications in nonlinear nano-optics and plasmonics, such as on-chip frequency generators, modulators, switchers, and sensors.

  14. Second-harmonic generation excited by a rotating Laguerre-Gaussian beam

    SciTech Connect

    Petrov, Dmitri

    2010-09-15

    Experimental data demonstrate that unlike linear optical processes, an optical Laguerre-Gaussian beam of frequency {omega}, with topological charge m, rotating with angular frequency {Omega}<<{omega}, may not be considered as a monochromatic beam with the shifted frequency {omega}+m{Omega} (Doppler angular shift) for the second-harmonic generation nonlinear process.

  15. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  16. Two-pass-internal second-harmonic generation using a prism coupler.

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. G.; Nieh, S. T. K.; Steier, W. H.

    1973-01-01

    A dispersive quartz prism is used to couple the total second harmonic generated in both directions by an internal cavity frequency doubler. The study shows that the dispersion of air and mirror reflection phase shifts can be compensated for by a slight nonphase match condition in the doubler.

  17. Kramers-Kronig relations and sum rules for the second-harmonic susceptibility

    NASA Astrophysics Data System (ADS)

    Scandolo, S.; Bassani, F.

    1995-03-01

    A set of Kramers-Kronig relations are obtained for the second-harmonic generation susceptibility χ(2)(ω,ω). Together with the asymptotic behavior in the frequency variable they give a set of sum rules up to the fifth moment of the susceptibility.

  18. Rydberg-Rydberg interaction in the second-harmonic generation from rubidium atoms

    SciTech Connect

    Melo, Natalia R. de; Vianna, Sandra S.

    2008-02-15

    We report on the observation of long range interaction in the second-harmonic generation from rubidium Rydberg atoms. The asymmetric spectral broadening of the resonant lines provides evidence of the van der Waals interaction between pairs of Rydberg atoms. This effect is investigated when the two-photon transition is resonant with nd levels for n{approx_equal}13.

  19. Homoclinic orbits and chaos in a second-harmonic generating optical cavity

    SciTech Connect

    Holm, D.; Kovacic, G., Timofeyev, I.

    1997-04-01

    We present two large families of Silnikov-type homoclinic orbits in a two mode-model that describes second-harmonic generation in a passive optical cavity. These families of homoclinic orbits give rise to chaotic dynamics in the model. 4 refs., 1 fig.

  20. High conversion efficiency pumped-cavity second harmonic generation of a diode laser

    SciTech Connect

    Keicher, D.M.

    1994-01-01

    To investigate the feasibility of producing a compact, efficient blue laser source, pumped-cavity second harmonic generation of diode lasers was explored. It is desirable to have such lasers to increase optical disk storage density, for color displays and for under-the-sea green-blue optical signal transmission. Based on assumed cavity losses, a cavity was designed and numerical analysis predicted an overall conversion efficiency to the second harmonic wavelength of 76% from a 75 mW diode laser. The diode laser used in these experiments had a single longitudinal and a single transverse mode output at 860 nm. The best conversion efficiency obtained (26%) was less than optimum due to the 2.5% single-pass linear losses associated with the cavity. However, calculations based on these higher losses are in good agreement with the experimentally determined values. In additions, a factor of 1.65 increase in the second harmonic output power is anticipated by reducing the input mirror reflectivity to better impedance-match the cavity. With this relatively low second harmonic conversion, the power to light conversion is 7.8%.

  1. Second-harmonic generation of a new chalcone-type crystal

    NASA Astrophysics Data System (ADS)

    Zhang, G. J.; Kinoshita, T.; Sasaki, K.; Goto, Y.; Nakayama, M.

    1990-07-01

    A new type of chalcone crystal was prepared. Anisotropic indices with wavelength dispersion were measured by the Brewster angle method. The two largest second-harmonic generation (SHG) tensor components were determined by the wedge method and compared with d11 of 2-methyl-4-nitroaniline. Calculated collinear and noncollinear phase-matched SHG patterns reasonably fit the observed photographs.

  2. Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media.

    PubMed

    Deng, Xiaoyuan; Wang, Xianju; Liu, Hanping; Zhuang, Zhengfei; Guo, Zhouyi

    2006-01-01

    We establish, for the first time, a simulation model for dealing with the second-harmonic signals under a microscope through a tissue-like turbid medium, based on the Monte Carlo method. With this model, the angle-resolved distribution and the signal level eta of second-harmonic light through a slab of the turbid medium are demonstrated and the effects of the thickness (d) of the turbid medium, the numerical aperture (NA) of the objective as well as the size (rho) of the scatterers forming the turbid medium are explored. Simulation results reveal that the use of a small objective NA results in a narrow angle distribution but strong second-harmonic signals. A turbid medium consisting of large scattering particles has a strong influence on the angle distribution and the signal level eta, which results in a low penetration limit for second-harmonic signals made up of ballistic photons. It is approximately 30 microm in our situation. PMID:16674203

  3. Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy.

    PubMed

    Rao, Raghu Ambekar Ramachandra; Mehta, Monal R; Leithem, Scott; Toussaint, Kimani C

    2009-12-15

    Fourier transform second-harmonic generation (SHG) microscopy has been applied to quantitatively compare the information content between SHG images obtained from the forward and backward direction for three tissue types: porcine tendon, sclera, and ear cartilage. Both signal types yield consistent information on the preferred orientation of collagen fibers. For all specimens, the Fourier transform of the forward and backward SHG images produces several overlapping peaks in the magnitude spectrum at various depths into the tissues, indicating that some information present in the forward SHG images can be extracted from the backward SHG images. This study highlights the potential of backward SHG microscopy for medical diagnostics.

  4. Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma

    SciTech Connect

    Jha, Pallavi; Agrawal, Ekta

    2014-05-15

    An analytical study of second harmonic generation due to interaction an intense, p-polarized laser beam propagating obliquely in homogeneous underdense plasma, in the mildly relativistic regime, has been presented. The efficiency of the second harmonic radiation as well as its detuning length has been obtained and their variation with the angle of incidence is analyzed. It is shown that, for a given plasma electron density, the second harmonic efficiency increases with the angle of incidence while the detuning length decreases. The second harmonic amplitude vanishes at normal incidence of the laser beam.

  5. Optical second-harmonic imaging of Pb{sub x}Cd{sub 1-x}Te ternary alloys

    SciTech Connect

    Scheidt, T.; Rohwer, E.G.; Bergmann, H.M. von; Saucedo, E.; Dieguez, E.; Fornaro, L.; Stafast, H.

    2005-05-15

    We employ femtosecond laser pulses (80 fs, 1.59 eV, and 80 MHz) to study the optical second-harmonic (SH) response of Pb{sub x}Cd{sub 1-x}Te ternary alloys (x about 0.2) grown by the vertical Bridgman method. The alloy segregates into a Pb-rich and a Cd-rich phase, the latter dominating the SH response of the ternary alloy by at least two orders of magnitude. Several sample regions show a regular layer-by-layer accommodation of the Pb-rich and Cd-rich phases as seen by a periodic alternation of the alloy's SH response on a {approx}10-{mu}m length scale. Furthermore, we employ polarization-resolved SH imaging as well as SH imaging at different azimuthal angles to obtain spatially resolved mappings of the sample, which are sensitive to the composition as well as the growth orientation of the Pb{sub x}Cd{sub 1-x}Te material system. We observe an azimuthal phase shift of approximately 30 deg. between coherent macroscopic regions (several mm{sup 2}) in the Cd-rich phase of the ternary alloy. We interpret these regions as large area crystalline grains of (111) and (411) crystal orientations and approximately equal composition. Hence, SH imaging is shown to spatially resolve regions of different growth directions within the Pb{sub x}Cd{sub 1-x}Te sample.

  6. Cascaded four-wave mixing for broadband tunable laser sideband generation.

    PubMed

    Liu, Weimin; Zhu, Liangdong; Wang, Liang; Fang, Chong

    2013-06-01

    We demonstrate the versatile broadband wavelength tunability of frequency upconverted multicolor cascaded four-wave-mixing (CFWM) signals spanning the continuous wavelength range from UV to near IR in a thin type-I BBO crystal using 35 fs, 800 nm fundamental and chirped IR supercontinuum white light pulses. Two sets of spatially dispersed CFWM laser sidebands are concomitantly generated from two incident pulses as well as their second-harmonic-generation and sum-frequency-generation pulses in a crossing geometry. The tunable cascaded signals with ultrabroad bandwidth can be readily achieved via spatially rotating the BBO crystal to different phase-matching conditions and temporally varying the time delay between the two incident near-IR pulses.

  7. Two-dimensional phase transformation probed by second harmonic generation: Oscillatory transformation of the K/Al(111) system

    SciTech Connect

    Ying, Z.C.; Plummer, E.W. |

    1995-12-31

    The technique of optical second harmonic generation is used to study phase transformations at two-dimensional surfaces and interfaces. Examples are given to illustrate that changes in surface symmetry, adsorption configuration, and electronic structure can be detected by this nonlinear optical technique. An oscillatory phase transformation of potassium adsorbed atoms on Al(111) probed by second harmonic generation is analyzed in detail.

  8. Phase-matched second-harmonic generation in poled polymers by the use of birefringence

    NASA Astrophysics Data System (ADS)

    Tao, X. T.; Watanabe, T.; Zou, D. C.; Ukuda, H.; Miyata, S.

    1995-09-01

    Green light has been observed for the first time to the authors' knowledge by bulk phase-matched second-harmonic generation from a stretched main chain polyurea. The polyurea was synthesized from 4,4'-diphenylmethane diisocyanate and 4,4'-methylene bis(cyclohexylamine). The spin-coated film has an initial positive birefringence. Drawing further increased the birefringence, and the film can be used for phase matching just as in biaxial single crystals. The drawn and poled polymer films belong to the 2mm point group. Three independent nonlinear-optic coefficients were determined. The type I phase-matching characteristics were calculated and confirmed by experiments. We demonstrate that a highly effective second-harmonic-generation device with a long optical path length can be obtained by use of bulk phase-matchable poled polymer.

  9. Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals

    SciTech Connect

    Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul

    2006-03-30

    The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.

  10. Whispering gallery microresonators for second harmonic light generation from a low number of small molecules.

    PubMed

    Dominguez-Juarez, J L; Kozyreff, G; Martorell, Jordi

    2011-01-01

    Unmarked sensitive detection of molecules is needed in environmental pollution monitoring, disease diagnosis, security screening systems and in many other situations in which a substance must be identified. When molecules are attached or adsorbed onto an interface, detecting their presence is possible using second harmonic light generation, because at interfaces the inversion symmetry is broken. However, such light generation usually requires either dense matter or a large number of molecules combined with high-power laser sources. Here we show that using high-Q spherical microresonators and low average power, between 50 and 100 small non-fluorescent molecules deposited on the outer surface of the microresonator can generate a detectable change in the second harmonic light. This generation requires phase matching in the whispering gallery modes, which we achieved using a new procedure to periodically pattern, with nanometric precision, a molecular surface monolayer. PMID:21448153

  11. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  12. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    NASA Astrophysics Data System (ADS)

    Leißner, Till; Kostiučenko, Oksana; Brewer, Jonathan R.; Rubahn, Horst-Günter; Fiutowski, Jacek

    2015-12-01

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic-plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  13. Detection of collagen by second harmonic microscopy as a diagnostic tool for liver fibrosis

    NASA Astrophysics Data System (ADS)

    Banavar, Maruth; Kable, Eleanor P. W.; Braet, Filip; Wang, X. M.; Gorrell, M. D.; Cox, Guy

    2006-02-01

    Liver fibrosis has many causes, including hepatitis C, alcohol abuse, and non-alcoholic steatohepatitis. It is characterized by abnormal deposition of extracellular matrix proteins, mainly collagen. The deposition of these proteins results in impaired liver function caused by distortion of the hepatic architecture by fibrous scar tissue. The unique triple helix structure of collagen and high level of crystallinity make it very efficient for generating second harmonic signals. In this study we have set out to see if second harmonic imaging of collagen can be used as a non-biased quantitative tool for classification of fibrosis levels in liver biopsies and if it can detect early fibrosis formation not detected by current methods.

  14. Second Harmonic Suppression in S-Band Traveling Wave Tube Tapers

    NASA Astrophysics Data System (ADS)

    Gehrmann, Elke; Birtel, Philip; Dürr, Wolfgang; André, Frédéric; Jacob, Arne F.

    2015-01-01

    Traveling wave tubes (TWTs) operating at S-band are to be improved by suppressing the second harmonic frequency. Among the different possibilities, two techniques, namely harmonic injection and a filter helix for frequency selective signal suppression, are studied in more detail and applied to S-band tubes in both simulation and measurement. In addition, their suitability to improve tube performance by reducing the second harmonic is discussed. Moreover, filter helix implementation in TWTs with an arbitrary pitch profile along the interaction area is considered. In this context, the dependence of the pitch discontinuity reflection coefficient on several filter helix parameters is investigated. The influence of those parameters on the filter performance is shown by filter helix optimization. Measurement results of the optimized filter helix TWT are presented.

  15. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    SciTech Connect

    Leißner, Till; Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek; Brewer, Jonathan R.

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  16. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  17. Probing protein adsorption on a nanoparticle surface using second harmonic light scattering.

    PubMed

    Das, A; Chakrabarti, A; Das, P K

    2016-09-21

    A new application of second harmonic light scattering to probe protein physisorption on a gold nanoparticle surface in aqueous buffer is reported. The free energies of adsorption, the number of protein molecules adsorbed on the surface and the binding affinity of a moderate size protein, alcohol dehydrogenase (ADH), and a small protein, insulin, have been determined using the change in the second harmonic scattered light signal as a function of binding. Four different size gold nanoparticles from 15 to 60 nm were used to determine the effect of size on the free energy change, the affinity constant and the number of protein molecules adsorbed on the surface. All were shown to increase with an increase in size. The binding can be reversed by centrifugation, and the protein molecules can be desorbed quantitatively. The application of this method for studying thermodynamic parameters of weakly interacting biomolecules with nanoparticles for nanoparticle based diagnostic and therapeutic formulations is important. PMID:27530608

  18. Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides

    NASA Astrophysics Data System (ADS)

    Li, M. J.; de Micheli, M.; He, Q.; Ostrowsky, D. B.

    1990-08-01

    A theoretical and experimental study of second-harmonic generation using the Cerenkov configuration with proton-exchanged lithium niobate guides is presented. The analytic solution of the problem for the case of planar step-index guides makes it possible to identify the essential role played by the discontinuity of the nonlinear polarization at the guide-substrate interface. This leads to the prediction of an increasing conversion efficiency for decreasing values of guide nonlinearity. It is shown that the experimental results are consistent with a reduction of 50 to 70 percent of the value of the nonlinear coefficient in unannealed waveguides fabricated in slightly diluted or pure benzoic acid. The results presented permit the optimization of guide design for efficient second-harmonic generation in the Cerenkov configuration.

  19. Stokes vector based polarization resolved second harmonic microscopy of starch granules

    PubMed Central

    Mazumder, Nirmal; Qiu, Jianjun; Foreman, Matthew R.; Romero, Carlos Macías; Török, Peter; Kao, Fu-Jen

    2013-01-01

    We report on the measurement and analysis of the polarization state of second harmonic signals generated by starch granules, using a four-channel photon counting based Stokes-polarimeter. Various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), and anisotropy are extracted from the 2D second harmonic Stokes images of starch granules. The concentric shell structure of a starch granule forms a natural photonic crystal structure. By integration over all the solid angle, it will allow very similar SHG quantum efficiency regardless of the angle or the states of incident polarization. Given type I phase matching and the concentric shell structure of a starch granule, one can easily infer the polarization states of the input beam from the resulting SH micrograph. PMID:23577289

  20. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  1. Submillisecond second harmonic holographic imaging of biological specimens in three dimensions

    PubMed Central

    Smith, David R.; Winters, David G.; Bartels, Randy A.

    2013-01-01

    Optical microscopy has played a critical role for discovery in biomedical sciences since Hooke’s introduction of the compound microscope. Recent years have witnessed explosive growth in optical microscopy tools and techniques. Information in microscopy is garnered through contrast mechanisms, usually absorption, scattering, or phase shifts introduced by spatial structure in the sample. The emergence of nonlinear optical contrast mechanisms reveals new information from biological specimens. However, the intensity dependence of nonlinear interactions leads to weak signals, preventing the observation of high-speed dynamics in the 3D context of biological samples. Here, we show that for second harmonic generation imaging, we can increase the 3D volume imaging speed from sub-Hertz speeds to rates in excess of 1,500 volumes imaged per second. This transformational capability is possible by exploiting coherent scattering of second harmonic light from an entire specimen volume, enabling new observational capabilities in biological systems. PMID:24173034

  2. Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe

    NASA Astrophysics Data System (ADS)

    Chinh, Tran Duc; Seibt, Wolfgang; Siegbahn, Kai

    2001-09-01

    During a comparative study of second-harmonic generation (SHG) and sum-frequency generation (SFG) in single-crystal and polycrystalline ZnSe, the polycrystalline material showed a dot pattern in the SHG as well as in the SFG output. No such pattern was found in the output from the single-crystal ZnSe sample. The second-harmonic and also the sum-frequency dot pattern, resembling a diffraction pattern, could be observed over a wide tuning range of the fundamental beam, between 1.1 and 1.6 μm, generated by a femtosecond optical parametric amplifier. The size of the observed pattern is dependent on wavelength and the dots show a characteristic polarization.

  3. Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy

    PubMed Central

    Ehmke, Tobias; Knebl, Andreas; Reiss, Stephan; Fischinger, Isaak R.; Seiler, Theo G.; Stachs, Oliver; Heisterkamp, Alexander

    2015-01-01

    Multimodal nonlinear microscopy allows imaging of highly ordered biological tissue due to spectral separation of nonlinear signals. This requires certain knowledge about the spectral distribution of the different nonlinear signals. In contrast to several publications we demonstrate a factor of 122 relating the full width at half maximum of a gaussian laser pulse spectrum to the corresponding second harmonic pulse spectrum in the spatial domain by using a simple theoretical model. Experiments on monopotassium phosphate crystals (KDP-crystals) and on porcine corneal tissue support our theoretical predictions. Furthermore, no differences in spectral width were found for epi- and trans-detection of the second harmonic signal. Overall, these results may help to build an optimized multiphoton setup for spectral separation of nonlinear signals. PMID:26339527

  4. Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ehmke, Tobias; Knebl, Andreas; Reiss, Stephan; Fischinger, Isaak R.; Seiler, Theo G.; Stachs, Oliver; Heisterkamp, Alexander

    2015-08-01

    Multimodal nonlinear microscopy allows imaging of highly ordered biological tissue due to spectral separation of nonlinear signals. This requires certain knowledge about the spectral distribution of the different nonlinear signals. In contrast to several publications we demonstrate a factor of /1 2 √{ 2 } relating the full width at half maximum of a gaussian laser pulse spectrum to the corresponding second harmonic pulse spectrum in the spatial domain by using a simple theoretical model. Experiments on monopotassium phosphate crystals (KDP-crystals) and on porcine corneal tissue support our theoretical predictions. Furthermore, no differences in spectral width were found for epi- and trans-detection of the second harmonic signal. Overall, these results may help to build an optimized multiphoton setup for spectral separation of nonlinear signals.

  5. Second-harmonic generation efficiency for multifrequency ytterbium-doped fibre laser radiation

    SciTech Connect

    Politko, M O; Kablukov, S I; Nemov, I N; Babin, Sergei A

    2013-02-28

    The second-harmonic generation (SHG) efficiency for cw Yb-doped fibre laser radiation, which is characterised by many longitudinal modes with random phases, is compared with the SHG efficiency for amplified single-frequency Nd : YAG laser radiation in ppLN and KTP crystals, characterised by the type-I and type-IIphase matching, respectively. It is shown that the conversion efficiency into the second harmonic in the multifrequency regime for both crystals is higher by a factor of about 1.6, a value close to the calculated enhancement (2 for the Gaussian mode statistics). This difference is explained by possible deviation of the statistics of the Yb-doped fibre laser radiation from Gaussian, which is confirmed by measurements of the laser temporal dynamics. (laser optics 2012)

  6. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    NASA Astrophysics Data System (ADS)

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-01

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE32,5 mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  7. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  8. Second harmonic generation in periodically poled lithium niobate waveguide using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Shuanggen; Yao, Jianghong; Fan, Yaxian; Liu, Weiwei; Liu, Yange; Shi, Qing; Huang, Zhangchao; Lu, Fuyun

    2008-11-01

    We present in this paper the fabrication and characterization of thermally stable double line waveguides in Z-cut periodically poled Lithium Niobate crystals. The waveguides were fabricated by using a femto-second laser, and utilized for second-harmonic generation. Our experiments have shown that a quasi-phase matching wavelength of 1548.2 nm, a tuning bandwidth of 2 nm, and a tuning temperature range of 150.4+/-1.6°C can be achieved.

  9. Generation Of 369.4-Nanometers Second Harmonic From A Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, Angelyn P.; Maleki, Lutfollah

    1995-01-01

    Experimental laser system features polarization feedback scheme maintaining frequency lock. Generates light at wavelength of 369.4 nanometers by second-harmonic generation from 738.8-nanometers laser diode. System prototype of source of 369.4-nanometers radiation used to optically pump 2S1/2 ' 2P1/2 transition in 171Yb+ ions in lightweight, low-power trapped-ion frequency-standard apparatus.

  10. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.

  11. Second harmonic generation imaging of dermal collagen component in human keloid tissue

    NASA Astrophysics Data System (ADS)

    Yu, H. B.; Chen, S.; Zhu, X. Q.; Yang, H. Q.; Chen, J. X.

    2011-01-01

    In this paper, we report second harmonic generation (SHG) imaging of human keloid tissue. High resolution SHG images of collagen component were obtained in the superficial, medial and deep dermis of human keloid tissue, respectively. Our results show that this method has a capability to observe the structure of collagen component in human keloid tissue, which will help to better understand the formation process of human keloid scar at the molecular level.

  12. Second-harmonic generation in shear wave beams with different polarizations

    SciTech Connect

    Spratt, Kyle S. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  13. Optical second-harmonic generation enhanced by a twist defect in ferroelectric liquid crystals.

    PubMed

    Hoshi, Hajime; Ishikawa, Ken; Takezoe, Hideo

    2003-08-01

    Second-harmonic generation (SHG) spectra were numerically calculated in ferroelectric liquid crystals with a twist defect. It is shown that SHG is enhanced when the SHG wavelength is close to the defect mode. The spectral width of the enhanced peak becomes sharper with increasing the sample thickness at the same rate for the width of the defect mode peak. The SHG peak intensity increases with about seventh power of the sample thickness.

  14. Periodically poled LiNbO3 ridge waveguides on silicon for second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Chauvet, Mathieu; Henrot, Fabien; Gauthier-Manuel, Ludovic; Devaux, Fabrice; Pêcheur, Vincent; Maillotte, Hervé; Bassignot, Florent; Dahmani, Brahim

    2016-05-01

    Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are micromachined with a precision dicing machine and/or by grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 600%/W in a 20mm long device. Influence of geometrical non uniformities of waveguides due to fabrication process is asserted. Components characteristics are studied notably their robustness and tunability versus temperature.

  15. Second harmonic generation in a low-loss orientation-patterned GaAs waveguide.

    PubMed

    Fedorova, K A; McRobbie, A D; Sokolovskii, G S; Schunemann, P G; Rafailov, E U

    2013-07-15

    The technology of low-loss orientation-patterned gallium arsenide (OP-GaAs) waveguided crystals was developed and realized by reduction of diffraction scattering on the waveguide pattern. The propagation losses in the OP-GaAs waveguide were estimated to be as low as 2.1 dB/cm, thus demonstrating the efficient second harmonic generation at 1621 nm under an external pumping.

  16. Theory of second-harmonic generation of molecular systems: The steady-state case

    SciTech Connect

    Lin, S.H.; Alden, R.G. ); Villaeys, A.A.; Pflumio, V. )

    1993-10-01

    In this paper, a general formalism for treating both steady-state and time-resolved second-harmonic generation for molecular systems is presented. Here, only the steady-state case will be reported. The adiabatic approximation is introduced. Four important cases, resonance-resonance, resonance--off-resonance, off-resonance--resonance, and off-resonance--off-resonance transitions, have been considered. Finally, numerical calculations of rhodamine 6G are performed to demonstrate the applications of theoretical results.

  17. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial. PMID:27369164

  18. Enhanced second-harmonic generation driven from magnetic dipole resonance in AlGaAs nanoantennas

    NASA Astrophysics Data System (ADS)

    Carletti, Luca; Rocco, Davide; Locatelli, Andrea; Gili, Valerio; Leo, Giuseppe; De Angelis, Costantino

    2016-04-01

    We model the linear and nonlinear optical response of disk-shaped AlGaAs nanoantennas. We design nanoantennas with a magnetic dipole resonant mode in the near-infrared wavelength range, and we analyze volume second-harmonic generation driven by a magnetic dipole resonance by predicting a conversion efficiency exceeding 10-3 with 1 GW/cm2 of pump intensity.

  19. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2016-01-25

    Parametric optical nonlinearities are usually weak and require both high optical field intensity and phase-matching. Micro/nanophotonics, with strong confinement of light in waveguides of nanometer-scale cross-sections, can provide high field intensity, but is still in need of a solution for phase-matching across a broad bandwidth. In this article, we show that mode-coupling in slot waveguides can engineer the waveguide modal dispersion, and with proper choice of materials, can achieve on-chip broadband second-harmonic phase-matching. A phase-matching bandwidth in the range of 220 nm at mid-infrared can occur for a hetero-slot waveguide consisting of aluminum nitride (AlN) and silicon nitride (SiN). With a high-nonlinearity polymer as cladding material, about 1.76 W(-1)cm(-2) of normalized conversion efficiency in second-harmonic-generation (SHG) and about 23 dB signal gain in degenerate optical parametric amplification (DOPA) can be achieved over a broad bandwidth. An asymmetric-slot waveguide configuration and a thermal tuning scheme are proposed to reduce the fabrication difficulty. This concept of broadband second-harmonic phase-matching can be extended to other nonlinear optical frequency mixing processes, thus expanding the scope of on-chip nonlinear optical applications. PMID:26832462

  20. Size dependence of second-harmonic generation at the surface of microspheres

    NASA Astrophysics Data System (ADS)

    Viarbitskaya, Sviatlana; Kapshai, Valery; van der Meulen, Peter; Hansson, Tony

    2010-05-01

    The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength for two different second-harmonic-enhancing dyes—malachite green and pyridine 1. The two dyes gave the same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with respect to the strong modulations. The standard NLRGD model was found to fail altogether in the present particle size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle refractive indices instead of those of the surrounding medium extended its applicability range by almost an order of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the optimal one for SHG.

  1. Background-free electric field-induced second harmonic generation with interdigitated combs of electrodes.

    PubMed

    Jašinskas, Vidmantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas; Gulbinas, Vidmantas

    2016-06-15

    The electric field-induced second harmonic (EFISH) generation is a powerful tool for the investigation of optical nonlinearities, material polarization, internal electric fields, and other properties of photonic materials and devices. A conventional generation of the second harmonics (SH) in materials with the disturbed centrosymmetry causes a field-independent background to EFISH and limits its applications. Here we suggest and analyze the application of the interdigitated combs of electrodes for EFISH generation in thin films. Interdigitated electrodes form an optical transmission amplitude diffraction grating. Phase matching of the EFISH radiation creates unusual diffraction fringes with the zero intensity along the zeroth order direction and with the diffraction angles different from diffraction angles of incident fundamental laser radiation and its second harmonics. It enables a simple geometrical separation of the EFISH signal from a conventional SH background, simplifies the sample preparation, and provides additional experimental possibilities. We demonstrate applicability of the suggested technique for characterization of submicrometer thickness organic films of transparent and resonantly interacting polymers and of their mixtures. PMID:27304282

  2. Size dependence of second-harmonic generation at the surface of microspheres

    SciTech Connect

    Viarbitskaya, Sviatlana; Meulen, Peter van der; Hansson, Tony; Kapshai, Valery

    2010-05-15

    The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength for two different second-harmonic-enhancing dyes--malachite green and pyridine 1. The two dyes gave the same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with respect to the strong modulations. The standard NLRGD model was found to fail altogether in the present particle size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle refractive indices instead of those of the surrounding medium extended its applicability range by almost an order of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the optimal one for SHG.

  3. Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals

    PubMed Central

    Morishige, Naoyuki; Petroll, W. Matthew; Nishida, Teruo; Kenney, M. Cristina; Jester, James V.

    2007-01-01

    PURPOSE To investigate the feasibility of using femtosecond-pulse lasers to produce second-harmonic generated (SHG) signals to noninvasively assess corneal stromal collagen organization. SETTING The Eye Institute, University of California, Irvine, California, USA. METHODS Mouse, rabbit, and human corneas were examined by two-photon confocal microscopy using a variable-wavelength femtosecond lasers to produce SHG signals. Two types were detected: forward scattered and backward scattered. Wavelength dependence of the SHG signal was confirmed by spectral separation using the 510 Meta (Zeiss). To verify the spatial relation between SHG signals and corneal cells, staining of cytoskeletons and nuclei was performed. RESULTS Second-harmonic-generated signal intensity was strongest with an excitation wavelength of 800 nm for all 3 species. Second-harmonic-generated forward signals showed a distinct fibrillar pattern organized into bands suggesting lamellae, while backscattered SHG signals appeared more diffuse and indistinct. Reconstruction of SHG signals showed two patterns of lamellar organization: highly interwoven in the anterior stroma and orthogonally arranged in the posterior stroma. Unique to the human cornea was the presence of transverse, sutural lamellae that inserted into Bowman’s layer, suggesting an anchoring function. CONCLUSIONS Using two-photon confocal microscopy to generate SHG signals from the corneal collagen provides a powerful new approach to noninvasively study corneal structure. Human corneas had a unique organizational pattern with sutural lamellae to provide important biomechanical support that was not present in mouse or rabbit corneas. PMID:17081858

  4. Second harmonic generation from Langmuir-Blodgett films of retinal and retinal Schiff bases

    SciTech Connect

    Huang, J.; Lewis, A.; Rasing, T.

    1988-04-07

    The second harmonic signal from monolayers of retinal and retinal Schiff bases is reported. The results have yielded information on the monolayer structure and demonstrate that retinal and retinal Schiff bases have large second-order molecular hyperpolarizabilities with values of 1.4 x 10/sup -28/, 1.2 x 10/sup -28/, and 2.3 x 10/sup -28/ esu for retinal, the unprotonated Schiff base, and the protonated Schiff base, respectively. These values compare well with the known variation in the alteration in the dipole moment of such chromophores upon excitation.

  5. Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy

    PubMed Central

    Tokarz, Danielle; Cisek, Richard; Golaraei, Ahmad; Asa, Sylvia L.; Barzda, Virginijus; Wilson, Brian C.

    2015-01-01

    Changes in collagen ultrastructure between malignant and normal human thyroid tissue were investigated ex vivo using polarization second harmonic generation (SHG) microscopy. The second-order nonlinear optical susceptibility tensor component ratio and the degree of linear polarization (DOLP) of the SHG signal were measured. The ratio values are related to the collagen ultrastructure, while DOLP indicates the relative amount of coherent signal and incoherent scattering of SHG. Increase in ratio values and decrease in DOLP were observed for tumor tissue compared to normal thyroid, indicating higher ultrastructural disorder in tumor collagen. PMID:26417516

  6. Second harmonic generation of diode laser radiation in KNbO3

    NASA Astrophysics Data System (ADS)

    van Hulst, Niko F.; Heesink, Gerard J.; de Leeuw, H.; Bolger, Bouwe

    1991-02-01

    Both CW and pulsed diode lasers covering the wavelength region 855-912 nm have been investigated for the frequency doubling in KNbO. The influence of the spectral distribution mode character and the optical geometry of the laser beam have been investigated for several AlGaAs diode lasers. Second harmonic radiation with maximum efficiency of typically 1 has been detected both by temperature tuning CT 10-130 C noncritical phase matching) and by angle tuning. Results clearly demonstrate the critical aspects of the laser mode spectrum and the beam geometry as to the phase matching criterion in frequency doubling.

  7. Broadband second harmonic generation in an imperfect nonlinear photonic crystal with random defects

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yali; Ren, Xiaobin; Fan, Jingyang

    2016-09-01

    In this paper, we study broadband second harmonic generation (SHG) in an imperfect nonlinear photonic crystal in which defects are introduced with random lengths. We show that the efficient SHG output is obtained when the length of each defect varies near certain specialized values. The bandwidth of the SHG output broadens with the increasing randomness of defect length. Moreover, the SHG bandwidth is nearly unaffected only when the total length of the whole structure is long enough. The disordered structure also exhibits good tolerance to the fabrication error, which provides a way to control SHG intensity and bandwidth separately.

  8. Study of the second harmonic generation and optical rectification in a cBN crystal

    SciTech Connect

    Dou Qingping; Ma Haitao; Jia Gang; Chen Zhanguo; Cao Kun; Zhang Tiechen

    2007-02-28

    Cubic boron nitride (cBN) - a kind of an artificial (synthetic) crystal with the band gap of {approx}6.3 eV, which has the zinc blende structure and the 4-bar 3m symmetry, is studied. The optical rectification is obtained and the second harmonic generation (SHG) is observed in the cBN crystal for the first time by using a 1064-nm Q-switched Nd:YAG laser. The green light at 532 nm from the cBN sample can be seen with a naked eye. (nonlinear optical phenomena)

  9. Discrimination of collagen in normal and pathological dermis through polarization second harmonic generation

    NASA Astrophysics Data System (ADS)

    Su, Ping-Jung; Chen, Wei-Liang; Hong, Jin-Bon; Li, Tsung-Hsien; Wu, Ruei-Jr; Chou, Chen-Kuan; Lin, Sung-Jan; Dong, Chen-Yuan

    2010-02-01

    We used polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution for medical diagnosis of pathological skin dermis, and found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. We find that the histograms of the d33/d31 ratio for the pathological skins to contain two peak values and to be wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers.

  10. Second harmonic acoustic responses induced in matter by quasi continuous radiofrequency fields

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Omar, Murad; Sergiadis, George; Ntziachristos, Vasilis

    2013-10-01

    We subjected conductive matter and tissue to intermittent continuous-wave radiofrequency fields and investigated whether acoustic responses could be recorded. By placing samples in the near-field of the excitation, we observed frequency-domain acoustic responses from tissues responding to CW radiofrequency excitation. Frequency analysis revealed the generation of 2nd harmonic mechanical waves. This discovery of non-linear responses can lead to alternative measurement concepts of CW radiofrequency deposition in matter and tissues. We offer the theoretical mainframe and discuss sensing applications involving the direct measurement of second harmonic responses representative of CW RF energy deposition in matter.

  11. Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal.

    PubMed

    Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin; Xie, Shusen

    2013-01-01

    Collagen change is a major feature in the photoaged human skin. Here, we present the use of intrinsic second harmonic generation (SHG) signal as a novel means to quantify collagen change with photoaging. We obtain the SHG images of the superficial dermis from ex vivo the cheek skin and the abdomen skin of eight patients aged 55-60 years. The results show that SHG signal can quantitatively reveal collagen change between normal and photoaged human skin in three dimensions. By comparing normal with photoaged dermis, there are significant differences in the collagen content and fine structure, providing substantial potential to be applied in vivo for the clinical diagnosis of human skin photoaging.

  12. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal.

    PubMed

    Zhuo, Shuangmu; Zhu, Xiaoqin; Wu, Guizhu; Chen, Jianxin; Xie, Shusen

    2011-12-01

    Most colorectal cancers arise from dysplastic lesions, such as adenomatous polyps, and these lesions are difficult to be detected by the current endoscopic screening approaches. Here, we present the use of an intrinsic second-harmonic generation (SHG) signal as a novel means to differentiate between normal and dysplastic human colonic tissues. We find that the SHG signal can quantitatively identify collagen change associated with colonic dysplasia that is indiscernible by conventional pathologic techniques. By comparing normal with dysplastic mucosa, there were significant differences in collagen density and collagen fiber direction, providing substantial potential to become quantitative intrinsic biomarkers for in vivo clinical diagnosis of colonic dysplasia.

  13. Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars

    NASA Astrophysics Data System (ADS)

    Baghban, Mohammad Amin; Gallo, Katia

    2016-09-01

    An optimized focused ion beam process is used to fabricate micrometer-long LiNbO3 nanopillars with diameters varying between 150 and 325 nm. Polarimetric mappings of second harmonic generation from a wavelength of 850 nm demonstrate the ability to modify the polarization features of the nonlinear response through a fine adjustment of the pillar size. The effect is ascribed to the non-negligible contribution of the longitudinal fields associated with sub-wavelength light confinement in the LiNbO3 nanopillars. The results also highlight the importance of a fine control over the nanopillar size in order to effectively engineer their nonlinear response.

  14. Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers

    NASA Astrophysics Data System (ADS)

    Ostroverkhova, Oksana; Stickrath, Andrew; Singer, Kenneth D.

    2002-06-01

    Photorefractive (PR) polymers are promising for use in various applications that require fast response times. The main factors that determine the PR speed in polymers are photoconductivity and chromophore reorientation in an electric field. In this article, we investigate the chromophore reorientational dynamics in various PR composites using the electric field second harmonic generation (EFISHG) technique, and then relate it to the PR dynamics observed in a four-wave mixing holographic experiment. We also report on the enhancement of the EFISHG signal in the presence of HeNe light, which we attribute to a photoinduced internal electric field that formed in the PR polymer.

  15. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    PubMed

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  16. Improved and enhanced thermal stable second harmonic generation of poled polymer films

    NASA Astrophysics Data System (ADS)

    Hou, Zhanjia; Liu, Liying; Liu, Haibo; Xu, Lei; Wang, Wencheng; Li, Fuming; Ye, Mingxin

    2000-11-01

    Melamine formaldehyde resin films with good optical quality could be fabricated easily by controlling the initial molecular weight. It was used as a matrix of nonlinear molecules. The optical properties of nonlinear molecules guest-host and covalent-bonded type of poled polymer systems were investigated. The optical propagation losses are around 1 dB/cm at 1072 nm for two kinds of films studied. The in situ corona poling second harmonic generation method and UV- visible absorption measurement were used. The experiment results showed that the materials we fabricated have improved second-order susceptibilities and higher thermal stability.

  17. Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide

    SciTech Connect

    Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.

    1995-11-15

    We demonstrate phase-matched second-harmonic generation in a poled polymer waveguide, using anomalous-dispersion phase matching. Phase matching was achieved between lowest-order fundamental and harmonic modes, TM{sub 0}{sup {omega}} to TM{sub 0}{sup 2{omega}}, at a fundamental wavelength of 815 nm over a propagation length of 32 {mu}m. The maximum conversion efficiency was {eta}{sub exp}=39%/Wcm{sup 2}, in good agreement with theory. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  18. High-resolution frequency-domain second-harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping

    2007-04-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

  19. Evaluation of stable and unstable resonator configurations for efficient second-harmonic laser systems

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, Norman P.

    1992-01-01

    A comparative evaluation of a stable resonator, self-filtering unstable resonator, and an unstable resonator with a graded reflectivity mirror (GRM) as the output coupler is presented. The GRM resonator produced a slope efficiency of 1.4 percent, best beam quality (1.4 times diffraction limit), and highest conversion efficiency (50 percent). Other accomplishments include determination of the importance of measuring thermal focusing when designing unstable resonators, development of techniques in measuring thermal focusing and birefringence in laser materials, and development of a high brightness laser system for efficient second harmonic conversion.

  20. Molecular Adsorption on Nano Colloidal Particles Probed by Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Jen, Shih-Hui; Dai, Hai-Lung

    2006-03-01

    It is shown that second-harmonic generation (SHG), detected at 90 degree angle from the fundamental beam propagation direction, can be used to probe molecular adsorption on spherical nano colloidal particles with diameter as small as 50 nm. Measurements done with the malachite green dye adsorbed on polystyrene particles with diameters ranging from 50 to 250 nm show that the SHG signal from these surface adsorbed molecules tilts toward larger scattering angles when the particle size becomes smaller. This phenomenon can be rigorously described by the nonlinear Rayleigh-Gans-Debye theory and used for measuring the density and adsorption free energy of molecules adsorbed on nanometer size colloidal particles.

  1. Polar structure of disclination loops in nematic liquid crystals probed by second-harmonic-light scattering.

    PubMed

    Pardaev, Shokir A; Williams, J C; Twieg, R J; Jakli, A; Gleeson, J T; Ellman, B; Sprunt, S

    2015-03-01

    Angle-resolved, second-harmonic-light scattering (SHLS) measurements are reported for three different classes of thermotropic nematic liquid crystals (NLCs): polar and nonpolar rodlike compounds and a bent-core compound. Results revealing well-defined scattering peaks are interpreted in terms of the electric polarization induced by distortions of the nematic orientational field ("flexopolarity") associated with inversion wall defects, nonsingular disclinations, analogous to Neel walls in ferromagnets, that often exhibit a closed loop morphology in NLCs. Analysis of the SHLS patterns based on this model provides a "proof-of-concept" for a potentially useful method to probe the flexopolar properties of NLCs.

  2. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  3. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam

    PubMed Central

    Tian, Nian; Fu, Ling; Gu, Min

    2015-01-01

    We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research. PMID:26364733

  4. Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Ferguson, Allister I.

    2005-03-01

    Simultaneous stimulated Raman scattering (SRS) and second harmonic generation (SHG) are demonstrated in periodically poled lithium niobate (PPLN). Using a simple single-pass geometry, conversion efficiencies of up to 12% and 19% were observed for the SRS and SHG processes respectively. By changing the PPLN period interacting with the photonic crystal fibre based pump source and varying the PPLN temperature, the SHG signal was measured to be tunable from λ =584 nm to λ =679 nm. The SRS output spectrum was measured at λ=1583 nm, with a spectral full-width at half-maximum of λ =85 nm.

  5. Second harmonic generation imaging of collagen fibrils in cornea and sclera

    NASA Astrophysics Data System (ADS)

    Han, Meng; Giese, Günter; Bille, Josef F.

    2005-07-01

    Collagen, as the most abundant protein in the human body, determines the unique physiological and optical properties of the connective tissues including cornea and sclera. The ultrastructure of collagen, which conventionally can only be resolved by electron microscopy, now can be probed by optical second harmonic generation (SHG) imaging. SHG imaging revealed that corneal collagen fibrils are regularly packed as a polycrystalline lattice, accounting for the transparency of cornea. In contrast, scleral fibrils possess inhomogeneous, tubelike structures with thin hard shells, maintaining the high stiffness and elasticity of the sclera.

  6. Ab initio description of second-harmonic generation from crystal surfaces

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie

    2016-09-01

    We propose an ab initio framework to derive the dielectric and the second-order susceptibility tensors for crystal surfaces. The single-surface response is extracted from a supercell scheme. We evaluate macroscopic quantities, taking into account the local fields. The first- and second-order susceptibilities are evaluated within time-dependent density functional theory, in the long-wavelength limit. We apply our formalism to the calculation of the second-harmonic generation for clean and hydrogenated silicon surfaces. The agreement with measured second-order susceptibility components is significantly better, illustrating the importance of local-field effects.

  7. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle.

    PubMed

    Hsieh, Chia-Lung; Pu, Ye; Grange, Rachel; Laporte, Grégoire; Psaltis, Demetri

    2010-09-27

    We demonstrate imaging through a turbid layer by using digital phase conjugation of the second harmonic field radiated from a beacon nanoparticle. We show that the phase-conjugated focus can be displaced from its initial position by illuminating the same region of the turbid layer with an angular offset. An image is obtained by scanning the phase-conjugated focus through the turbid layer in a region around the nanoparticle. We obtain a clear image of the target by measuring the light transmitted through it when scanning the focused beam.

  8. Experimental investigations of second-harmonic spectra and Langmuir wave collapse

    SciTech Connect

    Dahmani, F.; Ghobrini, D.; EL-Mahdaoui, M. )

    1991-09-01

    Two kinds of experimental results obtained from time-resolved second-harmonic spectra for 1.06 {mu}m laser-produced plasma are presented. At moderate laser intensities ({le}2{times}10{sup 14} W/cm{sup 2}) the results are explained with parametric and electron decay instabilities. Whereas, at high laser intensities ({ge}6{times}10{sup 14} W/cm{sup 2}) the Langmuir strong turbulence is used to explain experimental results. In addition to results obtained by Briand {ital et} {ital al}. (Phys. Fluids B {bold 2}, 160 (1990)), a second sequence of collapses is observed.

  9. Atmospheric thermometry for metallic surfaces by laser-induced second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Pedanekar, Niranjan R.; Yin, Huiqi; Laurendeau, Normand M.

    1996-07-01

    To the best of our knowledge we report the first demonstration of surface thermometry using laser-induced second-harmonic generation (SHG) on a realistic metallic surface at atmospheric pressure. The surface is probed with a pulsed infrared laser beam and the SHG signal is monitored in reflection. For metallic silver, the SHG signal is found to be temperature dependent in the 25-120 degrees C range. The current accuracy of the method is +/-5 degrees C. Future work with platinum should permit the application of SHG thermometry to much higher surface temperatures.

  10. Chiral imaging of collagen by second-harmonic generation circular dichroism

    PubMed Central

    Lee, H.; Huttunen, M. J.; Hsu, K.-J.; Partanen, M.; Zhuo, G.-Y.; Kauranen, M.; Chu, S.-W.

    2013-01-01

    We provide evidence that the chirality of collagen can give rise to strong second-harmonic generation circular dichroism (SHG-CD) responses in nonlinear microscopy. Although chirality is an intrinsic structural property of collagen, most of the previous studies ignore that property. We demonstrate chiral imaging of individual collagen fibers by using a laser scanning microscope and type-I collagen from pig ligaments. 100% contrast level of SHG-CD is achieved with sub-micrometer spatial resolution. As a new contrast mechanism for imaging chiral structures in bio-tissues, this technique provides information about collagen morphology and three-dimensional orientation of collagen molecules. PMID:23761852

  11. Generation of GW-Level, Sub-Angstrom Radiation in the LCLS Using a Second-Harmonic Radiator

    SciTech Connect

    Huang, Z

    2004-09-14

    Electron beams are strongly microbunched near the high-gain free-electron laser (FEL) saturation with a rich harmonic content in the beam current. While the coherent harmonic emission is possible in a planar undulator, the third-harmonic radiation typically dominates with about 1% of the fundamental power at saturation. In this paper, we discuss the second-harmonic radiation in the Linac Coherent Light Source. We show that by a suitable design of an second-stage undulator with its fundamental frequency tuned to the second harmonic of the first undulator, coherent second-harmonic radiation much more intense than the third-harmonic is emitted. Numerical simulations predict that GW-level, sub-Angstrom x-ray pulses can be generated in a relatively short second-harmonic radiator.

  12. Switchable dielectric, piezoelectric, and second-harmonic generation bistability in a new improper ferroelectric above room temperature.

    PubMed

    Zhang, Yi; Ye, Heng-Yun; Cai, Hong-Ling; Fu, Da-Wei; Ye, Qiong; Zhang, Wen; Zhou, Qionghua; Wang, Jinlan; Yuan, Guo-Liang; Xiong, Ren-Gen

    2014-07-01

    Imidazolium periodate (IPI) is found to be an improper ferroelectric. It shows bistable properties simultaneously in three channels of dielectricity, piezoelectricity, and second-harmonic generation within the temperature window 300-310 K. PMID:24789577

  13. Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites.

    PubMed

    Anderson, D Z; Mizrahi, V; Sipe, J E

    1991-06-01

    We present a self-consistent calculation of anomalous second-harmonic generation in glass optical fibers. Quantum interference between multiphoton absorption processes leads to asymmetric photoelectric emission from defects, creating a spatially periodic space-charge electric field. The second harmonic is found to grow exponentially along the fiber, then saturate to a maximum value proportional to the square of the fundamental intensity. The predicted conversion efficiency is in reasonable agreement with experiments.

  14. LETTER TO THE EDITOR: Strong second-harmonic radiation from a thin silver film with randomly distributed small holes

    NASA Astrophysics Data System (ADS)

    Rakov, Nikifor; Ramos, Francisco E.; Xiao, Mufei

    2003-06-01

    We report the observation of strong second-harmonic radiation from a thin silver film containing randomly distributed small holes. A pulsed laser beam of wavelength 1064 nm impinges at an angle of incidence 45° on the film, and the reflection is collected by a CCD detector and analysed by a high-resolution spectrometer. Strong second-harmonic radiation was observed at the wavelength of 532 nm with a halfwidth of 40 nm.

  15. All-prism achromatic phase matching for tunable second-harmonic generation

    SciTech Connect

    Richman, Bruce A.; Bisson, Scott E.; Trebino, Rick; Jacobson, Alexander

    1999-05-01

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of {beta} barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensations with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths. {copyright} 1999 Optical Society of America

  16. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.

    PubMed

    Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2014-02-01

    The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality. PMID:24524346

  17. Electrical control of second-harmonic generation in a WSe2 monolayer transistor

    NASA Astrophysics Data System (ADS)

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; Rivera, Pasqual; Jones, Aaron M.; Wu, Sanfeng; Yan, Jiaqiang; Mandrus, David G.; Yao, Wang; Xu, Xiaodong

    2015-05-01

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. Here, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an order of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.

  18. Stability Analysis of a Second Harmonic Coaxial-Waveguide Gyrotron Backward-Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Hong, J. H.

    2012-12-01

    This study analyzes the stability of a Ka-band second harmonic gyrotron backward-wave oscillator (gyro-BWO) with a coaxial interaction waveguide. All of the possible competing modes in the frequency tuning range are considered. To suppress various competing modes, the downstream part of the coaxial interaction waveguide is loaded with distributed losses. Although the competing modes have different kinds of transverse field distributions, simulation results show that the losses of the outer cylinder and those of the inner cylinder serve as complementary means of suppressing the competing modes. The losses can stabilize the competing modes while having minor effects on the start-oscillation current of the operating mode. Detailed investigations were performed involving the dependence of the start-oscillation currents on the parameters of the lossy inner cylinder and the lossy outer cylinder, including the resistivity and the length of the lossy section. Moreover, under stable operating conditions, the performances of the second harmonic coaxial gyro-BWO with different sets of circuit parameters are predicted and compared.

  19. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  20. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy.

    PubMed

    Aboulfadl, Hanane; Hulliger, Jürg

    2015-10-01

    The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.

  1. Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Lavrov, S. D.; Shestakova, A. P.; Kulyuk, L. L.; Mishina, E. D.

    2016-09-01

    The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG) field. The model is applied to the calculation of second harmonic (SH) field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering) in 2D semiconductors that is extremely important for characterization of these unique materials.

  2. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy.

    PubMed

    Aboulfadl, Hanane; Hulliger, Jürg

    2015-10-01

    The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front. PMID:26297858

  3. All-prism achromatic phase matching for tunable second-harmonic generation.

    PubMed

    Richman, B A; Bisson, S E; Trebino, R; Sidick, E; Jacobson, A

    1999-05-20

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of beta barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensation with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths.

  4. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.

    PubMed

    Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2014-02-01

    The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.

  5. Texture analysis applied to second harmonic generation image data for ovarian cancer classification.

    PubMed

    Wen, Bruce L; Brewer, Molly A; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R; Campagnola, Paul J

    2014-09-01

    Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of “textons”—frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations—is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. PMID:26296156

  6. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    SciTech Connect

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  7. Enhanced second harmonic generation of MoS2 layers on a thin gold film.

    PubMed

    Zeng, Jianhua; Yuan, Maohui; Yuan, Weiguang; Dai, Qiaofeng; Fan, Haihua; Lan, Sheng; Tie, Shaolong

    2015-08-28

    The linear and nonlinear optical properties of thin MoS2 layers exfoliated on an Au/SiO2 substrate were investigated both numerically and experimentally. It was found that the MoS2 layers with different thicknesses exhibited different colors on the gold film. The reflection spectra of the MoS2 layers with different thicknesses were calculated by using the finite-difference time-domain technique and the corresponding chromaticity coordinates were derived. The electric field enhancement factors at both the fundamental light and the second harmonic were calculated and the enhancement factors for second harmonic generation (SHG) were estimated for the MoS2 layers with different thicknesses. Different from the MoS2 layers on a SiO2/Si substrate where the maximum SHG was observed in the single-layer MoS2, the maximum SHG was achieved in the 17 nm-thick MoS2 layer on the Au/SiO2 substrate. As compared with the MoS2 layers on the SiO2/Si substrate, a significant enhancement in SHG was found for the MoS2 layers on the Au/SiO2 substrate due to the strong localization of the electric field. More interestingly, it was demonstrated experimentally that optical data storage can be realized by modifying the SHG intensity of a MoS2 layer through thinning its thickness.

  8. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  9. Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics.

    PubMed

    Kumar, Rajesh; Grønhaug, Kirsten M; Romijn, Elisabeth I; Finnøy, Andreas; Davies, Catharina L; Drogset, Jon O; Lilledahl, Magnus B

    2015-09-01

    Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p-SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p-SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p-SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second-order χ tensor elements. These values may be used as a bio-marker to detect any structural alterations in pathological tissue for diagnostic purposes. The SHG intensity image (red) in (a) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution (b) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers.

  10. Electrical control of second-harmonic generation in a WSe2 monolayer transistor

    SciTech Connect

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; Rivera, Pasqual; Jones, Aaron M.; Wu, Sanfeng; Yan, Jiaqiang; Mandrus, David G.; Yao, Wang; Xu, Xiaodong

    2015-04-20

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an order of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.

  11. Electrical control of second-harmonic generation in a WSe2 monolayer transistor

    DOE PAGESBeta

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; Rivera, Pasqual; Jones, Aaron M.; Wu, Sanfeng; Yan, Jiaqiang; Mandrus, David G.; Yao, Wang; Xu, Xiaodong

    2015-04-20

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an order ofmore » magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less

  12. Texture analysis applied to second harmonic generation image data for ovarian cancer classification

    NASA Astrophysics Data System (ADS)

    Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.

    2014-09-01

    Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.

  13. A 0.33-THz second-harmonic frequency-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  14. Quantitative analysis of diseased horse tendons using Fourier-transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Sivaguru, Mayandi; Durgam, Sushmitha; Ambekar, Raghu; Luedtke, David; Fried, Glenn; Stewart, Allison; Toussaint, Kimani C., Jr.

    2011-03-01

    Fourier transform-second-harmonic generation (FT-SHG) imaging is used to quantitatively assess the structural organization of collagen fibers in tendonitis-induced horse tendons. Fiber orientation, isotropy, and the ratio of forward to backward SHG signal (F/B ratio) are used to differentiate the fiber organization between the normal and diseased horse tendons. Each second-harmonic generation (SHG) image is divided into several smaller regions of interest (ROI) and the aforementioned quantitative metrics are calculated across the whole grid. ROIs are further labeled as dark (no or minimal presence of fibers), isotropic (random fiber organization), or anisotropic (regular fiber organization) regions. Results show that the normal tendon possesses minimal isotropic regions and small standard deviations in the histograms of orientation and F/B ratio, indicating an intact and highly regular fiber organization. However, the tendonitis-induced horse tendons possess higher number of dark and isotropic regions, and larger standard deviations of the measured parameters, suggesting significantly disoriented and disorganized collagen fibers. This type of quantification would be highly beneficial in diagnosing and determining the stage of tendonitis in clinical settings. Not limited to tendonitis, the technique could also be applied to other diseases that structurally affect collagen fibers. The advantage of FT-SHG over the conventional polarization microscopy is also discussed.

  15. Synthesis of cervical tissue second harmonic generation images using Markov random field modeling.

    PubMed

    Yousefi, S; Kehtarnavaz, N; Gholipour, A

    2011-01-01

    This paper presents a statistical image modeling approach based on Markov random field to synthesize cervical tissue second harmonic generation (SHG) images. Binary images representing fiber and pore areas of the cervix tissue are first obtained from SHG images using an image processing pipeline consisting of noise removal, contrast enhancement and optimal thresholding. These binary images are modeled using a Markov random field whose parameters are estimated via the least squares method. The parameters are then used to synthesize fiber and pore areas of cervical tissue in the form of binary images. The effectiveness of the synthesis is demonstrated by reporting the classification outcome for two classes of cervical SHG images collected from mice at two different stages of normal pregnancy. The developed synthesis allows generation of realistic fiber and pore area binary images for cervical tissue studies.

  16. Electrical Control of Exciton-Enhanced Second-Harmonic Generation in Monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Seyler, Kyle; Schaibley, John; Gong, Pu; Rivera, Pasqual; Jones, Aaron; Wu, Sanfeng; Yan, Jiaqiang; Mandrus, David; Yao, Wang; Xu, Xiaodong

    2015-03-01

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material, and so far, dynamical control of optical nonlinearities remains confined to research labs. In this talk, we report a new mechanism to electrically control second-order optical nonlinearities in monolayer WSe2. We show that the intensity of second-harmonic generation (SHG) at its lowest exciton resonance is widely tunable through electrostatic doping in a field-effect transistor device. Such remarkable tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the exciton and trion oscillator strengths. Our study paves the way for a new platform of chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.

  17. The second-harmonic response of single-crystal silver electrodes obtained with an interference method

    NASA Astrophysics Data System (ADS)

    Beltramo, G.; Bilger, C.; Pettinger, B.; Schmickler, W.

    1998-12-01

    The second-harmonic response of several single-crystal silver electrodes is investigated at a long wavelength. In contrast to earlier experiments, the phase of the signal is obtained directly by an interference method. By comparing measurements at two different angles of incidence, the Rudnick-Stern coefficient characterizing the response perpendicular to the surface can be estimated; for Ag(100) and Ag(111) it agrees fairly well with calculations based on the jellium model. For the Ag(110) surface, the twofold amplitude depends on the electrode potential; in addition, a contribution with a three-fold symmetry is observed. These unexpected features are probably caused by a facetting of the Ag(110) surface.

  18. An in situ study of reconstructed gold electrode surfaces by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Friedrich, A.; Pettinger, B.; Kolb, D. M.; Lüpke, G.; Steinhoff, R.; Marowsky, G.

    1989-11-01

    Second harmonic generation (SHG) was employed to monitor in situ the potential-induced reconstruction of Au(111) and Au(100) electrodes. Rotating the sample by 360° about the surface normal yields for the unreconstructed Au(111)-(1×1) surface the well-known threefold symmetry pattern in the SHG intensity, while Au(100)-(1×1) shows no rotational anisotropy, as expected for C 4v symmetry. For the reconstructed Au(111)-(1×23) surface, however, an additional onefold symmetry pattern is observed, which allows in situ monitoring of the structural transition between (1×1) and (1×23). For the reconstructed Au(100)-(5×20) surface, a threefold symmetry pattern was found.

  19. Charge-Induced Second-Harmonic Generation in Bilayer WSe2.

    PubMed

    Yu, Huakang; Talukdar, Deep; Xu, Weigao; Khurgin, Jacob B; Xiong, Qihua

    2015-08-12

    Controlling nonlinear light-matter interaction is important from a fundamental science point of view as well as a basis for future optoelectronic devices. Recent advances in two-dimensional crystals have created opportunities to manipulate nonlinear processes electrically. Here we report a strong second-harmonic generation (SHG) in a 2D WSe2 bilayer crystal caused by a back gate field. This unusual process takes place only when the gate polarity causes charge accumulation rather than depletion. Analysis based on a bond-charge model traces the origin of SHG to the nonuniform field distribution within a single monolayer, caused by the accumulated submonolayer screening charge in the tungsten plane. We name this phenomenon charge-induced SHG (CHISHG), which is fundamentally different from the field- or current-induced SHG. Our findings provide a potentially valuable technique for understanding and noninvasive probing of charge and current distributions in future low dimensional electronic devices.

  20. Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry.

    PubMed

    Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh

    2016-07-13

    We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

  1. Probing and Modeling of Carrier Motion in Organic Field Effect Transistors by Optical Second Harmonic Generation

    SciTech Connect

    Iwamoto, Mitsumasa

    2009-07-10

    We here report a novel optical second harmonic generation (SHG) measurement that allows an electric field formed in organic solid to be probed. We examined the SHG intensity profile that changes depending on space charge field caused by carrier injection. Experiments making use of time resolved SHG technique has revealed dynamic changes of SHG intensity profiles arising from pentacene, and that carrier transport in OFET was diffusion-like. Calculations using drift-diffusion equation well accounted for the visualized carrier motion probed by time-resolved SHG. Finally, we conclude that experiments and analysis based on dielectrics physics is a very effective way for analyzing carrier behaviors in organic materials as well as in organic thin film devices.

  2. Second harmonic generation in composites of ellipsoidal particles with core-shell structure

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, De-Hua

    2009-01-01

    We study the enhancement of the second-harmonic generation (SHG) coefficient in a random composite consisting of ellipsoidal particles with a core-shell structure in a linear dielectric host. The material making up the ellipsoidal core is assumed to be dielectric, but with a nonlinear susceptibility for SHG. The coating material is assumed to be metallic with a linear susceptibility. The effective SHG coefficient is derived and its expression is related to various local field factors. The numerical calculations of the effective SHG response per unit volume of nonlinear material can be greatly enhanced at certain frequencies. For coated ellipsoidal particles, the core-shell structure and the particle shape allow for tuning of the resonance through the choice of material parameters and/or the ratio of the core to shell volume fraction and the depolarization factor of the particles.

  3. Second harmonic generation in random composites of particles with core-shell structure

    NASA Astrophysics Data System (ADS)

    Xu, C.; Hui, P. M.

    2006-08-01

    We study the effective second harmonic generation (SHG) coefficient in a random composite consisting of particles with a core-shell structure embedded in a linear dielectric host. The material making up the core of the particles is assumed to be nonconducting, but with a nonlinear susceptibility for SHG. The coating material is assumed to be linear and metallic. An expression for the effective SHG coefficient is obtained, in terms of various local field factors. The effective SHG response per unit volume of nonlinear material is found to be greatly enhanced at certain frequencies. For coated particles, the core-shell structure allows for tuning of the resonance through the choice of material parameters and/or the ratio of the core to shell volume fraction.

  4. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  5. Monitoring process of human keloid formation based on second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Jiang, X. S.; Chen, S.; Chen, J. X.; Zhu, X. Q.; Zheng, L. Q.; Zhuo, S. M.; Wang, D. J.

    2011-09-01

    In this paper, the morphological variation of collagen among the whole dermis from keloid tissue was investigated using second harmonic generation (SHG) microscopy. In the deep dermis of keloids, collagen bundles show apparently regular gap. In the middle dermis, the collagen bundles are randomly oriented and loosely arranged in the pattern of fine mesh while the collagen bundles are organized in a parallel manner in the superficial dermis near the epidermis. The developed parameters COI and BD can be used to further quantitatively describe these changes. Our results demonstrate the potential of SHG microscopy to understand the formation process of human keloid scar at the cellular level through imaging collagen variations in different depth of dermis.

  6. Strategies for reliable second harmonic of nonlinear acoustic wave through cement-based materials

    NASA Astrophysics Data System (ADS)

    Xie, Fan; Guo, Zhiwei; Zhang, Jinwei

    2014-07-01

    The strategies for retrieving reliable nonlinear second harmonic in cement-based materials are proposed in this paper using high-performance test system, piezoelectric transducers with central frequency in MHz, monochromatic tone-burst excitation and robust data process method.The Fundamental and second-order harmonics are measured to retrieve reliable acoustic nonlinearity with the input power level increased from ∼50 V to ∼280 V. About 173 times repeatable measurements are conducted to verify the stability of the experimental system. Specimens with three distinct aggregate sizes are used to measure the acoustic nonlinearity under uniaxial load. The results show a decrease in the measured acoustic nonlinearity at early damage stage, then a slight increase when large cracks coalesce. The rapid increase in acoustic nonlinearity at the final stage indicates the imminent failure. Our results also suggest that the nonlinear ultrasonic method is more sensitive than P-wave velocity for damage evaluation.

  7. Acceleration of lithotripsy using cavitation bubbles induced by second-harmonic superimposition

    NASA Astrophysics Data System (ADS)

    Osuga, Masamizu; Yasuda, Jun; Jimbo, Hayato; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Shock wave lithotripsy potentially produces residual stone fragments too large to pass through ureters and significant injury to the normal tissue surrounding the stone. Previous works have shown that the collapse of cavitation bubbles induced by high-intensity focused ultrasound can produce small stone fragments via cavitation erosion. However, the erosion rate is hypothesized to be reduced by ultrasound attenuation by excessively generated bubble clouds. If so, it is important to generate the bubbles only on the stone surface. The effects of peak-negative-enhanced (PNE) and peak-positive-enhanced (PPE) waves obtained by second-harmonic superimposition were investigated to control cavitation bubbles. With the PNE waves, the bubbles were generated only on the stone surface and the maximum erosion rate was 232 ± 32 mg/min. All the fragments were smaller than 2 mm, which makes them pass through ureters naturally. The proposed method shows the potential to significantly improve the speed of lithotripsy.

  8. Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals

    NASA Astrophysics Data System (ADS)

    Tang, Yanhao; Mandal, Krishna C.; McGuire, John A.; Lai, Chih Wei

    2016-09-01

    We report optical second-harmonic generation (SHG) in reflection from GaSe crystals of 1 to more than 100 layers using a fundamental picosecond pulsed pump at 1.58 eV and a supercontinuum white light pulsed laser with energies ranging from 0.85 to 1.4 eV. The measured reflected SHG signal is maximal in samples of ˜20 layers, decreasing in thicker samples as a result of interference. The thickness- and frequency-dependence of the SHG response of samples thicker than ˜7 layers can be reproduced by a second-order optical susceptibility that is the same as in bulk samples. For samples ≲7 layers, the second-order optical susceptibility is reduced compared to that in thicker samples, which is attributed to the expected band-gap increase in mono- and few-layer GaSe.

  9. The Binding of Roxarsone at the Silica/Water Interface Studied with Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Konek, Christopher; Ostrowski, David; Geiger, Franz

    2005-03-01

    Arsenic is a carcinogen that can also cause chronic poisoning when ingested via drinking water in quantities as low as 10 micrograms/L. In the US, organic arsenicals such as Roxarsone are commonly used as feed additives in the poultry industry. The use of poultry litter as fertilizer results in environmental arsenic deposition rates of up to 50 metric tons per year; the subsequent environmental fate of Roxarsone is unknown. We use second harmonic generation (SHG) to study the thermodynamics and kinetics of Roxarsone binding to environmentally relevant mineral oxide/water interfaces. Roxarsone binding to water/SiO2 interfaces is fully reversible, consistent with high Roxarsone mobility. Results from Langmuir isotherm measurements and surface SHG spectra are presented as well.

  10. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation

    NASA Astrophysics Data System (ADS)

    Zipfel, Warren R.; Williams, Rebecca M.; Christie, Richard; Nikitin, Alexander Yu; Hyman, Bradley T.; Webb, Watt W.

    2003-06-01

    Multicolor nonlinear microscopy of living tissue using two- and three-photon-excited intrinsic fluorescence combined with second harmonic generation by supermolecular structures produces images with the resolution and detail of standard histology without the use of exogenous stains. Imaging of intrinsic indicators within tissue, such as nicotinamide adenine dinucleotide, retinol, indoleamines, and collagen provides crucial information for physiology and pathology. The efficient application of multiphoton microscopy to intrinsic imaging requires knowledge of the nonlinear optical properties of specific cell and tissue components. Here we compile and demonstrate applications involving a range of intrinsic molecules and molecular assemblies that enable direct visualization of tissue morphology, cell metabolism, and disease states such as Alzheimer's disease and cancer.

  11. Investigation of the second harmonic electron cyclotron current drive efficiency on the T-10 tokamak

    SciTech Connect

    Razumova, K.A.; Alikaev, V.V.; Dremin, M.M.; Esipchuk, Y.V.; Kislov, A.Y.; Notkin, G.E.; Pavlov, Y.D. ); Forest, C.B.; Lohr, J.; Luce, T.C.; Harvey, R.W. )

    1994-05-01

    Experiments on second harmonic electron cyclotron current drive were done on the T-10 tokamak using four gyrotrons. Total powers up to 1.2 MW at a frequency of 140 GHz were injected. Current generation by electron cyclotron (EC) waves was demonstrated in the experiments. The efficiency [eta] of current generation and its dependence on plasma parameters were measured and it was shown that the efficiency is a nonlinear function of input power, more closely predicted by Fokker--Planck calculations than by linear theory. The interaction of EC waves with the tail of the electron distribution was shown to be important. It was also found that current density profile redistribution played an important role in the plasma behavior.

  12. Efficient intracavity second-harmonic generation at 1063 nm in a GdCOB crystal

    NASA Astrophysics Data System (ADS)

    Wu, Z. C.; Liu, W. M.

    2011-12-01

    We report an efficient intracavity second-harmonic generation (SHG) at 1063 nm in a non-linear optical crystal, GdCa4O(BO3)3 (GdCOB), performed with a diode end pumped continuous-wave (CW) Nd:GdVO4 laser. In the case of a laser with an a-cut 0.4 at % Nd:GdVO4 crystal frequency-doubled with a GdCOB crystal cut for Type I frequency doubling. A CW SHG output power of 2.25 W has been obtained using a 15 mm long GCOB crystal. The optical conversion efficiency with respect to the incident pump power was 12.4%.

  13. Surface plasmon-driven second-harmonic generation asymmetry in anisotropic plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Chekhov, A. L.; Razdolski, I.; Kirilyuk, A.; Rasing, Th.; Stognij, A. I.; Murzina, T. V.

    2016-04-01

    We report a strong angular asymmetry of optical second-harmonic generation (SHG) in plasmonic crystals formed by an Au grating on top of an anisotropic bismuth-thulium iron garnet (BTIG) film. We found that a weak anisotropy-driven angular SHG asymmetry of the crystalline BTIG is resonantly enhanced and reaches 95% as the surface plasmon polariton (SPP) is excited at the Au/BTIG interface. The asymmetry introduced by an interference of the odd and even (with respect to the angle of incidence) SHG fields is attributed to the anisotropy of the BTIG film. The angular SHG spectra are reproduced using a simple model with a resonant SPP-induced SHG contribution from the anisotropic Au/BTIG interface. The observed asymmetry of the SHG provides valuable insight into the mechanisms of nonlinear plasmonics and can noticeably expand its abilities regarding active light conversion and manipulation.

  14. Molecular Order of Arterial Collagen Using Circular Polarization Second-Harmonic Generation Imaging.

    PubMed

    Turcotte, Raphaël; Mattson, Jeffrey M; Wu, Juwell W; Zhang, Yanhang; Lin, Charles P

    2016-02-01

    Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone. PMID:26806883

  15. Molecular hydrogen physisorption on boron-nitride nanotubes probed by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Salazar-Aparicio, R. V.; Vázquez-Nava, R. A.; Arzate, N.; Mendoza, B. S.

    2014-10-01

    We present ab initio calculations to investigate second harmonic generation (SHG) response of single wall zigzag pristine boron-nitride nanotubes (BNNTs) and BNNTs modified by the molecular hydrogen adsorption. Calculations have been performed using density functional theory (DFT) within the local-density approximation (LDA) together with the GW Green function method to determine the band gap. A length gauge approach has been used to calculate the nonlinear optical response with the scissors correction to obtain the nonlinear susceptibility χzzz(-2ω ;ω,ω) of the zigzag BNNTs. We have found that, contrary to reports in the literature, the (5,0) and (9,0) BNNTs have a nonvanishing SHG response. We have also found that SHG intensity decreases with the increase of the molecular hydrogen coverage.

  16. Second harmonic generation imaging of the collagen in myocardium for atrial fibrillation diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Chiou, Yu-We; Sun, Chi-Kuang

    2009-02-01

    Myocardial fibrosis, a common sequela of cardiac hypertrophy, has been shown to be associated with arrhythmias in experimental models. Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to atrial fibrillation. Second harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. In this presentation, we observe the SHG images of the collagen matrix in atrial myocardium and we analyzed of collagen fibers arrangement by using Fourier-transform analysis. Moreover, comparing the SHG images of the collagen fibers in atrial myocardium between normal sinus rhythm (NSR) and atrial fibrillation (AF), our result indicated that it is possible to realize the relation between myocardial fibrosis and AF.

  17. A linear algorithm for quantitative measure of corneal collagen fiber orientation using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    McLean, James; DiMarzio, Charles

    2016-03-01

    There is significant interest in the scientific community to develop a reliable and precise quantification of the direction of collagen fibers within the cornea in order to learn more about how collagen contributes to the cornea's shape and structure. Previous work has shown that quantification of these fibers' orientations is possible using Second Harmonic Generation (SHG) microscopy, a modality that utilizes the non-centrosymmetric properties of collagen to obtain details of their macromolecular structure. Many attempts at using SHG to this purpose result in whole volume approximations which do not take into account variations through the depth of the cornea. Additionally, other algorithms have used non-linear processes which limit computation time and result in sensitivity to sample area, resolution, and illumination. We propose a linear method for quantification of collagen fiber orientation which utilizes the precise sectioning properties of SHG and is independent of non-linear artifacts to aid in further classification of cornea structure.

  18. Polarization response of second-harmonic images for different collagen spatial distributions

    NASA Astrophysics Data System (ADS)

    Ávila, Francisco J.; del Barco, Oscar; Bueno, Juan M.

    2016-06-01

    The response to polarization of second-harmonic generation (SHG) microscopy images of samples with different collagen distributions (quasialigned, partially organized, and nonorganized) has been analyzed. A linear decay relationship between the external arrangement and polarization sensitivity was found. SHG signal from nonorganized samples presented a large structural dispersion and a weak dependence with incident polarization. Polarization dependence is also associated with the internal organization of the collagen fibers, directly related to the ratio of hyperpolarizabilities ρ. This parameter can experimentally be computed from the modulation of the SHG signal. The results show that both external and internal collagen structures are closely related. This provides a tool to obtain information of internal properties from the polarimetric response of the external spatial distribution of collagen, which might be useful in clinical diagnosis of pathologies related to changes in collagen structure.

  19. Second harmonic generation (SHG) and two-photon fluorescence (TPF) contrast imaging in biomaterial analysis

    NASA Astrophysics Data System (ADS)

    Lang, Xuye; Lyubovitsky, Julia

    2015-07-01

    Collagen hydrogels are natural biomaterials that comprise 3D networks of high water content and have viscoelastic properties and biocompatibility similar to native tissues. Consequently, these materials play an important role in tissue engineering and regenerative medicine for quite some time. Second harmonic generation (SHG) and two-photon fluorescence (TPF) contrasts transpire as valuable label-free spectroscopic probes for analysis of these biomaterials and this presentation will report the structural, mechanical and physicochemical parameters leading to the observed optical SHG and TPF effects in synthesized 3D collagen hydrogels. We will present results regarding understanding the dependency of collagen fiber formation on ion types, new results regarding strengthening of these biomaterials with a nontoxic chemical cross-linker genipin and polarization selection of collagen fibers' orientations.

  20. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections

    PubMed Central

    Monaghan, Michael G.; Kroll, Sebastian; Brucker, Sara Y.

    2016-01-01

    Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples. PMID:27018844

  1. Second-harmonic and sum-frequency generation for surface studies

    SciTech Connect

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-07-01

    Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions.

  2. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    SciTech Connect

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70{degree} with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs.

  3. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals.

    PubMed

    Newman, Justin A; Scarborough, Nicole M; Pogranichniy, Nicholas R; Shrestha, Rashmi K; Closser, Richard G; Das, Chittaranjan; Simpson, Garth J

    2015-07-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  4. Engineered second-harmonic diffraction from highly transmissive metasurfaces composed of complementary split-ring resonators.

    PubMed

    Yang, Xin; Zhang, Chi; Wan, Mingjie; Chen, Zhuo; Wang, Zhenlin

    2016-07-01

    We theoretically and experimentally investigated the optical second-harmonic (SH) diffraction from metasurfaces based on gold complementary split-ring resonators (CSRRs). We have demonstrated that the generated SH currents are mostly parallel to the incident polarization and are asymmetric with respect to the base of a CSRR, thus allowing us to impose the phase change of π on the SH radiation by reversing the CSRR's orientation. We verified this concept of geometry-induced nonlinear phase by designing and fabricating a nonlinear metasurface consisting of supercells of CSRRs with opposite orientations that can function as a SH beam splitter. The ability to control the phase of the local nonlinearity coupled with the high transmittance at both fundamental and SHG wavelengths makes the CSRRs good candidates for the construction of highly efficient three-dimensional nonlinear metamaterials and suitable for applications in nonlinear beam shaping. PMID:27367070

  5. Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Ara; Tsai, Halley F.; Hayrapetyan, Gor; Chen, Wei-Liang; Chen, Yang-Fang; Jeong, Myung Yung; Kim, Chang-Seok; Chen, Shean-Jen; Dong, Chen-Yuan

    2013-03-01

    We present an automated and systematic two-dimensional discrete Fourier transform (2D-FFT) approach to analyze collagen fiber organization through the use of second harmonic generation (SHG) microscopy. Average orientations of individual domains and Ising-like order parameters introduced to characterize the correlation between orientations of adjacent domains may be used to quantitatively characterize fibrous tissues. Our approach was applied to analyze tissues including rat tail tendon, mouse skin, bovine corneas, and human corneas. We also show that collagen fiber organization in normal and keratokonus human corneas may be distinguished. The current approach may be used for the quantitative differentiation of SHG collagen fiber morphology in different tissues and may be applied for diagnostic purposes.

  6. Effect of pump depletion on second harmonic generation in multiple quasi-phase-matching gratings.

    PubMed

    Zhao, Li-Ming; Yue, Gui-Kuan; Zhou, Yun-Song; Wang, Fu-He

    2013-07-29

    Second harmonic generation (SHG) from the aperiodic optical superlattice (AOS) in considering the pump depletion is investigated. It is found the domain configuration designed in undepleted pump approximation (UPA) can also be used to achieve multiple wavelength SHGs with high enough conversion efficiency for an exact solution. The applicable scope of UPA was estimated by a relative tolerance based on the related SHG conversion efficiency calculated in UPA and an exact solution. Results reveal that the relative tolerance is solely determined by the conversion efficiency, and unrelated to the sample configuration, pump intensity, incidental wavelength and nonlinear media. A model to evaluate an exact solution is proposed, and it is suggested that the SHG conversion efficiency can be easily assessed by the developed model. These results can be used to provide direct guidance for practical application, and can also make the estimation of practical samples more convenient. PMID:23938632

  7. Resonant effects in optical second-harmonic generation from alkali covered Si(111) 7 × 7

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.; Marowsky, G.; Zhang, J.; Rubahn, H.-G.

    2005-01-01

    Polarized second-harmonic generation (SHG) coverage dependencies for alkali (Na, Li) adsorption on Si(111) 7 × 7 both at room and at low temperatures are obtained for fundamental wavelengths of 497 nm, 570 nm and 1067 nm, showing characteristic and reproducible non-monotonic changes of SHG efficiency. At submonolayer coverage the SHG intensities are qualitatively different for visible vs. near-resonant IR radiation. In the coverage regime θ < 1/3, low-symmetry Na-Si bonds, resulting from a Na-induced surface reconstruction, are formed, which are resonant with 1067 nm radiation. By comparing parallelly and perpendicularly polarized coverage dependencies, we deduce that the resonant contribution in the parallel configuration is due to the χzzz(2)-component.

  8. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution

    PubMed Central

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H. A.; Vogel, Martin

    2016-01-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  9. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    NASA Astrophysics Data System (ADS)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  10. Multimodal two-photon imaging using a second harmonic generation-specific dye

    PubMed Central

    Nuriya, Mutsuo; Fukushima, Shun; Momotake, Atsuya; Shinotsuka, Takanori; Yasui, Masato; Arai, Tatsuo

    2016-01-01

    Second harmonic generation (SHG) imaging can be used to visualize unique biological phenomena, but currently available dyes limit its application owing to the strong fluorescent signals that they generate together with SHG. Here we report the first non-fluorescent and membrane potential-sensitive SHG-active organic dye Ap3. Ap3 is photostable and generates SH signals at the plasma membrane with virtually no fluorescent signals, in sharp contrast to the previously used fluorescent dye FM4-64. When tested in neurons, Ap3-SHG shows linear membrane potential sensitivity and fast responses to action potentials, and also shows significantly reduced photodamage compared with FM4-64. The SHG-specific nature of Ap3 allows simultaneous and completely independent imaging of SHG signals and fluorescent signals from various reporter molecules, including markers of cellular organelles and intracellular calcium. Therefore, this SHG-specific dye enables true multimodal two-photon imaging in biological samples. PMID:27156702

  11. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals

    SciTech Connect

    Chen, Bao-Qin; Zhang, Chao; Liu, Rong-Juan; Li, Zhi-Yuan

    2014-10-13

    We have designed and fabricated a lithium niobate (LN) nonlinear photonic crystal (NPC) with a two-dimensional (2D) ellipse structure of inverse poling domains. The structure can offer continuously varying reciprocal lattice vectors in different directions to compensate the phase-mismatching during the second harmonic generation (SHG) for diverse pump wavelengths. We consider three propagation directions with large effective nonlinear susceptibility and measure the nonlinear conversion efficiency of SHG. The experimental data are in good agreement with the quantitative calculation results using the effective susceptibility model with pump depletion. With high-efficiency SHG in multiple propagation direction, the 2D ellipse structure of LN NPC has the potential to realize various broadband nonlinear frequency conversion processes in different propagation direction with a single crystal.

  12. Photoinduced second harmonic generation in partially crystallized BiB 3O 6 glass

    NASA Astrophysics Data System (ADS)

    Kityk, I. V.; Imiołek, W.; Majchrowski, A.; Michalski, E.

    2003-04-01

    Photoinduced second harmonic generation was found in BiB 3O 6 (BiBO) glass having different degree of crystallinity. We have revealed that an increasing degree of crystallinity of BiBO glass leads to increase of the output second-order optical susceptibility. We have used a pulsed 35 MW nitrogen laser ( λ=337 nm; τ=50 ps) as a source of photoinducing laser beam. Fundamental laser beam was generated by pulsed Nd:YAG laser ( λ=1.06 μm; time duration about 25 ps). Maximal value of the photoinduced second-order non-linear optical susceptibility d222 was equal to about 5 pm/V, what is substantially higher than in case of BiBO single crystals (˜ 3 pm/ V).

  13. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals

    PubMed Central

    Newman, Justin A.; Scarborough, Nicole M.; Pogranichniy, Nicholas R.; Shrestha, Rashmi K.; Closser, Richard G.; Das, Chittaranjan; Simpson, Garth J.

    2015-01-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  14. Second-harmonic microscopy of strain fields around through-silicon-vias

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Shafiei, Farbod; Mendoza, B. S.; Lei, Ming; Jiang, Tengfei; Ho, P. S.; Downer, M. C.

    2016-04-01

    Through-Silicon-Vias (TSVs)—10 μm-diameter conducting rods that connect vertically stacked silicon layers—provide three dimensional circuit integration, but introduce strain in the surrounding silicon when thermally cycled. Here, we noninvasively probe strain fields around Cu TSVs in Si(001) using optical second-harmonic generation (SHG) microscopy. Results are compared with micro-Raman spectra of the strained regions. We find that SHG probes strain fields more quickly than Raman spectroscopy, while maintaining comparable sensitivity and spatial resolution, and avoiding the need for spectral analysis. Moreover, SHG is selectively sensitive to axial shear components uiz (i = x, y) of the strain tensor that are often neglected in Raman analysis. Thus, SHG complements Raman spectroscopy.

  15. Texture analysis applied to second harmonic generation image data for disease classification and development of a multi-view second harmonic generation imaging platform

    NASA Astrophysics Data System (ADS)

    Wen, Lianggong

    Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites

  16. Theory of surface second-harmonic generation for semiconductors including effects of nonlocal operators

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Tancogne-Dejean, Nicolas; Mendoza, Bernardo S.; Véniard, Valérie

    2015-02-01

    We formulate a theoretical approach of surface second-harmonic generation from semiconductor surfaces based on the length gauge and the electron density operator. Within the independent particle approximation, the nonlinear second-order surface susceptibility tensor χa b c(-2 ω ;ω ,ω ) is calculated, including in one unique formulation (i) the scissors correction, needed to have the correct value of the energy band gap, (ii) the contribution of the nonlocal part of the pseudopotentials, routinely used in ab initio band-structure calculations, and (iii) the derivation for the inclusion of the cut function, used to extract the surface response. The first two contributions are described by spatially nonlocal quantum-mechanical operators and are fully taken into account in the present formulation. As a test case of the approach, we calculate χx x x(-2 ω ;ω ,ω ) for the clean Si (001 )2 ×1 reconstructed surface. The effects of the scissors correction and of the nonlocal part of the pseudopotentials are discussed in surface nonlinear optics. The scissors correction shifts the spectrum to higher energies though the shifting is not rigid and mixes the 1 ω and 2 ω resonances, and has a strong influence in the line shape. The effects of the nonlocal part of the pseudopotentials keeps the same line shape of | χ2×1 x x x(-2 ω ;ω ,ω ) | , but reduces its value by 15%-20%. Therefore the inclusion of the three aforementioned contributions is very important and makes our scheme unprecedented and opens the possibility to study surface second-harmonic generation with more versatility and providing more accurate results.

  17. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    SciTech Connect

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.

  18. Three-layer model for the surface second-harmonic generation yield including multiple reflections

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Mendoza, Bernardo S.

    2016-09-01

    We present the three-layer model to calculate the surface second-harmonic generation (SSHG) yield. This model considers that the surface is represented by three regions or layers. The first layer is the vacuum region with a dielectric function ɛv(ω ) =1 from where the fundamental electric field impinges on the material. The second layer is a thin layer (ℓ ) of thickness d characterized by a dielectric function ɛℓ(ω ) , and it is in this layer where the SSHG takes place. The third layer is the bulk region denoted by b and characterized by ɛb(ω ) . Both the vacuum and bulk layers are semi-infinite. The model includes the multiple reflections of both the fundamental and the second-harmonic (SH) fields that take place at the thin layer ℓ . We obtain explicit expressions for the SSHG yield for the commonly used s and p polarizations of the incoming 1 ω and outgoing 2 ω electric fields, where no assumptions for the symmetry of the surface are made. These symmetry assumptions ultimately determine which components of the surface nonlinear second-order susceptibility tensor χ (-2 ω ;ω ,ω ) are different from zero, and thus contribute to the SSHG yield. Then, we particularize the results for the most commonly investigated surfaces, the (001), (110), and (111) crystallographic faces, taking their symmetries into account. We use the three-layer model and compare it against the experimental results of a Si(111)(1 ×1 ):H surface, as a test case, and use it to predict the SSHG yield of a Si(001)(2 ×1 ) surface.

  19. Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation

    SciTech Connect

    Andersen, S. V.; Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M.; Pedersen, K.

    2014-02-03

    The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.

  20. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    SciTech Connect

    McGuire, John Andrew

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  1. High second harmonic generation signal from muscles and fascia pig's muscles using the two-photon laser scanning microscope.

    PubMed

    Reshak, A H

    2009-06-01

    I have provided update to our two photon laser scanning microscope by adding new technique which enables us to simultaneously measured the second harmonic generation signals in the forward and backward directions; in the meantime, one can measure the two photon excitations fluorescence if the materials produce fluorescence. In the present work, the fascia muscles, muscles of pig and pig's skin were used. I found that these materials produced high second harmonic generation signal in both directions. These measurements show that the second harmonic generation strongly depends on the state of the polarization of the laser light and the orientation of the dipole moment in the molecules that interact with the laser light. It is therefore advantageous to control the laser's state of polarization, to maximize second harmonic generation. The novelty of this work is to establish new multi-functional technique by combing three platforms of laser scanning microscopy - the fluorescence microscopy, harmonic generation microscopy and polarizing microscopy in which one can use the second harmonic imaging to investigate the true architecture of the sensitive samples and the samples which do not produce auto-fluorescence. Moreover investigation of the new sample needs to look at all details of the true architecture of the sample. Thereby the sample will be exposed to the laser radiation more than the well-known sample, and that will cause photo-bleaching and photo-damage. Since the second harmonic generation does not undergo from photo-bleaching and photo-damage it will be the promising technique for investigating the sensitive and new samples. Then one can move to acquire fluorescence images after good investigation of the true architecture of the sample by the SH imaging.

  2. Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy.

    PubMed

    Boulesteix, Thierry; Beaurepaire, Emmanuel; Sauviat, Martin-Pierre; Schanne-Klein, Marie-Claire

    2004-09-01

    We extend second-harmonic generation (SHG) microscopy to the measurement of sarcomere length in unstained living cardiac myocytes with 20-nm accuracy. We quantify individual sarcomere shortening in the presence of saxitoxin and find that it is in agreement with mechanical measurements of atrial tissue contracture. This functional application of SHG microscopy is generally applicable to quantify the physiological effects of drugs on contractile tissue. Our data also suggest that packed myosin heads in sarcomere thick filaments are responsible for the large second-harmonic endogenous signal in muscle tissue. PMID:15455770

  3. Sum frequency and second harmonic generation from the surface of a liquid microjet.

    PubMed

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C; Brown, Matthew A; Roke, Sylvie

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  4. Observation of tendon repair in animal model using second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Hase, Eiji; Minamikawa, Takeo; Sato, Katsuya; Takahashi, Mitsuhiko; Yasui, Takashi

    2016-03-01

    Tendon rupture is a trauma difficult to recover the condition before injury. In previous researches, tensile test and staining method have been widely used to elucidate the mechanism of the repair process from the viewpoints of the mechanical property and the histological findings. However, since both methods are destructive and invasive, it is difficult to obtain both of them for the same sample. If both the mechanical property and the histological findings can be obtained from the same sample, one may obtain new findings regarding mechanisms of tendon repairing process. In this paper, we used second-harmonic-generation (SHG) microscopy, showing high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional sectioning, deep penetration, and without additional staining. Since SHG light intensity sensitively reflects the structural maturity of collagen molecule and its aggregates, it will be a good indicator for the repairing degree of the ruptured tendon. From comparison of SHG images between the 4-weeks-repaired tendon and the sound tendon in the animal model, we confirmed that SHG light intensity of the repaired tendon was significantly lower than that of the sound tendon, indicating that the collagen structure in the repaired tendon is still immature. Furthermore, we performed both SHG imaging and the tensile test for the same sample, and confirmed a correlation between them. This result shows a potential of SHG light for an indicator of the histological and mechanical recovery of the ruptured tendon.

  5. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  6. Fluorescent DNA probes at liquid/liquid interfaces studied by surface second harmonic generation.

    PubMed

    Licari, Giuseppe; Brevet, Pierre-François; Vauthey, Eric

    2016-01-28

    The properties of a series of oxazole yellow dyes, including the dicationic YOPRO-1 and its homodimeric parent YOYO-1 and two monocationic dyes (YOSAC-1 and YOSAC-3), have been investigated at the dodecane/water interface using stationary and time-resolved surface second harmonic generation (SSHG) combined with quantum chemical calculations. Whereas YOYO-1 exists predominantly as a H-dimer in aqueous solution, the stationary SSHG spectra reveal that such dimers are not formed at the interface. No significant H-aggregation was observed with YOPRO-1, neither in solution nor at the interface. In the case of the monocationic YOSAC dyes, a distinct SSHG band due to H-aggregates was measured at the interface, whereas only weak aggregation was found in solution. These distinct aggregation behaviors can be explained by the different orientations of the dyes at the interface, as revealed from the analysis of polarization-resolved experiments, the doubly-charged dyes lying more flat on the interface than the singly charged ones. Although YOYO-1 and YOPRO-1 do not form H-dimer/aggregates at the interface, time-resolved SSHG measurements point to the occurrence of intra- and intermolecular interactions, respectively, which inhibit the ultrafast non-radiative decay of the excited dyes via large amplitude motion, and lead to a nanosecond excited-state lifetime. The distinct behavior evidenced here for YOYO-1 and YOSAC dyes points to their potential use as fluorescent or SHG interfacial probes.

  7. Surface phase transitions in liquid Ga-Bi alloys studied by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Nattland, Detlef; Freyland, Werner

    2000-07-01

    Optical second harmonic generation (SHG) as a particularly surface sensitive technique was employed for the first time to investigate the surface phase behaviour of a liquid alloy, BixGa1-x, in different heating and cooling cycles up to 280 °C. The aim of these experiments is to establish a relatively simple experimental access to the surface phase diagrams of liquid alloys. Measurements of the characteristic changes of the SH signal have been performed on pure Bi and different Ga-rich alloys (xBi≤0.367). In pure bismuth the melting and freezing of the surface is indicated by a distinct polarization dependent variation of the SH intensities. Of particular interest is the characterization of the wetting transition found in Ga-Bi recently at the monotectic phase transition (xm = 0.085, Tm = 222 °C). Surprisingly, on first heating of the Ga-rich alloys up to 280 °C the SHG signals give no indication of the dramatic compositional change at the surface induced by the wetting transition. From these observations we conclude that the main source for the nonlinear polarization is the outermost layer of the alloy which in the wet and the non-wet state consists of an adsorbed Bi-rich monolayer. It is shown that SHG is very sensitive to structural changes at the surface. Most interestingly, on cooling of the Ga-rich alloys a Bi-rich film crystallizes on top of the bulk liquid alloy.

  8. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals.

    PubMed

    Phillips, Jonathan P; Banerjee, Saumyabrata; Smith, Jodie; Fitton, Mike; Davenne, Tristan; Ertel, Klaus; Mason, Paul; Butcher, Thomas; De Vido, Mariastefania; Greenhalgh, Justin; Edwards, Chris; Hernandez-Gomez, Cristina; Collier, John

    2016-08-22

    We report on type-I phase-matched second harmonic generation (SHG) in three nonlinear crystals: DKDP (98% deuteration), YCOB (XZ plane), and LBO (XY plane), of 8 J, 10 Hz cryogenic gas cooled Yb:YAG laser operating at 1029.5 nm. DKDP exhibited an efficiency of 45% at a peak fundamental intensity of 0.24 GW/cm2 for 10 Hz operation at 10 ns. At the same intensity and repetition rate, YCOB and LBO showed 50% and 65% conversion efficiencies, respectively. Significant improvement in conversion efficiency, to a maximum of 82%, was demonstrated in LBO at 0.7 GW/cm2 and 10 Hz, generating output energy of 5.6 J at 514.75 nm, without damage or degradation. However, no improvement in conversion efficiency was recorded for YCOB at this increased intensity. Additionally, we present theoretically calculated temperature maps for both 10 J and 100 J operation at 10 Hz, and discuss the suitability of these three crystals for frequency conversion of a 100 J, 10 Hz diode pumped solid state laser (DPSSL). PMID:27557246

  9. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  10. Design of a 0.25 THz second harmonic gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, Hongfu

    2008-12-01

    A design process for a second harmonic operation of a low ohm lossy TE03 mode 0.25 THz gyrotron has been presented. Mode competition and mode selection are carefully studied through the linear theory of CRM. The cavity are designed and optimized by using a time domain open cavity calculation code, and validated by using the famous FEM code HFSS. Interaction numerical investigations are carried out by using a self-consistent nonlinear theory cod. The influences of the magnetic field, current, voltage and the velocity ratio of the electron beam under the interaction between the electron beam and RF field are analyzed. The 14-kW 0.25 THz gyrotron with a predicted device efficiency of 39% is driven by a 25-kV 1.5-A (v⊥/v// = 1.5, ▵vz / vz = 6%) electron beam from a magnetron injection gun. A tapered magnetic field is adopted in the large signal simulation to prompt the electron efficiency.

  11. Crystal growth and second harmonic generation efficiency of a chalcone derivative

    NASA Astrophysics Data System (ADS)

    Meenatchi, V.; Muthu, K.; Rajasekar, M.; Meenakshisundaram, SP.

    2013-06-01

    Single crystals of (2E,6E)-2-(4-fluorobenzylidine)-6-(4-methoxybenzylidine)cyclohexanone (FBMBC) have been grown by a slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the FBMBC belongs to triclinic system and the cell parameters are a=9.790(6) Å, b=12.08(7) Å, c=14.09(9) Å and V=1577 Å3. The structure and the crystallinity of the material were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by Fourier transform infrared spectral analysis. The scanning electron microscopy study reveals the surface morphology of the as-grown crystal. Thermogravimetric/differential thermal analysis studies reveal the purity of the material and the crystals are transparent in the visible region having a low optical cut-off at ∼475 nm. The second harmonic generation efficiency of FBMBC is estimated by the Kurtz and Perry technique. Theoretical calculations were performed using the Hartree-Fock method with 6-31 G(d,p) as the basis set to derive the optimized geometry and the first-order molecular hyperpolarizability (β) values.

  12. A noval in situ study of adsorption processes at Au(111) electrodes by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Lipkowski, J.; Mirwald, S.; Friedrich, A.

    1992-05-01

    Second harmonic generation (SHG) is an in situ spectroscopic tool par excellence for an electrode surface. Since the SHG response is determined by the nonlinear susceptibility tensor of third rank, χ(2), an understanding of the quite complex and different SHG-anisotropy patterns requires the evaluation of the important χijk tensor elements and their distinct dependences on both electrode potential and adsorption of ions or neutral molecules. The Fourier analysis of the azimuthal SHG data reveals that the observed SHG potential dependences arise mainly from two distinct sources: (i) The surface reconstruction, here denoted as Au(111)-(1 × 23) ↔ Au(111)-(1 × 1); it is controlled by potential and ad/desorption of ions or molecules and leads, via the SHG anisotropy, to an observable change in surface symmetry such as C3v ↔ Cs. (ii) The change of charge density of the electrode surface which is caused by potential shifts and/or adsorption processes; it alters mainly the ax term, e.g. the perpendicular part of the nonlinear polarizability of the metal surface.

  13. Sulfate adsorption at Au(111) electrodes: an optical second harmonic generation study

    NASA Astrophysics Data System (ADS)

    Mirwald, S.; Pettinger, B.; Lipkowski, J.

    1995-07-01

    Second harmonic generation (SHG) generation was employed to study adsorption of sulfate at the Au(111) electrode surface. The experiments were carried out using both pp and ss polarisations for the input and output photons. The amplitudes of the isotropic, one-fold and three-fold symmetry elements of the electrode susceptibility were determined. The isotropic term is a complex number. Its real part displays this same linear dependence on the electrode charge density in the absence and presence of adsorbed sulfate. The phase angle of the complex number is also not changed by sulfate adsorption. These features indicate that adsorbed sulfate changes the static electric field at the interface, however it does not affect the electronic structure of the metal. The one-fold symmetry amplitude changes with potential. This change displays lifting of the surface reconstruction. We observed similar effect of sulfate on the structure of the electrode surface to that reported earlier by Magnussen et al. [Faraday Discuss. 94 (1992) 329].

  14. Microfacetting of Au(110) electrodes: An optical second-harmonic generation study

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Mirwald, S.; Lipkowski, J.

    1995-01-01

    The formation and lifting of microfacetting at an Au(110) electrode surface was studied by using in-situ optical Second-Harmonic Generation (SHG). In contrast to the unreconstructed (1×1) Au(110) surface which has a C 2 v symmetry, the reconstructed surface exhibits a C s symmetry due to essentially (111)-oriented microfacets. Hence, it shows SHG-anisotropy patterns fundamentally different to those of a non-reconstructed surface. Apparently, the nonlinear susceptibility tensor contains an additional threefold symmetry element. Its amplitude was determined using Fourier analysis of SHG-anisotropy curves and, thus, served as a measure of microfacetting of the Au(110) surface. We observed that adsorption of an organic molecule, such as pyridine, has little effect on the electrode-surface crystallography. In contrast, adsorption of bromide ions results in the lifting of microfacetting as indicated by the disappearence of the threefold symmetry term. Potential-step experiments gave time constants for the lifting of microfacetting in the range of 50 <τ1/2<150 ms. PACS : 42.65.Ky

  15. Optical second-harmonic generation measurements of porous low-k dielectric materials

    NASA Astrophysics Data System (ADS)

    Atkin, Joanna; Shaw, Thomas; Laibowitz, Robert; Heinz, Tony

    2009-03-01

    Low-k dielectric materials based on porous carbon-doped oxides, with relative dielectric constants as low as 2.1, are widely used as thin insulating films in the microelectronics industry. Knowledge of these materials' basic electronic properties, such as energy gaps, barrier heights, and trap states, is essential for modeling their electrical leakage and stability characteristics. We use femtosecond laser pulses to probe the dynamics of charge-carrier transfer processes across Si/LKD interfacial barriers by optical second harmonic generation (SHG). Larger electric fields from multiphoton injection can be developed in Si/LKD systems compared to Si/SiO2, indicating a significantly higher density of traps in the LKD. This is consistent with previously reported measurements of trap density by photoinjection techniques^*. We will also discuss results on the dynamics of discharging and on the dependence of charging phenomena on layer thickness. ^*J. M. Atkin, D. Song, T. M. Shaw, E. Cartier, R. B. Laibowitz, and T. F. Heinz, J. Appl. Phys. 103, 094104 (2008).

  16. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation.

    PubMed

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  17. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals.

    PubMed

    Phillips, Jonathan P; Banerjee, Saumyabrata; Smith, Jodie; Fitton, Mike; Davenne, Tristan; Ertel, Klaus; Mason, Paul; Butcher, Thomas; De Vido, Mariastefania; Greenhalgh, Justin; Edwards, Chris; Hernandez-Gomez, Cristina; Collier, John

    2016-08-22

    We report on type-I phase-matched second harmonic generation (SHG) in three nonlinear crystals: DKDP (98% deuteration), YCOB (XZ plane), and LBO (XY plane), of 8 J, 10 Hz cryogenic gas cooled Yb:YAG laser operating at 1029.5 nm. DKDP exhibited an efficiency of 45% at a peak fundamental intensity of 0.24 GW/cm2 for 10 Hz operation at 10 ns. At the same intensity and repetition rate, YCOB and LBO showed 50% and 65% conversion efficiencies, respectively. Significant improvement in conversion efficiency, to a maximum of 82%, was demonstrated in LBO at 0.7 GW/cm2 and 10 Hz, generating output energy of 5.6 J at 514.75 nm, without damage or degradation. However, no improvement in conversion efficiency was recorded for YCOB at this increased intensity. Additionally, we present theoretically calculated temperature maps for both 10 J and 100 J operation at 10 Hz, and discuss the suitability of these three crystals for frequency conversion of a 100 J, 10 Hz diode pumped solid state laser (DPSSL).

  18. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo.

    PubMed

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-01-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling. PMID:27576922

  19. Interplay of Atomic and Electronic Structure in Second Harmonic Generating Nonlinear Optical Materials

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James

    2015-03-01

    Group theoretical methods and ab initio electronic structure calculations are combined to formulate a general Symmetry-Assisted Functional Optical Response (SAFOR) protocol to understand and predict the second harmonic generation (SHG) response in nonlinear optical crystals. We show that the SHG coefficients may be decomposed into atomic contributions from various inversion symmetry lifting distortions, which we parametrize as symmetry-adapted displacement patterns that transform as irreducible representations of a relevant centrosymmetric parent structure. The SAFOR protocol is then combined with an electronic descriptor for bond covalency to explain the origin of SHG in noncentrosymmetric-nonpolar ATeMoO6 telluromolybdate compounds. We show that the SHG response has a complex dependence on the asymmetric geometry of the polyhedral units and the orbital character at the valence band edge. The atomic scale and electronic structure understanding of the macroscopic SHG behavior obtained with these descriptions is then used to identify hypothetical HgTeMoO6 as a candidate telluromolybdate, which we predict should exhibit the largest SHG response in the ATeMoO6 family. A.C. and J.M.R. were supported by ONR and ACS-PRF under Grant Numbers N00014-11-1-0664 and 52138-DNI10.

  20. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  1. Resonantly Enhanced Second-Harmonic Generation Using III–V Semiconductor All-Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Sinclair, Michael B.; Saravi, Sina; Keeler, Gordon A.; Yang, Yuanmu; Reno, John; Peake, Gregory M.; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal

    2016-09-01

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently, allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using Gallium Arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance we measure an absolute nonlinear conversion efficiency of ~2X10^(-5) with ~3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

  2. Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces.

    PubMed

    Liu, Sheng; Sinclair, Michael B; Saravi, Sina; Keeler, Gordon A; Yang, Yuanmu; Reno, John; Peake, Gregory M; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal

    2016-09-14

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 10(4) relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10(-5) with ∼3.4 GW/cm(2) pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

  3. Strong Second-Harmonic Generation in Atomic Layered GaSe.

    PubMed

    Zhou, Xu; Cheng, Jingxin; Zhou, Yubing; Cao, Ting; Hong, Hao; Liao, Zhimin; Wu, Shiwei; Peng, Hailin; Liu, Kaihui; Yu, Dapeng

    2015-07-01

    Nonlinear effects in two-dimensional (2D) atomic layered materials have recently attracted increasing interest. Phenomena such as nonlinear optical edge response, chiral electroluminescence, and valley and spin currents beyond linear orders have opened up a great opportunity to expand the functionalities and potential applications of 2D materials. Here we report the first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition. Our experiments show that the nonresonant SHG intensity of GaSe is the strongest among all the 2D atomic crystals measured up to day. At the excitation wavelength of 1600 nm, the SHG signal from monolayer GaSe is around 1-2 orders of magnitude larger than that from monolayer MoS2 under the same excitation power. Such a strong nonlinear signal facilitates the use of polarization-dependent SHG intensity and SHG mapping to investigate the symmetry properties of this material: the monolayer GaSe shows 3-fold lattice symmetry with an intrinsic correspondence to its geometric triangular shape in our growth condition; whereas the bilayer GaSe exhibits two dominant stacking orders: AA and AB stacking. The correlation between the stacking orders and the interlayer twist angles in GaSe bilayer indicates that different triangular GaSe atomic layers have the same dominant edge configuration. Our results provide a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.

  4. The Interplay of Symmetry and Scattering Phase in Second Harmonic Generation from Gold Nanoantennas.

    PubMed

    Gennaro, Sylvain D; Rahmani, Mohsen; Giannini, Vincenzo; Aouani, Heykel; Sidiropoulos, Themistoklis P H; Navarro-Cía, Miguel; Maier, Stefan A; Oulton, Rupert F

    2016-08-10

    Nonlinear phenomena are central to modern photonics but, being inherently weak, typically require gradual accumulation over several millimeters. For example, second harmonic generation (SHG) is typically achieved in thick transparent nonlinear crystals by phase-matching energy exchange between light at initial, ω, and final, 2ω, frequencies. Recently, metamaterials imbued with artificial nonlinearity from their constituent nanoantennas have generated excitement by opening the possibility of wavelength-scale nonlinear optics. However, the selection rules of SHG typically prevent dipole emission from simple nanoantennas, which has led to much discussion concerning the best geometries, for example, those breaking centro-symmetry or incorporating resonances at multiple harmonics. In this work, we explore the use of both nanoantenna symmetry and multiple harmonics to control the strength, polarization and radiation pattern of SHG from a variety of antenna configurations incorporating simple resonant elements tuned to light at both ω and 2ω. We use a microscopic description of the scattering strength and phases of these constituent particles, determined by their relative positions, to accurately predict the SHG radiation observed in our experiments. We find that the 2ω particles radiate dipolar SHG by near-field coupling to the ω particle, which radiates SHG as a quadrupole. Consequently, strong linearly polarized dipolar SHG is only possible for noncentro-symmetric antennas that also minimize interference between their dipolar and quadrupolar responses. Metamaterials with such intra-antenna phase and polarization control could enable compact nonlinear photonic nanotechnologies.

  5. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Wu, Wei-Wen; Kao, Fu-Jen

    2013-06-01

    Skin wounds heal when a series of cell lineages are triggered, followed by collagen deposition, to reconstruct damaged tissues. This study evaluates the regeneration of collagen and change in cellular metabolic rate in vivo during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy respectively. The metabolic rate of cells is reflected through the lifetime of the autofluorescence from the co-enzyme protein, reduced nicotinamide adenine dinucleotide, due to its change in the relative concentration of bound and free forms. A higher than normal cellular metabolic rate is observed during the first week of healing, which decreases gradually after eight days of wound formation. SHG signal intensity change indicates the net degradation of collagen during the inflammatory phase, and net regeneration begins on day five. Eventually, the quantity of collagen increases gradually to form a scar tissue as the final product. Importantly, this work demonstrates the feasibility of an in vivo imaging approach for a normal wound on rat skin, which has the potential to supplement the noninvasive clinical diagnosis of wounds.

  6. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    PubMed Central

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-01-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling. PMID:27576922

  7. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate.

    PubMed

    DeWalt, Emma L; Sullivan, Shane Z; Schmitt, Paul D; Muir, Ryan D; Simpson, Garth J

    2014-08-19

    Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches. PMID:25050448

  8. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation.

    PubMed

    Moree, Ben; Connell, Katelyn; Mortensen, Richard B; Liu, C Tony; Benkovic, Stephen J; Salafsky, Joshua

    2015-08-18

    We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein's structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.

  9. The Interplay of Symmetry and Scattering Phase in Second Harmonic Generation from Gold Nanoantennas.

    PubMed

    Gennaro, Sylvain D; Rahmani, Mohsen; Giannini, Vincenzo; Aouani, Heykel; Sidiropoulos, Themistoklis P H; Navarro-Cía, Miguel; Maier, Stefan A; Oulton, Rupert F

    2016-08-10

    Nonlinear phenomena are central to modern photonics but, being inherently weak, typically require gradual accumulation over several millimeters. For example, second harmonic generation (SHG) is typically achieved in thick transparent nonlinear crystals by phase-matching energy exchange between light at initial, ω, and final, 2ω, frequencies. Recently, metamaterials imbued with artificial nonlinearity from their constituent nanoantennas have generated excitement by opening the possibility of wavelength-scale nonlinear optics. However, the selection rules of SHG typically prevent dipole emission from simple nanoantennas, which has led to much discussion concerning the best geometries, for example, those breaking centro-symmetry or incorporating resonances at multiple harmonics. In this work, we explore the use of both nanoantenna symmetry and multiple harmonics to control the strength, polarization and radiation pattern of SHG from a variety of antenna configurations incorporating simple resonant elements tuned to light at both ω and 2ω. We use a microscopic description of the scattering strength and phases of these constituent particles, determined by their relative positions, to accurately predict the SHG radiation observed in our experiments. We find that the 2ω particles radiate dipolar SHG by near-field coupling to the ω particle, which radiates SHG as a quadrupole. Consequently, strong linearly polarized dipolar SHG is only possible for noncentro-symmetric antennas that also minimize interference between their dipolar and quadrupolar responses. Metamaterials with such intra-antenna phase and polarization control could enable compact nonlinear photonic nanotechnologies. PMID:27433989

  10. Quadrupole second harmonic generation and sum-frequency generation in ZnO quantum dots

    SciTech Connect

    Maikhuri, Deepti; Purohit, S. P. Mathur, K. C.

    2015-04-15

    The second harmonic generation (SHG) and the sum frequency generation (SFG) processes are investigated in the conduction band states of the singly charged ZnO quantum dot (QD) embedded in the HfO{sub 2}, and the AlN matrices. With two optical fields of frequency ω{sub p} and ω{sub q} incident on the dot, we study the variation with frequency of the second order nonlinear polarization resulting in SHG and SFG, through the electric dipole and the electric quadrupole interactions of the pump fields with the electron in the dot. We obtain enhanced value of the second order nonlinear susceptibility in the dot compared to the bulk. The effective mass approximation with the finite confining barrier is used for obtaining the energy and wavefunctions of the quantized confined states of the electron in the conduction band of the dot. Our results show that both the SHG and SFG processes depend on the dot size, the surrounding matrix and the polarization states of the pump beams.

  11. Polarization-Modulated Second Harmonic Generation Ellipsometric Microscopy at Video Rate

    PubMed Central

    2015-01-01

    Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches. PMID:25050448

  12. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    PubMed Central

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  13. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    NASA Astrophysics Data System (ADS)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  14. On selection of primary modes for generation of strong internally resonant second harmonics in plate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.

    2013-09-01

    The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.

  15. Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength.

    PubMed

    del Barco, Oscar; Bueno, Juan M

    2012-04-01

    The spatial distribution of second harmonic generation (SHG) signal from collagen fibers for incident elliptical polarized light has been modeled. The beam was assumed to focus on a horizontal fiber through a microscope objective. For elliptical polarized states located along a vertical meridian of the Poincare sphere, the SHG intensity has been optimized in terms of the incident wavelength and the numerical aperture (NA) of the objective. Our results show that polarization modulates the SHG signal. Elliptical polarization can generate high signals (even greater than those corresponding to linear polarization) when combined with appropriate values of both incident wavelength and NA. On the other hand, the SHG intensity might also be identically zero for particular elliptical polarization states, a condition that depends exclusively on the ratio of hyperpolarizabilities of the collagen fibers. The highest forward-to-backward SHG signal distribution occurs along the propagating direction, depends on the incident wavelength, and reduces when NA increases. Furthermore, the direction of maximum SHG emission was found to be more sensitive to changes in the NA rather than variations in the incident wavelength. These findings could help to optimize the experimental conditions of multiphoton microscopes and to increase SHG signals from biological tissues containing collagen.

  16. Significant Chiral Signal Amplification of Langmuir Monolayers Probed by Second Harmonic Generation.

    PubMed

    Lv, Kai; Lin, Lu; Wang, Xiaoyu; Zhang, Li; Guo, Yuan; Lu, Zhou; Liu, Minghua

    2015-05-01

    With the development of the nonlinear optical technique such as SHG (second harmonic generation), the in situ measurements of the chirality in the monolayers at the air/water interface have become possible. However, when performing the SHG measurement of the chirality in a monolayer, it is still a great challenge to obtain the chiral signals with a good S/N (signal-to-noise) ratio. In this Letter, interfacial assemblies with induced supramolecular chirality were used to amplify the weak chiral SHG signals from the monolayers at the air/water interface. Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) J aggregates were used as the subphase, and when chiral amphiphilic molecules were spread on it, chiral domains of the amphiphile/TPPS J aggregates were formed and then significantly amplified chiral signals that otherwise could not be detected. Moreover, the sign of the DCE (degree of chiral excess) changed with the chirality of the amphiphilic molecules, thus providing a possible way to obtain the absolute chiral information in situ in the monolayers.

  17. Photonic crystal surface-emitting lasers as a pumping light source for second harmonic generation

    NASA Astrophysics Data System (ADS)

    Watanabe, Akiyoshi; Hirose, Kazuyoshi; Kurosaka, Yoshitaka; Sugiyama, Takahiro; Liang, Yong; Noda, Susumu

    2014-02-01

    Photonic crystal surface emitting lasers (PCSELs) have recently been achieved with both a single spectrum and narrow spot beam pattern under several hundred mW of output power. Even though the high coherence properties of PCSELs are expected to be used for various applications, we have focused on a pumping light source for a wavelength conversion system in this work. We fabricated a 1.06 μm PCSEL with a square lattice 2D photonic crystal in which the lattice period corresponded to the lasing wavelength to obtain green light. The fabricated device had a narrow spot beam pattern of less than 0.5 degrees and a single spectrum at 1068 nm under CW output power of more than 200 mW despite the broad emitting area of 200 × 200 μm2. The wavelength conversion system used single pass second-harmonic generation (SHG) that consisted of only the PCSEL and 50 mm long bulk MgO doped periodically with poled lithium niobate (MgO:PPLN) as a nonlinear medium, i.e., it was a lens-free system. It was important to maintain the high brightness of the pumping light in this system with a single spectrum through the MgO:PPLN. As a result, SHG light was obtained at 534 nm with a narrow spot beam pattern, which followed the beam quality of the PCSEL under CW operation.

  18. Second harmonic generation from gold meta-molecules with three-fold symmetry.

    PubMed

    Hou, Renjie; Shynkar, Vasyl; Lafargue, Clément; Kolkowski, Radoslaw; Zyss, Joseph; Lagugné-Labarthet, François

    2016-03-21

    The unique optical properties of arrays of metallic nanoparticles are of great interest for many applications such as in optical data storage, sensing applications, optoelectronic devices or as platforms to increase the detection limit in spectroscopic measurements. Nonlinear optical phenomena can also be altered by metallic nanostructures opening new possible applications. In this work, arrays composed of non-centrosymmetric individual structures with three fold axial symmetry made of gold are designed and fabricated using electron beam lithography. The nonlinear optical properties of these structures are investigated using second-harmonic generation microscopy (SHGM) with a femtosecond excitation source set near the plasmon resonance frequency. Modeling of the electromagnetic field distribution around the metallic structures is performed using the Finite Difference Time Domain (FDTD) method, highlighting the confinement of the SHG signal and its polarization dependence. Polarization-resolved measurements are conducted to correlate the SHG signal with the structure and symmetry of the individual nanostructures. Since both two-photon induced photoluminescence (TPPL) and SHG signals are produced upon excitation of these structures, lifetime measurements are performed to further evaluate the magnitude of these two effects. PMID:26956914

  19. In vitro characterization of corneal wound healing using multiphoton autofluorescence and second harmonic generation (SHG) microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Chen, Wei-Liang; Teng, Shu-Wen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2006-02-01

    The purpose of this investigation is to characterize corneal wound healing under in vitro conditions. Multiphoton autofluorescence and second harmonic generation (SHG) microscopy will be used to visualize cells and collagen fibers associated with corneal wound healing. Using the near-infrared excitation source from a titanium-sapphire laser pumped by a diode-pumped, solid state (DPSS) laser system, we can induce and simultaneously acquire multiphoton autofluorescence and SHG signals from the cornea specimens. A home-modified commercial microscope system with specified optical components is used for optimal signal detection. To acquire both high resolution and tissue-level information of the specimen, a sample positioning stage is used in conjunction with the beam scanning system. Finally, the organ level image can be assembled from individual area scans. The in vitro samples we used are cornea buttons acquired from porcine eyes. Localized wounds will be induced by #11 blade and imaged using multiphoton microscopy. Based on these results, we envision the in vitro imaging chamber to be able to follow the wound healing process without damaging histological procedures. We envision this approach will enable us to further understand wound healing process associated with corneal scar and can lead to in vivo methodology for diagnosing cornea damage.

  20. Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces.

    PubMed

    Liu, Sheng; Sinclair, Michael B; Saravi, Sina; Keeler, Gordon A; Yang, Yuanmu; Reno, John; Peake, Gregory M; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal

    2016-09-14

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 10(4) relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10(-5) with ∼3.4 GW/cm(2) pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process. PMID:27501472

  1. Second harmonic generation from small gold metallic particles: From the dipolar to the quadrupolar response

    NASA Astrophysics Data System (ADS)

    Nappa, J.; Russier-Antoine, I.; Benichou, E.; Jonin, Ch.; Brevet, P. F.

    2006-11-01

    Hyper Raleigh scattering, a common technique to investigate the second harmonic light scattered from a liquid suspension of molecular compounds and to determine their quadratic hyperpolarizability, has been used for aqueous suspensions of gold nanoparticles, the diameter of which ranges from 20 up to 150nm. The hyper Rayleigh signal intensity was recorded as a function of the angle of polarization of the incident fundamental wave. For the particles with a diameter smaller than 50nm, the response is dominated by the dipolar contribution arising from the deviation of the particle shape from that of a perfect sphere. For larger diameter particles, retardation effects in the interaction of the electromagnetic fields with the particles cannot be neglected any longer and the response deviates from the pure dipolar response, exhibiting a strong quadrupolar contribution. It is then shown that in order to quantify the relative magnitude of these two dipolar and quadrupolar contributions, a weighting parameter ζV which equals unity for a pure quadrupolar contribution and vanishes for a pure dipolar response, can be introduced.

  2. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research

    PubMed Central

    PERRY, SETH W.; BURKE, RYAN M.; BROWN, EDWARD B.

    2012-01-01

    Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM—two-photon excitation fluorescence microscopy, and second harmonic generation microscopy—as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality. PMID:22258888

  3. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  4. Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin

    PubMed Central

    Le, Viet-Hoan; Lee, Seunghun; Kim, Bumju; Yoon, Yeoreum; Yoon, Calvin J.; Chung, Wan Kyun; Kim, Ki Hean

    2015-01-01

    Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies. PMID:26203380

  5. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    PubMed Central

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-­ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-­ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed. PMID:23633594

  6. Significant Chiral Signal Amplification of Langmuir Monolayers Probed by Second Harmonic Generation.

    PubMed

    Lv, Kai; Lin, Lu; Wang, Xiaoyu; Zhang, Li; Guo, Yuan; Lu, Zhou; Liu, Minghua

    2015-05-01

    With the development of the nonlinear optical technique such as SHG (second harmonic generation), the in situ measurements of the chirality in the monolayers at the air/water interface have become possible. However, when performing the SHG measurement of the chirality in a monolayer, it is still a great challenge to obtain the chiral signals with a good S/N (signal-to-noise) ratio. In this Letter, interfacial assemblies with induced supramolecular chirality were used to amplify the weak chiral SHG signals from the monolayers at the air/water interface. Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) J aggregates were used as the subphase, and when chiral amphiphilic molecules were spread on it, chiral domains of the amphiphile/TPPS J aggregates were formed and then significantly amplified chiral signals that otherwise could not be detected. Moreover, the sign of the DCE (degree of chiral excess) changed with the chirality of the amphiphilic molecules, thus providing a possible way to obtain the absolute chiral information in situ in the monolayers. PMID:26263339

  7. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy.

    PubMed

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-01-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method. PMID:26260921

  8. Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels.

    PubMed

    Burke, Kathleen A; Dawes, Ryan P; Cheema, Mehar K; Van Hove, Amy; Benoit, Danielle S W; Perry, Seth W; Brown, Edward

    2015-05-01

    Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a “clean” environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility. PMID:25625899

  9. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    NASA Astrophysics Data System (ADS)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  10. Direct probing of contact electrification by using optical second harmonic generation technique.

    PubMed

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-08-14

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator.

  11. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer

    PubMed Central

    Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.

    2016-01-01

    Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set. PMID:27767180

  12. Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth

    PubMed Central

    Akins, Meredith L.; Luby-Phelps, Katherine; Mahendroo, Mala

    2010-01-01

    We use second harmonic generation (SHG) microscopy to assess changes in collagen structure of murine cervix during cervical remodeling of normal pregnancy and in a preterm birth model. Visual inspection of SHG images revealed substantial changes in collagen morphology throughout normal gestation. SHG images collected in both the forward and backward directions were analyzed quantitatively for changes in overall mean intensity, forward to backward intensity ratio, collagen fiber size, and porosity. Changes in mean SHG intensity and intensity ratio take place in early pregnancy, suggesting that submicroscopic changes in collagen fibril size and arrangement occur before macroscopic changes become evident. Fiber size progressively increased from early to late pregnancy, while pores between collagen fibers became larger and farther apart. Analysis of collagen features in premature cervical remodeling show that changes in collagen structure are dissimilar from normal remodeling. The ability to quantify multiple morphological features of collagen that characterize normal cervical remodeling and distinguish abnormal remodeling in preterm birth models supports future studies aimed at development of SHG endoscopic devices for clinical assessment of collagen changes during pregnancy in women and for predicting risk of preterm labor which occurs in 12.5% of all pregnancies. PMID:20459265

  13. Second harmonic generation imaging of skin wound healing and scarring in a rabbit ear model

    NASA Astrophysics Data System (ADS)

    Tang, Yiyan; Zhu, Xiaoqin; Xiong, Shuyuan; Chen, Jianxin

    2012-12-01

    Skin wound healing and scarring in rabbit ears was examined by second harmonic generation (SHG) microscopy. Rabbit ear wound model was created by punching from the ventral surface with removal of epidermis, dermis and perichondrium. The samples were collected weekly, and cut into 100 μm thickness sections for SHG imaging. SHG imaging system was operated at 810 nm, producing SHG signals at half the excitation wavelength 405 nm. A Plan-Neofluar objective (x40 and NA=0.75) was employed for focusing the excitation beam into tissue samples and was also used to collect the backscattered intrinsic SHG signals. Our results showed apparent difference in collagen content and microstructure at various wound healing and scarring time points. It suggested that SHG signals from collagen can serve as a good indicator for characterization of wound status. With the advancement on miniaturization, microscopy based on SHG will become a valuable tool for monitoring the wound healing and scarring in vivo, and help to guide the improvement of scar appearance with appropriate and subtle modulation during wound healing based on better understanding of scarring response mechanism.

  14. Fluorescent DNA probes at liquid/liquid interfaces studied by surface second harmonic generation.

    PubMed

    Licari, Giuseppe; Brevet, Pierre-François; Vauthey, Eric

    2016-01-28

    The properties of a series of oxazole yellow dyes, including the dicationic YOPRO-1 and its homodimeric parent YOYO-1 and two monocationic dyes (YOSAC-1 and YOSAC-3), have been investigated at the dodecane/water interface using stationary and time-resolved surface second harmonic generation (SSHG) combined with quantum chemical calculations. Whereas YOYO-1 exists predominantly as a H-dimer in aqueous solution, the stationary SSHG spectra reveal that such dimers are not formed at the interface. No significant H-aggregation was observed with YOPRO-1, neither in solution nor at the interface. In the case of the monocationic YOSAC dyes, a distinct SSHG band due to H-aggregates was measured at the interface, whereas only weak aggregation was found in solution. These distinct aggregation behaviors can be explained by the different orientations of the dyes at the interface, as revealed from the analysis of polarization-resolved experiments, the doubly-charged dyes lying more flat on the interface than the singly charged ones. Although YOYO-1 and YOPRO-1 do not form H-dimer/aggregates at the interface, time-resolved SSHG measurements point to the occurrence of intra- and intermolecular interactions, respectively, which inhibit the ultrafast non-radiative decay of the excited dyes via large amplitude motion, and lead to a nanosecond excited-state lifetime. The distinct behavior evidenced here for YOYO-1 and YOSAC dyes points to their potential use as fluorescent or SHG interfacial probes. PMID:26740332

  15. Electric-field-induced optical second-harmonic generation in doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-11-01

    A graphene layer interacting with an incident electromagnetic wave of frequency ω will produce dipole radiation at frequency 2 ω in the presence of an in-plane electric field breaking the spatial inversion symmetry of the graphene. Here, we develop a theory that describes such electric-field-induced second-harmonic generation (EFISHG) from doped graphene. We derive an analytic expression for the relevant third-order nonlinear optical (NLO) susceptibility χ (3)(- 2 ω ; ω , ω , 0) and numerically evaluate the absolute magnitude of the χ (3) for various values of the system's parameters. We find that the |χ (3) | spectrum is dominated by the resonant peak structure located at the incident photon energy ℏω equal to the Fermi energy EF of charge carriers in the doped graphene. We also show that the possibility to tune the doping level of graphene by an external gate voltage allows one to maximize the radiated EFISHG power at ℏω =EF , which may be of practical interest for the designs of the NLO devices based on employing a SHG-signal.

  16. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    NASA Astrophysics Data System (ADS)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  17. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-08-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.

  18. Phase and Texture Characterizations of Scar Collagen Second-Harmonic Generation Images Varied with Scar Duration.

    PubMed

    Chen, Guannan; Liu, Yao; Zhu, Xiaoqin; Huang, Zufang; Cai, Jianyong; Chen, Rong; Xiong, Shuyuan; Zeng, Haishan

    2015-08-01

    This work developed a phase congruency algorithm combined with texture analysis to quantitatively characterize collagen morphology in second-harmonic generation (SHG) images from human scars. The extracted phase and texture parameters of the SHG images quantified collagen directionality, homogeneity, and coarseness in scars and varied with scar duration. Phase parameters showed an increasing tendency of the mean of phase congruency with scar duration, indicating that collagen fibers are better oriented over time. Texture parameters calculated from local difference local binary pattern (LD-LBP) and Haar wavelet transform, demonstrated that the LD-LBP variance decreased and the energy of all subimages increased with scar duration. It implied that collagen has a more regular pattern and becomes coarser with scar duration. In addition, the random forest regression was used to predict scar duration, demonstrating reliable performance of the extracted phase and texture parameters in characterizing collagen morphology in scar SHG images. Results indicate that the extracted parameters using the proposed method can be used as quantitative indicators to monitor scar progression with time and can help understand the mechanism of scar progression.

  19. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation

    PubMed Central

    Moree, Ben; Connell, Katelyn; Mortensen, Richard B.; Liu, C. Tony; Benkovic, Stephen J.; Salafsky, Joshua

    2015-01-01

    We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein’s structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications. PMID:26287632

  20. Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Lützenkirchen, J.; Leisner, T.

    2015-08-01

    We present and characterize a novel setup to apply second harmonic generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by molecular dynamics simulations on a similar system.

  1. Detection of thermal fatigue in composites by second harmonic Lamb waves

    NASA Astrophysics Data System (ADS)

    Li, Weibin; Cho, Younho; Achenbach, Jan D.

    2012-08-01

    Composite materials which are widely used in the aerospace industry, are usually subjected to frequent variation of temperature. Thermal cyclic loading may induce material degradation. Considering the long-term service of aircraft composites and the importance of safety in the aircraft industry, even a little damage that may be accumulative via thermal fatigue is often of great concern. Therefore, there is a demand to develop non-destructive approaches to evaluate thermal fatigue damage in an early stage. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damage. This paper investigates an experimental scheme for characterizing thermal fatigue damage in composite laminates using second harmonic Lamb waves. The present results show a monotonic increase of acoustic nonlinearity with respect to thermal fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and thermal fatigue cycles in carbon/epoxy laminates verifies that nonlinear Lamb waves can be used to assess thermal fatigue damage rendering improved sensitivity over conventional linear feature based non-destructive evaluation techniques. Velocity and attenuation based ultrasonic studies are carried out for comparison with the nonlinear ultrasonic approach and it is found that nonlinear acoustic parameters are more promising indicators of thermal fatigue damage than linear ones.

  2. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGESBeta

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  3. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  4. Ultrafast dynamics and structure at aqueous interfaces by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Shi, X.; Borguet, E.; Tarnovsky, A. N.; Eisenthal, K. B.

    1996-04-01

    Femtosecond time-resolved second harmonic generation studies of the barrierless isomerization of an organic dye, malachite green (MG), have been carried out at several aqueous interfaces. A comparison of the dynamics at the air/aqeous, alkane/aqueous and silica/aqueous interafces, indicates increased friction and increased water structure at the aqueous interfaces relative to bulk water, in support of molecular simulations, with the silica/aqueous interface being the most structured. The dynamics are slower at all of these interfaces than in bulk water, by a factor of three of five in the case of the air/aqueous and alkane/aqueous interfaces, and almost an order of magnitude in the case of the silica/aqueous interface. These investigations also indicate that the generally accepted isomerization model of twisting of the three aromatic rings about the central carbon atom requires modification in that the synchronous twisting of all three aromatic rings is not necessary for rapid internal conversion from the excited to ground electronic state. In contrast to MG, the dynamics of the activated photoisomerization of the cyanine dye, 3,3'-diethyloxadicarbocyanine iodide (DODCI), is faster at the air/aqueous interface tha in bulk aqueous solution. The different dynamics of MG and DODCI suggest that the interface friction must be described in terms of the orientation and solvent structure in the vicinity of the chromophores involved in the isomerization process.

  5. Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Landry, Corey R; Abu-Laban, Mohammad; Hayes, Daniel J; Haber, Louis H

    2015-09-15

    Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system.

  6. Tumor tissue characterization using polarization-sensitive second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Tokarz, Danielle; Cisek, Richard; Golaraei, Ahmad; Krouglov, Serguei; Navab, Roya; Niu, Carolyn; Sakashita, Shingo; Yasufuku, Kazuhiro; Tsao, Ming-Sound; Asa, Sylvia L.; Barzda, Virginijus; Wilson, Brian C.

    2015-06-01

    Changes in the ultrastructure of collagen in various tumor and non-tumor human tissues including lung, pancreas and thyroid were investigated ex vivo by a polarization-sensitive second harmonic generation (SHG) microscopy technique referred to as polarization-in, polarization-out (PIPO) SHG. This involves measuring the orientation of the linear polarization of outgoing SHG as a function of the linear polarization orientation of incident laser radiation. From the PIPO SHG data, the second-order nonlinear optical susceptibility tensor component ratio, χ(2) ZZZ'/χ(2) ZXX', for each pixel of the SHG image was obtained and presented as color-coded maps. Further, the orientation of collagen fibers in the tissue was deduced. Since the χ(2) ZZZ'/χ(2) ZXX' values represent the organization of collagen in the tissue, theses maps revealed areas of altered collagen structure (not simply concentration) within tissue sections. Statistically-significant differences in χ(2) ZZZ'/χ(2) ZXX' were found between tumor and non-tumor tissues, which varied from organ to organ. Hence, PIPO SHG microscopy could potentially be used to aid pathologists in diagnosing cancer. Additionally, PIPO SHG microscopy could aid in characterizing the structure of collagen in other collagen-related biological processes such as wound repair.

  7. Combined two-photon excited fluorescence and second-harmonic generation backscattering microscopy of turbid tissues

    NASA Astrophysics Data System (ADS)

    Zoumi, Aikaterini; Yeh, Alvin T.; Tromberg, Bruce J.

    2002-06-01

    A broad range of excitation wavelengths (730-880nm) was used to demonstrate the co-registration of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) in unstained turbid tissues in reflection geometry. The composite TPEF/SHG microscopic technique was applied to imaging an organotypic tissue model (RAFT). The origin of the image-forming signal from the various RAFT constituents was determined by spectral measurements. It was shown that at shorter excitation wavelengths the signal emitted from the extracellular matrix (ECM) is a combination of SHG and TPEF from collagen, whereas at longer excitation wavelengths the ECM signal is exclusively due to SHG. The cellular signal is due to TPEF at all excitation wavelengths. The reflected SHG intensity followed a quadratic dependence on the excitation power and exhibited a spectral dependence in accordance with previous theoretical studies. Understanding the structural origin of signal provided a stratagem for enhancing contrast between cellular structures, and components of the extracellular matrix. The use of SHG and TPEF in combination provides complementary information that allows non-invasive, spatially localized in vivo characterization of cell-ECM interactions and pathology.

  8. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer.

    PubMed

    Bredfeldt, Jeremy S; Liu, Yuming; Pehlke, Carolyn A; Conklin, Matthew W; Szulczewski, Joseph M; Inman, David R; Keely, Patricia J; Nowak, Robert D; Mackie, Thomas R; Eliceiri, Kevin W

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  9. Second-harmonic generation from the longitudinal component of vectorial laser beams: a theoretical framework

    NASA Astrophysics Data System (ADS)

    Fortin, Pierre-Yves

    2008-06-01

    Vectorial laser beams propagating beyond the paraxial limit exhibit an intensity profile at focus that depends upon their field structure and the width of their plane wave spectrum. Under tight focussing conditions, the longitudinal component of the lowest order transverse magnetic laser beam has a field amplitude that becomes comparable to that of the transverse components of the beam; the global intensity profile is then narrower than that produced by a Gaussian beam, thus enabling hyperresolution. With a general polarization eigenmode approach for all propagating directions in anisotropic media, we can show that privileged propagating directions exist, allowing preservation of the transverse magnetic polarization state despite birefringence. Using wave functions satisfying the non-paraxial wave equation, we can also find exact expressions for the field components. During propagation of tightly focussed beams along those privileged directions inside an appropriate anisotropic nonlinear crystal, the longitudinal electric field component may then be used to take advantage of nonlinear tensor terms otherwise ineffective with a paraxial beam. In this work, spectral conversion rate and power conversion efficiency of second-harmonic generation are characterized as a function of effective and undepleted nonlinear pumping in the case of propagation along the anisotropic axis of an uniaxial nonlinear crystal. Even if the phase matching condition is not fully satisfied for propagation along this privileged direction, we show to which extent the nonlinear properties are preserved for a restricted interaction volume.

  10. Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth

    NASA Astrophysics Data System (ADS)

    Akins, Meredith L.; Luby-Phelps, Katherine; Mahendroo, Mala

    2010-03-01

    We use second harmonic generation (SHG) microscopy to assess changes in collagen structure of murine cervix during cervical remodeling of normal pregnancy and in a preterm birth model. Visual inspection of SHG images revealed substantial changes in collagen morphology throughout normal gestation. SHG images collected in both the forward and backward directions were analyzed quantitatively for changes in overall mean intensity, forward to backward intensity ratio, collagen fiber size, and porosity. Changes in mean SHG intensity and intensity ratio take place in early pregnancy, suggesting that submicroscopic changes in collagen fibril size and arrangement occur before macroscopic changes become evident. Fiber size progressively increased from early to late pregnancy, while pores between collagen fibers became larger and farther apart. Analysis of collagen features in premature cervical remodeling show that changes in collagen structure are dissimilar from normal remodeling. The ability to quantify multiple morphological features of collagen that characterize normal cervical remodeling and distinguish abnormal remodeling in preterm birth models supports future studies aimed at development of SHG endoscopic devices for clinical assessment of collagen changes during pregnancy in women and for predicting risk of preterm labor which occurs in 12.5% of all pregnancies.

  11. Polar structure in a ferroelectric bent-core mesogen as studied by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Thisayukta, Jirakorn; Ishikawa, Ken; Watanabe, Junji; Takezoe, Hideo

    2002-08-01

    Second-harmonic generation (SHG) measurements have been conducted in the ferroelectric liquid crystalline phase of a chiral bent-core molecule, P-8-OPIMB6*. Well-aligned cells were obtained by applying an electric field parallel to the substrate surfaces. In-plane anisotropy of the SHG signal observed at normal incidence of light shows two- or four-leaf patterns depending on polarization conditions, indicating a ferroelectric uniform structure. The detailed analysis of the data by taking account of optical anisotropy in the SHG active bulk leads to the determination of nonlinear susceptibility tensor components, d333=14.4 pm/V and d311=49.2 pm/V. Using the d coefficients thus determined, the hyperpolarizability tensor components of the molecule are also determined as βzzz=14.5×10-30 esu and βzxx=67.6×10-30 esu. These values well agree with those of the achiral homolog P-12-OPIMB previously determined by hyper-Rayleigh scattering.

  12. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy.

    PubMed

    Tuer, Adam E; Krouglov, Serguei; Prent, Nicole; Cisek, Richard; Sandkuijl, Daaf; Yasufuku, Kazuhiro; Wilson, Brian C; Barzda, Virginijus

    2011-11-10

    Collagen (type I) fibers are readily visualized with second harmonic generation (SHG) microscopy though the molecular origin of the signal has not yet been elucidated. In this study, the molecular origin of SHG from type I collagen is investigated using the time-dependent coupled perturbed Hartree-Fock calculations of the hyperpolarizibilities of glycine, proline, and hydroxyproline. Two effective nonlinear dipoles are found to orient in-the-plane of the amino acids, with one of the dipoles aligning close to the pitch orientation in the triple-helix, which provides the dominant contribution to the SHG polarization properties. The calculated hyperpolarizability tensor element ratios for the collagen triple-helix models: [(Gly3)n]3, [(Gly-Pro2)n]3, and [(Gly-Pro-Hyp)n]3, are used to predict the second-order nonlinear susceptibility ratios, χ(zzz)(2)/χ(iiz)(2) and χ(zii)(2)/χ(iiz)(2) of collagen fibers. From SHG microscopy polarization in, polarization out (PIPO) measurements of type I collagen in human lung tissue, a theoretical method is used to extract the triple-helix orientation angle with respect to the collagen fiber. The study shows the dominant role of amino acid orientation in the triple-helix for determining the polarization properties of SHG and provides a method for determining the triple-helix orientation angle in the collagen fibers. PMID:21970315

  13. Polar structure in a ferroelectric bent-core mesogen as studied by second-harmonic generation.

    PubMed

    Araoka, Fumito; Thisayukta, Jirakorn; Ishikawa, Ken; Watanabe, Junji; Takezoe, Hideo

    2002-08-01

    Second-harmonic generation (SHG) measurements have been conducted in the ferroelectric liquid crystalline phase of a chiral bent-core molecule, P-8-OPIMB6*. Well-aligned cells were obtained by applying an electric field parallel to the substrate surfaces. In-plane anisotropy of the SHG signal observed at normal incidence of light shows two- or four-leaf patterns depending on polarization conditions, indicating a ferroelectric uniform structure. The detailed analysis of the data by taking account of optical anisotropy in the SHG active bulk leads to the determination of nonlinear susceptibility tensor components, d(333)=14.4 pm/V and d(311)=49.2 pm/V. Using the d coefficients thus determined, the hyperpolarizability tensor components of the molecule are also determined as beta(zzz)=14.5 x 10(-30) esu and beta(zxx)=67.6 x 10(-30) esu. These values well agree with those of the achiral homolog P-12-OPIMB previously determined by hyper-Rayleigh scattering. PMID:12241194

  14. Direct probing of contact electrification by using optical second harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-08-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator.

  15. Direct probing of contact electrification by using optical second harmonic generation technique.

    PubMed

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-01-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator. PMID:26272162

  16. Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin.

    PubMed

    Le, Viet-Hoan; Lee, Seunghun; Kim, Bumju; Yoon, Yeoreum; Yoon, Calvin J; Chung, Wan Kyun; Kim, Ki Hean

    2015-07-01

    Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies. PMID:26203380

  17. Birefringence and second harmonic generation on tendon collagen following red linearly polarized laser irradiation.

    PubMed

    Silva, Daniela Fátima Teixeira; Gomes, Anderson Stevens Leonidas; de Campos Vidal, Benedicto; Ribeiro, Martha Simões

    2013-04-01

    Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ = 632.8 nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P = 6.0 mW, I = 21.2 mW/cm(2), E ≈ 0.3 J, ED = 1.0 J/cm(2)) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization. PMID:23247985

  18. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  19. Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels

    NASA Astrophysics Data System (ADS)

    Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Van Hove, Amy; Benoit, Danielle S. W.; Perry, Seth W.; Brown, Edward

    2015-05-01

    Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a "clean" environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility.

  20. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  1. Second-Harmonic Generation and Relaxation in Polyurea Thin Films Prepared by Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Hikita, Masayuki; Yamada, Sinichi; Mizutani, Teruyosi

    1993-06-01

    Aromatic polyurea thin (PU) films were fabricated by means of coevaporation of 4,4'-diphenylmethane diisocyanate (MDI) and either 4,4'-diamino diphenyl methane (DDM) or 4,4'-diamino diphenyl ether (DDE). For the two PU films, second-harmonic generation (SHG) caused by corona poling and the subsequent isothermal decay were investigated. The second-order nonlinear coefficient d33 was estimated to be 5.3 and 6.3 pm/V for PU(DDM) and PU(DDE), respectively, and proved to exhibit almost no decay with time up to 2000 h. It was also found that annealing prior to the poling process caused no additional increase of SHG. This result was interpreted in terms of increase in the packing density of molecules, leading to suppression of the molecular orientation. PU films containing excess residual isocyanate groups showed a large SHG decay to about 60% of the initial value within 10 min. It was concluded that the residual isocyanate groups in as-deposited PU films greatly affects the behavior of SHG relaxation.

  2. Structural Characterization of Edematous Corneas by Forward and Backward Second Harmonic Generation Imaging

    PubMed Central

    Hsueh, Chiu-Mei; Lo, Wen; Chen, Wei-Liang; Hovhannisyan, Vladimir A.; Liu, Guang-Yu; Wang, Sheng-Shun; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2009-01-01

    Abstract The purpose of this study was to image and quantify the structural changes of corneal edema by second harmonic generation (SHG) microscopy. Bovine cornea was used as an experimental model to characterize structural alterations in edematous corneas. Forward SHG and backward SHG signals were simultaneously collected from normal and edematous bovine corneas to reveal the morphological differences between them. In edematous cornea, both an uneven expansion in the lamellar interspacing and an increased lamellar thickness in the posterior stroma (depth > 200 μm) were identified, whereas the anterior stroma, composed of interwoven collagen architecture, remained unaffected. Our findings of heterogeneous structural alteration at the microscopic scale in edematous corneas suggest that the strength of collagen cross-linking is heterogeneous in the corneal stroma. In addition, we found that qualitative backward SHG collagen fiber imaging and depth-dependent signal decay can be used to detect and diagnose corneal edema. Our work demonstrates that SHG imaging can provide morphological information for the investigation of corneal edema biophysics, and may be applied in the evaluation of advancing corneal edema in vivo. PMID:19686668

  3. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Xiangbo

    In this paper, we present the direct-substitution (DS) method to study the second-harmonic generation (SHG) in arbitrary one-dimensional optical superlattices (OS). Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What's more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM) can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems.

  4. The Interferometric Measurement of Phase Mismatch in Potential Second Harmonic Generators.

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward Lawrence

    This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.

  5. (Second) Harmonic Disharmony: Nonlinear Microscopy Shines New Light on the Pathology of Atherosclerosis.

    PubMed

    Watson, Shana R; Lessner, Susan M

    2016-06-01

    There has been increasing interest in second harmonic generation (SHG) imaging approaches for the investigation of atherosclerosis due to the deep penetration and three-dimensional sectioning capabilities of the nonlinear optical microscope. Atherosclerosis involves remodeling or alteration of the collagenous framework in affected vessels. The disease is often characterized by excessive collagen deposition and altered collagen organization. SHG has the capability to accurately characterize collagen structure, which is an essential component in understanding atherosclerotic lesion development and progression. As a structure-based imaging modality, SHG is most impactful in atherosclerosis evaluation in conjunction with other, chemically specific nonlinear optics (NLO) techniques to identify additional components of the lesion. These include the use of coherent anti-Stokes Raman scattering and two-photon excitation fluorescence for studying atherosclerosis burden, and application of stimulated Raman scattering to image cholesterol crystals. However, very few NLO studies have attempted to quantitate differences in control versus atherosclerotic states or to correlate the application to clinical situations. This review highlights the potential of SHG imaging to directly and indirectly describe atherosclerosis as a pathological condition. PMID:27329310

  6. Measuring Selective Estrogen Receptor Modulator (SERM)–Membrane Interactions with Second Harmonic Generation

    PubMed Central

    2015-01-01

    The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo. PMID:24410282

  7. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials

    PubMed Central

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C. T.; Wong, Kam Sing

    2016-01-01

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions. PMID:26911449

  8. Contrast enhancement in second harmonic imaging: discriminating between muscle and collagen

    NASA Astrophysics Data System (ADS)

    Psilodimitrakopoulos, Sotiris; Artigas, David; Soria, Guadalupe; Amat-Roldan, Ivan; Torre, Iratxe; Gratacos, Eduard; Planas, Anna M.; Loza-Alvarez, Pablo

    2009-07-01

    In this study, polarization second harmonic generation (SHG) imaging is used and data analysis is developed to gain contrast and to discriminate with pixel resolution, in the same image, SHG source architectures. We use mammalian tissue in which both skeletal muscle and fibrilar collagen can be found. The images are fitted point by point using an algorithm based on a biophysical model, where the coefficient of determination is utilized as a filtering mechanism. For the whole image we retrieve for every pixel, the effective orientation, θe , of the SHG active structures. As a result a new image is formed which its contrast depends on the values of θe . Collagen presented in the forward direction for a predefined region of interest (ROI), peak distribution of angles θe centered in the region of ~45°, while muscle in the region of ~65°. Consequently, collagen and muscle are represented in different colors in the same image. Thus, here we show that it is possible to gain contrast and to discriminate between collagen and muscle without the use of any exogenous labeling or any co-localization with fluorescence imaging.

  9. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces

    DOE PAGESBeta

    Liu, Sheng; Sinclair, Michael B.; Saravi, Sina; Keeler, Gordon A.; Yang, Yuanmu; Reno, John; Peake, Gregory M.; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; et al

    2016-08-08

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using galliummore » arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ~2 × 10–5 with ~3.4 GW/cm2 pump intensity. In conclusion, the polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.« less

  10. Spectroscopic studies of magnesium plasma produced by fundamental and second harmonics of Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Ahmat, L.; Mumtaz, M.; Shakeel, Hira; Mahmood, S.; Nadeem, A.

    2015-08-01

    In the present experimental work, laser induced magnesium plasma has been characterized using plasma parameters. The plasma has been generated by the fundamental (1064 nm) and second harmonics (532 nm) of Nd:YAG laser. The plasma parameters such as electron temperature and electron number density have been extracted using Boltzmann plot method and Stark broadened line profile, respectively. The laser irradiance dependence and spatial behavior of electron temperature and number density in laser induced magnesium plasma have been studied. The electron temperature as a function of laser irradiance (0.5 to 6.5 GW/cm2) ranges from (9.16-10.37) × 103 K and (8.5-10.1)× 103 K, and electron number density from (0.99-1.08) × 1016 cm-3 and (1.04-1.22) × 1016cm-3 for 1064 and 532 nm, respectively. These parameters exhibit fast increase at low laser irradiance and slow increase at high irradiance. The spatial distribution of electron temperature and electron number density shows same decreasing trend up to 2.25 mm from the target surface. The electron temperature and number density decrease from (9.5-8.6) × 103 K, (1.27-1.15) × 1016cm-3 and (10.56-8.85)× 103 K, (1.08-0.99) × 1016 cm-3 for 532 nm and 1064 nm laser ablation wavelengths, respectively.

  11. In vivo multiphoton imaging of the cornea: polarization-resolved second harmonic generation from stromal collagen

    NASA Astrophysics Data System (ADS)

    Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C.

    2012-03-01

    Multiphoton microscopy provides specific and contrasted images of unstained collagenous tissues such as tendons or corneas. Polarization-resolved second harmonic generation (SHG) measurements have been implemented in a laserscanning multiphoton microscope. Distortion of the polarimetric response due to birefringence and diattenuation during propagation of the laser excitation has been shown in rat-tail tendons. A model has been developed to account for these effects and correct polarization-resolved SHG images in thick tissues. This new modality is then used in unstained human corneas to access two quantitative parameters: the fibrils orientation within the collagen lamellae and the ratio of the main second-order nonlinear tensorial components. Orientation maps obtained from polarization resolution of the trans-detected SHG images are in good agreement with the striated features observed in the raw images. Most importantly, polarization analysis of the epi-detected SHG images also enables to map the fibrils orientation within the collagen lamellae while epi-detected SHG images of corneal stroma are spatially homogenous and do not enable direct visualization of the fibrils orientation. Depth profiles of the polarimetric SHG response are also measured and compared to models accounting for orientation changes of the collagen lamellae within the focal volume. Finally, in vivo polarization-resolved SHG is performed in rat corneas and structural organization of corneal stroma is determined using epi-detected signals.

  12. Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Landry, Corey R; Abu-Laban, Mohammad; Hayes, Daniel J; Haber, Louis H

    2015-09-15

    Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system. PMID:26313536

  13. Direct probing of contact electrification by using optical second harmonic generation technique

    PubMed Central

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-01-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator. PMID:26272162

  14. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials.

    PubMed

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing

    2016-02-25

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.

  15. Sum frequency and second harmonic generation from the surface of a liquid microjet

    SciTech Connect

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  16. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    SciTech Connect

    Feller, M.B.

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  17. In situ time-series monitoring of collagen fibers produced by standing-cultured osteoblasts using a second-harmonic-generation microscope.

    PubMed

    Hase, Eiji; Matsubara, Oki; Minamikawa, Takeo; Sato, Katsuya; Yasui, Takeshi

    2016-04-20

    In bone tissue engineering and regeneration, there is a considerable need for an unstained method of monitoring collagen fibers produced by osteoblasts. This is because collagen fibers play an important role as a bone matrix and continuous monitoring of their temporal dynamics is important in clarifying the organization process toward forming bone tissue. In the work described here, using a second-harmonic-generation (SHG) microscope, we performed in situ time-series monitoring of collagen fibers produced by cultured osteoblasts without the need for staining. Use of the 19 fs near-infrared pulsed light enables us to visualize the temporal dynamics in a thin layer of collagen fibers produced by a single layer of osteoblasts in high-contrast SHG images. While the collagen fibers were produced and stored inside the osteoblasts at an early stage of culturing, the network structure of collagen fibers was formed and locally condensed at a late stage. Furthermore, we extracted a quantitative parameter of collagen maturity degree in the cultured sample by use of image analysis based on a two-dimensional Fourier transform of the SHG image. The proposed method will be useful for in situ quality and quantity control of collagen fibers in bone tissue engineering and regeneration.

  18. Broadband electric-field-induced LP01 and LP02 second harmonic generation in Xe-filled hollow-core PCF.

    PubMed

    Ménard, Jean-Michel; Köttig, Felix; St J Russell, Philip

    2016-08-15

    Second harmonic (SH) generation with 300 fs pump pulses is reported in a xenon-filled hollow-core photonic crystal fiber (PCF) across which an external bias voltage is applied. Phase-matched intermodal conversion from a pump light in the LP01 mode to SH light in the LP02 mode is achieved at a particular gas pressure. Using periodic electrodes, quasi-phase-matched SH generation into the low-loss LP01 mode is achieved at a different pressure. The low linear dispersion of the gas enables phase-matching over a broad spectral window, resulting in a measured bandwidth of ∼10  nm at high pump energies. A conversion efficiency of ∼18%/mJ is obtained. Gas-filled anti-resonant-reflecting hollow-core PCF uniquely offers pressure-tunable phase-matching, ultra-broadband guidance, and a very high optical damage threshold, which hold great promise for efficient three-wave mixing, especially in difficult-to-access regions of the electromagnetic spectrum. PMID:27519091

  19. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  20. Type-II second-harmonic-generation properties of YCOB and GdCOB single crystals.

    PubMed

    Liu, Yanqing; Qi, Hongwei; Lu, Qingming; Yu, Fapeng; Wang, Zhengping; Xu, Xinguang; Zhao, Xian

    2015-02-01

    As excellent nonlinear optical (NLO) crystals, YCa(4)O(BO(3))(3) (YCOB) and GdCa(4)O(BO(3))(3) (GdCOB) have been paid much attention since their first appearance in 1990's. From that time to now, almost all of related researches and applications have focused on their type-I phase-matching (PM) configurations which possess large effective NLO coefficient (d(eff)). In this paper, type-II second-harmonic-generation (SHG) properties of these two crystals are reported, including PM curve, d(eff), angular acceptance and walk-off angle. Both of the type-II SHG experiments for 1064 and 1320 nm have indicated that the optimum directions which have maximum d(eff) locate in the second octant, i.e. (90° < θ< 180°, 0° < ϕ < 90°). For a (112°, 81.3°)-cut, 24 mm long YCOB crystal, the largest type-II SHG conversion efficiency of a 1064 nm Nd:YAG pico-second laser is 55%, which reaches the same level of the optimum type-I sample. To our knowledge this is the first time that type-II SHG performance of YCOB and GdCOB crystals is investigated intensively. Our research has shown that the smaller d(eff) of type-II PM can be compensated by its larger angular acceptance and less beam walk-off. The same level SHG conversion efficiency implies for such type crystals the type-II components have the potential to replace type-I ones and obtain important NLO applications in the future.

  1. Optical second-harmonic generation from two-dimensional hexagonal crystals with broken space inversion symmetry.

    PubMed

    Margulis, Vl A; Muryumin, E E; Gaiduk, E A

    2013-05-15

    We propose a microscopic theory of the optical second-harmonic generation (SHG) from π electrons in two-dimensional (2D) honeycomb lattice structures with broken space inversion symmetry, such as graphene epitaxially grown on a SiC substrate and boronitrene (a single sheet of hexagonal boron nitride (h-BN)). The approach developed is based on a simple two-band π-electron tight-binding model combined with the original Genkin-Mednis formalism of the second-order nonlinear optical response theory, detailed in our recent paper (2010 Phys. Rev. B 82 235426). Within the framework of the approach, we derive an explicit expression for the SHG susceptibility χ2(SHG(ω), which involves two distinct contributions originating from a mixture of interband and intraband motion of π electrons. Both the contributions, and, hence, the χ2(SHG(ω) on the whole, are found to tend to zero when the π-electron energy bands involved are treated at the simplest level of approximation, neglecting the effect of their trigonal warping around the corners of the Brillouin zone of the 2D hexagonal lattice. Through numerical calculations, it is shown that this effect, though rather small, leads to a fairly large magnitude of the SHG susceptibility, reaching the order of 10(-4) esu for the graphene/SiC overlayer system and 10(-7) esu for monolayer h-BN, when the pump photon energy ħω approaches half the bandgap energy Eg of those structures. These theoretical findings suggest that SHG can be used as a sensitive optical probe of the electronic structure of the examined 2D hexagonal crystals and simultaneously demonstrate that those crystals may be an appropriate material for practical uses in future optoelectronic nano-devices.

  2. Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity.

    PubMed

    Liu, Jing; Cho, Il-Hoon; Cui, Yi; Irudayaraj, Joseph

    2014-12-23

    Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595±79.1, 38.9±8.26, and 1.5±2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ∼10(4) transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer.

  3. Second-harmonic generation for studying structural motion of biological molecules in real time and space.

    PubMed

    Salafsky, Joshua S

    2007-11-14

    SHG and sum-frequency generation (SFG) are surface-selective, nonlinear optical techniques whose ability to measure the average tilt angle of molecules on surfaces is well known in non-biological systems. By labeling molecules with a second-harmonic-active dye probe, SHG detection is extended to any biological molecule. The method has been used in previous work to detect biomolecules at an interface and their ligand-induced conformational changes. Here I demonstrate that SHG can be used to study structural motion quantitatively using a probe placed at a specific site (Cys-77) in adenylate kinase, a protein. The protein is also labeled non-site-specifically via amines. Labeled protein is absorbed to a surface and a baseline SH signal is measured. Upon introducing ATP, AMP or a specific inhibitor, AP(5)A, the baseline signal changes depending on the ligand and the labeling site. In particular, a substantial change in SH intensity is produced upon binding ATP to the amine-labeled protein, consistent with the X-ray crystal structures. In contrast, SHG polarization measurements are used to quantitatively determine that no rotation occurs at site Cys-77, in agreement with the lack of motion observed at this site in the X-ray crystal structures. A method for building a global map of conformational change in real time and space is proposed using a set of probes placed at different sites in a biomolecule. For this purpose, SH-active unnatural amino acids are attractive complements to exogenous labels.

  4. Myosin rods are a source of second harmonic generation signals in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Schürmann, Sebastian; Weber, Cornelia; Fink, Rainer H. A.; Vogel, Martin

    2007-02-01

    Intrinsic second harmonic generation (SHG) signals can be used to visualize the three-dimensional structure of cardiac and skeletal muscle with high spatial resolution. Fluorescence labeling of complementary sarcomeric proteins, e.g. actin, indicates that the observed SHG signals arise from the myosin filaments. Recently, the myosin rod domain or LMM - light meromyosin - has been reported to be the dominant source of this SHG signal. However, to date, mostly negative and indirect evidence has been presented to support this assumption. Here, we show, to our knowledge, the first direct evidences that strong SHG signals can be obtained from synthetic paracrystals. These rod shaped filaments are formed from purified LMM. SDS-PAGE protein analysis confirmed that the LMM crystals lack myosin head domains. Some regions of the LMM paracrystals produce a strong SHG signal whereas others did not. The SHG signals were recorded with a laser-scanning microscope (Leica SP2). A ps laser tuned to 880 nm was used to excite the sample through an 63x objective of 1.2 NA. In order to visualize the synthetic filaments - in addition to SHG imaging -, the LMM was labeled with the fluorescent marker 5-IAF. We were able to observe filaments of 1 to 50 μm in length and of up to 5 μm in diameter. In conclusion, we can show that the myosin rod domain (LMM) is a dominant source for intrinsic SHG signals. There seems, however, a signal dependence on the paracrystals' morphology. This dependence is being investigated.

  5. Forward- and backward-second harmonic generation imaging of corneal and scleral collagen

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Tan, Hsin-Yuan; Lin, Ming-Guo; Hsueh, Chu-Mei; Chen, Wei-Liang; Lin, Sung-Jan; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2008-02-01

    Collagen is the most abundant protein in mammalian and forms various types of tissues. On ocular surface, sclera, limbus and cornea are composed with fibril form collagen. However, unlike other connective tissues with high opacity, cornea has extraordinary high transparency which originates from the regular arrangement of collagen fibers within cornea. Cornea is responsible for 80% of focusing power of our vision and any corneal damage can cause severe vision loss. The high transparency of cornea makes it difficult to probe it without invasive processes, especially stromal structure alternations. Collagen, however, is an effective second harmonic generator due to its non-centrosymmetric molecule structure and can be visualized with nonlinear optical process without labeling. In addition, the deeper penetration and point like effective volume of SHG can also provide 3-dimensional information with minimum invasion. Backward SHG imaging has been approved effectively demonstrating structure alternation in infective keratitis, thermal damage in cornea, corneal scar, post refractive surgery wound healing and keratoconus which is also a main complication after refractive surgery[1-6]. In practical, backward SHG has the potentiality to be developed as clinical examination modality. However, Han et al also demonstrated that backward SHG (BSHG) imaging provides collagen bundle information while forward SHG (FSHG) provides more detailed, submicron fibril structure visualization within corneal stroma[7]. In sclera, which also has type I collagen as its main composition, BSHG and FSHG imaging reveal similar morphology. Comparing with what Legare et al demonstrated that BSHG in bulk tissue mainly originate from backscattered FSHG[8], the huge difference between corneal BSHG and FSHG imaging originate from the high transparency of cornea. However, only BSHG could be applied in practical. Therefore, if the correlation of BSHG and FSHG, which reveals more architecture details, can

  6. Spectroscopic second-harmonic generation during Ar+ -ion bombardment of Si(100)

    NASA Astrophysics Data System (ADS)

    Gielis, J. J. H.; Gevers, P. M.; Stevens, A. A. E.; Beijerinck, H. C. W.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2006-10-01

    Spectroscopic and real time optical second-harmonic generation (SHG) has been applied to gain insight into the surface and interface processes during low-energy (70-1000eV) Ar+ -ion bombardment of H terminated Si(100). The Ar+ -ion bombardment of the crystalline silicon (c-Si) , which creates a layer of amorphous silicon (a-Si) , has been studied in the SH photon energy range of 2.7-3.5eV . The time-resolved SHG signal has been observed to increase with an order of magnitude upon ion bombardment. Spectroscopic SHG during ion bombardment and after subsequent XeF2 dosing indicates that the SHG signal has both a contribution generated at the buried interface between the a-Si and the c-Si and an additional contribution originating from the a-Si surface. By separating these contributions using a critical point model it has been shown that the SHG spectra consist of a sharp resonance at 3.36eV with a linewidth of 0.1eV at the buried a-Si/c-Si interface and a much broader resonance at a resonance energy of 3.2eV with a linewidth of 0.5eV at the a-Si surface. The former resonance is identified to originate from E0'/E1 transitions between bulk electronic states in the c-Si that are modified due to the vicinity of the interface, while the latter resonance is caused by transitions related to Si-Si bonds in the surface region of the a-Si . The time-resolved dynamics of the SHG signal can help in understanding the mechanism of ion-beam and plasma etching of silicon.

  7. Second harmonic generation quantitative measurements on collagen fibrils through correlation to electron microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, S.; Aimé, C.; Gusachenko, I.; Kowalczuk, L.; Latour, G.; Coradin, T.; Schanne-Klein, M.-C.

    2015-03-01

    Type I collagen is a major structural protein in mammals that shows highly structured macromolecular organizations specific to each tissue. This biopolymer is synthesized as triple helices, which self-assemble into fibrils (Ø =10-300 nm) and further form various 3D organization. In recent years, Second Harmonic Generation (SHG) microscopy has emerged as a powerful technique to probe in situ the fibrillar collagenous network within tissues. However, this optical technique cannot resolve most of the fibrils and is a coherent process, which has impeded quantitative measurements of the fibril diameter so far. In this study, we correlated SHG microscopy with Transmission Electron Microscopy to determine the sensitivity of SHG microscopy and to calibrate SHG signals as a function of the fibril diameter in reconstructed collagen gels. To that end, we synthetized isolated fibrils with various diameters and successfully imaged the very same fibrils with both techniques, down to 30 nm diameter. We observed that SHG signals scaled as the fourth power of the fibril diameter, as expected from analytical and numerical calculations. This calibration was then applied to diabetic rat cornea in which we successfully recovered the diameter of hyperglycemia-induced fibrils in the Descemet's membrane without having to resolve them. Finally we derived the first hyperpolarizability from a single collagen triple helix which validates the bottom-up approach used to calculate the non-linear response at the fibrillar scale and denotes a parallel alignment of triple helices within the fibrils. These results represent a major step towards quantitative SHG imaging of nm-sized collagen fibrils.

  8. Investigating membrane nanoporation induced by bipolar pulsed electric fields via second harmonic generation

    NASA Astrophysics Data System (ADS)

    Moen, E. K.; Ibey, B. L.; Beier, H. T.; Armani, A. M.

    2016-09-01

    Electric pulses have become an effective tool for transporting cargo (DNA, drugs, etc.) across cell membranes. This enhanced transport is believed to occur through temporary pores formed in the plasma membrane. Traditionally, millisecond duration, monopolar (MP) pulses are used for electroporation, but bipolar (BP) pulses have proven equally effective as MP pulses with the added advantage of less cytotoxicity. With the goal of further reducing cytotoxic effects and inducing non-thermal, intra-cellular effects, researchers began investigating reduced pulse durations, pushing into the nanosecond regime. Cells exposed to these MP, nanosecond pulsed electric fields (nsPEFs) have shown increased repairable membrane permeability and selective channel activation. However, attempts to improve this further by moving to the BP pulse regime has proven unsuccessful. In the present work, we use second harmonic generation imaging to explore the structural effects of bipolar nsPEFs on the plasma membrane. By varying the temporal spacing between the pulse phases over several orders of magnitude and comparing the response to a single MP case, we systematically examine the disparity in cellular response. Our circuit-based model predicts that, as the temporal spacing increases several orders of magnitude, nanoporation increases and eventually exceeds the MP case. On the whole, our experimental data agree with this assertion; however, a detailed analysis of the data sets demonstrates that biological processes may play a larger role in the observed response than previously thought, dominating the effect for temporal spacing up to 5 μs. These findings could ultimately lead to understanding the biophysical mechanism underlying all electroporation.

  9. Investigating backward scattered second harmonic generation from various mouse collagen tissues

    NASA Astrophysics Data System (ADS)

    Shen, Mengzhe; Tian, Yunxian; Chong, Shau Poh; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo

    2014-02-01

    A confocal multiphoton microscopy system with various detection pinholes was used to differentiate backward scattered second harmonic generation (BS-SHG) from backward generated SHG (BG-SHG) based on the fact that BS-SHG is more scattered and therefore has a much bigger spot size than BG-SHG. BS-SHG is quantified from two types of mouse tissues, such as Achilles tendon, and skin, and at various focal depths. It is found that the BS-SHG contributes less to the total backward SHG for the skin than Achilles tendon with thicknesses of around three hundred micrometers. For tissue with larger F/B intensity ratio such as Achilles tendon, increasing the tissue thickness reduces it tremendously. However, for tissue with smaller F/B intensity ratio, tissue thickness increment does not alter it significantly. In addition, larger F/B intensity ratio might be related with a greater scattering coefficient from our Achilles tendon and skin comparison. When the focal point is moved deeper into tissue, the contribution of BS-SHG is found to decrease due to a reduced pass length of the forward propagated photons. On the contrary, when the tissue thickness increases, the contribution of the BS-SHG is increased. These observations for thicker skin tissues are related with our F/B intensity ratio measurement for thin mouse skin sample in terms of that the magnitude of backward generated SHG are dominant among the total backward SHG in mouse skin tissue. Considering the phase mismatching condition in the forward and backward directions, these results may indicate that quasi-phase matching originating from the regular structure of collagen could help with reducing the phase mismatch especially in the backward direction.

  10. Experimental intensity analysis of second harmonic generation at the Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Schwab, C.; Meister, G.; Woll, J.; Gerlach, A.; Goldmann, A.

    2000-06-01

    We have analyzed second harmonic generation (SHG) intensities from Cu(110) at fundamental wavelengths λ=1064 nm and between λ=650 and 540 nm. Experimentally the light incidence direction was chosen along the two inequivalent mirror planes of the surface lattice unit cell, and the linear polarizations of both input (fundamental) and output (frequency-doubled) radiation could be varied independently. At λ=1064 nm the relative sizes of the different components of the second-order susceptibility tensor are as follows: | χ zzz|=2490, | χ yzy|=139 and | χ zyy|=33.7. The remaining elements are below detection threshold: | χ xzx|<3 and | χ zxx|<3. This analysis is based on the use of Fresnel coefficients and bulk optical constants. The results indicate that SHG is dominated by transitions induced by the z-components of the incident electric field. However, the situation is completely different in the intensity maximum ( λ=600 nm) of a resonant intersurface band transition occurring around the Ȳ-point of the surface Brillouin zone: now SHG is dominated by the zyy tensor component, which exceeds both yzy and zzz, while again | χ zxx| and | χ xzx| are negligible. All available data, including temperature-dependent SHG studies of different authors, clearly show that contributions of electronic surface states to SHG intensities may be significant or even dominant. Therefore, a detailed quantitative understanding is a necessary condition for any analysis of adsorbate-induced SHG signals, since adsorbates can modify the surface electronic properties considerably. Our results furthermore indicate that the use of isotropic Fresnel coefficients to model the SHG-active electric fields is inadequate for a complete quantitative analysis.

  11. Spectroscopic studies of magnesium plasma produced by fundamental and second harmonics of Nd:YAG laser

    SciTech Connect

    Haq, S. U. Ahmat, L.; Mumtaz, M.; Nadeem, A.; Shakeel, Hira; Mahmood, S.

    2015-08-15

    In the present experimental work, laser induced magnesium plasma has been characterized using plasma parameters. The plasma has been generated by the fundamental (1064 nm) and second harmonics (532 nm) of Nd:YAG laser. The plasma parameters such as electron temperature and electron number density have been extracted using Boltzmann plot method and Stark broadened line profile, respectively. The laser irradiance dependence and spatial behavior of electron temperature and number density in laser induced magnesium plasma have been studied. The electron temperature as a function of laser irradiance (0.5 to 6.5 GW/cm{sup 2}) ranges from (9.16–10.37) × 10{sup 3 }K and (8.5–10.1)× 10{sup 3 }K, and electron number density from (0.99–1.08) × 10{sup 16} cm{sup −3} and (1.04–1.22) × 10{sup 16}cm{sup −3} for 1064 and 532 nm, respectively. These parameters exhibit fast increase at low laser irradiance and slow increase at high irradiance. The spatial distribution of electron temperature and electron number density shows same decreasing trend up to 2.25 mm from the target surface. The electron temperature and number density decrease from (9.5–8.6) × 10{sup 3 }K, (1.27–1.15) × 10{sup 16}cm{sup −3} and (10.56–8.85)× 10{sup 3 }K, (1.08–0.99) × 10{sup 16} cm{sup −3} for 532 nm and 1064 nm laser ablation wavelengths, respectively.

  12. Frequency-resolved optical gating with the use of second-harmonic generation

    SciTech Connect

    DeLong, K.W.; Trebino, R. ); Hunter, J.; White, W.E. )

    1994-11-01

    We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail. SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.

  13. Type-II second-harmonic-generation properties of YCOB and GdCOB single crystals.

    PubMed

    Liu, Yanqing; Qi, Hongwei; Lu, Qingming; Yu, Fapeng; Wang, Zhengping; Xu, Xinguang; Zhao, Xian

    2015-02-01

    As excellent nonlinear optical (NLO) crystals, YCa(4)O(BO(3))(3) (YCOB) and GdCa(4)O(BO(3))(3) (GdCOB) have been paid much attention since their first appearance in 1990's. From that time to now, almost all of related researches and applications have focused on their type-I phase-matching (PM) configurations which possess large effective NLO coefficient (d(eff)). In this paper, type-II second-harmonic-generation (SHG) properties of these two crystals are reported, including PM curve, d(eff), angular acceptance and walk-off angle. Both of the type-II SHG experiments for 1064 and 1320 nm have indicated that the optimum directions which have maximum d(eff) locate in the second octant, i.e. (90° < θ< 180°, 0° < ϕ < 90°). For a (112°, 81.3°)-cut, 24 mm long YCOB crystal, the largest type-II SHG conversion efficiency of a 1064 nm Nd:YAG pico-second laser is 55%, which reaches the same level of the optimum type-I sample. To our knowledge this is the first time that type-II SHG performance of YCOB and GdCOB crystals is investigated intensively. Our research has shown that the smaller d(eff) of type-II PM can be compensated by its larger angular acceptance and less beam walk-off. The same level SHG conversion efficiency implies for such type crystals the type-II components have the potential to replace type-I ones and obtain important NLO applications in the future. PMID:25836087

  14. Second harmonic generation in a KNbO3 nanorod and its detection by using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Park, D. J.; Kang, P. G.; Jung, J. H.; Lee, H. H.; Choi, S. B.

    2016-04-01

    We report on an observation of second harmonic generation in an individual KNbO3 nanorod by using a near-field scanning optical microscope. The second harmonic is successfully generated by irradiating with a femtosecond laser having center wavelengths of 1200, 1100, and 972 nm. Such a second harmonic yield shows a clear dependence on the incident laser polarization, where maximum yield is obtained when the incident laser polarization is parallel to the long axis of an individual nanorod. A spatially-resolved second harmonic image shows a bright spot at the edge of the nanorod, which is attributed to the elaborated intensity of both fundamental laser light and second harmonic light inside the nanowire owing to cavity-mode formation.

  15. NONLINEAR OPTICAL PHENOMENA: Peculiarites of second harmonic generation of radiation from a pulsed ytterbium-doped fibre laser in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Krylov, Aleksandr A.

    2007-07-01

    Second harmonic generation of radiation from a high-power fibre Yb3+ laser is studied upon sf—f phase matching near the X axis of the KTP crystal (KTiOPO4). The temperature dependence of the phase-matching wavelength as well as its spectral, angular and temperature tuning characteristics of the second harmonic generator are experimentally measured. It is found that the increase in the average output power of the second harmonic in a single crystal is limited, first of all, by the thermal self-focusing of radiation caused by the absorption of radiation from the second harmonic, whose threshold decreases with increasing the crystal temperature. When the two-channel scheme is used, the maximum stable ~4-W output power of the second harmonic is obtained in two tandem KTP crystals.

  16. Selective mode suppression in a W-band second harmonic coaxial-waveguide gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Syu, M. F.; Yang, M. T.; Chen, K. L.

    2012-07-01

    A gyrotron backward-wave oscillator (gyro-BWO) encounters increasingly severe mode competition problems during development toward the goal of higher power at high frequencies. A coaxial interaction waveguide with distributed losses is proposed to enhance the stability and frequency tunability of a W-band second harmonic gyro-BWO. The losses of the inner and outer cylinders complement each other and effectively stabilize all of the competing modes while having minor effects on the operating mode. Under stable operating conditions, the W-band second harmonic coaxial gyro-BWO has a predicted peak output power of 71 kW with a magnetic tuning bandwidth of 1.0 GHz.

  17. Influences of Electrical Boundary Conditions on Second-Harmonic Generation of Ultrasonic Guided Wave Propagation in a Piezoelectric Plate

    NASA Astrophysics Data System (ADS)

    Deng, Mingxi; Xiang, Yanxun

    The influences of electrical boundary conditions on second-harmonic generation (SHG) of ultrasonic guided wave propagation in a piezoelectric plate are analyzed. Based on the modal expansion analysis for waveguide excitation, an accurate description for the SHG effect of primary ultrasonic guided wave propagation in a piezoelectric plate has been presented within a second-order perturbation approximation. The formal solution of the double frequency guided waves, constituting the field of second harmonic, has been developed. The analytical results clearly reveal that the SHG effect of primary guided wave propagation is closely related to the electric boundary conditions of the piezoelectric plate. It is found that under different electrical boundary conditions there is an evident difference in the SHG effect of ultrasonic guided waves, and that the SHG effect is highly sensitive to the electrical boundary conditions.

  18. Time-resolved electric-field-induced second harmonic: simultaneous measurement of first and second molecular hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Meshulam, G.; Kotler, Z.; Berkovic, G.

    2002-07-01

    The standard electric-field-induced second-harmonic (EFISH) technique for measurement of the first hyperpolarizability (bgr;) of nonlinear optical molecules is limited by the fact that the second hyperpolarizability (gamma) also contributes to the second-harmonic signal from which beta is deduced. We present a modified time-resolved EFISH in which the first and the second hyperpolarizabilities can be determined separately and accurately in the same experiment. We studied para-nitro aniline dissolved in a highly viscous solvent, glycerol, under conditions whereby the electric field was applied faster than the characteristic time for molecular rotation. This technique enabled the gamma contribution to the signal to be resolved separately from the beta contribution. The results confirm that for this molecule gamma contributes only approx10% of the total EFISH hyperpolarizability.

  19. Second harmonic measurement of multi-beam laser heterodyne with ultra-precision for the small angle

    NASA Astrophysics Data System (ADS)

    Li, Y. Chao; Ding, Q.; Wang, Y. Qiao; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2015-08-01

    In order to improve the measurement accuracy of the angle and signal processing speed of operation, this paper proposes a novel method of second harmonic measurement of multi-beam laser heterodyne for the angle, which based on the combination of Doppler effect and heterodyne technology, loaded the information of the angle to the frequency difference of second harmonic of the multi-beam laser heterodyne signal by frequency modulation of the oscillating mirror, which is in the light path. Heterodyne signal frequency can be obtained by fast Fourier transform, and can obtain values of the angle accurately after the multi-beam laser heterodyne signal demodulation. This novel method is used to simulate measurement for incident angle of standard mirror by Matlab, the obtained result shows that the relative measurement error of this method is just 0.5213%.

  20. Electrically controlled second-harmonic generation in silicon-compatible plasmonic slot waveguides: a new modulation scheme.

    PubMed

    Zhang, Jihua; Cassan, Eric; Zhang, Xinliang

    2014-07-01

    The possible realization of an active electro-optical control of the nonlinear second-harmonic generation (SHG) mechanism in a plasmonic slot waveguide is theoretically investigated. Both the conventional SHG and the electrically induced SHG are taken into account with a moderate pump power of 40 mW at the fundamental wavelength (1550 nm). The generated power of the second-harmonic frequency can be modulated by the applied voltage in a quadratic and almost linear form for centrosymmetric and noncentrosymmetric nonlinear polymers integrated in the slot, respectively. Converted power up to 140 μW within a short distance of only 16 μm is predicted for a voltage of 10 V. This mechanism may open a new route to realize high-speed advanced modulations or inversely to detect ultrafast electrical signals.

  1. Theoretical study of the nonlinear response function describing optical second-harmonic generation in nonlocal metal optics

    NASA Astrophysics Data System (ADS)

    Keller, O.

    1985-04-01

    Optical second-harmonic generation from the bulk of centrosymmetric metals stems from non- local electronic transport effects. So far, the nonlinear bulk response has been described within the framework of magnetic dipole and electric quadrupole interactions. In the present work a nonlinear conductivity response function incorporating nonlocal effects in all orders is presented. Through a multipole expansion, contact with previous analysis is established. The nonlinear responses stemming from the electric and magnetic field of the fundamental wave, respectively, are separated and analyzed. Plasmon effects usually neglected in bulk studies are retained. It is demonstrated that the polarization selection rules on which several conclusions about the relative strength of magnetic and electric effects have been drawn previously are violated in a fully nonlocal treatment. The most general polarization selection rules for nonlocal second-harmonic generation in centrosymmetric metals are established.

  2. Application of the anisotropic bond model to second-harmonic generation from amorphous media

    NASA Astrophysics Data System (ADS)

    Adles, E. J.; Aspnes, D. E.

    2008-04-01

    As a step toward analyzing second-harmonic generation (SHG) from crystalline Si nanospheres in glass, we develop an anisotropic bond model (ABM) that expresses SHG in terms of physically meaningful parameters and provide a detailed understanding of the basic physics of SHG on the atomic scale. Nonlinear-optical (NLO) responses are calculated classically via the four fundamental steps of optics: evaluate the local field at a given bond site, solve the force equation for the acceleration of the charge, calculate the resulting radiation, then superpose the radiation from all charges. Because the emerging NLO signals are orders of magnitude weaker and occur at wavelengths different from that of the pump beam, these steps are independent. Paradoxically, the treatment of NLO is therefore simpler than that of linear optics (LO), where these calculations must be done self-consistently. The ABM goes beyond previous bond models by including the complete set of underlying contributions: retardation (RD), spatial-dispersion (SD), and magnetic (MG) effects, in addition to the anharmonic restoring force acting on the bond charge. Transverse as well as longitudinal motion is also considered. We apply the ABM to obtain analytic expressions for SHG from amorphous materials under Gaussian-beam excitation. These materials represent an interesting test case not only because they are ubiquitous but also because the anharmonic-force contribution that dominates the SHG response of crystalline materials and ordered interfaces vanishes by symmetry. The remaining contributions, and hence the SHG signals, are entirely functions of the LO response and beam geometry, so the only new information available is the anisotropy of the LO response at the bond level. The RD, SD, and MG contributions are all of the same order of magnitude, so none can be ignored. Diffraction is important in determining not only the pattern of the emerging beam but also the phases and amplitudes of the different terms

  3. Solar tidal variations of coefficients of second harmonic of gravitational potential of Mercury

    NASA Astrophysics Data System (ADS)

    Ferrandiz, Jose; Barkin, Yury

    2010-05-01

    Variations of coefficients of the second harmonic of Mercury potential caused by the solar tides have been studied. In the paper we use analytical expressions for tidal variations of Stoks coefficients obtained for model of the elastic celestial body with concentric distributions of masses and elastic parameters (Love numbers) and their reduced form with using fundamental elastic parameter k2 of the Mercury. Taking into account the resonant properties of the Mercury motion variations of the Mercury potential coefficients we present in the form of Fourier series on the multiple of corresponding arguments of the Mercury orbital theory. Evaluations of the amplitudes and periods of observed variations of Mercury potential have been tabulated for base elastic model of the Mercury characterized by hypothetic elastic parameter (Love number) k2=0.37 (Dehant et al., 2005). Tidal variations of polar moment of inertia of the Mercury (due to tidal deformations) lead to remarkable variations of the Mercury rotation. Tidal variations of the Mercury axial rotation also have been determined and tabulated. From our results it follows that the tide periodic variations of gravitational coefficients of the Mercury in a few orders bigger then corresponding tidal variations of Earth's geopotential coefficients (Ferrandiz, Getino, 1993). Variations coefficients of the second harmonic of Mercury potential. These variations are determined by the known formulae for variations of coefficients of the second harmonic of geopotential (Ferrandiz, Getino, 1993). Here we present these formulae in some special form as applied to the considered problem about the Mercury tidal deformations: ( ) δJ2 = - 3Tα23-2, δC22 = T α21 - α22 -4, δS22 = T α1α2-2, δC21 = Tα1α3, δS21 = T α2α3. Here T = k2(M R3 -ma3 ) = 1.667 × 10-7 is a estimation of some conditional coefficient of tidal deformation of Mercury. m and Rare the mass and the mean radius of Mercury. Here we have used standard values of

  4. Organic salts of biguanide - An attempt to crystal engineering of novel materials for second harmonic generation

    NASA Astrophysics Data System (ADS)

    Matulková, Irena; Němec, Ivan; Císařová, Ivana; Němec, Petr; Vaněk, Přemysl

    2010-03-01

    Three organic salts of biguanide with oxalic, succinic and L-tartaric acids have been prepared and X-ray structural analysis has been performed. Biguanidium(1+) oxalate hemihydrate ( a = 6.8330(2) Å, b = 10.0430(2) Å, c = 14.6230(4) Å, α = 90.236(1) , β = 90.333(1) , γ = 105.605(2) , V = 966.46(4) Å 3, Z = 1, R = 0.0393 for 3704 observed reflections) and biguanidium(1+) hydrogen succinate ( a = 6.4600(1) Å, b = 6.7670(2) Å, c = 11.4150(3) Å, α = 91.822(1) , β = 105.312(1) , γ = 90.922(1) , V = 480.89(2) Å 3, Z = 2, R = 0.0357 for 1880 observed reflections) belong to the triclinic space group P 1¯. Their crystal structures are based on biguanidium(1+) pairs connected by intermolecular N-H⋯N hydrogen bonds. The remaining ions (eventually water molecules) form a 3D structural network with these pairs. Furthermore, the formation of the cationic and anionic layers interconnected by intermolecular N-H⋯O hydrogen bonds was observed in the crystal structure of biguanidium(1+) hydrogen succinate. Biguanidium(2+) L-tartrate crystallizes in the orthorhombic space group P 2 12 12 1 ( a = 6.7170(2) Å, b = 9.2740(2) Å, c = 16.1500(4) Å, V = 1006.04(4) Å 3, Z = 4, R = 0.0432 for 2193 observed reflections). The crystal structure is based on L-tartrate chains, which are interconnected by isolated biguanidium(2+) cations via several types of N-H⋯O hydrogen bonds. The formation of L-tartrate chains is mediated by two types of intermolecular O-H⋯O hydrogen bonds connecting the hydroxyl and carboxylate groups. The FTIR and FT Raman spectra of all the compounds were recorded and discussed. The theoretical values of the first hyperpolarizability components were calculated for biguanidium(1+) and biguanidium(2+) cations at the B3LYP level with the 6-311G(d,p) basis set. Quantitative measurements of the second harmonic generation of powdered biguanidium(2+) L-tartrate at 800 nm were performed and a relative efficiency of 2% (compared to KDP) was

  5. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.

  6. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  7. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  8. Synthesis and Study of Second Harmonic Generation in 4,4'-DINITROPHENYL 1,1'-ADIPAMIDE (dnpa)

    NASA Astrophysics Data System (ADS)

    Trivedi, Rashmi; Sen, Pratima; Sen, Pranay K.

    We synthesized 4,4'-dinitrophenyl 1,1'-adipamide (DNPA) and studied optical second harmonic generation (SHG) in this organic material using the Kurtz method. The experimental analysis of SHG was made for a range of particle size of DNPA. It was observed that DNPA is nearly three times more SHG active than urea. It was also found that the compound is non-phasematchable and did not show any optical degradation for about an year when kept in ambient atmosphere.

  9. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy

    PubMed Central

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Ma, Zhen; Ye, Tong; Borg, Tom; Gao, Bruce Z.

    2011-01-01

    We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG) imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we observed the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for investigation of dynamic myofibrillogenesis. PMID:22191929

  10. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  11. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    SciTech Connect

    Gupta, Naveen Singh, Arvinder; Singh, Navpreet

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.

  12. Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method.

    PubMed

    Varray, François; Ramalli, Alessandro; Cachard, Christian; Tortoli, Piero; Basset, Olivier

    2011-07-01

    The simulation of nonlinear propagation of ultrasound waves is typically based on the Kuznetsov-Zabolotskaya- Khokhlov equation. A set of simulators has been proposed in the literature but none of them takes into account a possible spatial 3-D variation of the nonlinear parameter in the investigated medium. This paper proposes a generalization of the angular spectrum method (GASM) including the spatial variation of the nonlinear parameter. The proposed method computes the evolution of the fundamental and second-harmonic waves in four dimensions (spatial 3-D and time). For validation purposes, the one-way fields produced by the GASM are first compared with those produced by established reference simulators and with experimental one-way fields in media with a homogeneous nonlinear parameter. The same simulations are repeated for media having an axial variation of the nonlinear parameter. The mean errors estimated in the focal region are less than 4.0% for the fundamental and 5.4% for the second harmonic in all cases. Finally, the fundamental and second-harmonic fields simulated for media having nonlinear parameter variations in the axial, lateral, and elevation directions, which cannot be simulated with other currently available methods, are presented. The new approach is also shown to yield a reduction in computation time by a factor of 13 with respect to the standard nonlinear simulator.

  13. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.

    PubMed Central

    Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A

    2002-01-01

    We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336

  14. The study of radiation-induced damage and remodeling of extracellular matrix of rectum and bladder by second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kochueva, Marina V.; Sergeeva, Ekaterina A.; Ignatjeva, Natalya Yu.; Zakharkina, Olga L.; Kuznetzov, Sergej S.; Kiseleva, Elena B.; Babak, Ksenia V.; Kamensky, Vladislav A.; Maslennikova, Anna V.

    2014-02-01

    Adverse events in normal tissues after irradiation of malignant tumors are of great importance in modern radiation oncology. Second harmonic generation (SHG) microscopy allows observe the structure of collagen fibers and bundles without additional staining. The study objective was evaluation the dose-time dependences of the structural changes occurring in collagen of rat rectum and bladder after gamma-irradiation. Animals were irradiated by a local field at single doses of 10 Gy and 40 Gy. The study of collagen state was carried out in a week and a month after radiation exposure. Paraffin-embedded material was sectioned on the slices 10 mkm thick and SHG-imaging was performed by LSM 510 Meta (Carl Zeiss, Germany). Excitation was implemented with a pulsed (100-fs) titanium-sapphire laser at a wavelength of 800 nm and a pulse repetition frequency of 80 MHz, registration was performed at two wavelengths: 362-415 nm according to collagen fluorescence and 512-576 nm according to myoglobin fluorescence. In a week after irradiation, sings of epithelial damage and edema of submucosal layer, more significant after the dose of 40 Gy were observed on LSM-images. The SHG signal decreased at this time reflecting the processes of collagen degradation independently either in bladder or in rectum. In a month after radiation the increase of size and number of collagen-bearing structures was observed, more essential after irradiation in a dose of 40 Gy. LSM microscopy with SHG allows evaluate changes of normal tissues after ionizing radiation and get information in addition to standard and special histological staining.

  15. An LSPR fiber optic sensor based on in-line micro-holes fabricated by a second harmonic 400nm femtosecond laser

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masahiko; Goya, Kenji; Seki, Atsushi; Watanabe, Kazuhiro

    2016-02-01

    In this study, we have proposed a novel type of localized surface plasmon resonance (LSPR) fiber optic sensor based on in-line/pico-liter micro-holes which can be experimentally fabricated into the fiber waveguide by using a second harmonic 400 nm femtosecond laser. A repetitive pulse train of 1 kHz with a pulse width of 350 fs was irradiated onto a MMGI fiber optic to make three holes that penetrate through the fiber core and work as spectroscopic-microfluidic flow cells. In order to induce the interaction between transmitted light and gold nanoparticles (GNPs) adhered on the inner surface of the flow cells, micro-holes were designed to be the width of approximately 50 μm, along a direction perpendicular to an optical axis of an optical fiber. GNPs with approximately 100 nm of particle diameter adhered onto the inner surface according to 3-aminopropyltriethoxy silane treatment. The transmitted light through the micro-holes was obtained by optical instruments consisted of a white light source and an optical spectrum analyzer. In order to obtain the reference spectrum, the optical spectrum was acquired before dipping the sensor into the GNPs solution. After 30 min of immersing the sensor portion into the GNPs solution, the optical spectrum was also obtained. The reference spectrum which was considered as the baseline, was set to zero and then, the absorbance spectrum was calculated. The absorbance peak at a wavelength of 537 nm occurred in an air condition in the sensing area, which seemed like the resonance peak based on the LSPR.

  16. Wave-front phase-modulation control and focusing of second-harmonic light generated in transparent nonlinear random structures

    NASA Astrophysics Data System (ADS)

    Yao, Can; Rodriguez, Francisco J.; Bravo-Abad, Jorge; Martorell, Jordi

    2013-06-01

    We theoretically investigate how phase-only spatial light modulation can enable controlling and focusing the second-harmonic light generated in transparent nonlinear random structures. The studied structures are composed of domains with random sizes and antiparallel polarization, which accurately model widely used ferroelectric crystals such as strontium barium niobate. Using a first-principles Green-function formalism, we account for the effect that spatial light modulation of the fundamental beam introduces into the second-order nonlinear frequency conversion occurring in the considered class of structures. This approach provides a complete description of the physical origin of the second-harmonic light generation in the system, as well as the optimization of the light intensity in any arbitrary direction. Our numerical results show how the second-harmonic light is influenced by both the disorder in the structure and the boundaries of the crystal. Particularly, we find that the net result from the interplay between disorder and boundary effects is strongly dependent on the dimensions of the crystal and the observation direction. Remarkably, our calculations also show that although in general the maximum possible enhancement of the second-order light is the same as the one corresponding to linear light scattering in turbid media, in the Cerenkov phase matching direction the enhancement can exceed the linear limit. The theoretical analysis presented in this work expands the current understanding of light control in complex media and could contribute to the development of a new class of imaging and focusing techniques based on nonlinear frequency mixing in random optical materials.

  17. Monitoring Fibrous Scaffold Guidance of Three-Dimensional Collagen Organisation Using Minimally-Invasive Second Harmonic Generation

    PubMed Central

    Delaine-Smith, Robin M.; Green, Nicola H.; Matcher, Stephen J.; MacNeil, Sheila; Reilly, Gwendolen C.

    2014-01-01

    The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner. PMID:24587017

  18. Direct measurement of wave-front distortion induced during second-harmonic generation: application to breakup-integral compensation.

    PubMed

    Caumes, Jean Pascal; Videau, Laurent; Rouyer, Claude; Freysz, Eric

    2004-04-15

    The wave-front distortion of femtosecond laser pulses recorded with a Shack-Hartmann analyzer makes it possible to retrieve the nonlinear index of refraction of different glasses and the nonlinear phase shift induced during second-harmonic generation in beta-barium borate (BBO) crystal versus the phase mismatch. It is shown that the nonlinear phase shift induced in a 2-mm-thick BBO crystal allows compensation for up to a 2pi breakup-integral induced in a 4-cm fused-silica glass. The stability of the compensation is reported to be from 10 to 100 GW cm(-2).

  19. Heterodyne-detected and ultrafast time-resolved second-harmonic generation for sensitive measurements of charge transfer.

    PubMed

    Wilcox, Daniel E; Sykes, Matthew E; Niedringhaus, Andrew; Shtein, Max; Ogilvie, Jennifer P

    2014-07-15

    In organic photovoltaics many key ultrafast processes occur at the interface between electron donor and acceptor molecules. Traditional ultrafast spectroscopies, such as pump-probe or time-resolved fluorescence, are not ideal for studying the interface because most of their signal is from the bulk material. Time-resolved second-harmonic generation (TRSHG) spectroscopy solves this problem by only generating signal from the interface. We demonstrate an optically heterodyned TRSHG to reduce the impact of stray light, enhance sensitivity, and detect the full complex signal field.

  20. Direct measurement of wave-front distortion induced during second-harmonic generation: application to breakup-integral compensation.

    PubMed

    Caumes, Jean Pascal; Videau, Laurent; Rouyer, Claude; Freysz, Eric

    2004-04-15

    The wave-front distortion of femtosecond laser pulses recorded with a Shack-Hartmann analyzer makes it possible to retrieve the nonlinear index of refraction of different glasses and the nonlinear phase shift induced during second-harmonic generation in beta-barium borate (BBO) crystal versus the phase mismatch. It is shown that the nonlinear phase shift induced in a 2-mm-thick BBO crystal allows compensation for up to a 2pi breakup-integral induced in a 4-cm fused-silica glass. The stability of the compensation is reported to be from 10 to 100 GW cm(-2). PMID:15119415

  1. Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration

    PubMed Central

    Cisek, Richard; Tokarz, Danielle; Steup, Martin; Tetlow, Ian J.; Emes, Michael J.; Hebelstrup, Kim H.; Blennow, Andreas; Barzda, Virginijus

    2015-01-01

    Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R’SHG) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R’SHG values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices. The maximum SHG intensity occurs at the highest moisture and amylopectin content. These results support the hypothesis that SHG is caused by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules. PMID:26504621

  2. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry.

    PubMed

    Skoczowsky, Danilo; Jechow, Andreas; Menzel, Ralf; Paschke, Katrin; Erbert, Götz

    2010-01-15

    A new approach for efficient second-harmonic generation using diode lasers is presented. The experimental setup is based on a tapered amplifier operated in a ring resonator that is coupled to a miniaturized enhancement ring resonator containing a periodically poled lithium niobate crystal. Frequency locking of the diode laser emission to the resonance frequency of the enhancement cavity is realized purely optically, resulting in stable, single-frequency operation. Blue light at 488 nm with an output power of 310 mW is generated with an optical-to-optical conversion efficiency of 18%. PMID:20081978

  3. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator

    PubMed Central

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben

    2013-01-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756

  4. In vivo imaging of dermal collagen in skin burn by collagen-sensitive second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Tanaka, Ryosuke; Hase, Eiji; Fukushima, Shu-ichiro; Araki, Tsutomu

    2013-02-01

    Optical assessment of skin burns is possible with second-harmonic-generation (SHG) microscopy due to its high sensitivity to thermal denaturation of collagen molecules. In contrast to previous studies that were performed using excised tissue specimens ex vivo, in this study, we demonstrated in vivo observation of dermal collagen fibers in living rat burn models with SHG microscopy. We confirmed that changes in SHG vanishing patterns in the SHG images depended on the burn degree. The results imply that SHG microscopy can be used as a low-invasiveness, highly quantitative tool for skin burn assessment.

  5. Second Harmonic Generation with the GaAs Thin Film in the Soft X-Ray Region

    SciTech Connect

    Takayama, Yasuhiro; Shibasaki, Koutatsu; Sasaki, Naoya; Nakayama, Yuji; Nishihata, Keisuke; Yoneda, Yuichi; Yoshida, Tetsuo; Nakamura, Satoshi; Ishii, Hiroyoshi; Myayhara, Tsuneaki; Okabayashi, Jun; Kanai, Ken; Oshima, Masaharu; Yamamoto, Shigeru

    2007-01-19

    We have constructed an instrument for observing the second harmonic generation (SHG) in the soft x-ray region. The two beams are focused on the GaAs thin film, and the scattered beam corresponding to the SHG signal is detected by a photomultiplier tube (PMT). For detecting the small signal of the SHG, we have developed a novel modulation technique with a piezo actuator and a digital lock-in amplifier. The result of the experiment is almost consistent with the assumption that the SHG has been detected in our experiment.

  6. Second harmonic and sum frequency generation on dye-coated surfaces using collinear and non-collinear excitation geometries. [Rhodamine 6G monolayers on glass

    SciTech Connect

    Muenchausen, R.E.; Nguyen, D.C.; Keller, R.A.; Nogar, N.S.

    1986-01-01

    Doubly resonantly enhanced sum frequency generation from rhodamine 6G monolayers adsorbed on glass substates is compared with resonantly enhanced second harmonic generation using a collinear excitation geometry. Second harmonic and sum frequency generation with a non-collinear excitation geometry is also reported where spatial filtering of the non-collinear output is shown to increase the scattered light rejection by more than 4 orders of magnitude.

  7. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Ren, Ming-Liang; Liu, Wenjing; Aspetti, Carlos O.; Sun, Liaoxin; Agarwal, Ritesh

    2014-11-01

    Coherent and tunable nanoscale light sources utilizing optical nonlinearities are required for applications ranging from imaging and bio-sensing to on-chip all-optical signal processing. However, owing to their small sizes, the efficiency of nanostructures even with high nonlinear coefficients is poor, therefore requiring very high excitation energies. Although surface-plasmon resonances of metal nanostructures can enhance surface nonlinear processes such as second-harmonic generation, they still suffer from low conversion efficiencies owing to their intrinsically low nonlinear coefficients. Here we show highly enhanced and directional second-harmonic generation from individual CdS nanowires integrated with silver nanocavities (>1,000 times higher external efficiency compared with bare CdS), in which the lowest-order whispering gallery mode is engineered to concentrate light in the nonlinear material while minimizing Ohmic losses. The directional nonlinear signal is redirected into another waveguide, which is then utilized to configure an optical router that can potentially serve as a tunable coherent light source to enable on-chip signal processing for integrated nanophotonic systems.

  8. First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission

    SciTech Connect

    Layden, B.; Cairns, Iver H.; Robinson, P. A.; Percival, D. J.

    2011-02-15

    Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.

  9. Spontaneous Polarization in Bio-organic Materials Studied by Scanning Pyroelectric Microscopy (SPEM) and Second Harmonic Generation Microscopy (SHGM)

    NASA Astrophysics Data System (ADS)

    Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.

    2015-06-01

    Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning pyroelectric microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of pyroelectric scanning with SHG-microscopy in a single experimental setup leading to complementary pyroelectric and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a pyroelectric response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.

  10. Design of a Second Harmonic Double-Beam Continuous Wave Gyrotron with Operating Frequency of 0.79 THz

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu; Sedov, A. S.; Zaslavsky, V. Yu; Idehara, T.

    2015-12-01

    This paper presents the most essential steps of a design study of a novel second harmonic gyrotron operating in CW (continuous wave) regime at a frequency of 0.79 THz and an output power of 1-100 W. It is based on a novel idea for suppression of the parasitic modes using a double-beam electron-optical system (EOS). It includes a triode magnetron injection gun (MIG), which forms two high-quality helical electron beams (HEB). Different schemes, namely one with two generating beams and another with one generating and one absorbing beam, have been investigated and compared. It has been shown that the scheme with two generating beams is more advantageous since it allows an effective suppression of the parasitic modes and a stable single-mode operation at the second harmonic resonance. A MIG which is appropriate for the realization of the latter scheme has been optimized using numerical codes for computer-aided design (CAD). It forms beams with practically equal pitch factors and moderate velocity spread. The construction of the gun is not sensitive to small misalignments and shifts of the electrodes and the magnetic field. Among the most promising characteristics of the presented design are an improved mode selection and a stable single-mode generation at currents that are two to three times higher than the currents in the single-beam (i.e., conventional) gyrotrons.

  11. Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Pattabi, A.; Gu, Z.; Gorchon, J.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Salahuddin, S.; Bokor, J.

    2015-10-01

    Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, β-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.

  12. Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation

    SciTech Connect

    Pattabi, A. Gu, Z.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Gorchon, J.; Salahuddin, S.; Bokor, J.

    2015-10-12

    Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, β-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.

  13. Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel.

    PubMed

    Xiang, Yanxun; Deng, Mingxi; Xuan, Fu-Zhen; Liu, Chang-Jun

    2011-12-01

    The cumulative second-harmonic analysis of ultrasonic Lamb wave has been performed to study the precipitation kinetics and microvoid initiation of ferritic Cr-Ni alloy steel during the ageing process. Ageing of ferritic Cr-Ni alloy materials have been done at 1223 K and 1173 K for different degradation time intervals and air cooled. The results show that the normalized acoustic nonlinearity of Lamb wave increases with the formation of fine precipitates at the early stage of ageing till about 1000 h and keeps as a plateau with the precipitates dynamic balance for a long-term ageing, and then decreases gradually at the final holding time with the coarsening of precipitates and initiation of microvoids. The results also show that the variation of nonlinear Lamb wave follows the same trend as that of hardness in materials. Therefore, the cumulative second-harmonic of ultrasonic Lamb waves has been found to be strongly sensitive to the precipitates behavior and microstructure evolution during the thermal ageing of ferritic Cr-Ni alloy steel.

  14. Laue diffraction in one-dimensional photonic crystals: The way for phase-matched second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Novikov, V. B.; Maydykovskiy, A. I.; Mantsyzov, B. I.; Murzina, T. V.

    2016-06-01

    Phase-matched second-harmonic generation (SHG) under the Bragg diffraction in the Laue geometry in one-dimensional photonic crystal (PhC) is studied theoretically and experimentally. We demonstrate that the phase-matched SHG can be realized in a PhC by compensation of the material dispersion of the PhC constituent layers of adjustable thickness. The second-order nonlinear susceptibility is introduced in the porous quartz-based PhC by its infiltration by sodium nitrite. We observed that two second-harmonic (SH) beams appear after passing through the PhC under the phase-matched process, which correspond to the transmission and diffraction angular directions. The appearance of the phase-matched SHG is confirmed by a pronounced SH spectral dependence and a narrow SH angular distribution, with the FWHM of the SH peak of approximately 3.5 times smaller as compared to the case of non-phase-matched SHG.

  15. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics.

    PubMed

    Machado, João Carlos; Valente, Jefferson Silva

    2003-11-01

    The oscillations of gas bubbles, without shell, immersed in viscoelastic liquids and driven by an acoustic wave have been the subject of several investigations. They demonstrate that the viscosity coefficient and the spring constant of the liquid have significant influence on the scattering cross section of the gas bubble. For shell-encapsulated gas bubbles, the investigations have been concentrated to bubbles immersed in a pure viscous liquid. This present work computes the ultrasonic scattering cross section, first and second harmonics, of shell-encapsulated gas bubbles immersed in a viscoelastic liquid. The theoretical model of the bubble oscillation is based on the generalized Rayleigh-Plesset equation of motion of a spherical cavity immersed in a viscoelastic liquid represented by a three-parameter linear Oldroyd model. The scattering cross section is computed for Albunex type of bubble (shell thickness=15 nm, shell shear viscosity=1.77 Pas, shell modulus of rigidity=88.8 MPa) irradiated by a 3.5 MHz ultrasonic pressure wave with an amplitude of 30 kPa. The results demonstrate that encapsulated bubbles respond independently of the surrounding liquid being pure viscous or viscoelastic as long as the surrounding liquid shear viscosity is as low as 10(-3) Pas. Nevertheless, for higher shear viscosities, the bubble responds differently if the surrounding liquid is pure viscous or viscoelastic. In general, the scattering cross sections of first and second harmonics are larger for the viscoelastic liquid.

  16. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  17. Role of polytypism and degree of hexagonality on the photoinduced optical second harmonic generation in SiC nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Puziko, V.; Skorik, S.; Wojciechowski, A.; Fedorchuk, A. O.; Maciąg, A.

    2015-05-01

    Photoinduced optiсal second harmonic generation was studied in nanocrystalline SiC films prepared by the method of direct ion deposition. For the studies were chosen three types of polytypes (with different degree of hexagonality) - 24R with degree hexagonality G=25, 27R-G=44, 33R with - G=36. The bicolor photoinduced treatment was performed by the wavelengths 1064nm/532 nm by 15 ns YAG:Nd laser. The efficiency of the output SHG was evaluated by ratio of the corresponding signal intensities with respect to the references and by the time delay between the SHG and the fundamental maxima. Explanation of the observed effect is given within a framework of the occurrence of the nano-trapping levels in the film crystalline interfaces.

  18. Polarization dependant in vivo second harmonic generation imaging of Caenorhabditis elegans vulval, pharynx, and body wall muscles

    NASA Astrophysics Data System (ADS)

    Psilodimitrakopoulos, Sotiris; Santos, Susana; Amat-Roldan, Ivan; Mathew, Manoj; Thayil K. N., Anisha; Artigas, David; Loza-Alvarez, Pablo

    2008-02-01

    Second harmonic generation (SHG) imaging has emerged in recent years as an important laboratory imaging technique since it can provide unique structural information with submicron resolution. It enjoys the benefits of non-invasive interaction establishing this imaging modality as ideal for in vivo investigation of tissue architectures. In this study we present, polarization dependant high resolution SHG images of Caenorhabditis elegans muscles in vivo. We imaged a variety of muscular structures such as body walls, pharynx and vulva. By fitting the experimental data into a cylindrical symmetry spatial model we mapped the corresponding signal distribution of the χ (2) tensor and identified its main axis orientation for different sarcomeres of the earth worm. The cylindrical symmetry was considered to arise from the thick filaments architecture of the inside active volume. Moreover, our theoretical analysis allowed calculating the mean orientation of harmonophores (myosin helical pitch). Ultimately, we recorded and analysed vulvae muscle dynamics, where SHG signal decreased during in vivo contraction.

  19. Surface behaviour and undercooling in the liquid Ga-Bi binary system detected by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Wang, Tian-Min

    2003-03-01

    We employ an optical second harmonic generation(SHG) technique to investigate the surface behaviours at the liquid(solid)/vapour interface of the Ga-Bi binary metallic system. In a heating and cooling cycle between 280°C and room temperature, there is no change of the SH-intensity in the heating process, whereas there exists an abrupt and abnormal change of the SH-intensity in the cooling process. It is interesting to find that a macroscopic Bi-rich solid layer is floating on the surface of the Ga-rich liquid phase just below the monotectic temperature (222°C±2°C) in the cooling process, in spite of the Bi-rich phase being heavier than the Ga-rich phase. On the other hand, different undercooling behaviours are observed at the surface and in the bulk. The behaviours of surface solidification and surface melting are different from those in the bulk.

  20. A study of the influence of halide adsorption on a reconstructed Au(111) electrode by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Friedrich, A.; Shannon, C.; Pettinger, B.

    1991-07-01

    Optical second harmonic generation (SHG) rotational anisotropy measurements were employed to study the influence of specifically adsorbed anions on the reconstructed Au(111)-(1 × 23) surface. Azimuthal rotation of the gold electrode at different potentials yields for the unreconstructed Au(111)-(1 × 1) surface the well-known three-fold symmetry pattern, while for the reconstructed Au(111)-(1 × 23) an additional one-fold symmetry pattern is observed, which leads to an assignment of Cs-symmetry for this surface. Due to the observation of this symmetry change Cs → C3v it is possible to monitor in situ the reversible transition between Au(111)-(1 × 23) and Au(111)-(1 × 1). While in perclorate solution the phase transition occurs over a wide potential region, in halide containing solution the same phase transition is restricted to the sharp potential region typical for the halide adsorption.

  1. Ca{4}YO(BO{3})3: Optical frame wavelength dependence, second harmonic generation and dispersion equations

    NASA Astrophysics Data System (ADS)

    Segonds, P.; Boulanger, B.; Fève, J. P.; Ménaert, B.; Zaccaro, J.; Aka, G.; Pellenc, D.

    2004-11-01

    We report that the optical frame orientation is wavelength independent over the entire transmission range of the nonlinear monoclinic crystal Ca{4}YO(BO{3}){3} (YCOB). We used a new method based on internal conical refraction associated with X-rays diffraction using a single crystal cut as a sphere. Direct measurements phase matching angles of second harmonic generation (SHG) were performed in the principal planes of the spherical crystal for fundamental wavelengths up to 3.5 μm, while three absorption peaks have been measured above 2.4 μm. By fitting all data simultaneously, we found new dispersion equations of the refractive indices of YCOB which are valid in its whole transmission domain.

  2. Effect of the pump depletion itself on the quasi-phase-matching for second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Yue, Gui-Kuan; Zhou, Yun-Song

    2012-08-01

    The so-called quasi-phase-matching (QPM) for second-harmonic generation (SHG) considering depletion of the pumping light power is amended. The conversion efficiency of SHG and the optimum domain width are discussed. The applicable scope of undepleted pump approximation (UPA) is estimated and a relative tolerance showing the difference in the SHG between the UPA and the pump depletion is solely determined by the SHG conversion efficiency. A model is fitted using the relevant data, and the results reveal that the conversion efficiency of SHG can be conveniently and easily assessed under the given conditions of pump intensity, the nonlinear media and the number of domains. The optimum domain widths deviate from the coherence length lc = π/Δk. The deviation increases with the pump intensity, but there is little impact on SHG due to system variations in crystal length.

  3. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale. PMID:25347036

  4. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  5. Numerical analysis of second harmonic generation for THz-wave in a photonic crystal waveguide using a nonlinear FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2016-04-01

    We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.

  6. Determination of Collagen Fiber Orientation in Human Tissue by Use of Polarization Measurement of Molecular Second-Harmonic-Generation Light

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Tohno, Yoshiyuki; Araki, Tsutomu

    2004-05-01

    Based on the reflection-type polarization measurement of second-harmonic-generation (SHG) light induced by collagen molecules, we are able to determine the collagen fiber orientation in human tissues taken from a cadaver. The resulting SHG radar graph shows the direction of the absolute orientation and the degree of organization of collagen fibers. To evaluate the probing sensitivity to the collagen orientation, we compared the proposed method with other polarimetric methods. Use of the proposed method revealed characteristic orientation differences among collagen fibers and demonstrated significant inhomogeneity with respect to the distribution of collagen orientation in human dentin. The proposed method provides a powerful research and diagnostic tool for examining the collagen orientation in human tissues.

  7. Enhancement of second harmonic generation in NaNO2-infiltrated opal photonic crystal using structural light focusing

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Yurchenko, Stanislav O.

    2014-08-01

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO2-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  8. In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryosuke; Fukushima, Shu-ichiro; Sasaki, Kunihiko; Tanaka, Yuji; Murota, Hiroyuki; Matsumoto, Takeshi; Araki, Tsutomu; Yasui, Takeshi

    2013-06-01

    Optical assessment of skin burns is possible with second-harmonic-generation (SHG) microscopy due to its high sensitivity to thermal denaturation of collagen molecules. In contrast to previous studies that were performed using excised tissue specimens ex vivo, in vivo observation of dermal collagen fibers in living rat burn models with SHG microscopy is demonstrated. Changes in signal vanishing patterns in the SHG images are confirmed to be dependent on the burn degree. Comparison of the SHG images with Masson's trichrome-stained images indicated that the observed patterns were caused by the coexistence of molten and fibrous structures of dermal collagen fibers. Furthermore, a quantitative parameter for burn assessment based on the depth profile of the mean SHG intensity across the entire SHG image is proposed. These results and discussions imply a potential of SHG microscopy as a minimally invasive, highly quantitative tool for skin burn assessment.

  9. Observation of optical second-harmonic generation in porous-silicon-based photonic crystals in the Laue diffraction scheme

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Svyakhovskiy, S. E.; Dergacheva, L. V.; Bushuev, V. A.; Mantsyzov, B. I.; Murzina, T. V.

    2016-05-01

    Second-harmonic generation (SHG) in the Laue scheme of the dynamical Bragg diffraction in one-dimensional photonic crystal (PhC) is studied. The experiments are performed for partially annealed porous-silicon PhC containing 250 periods of the structure. Our measurements confirm that the phase-matched optical SHG is observed under the Bragg conditions, which is evidenced by a narrow angular and spectral distribution of the diffracted SHG outgoing the PhC. This is confirmed by both the analytical description of the SHG process performed in the two-wave approximation, and by direct calculations of the PhC dispersion curves for the fundamental and SHG wavelengths by the revised plane wave method. Possible types of phase- and quasi-phase-matching realized in the studied PhC under the Laue diffraction scheme are discussed.

  10. Cellulose amorphization by swelling in ionic liquid/water mixtures: a combined macroscopic and second-harmonic microscopy study.

    PubMed

    Glas, Daan; Paesen, Rik; Depuydt, Daphne; Binnemans, Koen; Ameloot, Marcel; De Vos, Dirk E; Ameloot, Rob

    2015-01-01

    Amorphization of cellulose by swelling in ionic liquid (IL)/water mixtures at room temperature is a suitable alternative to the dissolution-precipitation pretreatment known to facilitate enzymatic digestion. When soaking microcrystalline cellulose in the IL 1-ethyl-3-methylimidazolium acetate containing 20 wt % water, the crystallinity of the cellulose sample is strongly reduced. As less than 4 % of the cellulose dissolves in this mixture, this swelling method makes a precipitation step and subsequent energy-intensive IL purification redundant. Second-harmonic generation (SHG) microscopy is used as a structure-sensitive technique for in situ monitoring of the changes in cellulose crystallinity. Combined optical and SHG observations confirm that in the pure IL complete dissolution takes place, while swelling without dissolution in the optimal IL/water mixture yields a solid cellulose with a significantly reduced crystallinity in a single step. PMID:25363520

  11. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    SciTech Connect

    Zaytsev, Kirill I. Yurchenko, Stanislav O.

    2014-08-04

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  12. Lung alveolar wall disruption in three-dimensional space identified using second-harmonic generation and multiphoton excitation fluorescence

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Hogg, James

    2010-02-01

    Second harmonic generation and multiphoton excited fluorescence microscopy methods were used to examine structural remodeling of the extracellular matrix in human lung alveolar walls undergoing emphysematous destruction. Fresh lung samples removed from a patient undergoing lung transplantation for very severe chronic obstructive pulmonary disease were compared to similar samples from an unused donor lung that served as a control. The generated spatially resolved 3D images show the spatial distribution of collagen, elastin and other endogenously fluorescent tissue components such as macrophages. In the case of control lung tissue, we found well ordered alveolar walls with composite type structure made up of collagen matrix and relatively fine elastic fibers. In contrast, lung tissue undergoing emphysematous destruction was highly disorganized with increased alveolar wall thickness compared to control lung tissue.

  13. Precision of polarization-resolved second harmonic generation microscopy limited by photon noise for samples with cylindrical symmetry.

    PubMed

    Wasik, Valentine; Réfrégier, Philippe; Roche, Muriel; Brasselet, Sophie

    2015-08-01

    The estimation of parameters in polarization-resolved two-photon microscopy response perturbed by photon noise is analyzed in the context of second harmonic generation for the distribution of molecules presenting cylindrical symmetry. The estimation task is investigated using the Cramer-Rao lower bound for Poisson photon noise. It is shown that a noniterative technique can lead to estimation results that have good efficiencies for most of the physical possible values of the sample parameters for sufficiently high photon levels. The trade-off, between the number of incident polarization states and the total number of measured photons, that can be obtained with the Cramer-Rao lower bound is also discussed.

  14. Phase-Matched Second-Harmonic Generation in an On-Chip Li NbO 3 Microresonator

    NASA Astrophysics Data System (ADS)

    Lin, Jintian; Xu, Yingxin; Ni, Jielei; Wang, Min; Fang, Zhiwei; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2016-07-01

    The realization of an efficient nonlinear parametric process in microresonators is a challenging issue largely because of an inherent difficulty in simultaneously ensuring the phase-matching condition and a coherent multiple-resonance condition for all the waves participating in the nonlinear conversion process. Here, we demonstrate highly efficient second-harmonic generation in an on-chip LiNbO3 microresonator fabricated by femtosecond-laser direct writing. We overcome the above difficulty by selectively exciting high-order modes in the fabricated thin-disk microresonator. Thanks to the low optical absorption and high nonlinear optical coefficient of LiNbO3 crystal, we achieve a normalized conversion efficiency of 1.106 ×10-3/mW in the on-chip LiNbO3 microdisk with a diameter of approximately 102 μ m .

  15. Manifestation of quantum disordered wave functions with weak localization from conical second harmonic generation in ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Yu, H. H.; Zhang, H. J.; Wang, Z. P.; Xu, H. H.; Wang, Y. C.; Wang, J. Y.; Petrov, V.

    2012-02-01

    The spatial structure of two-dimensional quantum disordered wave functions with weak localization (WL) is experimentally observed using a calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) ferroelectric crystal illuminated by a pulsed laser beam. Non-collinear phase-matching in CBN-28 produces conical second harmonic pattern in the far-field. The probability density distribution of the experimental near-field pattern agrees very well with the theoretical predictions. The localization degree, within the error limits, is the same at different transverse positions due to the periodicity of the crystal and the eigenfunctions are degenerated. We conclude that a ferroelectric crystal represents an ideal model system for investigation of WL.

  16. GEOPHYSICS, ASTRONOMY AND ASTROPHYSICS: Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells

    NASA Astrophysics Data System (ADS)

    Zhuang, Zheng-Fei; Liu, Han-Ping; Guo, Zhou-Yi; Zhuo, Shuang-Mu; Yu, Bi-Ying; Deng, Xiao-Yuan

    2010-04-01

    This paper first demonstrates second-harmonic generation (SHG) in the intact cell nucleus, which acts as an optical indicator of DNA malignancy in prostate glandular epithelial cells. Within a scanning region of 2.7 μm×2.7 μm in cell nuclei, SHG signals produced from benign prostatic hyperplasia (BPH) and prostate carcinoma (PC) tissues (mouse model C57BL/6) have been investigated. Statistical analyses (t test) of a total of 405 measurements (204 nuclei from BPH and 201 nuclei from PC) show that SHG signals from BPH and PC have a distinct difference (p < 0.05), suggesting a potential optical method of revealing very early malignancy in prostate glandular epithelial cells based upon induced biochemical and/or biophysical modifications in DNA.

  17. Molecular interactions at the hexadecane/water interface in the presence of surfactants studied with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sang, Yajun; Yang, Fangyuan; Chen, Shunli; Xu, Hongbo; Zhang, Si; Yuan, Qunhui; Gan, Wei

    2015-06-01

    It is important to investigate the influence of surfactants on structures and physical/chemical properties of oil/water interfaces. This work reports a second harmonic generation study of the adsorption of malachite green (MG) on the surfaces of oil droplets in a hexadecane/water emulsion in the presence of surfactants including sodium dodecyl sulfate, polyoxyethylene-sorbitan monooleate (Tween80), and cetyltrimethyl ammonium bromide. It is revealed that surfactants with micromolar concentrations notably influence the adsorption of MG at the oil/water interface. Both competition adsorption and charge-charge interactions played very important roles in affecting the adsorption free energy and the surface density of MG at the oil/water interface. The sensitive detection of the changing oil/water interface with the adsorption of surfactants at such low concentrations provides more information for understanding the behavior of these surfactants at the oil/water interface.

  18. Pb2 BO3 Cl: A Tailor-Made Polar Lead Borate Chloride with Very Strong Second Harmonic Generation.

    PubMed

    Zou, Guohong; Lin, Chensheng; Jo, Hongil; Nam, Gnu; You, Tae-Soo; Ok, Kang Min

    2016-09-19

    A meticulously designed, polar, non-centrosymmetric lead borate chloride, Pb2 BO3 Cl, was synthesized using KBe2 BO3 F2 (KBBF) as a model. Single-crystal X-ray diffraction revealed that the structure of Pb2 BO3 Cl consists of cationic [Pb2 (BO3 )](+) honeycomb layers and Cl(-) anions. Powder second harmonic generation (SHG) measurements on graded polycrystalline Pb2 BO3 Cl indicated that the title compound is phase-matchable (type I) and exhibits a remarkably strong SHG response, which is approximately nine times stronger than that of potassium dihydrogen phosphate, and the largest efficiency observed in materials with structures similar to KBBF. Further characterization suggested that the compound melts congruently at high temperature and has a wide transparency window from the near-UV to the mid-IR region. PMID:27555114

  19. Pb2 BO3 Cl: A Tailor-Made Polar Lead Borate Chloride with Very Strong Second Harmonic Generation.

    PubMed

    Zou, Guohong; Lin, Chensheng; Jo, Hongil; Nam, Gnu; You, Tae-Soo; Ok, Kang Min

    2016-09-19

    A meticulously designed, polar, non-centrosymmetric lead borate chloride, Pb2 BO3 Cl, was synthesized using KBe2 BO3 F2 (KBBF) as a model. Single-crystal X-ray diffraction revealed that the structure of Pb2 BO3 Cl consists of cationic [Pb2 (BO3 )](+) honeycomb layers and Cl(-) anions. Powder second harmonic generation (SHG) measurements on graded polycrystalline Pb2 BO3 Cl indicated that the title compound is phase-matchable (type I) and exhibits a remarkably strong SHG response, which is approximately nine times stronger than that of potassium dihydrogen phosphate, and the largest efficiency observed in materials with structures similar to KBBF. Further characterization suggested that the compound melts congruently at high temperature and has a wide transparency window from the near-UV to the mid-IR region.

  20. Monitoring the effect of low-level laser therapy in healing process of skin with second harmonic generation imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Yu, Biying; Weng, Cuncheng; Li, Hui

    2014-11-01

    The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.

  1. All-optical poling and second harmonic generation diagnostic of layer-by-layer assembled photoactive polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Aldea-Nunzi, G.; Chan, S. W.; Man, K. Y. K.; Nunzi, J. M.

    2013-07-01

    Layer-by-layer (LBL) self-assembling was employed to produce dye-containing multilayer films with a nonlinear optical maleic acid copolymer containing Disperse Red 1 moieties. By alternate adsorption of maleic acid copolymer derivative and polyethyleneimine, films made from 1 to 30 bilayers were prepared and characterized. The effect of salt addition to the polyelectrolyte on the LBL self-assembly process was also studied. Second order optical nonlinearity χ(2) of LBL films was studied by second harmonic generation and its stability was assessed by all-optical poling. A 'restoring force' model for the chromophore orientation in the LBL films is proposed to simulate the rotational motion. It clarifies the origin of the stability of the noncentrosymmetry in LBL films.

  2. Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer.

    PubMed

    Duan, Lihong; Fang, Jiancheng; Li, Rujie; Jiang, Liwei; Ding, Ming; Wang, Wei

    2015-12-14

    The fluctuations of the probe light intensity seriously affect the performance of the sensitive atomic magnetometer. Here we propose a novel method for the intensity stabilization based on the second harmonic component of the photoelastic modulator (PEM) detection in the atomic magnetometer. The method not only could be used to eliminate the intensity fluctuations of the laser source, but also remove the fluctuations from the optical components caused by the environment. A relative fluctuation of the light intensity of 0.035% was achieved and the corresponding fluctuation of the output signal of the atomic magnetometer has decreased about two orders of magnitude from 4.06% to 0.041%. As the scheme proposed here only contains optical devices and does not require additional feedback controlled equipments, it is especially suitable for the integration of the atomic magnetometer.

  3. Second harmonic generation spectroscopy in the Reststrahl band of SiC using an infrared free-electron laser

    SciTech Connect

    Paarmann, Alexander Razdolski, Ilya; Melnikov, Alexey; Gewinner, Sandy; Schöllkopf, Wieland; Wolf, Martin

    2015-08-24

    The Reststrahl spectral region of silicon carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigation of the Reststrahl region of SiC, employing an infrared free-electron laser to perform second harmonic generation (SHG) spectroscopy. We observe two distinct resonance features in the SHG spectra, one attributed to resonant enhancement of the nonlinear susceptibility χ{sup (2)} and the other due to a resonance in the Fresnel transmission. Our work clearly demonstrates high sensitivity of mid-infrared SHG to phonon-driven phenomena and opens a route to studying nonlinear effects in nanophotonic structures based on SPhPs.

  4. Bidenticity-Enhanced Second Harmonic Generation from Pb Chelation in Pb3Mg3TeP2O14.

    PubMed

    Yu, Hongwei; Zhang, Weiguo; Young, Joshua; Rondinelli, James M; Halasyamani, P Shiv

    2016-01-13

    A new ultraviolet nonlinear optical (NLO) material, Pb3Mg3TeP2O14 (PMTP), has been synthesized and characterized. The chiral material exhibits a large second harmonic generation (SHG) response of 13.5 × KDP (600 × α-SiO2), and the shortest absorption edge (250 nm) of reported materials with a strong SHG response (>10 × KDP). PMTP has a three-dimensional crystal structure of corner-shared MgO4, PO4, and TeO6 polyhedra, which form a [TeMg3P2O14]∞ framework. Electronic structure calculations revealed that the stereoactive lone pair on the Pb(2+) cation is critical to producing the substantial NLO response and that the NLO activity is further enhanced by the presence of triply bidentate Te(6+) cations found in Te-O-O-Pb rings. PMID:26687636

  5. Second-harmonic generation in quaternary atomically thin layered AgInP2S6 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xingzhi; Du, Kezhao; Liu, Weiwei; Hu, Peng; Lu, Xin; Xu, Weigao; Kloc, Christian; Xiong, Qihua

    2016-09-01

    Nonlinear effects in two-dimensional (2D) atomic layered materials have attracted increasing interest. Here, we report the observation of optical second-harmonic generation (SHG) in two-dimensional atomically thin silver indium phosphorus sulfide (AgInP2S6) crystals, with odd layer thickness. The nonlinear signal facilitates the use of thickness-dependent SHG intensity to investigate the stacking type of this material, while the crystal-orientation dependent SHG intensity of the monolayer sample reveals the rotational symmetry of the AgInP2S6 lattice in plane. Our studies expand the 2D crystal family in nonlinear effect field, which opened considerable promise to the functionalities and potential applications of 2D materials.

  6. Microscopic imaging of glyceraldehyde-induced tissue glycation with intrinsic second harmonic generation and two-photon fluorescence contrasts

    NASA Astrophysics Data System (ADS)

    Hwang, Yu Jer; Granelli, Joseph; Tirumalasetty, Manasa; Lyubovitsky, Julia

    2013-02-01

    The bioinspired approaches to tissue strengthening and preservation rely on non-toxic cross-linking agents one of which is glyceraldehyde. In this study we used multiphoton microscopy that employs second harmonic generation (SHG) contrast to evaluate collagen microstructures and two-photon fluorescence (TPF) contrast to monitor progression of cross-linking upon treatment of tissues with glyceraldehyde. We examined collagen hydrogels assembled at 37 °C and 27 °C, bovine scleral and corneal tissues, skin as well as rat tail tendons. The results show a different effect of glyceraldehyde on collagen microstructures within the above tissues. This effect depends on the original microstructural assembly of collagen within a specific tissue. Our data suggests that epidermis (in skin and cornea) will protect collagen from cross-linking with glyceraldehyde. The work highlights benefits of monitoring progression of collagen cross-linking and effects of cross-linking on fiber microstructures as imaged with SHG and TPF signals.

  7. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    SciTech Connect

    Zhang, Jun; Zhang, Xiangdong

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  8. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  9. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  10. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  11. Large scale synthesis, second-harmonic generation, and piezoelectric properties of a noncentrosymmetric vanadium phosphate, Li₂VPO₆

    SciTech Connect

    Lee, Eun Pyo; Lee, Dong Woo; Cho, Yoon-Ho; Thao Tran, T.; Shiv Halasyamani, P.; Ok, Kang Min

    2013-06-01

    The phase pure large scale synthesis, second-harmonic generation, and piezoelectric properties of a vanadium phosphate, Li₂VPO₆ are reported. The material has been synthesized by a standard solid-state reaction using Li₂CO₃, V₂O₅, and NH₄H₂PO₄ as reagents. The phase purity and crystal structure of the reported material have been confirmed by powder X-ray and neutron diffractions. The material crystallizes in orthorhombic space group Pna2₁ (no. 33) with a=10.32581(7) Å, b=4.63728(3) Å, c=8.56606(5) Å, and Z=4. The noncentrosymmetric layered structure is composed of distorted VO₆ octahedra and PO₄ tetrahedra. The V⁵⁺ cations distort either along the approximate [1 0 1] or [-1 0 1] directions attributable to the alignment of distorted VO₆ octahedra, resulting in a polar structure. Powder second-harmonic generating (SHG) measurements on Li₂VPO₆ using 1064 nm radiation, indicate the material has a SHG efficiency of approximately 10 times that of α-SiO₂ and is not phase-matchable (type 1). Converse piezoelectric measurements for the material reveal a piezoelectric coefficient, d₃₃, of 12 pm V⁻¹. - Graphical abstract: A net moment arising from the alignment of the distorted VO₆ octahedra is responsible for the SHG and piezoelectricity for the noncentrosymmetric vanadium phosphate, Li₂VPO₆. Highlights: • Large scale synthesis of a NCS vanadium phosphate, Li₂VPO₆ is reported. • Li₂VPO₆ exhibits a SHG efficiency of 10× that of α-SiO₂. • Li₂VPO₆ reveals a piezoelectric coefficient, d₃₃, of 12 pm V⁻¹. • A net moment is arising from the alignment of the VO₆ octahedra in Li₂VPO₆.

  12. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  13. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  14. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    SciTech Connect

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-09-15

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part

  15. Self-assembled organic hexagonal micro-prisms with high second harmonic generation efficiency for photonic devices

    NASA Astrophysics Data System (ADS)

    Zhang, Haihua; Liao, Qing; Wang, Xuedong; Xu, Zhenzhen; Fu, Hongbing

    2015-05-01

    Multiwavelength coherent light sources are key components for circuit integration of nanophotonics. Here, we demonstrated highly efficient second harmonic generation (SHG) in single-crystalline hexagonal micro-prisms (HMPs) of 3-methyl-4-methoxy-4'-nitrostilbene (MMONS) prepared via a facile self-assembled method. We found that the SHG conversion efficiency (ηSHG) of MMONS HMPs increases with increasing the prism side length (d). Local electric field |E|2 calculations suggest that the symmetrical hexagonal prism shape of HMPs supports helically propagating modes. The SHG light produced at one end of HMP can be coupled into whispering-gallery (WG) like optical modes with a coupling efficiency of 50-80% and helically propagates along the length of HMPs toward another end. Based on this unique helical propagation of SHG light, we construct an optical interconnector by placing a single MMONS HMP on the top of a single micro-ribbon of 1,2-diphenyl-2-pyrazoline (DP). These easily fabricated MMONS HMPs can act as a coherent source, which adds a key component to the tool box of organic nano- and micro-structure optoelectronics.Multiwavelength coherent light sources are key components for circuit integration of nanophotonics. Here, we demonstrated highly efficient second harmonic generation (SHG) in single-crystalline hexagonal micro-prisms (HMPs) of 3-methyl-4-methoxy-4'-nitrostilbene (MMONS) prepared via a facile self-assembled method. We found that the SHG conversion efficiency (ηSHG) of MMONS HMPs increases with increasing the prism side length (d). Local electric field |E|2 calculations suggest that the symmetrical hexagonal prism shape of HMPs supports helically propagating modes. The SHG light produced at one end of HMP can be coupled into whispering-gallery (WG) like optical modes with a coupling efficiency of 50-80% and helically propagates along the length of HMPs toward another end. Based on this unique helical propagation of SHG light, we construct an optical

  16. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration

  17. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA. PMID:27587174

  18. Multi-scale modeling of mycosubtilin lipopeptides at the air/water interface: structure and optical second harmonic generation.

    PubMed

    Loison, Claire; Nasir, Mehmet Nail; Benichou, Emmanuel; Besson, Françoise; Brevet, Pierre-François

    2014-02-01

    Monolayers of the lipopeptide mycosubtilin are studied at the air/water interface. Their structure is investigated using molecular dynamics simulations. All-atom models suggest that the lipopeptide is flexible and aggregates at the interface. To achieve simulation times of several microseconds, a coarse-grained (CG) model based on the MARTINI force field was also used. These CG simulations describe the formation of half-micelles at the interface for surface densities up to 1 lipopeptide per nm(2). In these aggregates, the tyrosine side chain orientation is found to be constrained: on average, its main axis, as defined along the C-OH bond, aligns along the interface normal and points towards the air side. The origin of the optical second harmonic generation (SHG) from mycosubtilin monolayers at the air/water interface is also investigated. The molecular hyperpolarizability of the lipopeptide is obtained from quantum chemistry calculations. The tyrosine side chain contribution to the hyperpolarizability is found to be dominant. The orientation distribution of tyrosine, associated with a dominant hyperpolarizability component along the C-OH bond of the tyrosine, yields a ratio of the susceptibility elements χ((2))(ZZZ)/χ((2))(ZXX) consistent with the experimental measurements recently reported by M. N. Nasir et al. [Phys. Chem. Chem. Phys., 2013, 15, 19919].

  19. Liquid-crystal alignment on polytetrafluoroethylene and high-density polyethylene thin films studied by optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Dennis, John R.; Vogel, Viola

    1998-05-01

    We have used optical second-harmonic generation to study surface molecular order in a liquid-crystal (4'-n-octyl-4-cyano-biphenyl, or 8CB) on shear-deposited polymer films. The films are highly oriented layers of polytetrafluoroethylene (PTFE) or high-density polyethylene (HDPE), with a surface topology of uniaxially aligned nanoscale ridges and grooves, which are used as versatile substrates for oriented growth and alignment of other materials. In nematic 8CB cells made with either polymer, the surface monolayers of 8CB were aligned along the polymer orientation axis, and showed C2ν symmetry. In the isotropic phase, the surface monolayer alignment in these cells was lost. Monolayers of 8CB evaporated onto either polymer showed little or no alignment. These data indicate that the PTFE and HDPE films do not produce the strong epitaxylike alignment seen on some cloth-rubbed polymer surfaces. Instead, alignment appears to be primarily caused by surface ridges through an elastic, bulk-mediated mechanism.

  20. Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation.

    PubMed Central

    Yan, E C; Eisenthal, K B

    2000-01-01

    The effect of cholesterol on the molecular transport of an organic cation, malachite green (MG), across large unilamellar dioleolyphosphatidylglycerol (DOPG) liposome bilayers with 0-50 mol% cholesterol was studied by second harmonic generation (SHG). Because SHG is a surface-specific technique, it requires no labeled molecule, quencher, or shifting agent to distinguish the location of the solute molecules. An additional important feature of SHG is that it is sensitive only to the probe molecules bound to the liposome, whereas other methods can only differentiate between molecules that are outside and those inside the liposome. The transport kinetics of MG across the liposome bilayers was observed in real time, and the results show that cholesterol retards the rate of transport of MG across liposome bilayers. The rate was found to decrease by six times for 50 mol% cholesterol content compared with cholesterol-free liposomes. This demonstrates the applicability of SHG to investigation of the effect of liposome composition on the transport kinetics across the liposome bilayers. PMID:10920021